WorldWideScience

Sample records for high affinity interaction

  1. Engineering High Affinity Protein-Protein Interactions Using a High-Throughput Microcapillary Array Platform.

    Science.gov (United States)

    Lim, Sungwon; Chen, Bob; Kariolis, Mihalis S; Dimov, Ivan K; Baer, Thomas M; Cochran, Jennifer R

    2017-02-17

    Affinity maturation of protein-protein interactions requires iterative rounds of protein library generation and high-throughput screening to identify variants that bind with increased affinity to a target of interest. We recently developed a multipurpose protein engineering platform, termed μSCALE (Microcapillary Single Cell Analysis and Laser Extraction). This technology enables high-throughput screening of libraries of millions of cell-expressing protein variants based on their binding properties or functional activity. Here, we demonstrate the first use of the μSCALE platform for affinity maturation of a protein-protein binding interaction. In this proof-of-concept study, we engineered an extracellular domain of the Axl receptor tyrosine kinase to bind tighter to its ligand Gas6. Within 2 weeks, two iterative rounds of library generation and screening resulted in engineered Axl variants with a 50-fold decrease in kinetic dissociation rate, highlighting the use of μSCALE as a new tool for directed evolution.

  2. ANALYSIS OF DRUG INTERACTIONS WITH HIGH DENSITY LIPOPROTEIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    Science.gov (United States)

    Chen, Sike; Sobansky, Matthew R.; Hage, David S.

    2009-01-01

    Columns containing immobilized lipoproteins were prepared for the analysis of drug interactions with these particles by high-performance affinity chromatography. This approach was evaluated by using it to examine the binding of high density lipoprotein (HDL) to the drugs propranolol or verapamil. HDL was immobilized by the Schiff base method onto silica and gave HPLC columns with reproducible binding to propranolol over four to five days of continuous operation at pH 7.4. Frontal analysis experiments indicated that two types of interactions were occurring between R/S-propranolol and HDL at 37°C: saturable binding with an association equilibrium constant (Ka) of 1.1–1.9 × 105 M−1, and non-saturable binding with an overall affinity constant (n Ka) of 3.7–4.1 × 104 M−1. Similar results were found at 4 and 27°C. Verapamil also gave similar behavior, with a Ka of 6.0 × 104 M−1 at 37°C for the saturable sites and a n Ka value for the non-saturable sites of 2.5 × 104 M−1. These measured affinities gave good agreement with solution-phase values. The results indicated HPAC can be used to study drug interactions with HDL, providing information that should be valuable in obtaining a better description of how drugs are transported within the body. PMID:19833090

  3. High-throughput analysis of lectin-oligosaccharide interactions by automated frontal affinity chromatography.

    Science.gov (United States)

    Nakamura-Tsuruta, Sachiko; Uchiyama, Noboru; Hirabayashi, Jun

    2006-01-01

    Frontal affinity chromatography (FAC) is a quantitative method that enables sensitive and reproducible measurements of interactions between lectins and oligosaccharides. The method is suitable even for the measurement of low-affinity interactions and is based on a simple procedure and a clear principle. To achieve high-throughput and efficient analysis, an automated FAC system was developed. The system designated FAC-1 consists of two isocratic pumps, an autosampler, and a couple of miniature columns (bed volume, 31.4 microl) connected in parallel to either a fluorescence or an ultraviolet detector. By use of this parallel-column system, the time required for each analysis was reduced substantially. Under the established conditions, fewer than 10 hrs are required for 100 interaction analyses, consuming as little as 1 pmol pyridylaminated oligosaccharide for each analysis. This strategy for FAC should contribute to the construction of a lectin-oligosaccharide interaction database essential for future glycomics. Overall features and practical protocols for interaction analyses using FAC-1 are described.

  4. Analysis of Drug Interactions with Lipoproteins by High-Performance Affinity Chromatography

    Science.gov (United States)

    Sobansky, Matthew R.; Hage, David S.

    2013-01-01

    Lipoproteins such as high-density lipoprotein (HDL) and low-density lipoprotein (LDL) are known to interact with drugs and other solutes in blood. These interactions have been examined in the past by methods such as equilibrium dialysis and capillary electrophoresis. This chapter describes an alternative approach that has recently been developed for examining these interactions by using high-performance affinity chromatography. In this method, lipoproteins are covalently immobilized to a solid support and used within a column as a stationary phase for binding studies. This approach allows the same lipoprotein preparation to be used for a large number of binding studies, leading to precise estimates of binding parameters. This chapter will discuss how this technique can be applied to the identification of interaction models and be used to differentiate between systems that have interactions based on partitioning, adsorption or mixed-mode interactions. It is also shown how this approach can then be used for the measurement of binding parameters for HDL and LDL with drugs. Examples of these studies are provided, with particular attention being given to the use of frontal analysis to examine the interactions of R- and S-propranolol with HDL and LDL. The advantages and possible limitations of this method are described. The extension of this approach to other types of drug-lipoprotein interactions is also considered. PMID:25392741

  5. Analysis of stereoselective drug interactions with serum proteins by high-performance affinity chromatography: A historical perspective.

    Science.gov (United States)

    Li, Zhao; Hage, David S

    2017-09-10

    The interactions of drugs with serum proteins are often stereoselective and can affect the distribution, activity, toxicity and rate of excretion of these drugs in the body. A number of approaches based on affinity chromatography, and particularly high-performance affinity chromatography (HPAC), have been used as tools to study these interactions. This review describes the general principles of affinity chromatography and HPAC as related to their use in drug binding studies. The types of serum agents that have been examined with these methods are also discussed, including human serum albumin, α1-acid glycoprotein, and lipoproteins. This is followed by a description of the various formats based on affinity chromatography and HPAC that have been used to investigate drug interactions with serum proteins and the historical development for each of these formats. Specific techniques that are discussed include zonal elution, frontal analysis, and kinetic methods such as those that make use of band-broadening measurements, peak decay analysis, or ultrafast affinity extraction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions.

    Science.gov (United States)

    Geuijen, Karin P M; Schasfoort, Richard B; Wijffels, Rene H; Eppink, Michel H M

    2014-06-01

    Affinity-based analyses on biosensors depend partly on regeneration between measurements. Regeneration is performed with a buffer that efficiently breaks all interactions between ligand and analyte while maintaining the active binding site of the ligand. We demonstrated a regeneration buffer scouting using the combination of a continuous flow microspotter with a surface plasmon resonance imaging platform to simultaneously test 48 different regeneration buffers on a single biosensor. Optimal regeneration conditions are found within hours and consume little amounts of buffers, analyte, and ligand. This workflow can be applied to any ligand that is coupled through amine, thiol, or streptavidin immobilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Rapid analysis of the interactions between drugs and human serum albumin (HSA) using high-performance affinity chromatography (HPAC).

    Science.gov (United States)

    Kim, Hee Seung; Wainer, Irving W

    2008-07-01

    This study used a combination of zonal elution and frontal affinity chromatography on immobilized human serum albumin (HSA) high-performance affinity chromatography (HPAC) column to examine the association constants of various compounds that have been studied by equilibrium dialysis or ultra filtration. A standard plot was generated from retention factors of reference compounds using zonal elution chromatography against association constants of reference compounds using frontal affinity chromatography. The linear relationship was established (r2=0.9993) between retention factors and association constants of reference compounds. This standard plot was later used for rapid determination of association constants of various drugs which show low to medium binding affinity to HSA. Association constants of those drugs from this study were compared to that of more generally used methods (i.e., equilibrium dialysis or ultra filtration) from literature and resulted in a relatively high correlation (r2=0.945) value. This combination of zonal elution and frontal affinity chromatography method for determining association constants showed several advantages against traditional methods. Depending on drugs of interest, an association constant of drug to HSA can be measured as fast as 1.5 min. Other notable advantages include an ease of automation and its ability to distinguish association constants of chiral compounds at the same time. The same approach could be used for studying interaction of other drugs and proteins and should further improve overall drug screening process.

  8. Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Martini, Lene; Schwartz, Thue W

    2005-01-01

    that (beta)arr2 interaction locks the receptor in a high-affinity conformation, which can be explored by some, but not all, ligands. The fusion constructs adopted a signaling phenotype governed by the tethered (beta)arr2 with an attenuated G protein-mediated cAMP signal and a higher maximal internalization...... for the fusion constructs was observed. We conclude that the glucagon-like peptide 1 fusion construct mimics the natural interaction of the receptor with (beta)arr2 with respect to binding peptide ligands, G protein-mediated signaling and internalization, and that this distinct molecular phenotype is reminiscent......To dissect the interaction between beta-arrestin ((beta)arr) and family B G protein-coupled receptors, we constructed fusion proteins between the glucagon-like peptide 1 receptor and (beta)arr2. The fusion constructs had an increase in apparent affinity selectively for glucagon, suggesting...

  9. High-avidity, low-affinity multivalent interactions and the block to polyspermy in Xenopus laevis.

    Science.gov (United States)

    Arranz-Plaza, Esther; Tracy, Alex S; Siriwardena, Aloysius; Pierce, J Michael; Boons, Geert-Jan

    2002-11-06

    The interaction of the lectin XL35 with the jelly coat protein (JCP) surrounding oocytes in Xenopus laevis is essential for the block to polyspermy. The molecular details of this event are poorly understood, and the present study has been undertaken with a view to delineating the mechanism of formation of the fertilization envelope. A range of JCP-derived oligosaccharides were synthesized, and all were installed with an artificial aminopropyl arm. This arm allowed the preparation of monovalent derivatives by acetylation of the amino group or the synthesis of polyvalent compounds by attachment to an activated polyacrylamide polymer. A number of analytical techniques, including enzyme-linked lectin assays and surface plasmon resonance, have been developed and utilized to study the interactions of the mono- and polyvalent compounds with XL35. The results reveal that the lectin XL35 has remarkably broad specificity for galactose-containing saccharides and the affinities are only slightly modulated by secondary features, such as anomeric configuration of the terminal sugar or the identity and linkage pattern of branching sugars. Broad specificity was also observed when the saccharides were presented in a polyvalent fashion. The glycopolymers displayed 10-20-fold increases in valency-corrected affinities compared to the corresponding monovalent counterparts. Although the synthetic polymers are not as potent as the JCP, the kinetics of their interactions mirror closely those of the native ligand, and in each case extremely long-lived interactions were observed. The results of this study indicate that, in X. laevis, the true biological function of multivalency is not to create an extremely tightly binding complex between XL35 and its natural ligand but, instead, to create a very stable protective layer that will not dissociate and is yet flexible enough to encapsulate the developing embryo. It is postulated that, even if these partners are unable to attain true equilibrium

  10. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    DEFF Research Database (Denmark)

    Nissen, Klaus B; Kedström, Linda Maria Haugaard; Wilbek, Theis S

    2015-01-01

    and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series...... of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG...... linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic...

  11. High oxygen affinity hemoglobins.

    Science.gov (United States)

    Mangin, O

    2017-02-01

    High oxygen affinity hemoglobins are responsible for rare and heterogeneous autosomic dominant genetic diseases. They cause pure erythrocytosis, sometimes accountable for hyperviscosity and thrombosis, or hemolysis. Differential diagnoses must be first ruled out. The diagnosis is based on the identification of a decreased P50, and their possible characterization by cation exchange-high performance liquid chromatography and capillary electrophoresis. Finally, genetic studies of the responsible globin chain gene will confirm the mutation. The prognosis mainly relies on the P50 decrease rate and on the hemoglobin cooperativity impairment. Disease management should be personalized, and it should primarily depend on smoking cessation and physical activity. Phlebotomy and platelet aggregation inhibitors' prescriptions can be discussed. There is no contraindication to flights, high-altitude conditions, or pregnancy. Nevertheless, blood donation must be prohibited. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  12. EVALUATION OF SILICA MONOLITHS IN AFFINITY MICROCOLUMNS FOR HIGH-THROUGHPUT ANALYSIS OF DRUG-PROTEIN INTERACTIONS

    OpenAIRE

    Yoo, Michelle J.; Hage, David S.

    2009-01-01

    Silica monoliths in affinity microcolumns were tested for the high-throughput analysis of drug-protein interactions. Human serum albumin (HSA) was used as a model protein for this work, while carbamazepine and R-warfarin were used as model analytes. A comparison of HSA silica monoliths of various lengths indicated columns as short as 1 to 3 mm could be used to provide reproducible estimates of retention factors or plate heights. Benefits of using smaller columns for this work included the low...

  13. Identification and analysis of stereoselective drug interactions with low-density lipoprotein by high-performance affinity chromatography.

    Science.gov (United States)

    Sobansky, Matthew R; Hage, David S

    2012-04-01

    Columns containing immobilized low-density lipoprotein (LDL) were prepared for the analysis of drug interactions with this agent by high-performance affinity chromatography (HPAC). R/S-Propranolol was used as a model drug for this study. The LDL columns gave reproducible binding to propranolol over 60 h of continuous use in the presence of pH 7.4 0.067 M potassium phosphate buffer. Experiments conducted with this type of column through frontal analysis indicated that two types of interactions were occurring between R-propranolol and LDL, while only a single type of interaction was observed between S-propranolol and LDL. The first type of interaction, which was seen for both enantiomers, involved non-saturable binding; this interaction had an overall affinity (nK(a)) of 1.9 (±0.1) × 10(5) M(-1) for R-propranolol and 2.7 (±0.2) × 10(5) M(-1) for S-propranolol at 37 °C. The second type of interaction was observed only for R-propranolol and involved saturable binding that had an association equilibrium constant (K(a)) of 5.2 (±2.3) × 10(5) M(-1) at 37 °C. Similar differences in binding behavior were found for the two enantiomers at 20 °C and 27 °C. This is the first known example of stereoselective binding of drugs by LDL or other lipoproteins. This work also illustrates the ability of HPAC to be used as a tool for characterizing mixed-mode interactions that involve LDL and related binding agents.

  14. Rapid analysis of the interactions between drugs and human serum albumin (HSA) using high-performance affinity chromatography (HPAC)

    OpenAIRE

    Kim, Hee Seung; Wainer, Irving W.

    2008-01-01

    This study used a combination of zonal elution and frontal affinity chromatography on immobilized human serum albumin (HSA) high-performance affinity chromatography (HPAC) column to examine the association constants of various compounds that have been studied by equilibrium dialysis or ultra filtration. A standard plot was generated from retention factors of reference compounds using zonal elution chromatography against association constants of reference compounds using frontal affinity chrom...

  15. Evaluation of silica monoliths in affinity microcolumns for high-throughput analysis of drug-protein interactions.

    Science.gov (United States)

    Yoo, Michelle J; Hage, David S

    2009-08-01

    Silica monoliths in affinity microcolumns were tested for the high-throughput analysis of drug-protein interactions. HSA was used as a model protein for this work, while carbamazepine and R-warfarin were used as model analytes. A comparison of HSA silica monoliths of various lengths indicated columns as short as 1 to 3 mm could be used to provide reproducible estimates of retention factors or plate heights. Benefits of using smaller columns for this work included the lower retention times and lower back pressures that could be obtained versus traditional HPLC affinity columns, as well as the smaller amount of protein that is required for column preparation. One disadvantage of decreasing column length was the lower precision that resulted in retention factor and plate height measurements. A comparison was also made between microcolumns containing silica particles versus silica monoliths. It was demonstrated with R-warfarin that supports could be used in HSA microcolumns for the determination of retention factors or plate heights. However, the higher efficiency of the silica monolith made this the preferred support for work at higher flow rates or when a larger number of plates are needed during the rapid analysis of drug-protein interactions.

  16. Using Affinity Diagrams to Evaluate Interactive Prototypes

    OpenAIRE

    Lucero, Andrés

    2015-01-01

    International audience; Affinity diagramming is a technique used to externalize, make sense of, and organize large amounts of unstructured, far-ranging, and seemingly dissimilar qualitative data. HCI and interaction design practitioners have adopted and used affinity diagrams for different purposes. This paper discusses our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in indust...

  17. Using Affinity Diagrams to Evaluate Interactive Prototypes

    DEFF Research Database (Denmark)

    Lucero, Andrés

    2015-01-01

    our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in industry and academia. Our affinity diagramming process in interaction design has been tailored and consists of four stages: creating......Affinity diagramming is a technique used to externalize, make sense of, and organize large amounts of unstructured, far-ranging, and seemingly dissimilar qualitative data. HCI and interaction design practitioners have adopted and used affinity diagrams for different purposes. This paper discusses...

  18. Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody-ligand interaction thermodynamics and kinetics

    Science.gov (United States)

    Aweda, Tolulope A.; Meares, Claude F.

    2011-01-01

    For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (KA >108 M−1; KD titration calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate. PMID:21964396

  19. Affinity imaging mass spectrometry (AIMS): high-throughput screening for specific small molecule interactions with frozen tissue sections.

    Science.gov (United States)

    Yoshimi, T; Kawabata, S; Taira, S; Okuno, A; Mikawa, R; Murayama, S; Tanaka, K; Takikawa, O

    2015-11-07

    A novel screening system, using affinity imaging mass spectrometry (AIMS), has been developed to identify protein aggregates or organ structures in unfixed human tissue. Frozen tissue sections are positioned on small (millimetre-scale) stainless steel chips and incubated with an extensive library of small molecules. Candidate molecules showing specific affinity for the tissue section are identified by imaging mass spectrometry (IMS). As an example application, we screened over a thousand compounds against Alzheimer's disease (AD) brain tissue and identified several compounds with high affinity for AD brain sections containing tau deposits compared to age-matched controls. It should also be possible to use AIMS to isolate chemical compounds with affinity for tissue structures or components that have been extensively modified by events such as oxidation, phosphorylation, acetylation, aggregation, racemization or truncation, for example, due to aging. It may also be applicable to biomarker screening programs.

  20. Analysis of drug-protein interactions by high-performance affinity chromatography: interactions of sulfonylurea drugs with normal and glycated human serum albumin.

    Science.gov (United States)

    Matsuda, Ryan; Anguizola, Jeanethe; Hoy, Krina S; Hage, David S

    2015-01-01

    High-performance affinity chromatography (HPAC) is a type of liquid chromatography that has seen growing use as a tool for the study of drug-protein interactions. This report describes how HPAC can be used to provide information on the number of binding sites, equilibrium constants, and changes in binding that can occur during drug-protein interactions. This approach will be illustrated through recent data that have been obtained by HPAC for the binding of sulfonylurea drugs and other solutes to the protein human serum albumin (HSA), and especially to forms of this protein that have been modified by non-enzymatic glycation. The theory and use of both frontal analysis and zonal elution competition studies in such work will be discussed. Various practical aspects of these experiments will be presented, as well as factors to consider in the extension of these methods to other drugs and proteins or additional types of biological interactions.

  1. Analysis of drug interactions with modified proteins by high-performance affinity chromatography: binding of glibenclamide to normal and glycated human serum albumin.

    Science.gov (United States)

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K S; Hage, David S

    2012-11-23

    High-performance affinity chromatography (HPAC) was used to examine the changes in binding that occur for the sulfonylurea drug glibenclamide with human serum albumin (HSA) at various stages of glycation for HSA. Frontal analysis on columns containing normal HSA or glycated HSA indicated glibenclamide was interacting through both high affinity sites (association equilibrium constant, K(a), 1.4-1.9 × 10(6)M(-1) at pH 7.4 and 37 °C) and lower affinity sites (K(a), 4.4-7.2 × 10(4)M(-1)). Competition studies were used to examine the effect of glycation at specific binding sites of HSA. An increase in affinity of 1.7- to 1.9-fold was seen at Sudlow site I with moderate to high levels of glycation. An even larger increase of 4.3- to 6.0-fold in affinity was noted at Sudlow site II for all of the tested samples of glycated HSA. A slight decrease in affinity may have occurred at the digitoxin site, but this change was not significant for any individual glycated HSA sample. These results illustrate how HPAC can be used as tool for examining the interactions of relatively non-polar drugs like glibenclamide with modified proteins and should lead to a more complete understanding of how glycation can alter the binding of drugs in blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity receptor FcεRI

    OpenAIRE

    Sabban, Sari; Ye, Hongtu; Helm, Birgit

    2014-01-01

    The interaction of IgE with its high-affinity Fc receptor (FcεRI) followed by an antigenic challenge is the principal pathway in IgE mediated allergic reactions. As a consequence of the high affinity binding between IgE and FcεRI, along with the continuous production of IgE by B cells, allergies usually persist throughout life, with currently no permanent cure available. Horses, especially race horses, which are commonly inbred, are a species of mammals that are very prone to the development ...

  3. High-performance affinity chromatography and the analysis of drug interactions with modified proteins: binding of gliclazide with glycated human serum albumin.

    Science.gov (United States)

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K S; Hage, David S

    2011-11-01

    This study used high-performance affinity chromatography (HPAC) to examine the binding of gliclazide (i.e., a sulfonylurea drug used to treat diabetes) with the protein human serum albumin (HSA) at various stages of modification due to glycation. Frontal analysis conducted with small HPAC columns was first used to estimate the number of binding sites and association equilibrium constants (K(a)) for gliclazide with normal HSA and glycated HSA. Both normal and glycated HSA interacted with gliclazide according to a two-site model, with a class of high-affinity sites (average K(a), 7.1-10 × 10(4) M(-1)) and a group of lower-affinity sites (average K(a), 5.7-8.9 × 10(3) M(-1)) at pH 7.4 and 37 °C. Competition experiments indicated that Sudlow sites I and II of HSA were both involved in these interactions, with the K(a) values for gliclazide at these sites being 1.9 × 10(4) and 6.0 × 10(4) M(-1), respectively, for normal HSA. Two samples of glycated HSA had similar affinities to normal HSA for gliclazide at Sudlow site I, but one sample had a 1.9-fold increase in affinity at this site. All three glycated HSA samples differed from normal HSA in their affinity for gliclazide at Sudlow site II. This work illustrated how HPAC can be used to examine both the overall binding of a drug with normal or modified proteins and the site-specific changes that can occur in these interactions as a result of protein modification.

  4. Revealing binding interaction between seven drugs and immobilized β2-adrenoceptor by high-performance affinity chromatography using frontal analysis.

    Science.gov (United States)

    Zhao, Xin-feng; Huang, Jing-jing; Li, Qian; Wei, Lu-sha; Zheng, Jian-bin; Zheng, Xiao-hui; Li, Zi-jian; Zhang, You-yi

    2013-05-01

    The development of new approaches to study the affinity between ligands and G-protein-coupled receptors proves to be of growing interest for pharmacologists, chemists, and biologists. The aim of this work was to determine the binding of seven drugs to β2-adrenoceptors by frontal analysis using immobilized receptor stationary phase. The dissociation constants (Kd ) were determined to be (3.16 ± 0.09) × 10(-4) M for salbutamol, (4.29 ± 0.12) × 10(-4) M for terbutaline, (6.19 ± 0.16) × 10(-4) M for methoxyphenamine, (2.11 ± 0.07) × 10(-4) M for tulobuterol, (1.82 ± 0.11) × 10(-4) M for fenoterol, (9.75 ± 0.24) × 10(-6) M formoterol, and (9.84 ± 0.26) × 10(-5) M for clenbuterol. These results showed a good correlation with the data determined by radioligand binding assay. Further investigations revealed that the dissociation constant mainly attributed to the number of hydrogen bonds in the structures of ligands. This study indicates that affinity chromatography using immobilized receptor stationary phase can be used for the direct determination of drug-receptor binding interactions and has the potential to become a reliable alternative for quantitative studies of ligand-receptor interactions. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.

    Science.gov (United States)

    Ferrara, Claudia; Grau, Sandra; Jäger, Christiane; Sondermann, Peter; Brünker, Peter; Waldhauer, Inja; Hennig, Michael; Ruf, Armin; Rufer, Arne Christian; Stihle, Martine; Umaña, Pablo; Benz, Jörg

    2011-08-02

    Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen-antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant therapeutic, glycoenginereed antibodies is currently being developed to exploit this finding. In this study, the crystal structures of a glycosylated Fcγ receptor complexed with either afucosylated or fucosylated Fc were determined allowing a detailed, molecular understanding of the regulatory role of Fc-oligosaccharide core fucosylation in improving ADCC. The structures reveal a unique type of interface consisting of carbohydrate-carbohydrate interactions between glycans of the receptor and the afucosylated Fc. In contrast, in the complex structure with fucosylated Fc, these contacts are weakened or nonexistent, explaining the decreased affinity for the receptor. These findings allow us to understand the higher efficacy of therapeutic antibodies lacking the core fucose and also suggest a unique mechanism by which the immune system can regulate antibody-mediated effector functions.

  6. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin.

    Science.gov (United States)

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-08-21

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    Science.gov (United States)

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (<10 ng per injection for single compound) and high-throughput yield as twenty drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Frontal affinity chromatography: sugar-protein interactions.

    Science.gov (United States)

    Tateno, Hiroaki; Nakamura-Tsuruta, Sachiko; Hirabayashi, Jun

    2007-01-01

    Frontal affinity chromatography using fluorescence detection (FAC-FD) is a versatile technique for the precise determination of dissociation constants (Kd) between glycan-binding proteins (lectins) and fluorescent-labeled glycans. A series of glycan-containing solutions is applied to a lectin-immobilized column, and the elution profile of each glycan (termed the 'elution front', V) is compared with that (V0) for an appropriate control. Here we describe our standard protocol using an automated FAC system (FAC-1), consisting of two isocratic pumps, an autosampler, a column oven and two miniature columns connected to a fluorescence detector. Analysis time for 100 sugar-protein interactions is approximately 10 h, using as little as 2.5 pmol of pyridylaminated (PA) oligosaccharide per analysis. Using FAC-FD, we have so far obtained quantitative interaction data of >100 lectins for >100 PA oligosaccharides.

  9. Studies of drug interactions with alpha1-acid glycoprotein by using on-line immunoextraction and high-performance affinity chromatography.

    Science.gov (United States)

    Bi, Cong; Matsuda, Ryan; Zhang, Chenhua; Isingizwe, Zitha; Clarke, William; Hage, David S

    2017-10-13

    A method that combined on-line immunoextraction with high-performance affinity chromatography was developed to examine the binding of drugs with α1-acid glycoprotein (AGP). Affinity microcolumns containing immobilized polyclonal anti-AGP antibodies were developed that had a capture efficiency of up to 98.4% for AGP and a binding capacity of 0.72nmol AGP when using a 20mm×2.1mm i.d. microcolumn. These microcolumns were employed in various formats to examine the binding of drugs to normal AGP and AGP that had been adsorbed from serum samples for patients with systemic lupus erythematosus (SLE). Drugs that were screened in zonal elution experiments for their overall binding to these types of AGP included chlorpromazine, disopyramide, imipramine, propranolol, and warfarin. Most of these drugs showed an increase in their binding to the AGP from SLE serum when compared to normal AGP (i.e., an increase of 13-76%); however, disopyramide gave a 21-25% decrease in retention when the same AGP samples were compared. Frontal analysis was used to further evaluate the binding of disopyramide and imipramine to these forms of AGP. Both drugs gave a good fit to a model that involved a combination of saturable and non-saturable interactions with AGP. Changes in the non-saturable interactions accounted for most of variations seen in the binding of disopyramide and imipramine with the AGP samples. The methods used in this study could be adapted for use in personalized medicine and the study of other proteins or drugs using aqueous mixtures or clinical samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Design and Synthesis of High-Affinity Dimeric Inhibitors Targeting the Interactions between Gephyrin and Inhibitory Neurotransmitter Receptors

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Kedström, Linda Maria Haugaard

    2015-01-01

    Gephyrin is the central scaffolding protein for inhibitory neurotransmitter receptors in the brain. Here we describe the development of dimeric peptides that inhibit the interaction between gephyrin and these receptors, a process which is fundamental to numerous synaptic functions and diseases...

  11. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage

    DEFF Research Database (Denmark)

    Bach, Anders*; Clausen, Bettina H; Møller, Magda

    2012-01-01

    Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-d-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors...

  12. High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in Drosophila

    NARCIS (Netherlands)

    Ramírez, Fidel; Lingg, Thomas; Toscano, Sarah; Lam, Kin Chung; Georgiev, Plamen; Chung, Ho-Ryun; Lajoie, Bryan R; de Wit, Elzo; Zhan, Ye; de Laat, Wouter; Dekker, Job; Manke, Thomas; Akhtar, Asifa

    2015-01-01

    Dosage compensation mechanisms provide a paradigm to study the contribution of chromosomal conformation toward targeting and spreading of epigenetic regulators over a specific chromosome. By using Hi-C and 4C analyses, we show that high-affinity sites (HAS), landing platforms of the male-specific

  13. Kinetic Studies of Biological Interactions By Affinity Chromatography

    OpenAIRE

    Schiel, John E.; Hage, David S.

    2009-01-01

    The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This review will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affin...

  14. Analysis of biomolecular interactions using affinity microcolumns: A review

    Science.gov (United States)

    Zheng, Xiwei; Li, Zhao; Beeram, Sandya; Podariu, Maria; Matsuda, Ryan; Pfaunmiller, Erika L.; White, Christopher J.; Carter, NaTasha; Hage, David S.

    2014-01-01

    Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods. PMID:24572459

  15. Interpolation method for accurate affinity ranking of arrayed ligand analyte interactions

    NARCIS (Netherlands)

    Schasfoort, Richardus B.M.; Andree, Kiki Carlijn; van der Velde, N.; van der Kooi, A.; Stojanovic, Ivan; Terstappen, Leonardus Wendelinus Mathias Marie

    2016-01-01

    The values of the affinity constants (kd, ka, and KD) that are determined by label-free interaction analysis methods are affected by the ligand density. This article outlines a surface plasmon resonance (SPR) imaging method that yields high-throughput globally fitted affinity ranking values using a

  16. Trematode hemoglobins show exceptionally high oxygen affinity.

    Science.gov (United States)

    Kiger, L; Rashid, A K; Griffon, N; Haque, M; Moens, L; Gibson, Q H; Poyart, C; Marden, M C

    1998-08-01

    Ligand binding studies were made with hemoglobin (Hb) isolated from trematode species Gastrothylax crumenifer (Gc), Paramphistomum epiclitum (Pe), Explanatum explanatum (Ee), parasitic worms of water buffalo Bubalus bubalis, and Isoparorchis hypselobagri (Ih) parasitic in the catfish Wallago attu. The kinetics of oxygen and carbon monoxide binding show very fast association rates. Whereas oxygen can be displaced on a millisecond time scale from human Hb at 25 degrees C, the dissociation of oxygen from trematode Hb may require a few seconds to over 20 s (for Hb Pe). Carbon monoxide dissociation is faster, however, than for other monomeric hemoglobins or myoglobins. Trematode hemoglobins also show a reduced rate of autoxidation; the oxy form is not readily oxidized by potassium ferricyanide, indicating that only the deoxy form reacts rapidly with this oxidizing agent. Unlike most vertebrate Hbs, the trematodes have a tyrosine residue at position E7 instead of the usual distal histidine. As for Hb Ascaris, which also displays a high oxygen affinity, the trematodes have a tyrosine in position B10; two H-bonds to the oxygen molecule are thought to be responsible for the very high oxygen affinity. The trematode hemoglobins display a combination of high association rates and very low dissociation rates, resulting in some of the highest oxygen affinities ever observed.

  17. Unique carbohydrate–carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose

    Science.gov (United States)

    Ferrara, Claudia; Grau, Sandra; Jäger, Christiane; Sondermann, Peter; Brünker, Peter; Waldhauer, Inja; Hennig, Michael; Ruf, Armin; Rufer, Arne Christian; Stihle, Martine; Umaña, Pablo; Benz, Jörg

    2011-01-01

    Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen–antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant therapeutic, glycoenginereed antibodies is currently being developed to exploit this finding. In this study, the crystal structures of a glycosylated Fcγ receptor complexed with either afucosylated or fucosylated Fc were determined allowing a detailed, molecular understanding of the regulatory role of Fc-oligosaccharide core fucosylation in improving ADCC. The structures reveal a unique type of interface consisting of carbohydrate–carbohydrate interactions between glycans of the receptor and the afucosylated Fc. In contrast, in the complex structure with fucosylated Fc, these contacts are weakened or nonexistent, explaining the decreased affinity for the receptor. These findings allow us to understand the higher efficacy of therapeutic antibodies lacking the core fucose and also suggest a unique mechanism by which the immune system can regulate antibody-mediated effector functions. PMID:21768335

  18. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh

    2015-01-01

    Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors...... fishes and O2 binding curves made at 25°C and 35°C. To determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified, and O2 equilibria were recorded at five temperatures in the absence and presence of ATP and Cl-. Whole blood had a high O2 affinity (O2 tension at half...

  19. High affinity hemoglobin and Parkinson's disease.

    Science.gov (United States)

    Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna

    2014-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Svensson, Birte

    2017-01-01

    Affinity electrophoresis has long been used to study the interaction between proteins and large soluble ligands. The technique has been found to have great utility for the examination of polysaccharide binding by proteins, particularly carbohydrate binding modules (CBMs). In recent years, carbohy......Affinity electrophoresis has long been used to study the interaction between proteins and large soluble ligands. The technique has been found to have great utility for the examination of polysaccharide binding by proteins, particularly carbohydrate binding modules (CBMs). In recent years......, carbohydrate surface binding sites of proteins mostly enzymes have also been investigated by this method. Here, we describe a protocol for identifying binding interactions between enzyme catalytic modules and a variety of carbohydrate ligands....

  1. Design of High-Affinity Stapled Peptides To Target the Repressor Activator Protein 1 (RAP1)/Telomeric Repeat-Binding Factor 2 (TRF2) Protein-Protein Interaction in the Shelterin Complex.

    Science.gov (United States)

    Ran, Xu; Liu, Liu; Yang, Chao-Yie; Lu, Jianfeng; Chen, Yong; Lei, Ming; Wang, Shaomeng

    2016-01-14

    Shelterin, a six-protein complex, plays a fundamental role in protecting both the length and the stability of telomeres. Repressor activator protein 1 (RAP1) and telomeric repeat-binding factor 2 (TRF2) are two subunits in shelterin that interact with each other. Small-molecule inhibitors that block the RAP1/TRF2 protein-protein interaction can disrupt the structure of shelterin and may be employed as pharmacological tools to investigate the biology of shelterin. On the basis of the cocrystal structure of RAP1/TRF2 complex, we have developed first-in-class triazole-stapled peptides that block the protein-protein interaction between RAP1 and TRF2. Our most potent stapled peptide binds to RAP1 protein with a Ki value of 7 nM and is >100 times more potent than the corresponding wild-type TRF2 peptide. On the basis of our high-affinity peptides, we have developed and optimized a competitive, fluorescence polarization (FP) assay for accurate and rapid determination of the binding affinities of our designed compounds and this assay may also assist in the discovery of non-peptide, small-molecule inhibitors capable of blocking the RAP1/TRF2 protein-protein interaction.

  2. High affinity calmodulin target sequence in the signalling molecule PI 3-kinase

    DEFF Research Database (Denmark)

    Fischer, R; Julsgart, J; Berchtold, M W

    1998-01-01

    M-binding peptide derived from the p110gamma isoform interacts with CaM in a calcium-dependent way. Using gel shift analysis and fluorescence spectrophotometry we discovered that the peptide forms a high affinity complex with CaM. Titration experiments using dansylated CaM gave an affinity constant of 5 n...

  3. High affinity interaction of integrin alpha4beta1 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers.

    Science.gov (United States)

    Klemke, Martin; Weschenfelder, Tatjana; Konstandin, Mathias H; Samstag, Yvonne

    2007-08-01

    The capacity of tumor cells to form metastatic foci correlates with their ability to interact with and migrate through endothelial cell layers. This process involves multiple adhesive interactions between tumor cells and the endothelium. Only little is known about the molecular nature of these interactions during extravasation of tumor cells. In human melanoma cells, the integrin alphavbeta3 is involved in transendothelial migration and its expression correlates with metastasis. However, many human melanoma cells do not express beta3 integrins. Therefore, it remained unclear how these cells undergo transendothelial migration. In this study we show that human melanoma cells with different metastatic potency, which do not express beta2 or beta3 integrins, express the VCAM-1 receptor alpha4beta1. VCAM-1 is up-regulated on activated endothelial cells and is known to promote transendothelial migration of leukocytes. Interestingly, despite comparable cell surface levels of alpha4beta1, only the highly metastatic melanoma cell lines MV3 and BLM, but not the low metastatic cell lines IF6 and 530, bind VCAM-1 with high affinity without further stimulation, and are therefore able to adhere to and migrate on isolated VCAM-1. Moreover, we demonstrate that function-blocking antibodies against the integrin alpha4beta1, as well as siRNA-mediated knock-down of the alpha4 subunit in these highly metastatic human melanoma cells reduce their transendothelial migration. These data imply that only high affinity interactions between the integrin alpha4beta1 on melanoma cells and VCAM-1 on activated endothelial cells may enhance the metastatic capacity of human beta2/beta3-negative melanoma cells.

  4. Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Yan

    Full Text Available Protein-nucleic acid (protein-DNA and protein-RNA recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions.

  5. A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes.

    Science.gov (United States)

    Mauxion, F; Le Borgne, R; Munier-Lehmann, H; Hoflack, B

    1996-01-26

    The transport of proteins from the secretory to the endocytic pathway is mediated by carrier vesicles coated with the AP-1 Golgi assembly proteins and clathrin. The mannose 6-phosphate receptors (MPHs) are two major transmembrane proteins segregated into these transport vesicles. Together with the GTPase ARF-1, these cargo proteins are essential components for the efficient translocation of the cytosolic AP-1 onto membranes of the trans-Golgi network, the first step of clathrin coat assembly, MPR-negative fibroblasts have a low capacity of recruiting AP-1 which can be restored by re-expressing the MPRs in these cells. This property was used to identify the protein motif of the cation-dependent mannose 6-phosphate receptor (CD-MPR) cytoplasmic domain that is essential for these interactions. Thus, the affinity of AP-1 for membranes and in vivo transport of cathepsin D were measured for MPR-negative cells re-expressing various CD-MPR mutants. The results indicate that the targeting of lysosomal enzymes requires the CD-PDR cytoplasmic domain that are different from tyrosine-based endocytosis motifs. The first is a casein kinase II phosphorylation site (ESEER) that is essential for high affinity binding of AP-1 and therefore probably acts as a dominant determinant controlling CD-MPR sorting in the trans-Golgi network. The second is the adjacent di-leucine motif (HLLPM), which, by itself, is not critical for AP-1 binding, but is absolutely required for a downstream sorting event.

  6. Determination of High-affinity Antibody-antigen Binding Kinetics Using Four Biosensor Platforms

    OpenAIRE

    Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel

    2017-01-01

    Label-free optical biosensors are powerful tools in drug discovery for the characterization of biomolecular interactions. In this study, we describe the use of four routinely used biosensor platforms in our laboratory to evaluate the binding affinity and kinetics of ten high-affinity monoclonal antibodies (mAbs) against human proprotein convertase subtilisin kexin type 9 (PCSK9). While both Biacore T100 and ProteOn XPR36 are derived from the well-established Surface Plasmon Resonance (SPR) te...

  7. Carbohydrate microarrays for enzymatic reactions and quantification of binding affinities for glycan-protein interactions.

    Science.gov (United States)

    Lee, Myung-Ryul; Park, Sungjin; Shin, Injae

    2012-01-01

    Glycans are involved in a variety of physiological and pathological processes through interactions with proteins. Thus, the molecular basis of glycan-protein interactions provides valuable information on understanding biological phenomena and exploiting more effective carbohydrate-based therapeutic agents and diagnostic tools. Carbohydrate microarray technology has become a powerful tool for evaluating glycan-mediated biological events in a high-throughput manner. This technology is mostly applied for rapid analysis of glycans-protein interactions in the field of functional glycomics. In order to expand application areas of glycan microarrays, we have used carbohydrate microarrays for measurement of binding affinities between glycans and proteins and profiling of glycosyltransferase activities. The glycan microarrays used for these studies are constructed by immobilizing maleimide or hydrazide-conjugated glycans on the thiol or hydrazide-derivatized glass slides, respectively. This protocol describes the fabrication of carbohydrate microarrays and their applications to enzymatic reactions and determination of quantitative binding affinities.

  8. Frontal affinity chromatography: practice of weak interaction analysis between lectins and fluorescently labeled oligosaccharides.

    Science.gov (United States)

    Sato, Chihiro

    2014-01-01

    Frontal affinity chromatography (FAC) is a simple and effective method that is applicable to the analysis of interactions between glycans and glycan-recognition proteins, including lectins, with weak affinity ranging from 10(-4) to 10(-6) (M) in terms of dissociation constant (Kd). Using conventional instruments, such as a high-performance liquid chromatography (HPLC) system equipped with pump, injector, (fluorescent) detector, and data recorder, the dissociation constants for weak glycan-based interactions can be easily determined with high throughput and accuracy. Notably, if the glycans are labeled with fluorescent dyes, only a small amount of glycans is required for the analysis. Fluorescent labeling of glycans is a common technique, and an increasing number of fluorescent-labeled glycans are commercially available. In this chapter, an advanced FAC method using fluorescent-labeled glycans is described.

  9. Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods.

    NARCIS (Netherlands)

    Kool, J.; Jonker, N.; Irth, H.; Niessen, W.M.A.

    2011-01-01

    This review discusses the most important current methods employing mass spectrometry (MS) analysis for the study of protein affinity interactions. The methods are discussed in depth with particular reference to MS-based approaches for analyzing protein-protein and protein-immobilized ligand

  10. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh

    2015-01-01

    , such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated...... saturation P50 = 4.6 mmHg at extracellular pH 7.6 and 25°C), a high temperature sensitivity of O2 binding (apparent heat of oxygenation ΔHapp = -28.3 kcal/mol), and lacked a Root effect. Further, the data on Hb revealed weak ATP binding and a complete lack of Cl- binding to Hb, which, in part, explains...

  11. Biointeraction analysis of carbamazepine binding to alpha1-acid glycoprotein by high-performance affinity chromatography.

    Science.gov (United States)

    Xuan, Hai; Joseph, K S; Wa, Chunling; Hage, David S

    2010-08-01

    Interactions of the drug carbamazepine with the serum protein alpha(1)-acid glycoprotein (AGP) were examined by high-performance affinity chromatography. Frontal analysis studies with an immobilized AGP column and control column indicated carbamazepine had both low-affinity interactions with the support and high-affinity interactions with AGP. When a correction was made for binding to the support, the association equilibrium constant measured at pH 7.4 and 37 degrees C for carbamazepine with AGP was 1.0 (+/-0.1) x 10(5) M(-1), with values that ranged from 5.1 to 0.58 x 10(5) M(-1) in going from 5 to 45 degrees C. It was found in competition studies that these interactions were occurring at the same site that binds propranolol on AGP. Temperature studies indicated that the change in enthalpy was the main driving force for the binding of carbamazepine to AGP. These results provide a more complete picture of how carbamazepine binds to AGP in serum. This report also illustrates how high-performance affinity chromatography can be used to examine biological interactions and drug-protein binding in situations in which significant interactions for an analyte are present with both the chromatographic support and an immobilized ligand.

  12. Different combinations of atomic interactions predict protein-small molecule and protein-DNA/RNA affinities with similar accuracy.

    Science.gov (United States)

    Dias, Raquel; Kolazckowski, Bryan

    2015-11-01

    Interactions between proteins and other molecules play essential roles in all biological processes. Although it is widely held that a protein's ligand specificity is determined primarily by its three-dimensional structure, the general principles by which structure determines ligand binding remain poorly understood. Here we use statistical analyses of a large number of protein-ligand complexes with associated binding-affinity measurements to quantitatively characterize how combinations of atomic interactions contribute to ligand affinity. We find that there are significant differences in how atomic interactions determine ligand affinity for proteins that bind small chemical ligands, those that bind DNA/RNA and those that interact with other proteins. Although protein-small molecule and protein-DNA/RNA binding affinities can be accurately predicted from structural data, models predicting one type of interaction perform poorly on the others. Additionally, the particular combinations of atomic interactions required to predict binding affinity differed between small-molecule and DNA/RNA data sets, consistent with the conclusion that the structural bases determining ligand affinity differ among interaction types. In contrast to what we observed for small-molecule and DNA/RNA interactions, no statistical models were capable of predicting protein-protein affinity with >60% correlation. We demonstrate the potential usefulness of protein-DNA/RNA binding prediction as a possible tool for high-throughput virtual screening to guide laboratory investigations, suggesting that quantitative characterization of diverse molecular interactions may have practical applications as well as fundamentally advancing our understanding of how molecular structure translates into function. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  13. Monte Carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities.

    Science.gov (United States)

    Coe, Jeremy P; Taylor, Daniel J; Paterson, Martin J

    2013-05-15

    The method of Monte Carlo configuration interaction (MCCI) (Greer, J. Chem. Phys. 1995a, 103, 1821; Tong, Nolan, Cheng, and Greer, Comp. Phys. Comm. 2000, 142, 132) is applied to the calculation of multipole moments. We look at the ground and excited state dipole moments in carbon monoxide. We then consider the dipole of NO, the quadrupole of N2 and of BH. An octupole of methane is also calculated. We consider experimental geometries and also stretched bonds. We show that these nonvariational quantities may be found to relatively good accuracy when compared with full configuration interaction results, yet using only a small fraction of the full configuration interaction space. MCCI results in the aug-cc-pVDZ basis are seen to generally have reasonably good agreement with experiment. We also investigate the performance of MCCI when applied to ionisation energies and electron affinities of atoms in an aug-cc-pVQZ basis. We compare the MCCI results with full configuration interaction quantum Monte Carlo (Booth and Alavi, J. Chem. Phys. 2010, 132, 174104; Cleland, Booth, and Alavi, J. Chem. Phys. 2011, 134, 024112) and "exact" nonrelativistic results (Booth and Alavi, J. Chem. Phys. 2010, 132, 174104; Cleland, Booth, and Alavi, J. Chem. Phys. 2011, 134, 024112). We show that MCCI could be a useful alternative for the calculation of atomic ionisation energies however electron affinities appear much more challenging for MCCI. Due to the small magnitude of the electron affinities their percentage errors can be high, but with regards to absolute errors MCCI performs similarly for ionisation energies and electron affinities. Copyright © 2013 Wiley Periodicals, Inc.

  14. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  15. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. pMHC affinity controls duration of CD8+ T cell-DC interactions and imprints timing of effector differentiation versus expansion.

    Science.gov (United States)

    Ozga, Aleksandra J; Moalli, Federica; Abe, Jun; Swoger, Jim; Sharpe, James; Zehn, Dietmar; Kreutzfeldt, Mario; Merkler, Doron; Ripoll, Jorge; Stein, Jens V

    2016-11-14

    During adaptive immune responses, CD8+ T cells with low TCR affinities are released early into the circulation before high-affinity clones become dominant at later time points. How functional avidity maturation is orchestrated in lymphoid tissue and how low-affinity cells contribute to host protection remains unclear. In this study, we used intravital imaging of reactive lymph nodes (LNs) to show that T cells rapidly attached to dendritic cells irrespective of TCR affinity, whereas one day later, the duration of these stable interactions ceased progressively with lowering peptide major histocompatibility complex (pMHC) affinity. This correlated inversely BATF (basic leucine zipper transcription factor, ATF-like) and IRF4 (interferon-regulated factor 4) induction and timing of effector differentiation, as low affinity-primed T cells acquired cytotoxic activity earlier than high affinity-primed ones. After activation, low-affinity effector CD8+ T cells accumulated at efferent lymphatic vessels for egress, whereas high affinity-stimulated CD8+ T cells moved to interfollicular regions in a CXCR3-dependent manner for sustained pMHC stimulation and prolonged expansion. The early release of low-affinity effector T cells led to rapid target cell elimination outside reactive LNs. Our data provide a model for affinity-dependent spatiotemporal orchestration of CD8+ T cell activation inside LNs leading to functional avidity maturation and uncover a role for low-affinity effector T cells during early microbial containment. © 2016 Ozga et al.

  17. A sol-gel-integrated protein array system for affinity analysis of aptamer-target protein interaction.

    Science.gov (United States)

    Ahn, Ji-Young; Kim, Eunkyung; Kang, Jeehye; Kim, Soyoun

    2011-06-01

    A sol-gel microarray system was developed for a protein interaction assay with high activity. Comparing to 2-dimensional microarray surfaces, sol-gel can offer a more dynamic and broad range for proteins. In the present study, this sol-gel-integrated protein array was used in binding affinity analysis for aptamers. Six RNA aptamers and their target protein, yeast TBP (TATA-binding protein), were used to evaluate this method. A TBP-containing sol-gel mixture was spotted using a dispensing workstation under high-humidity conditions and each Cy-3-labeled aptamer was incubated. The dissociation constants (K(d)) were calculated by plotting the fluorescent intensity of the bound aptamers as a function of the TBP concentrations. The K(d) value of the control aptamer was found to be 8 nM, which agrees well with the values obtained using the conventional method, electric mobility shift assay. The sol-gel-based binding affinity measurements fit well with conventional binding affinity measurements, suggesting their possible use as an alternative to the conventional method. In addition, aptamer affinity measurements by the sol-gel-integrated protein chip make it possible to develop a simple high-throughput affinity method for screening high-affinity aptamers.

  18. Cation-π interaction regulates ligand-binding affinity and signaling of integrin α4β7

    Science.gov (United States)

    Pan, YouDong; Zhang, Kun; Qi, JunPeng; Yue, Jiao; Springer, Timothy A.; Chen, JianFeng

    2010-01-01

    Integrin α4β7 mediates rolling and firm adhesion of leucocytes, two of the critical steps in leukocyte migration and tissue specific homing. Affinity of α4β7 for ligand is dynamically regulated by three interlinked metal ion-binding sites in β7-subunit I domain. In this study, we found that Phe185 (F185), a highly conserved aromatic residue in β7-subunit, links the specificity-determining loop and the synergistic metal ion-binding site (SyMBS) through cation-π interaction. Mutations of F185 that disrupted the SyMBS cation-F185 interaction led to deficient firm cell adhesion mediated by high affinity α4β7, and only slightly affected rolling adhesion mediated by low affinity α4β7. Disruption of SyMBS cation-F185 interaction induced partial extension of integrin ectodomain and separation of cytoplasmic tails, and impaired α4β7-mediated bidirectional signaling. In addition, loss of SyMBS cation-F185 interaction increased paxillin expression and promoted paxillin-integrin binding, leading to deficient cell spreading. Furthermore, integrin α4β7-mediated cell migration was decreased by the abolishment of SyMBS cation-F185 interaction. Thus, these findings reveal a cation-π interaction playing vital roles in the regulation of integrin affinity, signaling, and biological functions. PMID:21098296

  19. Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry.

    Science.gov (United States)

    Trinkle-Mulcahy, Laura

    2012-05-01

    Label-based quantitative mass spectrometry analysis of affinity purified complexes, with its built-in negative controls and relative ease of use, is an increasingly popular choice for defining protein-protein interactions and multiprotein complexes. This approach, which differentially labels proteins/peptides from two or more populations and combines them prior to analysis, permits direct comparison of a protein pulldown (e.g. affinity purified tagged protein) to that of a control pulldown (e.g. affinity purified tag alone) in a single mass spectrometry (MS) run, thus avoiding the variability inherent in separate runs. The use of quantitative techniques has been driven in large part by significant improvements in the resolution and sensitivity of high-end mass spectrometers. Importantly, the availability of commercial reagents and open source identification/quantification software has made these powerful techniques accessible to nonspecialists. Benefits and drawbacks of the most popular labeling-based approaches are discussed here, and key steps/strategies for the use of labeling in quantitative immunoprecipitation experiments detailed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  1. 01-ERD-111 - The Development of Synthetic High Affinity Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J; Balhorn, R; Cosman, M; Lightstone, F; Zeller, L

    2004-02-05

    The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.

  2. [Peroxidative vulnerability of synaptosomal high affinity Ca++-ATPase and pharmacologic effects].

    Science.gov (United States)

    Blaschke, M; Fischer, H D; Schmidt, J

    1988-01-01

    The high affinity Ca++-ATPase participates essentially in the regulation of intrasynaptosomal calcium homeostasis. Related to posthypoxically restricted transmitter release, we examined the influence of newly-generated free radicals (ascorbic acid-ferric salt mixture) or sodium dodecyl sulfate in vitro and of a mild hypobaric hypoxia in vivo on the activity of synaptosomal high affinity Ca++-ATPase. Moreover we tested the effectiveness of piracetam, meclofenoxate hydrochloride, pyritinol and verapamil on the changed enzyme activity subsequent to a hypoxic exposure. The activity of synaptosomal high affinity Ca++-ATPase (1.04 +/- 0.03 mumol Pi/mg.h) is reduced by not more than 40% depending on the concentration of the ascorbic acid-ferric salt mixture used but is nearly totally inhibited by sodium dodecyl sulfate (0.2 mg/ml). Hypobaric hypoxia (18 h, 8.7 kPa) decreases the enzyme activity to 0.79 +/- 0.03 mumol Pi/mg.h. Piracetam, meclofenoxate hydrochloride and pyritinol are protectively effective on the decrease of enzyme activity induced by hypoxia. The results emphasize the importance of intact protein-phospholipid interactions for the enzyme activity and support relations between synaptosomal high affinity Ca++-ATPase and transmitter release.

  3. DETECTION OF HETEROGENEOUS DRUG-PROTEIN BINDING BY FRONTAL ANALYSIS AND HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    OpenAIRE

    Tong, Zenghan; Joseph, K.S.; Hage, David S.

    2011-01-01

    This study examined the use of frontal analysis and high-performance affinity chromatography for detecting heterogeneous binding in biomolecular interactions, using the binding of acetohexamide with human serum albumin (HSA) as a model. It was found through the use of this model system and chromatographic theory that double-reciprocal plots could be used more easily than traditional isotherms for the initial detection of binding site heterogeneity. The deviations from linearity that were seen...

  4. BIOINTERACTION ANALYSIS BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: KINETIC STUDIES OF IMMOBILIZED ANTIBODIES

    OpenAIRE

    Nelson, Mary Anne; Moser, Annette; Hage, David S.

    2009-01-01

    A system based on high-performance affinity chromatography was developed for characterizing the binding, elution and regeneration kinetics of immobilized antibodies and immunoaffinity supports. This information was provided by using a combination of frontal analysis, split-peak analysis and peak decay analysis to determine the rate constants for antibody-antigen interactions under typical sample application and elution conditions. This technique was tested using immunoaffinity supports that c...

  5. Amyloid-beta binds catalase with high affinity and inhibits hydrogen peroxide breakdown.

    OpenAIRE

    Milton, N G

    1999-01-01

    Amyloid-beta (Abeta) specifically bound purified catalase with high affinity and inhibited catalase breakdown of H(2)O(2). The Abeta-induced catalase inhibition involved formation of the inactive catalase Compound II and was reversible. CatalaseAbeta interactions provide rapid functional assays for the cytotoxic domain of Abeta and suggest a mechanism for some of the observed actions of Abeta plus catalase in vitro.

  6. Frontal affinity chromatography: A unique research tool for biospecific interaction that promotes glycobiology

    OpenAIRE

    KASAI, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from vi...

  7. Acyclic cucurbit[n]uril congeners are high affinity hosts.

    Science.gov (United States)

    Ma, Da; Zavalij, Peter Y; Isaacs, Lyle

    2010-07-16

    We present the design, synthesis via methylene bridged glycoluril tetramer building blocks, and charaterization of acyclic cucurbit[n]uril congeners that function as hosts for a wide variety of ammonium ions in water. The X-ray crystallographic characterization of the free host and its complexes with p-xylylenediamine and spermine establish the flexibility of the methylene bridged backbone of the acyclic cucurbit[n]uril congeners that allow them to adapt to the structural features of the guest. We find that the acyclic cucurbit[n]uril congeners-with their four contiguous methylene bridged glycoluril units and two aromatic o-xylylene walls bearing CO(2)H substituents-bind to ammonium ions in buffered water with values of K(a) ranging from approximately 10(5) M(-1) to greater than 10(9) M(-1). Similar to the cucurbit[n]uril family of hosts, we find that increasing the concentration of metal cations in the buffer reduces the affinity of the acyclic cucurbit[n]uril congener toward guests by competitive binding at the ureidyl C horizontal lineO portals. Although the acyclic cucurbit[n]uril congeners retain the ability to bind to ammonium ions with high affinity, they do so with lower selectivity than cucurbit[n]urils presumably do to the structural flexibility of the hosts. A methylene bridged glycoluril tetramer model compound that lacks the substituted o-xylylene walls is a much lower affinity host, which establishes the importance of these rings on the overall recognition behavior of the acyclic cucurbit[n]uril congeners. Overall, the results in this paper establish that acyclic cucurbit[n]uril receptors that contain four or more contiguous methylene bridged glycoluril units retain many of the excellent recognition properties of the cucurbit[n]uril family.

  8. Determination of rate constants and equilibrium constants for solution-phase drug-protein interactions by ultrafast affinity extraction.

    Science.gov (United States)

    Zheng, Xiwei; Li, Zhao; Podariu, Maria I; Hage, David S

    2014-07-01

    A method was created on the basis of ultrafast affinity extraction to determine both the dissociation rate constants and equilibrium constants for drug-protein interactions in solution. Human serum albumin (HSA), an important binding agent for many drugs in blood, was used as both a model soluble protein and as an immobilized binding agent in affinity microcolumns for the analysis of free drug fractions. Several drugs were examined that are known to bind to HSA. Various conditions to optimize in the use of ultrafast affinity extraction for equilibrium and kinetic studies were considered, and several approaches for these measurements were examined. The dissociation rate constants obtained for soluble HSA with each drug gave good agreement with previous rate constants reported for the same drugs or other solutes with comparable affinities for HSA. The equilibrium constants that were determined also showed good agreement with the literature. The results demonstrated that ultrafast affinity extraction could be used as a rapid approach to provide information on both the kinetics and thermodynamics of a drug-protein interaction in solution. This approach could be extended to other systems and should be valuable for high-throughput drug screening or biointeraction studies.

  9. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    Science.gov (United States)

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  10. Mutational analysis of affinity and selectivity of kringle-tetranectin interaction. Grafting novel kringle affinity ontp the trtranectin lectin scaffold

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Jacobsen, C; Sigurskjold, B W

    2000-01-01

    C-type lectin-like domains are found in many proteins, where they mediate binding to a wide diversity of compounds, including carbohydrates, lipids, and proteins. The binding of a C-type lectin-like domain to a ligand is often influenced by calcium. Recently, we have identified a site in the C-type....... This study provides further insight into molecular determinants of importance for binding selectivity and affinity of C-type lectin kringle interactions....... lectin-like domain of tetranectin, involving Lys-148, Glu-150, and Asp-165, which mediates calcium-sensitive binding to plasminogen kringle 4. Here, we investigate the effect of conservative substitutions of these and a neighboring amino acid residue. Substitution of Thr-149 in tetranectin...

  11. Mapping Protein–Protein Interactions of the Resistance-Related Bacterial Zeta Toxin–Epsilon Antitoxin Complex (ε2ζ2 with High Affinity Peptide Ligands Using Fluorescence Polarization

    Directory of Open Access Journals (Sweden)

    María Isabel Fernández-Bachiller

    2016-07-01

    Full Text Available Toxin–antitoxin systems constitute a native survival strategy of pathogenic bacteria and thus are potential targets of antibiotic drugs. Here, we target the Zeta–Epsilon toxin–antitoxin system, which is responsible for the stable maintenance of certain multiresistance plasmids in Gram-positive bacteria. Peptide ligands were designed on the basis of the ε2ζ2 complex. Three α helices of Zeta forming the protein–protein interaction (PPI site were selected and peptides were designed conserving the residues interacting with Epsilon antitoxin while substituting residues binding intramolecularly to other parts of Zeta. Designed peptides were synthesized with an N-terminal fluoresceinyl-carboxy-residue for binding assays and provided active ligands, which were used to define the hot spots of the ε2ζ2 complex. Further shortening and modification of the binding peptides provided ligands with affinities <100 nM, allowing us to determine the most relevant PPIs and implement a robust competition binding assay.

  12. Affinity interactions on a liposome surface detected by ultrasound velocimetry.

    Science.gov (United States)

    Krivanek, R; Rybar, P; Küpcü, S; Sleytr, U B; Hianik, T

    2002-01-01

    In this work, we performed targeted immobilization of immunoglobulins by means of bacterial S-layer proteins from Bacillus coagulans E38-66/V1 recrystallized on liposomes, which were exploited as immobilization matrix for antibody (Ab)-human IgG. The study of interaction of rabbit or swine anti-human IgG as antigens (Ag) was performed by means of measuring changes of ultrasound velocity. We showed that at a temperature of 25 degrees C, the increment of ultrasound velocity [u] linearly decreased following an increase of concentration of Ag. The decrease of [u] was presumably due to changes of hydration of the membrane due to the binding process. Approximately 10 times lower changes of [u] were observed at 45 degrees C for Ag-Ab interaction as well as for nonspecific interaction of Ag with liposomes covered by S-layer without Ab. No substantial differences in the behaviour of [u] were observed for interactions of human IgG with rabbit or swine anti-human IgG.

  13. Analysis of Protein Target Interactions of Synthetic Mixtures by Affinity-LC/MS.

    Science.gov (United States)

    Singh, Prachi; Madhaiyan, Kalaipriya; Duong-Thi, Minh-Dao; Dymock, Brian W; Ohlson, Sten

    2017-04-01

    Analysis of interactions between molecules is of fundamental importance in life science research. In this study, we applied weak affinity chromatography, based on high-performance liquid chromatography and mass spectrometry, as a powerful tool for direct analysis of the components of a chemical reaction mixture for their binding to a target protein. As a demonstration of the potential of this method, we analyzed the binding of the compounds of the reaction mixture to the chaperone heat shock protein 90 (Hsp90). It was possible to analyze quantitatively the binding of the components of the mixture to the target independently from each other without any preceding process such as purification. This feature has wide implications in biological sciences as crude mixtures, either natural or synthetic, can be analyzed directly for their possible binding to a target. This method could lead to savings in costs and labor through shortening chemical research project development time.

  14. Binding affinity of tea catechins for HSA: characterization by high-performance affinity chromatography with immobilized albumin column.

    Science.gov (United States)

    Ishii, Takeshi; Minoda, Kanako; Bae, Min-Jung; Mori, Taiki; Uekusa, Yoshinori; Ichikawa, Tatsuya; Aihara, Yoshiyuki; Furuta, Takumi; Wakimoto, Toshiyuki; Kan, Toshiyuki; Nakayama, Tsutomu

    2010-06-01

    Catechins are the major polyphenols in green tea leaves. Recent studies have suggested that the catechins form complexes with HSA for transport in human blood, and their binding affinity for albumin is believed to modulate their bioavailability. In this study, the binding affinities of catechins and their analogs were evaluated and the relationship between the chemical structure of each catechin and its binding property were investigated. Comparing these catechins by HPLC analysis with the HSA column, we showed that galloylated catechins have higher binding affinities with HSA than non-galloylated catechins. In addition, pyrogallol-type catechins have a high affinity compared to catechol-type catechins. Furthermore, the binding affinity of the catechin with 2,3-trans structure was higher than those of the catechin with 2,3-cis structure. The importance of the hydroxyl group on the galloyl group and B-ring was confirmed using methylated catechins. These results indicate that the most important structural element contributing to HSA binding of tea catechins is the galloyl group, followed by the number of hydroxyl groups on the B-ring and the galloyl group or the configuration at C-2. Our findings provide fundamental information on the relationship between the chemical structure of tea catechins and its biological activity.

  15. A Novel Open Tubular Capillary Electrochromatographic Method for Differentiating the DNA Interaction Affinity of Environmental Contaminants.

    Directory of Open Access Journals (Sweden)

    Lucia D'Ulivo

    Full Text Available The interaction of chemicals with DNA may lead to genotoxicity, mutation or carcinogenicity. A simple open tubular capillary electrochromatographic method is proposed to rapidly assess the interaction affinity of three environmental contaminants (1,4-phenylenediamine, pyridine and 2,4-diaminotoluene to DNA by measuring their retention in the capillaries coated with DNA probes. DNA oligonucleotide probes were immobilized on the inner wall of a fused silica capillary that was first derivatized with 3-(aminopropyl-triethoxysilane (APTES. The difference in retention times and factors was considered as the difference in interaction affinity of the contaminants to the DNA probes. The interaction of the contaminants with both double-stranded (dsDNA and single-stranded DNA (ssDNA coatings was compared. Retention factors of 1,4-phenylenediamine, pyridine and 2,4-diaminotoluene in the capillary coated with ssDNA probe were 0.29, 0.42, and 0.44, respectively. A similar trend was observed in the capillary coated with dsDNA, indicating that 2,4-diaminotoluene has the highest affinity among the three contaminants. The relative standard deviation (RSD for the retention factors was in the range of 0.05-0.69% (n = 3. The results demonstrated that the developed technique could be applied for preliminary screening purpose to provide DNA interaction affinity information of various environmental contaminants.

  16. A Novel Open Tubular Capillary Electrochromatographic Method for Differentiating the DNA Interaction Affinity of Environmental Contaminants.

    Science.gov (United States)

    D'Ulivo, Lucia; Feng, Yong-Lai

    2016-01-01

    The interaction of chemicals with DNA may lead to genotoxicity, mutation or carcinogenicity. A simple open tubular capillary electrochromatographic method is proposed to rapidly assess the interaction affinity of three environmental contaminants (1,4-phenylenediamine, pyridine and 2,4-diaminotoluene) to DNA by measuring their retention in the capillaries coated with DNA probes. DNA oligonucleotide probes were immobilized on the inner wall of a fused silica capillary that was first derivatized with 3-(aminopropyl)-triethoxysilane (APTES). The difference in retention times and factors was considered as the difference in interaction affinity of the contaminants to the DNA probes. The interaction of the contaminants with both double-stranded (dsDNA) and single-stranded DNA (ssDNA) coatings was compared. Retention factors of 1,4-phenylenediamine, pyridine and 2,4-diaminotoluene in the capillary coated with ssDNA probe were 0.29, 0.42, and 0.44, respectively. A similar trend was observed in the capillary coated with dsDNA, indicating that 2,4-diaminotoluene has the highest affinity among the three contaminants. The relative standard deviation (RSD) for the retention factors was in the range of 0.05-0.69% (n = 3). The results demonstrated that the developed technique could be applied for preliminary screening purpose to provide DNA interaction affinity information of various environmental contaminants.

  17. Affinity chromatography of GroEL chaperonin based on denatured proteins: role of electrostatic interactions in regulation of GroEL affinity for protein substrates.

    Science.gov (United States)

    Marchenko, N Iu; Marchenkov, V V; Kaĭsheva, A L; Kashparov, I A; Kotova, N V; Kaliman, P A; Semisotnov, G V

    2006-12-01

    The chaperonin GroEL of the heat shock protein family from Escherichia coli cells can bind various polypeptides lacking rigid tertiary structure and thus prevent their nonspecific association and provide for acquisition of native conformation. In the present work we studied the interaction of GroEL with six denatured proteins (alpha-lactalbumin, ribonuclease A, egg lysozyme in the presence of dithiothreitol, pepsin, beta-casein, and apocytochrome c) possessing negative or positive total charge at neutral pH values and different in hydrophobicity (affinity for a hydrophobic probe ANS). To prevent the influence of nonspecific association of non-native proteins on their interaction with GroEL and make easier the recording of the complexing, the proteins were covalently attached to BrCN-activated Sepharose. At low ionic strength (lower than 60 mM), tight binding of the negatively charged denatured proteins with GroEL (which is also negatively charged) needed relatively low concentrations (approximately 10 mM) of bivalent cations Mg2+ or Ca2+. At the high ionic strength (approximately 600 mM), a tight complex was produced also in the absence of bivalent cations. In contrast, positively charged denatured proteins tightly interacted with GroEL irrespectively of the presence of bivalent cations and ionic strength of the solution (from 20 to 600 mM). These features of GroEL interaction with positively and negatively charged denatured proteins were confirmed by polarized fluorescence (fluorescence anisotropy). The findings suggest that the affinity of GroEL for denatured proteins can be determined by the balance of hydrophobic and electrostatic interactions.

  18. Frontal affinity chromatography: theory for its application to studies on specific interactions of biomolecules.

    Science.gov (United States)

    Kasai, K; Oda, Y; Nishikata, M; Ishii, S

    1986-04-11

    Affinity chromatography is very useful in the investigation and characterization of specific interaction between biomolecules. Frontal analysis in affinity chromatography is advantageous from both theoretical and experimental viewpoints. The theory is very simple because we can describe this system by means of a simple equilibrium problem.Chromatographic data can be related easily to the amount of interacting molecules and the equilibrium constant. Useful equations analogous to those of enzyme kinetics can also be derived easily. Thus, frontal affinity chromatography provides information almost identical to that obtainable by enzyme kinetic studies. In addition, this method is more general because it does not depend on enzymatic activity. Experiment is very easy and does not require any special equipment. It is a powerful tool, especially for complicated systems where it has been difficult to find an appropriate method.

  19. Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry.

    Science.gov (United States)

    Hesketh, Geoffrey G; Youn, Ji-Young; Samavarchi-Tehrani, Payman; Raught, Brian; Gingras, Anne-Claude

    2017-01-01

    Complete understanding of cellular function requires knowledge of the composition and dynamics of protein interaction networks, the importance of which spans all molecular cell biology fields. Mass spectrometry-based proteomics approaches are instrumental in this process, with affinity purification coupled to mass spectrometry (AP-MS) now widely used for defining interaction landscapes. Traditional AP-MS methods are well suited to providing information regarding the temporal aspects of soluble protein-protein interactions, but the requirement to maintain protein-protein interactions during cell lysis and AP means that both weak-affinity interactions and spatial information is lost. A more recently developed method called BioID employs the expression of bait proteins fused to a nonspecific biotin ligase, BirA*, that induces in vivo biotinylation of proximal proteins. Coupling this method to biotin affinity enrichment and mass spectrometry negates many of the solubility and interaction strength issues inherent in traditional AP-MS methods, and provides unparalleled spatial context for protein interactions. Here we describe the parallel implementation of both BioID and FLAG AP-MS allowing simultaneous exploration of both spatial and temporal aspects of protein interaction networks.

  20. Detailed Characterization of Monoclonal Antibody Receptor Interaction Using Affinity Liquid Chromatography Hyphenated to Native Mass Spectrometry.

    Science.gov (United States)

    Gahoual, Rabah; Heidenreich, Anna-Katharina; Somsen, Govert W; Bulau, Patrick; Reusch, Dietmar; Wuhrer, Manfred; Haberger, Markus

    2017-05-16

    We report on the online coupling of FcRn affinity liquid chromatography (LC) with electrospray ionization mass spectrometry (ESI-MS) in native conditions to study the influence of modifications on the interaction of recombinant mAbs with the immobilized FcRn receptor domain. The analysis conditions were designed to fit the requirements of both affinity LC and ESI-MS. The mobile phase composition was optimized to maintain the proteins studied in native conditions and enable sharp pH changes in order to mimic properly IgGs Fc domain/FcRn receptor interaction. Mobile phase components needed to be sufficiently volatile to achieve native MS analysis. MS data demonstrated the conservation of the pseudonative form of IgGs and allowed identification of the separated variants. Native FcRn affinity LC-ESI-MS was performed on a therapeutic mAb undergoing various oxidation stress. Native MS detection was used to determine the sample oxidation level. Lower retention was observed for mAbs oxidized variants compared to their intact counterparts indicating decreased affinities for the receptor. This methodology proved to be suitable to identify and quantify post-translational modifications at native protein level in order to correlate their influence on the binding to the FcRn receptor. Native FcRn affinity LC-ESI-MS can tremendously reduce the time required to assess the biological relevance of the IgG microheterogeneities thus providing valuable information for biopharmaceutical research and development.

  1. CHARACTERIZATION OF THE BINDING OF SULFONYLUREA DRUGS TO HSA BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    Science.gov (United States)

    Joseph, K.S.; Hage, David S.

    2010-01-01

    Sulfonylurea drugs are often prescribed as a treatment for type II diabetes to help lower blood sugar levels by stimulating insulin secretion. These drugs are believed to primarily bind in blood to human serum albumin (HSA). This study used high-performance affinity chromatography (HPAC) to examine the binding of sulfonylureas to HSA. Frontal analysis with an immobilized HSA column was used to determine the association equilibrium constants (Ka) and number of binding sites on HSA for the sulfonylurea drugs acetohexamide and tolbutamide. The results from frontal analysis indicated HSA had a group of relatively high affinity binding regions and weaker binding sites for each drug, with average Ka values of 1.3 (± 0.2) × 105 M−1 and 3.5 (± 3.0) × 102 M−1 for acetohexamide and values of 8.7 (± 0.6) × 104 and 8.1 (± 1.7) × 103 M−1 for tolbutamide. Zonal elution and competition studies with site-specific probes were used to further examine the relatively high affinity interactions of these drugs by looking directly at the interactions that were occurring at Sudlow sites I and II of HSA (i.e., the major drug binding sites on this protein). It was found that acetohexamide was able to bind at both Sudlow sites I and II, with Ka values of 1.3 (± 0.1) × 105 and 4.3 (± 0.3) × 104 M−1, respectively, at 37°C. Tolbutamide also appeared to interact with both Sudlow sites I and II, with Ka values of 5.5 (± 0.2) × 104 and 5.3 (± 0.2) × 104 M−1, respectively. The results provide a more quantitative picture of how these drugs bind with HSA and illustrate how HPAC and related tools can be used to examine relatively complex drug-protein interactions. PMID:20435530

  2. Frontal affinity chromatography: a unique research tool for biospecific interaction that promotes glycobiology.

    Science.gov (United States)

    Kasai, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described.

  3. Frontal affinity chromatography: A unique research tool for biospecific interaction that promotes glycobiology

    Science.gov (United States)

    KASAI, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  4. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Directory of Open Access Journals (Sweden)

    Graham S Baldwin

    Full Text Available The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  5. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Science.gov (United States)

    Baldwin, Graham S; George, Graham N; Pushie, M Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  6. High-affinity neurotrophin receptors and ligands promote leukemogenesis

    Science.gov (United States)

    Beutel, Gernot; Rhein, Mathias; Meyer, Johann; Koenecke, Christian; Neumann, Thomas; Yang, Min; Krauter, Jürgen; von Neuhoff, Nils; Heuser, Michael; Diedrich, Helmut; Göhring, Gudrun; Wilkens, Ludwig; Schlegelberger, Brigitte; Ganser, Arnold

    2009-01-01

    Neurotrophins (NTs) and their receptors play a key role in neurogenesis and survival. The TRK (tropomyosin-related kinase) receptor protein tyrosine kinases (TRKA, TRKB, TRKC) are high-affinity NT receptors that are expressed in a variety of human tissues. Their role in normal and malignant hematopoiesis is poorly understood. In a prospective study involving 94 adult patients we demonstrate for the first time cell-surface expression of the 3 TRKs and constitutive activation in blasts from patients with de novo or secondary acute leukemia. At least one TRK was expressed in 55% of the analyzed cases. We establish a clear correlation between the TRK expression pattern and FAB classification. Although only few point mutations were found in TRK sequences by reverse-transcriptase–polymerase chain reaction (RT-PCR), we observed coexpression of BDNF (ligand for TRKB) in more than 50% of TRKB+ cases (16/30). Activation of TRKA or TRKB by NGF and BDNF, respectively, efficiently rescued murine myeloid cells from irradiation-induced apoptosis. Coexpression of TRKB/BDNF or TRKA/NGF in murine hematopoietic cells induced leukemia. Moreover, activation of TRKs was important for survival of both human and murine leukemic cells. Our findings suggest that TRKs play an important role in leukemogenesis and may serve as a new drug target. PMID:19059881

  7. Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions

    Directory of Open Access Journals (Sweden)

    Skládal Petr

    2003-01-01

    Full Text Available This review presents piezoelectric quartz crystals as transducers suitable for development of different types of bioanalytical assays. The components of measuring systems for piezosensors are described together with providers of commercial equipment. The piezoelectric biosensors are summarized for determination of viruses, bacterial and other cells, proteins, nucleic acids and small molecules as drugs, hormones and pesticides. In addition to mass changes, some agglutination assays employing viscosity effects are addressed. Finally, the direct label-free and real-time monitoring of affinity interactions using piezosensors is presented. The theoretical background for determination of appropriate kinetic rate and equilibrium constants is shown and the approach is demonstrated on the interaction of antibody with the corresponding antigen (protein secalin. Several examples of affinity studies are provided, including interactions of proteins (antibody and antigens, receptors and ligands, nucleic acids (hybridization, intercalation of metal complexes, lipids and saccharide-based layers.

  8. Protein C production: metal ion/protein interfacial interaction in immobilized metal affinity chromatography.

    Science.gov (United States)

    Lee, James J; Thiessen, Eileen; Bruley, Duane F

    2005-01-01

    Protein C (PC) is an essential blood factor in the human blood coagulation cascade. PC can help achieve blood hemostasis in many deadly disease conditions such as sepsis, cancer, HIV, etc.; reduced oxygen transport due to blood agglutination within the body can cause tissue death and organ failure as a result of low oxygen transport. Our goal is to produce large quantities of low cost zymogen PC for the treatment and prevention of blood clotting resulting from many disease states, as well as provide an effective therapy for PC deficiency. Current studies show that Immobilized Metal Affinity Chromatography (IMAC) has high specificity and can be used for difficult separations among homologous proteins at relatively low cost compared to current methods, such as Immunoaffinity Chromatography. Thus, we are investigating the optimization of IMAC for the separation and purification of PC from Cohn fraction IV-I. Molecular interactions within the chromatography column involve many parameters that include: the use and type of chromatographic gel and buffer solution, the pH, temperature, metal ion, chelator, and the sequence and structure of the protein itself. These parameters all influence the protein's interaction with the column. Experimental equilibrium isotherms show that PC has primary and secondary binding characteristics, demonstrating that the interaction is not just a simple process of one protein binding to one metal ion. Understanding the thermodynamics of interfacial interaction between proteins and surface-bound Cu2+ is essential to optimizing IMAC for PC purification, as well as for separation of other proteins in general. Hence we are undertaking theoretical and experimental studies of IDA-Cu/PC adsorption. The differences in structures of PC and other critical homologous blood factors are examined using the protein visualization program Cn3D. A better understanding of the interfacial phenomena will help determine the most effective conditions to achieve our

  9. Measurements of single molecular affinity interactions between carbohydrate-binding modules and crystalline cellulose fibrils.

    Science.gov (United States)

    Zhang, Mengmeng; Wang, Bin; Xu, Bingqian

    2013-05-07

    Combining atomic force microscopy (AFM) recognition imaging and single molecule dynamic force spectroscopy (SMDFS), we studied the single molecule affinity interactions between the carbohydrate-binding module (CBM) and plant cell wall cellulose using the CBM3a (from Clostridium thermocellum) and CBM2a (from Cellvibrio japonicus) functionalized AFM tips. The binding efficiencies of the CBMs to the cellulose were determined by the binding areas on the crystalline cellulose fibrils surface using the recognition imaging. Several dynamic and kinetic parameters, such as the reconstructed free energy change, energy barrier and bond lifetime constant, were also obtained based on the measured single molecule unbinding forces, which are used to illuminate the affinity of the CBMs binding to the natural and single cellulose surface from a totally different aspect. It was found that CBM3a has a little higher binding efficiency and affinity than CBM2a to both natural and extracted cellulose surfaces and both the CBMs have higher affinities to the natural cell wall cellulose compared to the extracted single cellulose. The in-depth understanding of the binding mechanisms of the CBM-cellulose interactions of this study may pave the way for more efficient plant cell wall degradation and eventually facilitate biofuel production.

  10. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    Energy Technology Data Exchange (ETDEWEB)

    Briers, Yves [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Schmelcher, Mathias; Loessner, Martin J. [Institute of Food Science and Nutrition, ETH Zuerich, Schmelzbergstrasse 7, CH-8092 Zuerich (Switzerland); Hendrix, Jelle; Engelborghs, Yves [Laboratory of Biomolecular Dynamics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven (Belgium); Volckaert, Guido [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Lavigne, Rob, E-mail: rob.lavigne@biw.kuleuven.be [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium)

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  11. Application of Frontal Affinity Chromatography to Study the Biomolecular Interactions with Trypsin.

    Science.gov (United States)

    Hu, YuanYuan; Qian, Junqing; Guo, Hui; Jiang, ShengLan; Zhang, Zheng

    2015-07-01

    Trypsin is a serine protease that has been proposed as a potential therapeutic target for metabolic disorders and malignancy diseases, thus the identification of biomolecular interactions of compounds to trypsin could be of great therapeutic importance. In this study, trypsin was immobilized on a monolithic silica capillary column via sol-gel. The binding properties of four small molecules (daidzin, genistin, matrine and oxymatrine) to trypsin were examined using the trypsin affinity columns by frontal analysis. The results indicate that the matrine (dissociation constant, Kd = 7.904 μM) has stronger interaction with trypsin than the oxymatrine (Kd = 8.204 μM), whereas daidzin and genistin were nearly have no affinity with trypsin. The results demonstrated that the frontal affinity chromatography can be used for the direct determination of protein-protease inhibitor binding interactions and have several significant advantages, including easy fabricating, reproducible, minimal technological requirements and potential to become a reliable alternative for quantitative studies of biomolecular interactions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Supporting interactive visual analytics of energy behavior in buildings through affine visualizations

    DEFF Research Database (Denmark)

    Nielsen, Matthias; Brewer, Robert S.; Grønbæk, Kaj

    2016-01-01

    Domain experts dealing with big data are typically not familiar with advanced data mining tools. This especially holds true for domain experts within energy management. In this paper, we introduce a visual analytics approach that empowers such users to visually analyze energy behavior based...... on consumption meters, sensors and user reported survey data. The approach is aimed at visual analysis of resource consumption data and occupant survey data (e.g. from questionnaires) from apartment buildings. We discuss the principles and architecture of the affine visualization tool, Affinity......Viz, that interactively maps data from real world buildings. It is an overview +detail inter-active visual analytics tool supporting both rapid ad hoc explorations and structured evaluation of hypotheses about patterns and anomalies in resource consumption data mixed with occupant survey data. We have evaluated...

  13. Differential Binding Affinities and Allosteric Conformational Changes Underlie Interactions of Yorkie and a Multivalent PPxY Partner.

    Science.gov (United States)

    Nyarko, Afua

    2018-01-05

    Tondu domain-containing growth inhibitor (Tgi) is one of a growing number of multivalent PPxY proteins that regulate cell growth via interactions with the tandem WW domains of the transcription coactivator protein, Yorkie (Yki). These proteins are attractive candidates for targeted drug design, but the substantial amount of disorder predicted from their primary sequences makes structural studies that are foundational to drug design challenging. We have successfully overexpressed full length recombinant Tgi and Yki, experimentally confirmed that intrinsic structural disorder is common to both proteins, and assessed binding of the Yki WW domains to the three Tgi PPxY motifs using nuclear magnetic resonance and isothermal titration calorimetry. We find that the tandem WW domains positively cooperate to engage all three PPxY sites with a broad range of affinities. The first PPxY motif that is quite distant from the other two serves as the "binding initiation" site and is essential for high-affinity interactions. Importantly, by monitoring binding to the full length or larger protein domains, we obtain more physiologically relevant affinity information and identify "long-range" residues that could be targeted to fine-tune binding. This expansion of protein functionality through modulation of residues outside the recognition sequences offers potential alternative targets for drug design.

  14. Affinity analysis for biomolecular interactions based on magneto-optical relaxation measurements

    Science.gov (United States)

    Aurich, Konstanze; Nagel, Stefan; Heister, Elena; Weitschies, Werner

    2008-12-01

    Magneto-optical relaxation measurements of magnetically labelled biomolecules are a promising tool for immunometric analyses. Carcinoembryonic antigen (CEA) and its polyclonal and monoclonal antibodies (anti-CEA) were utilized as a model system for affinity analysis of the interaction between antibody and antigen. For this purpose antibodies were coupled with magnetic nanoparticles (MNPs). Aggregation of these antibody sensors due to interactions with the CEA was observed subsequently by measuring the relaxation time of the birefringence of a transmitted laser beam that occurs in a pulsed magnetic field. A kinetic model of chain-like aggregation developed for these purposes enables the rapid and simple calculation of the kinetic parameters of the underlying protein interaction. From the known antigen concentration and the increase in particle size during the interaction we are able to estimate the unknown parameters with standard methods for the statistical description of stepwise polymerization. This novel affinity analysis was successfully applied for the antigen-antibody interaction described herein and can be applied to other biomolecular interactions. First efforts have been made to establish magneto-optical relaxation measurements in body fluids.

  15. Detection of heterogeneous drug-protein binding by frontal analysis and high-performance affinity chromatography.

    Science.gov (United States)

    Tong, Zenghan; Joseph, K S; Hage, David S

    2011-12-09

    This study examined the use of frontal analysis and high-performance affinity chromatography for detecting heterogeneous binding in biomolecular interactions, using the binding of acetohexamide with human serum albumin (HSA) as a model. It was found through the use of this model system and chromatographic theory that double-reciprocal plots could be used more easily than traditional isotherms for the initial detection of binding site heterogeneity. The deviations from linearity that were seen in double-reciprocal plots as a result of heterogeneity were a function of the analyte concentration, the relative affinities of the binding sites in the system and the amount of each type of site that was present. The size of these deviations was determined and compared under various conditions. Plots were also generated to show what experimental conditions would be needed to observe these deviations for general heterogeneous systems or for cases in which some preliminary information was available on the extent of binding heterogeneity. The methods developed in this work for the detection of binding heterogeneity are not limited to drug interactions with HSA but could be applied to other types of drug-protein binding or to additional biological systems with heterogeneous binding. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine.

    Science.gov (United States)

    Li, Zhao; Beeram, Sandya R; Bi, Cong; Suresh, D; Zheng, Xiwei; Hage, David S

    2016-01-01

    The binding of drugs with proteins and other agents in serum is of interest in personalized medicine because this process can affect the dosage and action of drugs. The extent of this binding may also vary with a given disease state. These interactions may involve serum proteins, such as human serum albumin or α1-acid glycoprotein, or other agents, such as lipoproteins. High-performance affinity chromatography (HPAC) is a tool that has received increasing interest as a means for studying these interactions. This review discusses the general principles of HPAC and the various approaches that have been used in this technique to examine drug-protein binding and in work related to personalized medicine. These approaches include frontal analysis and zonal elution, as well as peak decay analysis, ultrafast affinity extraction, and chromatographic immunoassays. The operation of each method is described and examples of applications for these techniques are provided. The type of information that can be obtained by these methods is also discussed, as related to the analysis of drug-protein binding and the study of clinical or pharmaceutical samples. © 2016 Elsevier Inc. All rights reserved.

  17. Detection of regional DNA methylation using DNA-graphene affinity interactions.

    Science.gov (United States)

    Haque, Md Hakimul; Gopalan, Vinod; Yadav, Sharda; Islam, Md Nazmul; Eftekhari, Ehsan; Li, Qin; Carrascosa, Laura G; Nguyen, Nam-Trung; Lam, Alfred K; Shiddiky, Muhammad J A

    2017-01-15

    We report a new method for the detection of regional DNA methylation using base-dependent affinity interaction (i.e., adsorption) of DNA with graphene. Due to the strongest adsorption affinity of guanine bases towards graphene, bisulfite-treated guanine-enriched methylated DNA leads to a larger amount of the adsorbed DNA on the graphene-modified electrodes in comparison to the adenine-enriched unmethylated DNA. The level of the methylation is quantified by monitoring the differential pulse voltammetric current as a function of the adsorbed DNA. The assay is sensitive to distinguish methylated and unmethylated DNA sequences at single CpG resolution by differentiating changes in DNA methylation as low as 5%. Furthermore, this method has been used to detect methylation levels in a collection of DNA samples taken from oesophageal cancer tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A linker peptide with high affinity towards silica-containing materials.

    Science.gov (United States)

    Sunna, Anwar; Chi, Fei; Bergquist, Peter L

    2013-06-25

    A peptide sequence with affinity to silica-containing materials was fused to a truncated form of Streptococcus strain G148 Protein G. The resulting recombinant Linker-Protein G (LPG) was produced in Escherichia coli and purified to apparent homogeneity. It displayed high affinity towards two natural clinoptilolite zeolites. The LPG also displayed high binding affinity towards commercial-grade synthetic zeolite, silica and silica-containing materials. A commercial sample of the truncated Protein G and a basic protein, both without the linker, did not bind to natural or synthetic zeolites or silica. We conclude that the zeolite-binding affinity is mediated by the linker peptide sequence. As a consequence, these data may imply that the binding affinity is directed to the SiO2 component rather than to the atomic orientation on the zeolite crystal surface as previously assumed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Greenwood, Jeremy R

    2005-01-01

    Gamma-hydroxybutyrate (GHB) is a psychotropic compound endogenous to the brain. Despite its potentially great physiological significance, its exact molecular mechanism of action is unknown. GHB is a weak agonist at GABA(B) receptors, but there is also evidence of specific GHB receptor sites......, the molecular cloning of which remains a challenge. Ligands with high affinity and specificity for the reported GHB binding site are needed for pharmacological dissection of the GHB and GABA(B) effects and for mapping the structural requirements of the GHB receptor-ligand interactions. For this purpose, we have...... analog, HOCPrCA, proved to have 10-fold higher affinity than its enantiomer. Likewise, the R-enantiomers of HOCHCA and HOCPCA selectively inhibited [3H]NCS-382 binding. The best inhibitor of these, (R)-HOCPCA, has an affinity 39 times higher than GHB and is thus among the best GHB ligands reported...

  20. Affinity Interaction between Hexamer Peptide Ligand HWRGWV and Immunoglobulin G Studied by Quartz Crystal Microbalance and Surface Plasmon Resonance

    Science.gov (United States)

    Shen, Fei

    Immunoglobulins (Ig), also referred to as antibodies, act as protective agents against pathogens trying to invade an organism. Human immunoglobulin G (hIgG), as the most prominent immunoglobulin presented in serum and other human fluids, has broad applications in fields like immunotherapy and clinical diagnostics. Staphylococcus aureus Protein A and Streptococcus Protein G are the most common affinity ligands for IgG purifaction and detection. However, drawbacks associated with these two protein ligands have motivated searches for alternative affinity ligands. The hexamer peptide ligand HWRGWV identified from a one-bead-one-peptide combinatorial library synthesized on chromatography resins has demonstrated high affinity and specificity to the Fc fragment of hIgG. A chromatography resin with HWRGWV can purify human IgG (hIgG) from complete minimum essential medium (cMEM) with purities and yields as high as 95%, which are comparable to using Protein A as affinity ligand (4). As a short peptide ligand, HWRGWV can be produced at relatively low costs under good manufacturing practices (GMP) conditions, it is highly robust, less immunogenic and allows for milder elution conditions for the bound antibody (3, 5). Although this short peptide ligand has exhibited promising properties for IgG capture and purification, limited information is available on the intrinsic mechanisms of affinity interaction between the peptide ligand and target protein. In this study, the affinity interaction between hIgG and peptide ligand immobilized on solid surfaces was studied by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). Compared with previous methods employed for the peptide characterization, QCM and SPR can provide direct measurements of equilibrium adsorption isotherms and rates of adsorption, allowing a complete kinetic and thermodynamics analyses of the ligand-target interactions. New methods were developed to modify gold and silica surfaces of QCM and SPR

  1. Mapping Protein-Protein Interactions Using Affinity Purification and Mass Spectrometry.

    Science.gov (United States)

    Lee, Chin-Mei; Adamchek, Christopher; Feke, Ann; Nusinow, Dmitri A; Gendron, Joshua M

    2017-01-01

    The mapping of protein-protein interaction (PPI) networks and their dynamics are crucial steps to deciphering the function of a protein and its role in cellular pathways, making it critical to have comprehensive knowledge of a protein's interactome. Advances in affinity purification and mass spectrometry technology (AP-MS) have provided a powerful and unbiased method to capture higher-order protein complexes and decipher dynamic PPIs. However, the unbiased calling of nonspecific interactions and the ability to detect transient interactions remains challenging when using AP-MS, thereby hampering the detection of biologically meaningful complexes. Additionally, there are plant-specific challenges with AP-MS, such as a lack of protein-specific antibodies, which must be overcome to successfully identify PPIs. Here we discuss and describe a protocol designed to bypass the traditional challenges of AP-MS and provide a roadmap to identify bona fide PPIs in plants.

  2. Integrin alphaVbeta6 is a high-affinity receptor for coxsackievirus A9.

    Science.gov (United States)

    Heikkilä, Outi; Susi, Petri; Stanway, Glyn; Hyypiä, Timo

    2009-01-01

    Coxsackievirus A9 (CAV9), a member of the genus Enterovirus in the family Picornaviridae, possesses an integrin-binding arginine-glycine-aspartic acid (RGD) motif in the C terminus of VP1 capsid protein. CAV9 has been shown to utilize integrins alphaVbeta3 and alphaVbeta6 as primary receptors for cell attachment. While CAV9 RGD-mutants (RGE and RGDdel) are capable of infecting rhabdomyosarcoma (RD) cell line, they grow very poorly in an epithelial lung carcinoma cell line (A549). In this study, the relationships between CAV9 infectivity in A549 and RD cells, receptor expression and integrin binding were analysed. A549 cells were shown to express both integrins alphaVbeta3 and alphaVbeta6, whereas alphaVbeta6 expression was not detected on the RD cells. Native CAV9 but not RGE and RGDdel mutants bound efficiently to immobilized alphaVbeta3 and alphaVbeta6. Adhesion of CAV9 but not RGE/RGDdel to A549 cells was also significantly higher than to RD cells. In contrast, no affinity or adhesion of bacterially produced VP1 proteins to the integrins or to the cells was detected. Function-blocking antibodies against alphaV-integrins blocked CAV9 but not CAV9-RGDdel infectivity, indicating that the viruses use different internalization routes; this may explain the differential infection kinetics of CAV9 and RGDdel. In an affinity assay, soluble alphaVbeta6, but not alphaVbeta3, bound to immobilized CAV9. Similarly, only soluble alphaVbeta6 blocked virus infectivity. These data suggest that CAV9 binding to alphaVbeta6 is a high-affinity interaction, which may indicate its importance in clinical infections; this remains to be determined.

  3. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex.

    Directory of Open Access Journals (Sweden)

    Masato Kiyoshi

    Full Text Available The optimization of antibodies is a desirable goal towards the development of better therapeutic strategies. The antibody 11K2 was previously developed as a therapeutic tool for inflammatory diseases, and displays very high affinity (4.6 pM for its antigen the chemokine MCP-1 (monocyte chemo-attractant protein-1. We have employed a virtual library of mutations of 11K2 to identify antibody variants of potentially higher affinity, and to establish benchmarks in the engineering of a mature therapeutic antibody. The most promising candidates identified in the virtual screening were examined by surface plasmon resonance to validate the computational predictions, and to characterize their binding affinity and key thermodynamic properties in detail. Only mutations in the light-chain of the antibody are effective at enhancing its affinity for the antigen in vitro, suggesting that the interaction surface of the heavy-chain (dominated by the hot-spot residue Phe101 is not amenable to optimization. The single-mutation with the highest affinity is L-N31R (4.6-fold higher affinity than wild-type antibody. Importantly, all the single-mutations showing increase affinity incorporate a charged residue (Arg, Asp, or Glu. The characterization of the relevant thermodynamic parameters clarifies the energetic mechanism. Essentially, the formation of new electrostatic interactions early in the binding reaction coordinate (transition state or earlier benefits the durability of the antibody-antigen complex. The combination of in silico calculations and thermodynamic analysis is an effective strategy to improve the affinity of a matured therapeutic antibody.

  4. The Saccharomyces cerevisiae High Affinity Phosphate Transporter Encoded by PHO84 Also Functions in Manganese Homeostasis

    National Research Council Canada - National Science Library

    Laran T. Jensen; Mispa Ajua-Alemanji; Valeria Cizewski Culotta

    2003-01-01

    ... . In a search for other genes involved in manganese homeostasis, PHO84 was identified. The PHO84 gene encodes a high affinity inorganic phosphate transporter, and we find that its disruption results in a manganese-resistant phenotype...

  5. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    OpenAIRE

    Jugdaohsingh, R; Brown, A; Dietzel, M; Powell, JJ

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter w...

  6. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs

    Directory of Open Access Journals (Sweden)

    Vlasblom James

    2009-03-01

    Full Text Available Abstract Background Genome scale data on protein interactions are generally represented as large networks, or graphs, where hundreds or thousands of proteins are linked to one another. Since proteins tend to function in groups, or complexes, an important goal has been to reliably identify protein complexes from these graphs. This task is commonly executed using clustering procedures, which aim at detecting densely connected regions within the interaction graphs. There exists a wealth of clustering algorithms, some of which have been applied to this problem. One of the most successful clustering procedures in this context has been the Markov Cluster algorithm (MCL, which was recently shown to outperform a number of other procedures, some of which were specifically designed for partitioning protein interactions graphs. A novel promising clustering procedure termed Affinity Propagation (AP was recently shown to be particularly effective, and much faster than other methods for a variety of problems, but has not yet been applied to partition protein interaction graphs. Results In this work we compare the performance of the Affinity Propagation (AP and Markov Clustering (MCL procedures. To this end we derive an unweighted network of protein-protein interactions from a set of 408 protein complexes from S. cervisiae hand curated in-house, and evaluate the performance of the two clustering algorithms in recalling the annotated complexes. In doing so the parameter space of each algorithm is sampled in order to select optimal values for these parameters, and the robustness of the algorithms is assessed by quantifying the level of complex recall as interactions are randomly added or removed to the network to simulate noise. To evaluate the performance on a weighted protein interaction graph, we also apply the two algorithms to the consolidated protein interaction network of S. cerevisiae, derived from genome scale purification experiments and to versions of

  7. Structure-based engineering to restore high affinity binding of an isoform-selective anti-TGFβ1 antibody.

    Science.gov (United States)

    Lord, Dana M; Bird, Julie J; Honey, Denise M; Best, Annie; Park, Anna; Wei, Ronnie R; Qiu, Huawei

    2018-01-15

    Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies.

  8. Reinforcement of frontal affinity chromatography for effective analysis of lectin-oligosaccharide interactions.

    Science.gov (United States)

    Hirabayashi, J; Arata, Y; Kasai, K

    2000-08-25

    Frontal affinity chromatography is a method for quantitative analysis of biomolecular interactions. We reinforced it by incorporating various merits of a contemporary liquid chromatography system. As a model study, the interaction between an immobilized Caenorhabditis elegans galectin (LEC-6) and fluorescently labeled oligosaccharides (pyridylaminated sugars) was analyzed. LEC-6 was coupled to N-hydroxysuccinimide-activated Sepharose 4 Fast Flow (100 microm diameter), and packed into a miniature column (e.g., 10 x 4.0 mm, 0.126 ml). Twelve pyridylaminated oligosaccharides were applied to the column through a 2-ml sample loop, and their elution patterns were monitored by fluorescence. The volume of the elution front (V) determined graphically for each sample was compared with that obtained in the presence of an excess amount of hapten saccharide, lactose (V0); and the dissociation constant, Kd, was calculated according to the literature [K. Kasai, Y. Oda, M. Nishikawa, S. Ishii, J. Chromatogr. 376 (1986) 33]. This system also proved to be useful for an inverse confirmation; that is, application of galectins to an immobilized glycan column (in the present case, asialofetuin was immobilized on Sepharose 4 Fast Flow), and the elution profiles were monitored by fluorescence based on tryptophan. The relative affinity of various galectins for asialofetuin could be easily compared in terms of the extent of retardation. The newly constructed system proved to be extremely versatile. It enabled rapid (analysis time 12 min/cycle) and sensitive (20 nM for pyridylaminated derivatives, and 1 microg/ml for protein) analyses of lectin-carbohydrate interactions. It should become a powerful tool for elucidation of biomolecular interactions, in particular for functional analysis of a large number of proteins that should be the essential issues of post-genome projects.

  9. Measurement of glycan-based interactions by frontal affinity chromatography and surface plasmon resonance.

    Science.gov (United States)

    Sato, Chihiro; Yamakawa, Nao; Kitajima, Ken

    2010-01-01

    Proteins and lipids are often modified with glycan chains, which due to their large hydration effect and structural heterogeneity, significantly alter the surface physicochemical properties of proteins and biomembranes. This "glyco-atmosphere" also serves as a field for interactions with various molecules, including other glycans, lipids, peptides, proteins, and small molecules such as neurotransmitters and drugs as well as lectins. Therefore, sensitive techniques for measuring these glycan-based interactions are becoming more and more necessary, with the appropriate method largely depending on the interacting molecules. In this chapter, we focus on frontal affinity chromatography (FAC) and surface plasmon resonance (SPR) for examining polysialic acid-involved interactions with neurotransmitters and neurotrophins. FAC is characterized by its applicability to analyze weak interactions that are difficult to measure using conventional methods, and by the ease of principle and experimental procedures. SPR is advantageous due to the availability of suitable surface materials and for real-time monitoring with nonlabeled analytes. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Crystal Structures and Inhibitor Interactions of Mouse and Dog MTH1 Reveal Species-Specific Differences in Affinity.

    Science.gov (United States)

    Narwal, Mohit; Jemth, Ann-Sofie; Gustafsson, Robert; Almlöf, Ingrid; Warpman Berglund, Ulrika; Helleday, Thomas; Stenmark, Pål

    2018-01-16

    MTH1 hydrolyzes oxidized nucleoside triphosphates, thereby sanitizing the nucleotide pool from oxidative damage. This prevents incorporation of damaged nucleotides into DNA, which otherwise would lead to mutations and cell death. The high level of reactive oxygen species in cancer cells leads to a higher level of oxidized nucleotides in cancer cells compared to that in nonmalignant cells, making cancer cells more dependent on MTH1 for survival. The possibility of specifically targeting cancer cells by inhibiting MTH1 has highlighted MTH1 as a promising cancer target. The progression of MTH1 inhibitors into the clinic requires animal studies, and knowledge of species differences in the potency of inhibitors is vitally important. We here show that the human MTH1 inhibitor TH588 is approximately 20-fold less potent with respect to inhibition of mouse MTH1 than the human, rat, pig, and dog MTH1 proteins are. We present the crystal structures of mouse MTH1 in complex with TH588 and dog MTH1 and elucidate the structural and sequence basis for the observed difference in affinity for TH588. We identify amino acid residue 116 in MTH1 as an important determinant of TH588 affinity. Furthermore, we present the structure of mouse MTH1 in complex with the substrate 8-oxo-dGTP. The crystal structures provide insight into the high degree of structural conservation between MTH1 proteins from different organisms and provide a detailed view of interactions between MTH1 and the inhibitor, revealing that minute structural differences can have a large impact on affinity and specificity.

  11. Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography.

    Science.gov (United States)

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-07-01

    In diabetes, the elevated levels of glucose in the bloodstream can result in the nonenzymatic glycation of proteins such as human serum albumin (HSA). This type of modification has been shown to affect the interactions of some drugs with HSA, including several sulfonylurea drugs that are used to treat type II diabetes. This study used high-performance affinity chromatography (HPAC) to examine the interactions of glipizide (i.e., a second-generation sulfonylurea drug) with normal HSA or HSA that contained various levels of in vitro glycation. Frontal analysis indicated that glipizide was interacting with both normal and glycated HSA through two general groups of sites: a set of relatively strong interactions and a set of weaker interactions with average association equilibrium constants at pH 7.4 and 37 °C in the range of 2.4-6.0 × 10(5) and 1.7-3.7 × 10(4) M(-1), respectively. Zonal elution competition studies revealed that glipizide was interacting at both Sudlow sites I and II, which were estimated to have affinities of 3.2-3.9 × 10(5) and 1.1-1.4 × 10(4) M(-1). Allosteric effects were also noted to occur for this drug between the tamoxifen site and the binding of R-warfarin at Sudlow site I. Up to an 18% decrease in the affinity for glipizide was observed at Sudlow site I ongoing from normal HSA to glycated HSA, while up to a 27% increase was noted at Sudlow site II. This information should be useful in indicating how HPAC can be used to investigate other drugs that have complex interactions with proteins. These results should also be valuable in providing a better understanding of how glycation may affect drug-protein interactions and the serum transport of drugs such as glipizide during diabetes.

  12. Polar silica-based stationary phases. Part III- Neutral silica stationary phase with surface bound maltose for affinity chromatography at reduced non-specific interactions.

    Science.gov (United States)

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    This research article reports the coating of large pore silica microparticles with a maltose layer to which bioaffinity ligands were attached via reductive amination reaction between the aldehyde activated maltose and the amino groups of the bioaffinity ligands. This was achieved first by the periodate oxidation of the maltose-silica (MALT-silica) yielding pairs of aldehyde groups at each monosaccharide ring. These di-aldehyde functionalities were then reacted with the primary amino groups of protein bio-affinity ligands and eventually formed Schiff bases (i.e., aldimines) which were reduced using the mild reducing agent sodium cyanoborohydride to form stable amine linkages between the immobilized protein ligands and the maltose layer. Anti-human serum albumin antibody (aHSA), anti-human serum transferrin antibody (aTf) and concanavalin A (Con A) were the bio-affinity ligands immobilized onto the MALT-silica and were evaluated in high performance affinity chromatography (HPAC), namely immunoaffinity chromatography (IAC) and lectin affinity chromatography (LAC). Our initial studies reported here revealed zero or reduced nonspecific interactions with the two immunoaffinity sorbents (i.e., aHSA-MALT-silica and aTf-MALT-silica) and the lectin affinity sorbent (i.e., Con A-MALT-silica). The absence of nonspecific interactions is attributed to the hydrophilicity of the maltose layer and its shielding effect of the residual silanols (i.e., unreacted silanols) on the silica surface. Conversely, the IAC and LAC sorbents exhibited specific interactions with the target biomolecules, namely human serum albumin (HSA) and transferrin (Tf) in the case of aHSA-MALT-silica and aTf-MALT-silica columns, respectively, and glycoproteins known for their affinity to Con A in the case of Con A-MALT-silica column. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity.

    Directory of Open Access Journals (Sweden)

    Jenny Bostrom

    Full Text Available The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2 antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.

  14. Monte Carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities

    CERN Document Server

    Coe, J P; Paterson, M J

    2013-01-01

    The method of Monte Carlo configuration interaction (MCCI) [1,2] is applied to the calculation of multipole moments. We look at the ground and excited state dipole moments in carbon monoxide. We then consider the dipole of NO, the quadrupole of the nitrogen molecule and of BH. An octupole of methane is also calculated. We consider experimental geometries and also stretched bonds. We show that these non-variational quantities may be found to relatively good accuracy when compared with FCI results, yet using only a small fraction of the full configuration interaction space. MCCI results in the aug-cc-pVDZ basis are seen to generally have reasonably good agreement with experiment. We also investigate the performance of MCCI when applied to ionisation energies and electron affinities of atoms in an aug-cc-pVQZ basis. We compare the MCCI results with full configuration-interaction quantum Monte Carlo [3,4] and `exact' non-relativistic results [3,4]. We show that MCCI could be a useful alternative for the calculati...

  15. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?

    Science.gov (United States)

    Storz, Jay F

    2016-10-15

    In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates. © 2016. Published by The Company of Biologists Ltd.

  16. Characterization of high affinity (/sup 3/H)triazolam binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-03-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. at 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.

  17. Affinity regulation of the NH3 + H2O system by ionic liquids with molecular interaction analysis.

    Science.gov (United States)

    Huang, Weijia; Zheng, Danxing; Xia, Changxing; Feng, Lejun; Dong, Li; Jiang, Peixue

    2017-06-21

    This work proposed using an adequate ionic liquid (IL) to weaken the affinity between NH3 and H2O as a potential solution to the issue of high-energy consumption involved in separating NH3 gas from liquid H2O. Two quaternary phosphonium-based ILs were selected according to an optimized regulation strategy. The regulation effects of the ILs were evaluated by the vapor-liquid equilibrium property of the NH3 + H2O + IL systems, and were compared with the regulation effects of traditional additives. The results showed that the expected effects were achieved by adding ILs. The regulation mechanisms of different strategies were discussed with respect to the molecular structure and chemical equilibrium for the first time limited to the authors' latest literature review. Finally, the IR spectra of the NH3 + H2O + IL systems were acquired and analyzed to verify the interactions of the ILs with NH3 and H2O.

  18. High altitude genetic adaptation in Tibetans: no role of increased hemoglobin-oxygen affinity.

    Science.gov (United States)

    Tashi, Tsewang; Feng, Tang; Koul, Parvaiz; Amaru, Ricardo; Hussey, Dottie; Lorenzo, Felipe R; RiLi, Ge; Prchal, Josef T

    2014-01-01

    High altitude exerts selective evolutionary pressure primarily due to its hypoxic environment, resulting in multiple adaptive responses. High hemoglobin-oxygen affinity is postulated to be one such adaptive change, which has been reported in Sherpas of the Himalayas. Tibetans have lived on the Qinghai-Tibetan plateau for thousands of years and have developed unique phenotypes, such as protection from polycythemia which has been linked to PDH2 mutation, resulting in the downregulation of the HIF pathway. In order to see if Tibetans also developed high hemoglobin-oxygen affinity as a part of their genetic adaptation, we conducted this study assessing hemoglobin-oxygen affinity and their fetal hemoglobin levels in Tibetan subjects from 3 different altitudes. We found normal hemoglobin-oxygen affinity in all subjects, fetal hemoglobin levels were normal in all except one and no hemoglobin variants in any of the subjects. We conclude that increased hemoglobin-oxygen affinity or increased fetal hemoglobin are not adaptive phenotypes of the Tibetan highlanders. Published by Elsevier Inc.

  19. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation.

    Directory of Open Access Journals (Sweden)

    S M D K Ganga Senarathna

    Full Text Available The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10(-6 cm/sec, followed by amodiaquine around 20 x 10(-6 cm/sec; both mefloquine and artesunate were around 10 x 10(-6 cm/sec. Methylene blue was between 2 and 6 x 10(-6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine.

  20. Regional distribution of high affinity binding of 3H-adenosine in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Traversa, U.; Puppini, P.; de Angelis, L.; Vertua, R.

    1984-06-01

    The high and low affinity adenosine binding sites with Kd values ranging respectively from 0.8 to 1.65 microM and from 3.1 to 13.86 microM were demonstrated in the following rat brain areas: cortex, hippocampus, striatum, cerebellum, diencephalon, and pons-medulla. Adenosine receptors involved in the high affinity binding seem to be mainly Ra-type. The analysis of the regional distribution of 3H-Adenosine showed the highest levels of specific binding in striatum and hippocampus; somewhat smaller values in cortex, cerebellum, and diencephalon, and even lower in pons-medulla.

  1. GHB receptor targets in the CNS: Focus on high-affinity binding sites

    DEFF Research Database (Denmark)

    Bay, Tina; Eghorn, Laura Friis; Klein, Anders Bue

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects...... effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles...

  2. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yliniemelae, A.; Gynther, J. (Univ. of Kuopio (Finland)); Konschin, H.; Tylli, H. (Univ. of Helsinki (Finland)); Rouvinen, J. (Univ. of Joensuu (Finland))

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  3. The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis.

    Science.gov (United States)

    Jensen, Laran T; Ajua-Alemanji, Mispa; Culotta, Valeria Cizewski

    2003-10-24

    In the bakers' yeast Saccharomyces cerevisiae, high affinity manganese uptake and intracellular distribution involve two members of the Nramp family of genes, SMF1 and SMF2. In a search for other genes involved in manganese homeostasis, PHO84 was identified. The PHO84 gene encodes a high affinity inorganic phosphate transporter, and we find that its disruption results in a manganese-resistant phenotype. Resistance to zinc, cobalt, and copper ions was also demonstrated for pho84Delta yeast. When challenged with high concentrations of metals, pho84Delta yeast have reduced metal ion accumulation, suggesting that resistance is due to reduced uptake of metal ions. Pho84p accounted for virtually all the manganese accumulated under metal surplus conditions, demonstrating that this transporter is the major source of excess manganese accumulation. The manganese taken in via Pho84p is indeed biologically active and can not only cause toxicity but can also be incorporated into manganese-requiring enzymes. Pho84p is essential for activating manganese enzymes in smf2Delta mutants that rely on low affinity manganese transport systems. A role for Pho84p in manganese accumulation was also identified in a standard laboratory growth medium when high affinity manganese uptake is active. Under these conditions, cells lacking both Pho84p and the high affinity Smf1p transporter accumulated low levels of manganese, although there was no major effect on activity of manganese-requiring enzymes. We conclude that Pho84p plays a role in manganese homeostasis predominantly under manganese surplus conditions and appears to be functioning as a low affinity metal transporter.

  4. Inference of a Geminivirus-Host Protein-Protein Interaction Network through Affinity Purification and Mass Spectrometry Analysis.

    Science.gov (United States)

    Wang, Liping; Ding, Xue; Xiao, Jiajing; Jiménez-Gόngora, Tamara; Liu, Renyi; Lozano-Durán, Rosa

    2017-09-25

    Viruses reshape the intracellular environment of their hosts, largely through protein-protein interactions, to co-opt processes necessary for viral infection and interference with antiviral defences. Due to genome size constraints and the concomitant limited coding capacity of viruses, viral proteins are generally multifunctional and have evolved to target diverse host proteins. Inference of the virus-host interaction network can be instrumental for understanding how viruses manipulate the host machinery and how re-wiring of specific pathways can contribute to disease. Here, we use affinity purification and mass spectrometry analysis (AP-MS) to define the global landscape of interactions between the geminivirus Tomato yellow leaf curl virus (TYLCV) and its host Nicotiana benthamiana. For this purpose, we expressed tagged versions of each of TYLCV-encoded proteins (C1/Rep, C2/TrAP, C3/REn, C4, V2, and CP) in planta in the presence of the virus. Using a quantitative scoring system, 728 high-confidence plant interactors were identified, and the interaction network of each viral protein was inferred; TYLCV-targeted proteins are more connected than average, and connect with other proteins through shorter paths, which would allow the virus to exert large effects with few interactions. Comparative analyses of divergence patterns between N. benthamiana and potato, a non-host Solanaceae, showed evolutionary constraints on TYLCV-targeted proteins. Our results provide a comprehensive overview of plant proteins targeted by TYLCV during the viral infection, which may contribute to uncovering the underlying molecular mechanisms of plant viral diseases and provide novel potential targets for anti-viral strategies and crop engineering. Interestingly, some of the TYLCV-interacting proteins appear to be convergently targeted by other pathogen effectors, which suggests a central role for these proteins in plant-pathogen interactions, and pinpoints them as potential targets to

  5. In silico design of high-affinity ligands for the immobilization of inulinase.

    Science.gov (United States)

    Holyavka, M G; Kondratyev, M S; Samchenko, A A; Kabanov, A V; Komarov, V M; Artyukhov, V G

    2016-04-01

    Using computer modeling, virtual screening of high-affinity ligands for immobilization of inulinase - an enzyme that cleaves inulin and fructose-containing polymers to fructose - has been performed. The inulinase molecule from Aspergillus ficuum (pdb: 3SC7) taken from the database of protein structures was used as a protein model and the target for flexible docking. The set of ligands studied included simple sugars (activators, inhibitors, products of enzymatic catalysis), as well as high-molecular weight compounds (polycation and polyanion exchange resins, glycoproteins, phenylalanine-proline peptide, polylactate, and caffeine). Based on the comparative analysis of the values of the total energy and the localization of ligand binding sites, we made several assumptions concerning the mechanisms of interaction of the suggested matrices for the immobilization of enzyme molecules and the structural features of such complexes. It was also assumed that the candidates for immobilization agents meeting the industrial requirements may be glycoproteins, for which we propose an additional incorporation of cysteine residues into their structure, aimed to create disulfide «anchors» to the surface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Nickel(II) Inhibits Tet-Mediated 5-Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II).

    Science.gov (United States)

    Yin, Ruichuan; Mo, Jiezhen; Dai, Jiayin; Wang, Hailin

    2017-06-16

    Ten-eleven translocation (Tet) family proteins are Fe(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor. Surprisingly, here we found that natural Ni(II) ion can bind to the Fe(II)-chelating motif (HXD) with an affinity of 7.5-fold as high as Fe(II). Consistently, we further found that Ni(II) ion can displace the cofactor Fe(II) of Tet dioxygenases and inhibit Tet-mediated 5mC oxidation activity with an estimated IC50 of 1.2 μM. Essentially, Ni(II) can be used as a high affinity and selective inhibitor to explore the function and dynamics of Tet proteins.

  7. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  8. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor

    DEFF Research Database (Denmark)

    Rao, C N; Castronovo, V; Schmitt, M C

    1989-01-01

    The high-affinity cellular receptor for the basement membrane component laminin is differentially expressed during tumor invasion and metastasis. A cDNA clone encoding the murine laminin receptor was isolated and identified on the basis of sequence homology to the human laminin receptor [Wewer et...

  9. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective

  10. Influence of self-affine roughness on the friction coefficient of rubber at high sliding velocity

    NARCIS (Netherlands)

    Palasantzas, G

    2004-01-01

    In this work we investigate the influence of self-affine roughness on the friction coefficient of a rubber body onto a solid surface at high speeds. The roughness is characterized by the rms amplitude w, the correlation length xi, and the roughness exponent H. It is shown that the friction

  11. Immunological and structural characterization of a high affinity anti-fluorescein single-chain antibody.

    Science.gov (United States)

    Bedzyk, W D; Weidner, K M; Denzin, L K; Johnson, L S; Hardman, K D; Pantoliano, M W; Asel, E D; Voss, E W

    1990-10-25

    Single-chain antibody of the (NH2) VL-linker-VH (COOH) design, was constructed based on prototype high affinity anti-fluorescein monoclonal antibody (mAb) 4-4-20. Purified single-chain antibody (SCA) 4-4-20/212 was studied relative to Ig mAb 4-4-20 in terms of ligand binding, kinetics, idiotypy, metatypy, and stability in denaturing agents. Ligand-binding data correlated with metatypic relatedness of the liganded site. Anti-metatypic reagents reacted preferentially with the liganded conformer of the 4-4-20 antibody active site and were unreactive with free ligand and the non-liganded (idiotypic) state. All results were consistent with the conclusion that SCA 4-4-20/212, with a 14-amino acid linker folded into a native conformational state that closely simulated the prototypical mAb. Furthermore, GndHCl unfolding and refolding studies demonstrated H and L chain variable domain intrinsic stability between SCA 4-4-20/212 and a 50 kDa antigen-binding fragment were nearly identical. This suggested CH1 and CL domain interactions may be more prevalent in V region molecular dynamics than structure.

  12. Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins

    Directory of Open Access Journals (Sweden)

    Sergi Puig

    2014-01-01

    Full Text Available Copper (Cu is an essential micronutrient for all eukaryotes because it participates as a redox active cofactor in multiple biological processes, including mitochondrial respiration, photosynthesis, oxidative stress protection, and iron (Fe transport. In eukaryotic cells, Cu transport toward the cytoplasm is mediated by the conserved CTR/COPT family of high-affinity Cu transport proteins. This outlook paper reviews the contribution of our research group to the characterization of the function played by the Arabidopsis thaliana COPT1–6 family of proteins in plant Cu homeostasis. Our studies indicate that the different tissue specificity, Cu-regulated expression, and subcellular localization dictate COPT-specialized contribution to plant Cu transport and distribution. By characterizing lack-of-function Arabidopsis mutant lines, we conclude that COPT1 mediates root Cu acquisition, COPT6 facilitates shoot Cu distribution, and COPT5 mobilizes Cu from storage organelles. Furthermore, our work with copt2 mutant and COPT-overexpressing plants has also uncovered Cu connections with Fe homeostasis and the circadian clock, respectively. Future studies on the interaction between COPT transporters and other components of the Cu homeostasis network will improve our knowledge of plant Cu acquisition, distribution, regulation, and utilization by Cu-proteins.

  13. Applications of Frontal Affinity Chromatography to the Study of Interactions between Metal Ions and a Complex Biomaterial.

    Science.gov (United States)

    Lin, S; Drake, L R; Rayson, G D

    1996-12-01

    The use of frontal affinity chromatography for the study of metal-biomaterial interactions is described. Both normal frontal affinity chromatography and a modification of this methodology were used to generate metal binding isotherms to a biomaterial. This modification enabled the acquisition of binding isotherms with extended concentration ranges at the expense of time-dependent binding information. Comparison between normal and modified mode was made by using a well-defined commercial resin. Similar performance of these two modes was obtained. The biomaterial investigated was composed of cell fragments from the plant Datura innoxia which were immobilized within a polysilicate matrix. The application of a regularized least-squares method indicated the existence of two classes of sites on this biosorbent involved in the binding of Ag(+). A total metal-ion binding affinity order at solution pH 3-5 was determined to be Cu(2+) > Cd(2+) ≈ Ag(+) > Ca(2+).

  14. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation.

    Directory of Open Access Journals (Sweden)

    Luigi Capoferri

    Full Text Available Prediction of human Cytochrome P450 (CYP binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD simulations and Linear Interaction Energy (LIE theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE of 4.1 kJ mol-1 and a standard error in prediction (SDEP in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units.

  15. Radiosynthesis and Evaluation of [(11)C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Jensen, Claus H; Hansen, Hanne D; Bay, Tina

    2017-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous neuroactive substance and proposed neurotransmitter with affinity for both low- and high-affinity binding sites. A radioligand with high and specific affinity toward the high-affinity GHB binding site would be a unique tool toward a more complete...

  16. Absence of high-affinity calreticulin autoantibodies in patients with systemic rheumatic diseases and coeliac disease

    DEFF Research Database (Denmark)

    Jørgensen, C S; Hansen, K B; Jacobsen, Søren

    2005-01-01

    Calreticulin has been reported to be an autoantigen in various autoimmune connective tissue diseases and in coeliac disease. Previous studies have used incubation buffers with low salt and low detergent concentrations (low stringency conditions) with serum albumin or other proteins as a blocking...... binding (high stringency conditions). Using the high stringency conditions, we screened sera from 107 patients with systemic lupus erythematosus, sera from patients with other systemic autoimmune diseases and from children with coeliac disease for the presence of high-affinity calreticulin autoantibodies...... by immunoblotting and ELISA. None of the sera contained high-affinity calreticulin antibodies. It is concluded that calreticulin is not a common autoantigen in patients with autoimmune connective tissue diseases or coeliac disease....

  17. DEVELOPMENT OF SULFHYDRYL-REACTIVE SILICA FOR PROTEIN IMMOBILIZATION IN HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    OpenAIRE

    Mallik, Rangan; Wa, Chunling; Hage, David S.

    2007-01-01

    Two techniques were developed for the immobilization of proteins and other ligands to silica through sulfhydryl groups. These methods made use of maleimide-activated silica (the SMCC method) or iodoacetyl-activated silica (the SIA method). The resulting supports were tested for use in high-performance affinity chromatography by employing human serum albumin (HSA) as a model protein. Studies with normal and iodoacetamide-modified HSA indicated that these methods had a high selectivity for sulf...

  18. High altitude genetic adaptation in Tibetans: no role of increased hemoglobin-oxygen affinity

    OpenAIRE

    Tashi, Tsewang; Feng, Tang; Koul, Parvaiz; Amaru, Ricardo; Hussey, Dottie; Lorenzo, Felipe R.; Rili, Ge; Prchal, Josef T.

    2014-01-01

    High altitude exerts selective evolutionary pressure primarily due to its hypoxic environment, resulting in multiple adaptive responses. High hemoglobin-oxygen affinity is postulated to be one such adaptive change, which has been reported in Sherpas of the Himalayas. Tibetans have lived on the Qinghai-Tibetan plateau for thousands of years and have developed unique phenotypes, such as protection from polycythemia which has been linked to PDH2 mutation, resulting in downregulation of HIF pathw...

  19. Selective high-affinity polydentate ligands and methods of making such

    Energy Technology Data Exchange (ETDEWEB)

    Denardo, Sally J.; Denardo, Gerald L.; Balhorn, Rodney L.

    2018-02-06

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  20. Affinity-mass spectrometry approaches for elucidating structures and interactions of protein-ligand complexes.

    Science.gov (United States)

    Petre, Brînduşa Alina

    2014-01-01

    Affinity-based approaches in combination with mass spectrometry for molecular structure identification in biological complexes such as protein-protein, and protein-carbohydrate complexes have become popular in recent years. Affinity-mass spectrometry involves immobilization of a biomolecule on a chemically activated support, affinity binding of ligand(s), dissociation of the complex, and mass spectrometric analysis of the bound fraction. In this chapter the affinity-mass spectrometric methodologies will be presented for (1) identification of the epitope structures in the Abeta amyloid peptide, (2) identification of oxidative modifications in proteins such as nitration of tyrosine, (3) determination of carbohydrate recognition domains, and as (4) development of a biosensor chip-based mass spectrometric system for concomitant quantification and identification of protein-ligand complexes.

  1. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  2. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2) g(-1) and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  3. The role of valence on the high-affinity binding of Griffonia simplicifolia isolectins to type A human erythrocytes.

    Science.gov (United States)

    Knibbs, R N; Takagaki, M; Blake, D A; Goldstein, I J

    1998-12-01

    The Griffonia simplicifolia-I (GS-I) isolectins have been used to probe the effect of lectin valence on their high-affinity binding to human erythrocytes. These tetrameric lectins are composed of A and B subunits and constitute a series of five isolectins (A4, A3B, A2B2, AB3, B4). The A subunit is specific for alpha-D-GalNAc end groups and binds to the blood type A determinant GalNAcalpha1, as well as to terminal alpha-D-Gal groups found on type B cells. The B subunit is specific for alpha-D-Gal end groups, and binds very specifically to type B erythrocytes. This series of isolectins is tetravalent (A4), trivalent (A3B), divalent (A2B2), and monovalent (AB3) for type A erythrocytes; thus, this system provides the opportunity to examine the effect of lectin valency on the association constants of these GS-I isolectins binding to cells. Cell binding experiments carried out using 125I-labeled GS-I isolectins and type A human erythrocytes allowed us to demonstrate that (1) the association constant of the isolectin monovalent for alpha-D-GalNAc (AB3) is virtually identical to its association constant for the haptenic sugar methyl-N-acetyl-alpha-D-galactosaminide, reported previously, and (2) the association constant of the GS-I isolectins for human type A erythrocytes increases with increasing valency of the isolectin. These results indicate that the increased affinity displayed by the GS-I isolectins for human type A erythrocytes is dependent on their multivalency, and not on an extended binding site nor on nonspecific, or noncarbohydrate, interactions of the lectin with the cell surface. These findings should be of general relevance to understanding the high-affinity interactions observed between other multivalent proteins and multivalent ligands (e.g., cell surfaces).

  4. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tal Noy-Porat

    2016-03-01

    Full Text Available Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1 that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  5. The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase.

    Directory of Open Access Journals (Sweden)

    Alexander Krah

    Full Text Available The ε subunit from bacterial ATP synthases functions as an ATP sensor, preventing ATPase activity when the ATP concentration in bacterial cells crosses a certain threshold. The R103A/R115A double mutant of the ε subunit from thermophilic Bacillus PS3 has been shown to bind ATP two orders of magnitude stronger than the wild type protein. We use molecular dynamics simulations and free energy calculations to derive the structural basis of the high affinity ATP binding to the R103A/R115A double mutant. Our results suggest that the double mutant is stabilized by an enhanced hydrogen-bond network and fewer repulsive contacts in the ligand binding site. The inferred structural basis of the high affinity mutant may help to design novel nucleotide sensors based on the ε subunit from bacterial ATP synthases.

  6. Nuclear Choline Acetyltransferase Activates Transcription of a High-affinity Choline Transporter*

    OpenAIRE

    Matsuo, Akinori; Bellier, Jean-Pierre; Nishimura, Masaki; Yasuhara, Osamu; Saito, Naoaki; Kimura, Hiroshi

    2010-01-01

    Choline acetyltransferase (ChAT) synthesizes the neurotransmitter, acetylcholine, at cholinergic nerve terminals. ChAT contains nuclear localization signals and is also localized in the nuclei of neural and non-neuronal cells. Nuclear ChAT might have an as yet unidentified function, such as transcriptional regulation. In this study, we investigated the alteration of candidate gene transcription by ChAT. We chose high affinity choline transporter (CHT1) and vesicular acetylcholine transporter ...

  7. Functional Characteristics of the High Affinity IgG Receptor, Fc gamma RI

    NARCIS (Netherlands)

    van der Poel, Cees E.; Spaapen, Robbert M.; van de Winkel, Jan G. J.; Leusen, Jeanette H. W.

    2011-01-01

    IgG FcRs are important mediators of immunity and play a key role during Ab-based immunotherapy. Within the leukocyte IgG receptor family, only Fc gamma RI is capable of IgG binding with high affinity. Fc gamma RI exists as a complex of a ligand binding a-chain and an FcR gamma-chain. The receptors'

  8. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    Science.gov (United States)

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  9. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Schmiedeke, T.M.; Stoeckl, F.W.W.; Weber, R.; Sugisaki, Y.; Batsford, S.R.; Vogt, A.

    1989-06-01

    An effort has been made to integrate insights on charge-based interactions in immune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis. Attention was focussed on the histones, a group of highly cationic nuclear constituents, which could be expected to bind to fixed anionic sites present in the glomerular basement membrane (GBM). We demonstrated that all histone subfractions, prepared according to Johns, have a high affinity for GBM and the basement membrane of peritubular capillaries. Tissue uptake of /sup 125/I-labeled histones was measured by injecting 200 micrograms of each fraction into the left kidney via the aorta and measuring organ uptake after 15 min. In glomeruli isolated from the left kidneys, the following quantities of histones were found: f1, 13 micrograms; f2a (f2al + f2a2), 17 micrograms; f2b, 17 micrograms; and f3, 32 micrograms. Kinetic studies of glomerular binding showed that f1 disappeared much more rapidly than f2a. The high affinity of histones (pI between 10.5 and 11.0; mol wt 10,000-22,000) for the GBM correlates well with their ability to form aggregates (mol wt greater than 100,000) for comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontaneously bound poorly (0.4 micrograms in isolated glomeruli). The quantity of histones and lysozyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-Sepharose column (gradient elution studies). This gel matrix contains the sulfated, highly anionic polysaccharide heparin, which is similar to the negatively charged heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with 1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl; 6 M guanidine-HCl was necessary.

  10. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Yi-Fan; Ho, Mitchell

    2016-09-26

    Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer.

  11. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems.

    Science.gov (United States)

    Miethke, Marcus

    2013-01-01

    Microorganisms have to cope with restricted iron bioavailability in most environmental habitats as well as during host colonization. The continuous struggle for iron has brought forth a plethora of acquisition and assimilation strategies that share several functional and mechanistic principles. One common theme is the utilization of high-affinity chelators for extracellular iron mobilization, generally known as siderophore-dependent iron acquisition. This basic strategy is related with another central aspect of microbial iron acquisition, which is the release of the mobilized iron from extracellular sources to allow its transfer and incorporation into metabolically active proteins. A variety of mechanisms which are often coupled with high-affinity uptake have evolved to facilitate the removal of iron from siderophore ligands; however, they differ in many key aspects including substrate specificities and release efficiencies. The most sophisticated iron release pathways comprise processes of specific hydrolysis and reduction of ferric siderophores, especially in the case of high-affinity iron complexes with greatly negative redox potentials that often represent crucial factors for virulence development in bacterial and fungal pathogens. During the following steps of iron utilization, the acquired metal is transferred through intracellular trafficking pathways which may include diverse storage compartments in order to be directed to cofactor assembly systems and to final protein targeting. Several of these iron channeling routes have been described recently and provide first insights into the later steps of iron assimilation that characterize an essential part of the cellular iron homeostasis network.

  12. Enhanced selection of high affinity DNA-reactive B cells following cyclophosphamide treatment in mice.

    Directory of Open Access Journals (Sweden)

    Daisuke Kawabata

    Full Text Available A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution. These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There are significant implications for therapy.

  13. Analysis of high-affinity binding of protein kinase R to double-stranded RNA.

    Science.gov (United States)

    Husain, Bushra; Mukerji, Ishita; Cole, James L

    2012-11-06

    Protein kinase R (PKR) is an interferon-induced kinase that plays a pivotal role in the innate immunity response to viral infection. PKR is activated upon binding to double-stranded RNA (dsRNA). Our previous analysis of binding of PKR to dsRNAs ranging from 20 to 40 bp supports a dimerization model for activation in which 30 bp represents the minimal length required to bind two PKR monomers and activate PKR via autophosphorylation. These studies were complicated by the formation of protein-RNA aggregates, particularly at low salt concentrations using longer dsRNAs. Here, we have taken advantage of the enhanced sensitivity afforded using fluorescence-detected analytical ultracentrifugation to reduce the RNA concentrations from micromolar to nanomolar. Under these conditions, we are able to characterize high-affinity binding of PKR to longer dsRNAs in 75 mM NaCl. The PKR binding stoichiometries are increased at lower salt concentrations but remain lower than those previously obtained for the dsRNA binding domain. The dependence of the limiting PKR binding stoichiometries on dsRNA length does not conform to standard models for nonspecific binding and suggests that binding to longer sequences occurs via a different binding mode with a larger site size. Although dimerization plays a key role in the PKR activation mechanism, the ability of shorter dsRNAs to bind two PKR monomers is not sufficient to induce autophosphorylation. We propose that activation of PKR by longer RNAs is correlated with an alternative binding mode in which both of the dsRNA binding motifs contact the RNA, inducing PKR to dimerize via a direct interaction of the kinase domains.

  14. Biointeraction analysis by high-performance affinity chromatography: Kinetic studies of immobilized antibodies.

    Science.gov (United States)

    Nelson, Mary Anne; Moser, Annette; Hage, David S

    2010-01-15

    A system based on high-performance affinity chromatography was developed for characterizing the binding, elution and regeneration kinetics of immobilized antibodies and immunoaffinity supports. This information was provided by using a combination of frontal analysis, split-peak analysis and peak decay analysis to determine the rate constants for antibody-antigen interactions under typical sample application and elution conditions. This technique was tested using immunoaffinity supports that contained monoclonal antibodies for 2,4-dichlorophenoxyacetic acid (2,4-D). Association equilibrium constants measured by frontal analysis for 2,4-D and related compounds with the immobilized antibodies were 1.7-12x10(6)M(-1) at pH 7.0 and 25 degrees C. Split-peak analysis gave association rate constants of 1.4-12x10(5)M(-1)s(-1) and calculated dissociation rate constants of 0.01-0.4s(-1) under the application conditions. Elution at pH 2.5 for the analytes from the antibodies was examined by peak decay analysis and gave dissociation rate constants of 0.056-0.17s(-1). A comparison of frontal analysis results after various periods of column regeneration allowed the rate of antibody regeneration to be examined, with the results giving a first-order regeneration rate constant of 2.4x10(-4)s(-1). This combined approach and the information it provides should be useful in the design and optimization of immunoaffinity chromatography and other analytical methods that employ immobilized antibodies. The methods described are not limited to the particular analytes and antibodies employed in this study but should be useful in characterizing other targets, ligands and supports. 2009 Elsevier B.V. All rights reserved.

  15. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    Directory of Open Access Journals (Sweden)

    Ikegami Toru

    2001-09-01

    Full Text Available Abstract Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A and human immunoglobulin G (HIgG. Results In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate (polyHEMA beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 × 106 (M-1 for HIgG, which is approximately 4-fold greater than that of protein A reported. Conclusions MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid.

  16. Structure-affinity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites.

    Science.gov (United States)

    Sugawara, Mitsuru; Mochizuki, Takahiro; Takekuma, Yoh; Miyazaki, Katsumi

    2005-08-15

    It is well known that human organic anion transporter 1 (hOAT1) transports many kinds of drugs, endogenous compounds, and toxins. However, little is known about the structure-affinity relationship. The aim of this study was to elucidate the structure-affinity relationship using a series of structurally related compounds that interact with hOAT1. Inhibitory effects of xanthine- and uric acid-related compounds on the transport of p-aminohippuric acid were examined using CHO-K1 cells stably expressing hOAT1. The order of potency for the inhibitory effects of xanthine-related compounds on PAH uptake was 1-methyl derivative>7-methyl derivative>3-methyl derivative falling dotsxanthine>1,3,7-trimethyl derivative (caffeine). The order of potency of the inhibition was 1,3,7-trimethyluric acid>1,3-dimethyluric acid>1,7-dimethyluric acid>1-methyluric acid>uric acid. A significant correlation between inhibitory potency and lipophilicity of the tested uric acid-related compounds was observed. The main determinant of the affinity of xanthine-related compounds is the position of the methyl group. On the other hand, lipophilicity is the main determinant of the affinity of uric acid-related compounds.

  17. Updates to the Integrated Protein-Protein Interaction Benchmarks : Docking Benchmark Version 5 and Affinity Benchmark Version 2

    NARCIS (Netherlands)

    Vreven, Thom; Moal, Iain H.; Vangone, Anna|info:eu-repo/dai/nl/370549694; Pierce, Brian G.; Kastritis, Panagiotis L.|info:eu-repo/dai/nl/315886668; Torchala, Mieczyslaw; Chaleil, Raphael; Jiménez-García, Brian; Bates, Paul A.; Fernandez-Recio, Juan; Bonvin, Alexandre M J J|info:eu-repo/dai/nl/113691238; Weng, Zhiping

    2015-01-01

    We present an updated and integrated version of our widely used protein-protein docking and binding affinity benchmarks. The benchmarks consist of non-redundant, high-quality structures of protein-protein complexes along with the unbound structures of their components. Fifty-five new complexes were

  18. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    Science.gov (United States)

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.

  19. ZipA binds to FtsZ with high affinity and enhances the stability of FtsZ protofilaments.

    Directory of Open Access Journals (Sweden)

    Anuradha Kuchibhatla

    Full Text Available A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0 pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them.

  20. Choline Uptake in Agrobacterium tumefaciens by the High-Affinity ChoXWV Transporter▿

    Science.gov (United States)

    Aktas, Meriyem; Jost, Kathinka A.; Fritz, Christiane; Narberhaus, Franz

    2011-01-01

    Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called “Venus flytrap mechanism” of substrate binding. PMID:21803998

  1. Student award for outstanding research winner in the Ph.D. category for the 2017 society for biomaterials annual meeting and exposition, april 5-8, 2017, Minneapolis, Minnesota: Characterization of protein interactions with molecularly imprinted hydrogels that possess engineered affinity for high isoelectric point biomarkers.

    Science.gov (United States)

    Clegg, John R; Zhong, Justin X; Irani, Afshan S; Gu, Joann; Spencer, David S; Peppas, Nicholas A

    2017-06-01

    Molecularly imprinted polymers (MIPs) with selective affinity for protein biomarkers could find extensive utility as environmentally robust, cost-efficient biomaterials for diagnostic and therapeutic applications. In order to develop recognitive, synthetic biomaterials for prohibitively expensive protein biomarkers, we have developed a molecular imprinting technique that utilizes structurally similar, analogue proteins. Hydrogel microparticles synthesized by molecular imprinting with trypsin, lysozyme, and cytochrome c possessed an increased affinity for alternate high isoelectric point biomarkers both in isolation and plasma-mimicking adsorption conditions. Imprinted and non-imprinted P(MAA-co-AAm-co-DEAEMA) microgels containing PMAO-PEGMA functionalized polycaprolactone nanoparticles were net-anionic, polydisperse, and irregularly shaped. MIPs and control non-imprinted polymers (NIPs) exhibited regions of Freundlich and BET isotherm adsorption behavior in a range of non-competitive protein solutions, where MIPs exhibited enhanced adsorption capacity in the Freundlich isotherm regions. In a competitive condition, imprinting with analogue templates (trypsin, lysozyme) increased the adsorption capacity of microgels for cytochrome c by 162% and 219%, respectively, as compared to a 122% increase provided by traditional bulk imprinting with cytochrome c. Our results suggest that molecular imprinting with analogue protein templates is a viable synthetic strategy for enhancing hydrogel-biomarker affinity and promoting specific protein adsorption behavior in biological fluids. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1565-1574, 2017. © 2017 Wiley Periodicals, Inc.

  2. A simple detection method for low-affinity membrane protein interactions by baculoviral display.

    Directory of Open Access Journals (Sweden)

    Toshiko Sakihama

    Full Text Available BACKGROUND: Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV. In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. METHODOLOGY/PRINCIPAL FINDINGS: We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA. Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L, and glucocorticoid-induced TNFR family-related protein (GITR-GITR ligand (GITRL. Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displaying BV and anti-gp64 antibody. CONCLUSIONS: We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.

  3. PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors.

    Science.gov (United States)

    Donsky, Elad; Wolfson, Haim J

    2011-10-15

    Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations. In this article, we present PepCrawler, a new tool for deriving binding peptides from protein-protein complexes and prediction of peptide-protein complexes, by performing high-resolution docking refinement and estimation of binding affinity. By using a fast path planning approach, PepCrawler rapidly generates large amounts of flexible peptide conformations, allowing backbone and side chain flexibility. A newly introduced binding energy funnel 'steepness score' was applied for the evaluation of the protein-peptide complexes binding affinity. PepCrawler simulations predicted high binding affinity for native protein-peptide complexes benchmark and low affinity for low-energy decoy complexes. In three cases, where wet lab data are available, the PepCrawler predictions were consistent with the data. Comparing to other state of the art flexible peptide-protein structure prediction algorithms, our algorithm is very fast, and takes only minutes to run on a single PC. http://bioinfo3d.cs.tau.ac.il/PepCrawler/ eladdons@tau.ac.il; wolfson@tau.ac.il.

  4. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  5. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  6. A high affinity conformational state on VLA integrin heterodimers induced by an anti-beta 1 chain monoclonal antibody.

    Science.gov (United States)

    Arroyo, A G; García-Pardo, A; Sánchez-Madrid, F

    1993-05-05

    The VLA integrin subfamily includes receptors for extracellular matrix proteins as well as receptors involved in cell-cell adhesive interactions. We have previously described the up-regulation of VLA integrin-mediated cell attachment to different ligands by the anti-beta 1 TS2/16 monoclonal antibody (mAb) (Arroyo, A. G., Sánchez-Mateos, P., Campanero, M. R., Martín-Padura, I., Dejana, E., and Sánchez-Madrid, F. (1992) J. Cell Biol. 117, 659-670). In this report, we have investigated the mechanism involved in this regulatory effect. The anti-beta 1-mediated regulatory effect on cell adhesion did not require "de novo" protein synthesis, since it was not affected by pretreatment with either cycloheximide or actinomycin D. To quantitate the effect of the regulatory anti-beta 1 TS2/16 mAb on the affinity of VLA-5 for its ligand, an RGD-containing fragment of fibronectin (FN80), we performed binding studies of radiolabeled soluble FN80 to U-937 cells. The affinity of VLA-5 for FN80 was enhanced about 4-fold in the presence of TS2/16 mAb (Kd = 0.98 +/- 0.07 microM) compared to the functionally irrelevant anti-beta 1 Alex 1/4 mAb (Kd = 4.23 +/- 0.92 microM), whereas no alteration in the number of binding sites was observed. Indeed, the anti-beta 1 TS2/16 mAb is inducing this high affinity state on VLA heterodimers by a direct change on the conformation of these receptors as demonstrated by affinity chromatography analysis using extracellular matrix proteins covalently bound to Sepharose. The yield of VLA-5 fibronectin receptor bound to FN80-Sepharose columns was strongly increased upon treatment of U-937 cell lysates with mAb TS2/16. Moreover, higher concentrations of EDTA were required for eluting the VLA-5 integrin from this matrix. This up-regulatory effect was also observed with F(ab')2 and Fab fragments of the anti-beta 1 TS2/16 mAb, and was also exerted on the purified VLA-5 receptor. Similarly, the yield of VLA-2 retained on a collagen I-Sepharose column was

  7. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    Science.gov (United States)

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  8. Identification of High Affinity Polo-like Kinase 1 (Plk1) Polo-box Domain Binding Peptides Using Oxime-based Diversification

    Science.gov (United States)

    Liu, Fa; Park, Jung-Eun; Qian, Wen-Jian; Lim, Dan; Scharow, Andrej; Berg, Thorsten; Yaffe, Michael B.; Lee, Kyung S.; Burke, Terrence R.

    2012-01-01

    In an effort to develop improved binding antagonists of the polo-like kinase 1 (Plk1) polo-box domain (PBD), we optimized interactions of the known high affinity 5-mer peptide, PLHSpT using oxime-based post-solid-phase peptide diversification of the N-terminal Pro residue. This allowed us to achieve up to two orders-of-magnitude potency enhancement. An X-ray crystal structure of the highest affinity analogue in complex with Plk1 PBD revealed new binding interactions in a hydrophobic channel that had been occluded in X-ray structures of the unliganded protein. This study represents an important example where amino acid modification by post solid-phase oxime ligation can facilitate the development of protein-protein interaction inhibitors by identifying new binding pockets that would not otherwise be accessible to coded amino acid residues. PMID:22292814

  9. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Feng; Miyakawa, Takuya [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kataoka, Michihiko [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeshita, Daijiro [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kumashiro, Shoko [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Uzura, Atsuko [Research and Development Center, Nagase and Co., Ltd., 2-2-3 Muratani, Nishi-ku, Kobe 651-2241 (Japan); Urano, Nobuyuki [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Nagata, Koji [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shimizu, Sakayu [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Bioenvironmental Science, Kyoto Gakuen University, Sogabe-cho, Kameoka 621-8555 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  10. Synthesis and spectroscopic characterization of photo-affinity peptide ligands to study rhodopsin-G protein interaction.

    Science.gov (United States)

    Chen, Yihui; Herrmann, Rolf; Fishkin, Nathan; Henklein, Peter; Nakanishi, Koji; Ernst, Oliver P

    2008-01-01

    G protein-coupled receptors (GPCRs) are involved in the control of virtually all aspects of our behavior and physiology. Activated receptors catalyze nucleotide exchange in heterotrimeric G proteins (composed of alpha.GDP, beta and gamma subunits) on the inner surface of the cell membrane. The GPCR rhodopsin and the G protein transducin (G(t)) are key proteins in the early steps of the visual cascade. The main receptor interaction sites on G(t) are the C-terminal tail of the G(t)alpha-subunit and the farnesylated C-terminal tail of the G(t)gamma-subunit. Synthetic peptides derived from these C-termini specifically bind and stabilize the active rhodopsin conformation (R*). Here we report the synthesis of R*-interacting peptides containing photo-reactive groups with a specific isotope pattern, which can facilitate detection of cross-linked products by mass spectrometry. In a preliminary set of experiments, we characterized such peptides derived from the farnesylated G(t)gamma C-terminus (G(t)gamma(60-71)far) in terms of their capability to bind R*. Here, we describe novel peptides with photo-affinity labels that bind R* with affinities similar to that of the native G(t)gamma(60-71)far peptide. Such peptides will enable an improved experimental strategy to probe rhodopsin-G(t) interaction and to map so far unknown interaction sites between both proteins.

  11. High-affinity antibodies to the 1,4-dihydropyridine Ca2+-channel blockers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, K.P.; Sharp, A.; Strom, M.; Kahl, S.D.

    1986-05-01

    Antibodies with high affinity and specificity for the 1,4-dihydropyridine Ca2+-channel blockers have been produced in rabbits by immunization with dihydropyridine-protein conjugates. Anti-dihydropyridine antibodies were found to specifically bind (/sup 3/H)nitrendipine, (/sup 3/H)-nimodipine, (/sup 3/H)nisoldipine, and (/sup 3/H)PN 200-110 (all 1,4-dihydropyridine Ca2+-channel blockers) with high affinity, while (/sup 3/H)verapamil, (/sup 3/H)diltiazem, and (/sup 3/H)trifluoperazine were not recognized. The average dissociation constant of the (/sup 3/H)nitrendipine-antibody complex was 0.06 (+/- 0.02) X 10(-9) M for an antiserum studied in detail and ranged from 0.01 to 0.24 X 10(-9) M for all antisera. Inhibition of (/sup 3/H)nitrendipine binding was specific for the 1,4-dihydropyridine Ca2+-channel modifiers and the concentrations required for half-maximal inhibition ranged between 0.25 and 0.90 nM. Structurally unrelated Ca2+-channel blockers, calmodulin antagonists, inactive metabolites of nitrendipine, and UV-inactivated nisoldipine did not modify (/sup 3/H)nitrendipine binding to the anti-dihydropyridine antibodies. Dihydropyridines without a bulky substituent in the 4-position of the heterocycle were able to displace (/sup 3/H)nitrendipine binding, but the concentrations required for half-maximal inhibition were greater than 800 nM. In summary, anti-dihydropyridine antibodies have been shown to have high affinity and specificity for the 1,4-dihydropyridine Ca2+-channel blockers and to exhibit dihydropyridine binding properties similar to the membrane receptor for the 1,4-dihydropyridine Ca2+-channel blockers.

  12. Dephosphorylation of Phytate by Using the Aspergillus niger Phytase with a High Affinity for Phytate

    OpenAIRE

    Nagashima, Tadashi; Tange, Tatsuya; Anazawa, Hideharu

    1999-01-01

    A phytase (EC 3.1.3.8) with a high affinity for phytic acid was found in Aspergillus niger SK-57 and purified to homogeneity in four steps by using ion-exchange chromatography (two types), gel filtration, and chromatofocusing. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme gave a single stained band at a molecular mass of approximately 60 kDa. The Michaelis constant of the enzyme for phytic acid (18.7 ± 4.6 μM) was statistically analyzed. In regard to the ort...

  13. Mitogenic effects of urokinase on melanoma cells are independent of high affinity binding to the urokinase receptor.

    Science.gov (United States)

    Koopman, J L; Slomp, J; de Bart, A C; Quax, P H; Verheijen, J H

    1998-12-11

    The structural and functional properties of the urokinase-type plasminogen activator (u-PA) that are involved in the mitogenic effect of this proteolytic enzyme on human melanoma cells M14 and IF6 and the role of the u-PA receptor (u-PAR) in transducing this signal were analyzed. Native u-PA purified from urine induced a mitogenic response in quiescent IF6 and M14 cells that ranged from 25 to 40% of the mitogenic response obtained by fetal calf serum. The half-maximum response in M14 and IF6 cells was reached at u-PA concentrations of approximately 35 and 60 nM, respectively. Blocking the proteolytic activity of u-PA resulted in a 30% decrease of the mitogenic effect, whereas inhibition of plasmin activity did not alter the mitogenic effect. No mitogenic response was elicited by low molecular weight u-PA, lacking the growth factor domain and the kringle domain. The ATF domain of u-PA induced a mitogenic response that was similar to complete u-PA. Defucosylated ATF and recombinant u-PA purified from Escherichia coli lacking all post-translational modifications did not induce a mitogenic response. Blocking the interaction of u-PA with u-PAR, using a specific monoclonal antibody, did not alter the mitogenic effect induced by u-PA. The binding of radiolabeled u-PA to M14 and IF6 cells was characterized by high affinity binding mediated by u-PAR and low affinity binding to an unknown binding site. These results demonstrate that proteolytically inactive u-PA is able to induce a mitogenic response in quiescent melanoma cells in vitro by a mechanism that involves the ATF domain but is independent of high affinity binding to u-PAR. Furthermore, it suggests that u-PA is able to bind with low affinity to a hitherto unidentified membrane associated protein that could be involved in u-PA-induced signal transduction.

  14. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2

    National Research Council Canada - National Science Library

    Constant, Philippe; Poissant, Laurier; Villemur, Richard

    2008-01-01

    .... Studies conducted over the last three decades provide indirect evidences that H(2) soil uptake is mediated by free soil hydrogenases or by unknown microorganisms that have a high affinity for H(2...

  15. Spectroscopic analysis on structure-affinity relationship in the interactions of different oleanane-type triterpenoids with bovine serum albumin.

    Science.gov (United States)

    Hou, Jia; Wang, Zhenzhong; Yue, Ying; Li, Qian; Shao, Shijun

    2015-09-01

    Oleanane-type triterpenoids serve as an important group of plant secondary metabolites with a variety of biological activities and the C-3 position substitution pattern is a significant structural feature for their biological activities. Three selected oleanane-type triterpenoids (glycyrrhizin, glycyrrhetinic acid, and carbenoxolone) bearing different substituents (glucuronic acid dimer, hydroxyl, and succinyl groups) at the C-3 position were studied for their affinities to bind bovine serum albumin (BSA) by steady-state fluorescence, synchronous, three-dimensional fluorescence and ultraviolet-visible (UV-vis) absorption spectra. The binding mechanism of the triterpenoids to BSA is due to the formation of the triterpenoids-BSA complex and the binding affinity is strongest for carbenoxolone and ranked in the order carbenoxolone > glycyrrhetinic acid > glycyrrhizin. The thermodynamic parameters calculated at different temperatures showed that triterpenoids binding to BSA primarily depended on hydrophobic interaction and hydrogen bonding. The distance between the bound triterpenoid and BSA was determined on the basis of the Förster's energy transfer theory. Displacement experiments using phenylbutazone and ibuprofen showed the binding site of triterpenoids on BSA at subdomain IIA (Sudlow's site I). The effect of triterpenoids on BSA conformation was analyzed by UV-vis absorption, and synchronous and three-dimensional fluorescence spectra. These results revealed that the C-3 position substitution pattern significantly affects the structure-affinity relationships of oleanane-type triterpenoid binding to BSA and further affects the bioavailability of triterpenoids in the blood circulatory system. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  17. High affinity humanized antibodies without making hybridomas; immunization paired with mammalian cell display and in vitro somatic hypermutation.

    Directory of Open Access Journals (Sweden)

    Audrey D McConnell

    Full Text Available A method has been developed for the rapid generation of high-affinity humanized antibodies from immunized animals without the need to make conventional hybridomas. Rearranged IgH D(J regions were amplified from the spleen and lymph tissue of mice immunized with the human complement protein C5, fused with a limited repertoire of human germline heavy chain V-genes to form intact humanized heavy chains, and paired with a human light chain library. Completed heavy and light chains were assembled for mammalian cell surface display and transfected into HEK 293 cells co-expressing activation-induced cytidine deaminase (AID. Numerous clones were isolated by fluorescence-activated cell sorting, and affinity maturation, initiated by AID, resulted in the rapid evolution of high affinity, functional antibodies. This approach enables the efficient sampling of an immune repertoire and the direct selection and maturation of high-affinity, humanized IgGs.

  18. Anaesthesia in a patient with subarachanoidal haemorrhage and high oxygen affinity haemoglobinopathy (HB york: case report

    Directory of Open Access Journals (Sweden)

    Monaca Enrico

    2012-08-01

    Full Text Available Abstract Background Approximately 90 haemoglobinopathies have been identified that result in abnormally high oxygen affinity. One of these is haemoglobinopathy York (HbY, first described in 1976. HbY causes an extreme leftward shift of the oxygen dissociation curve with the P50 value changing to 12.5 - 15.5 mmHg (normal value 26.7 mmHg, indicating that approximately half of the haemoglobin is not available as oxygen carrier. Patients with haemoglobinopathies with increased oxygen affinity could suffer from the risk developing ischaemic complications due to a lack of functional oxygen carriers. This is, to best of our knowledge, the first case report on a patient with HbY published in connection with anesthesia. Case Presentation A 42-year-old female with a severe headache and Glasgow coma scale (GCS of 15 was admitted to the neurosurgical intensive care unit with a ruptured, right sided ICA aneurysm with consecutive subarachnoid haemorrhage [Fisher III, World Federation of Neurosurgical Societies (WFNS I]. The medical history of the patient included an erythrocytosis (Hb 17.5 g/dl on the base of a high-oxygen-affinity haemoglobinopathy, called Hb York (HbY. With no time available to take special preoperative precautions, rapid blood loss occurred during the first attempt to clip the aneurysm. General transfusion procedures, according to the guidelines based on haemoglobin and haematocrit values, could not be applied due to the uncertainty in the oxygen carrier reduction. To maintain tissue oxygen supply, clinical indicators of ischaemia were instead utilized to gauge the appropriate required blood products, crystalloids and colloids replacements. Despite this, the patient survived the neurosurgical intervention without any neurological deficit. Conclusions Family members of patients with HbY (and other haemoglobinopathies with increased oxygen affinity should undergo clinical assessment, particularly if they are polycythaemic. If the diagnosis

  19. Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans.

    Directory of Open Access Journals (Sweden)

    Deepika Mehta

    Full Text Available BACKGROUND: Maltogenic amylases belong to a subclass of cyclodextrin-hydrolyzing enzymes and hydrolyze cyclodextrins more efficiently than starch unlike typical α-amylases. Several bacterial malto-genic amylases with temperature optima of 40-60°C have been previously characterized. The thermo-adaption, substrate preferences and transglycosylation aspects of extremely thermostable bacterial maltogenic amylases have not yet been reported. METHODOLOGY/PRINCIPAL FINDINGS: The recombinant monomeric and dimeric forms of maltogenic α-amylase (Gt-Mamy of the extremely thermophilic bacterium Geobacillus thermoleovorans are of 72.5 and 145 kDa, which are active optimally at 80°C. Extreme thermostability of this enzyme has been explained by analyzing far-UV CD spectra. Dimerization increases T1/2 of Gt-Mamy from 8.2 h to 12.63 h at 90°C and mediates its enthalpy-driven conformational thermostabilization. Furthermore, dime-rization regulates preferential substrate binding of the enzyme. The substrate preference switching of Gt-Mamy upon dimerization has been confirmed from the substrate-binding affinities of the enzyme for various high and low molecular weight substrates. There is an alteration in Km and substrate hydrolysis efficiency (Vmax/Km of the enzyme (for cyclodex-trins/starch upon dimerization. N-terminal truncation indicated the role of N-terminal 128 amino acids in the thermostabilization and modulation of substrate-binding affinity. This has been confirmed by molecular docking of β-cyclodextrin to Gt-Mamy that indicated the requirement of homodimer formation by the interaction of a few N-terminal residues of chain A with the catalytic residues of (α/β8 barrel of chain B and vice-versa for stable cyclodextrin binding. Site directed mutagenesis provided evidence for the role of N-terminal D109 at the dimeric interface in substrate affinity modulation and thermostabilization. The dimeric Gt-Mamy transglycosylates hydrolytic products of G4/G

  20. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

    Science.gov (United States)

    Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-01

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  1. Identification of LAG3 high affinity aptamers by HT-SELEX and Conserved Motif Accumulation (CMA.

    Directory of Open Access Journals (Sweden)

    Mario Martínez Soldevilla

    Full Text Available LAG3 receptor belongs to a family of immune-checkpoints expressed in T lymphocytes and other cells of the immune system. It plays an important role as a rheostat of the immune response. Focus on this receptor as a potential therapeutic target in cancer immunotherapy has been underscored after the success of other immune-checkpoint blockade strategies in clinical trials. LAG3 showcases the interest in the field of autoimmunity as several studies show that LAG3-targeting antibodies can also be used for the treatment of autoimmune diseases. In this work we describe the identification of a high-affinity LAG3 aptamer by High Throughput Sequencing SELEX in combination with a study of potential conserved binding modes according to sequence conservation by using 2D-structure prediction and 3D-RNA modeling using Rosetta. The aptamer with the highest accumulation of these conserved sequence motifs displays the highest affinity to LAG3 recombinant soluble proteins and binds to LAG3-expressing lymphocytes. The aptamer described herein has the potential to be used as a therapeutic agent, as it enhances the threshold of T-cell activation. Nonetheless, in future applications, it could also be engineered for treatment of autoimmune diseases by target depletion of LAG3-effector T lymphocytes.

  2. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination.

    Science.gov (United States)

    Kaur, Kaval; Zheng, Nai-Ying; Smith, Kenneth; Huang, Min; Li, Lie; Pauli, Noel T; Henry Dunand, Carole J; Lee, Jane-Hwei; Morrissey, Michael; Wu, Yixuan; Joachims, Michelle L; Munroe, Melissa E; Lau, Denise; Qu, Xinyan; Krammer, Florian; Wrammert, Jens; Palese, Peter; Ahmed, Rafi; James, Judith A; Wilson, Patrick C

    2015-01-01

    Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.

  3. Synthesis of site-heterologous haptens for high-affinity anti-pyraclostrobin antibody generation.

    Science.gov (United States)

    Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio

    2011-03-07

    The design and synthesis of functional chemical derivatives of small organic molecules is usually a key step for the intricate production of a variety of bioconjugates. In this respect, the derivatization site at which the spacer arm is introduced in immunizing conjugates constitutes a highly critical parameter for the generation of high-affinity and selective antibodies. However, due to the usual complexity of the required synthetic procedures, the appropriate comparison of alternative tethering positions has often been neglected. In the present study, meticulous strategies were followed to prepare synthetic derivatives of pyraclostrobin with the same linkers located at diverse rationally-chosen sites. Activity appraisal of antibodies and bioconjugates was carried out by bidimensional competitive direct and indirect immunoassays, and a superior performance of two of the three synthesized haptens was found. Finally, a detailed analysis of the conformations of the target molecule and the synthesized haptens in aqueous solution was done using computer assisted molecular modeling techniques. This study suggested that the lower titers and affinities of one set of antibodies are most probably due to conformational effects of the spacer arm in the immunizing bioconjugate.

  4. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination.

    Directory of Open Access Journals (Sweden)

    Kaval Kaur

    Full Text Available Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE. Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.

  5. High Temperature Surface Interactions

    Science.gov (United States)

    1989-11-01

    oxidation rate of "pure SiC* in air (from compilation of data by Schlichting6). For T < 14001C, partial cristobalite formation; T > 1400"C, decreased...aluminium content is high enough, the beta phase percolates and contains a dispersion of -- Ni particles. Such a tructure is certainly less favourable

  6. High-throughput analysis of drug dissociation from serum proteins using affinity silica monoliths.

    Science.gov (United States)

    Yoo, Michelle J; Hage, David S

    2011-08-01

    A noncompetitive peak decay method was used with 1 mm×4.6 mm id silica monoliths to measure the dissociation rate constants (kd) for various drugs with human serum albumin (HSA) and α1-acid glycoprotein (AGP). Flow rates up to 9 mL/min were used in these experiments, resulting in analysis times of only 20-30 s. Using a silica monolith containing immobilized HSA, dissociation rate constants were measured for amitriptyline, carboplatin, cisplatin, chloramphenicol, nortriptyline, quinidine, and verapamil, giving values that ranged from 0.37 to 0.78 s(-1). Similar work with an immobilized AGP silica monolith gave kd values for amitriptyline, nortriptyline, and lidocaine of 0.39-0.73 s(-1). These kd values showed good agreement with values determined for drugs with similar structures and/or affinities for HSA or AGP. It was found that a kd of up to roughly 0.80 s(-1) could be measured by this approach. This information made it possible to obtain a better understanding of the advantages and possible limitations of the noncompetitive peak decay method and in the use of affinity silica monoliths for the high-throughput analysis of drug-protein dissociation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthetic 1,2,3-triazole-linked glycoconjugates bind with high affinity to human galectin-3.

    Science.gov (United States)

    Marchiori, Marcelo Fiori; Souto, Dênio Emanuel Pires; Bortot, Leandro Oliveira; Pereira, João Francisco; Kubota, Lauro Tatsuo; Cummings, Richard D; Dias-Baruffi, Marcelo; Carvalho, Ivone; Campo, Vanessa Leiria

    2015-07-01

    This work describes the synthesis of the 1,2,3-triazole amino acid-derived-3-O-galactosides 1-6 and the 1,2,3-triazole di-lactose-derived glycoconjugate 7 as potential galectin-3 inhibitors. The target compounds were synthesized by Cu(I)-catalyzed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-derived amino acids N3-ThrOBn, N3-PheOBn, N3-N-Boc-TrpOBn, N3-N-Boc-LysOBn, N3-O-tBu-AspOBn and N3-l-TyrOH, and the corresponding alkyne-based sugar 3-O-propynyl-GalOMe, as well as by click chemistry reaction between the azido-lactose and 2-propynyl lactose. Surface plasmon resonance (SPR) assays showed that all synthetic glycoconjugates 1-7 bound to galectin-3 with high affinity, but the highest binders were the amino acids-derived glycoconjugates 2 (KD 7.96μM) and 4 (KD 4.56μM), and the divalent lactoside 7 (KD1 0.15μM/KD2 19μM). Molecular modeling results were in agreement with SPR assays, since more stable interactions with galectin-3 were identified for glycoconjugates 2, 4 and 7. Regarding compounds 2 and 4, they established specific cation-π (Arg144) and ionic (Asp148) interactions, whereas glycoconjugate 7 was capable to bridge two independent galectin-3 CRDs, creating a non-covalent cross-link between two monomers and, thus, reaching a submicromolar affinity towards galectin-3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. High integrin αVβ6 affinity reached by hybrid domain deletion slows ligand-binding on-rate.

    Science.gov (United States)

    Dong, Xianchi; Zhao, Bo; Lin, Fu-Yang; Lu, Chafen; Rogers, Bruce N; Springer, Timothy A

    2018-01-29

    The role of the hybrid domain in integrin affinity regulation is unknown, as is whether the kinetics of ligand binding is modulated by integrin affinity state. Here, we compare cell surface and soluble integrin αVβ6 truncation mutants for ligand-binding affinity, kinetics, and thermodynamics. Removal of the integrin transmembrane/cytoplasmic domains or lower legs has little effect on αVβ6 affinity, in contrast to β1 integrins. In integrin opening, rearrangement at the interface between the βI and hybrid domains is linked to remodeling at the ligand-binding site at the opposite end of the βI domain, which greatly increases in affinity in the open conformation. The larger size of the βI-hybrid interface in the closed state suggests that the hybrid domain stabilizes closing. In agreement, deletion of the hybrid domain raised affinity by 50-fold. Surface plasmon resonance and isothermal titration calorimetry gave similar results and the latter revealed tradeoffs between enthalpy and entropy not apparent from affinity. At extremely high affinity reached in Mn2+ with hybrid domain truncation, αVβ6 on-rate for both pro-TGF-β1 and fibronectin declined. The results suggest that the open conformation of αVβ6 has lower on-rate than the closed conformation, correlate with constriction of the ligand-binding pocket in open αVβ6 structures, and suggest that the extended-closed conformation is kinetically selected for ligand binding. Subsequent transition to the extended-open conformation is stabilized by its much higher affinity for ligand and would also be stabilized by force exerted across ligand-bound integrins by the actin cytoskeleton.

  9. Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of [alpha]- and PPII-helices

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.; Robinette, Rebekah A.; Crowley, Paula J.; Michalek, Suzanne; Brady, L. Jeannine; Deivanayagam, Champion (Cornell); (UAB); (Florida)

    2010-08-18

    Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{sub 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.

  10. Dephosphorylation of phytate by using the Aspergillus niger phytase with a high affinity for phytate.

    Science.gov (United States)

    Nagashima, T; Tange, T; Anazawa, H

    1999-10-01

    A phytase (EC 3.1.3.8) with a high affinity for phytic acid was found in Aspergillus niger SK-57 and purified to homogeneity in four steps by using ion-exchange chromatography (two types), gel filtration, and chromatofocusing. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme gave a single stained band at a molecular mass of approximately 60 kDa. The Michaelis constant of the enzyme for phytic acid (18.7 +/- 4.6 microM) was statistically analyzed. In regard to the orthophosphate released from phytic acid, a significant difference between a low K(m) phytase from A. niger SK-57 and a high K(m) phytase from Aspergillus ficuum was recognized.

  11. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands.

    Directory of Open Access Journals (Sweden)

    Mojca Kržan

    Full Text Available In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure.

  12. Structural determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex.

    Science.gov (United States)

    Kanelis, Voula; Bruce, M Christine; Skrynnikov, Nikolai R; Rotin, Daniela; Forman-Kay, Julie D

    2006-03-01

    Interactions between the WW domains of Drosophila Nedd4 (dNedd4) and Commissureless (Comm) PY motifs promote axon crossing at the CNS midline and muscle synaptogenesis. Here we report the solution structure of the dNedd4 WW3* domain complexed to the second PY motif (227'TGLPSYDEALH237') of Comm. Unexpectedly, there are interactions between WW3* and ligand residues both N- and C-terminal to the PY motif. Residues Y232'-L236' form a helical turn, following the PPII helical PY motif. Mutagenesis and binding studies confirm the importance of these extensive contacts, not simultaneously observed in other WW domain complexes, and identify a variable loop in WW3* responsible for its high-affinity interaction. These studies expand our general understanding of the molecular determinants involved in WW domain-ligand recognition. In addition, they provide insights into the specific regulation of dNedd4-mediated ubiquitination of Comm and subsequent internalization of Comm or the Comm/Roundabout complex, critical for CNS and muscle development.

  13. High-affinity cooperative Ca2+binding by MICU1-MICU2 serves as an on-off switch for the uniporter.

    Science.gov (United States)

    Kamer, Kimberli J; Grabarek, Zenon; Mootha, Vamsi K

    2017-08-01

    The mitochondrial calcium uniporter is a Ca 2+ -activated Ca 2+ channel that is essential for dynamic modulation of mitochondrial function in response to cellular Ca 2+ signals. It is regulated by two paralogous EF-hand proteins-MICU1 and MICU2, but the mechanism is unknown. Here, we demonstrate that both MICU1 and MICU2 are stabilized by Ca 2+ We reconstitute the MICU1-MICU2 heterodimer and demonstrate that it binds Ca 2+ cooperatively with high affinity. We discover that both MICU1 and MICU2 exhibit affinity for the mitochondria-specific lipid cardiolipin. We determine the minimum Ca 2+ concentration required for disinhibition of the uniporter in permeabilized cells and report a close match with the Ca 2+ -binding affinity of MICU1-MICU2. We conclude that cooperative, high-affinity interaction of the MICU1-MICU2 complex with Ca 2+ serves as an on-off switch, leading to a tightly controlled channel, capable of responding directly to cytosolic Ca 2+ signals. © 2017 The Authors.

  14. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, C.L.; Eldefrawi, A.T.; Eldefrawi, M.E. (Univ. of Maryland, Baltimore (USA))

    1990-05-01

    The M2 subtype of muscarinic receptor is predominant in heart, and such receptors were reported to be located in muscles as well as in presynaptic cholinergic and adrenergic nerve terminals. Muscarinic receptors of rat heart were identified by the high affinity binding of the agonist (+)-(3H)cis-methyldioxolane ((3H)CD), which has been used to label a high affinity population of M2 receptors. A single population of sites was detected and (3H)CD binding was sensitive to the M2 antagonist himbacine but much less so to pirenzepine, the M1 antagonist. These cardiac receptors had different sensitivities to NiCl2 and N-ethylmaleimide from brain muscarinic receptors, that were also labeled with (3H)CD and considered to be of the M2 subtype. Up to 70% of the (3H)CD-labeled cardiac receptors had high affinities for several organophosphate (OP) anticholinesterases. (3H)CD binding was inhibited by the nerve agents soman, VX, sarin, and tabun, with K0.5 values of 0.8, 2, 20, and 50 nM, respectively. It was also inhibited by echothiophate and paraoxon with K0.5 values of 100 and 300 nM, respectively. The apparent competitive nature of inhibition of (3H)CD binding by both sarin and paraoxon suggests that the OPs bind to the acetylcholine binding site of the muscarinic receptor. Other OP insecticides had lower potencies, inhibiting less than 50% of 5 nM (3H)CD binding by 1 microM of EPN, coumaphos, dioxathion, dichlorvos, or chlorpyriphos. There was poor correlation between the potencies of the OPs in reversibly inhibiting (3H)CD binding, and their anticholinesterase activities and toxicities. Acetylcholinesterases are the primary targets for these OP compounds because of the irreversible nature of their inhibition, which results in building of acetylcholine concentrations that activate muscarinic and nicotinic receptors and desensitize them, thereby inhibiting respiration.

  15. Structure of IL-22 Bound to Its High-Affinity IL-22R1 Chain

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.C.; Logsdon, N.J.; Walter, M.R. (UAB)

    2008-09-29

    IL-22 is an IL-10 family cytokine that initiates innate immune responses against bacterial pathogens and contributes to immune disease. IL-22 biological activity is initiated by binding to a cell-surface complex composed of IL-22R1 and IL-10R2 receptor chains and further regulated by interactions with a soluble binding protein, IL-22BP, which shares sequence similarity with an extracellular region of IL-22R1 (sIL-22R1). IL-22R1 also pairs with the IL-20R2 chain to induce IL-20 and IL-24 signaling. To define the molecular basis of these diverse interactions, we have determined the structure of the IL-22/sIL-22R1 complex. The structure, combined with homology modeling and surface plasmon resonance studies, defines the molecular basis for the distinct affinities and specificities of IL-22 and IL-10 receptor chains that regulate cellular targeting and signal transduction to elicit effective immune responses.

  16. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2016-10-01

    Full Text Available Zr(IV can form phosphate and Zr(IV (–PO32−–Zr4+– complex owing to the high affinity between Zr(IV with phosphate. Zr(IV can induce the aggregation of gold nanoparticles (AuNPs, while adenosine triphosphate(ATP can prevent Zr(IV-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRAsensor for ATP have been developed using AuNPs based on the high affinity between Zr(IVwith ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV. After the addition of ATP, ATP reacts with Zr(IV and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV, ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945 with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  17. Protein-protein interaction site prediction in Homo sapiens and E. coli using an interaction-affinity based membership function in fuzzy SVM.

    Science.gov (United States)

    Sriwastava, Brijesh Kumar; Basu, Subhadip; Maulik, Ujjwal

    2015-10-01

    Protein-protein interaction (PPI) site prediction aids to ascertain the interface residues that participate in interaction processes. Fuzzy support vector machine (F-SVM) is proposed as an effective method to solve this problem, and we have shown that the performance of the classical SVM can be enhanced with the help of an interaction-affinity based fuzzy membership function. The performances of both SVM and F-SVM on the PPI databases of the Homo sapiens and E. coli organisms are evaluated and estimated the statistical significance of the developed method over classical SVM and other fuzzy membership-based SVM methods available in the literature. Our membership function uses the residue-level interaction affinity scores for each pair of positive and negative sequence fragments. The average AUC scores in the 10-fold cross-validation experiments are measured as 79.94% and 80.48% for the Homo sapiens and E. coli organisms respectively. On the independent test datasets, AUC scores are obtained as 76.59% and 80.17% respectively for the two organisms. In almost all cases, the developed F-SVM method improves the performances obtained by the corresponding classical SVM and the other classifiers, available in the literature.

  18. On the binding affinity of macromolecular complexes : daring to ask why proteins interact

    NARCIS (Netherlands)

    Kastritis, P.

    2012-01-01

    The last twenty years we have reached the conclusion that most of the cellular functions are orchestrated by interacting protein molecules. It has also become clear that modifying or preventing these protein-protein interactions may have great therapeutic potential, especially for curing diseases

  19. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death

    DEFF Research Database (Denmark)

    Nørholm, Morten Helge Hauberg; Nour-Eldin, Hussam H; Brodersen, Peter

    2006-01-01

    We report the biochemical characterization in Xenopus oocytes of the Arabidopsis thaliana membrane protein, STP13, as a high affinity, hexose-specific H(+)-symporter. Studies with kinase activators suggest that it is negatively regulated by phosphorylation. STP13 promoter GFP reporter lines show ......13 in PCD is supported by microarray data from e.g. plants undergoing senescence and a strong correlation between STP13 transcripts and the PCD phenotype in different accelerated cell death (acd11) mutants....... GFP expression only in the vascular tissue in emerging petals under non-stressed conditions. Quantitative PCR and the pSTP13-GFP plants show induction of STP13 in programmed cell death (PCD) obtained by treatments with the fungal toxin fumonisin B1 and the pathogen Pseudomonas syringae. A role for STP...

  20. Triazoloquinazolinediones as novel high affinity ligands for the benzodiazepine site of GABA(A) receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Gidlöf, Ritha; Nielsen, Elsebet Østergaard

    2011-01-01

    Based on a pharmacophore model of the benzodiazepine-binding site of GABA(A) receptors, a series of 2-aryl-2,6-dihydro[1,2,4]triazolo[4,3-c]quinazoline-3,5-diones (structure type I) were designed, synthesized, and identified as high-affinity ligands of the binding site. For several compounds, K......(i) values of around 0.20nM were determined. They show a structural resemblance with the previously described 2-phenyl-2H-pyrazolo[4,3-c]quinolin-3(5H)-ones (II) and 2-phenyl-[1,2,4]triazolo[1,5-a]quinoxalin-4(5H)-one (III). The 9-bromo substituted compounds 8a-d were prepared in an 8-step synthesis...

  1. Structure-Guided Design of a Series of MCL-1 Inhibitors with High Affinity and Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Bruncko, Milan; Wang, Le; Sheppard, George S.; Phillips, Darren C.; Tahir, Stephen K.; Xue, John; Erickson, Scott; Fidanze, Steve; Fry, Elizabeth; Hasvold, Lisa; Jenkins, Gary J.; Jin, Sha; Judge, Russell A.; Kovar, Peter J.; Madar, David; Nimmer, Paul; Park, Chang; Petros, Andrew M.; Rosenberg, Saul H.; Smith, Morey L.; Song, Xiaohong; Sun, Chaohong; Tao, Zhi-Fu; Wang, Xilu; Xiao, Yu; Zhang, Haichao; Tse, Chris; Leverson, Joel D.; Elmore, Steven W.; Souers, Andrew J.

    2015-03-12

    Myeloid cell leukemia 1 (MCL-1) is a BCL-2 family protein that has been implicated in the progression and survival of multiple tumor types. Herein we report a series of MCL-1 inhibitors that emanated from a high throughput screening (HTS) hit and progressed via iterative cycles of structure-guided design. Advanced compounds from this series exhibited subnanomolar affinity for MCL-1 and excellent selectivity over other BCL-2 family proteins as well as multiple kinases and GPCRs. In a MCL-1 dependent human tumor cell line, administration of compound 30b rapidly induced caspase activation with associated loss in cell viability. The small molecules described herein thus comprise effective tools for studying MCL-1 biology.

  2. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding

    Science.gov (United States)

    Rosilo, Henna; McKee, Jason R.; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P.; Ikkala, Olli; Kostiainen, Mauri A.

    2014-09-01

    Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface

  3. Use of surface plasmon resonance for the measurement of low affinity binding interactions between HSP72 and measles virus nucleocapsid protein

    Directory of Open Access Journals (Sweden)

    Zhang Xinsheng

    2003-01-01

    Full Text Available The 72 kDa heat shock protein (HSP72 is a molecular chaperone that binds native protein with low affinity. These interactions can alter function of the substrate, a property known as HSP-mediated activity control. In the present work, BIAcore instrumentation was used to monitor binding reactions between HSP72 and naturally occurring sequence variants of the measles virus (MV nucleocapsid protein (N, a structural protein regulating transcription/replication of the viral genome. Binding reactions employed synthetic peptides mimicking a putative HSP72 binding motif of N. Sequences were identified that bound HSP72 with affinities comparable to well-characterized activity control reactions. These sequences, but not those binding with lesser affinity, supported HSP72 activity control of MV transcription/replication. BIAcore instrumentation thus provides an effective way to measure biologically relevant low affinity interactions with structural variants of viral proteins.

  4. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    Science.gov (United States)

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  5. Mepyramine-JNJ7777120-hybrid compounds show high affinity to hH(1)R, but low affinity to hH(4)R.

    Science.gov (United States)

    Wagner, Eva; Wittmann, Hans-Joachim; Elz, Sigurd; Strasser, Andrea

    2011-11-01

    In literature, a synergism between histamine H(1) and H(4) receptor is discussed. Furthermore, it was shown, that the combined application of mepyramine, a H(1) antagonist and JNJ7777120, a H(4) receptor ligand leads to a synergistic effect in the acute murine asthma model. Thus, the aim of this study was to develop new hybrid ligands, containing one H(1) and one H(4) pharmacophor, connected by an appropriate spacer, in order to address both, H(1)R and H(4)R. Within this study, we synthesized nine hybrid compounds, which were pharmacologically characterized at hH(1)R and hH(4)R. The new compounds revealed (high) affinity to hH(1)R, but showed only low affinity to hH(4)R. Additionally, we performed molecular dynamic studies for some selected compounds at hH(1)R, in order to obtain information about the binding mode of these compounds on molecular level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. High and Low Affinity Urea Root Uptake: Involvement of NIP5;1.

    Science.gov (United States)

    Yang, Huayiu; Menz, Jochen; Häussermann, Iris; Benz, Martin; Fujiwara, Toru; Ludewig, Uwe

    2015-08-01

    Urea is the most widespread nitrogen (N) fertilizer worldwide and is rapidly degraded in soil to ammonium by urease. Ammonium is either taken up by plant roots or is further processed to nitrate by soil microorganisms. However, urea can be taken up by roots and is further degraded to ammonium by plant urease for assimilation. When urea is supplied under sterile conditions, it acts as a poor N source for seedlings or adult Arabidopsis thaliana plants. Here, the gene expression of young seedlings exposed to urea and ammonium nitrate nutrition was compared. Several primary metabolism and transport genes, including those for nitrate and urea, were differentially expressed in seedlings. However, urease and most major intrinsic proteins were not differentially expressed, with the exception of NIP6;1, a urea-permeable channel, which was repressed. Furthermore, little overlap with the gene expression with ammonium as the sole N source was observed, confirming that pure urea nutrition is not associated with the ammonium toxicity syndrome in seedlings. The direct root uptake of urea was increased under boron deficiency, in both the high and low affinity range. This activity was entirely mediated by the NIP5;1 channel, which was confirmed to transport urea when expressed in oocytes. The uptake of urea in the high and low affinity range was also determined for maize and wheat roots. The urea uptake by maize roots was only about half that of wheat, but was not stimulated by boron deficiency or N deficiency in either species. This analysis identifies novel components of the urea uptake systems in plants, which may become agronomically relevant to urea uptake and utilization, as stabilized urea fertilizers become increasingly popular. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Katz, D.M.; Kimelberg, H.K.

    1985-07-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; (/sup 3/H)-5-HT). At concentrations in the range of 0.01 to 0.7 microM (/sup 3/H)-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM (/sup 3/H)-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of (/sup 3/H)-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of (/sup 3/H)-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate (/sup 3/H)-5-HT up to 44-fold at an external (/sup 3/H)-5-HT concentration of 10(-7) M. Inhibition of (/sup 3/H)-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of (/sup 3/H)-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on (/sup 3/H)-5-HT uptake.

  8. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft

    DEFF Research Database (Denmark)

    Kandra, L.; Abou Hachem, Maher; Gyemant, G.

    2006-01-01

    as binding barriers. Barley a-amylase I mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile...

  9. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers

    DEFF Research Database (Denmark)

    Hansen, Mads E; Bentin, Thomas; Nielsen, Peter E

    2009-01-01

    substitution, in combination with (oligo)lysine or 9-aminoacridine conjugation, homopyrimidine PNA oligomers bind complementary dsDNA targets via triplex formation with (sub)nanomolar affinities (at pH 7.2, 150 mM Na(+)). Binding affinity can be modulated more than 1000-fold by changes in pH, PNA oligomer...

  10. High-affinity glucose transport in Aspergillus nidulans is mediated by the products of two related but differentially expressed genes.

    Directory of Open Access Journals (Sweden)

    Josep V Forment

    Full Text Available Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation.

  11. The crustacean gill (Na+,K+)-ATPase: allosteric modulation of high- and low-affinity ATP-binding sites by sodium and potassium.

    Science.gov (United States)

    Masui, D C; Silva, E C C; Mantelatto, F L M; McNamara, J C; Barrabin, H; Scofano, H M; Fontes, C F L; Furriel, R P M; Leone, F A

    2008-11-15

    The blue crab, Callinectes danae, tolerates exposure to a wide salinity range employing mechanisms of compensatory ion uptake when in dilute media. Although the gill (Na+,K+)-ATPase is vital to hyperosmoregulatory ability, the interactions occurring at the sites of ATP binding on the molecule itself are unknown. Here, we investigate the modulation by Na+ and K+ of homotropic interactions between the ATP-binding sites, and of phosphoenzyme formation of the (Na+,K+)-ATPase from the posterior gills of this euryhaline crab. The contribution of the high- and low-affinity ATP-binding sites to maximum velocity was similar for both Na+ and K+. However, in contrast to Na+, a threshold K+ concentration triggers the appearance of the high-affinity binding sites, displacing the saturation curve to lower ATP concentrations.Further, a low-affinity site for phosphorylation is present on the enzyme. These findings reveal notable differences in the catalytic mechanism of the crustacean (Na+,K+)-ATPase compared to the vertebrate enzyme.

  12. ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis.

    Science.gov (United States)

    Cardona-López, Ximena; Cuyas, Laura; Marín, Elena; Rajulu, Charukesi; Irigoyen, María Luisa; Gil, Erica; Puga, María Isabel; Bligny, Richard; Nussaume, Laurent; Geldner, Niko; Paz-Ares, Javier; Rubio, Vicente

    2015-09-01

    Prior to the release of their cargoes into the vacuolar lumen, sorting endosomes mature into multivesicular bodies (MVBs) through the action of ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT (ESCRT) protein complexes. MVB-mediated sorting of high-affinity phosphate transporters (PHT1) to the vacuole limits their plasma membrane levels under phosphate-sufficient conditions, a process that allows plants to maintain phosphate homeostasis. Here, we describe ALIX, a cytosolic protein that associates with MVB by interacting with ESCRT-III subunit SNF7 and mediates PHT1;1 trafficking to the vacuole in Arabidopsis thaliana. We show that the partial loss-of-function mutant alix-1 displays reduced vacuolar degradation of PHT1;1. ALIX derivatives containing the alix-1 mutation showed reduced interaction with SNF7, providing a simple molecular explanation for impaired cargo trafficking in alix-1 mutants. In fact, the alix-1 mutation also hampered vacuolar sorting of the brassinosteroid receptor BRI1. We also show that alix-1 displays altered vacuole morphogenesis, implying a new role for ALIX proteins in vacuolar biogenesis, likely acting as part of ESCRT-III complexes. In line with a presumed broad target spectrum, the alix-1 mutation is pleiotropic, leading to reduced plant growth and late flowering, with stronger alix mutations being lethal, indicating that ALIX participates in diverse processes in plants essential for their life. © 2015 American Society of Plant Biologists. All rights reserved.

  13. Quantitative affinity purification mass spectrometry: a versatile technology to study protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Katrina eMeyer

    2015-07-01

    Full Text Available While the genomic revolution has dramatically accelerated the discovery of disease-associated genes, the functional characterization of the corresponding proteins lags behind. Most proteins fulfill their tasks in complexes with other proteins, and analysis of Protein-Protein Interactions (PPIs can therefore provide insights into protein function. Several methods can be used to generate large-scale protein interaction networks. However, most of these approaches are not quantitative and therefore cannot reveal how perturbations affect the network. Here, we illustrate how a clever combination of quantitative mass spectrometry with different biochemical methods provides a rich toolkit to study different aspects of PPIs including topology, subunit stoichiometry, and dynamic behavior.

  14. Frontal affinity chromatography with MS detection of the ligand binding domain of PPARγ receptor: ligand affinity screening and stereoselective ligand-macromolecule interaction.

    Science.gov (United States)

    Calleri, E; Fracchiolla, G; Montanari, R; Pochetti, G; Lavecchia, A; Loiodice, F; Laghezza, A; Piemontese, L; Massolini, G; Temporini, C

    2012-04-06

    In this study we report the development of new chromatographic tools for binding studies based on the gamma isoform ligand binding domain (LBD) of peroxisome proliferator-activated receptor (PPARγ) belonging to the nuclear receptor superfamily of ligand-activated transcription factors. PPARγ subtype plays important roles in the functions of adipocytes, muscles, and macrophages with a direct impact on type 2 diabetes, dyslipidemia, atherosclerosis, and cardiovascular disease. In order to set up a suitable immobilization chemistry, the LBD of PPARγ receptor was first covalently immobilized onto the surface of aminopropyl silica particles to create a PPARγ-Silica column for zonal elution experiments and then onto the surface of open tubular (OT) capillaries to create PPARγ-OT capillaries following different immobilization conditions. The capillaries were used in frontal affinity chromatography coupled to mass spectrometry (FAC-MS) experiments to determine the relative binding affinities of a series of chiral fibrates. The relative affinity orders obtained for these derivatives were consistent with the EC(50) values reported in literature. The optimized PPARγ-OT capillary was validated by determining the K(d) values of two selected compounds. Known the role of stereoselectivity in the binding of chiral fibrates, for the first time a detailed study was carried out by analysing two enantioselective couples on the LBD-PPARγ capillary by FAC and a characteristic two-stairs frontal profile was derived as the result of the two saturation events. All the obtained data indicate that the immobilized form of PPARγ-LBD retained the ability to specifically bind ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Trace element affinities in two high-Ge coals from China

    Energy Technology Data Exchange (ETDEWEB)

    Jing Li; Xinguo Zhuang; Xavier Querol [China University of Geosciences, Wuhan (China). Faculty of Earth Resources

    2011-01-15

    The Lincang (Yunnan Province, Southwest China) and Wulantuga (Inner Mongolia, Northeast China) coal deposits are known because of the high-Ge content. These coals have also a high concentration of a number of other elements. To determine the mode of occurrence of the enriched elements in both coals, six density fractions from {lt} 1.43 to {gt} 2.8 g/cm{sup 3} were obtained from two representative samples using heavy-liquids. A number of peculiar geochemical patterns characterize these high-Ge coals. Thus, the results of the chemical analysis of these density fractions showed that both coals (very distant and of a different geological age) are highly enriched (compared with the usual worldwide coal concentration ranges) in Ge, As, Sb, W, Be, and Tl. This may be due to similar geochemistry of hydrothermal fluids influencing the Earth Crust in these regions of China. Moreover, Wulantuga coal (Early Cretaceous subbituminous coal) is also enriched in Ca, Mg, and Na, and Lincang coal (Neogene subbituminous coal) in K, Rb, Nb, Mo, Sn, Cs, and U. A group of elements consisting of Ge, W, B, Nb, and Sb mostly occur with an organic affinity in both coals. Additionally, Be, U, and Mo (and partially Mn and Zn) in Lincang, and Na and Mg in Wulantuga occur also with a major organic affinity. Both coals have sulfide-arsenide mineral assemblages (Fe, S, As, Sn, and Pb, and in addition to Tl, Ta, and Cs in the Lincang coal). The occurrence of Al, P, Li, Sc, Ti, V, Cr, and Zr in both coals, and Ba in Lincang, are associated with the mineral assemblage of silico-aluminates and minor heavy minerals. Furthermore, P, Na, Li, Sc, Ti, Ga, Rb, Zr, Cr, Ba, Th, and LREE (La, Ce, Pr, Nd, and Gd) in Lincang are associated with mineral assemblages of phosphates and minor heavy minerals. The two later mineral assemblages are derived from the occurrence of detrital minerals. 34 refs., 7 figs., 3 tabs.

  16. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter

    DEFF Research Database (Denmark)

    Zhang, Peng; Jørgensen, Trine Nygaard; Løland, Claus Juul

    2013-01-01

    A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino)prop...

  17. Entrapment of Alpha1-Acid Glycoprotein in High-Performance Affinity Columns for Drug-Protein Binding Studies

    Science.gov (United States)

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S.

    2015-01-01

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (± 0.5) × 105 M−1, which agreed with a previously reported value of 1.0 (± 0.1) × 105 M−1. Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. PMID:26627938

  18. High Affinity Binding of Chp1 Chromodomain to K9 Methylated Histone H3 is Required to Establish Centromeric Hterochromatin

    Energy Technology Data Exchange (ETDEWEB)

    Schalch, T.; Job, G; Noffsinger, V; Shanker, S; Kuscu, C; Joshua-Tor, L; Partridge, J

    2009-01-01

    In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1's high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1's affinity for H3K9me is greatly reduced.

  19. Regulatory and T Effector Cells Have Overlapping Low to High Ranges in TCR Affinities for Self during Demyelinating Disease.

    Science.gov (United States)

    Hood, Jennifer D; Zarnitsyna, Veronika I; Zhu, Cheng; Evavold, Brian D

    2015-11-01

    Having regulatory T cells (Tregs) with the same Ag specificity as the responding conventional T cells is thought to be important in maintaining peripheral tolerance. It has been demonstrated that during experimental autoimmune encephalomyelitis there are myelin oligodendrocyte glycoprotein (MOG)--specific Tregs that infiltrate into the CNS. However, the affinity of naturally occurring polyclonal Tregs for any self-antigen, let alone MOG, has not been analyzed in the periphery or at the site of autoimmune disease. Utilizing the highly sensitive micropipette adhesion frequency assay, which allows one to determine on a single-cell basis the affinity and frequency of polyclonal Ag-specific T cells directly ex vivo, we demonstrate that at peak disease MOG-specific Tregs were progressively enriched in the draining cervical lymph nodes and CNS as compared with spleen. These frequencies were greater than the frequencies measured by tetramer analysis, indicative of the large fraction of lower affinity T cells that comprise the MOG-specific conventional T cell (Tconv) and Treg response. Of interest, the self-reactive CD4(+) Tconvs and Tregs displayed overlapping affinities for MOG in the periphery, yet in the CNS, the site of neuroinflammation, Tconvs skew toward higher affinities. Most of the MOG-specific Tregs in the CNS possessed the methylation signature associated with thymic-derived Tregs. These findings indicate that thymic-derived Treg affinity range matches that of their Tconvs in the periphery and suggest a change in TCR affinity as a potential mechanism for autoimmune progression and escape from immune regulation. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. Alteration of the α1β2/α2β1 subunit interface contributes to the increased hemoglobin-oxygen affinity of high-altitude deer mice.

    Science.gov (United States)

    Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki; Kumasaka, Takashi; Natarajan, Chandrasekhar; Storz, Jay F; Moriyama, Hideaki

    2017-01-01

    Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetrameric hemoglobin molecules. The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites.

  1. Alteration of the α1β2/α2β1 subunit interface contributes to the increased hemoglobin-oxygen affinity of high-altitude deer mice

    Energy Technology Data Exchange (ETDEWEB)

    Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki; Kumasaka, Takashi; Natarajan, Chandrasekhar; Storz, Jay F.; Moriyama, Hideaki; Permyakov, Eugene A.

    2017-03-31

    Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetrameric hemoglobin molecules. The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites.

  2. "Velcro" engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis.

    Science.gov (United States)

    Ho, Chia Chi M; Guo, Nan; Sockolosky, Jonathan T; Ring, Aaron M; Weiskopf, Kipp; Özkan, Engin; Mori, Yasuo; Weissman, Irving L; Garcia, K Christopher

    2015-05-15

    CD47 is a cell surface protein that transmits an anti-phagocytic signal, known as the "don't-eat-me" signal, to macrophages upon engaging its receptor signal regulatory protein α (SIRPα). Molecules that antagonize the CD47-SIRPα interaction by binding to CD47, such as anti-CD47 antibodies and the engineered SIRPα variant CV1, have been shown to facilitate macrophage-mediated anti-tumor responses. However, these strategies targeting CD47 are handicapped by large antigen sinks in vivo and indiscriminate cell binding due to ubiquitous expression of CD47. These factors reduce bioavailability and increase the risk of toxicity. Here, we present an alternative strategy to antagonize the CD47-SIRPα pathway by engineering high affinity CD47 variants that target SIRPα, which has restricted tissue expression. CD47 proved to be refractive to conventional affinity maturation techniques targeting its binding interface with SIRPα. Therefore, we developed a novel engineering approach, whereby we augmented the existing contact interface via N-terminal peptide extension, coined "Velcro" engineering. The high affinity variant (Velcro-CD47) bound to the two most prominent human SIRPα alleles with greatly increased affinity relative to wild-type CD47 and potently antagonized CD47 binding to SIRPα on human macrophages. Velcro-CD47 synergizes with tumor-specific monoclonal antibodies to enhance macrophage phagocytosis of tumor cells in vitro, with similar potency as CV1. Finally, Velcro-CD47 interacts specifically with a subset of myeloid-derived cells in human blood, whereas CV1 binds all myeloid, lymphoid, and erythroid populations interrogated. This is consistent with the restricted expression of SIRPα compared with CD47. Herein, we have demonstrated that "Velcro" engineering is a powerful protein-engineering tool with potential applications to other systems and that Velcro-CD47 could be an alternative adjuvant to CD47-targeting agents for cancer immunotherapy. © 2015 by

  3. “Velcro” Engineering of High Affinity CD47 Ectodomain as Signal Regulatory Protein α (SIRPα) Antagonists That Enhance Antibody-dependent Cellular Phagocytosis*

    Science.gov (United States)

    Ho, Chia Chi M.; Guo, Nan; Sockolosky, Jonathan T.; Ring, Aaron M.; Weiskopf, Kipp; Özkan, Engin; Mori, Yasuo; Weissman, Irving L.; Garcia, K. Christopher

    2015-01-01

    CD47 is a cell surface protein that transmits an anti-phagocytic signal, known as the “don't-eat-me” signal, to macrophages upon engaging its receptor signal regulatory protein α (SIRPα). Molecules that antagonize the CD47-SIRPα interaction by binding to CD47, such as anti-CD47 antibodies and the engineered SIRPα variant CV1, have been shown to facilitate macrophage-mediated anti-tumor responses. However, these strategies targeting CD47 are handicapped by large antigen sinks in vivo and indiscriminate cell binding due to ubiquitous expression of CD47. These factors reduce bioavailability and increase the risk of toxicity. Here, we present an alternative strategy to antagonize the CD47-SIRPα pathway by engineering high affinity CD47 variants that target SIRPα, which has restricted tissue expression. CD47 proved to be refractive to conventional affinity maturation techniques targeting its binding interface with SIRPα. Therefore, we developed a novel engineering approach, whereby we augmented the existing contact interface via N-terminal peptide extension, coined “Velcro” engineering. The high affinity variant (Velcro-CD47) bound to the two most prominent human SIRPα alleles with greatly increased affinity relative to wild-type CD47 and potently antagonized CD47 binding to SIRPα on human macrophages. Velcro-CD47 synergizes with tumor-specific monoclonal antibodies to enhance macrophage phagocytosis of tumor cells in vitro, with similar potency as CV1. Finally, Velcro-CD47 interacts specifically with a subset of myeloid-derived cells in human blood, whereas CV1 binds all myeloid, lymphoid, and erythroid populations interrogated. This is consistent with the restricted expression of SIRPα compared with CD47. Herein, we have demonstrated that “Velcro” engineering is a powerful protein-engineering tool with potential applications to other systems and that Velcro-CD47 could be an alternative adjuvant to CD47-targeting agents for cancer immunotherapy

  4. Effects of lead on the kidney: Roles of high-affinity lead-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, B.A. (Univ. of Maryland, Baltimore (United States)); DuVal, G. (Univ of Maryland Medical School, Baltimore (United States))

    1991-02-01

    Lead-induced nephropathy produces both tubular and interstitial manifestations of cell injury, but the pathophysiology of these lesions is not completely understood. Delineation of the molecular factors underlying renal handling of lead is one of central importance in understanding the mechanisms of renal cell injury from this agent. Recent studies from this laboratory have identified several distinct high-affinity lead-binding proteins (PbBP) from rat kidney and brain that appear to play critical roles in the intracellular bioavailability of lead to several essential cellular processes in these target tissues at low dose levels. These studies have also shown that the real PbBP is selectively localized in only certain nephrons and only specific segments of the renal proximal tubule. The striking nephron and cell-type specificity of the localization reaction could result from physoiological differences in nephron functional activity or selective molecular uptake mechanisms/metabolism differences that act to define target cell populations in the kidney. In addition, other preliminary studies have shown that short-term, high-dose lead exposure produces increased excretion of this protein into the urine with concomitant decreases in renal concentrations.

  5. Glutaraldehyde pretreatment blocks temperature-induced high-affinity (/sup 3/H) tryptamine binding

    Energy Technology Data Exchange (ETDEWEB)

    Serikyaku, S.; Ishitani, R.

    1988-01-01

    The effect of glutaraldehyde (and Azure A) on temperature-sensitive high-affinity (/sup 3/H) tryptamine binding was investigated in rat brain synaptic plasma membranes. In the 0.01-0.1 % concentration range, the glutaraldehyde pretreatment preferentially inhibited only the above-mentioned portion of the binding, whereas the posttreatment of this reagent had no effect. On the other hand, in cases of pretreatment or posttreatment, a concentration of glutaraldehyde as high as 0.1 % was inactive on the basal (/sup 3/H) ligand binding capacity of the membranes. Furthermore, it was revealed that the Scatchard plot of (/sup 3/H) tryptamine binding in membranes pretreated with glutaraldehyde conformed to a straight line, as did a similar plot of temperature-independent binding. And, it was interesting to find that the binding parameters (K/sub D/ and B/sub max/ values) of both samples corresponded closely to each other. On the contrary, in all concentrations, Azure A affected nonspecifically both the temperature-dependent and the independent (/sup 3/H) tryptamine binding to the same degree, regardless of whether or not there was pretreatment or posttreatment. 17 references, 2 figures, 1 table.

  6. The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex.

    Directory of Open Access Journals (Sweden)

    Tobias Straub

    2008-12-01

    Full Text Available Dosage compensation in male Drosophila relies on the X chromosome-specific recruitment of a chromatin-modifying machinery, the dosage compensation complex (DCC. The principles that assure selective targeting of the DCC are unknown. According to a prevalent model, X chromosome targeting is initiated by recruitment of the DCC core components, MSL1 and MSL2, to a limited number of so-called "high-affinity sites" (HAS. Only very few such sites are known at the DNA sequence level, which has precluded the definition of DCC targeting principles. Combining RNA interference against DCC subunits, limited crosslinking, and chromatin immunoprecipitation coupled to probing high-resolution DNA microarrays, we identified a set of 131 HAS for MSL1 and MSL2 and confirmed their properties by various means. The HAS sites are distributed all over the X chromosome and are functionally important, since the extent of dosage compensation of a given gene and its proximity to a HAS are positively correlated. The sites are mainly located on non-coding parts of genes and predominantly map to regions that are devoid of nucleosomes. In contrast, the bulk of DCC binding is in coding regions and is marked by histone H3K36 methylation. Within the HAS, repetitive DNA sequences mainly based on GA and CA dinucleotides are enriched. Interestingly, DCC subcomplexes bind a small number of autosomal locations with similar features.

  7. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor

    Science.gov (United States)

    Pichlo, Magdalena; Bungert-Plümke, Stefanie; Weyand, Ingo; Seifert, Reinhard; Bönigk, Wolfgang; Strünker, Timo; Kashikar, Nachiket Dilip; Goodwin, Normann; Müller, Astrid; Körschen, Heinz G.; Collienne, Ursel; Pelzer, Patric; Van, Qui; Enderlein, Jörg; Klemm, Clementine; Krause, Eberhard; Trötschel, Christian; Poetsch, Ansgar; Kremmer, Elisabeth

    2014-01-01

    Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons. PMID:25135936

  8. G196 epitope tag system: a novel monoclonal antibody, G196, recognizes the small, soluble peptide DLVPR with high affinity.

    Science.gov (United States)

    Tatsumi, Kasumi; Sakashita, Gyosuke; Nariai, Yuko; Okazaki, Kosuke; Kato, Hiroaki; Obayashi, Eiji; Yoshida, Hisashi; Sugiyama, Kanako; Park, Sam-Yong; Sekine, Joji; Urano, Takeshi

    2017-03-07

    The recognition specificity of monoclonal antibodies (mAbs) has made mAbs among the most frequently used tools in both basic science research and in clinical diagnosis and therapies. Precise determination of the epitope allows the development of epitope tag systems to be used with recombinant proteins for various purposes. Here we describe a new family of tag derived from the epitope recognized by a highly specific mAb G196. The minimal epitope was identified as the five amino acid sequence Asp-Leu-Val-Pro-Arg. Permutation analysis was used to characterize the binding requirements of mAb G196, and the variable regions of the mAb G196 were identified and structurally analyzed by X-ray crystallography. Isothermal titration calorimetry revealed the high affinity (Kd = 1.25 nM) of the mAb G196/G196-epitope peptide interaction, and G196-tag was used to detect several recombinant cytosolic and nuclear proteins in human and yeast cells. mAb G196 is valuable for developing a new peptide tagging system for cell biology and biochemistry research.

  9. Melatonin Administration Alters Nicotine Preference Consumption via Signaling Through High-Affinity Melatonin Receptors

    Science.gov (United States)

    Horton, William J.; Gissel, Hannah J.; Saboy, Jennifer E.; Wright, Kenneth P.; Stitzel, Jerry A.

    2015-01-01

    Rationale While it is known that tobacco use varies across the 24-hour day, the time-of-day effects are poorly understood. Findings from several previous studies indicate a potential role for melatonin in these time-of-day effects; however the specific underlying mechanisms have not been well characterized. Understanding of these mechanisms may lead to potential novel smoking cessation treatments. Objective Examine the role of melatonin and melatonin receptors in nicotine free choice consumption Methods A two-bottle oral nicotine choice paradigm was utilized with melatonin supplementation in melatonin deficient mice (C57BL/6J) or without melatonin supplementation in mice proficient at melatonin synthesis (C3H/Ibg) compared to melatonin proficient mice lacking both or one of the high affinity melatonin receptors (MT1 and MT2; double null mutant DM, or MT1 or MT2). Preference for bitter and sweet tastants also was assessed in wild type and MT1 and MT2 DM mice. Finally, home cage locomotor monitoring was performed to determine the effect of melatonin administration on activity patterns. Results Supplemental melatonin in drinking water significantly reduced free-choice nicotine consumption in C57BL/6J mice, which do not produce endogenous melatonin, while not altering activity patterns. Independently, genetic deletion of both MT1 and MT2 receptors in a melatonin proficient mouse strain (C3H) resulted in significantly more nicotine consumption than controls. However single genetic deletion of either the MT1 or MT2 receptor alone did not result in increased nicotine consumption. Deletion of MT1 and MT2 did not impact taste preference. Conclusions This study demonstrates that nicotine consumption can be affected by exogenous or endogenous melatonin and requires at least one of the high-affinity melatonin receptors. The fact that expression of either the MT1 or MT2 melatonin receptor is sufficient to maintain lower nicotine consumption suggests functional overlap and

  10. Melatonin administration alters nicotine preference consumption via signaling through high-affinity melatonin receptors.

    Science.gov (United States)

    Horton, William J; Gissel, Hannah J; Saboy, Jennifer E; Wright, Kenneth P; Stitzel, Jerry A

    2015-07-01

    While it is known that tobacco use varies across the 24-h day, the time-of-day effects are poorly understood. Findings from several previous studies indicate a potential role for melatonin in these time-of-day effects; however, the specific underlying mechanisms have not been well characterized. Understanding of these mechanisms may lead to potential novel smoking cessation treatments. The objective of this study is examine the role of melatonin and melatonin receptors in nicotine free-choice consumption A two-bottle oral nicotine choice paradigm was utilized with melatonin supplementation in melatonin-deficient mice (C57BL/6J) or without melatonin supplementation in mice proficient at melatonin synthesis (C3H/Ibg) compared to melatonin-proficient mice lacking both or one of the high-affinity melatonin receptors (MT1 and MT2; double-null mutant DM, or MT1 or MT2). Preference for bitter and sweet tastants also was assessed in wild-type and MT1 and MT2 DM mice. Finally, home cage locomotor monitoring was performed to determine the effect of melatonin administration on activity patterns. Supplemental melatonin in drinking water significantly reduced free-choice nicotine consumption in C57BL/6J mice, which do not produce endogenous melatonin, while not altering activity patterns. Independently, genetic deletion of both MT1 and MT2 receptors in a melatonin-proficient mouse strain (C3H) resulted in significantly more nicotine consumption than controls. However, single genetic deletion of either the MT1 or MT2 receptor alone did not result in increased nicotine consumption. Deletion of MT1 and MT2 did not impact taste preference. This study demonstrates that nicotine consumption can be affected by exogenous or endogenous melatonin and requires at least one of the high-affinity melatonin receptors. The fact that expression of either the MT1 or MT2 melatonin receptor is sufficient to maintain lower nicotine consumption suggests functional overlap and potential mechanistic

  11. Identifying the antiasthmatic target of doxofylline using immobilized β2 -adrenoceptor based high-performance affinity chromatography and site-directed molecular docking.

    Science.gov (United States)

    Zhang, Yajun; Zeng, Kaizhu; Wang, Jing; Gao, Haiyang; Nan, Yefei; Zheng, Xiaohui

    2016-10-01

    As a xanthine derivative, doxofylline is believed to be dominant for fighting against asthma in practice. Unlike other xanthines, the antiasthmatic effects of doxofylline lack any definite proof of target and mediating mechanism according to previous reports. In this work, the interaction between doxofylline and β2 -AR was investigated by high performance affinity chromatography using frontal analysis and nonlinear model. The methodology involved the immobilization of β2 -AR on the silica gel by a random linking method, the determination of the binding parameters by frontal analysis and nonlinear chromatography and the exploration of the binding mechanism by site-directed molecular docking. The association constant for doxofylline binding to immobilized β2 -AR was determined to be 7.70 × 10(4)  M(-1) by nonlinear chromatography and 5.91 × 10(4)  M(-1) by frontal analysis. Ser(169) and Ser(173) were the binding sites for the receptor-drug interaction on which hydrogen bond was believed to be the main driven force during the interaction. These results indicated that the antiasthmatic effects of doxofylline may be behind the mediating mechanism of β2 -AR. High performance affinity chromatography based on immobilized receptor has potential to become an alternative for drug target confirmation and drug-receptor interaction analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    Science.gov (United States)

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    Science.gov (United States)

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.

  14. Understanding Lignin-Degrading Reactions of Ligninolytic Enzymes: Binding Affinity and Interactional Profile

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Tan, Zhongyang; Jiang, Min; Li, Hui; Liu, Lifeng; Zhu, Yi; Yu, Zhen; Wei, Zhen; Liu, Yuanyuan; Xie, Gengxin

    2011-01-01

    Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity. PMID:21980516

  15. High-level amikacin resistance in Pseudomonas aeruginosa associated with a 3'-phosphotransferase with high affinity for amikacin.

    Science.gov (United States)

    Torres, C; Perlin, M H; Baquero, F; Lerner, D L; Lerner, S A

    2000-08-01

    This work describes the characterization of the phosphotransferase enzymatic activity responsible for amikacin resistance in two clinical Pseudomona aeruginosa strains, isolated from a hospital that used amikacin as first-line aminoglycoside. Amikacin-resistant P. aeruginosa PA40 and PA43 (MIC: 128 mg/l) were shown to have APH activity with a substrate profile similar to that of APH(3')-VI. The enzyme from P. aeruginosa PA40 was purified to > 70% homogeneity. The Km of amikacin for this enzyme was 1.4 microM, the Vmax/Km ratio for amikacin was higher than for the other aminoglycosides tested and PCR and DNA sequencing ruled out the presence of aph(3')-IIps. Amikacin resistance in this strain was, therefore, associated with APH(3')-VI and the high affinity of this enzyme for amikacin could explain the high-level resistance that we observed.

  16. Using aromatic polyamines with high proton affinity as "proton sponge" dopants for electrospray ionisation mass spectrometry.

    Science.gov (United States)

    Wirth, Marisa A; Rüger, Christopher P; Sklorz, Martin; Zimmermann, Ralf

    2017-04-01

    Proton sponges are polyamines with high proton affinity that enable gentle deprotonation of even mildly acidic compounds. In this study, the concept of proton sponges as signal enhancing dopants for electrospray ionisation is presented for the first time. 1,8-Bis(dimethylamino)naphthalene (DMAN) and 1,8-bis(tetramethylguanidino)naphthalene (TMGN) were chosen as dopants, using methanol and acetonitrile/methanol as solvents. Individual standard compounds, compound mixtures and a diesel fuel as a complex sample matrix were investigated. Both proton sponges enhanced signal intensities in electrospray ionisation negative mode, but TMGN decomposed rapidly in methanolic solution. Significantly higher signals were only achieved using the acetonitrile/methanol mixture. On average a more than 10-fold higher signal intensity was measured with 10-3 mol l-1 DMAN concentration. A stronger signal increase of alcohol functionalities was observed compared to acid functionalities. All compound classes which were detected in the diesel fuel (CH- and CHOx-class) received roughly 100-fold higher signal intensities when using DMAN as a dopant. Furthermore, the number of detected compounds as well as the double bond equivalent of the detected compounds increased. The compound class distribution shifted when adding DMAN and the formerly dominant CHO2-, CHO3-, and CHO4- classes received similar relative intensities as formerly less accessible classes. The findings depict DMAN as a promising additive for electrospray ionisation negative analysis of at least mildly acidic compounds, even within complex sample material.

  17. Early signs of pathological cognitive aging in mice lacking high-affinity nicotinic receptors.

    Directory of Open Access Journals (Sweden)

    Eleni eKonsolaki

    2016-04-01

    Full Text Available In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. Α deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-, which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioural signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviours, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm and extend the hypothesis that β2-/- animals exhibit age-related cognitive impairments, manifested in both spatial learning and recognition memory tasks. In addition, we reveal deficits in spontaneous behaviour and habituation processes earlier in life. To our knowledge, this is the first study to perform an extensive behavioural examination of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioural changes to global dementia due to the combined effect of the neuropathology and aging.

  18. A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi

    Science.gov (United States)

    Hasne, Marie-Pierre; Coppens, Isabelle; Soysa, Radika; Ullman, Buddy

    2011-01-01

    Summary Whereas mammalian cells and most other organisms can synthesize polyamines from basic amino acids, the protozoan parasite Trypanosoma cruzi is incapable of polyamine biosynthesis de novo and therefore obligatorily relies upon putrescine acquisition from the host to meet its nutritional requirements. The cell surface proteins that mediate polyamine transport into T. cruzi, as well as most eukaryotes, however, have by-in-large eluded discovery at the molecular level. Here we report the identification and functional characterization of two polyamine transporters, TcPOT1.1 and TcPOT1.2, encoded by alleles from two T. cruzi haplotypes. Overexpression of the TcPOT1.1 and TcPOT1.2 genes in T. cruzi epimastigotes revealed that TcPOT1.1 and TcPOT1.2 were high-affinity transporters that recognized both putrescine and cadaverine but not spermidine or spermine. Furthermore, the activities and subcellular locations of both TcPOT1.1 and TcPOT1.2 in intact parasites were profoundly influenced by extracellular putrescine availability. These results establish TcPOT1.1 and TcPOT1.2 as key components of the T. cruzi polyamine transport pathway, an indispensable nutritional function for the parasite that may be amenable to therapeutic manipulation. PMID:20149109

  19. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, R.M.; Ansari, M.S.; de Paulis, T.; Schmidt, D.E.; Clanton, J.A.; Smith, H.E.; Manning, R.G.; Gillespie, D.; Ebert, M.H. (Vanderbilt University School of Medicine, Nashville, TN (USA))

    1991-08-01

    Five 125I-labeled substituted benzamides, which are close structural analogues of (S)-sulpiride, eticlopride, and isoremoxipride, were evaluated for their selective in vivo uptake into dopamine D2 receptor rich tissue of the rat brain. Iodopride (KD 0.88 nM), an iodine substituted benzamide structurally related to sulpiride, displayed a maximal striatum: cerebellar uptake ratio of 7.6. Demonstration of saturation of the receptor with (125I)iodopride in striatum required uptake in frontal cortex to be used, rather than cerebellar uptake, to define nonspecific binding. Two other ligands structurally related to eticlopride, iclopride (KD 0.23 nM) and itopride (KD 0.16 nM), displayed maximal striatal: cerebellar uptake ratios of 9.8 and 3.3, respectively. The most potent ligands, epidepride (KD 0.057 nM) and ioxipride (KD 0.070 nM) showed striatal:cerebellar uptake ratios of 234 and 65, respectively. The observed uptake ratios correlated poorly with the affinity constants for the dopamine D2 receptor alone, but were highly correlated (r = 0.92) with the product of the receptor dissociation constant (KD) and the apparent lipophilicity (kw), as determined by reverse-phase HPLC at pH 7.5. Total striatal uptake also appeared dependent on lipophilicity, with maximal uptake occurring for ligands having log kw 2.4-2.8.

  20. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies

    Science.gov (United States)

    Van Blarcom, Thomas; Melton, Zea; Cheung, Wai Ling; Wagstrom, Chris; McDonough, Dan; Valle Oseguera, Cendy; Ding, Sheng; Rossi, Andrea; Potluri, Shobha; Sundar, Purnima; Sirota, Marina; Yan, Yu; Jones, Jeffrey; Roe-Zurz, Zygy; Srivatsa Srinivasan, Surabhi; Zhai, Wenwu; Pons, Jaume; Rajpal, Arvind; Chaparro-Riggers, Javier

    2018-01-01

    ABSTRACT The commercial success of bispecific antibodies generally has been hindered by the complexities associated with generating appropriate molecules for both research scale and large scale manufacturing purposes. Bispecific IgG (BsIgG) based on two antibodies that use an identical common light chain can be combined with a minimal set of Fc mutations to drive heavy chain heterodimerization in order to address these challenges. However, the facile generation of common light chain antibodies with properties similar to traditional monoclonal antibodies has not been demonstrated and they have only been used sparingly. Here, we describe the design of a synthetic human antibody library based on common light chains to generate antibodies with biochemical and biophysical properties that are indistinguishable to traditional therapeutic monoclonal antibodies. We used this library to generate diverse panels of well-behaved, high affinity antibodies toward a variety of epitopes across multiple antigens, including mouse 4-1BB, a therapeutically important T cell costimulatory receptor. Over 200 BsIgG toward 4-1BB were generated using an automated purification method we developed that enables milligram-scale production of BsIgG. This approach allowed us to identify antibodies with a wide range of agonistic activity that are being used to further investigate the therapeutic potential of antibodies targeting one or more epitopes of 4-1BB. PMID:29227213

  1. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Christopher J Arnusch

    Full Text Available Many cationic antimicrobial peptides (AMPs target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted.

  2. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe

    2016-12-01

    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  3. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  4. Versatile conjugation of octreotide to dendrimers by cycloaddition ("click") chemistry to yield high-affinity multivalent cyclic peptide dendrimers

    NARCIS (Netherlands)

    S.H. Yim (Seon Hee); O.C. Boerman (Otto); M. de Visser (Monique); M. de Jong (Marcel); A.C. Dechesne (Annemarie); D.T.S. Rijkers (Dirk T.); R.M.J. Liskamp (Rob M.)

    2009-01-01

    textabstractThe somatostatin analogue Tyr 3-octreotide, which has a high binding affinity for the SSTR2 receptor (somatostatin receptor subtype 2) expressed on tumor cells, is used clinically for the diagnosis and treatment of a variety of neuroendocrine tumors and gastrointestinal disorders. There

  5. Versatile conjugation of octreotide to dendrimers by cycloaddition ("click") chemistry to yield high-affinity multivalent cyclic Peptide dendrimers.

    NARCIS (Netherlands)

    Yim, C.B.; Boerman, O.C.; Visser, M. de; Jong, M. de; Dechesne, A.C.; Rijkers, D.T.; Liskamp, R.M.

    2009-01-01

    The somatostatin analogue Tyr(3)-octreotide, which has a high binding affinity for the SSTR2 receptor (somatostatin receptor subtype 2) expressed on tumor cells, is used clinically for the diagnosis and treatment of a variety of neuroendocrine tumors and gastrointestinal disorders. There is growing

  6. The physiological significance of HKT1, a Na{sup +} - coupled high affinity K{sup +} transporter in `Triticum aestivum`

    Energy Technology Data Exchange (ETDEWEB)

    Box, S.; Schachtman, D.P. [University of Adelaide, SA (Australia). Department of Botany

    1997-12-31

    Full text: Several mechanisms for high affinity K{sup +} uptake by higher plants have been proposed:-an ATP-energised K:+ pump, a K{sup +}/H{sup +} antiport and a H{sup +}coupled carrier. Recently, a Na{sup +}--coupled high affinity K{sup +} transporter, HKT1, was isolated from wheat roots. Whilst Na{sup +}K{sup +} symports have been described in charophyte algae, the cloning of HKT1 from wheat is the first, evidence that this type d transport mechanism may function in higher plants. Is the activity of HKT1 an important mechanism involved in K{sup +} acquisition by wheat? The aim of this study was to assess the physiological significance of Na{sup +}- coupled high affinity K{sup +} uptake in T. aestivum. To determine whether HKT1 plays a significant role in wheat growth, we measured the dry weights and ion content of plants grown in a range of [K{sup +}], with and without Na{sup +}. To directly assess the activity of Na{sup +}- coupled K{sup +} transport, {sup 86}Rb{sup +} and {sup 22}Na{sup +} flux analyses were performed on the elongation zones and whole roots of intact seedlings, expressing a high affinity K{sup +} uptake system. The results of these growth and tracer flux studies will be discussed in relation to the expression of the gene encoding HKT1 in T. aestivum

  7. Novel high-affinity and selective biaromatic 4-substituted ¿-hydroxybutyric acid (GHB) analogues as GHB ligands

    DEFF Research Database (Denmark)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte

    2008-01-01

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites...

  8. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj

    2006-01-01

    Immunoglobulin (Ig)E-sensitized persons with positive skin prick test, but no allergy symptoms, are classified as being asymptomatic skin sensitized (AS). The allergic type 1 disease is dependant on IgE binding to the high affinity IgE-receptor (FcepsilonRI) expressed on basophils and mast cells...

  9. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...

  10. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screen...

  11. In silico investigation of PARP-1 catalytic domains in holo and apo states for the design of high-affinity PARP-1 inhibitors.

    Science.gov (United States)

    Salmas, Ramin Ekhteiari; Unlu, Ayhan; Yurtsever, Mine; Noskov, Sergei Y; Durdagi, Serdar

    2016-01-01

    The rational design of high-affinity inhibitors of poly-ADP-ribose polymerase-1 (PARP-1) is at the heart of modern anti-cancer drug design. While relevance of enzyme to DNA repair processes in cellular environment is firmly established, the structural and functional understanding of the main determinants for high-affinity ligands controlling PARP-1 activity is still lacking. The conserved active site of PARP-1 represents an ideal target for inhibitors and may offer a novel target at the treatment of breast cancer. To fill the gap in the structural knowledge, we report on the combination of molecular dynamics (MD) simulations, principal component analysis (PCA), and conformational analysis that analyzes in great details novel binding mode for a number of inhibitors at the PARP-1. While optimization of the binding affinity for original target is an important goal in the drug design, many of the promising molecules for treatment of the breast cancer are plagued by significant cardiotoxicity. One of the most common side-effects reported for a number of polymerase inhibitors is its off-target interactions with cardiac ion channels and hERG1 channel, in particular. Thus, selected candidate PARP-1 inhibitors were also screened in silico at the central cavities of hERG1 potassium ion channel.

  12. On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography.

    Science.gov (United States)

    Anguizola, Jeanethe; Bi, Cong; Koke, Michelle; Jackson, Abby; Hage, David S

    2016-08-01

    An on-column approach for protein entrapment was developed to immobilize alpha1-acid glycoprotein (AGP) for drug-protein binding studies based on high-performance affinity chromatography. Soluble AGP was physically entrapped by using microcolumns that contained hydrazide-activated porous silica and by employing mildly oxidized glycogen as a capping agent. Three on-column entrapment methods were evaluated and compared to a previous slurry-based entrapment method. The final selected method was used to prepare 1.0 cm × 2.1 mm I.D. affinity microcolumns that contained up to 21 (±4) μg AGP and that could be used over the course of more than 150 sample applications. Frontal analysis and zonal elution studies were performed on these affinity microcolumns to examine the binding of various drugs with the entrapped AGP. Site-selective competition studies were also conducted for these drugs. The results showed good agreement with previous observations for these drug-protein systems and with binding constants that have been reported in the literature. The entrapment method developed in this study should be useful for future work in the area of personalized medicine and in the high-throughput screening of drug interactions with AGP or other proteins. Graphical abstract On-column protein entrapment using a hydrazide-activated support and oxidized glycogen as a capping agent.

  13. An in vitro-identified high-affinity nucleosome-positioning signal is capable of transiently positioning a nucleosome in vivo

    Directory of Open Access Journals (Sweden)

    Gracey Lia E

    2010-07-01

    Full Text Available Abstract Background The physiological function of eukaryotic DNA occurs in the context of nucleosomal arrays that can expose or obscure defined segments of the genome. Certain DNA sequences are capable of strongly positioning a nucleosome in vitro, suggesting the possibility that favorable intrinsic signals might reproducibly structure chromatin segments. As high-throughput sequencing analyses of nucleosome coverage in vitro and in vivo have become possible, a vigorous debate has arisen over the degree to which intrinsic DNA:nucleosome affinities orchestrate the in vivo positions of nucleosomes, thereby controlling physical accessibility of specific sequences in DNA. Results We describe here the in vivo consequences of placing a synthetic high-affinity nucleosome-positioning signal, the 601 sequence, into a DNA plasmid vector in mice. Strikingly, the 601 sequence was sufficient to position nucleosomes during an early phase after introduction of the DNA into the mice (when the plasmid vector transgene was active. This positioning capability was transient, with a loss of strong positioning at a later time point when the transgenes had become silent. Conclusions These results demonstrate an ability of DNA sequences selected solely for nucleosome affinity to organize chromatin in vivo, and the ability of other mechanisms to overcome these interactions in a dynamic nuclear environment.

  14. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA

    DEFF Research Database (Denmark)

    Klein, A B; Bay, T; Villumsen, I S

    2016-01-01

    GHB (γ-hydroxybutyric acid) is a compound endogenous to mammalian brain with high structural resemblance to GABA. GHB possesses nanomolar-micromolar affinity for a unique population of binding sites, but the exact nature of these remains elusive. In this study we utilized the highly selective GHB......, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high...... brain development. Due to the high sensitivity of this radioligand, we were able to detect low levels of specific binding already at E15 in mouse brain, which increased progressively until adulthood. Collectively, we show that (3)H-HOCPCA is a highly sensitive radioligand, offering advantages over...

  15. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  16. High-affinity RNA aptamers to C-reactive protein (CRP): newly developed pre-elution methods for aptamer selection

    Science.gov (United States)

    Orito, N.; Umekage, S.; Sato, K.; Kawauchi, S.; Tanaka, H.; Sakai, E.; Tanaka, T.; Kikuchi, Y.

    2012-03-01

    We have developed a modified SELEX (systematic evolution of ligands by exponential enrichment) method to obtain RNA aptamers with high affinity to C-reactive protein (CRP). CRP is a clinical biomarker present in plasma, the level of which increases in response to infections and noninfectious inflammation. The CRP level is also an important prognostic indicator in patients with several syndromes. At present, CRP content in blood is measured immunochemically using antibodies. To develop a more sensitive method using RNA aptamers, we have attempted to obtain high-affinity RNA aptamers to CRP. We succeeded in obtaining an RNA aptamer with high affinity to CRP using a CRP-immobilized Sepharose column and pre-elution procedure. Pre-elution is a method that removes the weak binding portion from a selected RNA population by washing for a short time with buffer containing CRP. By surface plasmon-resonance (SPR) analysis, the affinity constant of this aptamer for CRP was calculated to be KD = 2.25×10-9 (M). The secondary structure, contact sites with CRP protein, and application of this aptamer will be described.

  17. Diagnostic approach to hemoglobins with high oxygen affinity: experience from France and Belgium and review of the literature.

    Science.gov (United States)

    Orvain, Corentin; Joly, Philippe; Pissard, Serge; Badiou, Stéphanie; Badens, Catherine; Bonello-Palot, Nathalie; Couque, Nathalie; Gulbis, Béatrice; Aguilar-Martinez, Patricia

    2017-02-01

    Congenital causes of erythrocytosis are now more easily identified due to the improvement of the molecular characterization of many of them. Among these causes, hemoglobins with high oxygen affinity take a large place. The aim of this work was to reevaluate the diagnostic approach of these disorders. To assess the current practices, we sent a questionnaire to the expert laboratories in the diagnosis of hemoglobinopathies in France and Belgium. In parallel, we gathered the methods used for the diagnosis of the hemoglobins with high oxygen affinity indexed in the international database HbVar. Even though they remain a rare cause of erythrocytosis (1 to 5 positive diagnosis every year in each of the questioned specialized laboratories), hemoglobins with high oxygen affinity are increasingly suspected by clinicians. Phenotypic assessment by laboratory techniques remains a main step in their diagnosis as it enables the finding of 93% of them in the questioned laboratories (28 of the 30 variants diagnosed during the last 5 years). Among the 96 hemoglobin variants with high oxygen affinity indexed in the international database, 87% could be diagnosed with phenotypic techniques. A direct measure of the p50 with the Hemox-Analyzer is included in the diagnostic approach of half of the laboratories only, because of the poor availability of this apparatus. Comparatively, the estimation of p50 by blood gas analyzers on venous blood is a much more convenient and attractive method but due to the lack of proof as to its effectiveness in the diagnosis of hemoglobins with high oxygen affinity, it requires further investigations. Beta- and alphaglobin genes analysis by molecular biology techniques is essential as it either allows a quick and definite identification of the variant or definitely excludes the diagnosis. It is thus systematically performed as a first or second step method, according to the laboratory practice.

  18. Coinheritance of High Oxygen Affinity Hb Helsinki [HBB: c.248A>T; β82(EF6)Lys→Met] with Hb H Disease.

    Science.gov (United States)

    Lee, Shir-Ying; Goh, Jia-Hui; Tan, Karen M L; Liu, Te-Chih

    2017-05-01

    Hb Helsinki [HBB: c.248A>T; β82(EF6)Lys→Met] is a high oxygen affinity hemoglobin (Hb) causing polycythemia, whereas Hb H (β4) disease causes mild to severe chronic hemolytic anemia. The clinical characteristics, gel electrophoresis, capillary electrophoresis (CE) and molecular genotyping of a case of Hb Helsinki coinherited with Hb H disease in an ethnic Malay is described, illustrating the interaction between the β-globin variant and coinheritance of three α gene deletions. The proband was asymptomatic, exhibited microcytosis and a normal with Hb value.

  19. Combinatorial evolution of high-affinity peptides that bind to the Thomsen-Friedenreich carcinoma antigen.

    Science.gov (United States)

    Landon, Linda A; Peletskaya, Elena N; Glinsky, Vladislav V; Karasseva, Natalia; Quinn, Thomas P; Deutscher, Susan L

    2003-02-01

    Thomsen-Friedenreich (TF) antigen occurs on approximately 90% of human carcinomas, is likely involved in carcinoma cell homotypic aggregation, and has clinical value as a prognostic indicator and marker of metastasized cells. Previously, we isolated anti-TF antigen peptides from bacteriophage display libraries. These bound to TF antigen on carcinoma cells but were of low affinity and solubility. We hypothesized that peptide amino acid sequence changes would result in increased affinity and solubility, which would translate into improved carcinoma cell binding and increased inhibition of aggregation. The new peptides were more soluble and exhibited up to fivefold increase in affinity (Kd approximately equal to 60 nM). They bound cultured human breast and prostate carcinoma cells at low concentrations, whereas the earlier peptides did not. Moreover, the new peptides were potent inhibitors of homotypic aggregation. The maturated peptides will have expanded applications in basic studies of the TF antigen and particular utility as clinical carcinoma-targeting agents.

  20. Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest

    Directory of Open Access Journals (Sweden)

    Hongjian Li

    2015-06-01

    Full Text Available Docking scoring functions can be used to predict the strength of protein-ligand binding. It is widely believed that training a scoring function with low-quality data is detrimental for its predictive performance. Nevertheless, there is a surprising lack of systematic validation experiments in support of this hypothesis. In this study, we investigated to which extent training a scoring function with data containing low-quality structural and binding data is detrimental for predictive performance. We actually found that low-quality data is not only non-detrimental, but beneficial for the predictive performance of machine-learning scoring functions, though the improvement is less important than that coming from high-quality data. Furthermore, we observed that classical scoring functions are not able to effectively exploit data beyond an early threshold, regardless of its quality. This demonstrates that exploiting a larger data volume is more important for the performance of machine-learning scoring functions than restricting to a smaller set of higher data quality.

  1. Insulin Regulates the Activity of the High-Affinity Choline Transporter CHT.

    Directory of Open Access Journals (Sweden)

    Katherine J Fishwick

    Full Text Available Studies in humans and animal models show that neuronal insulin resistance increases the risk of developing Alzheimer's Disease (AD, and that insulin treatment may promote memory function. Cholinergic neurons play a critical role in cognitive and attentional processing and their dysfunction early in AD pathology may promote the progression of AD pathology. Synthesis and release of the neurotransmitter acetylcholine (ACh is closely linked to the activity of the high-affinity choline transporter protein (CHT, but the impact of insulin receptor signaling and neuronal insulin resistance on these aspects of cholinergic function are unknown. In this study, we used differentiated SH-SY5Y cells stably-expressing CHT proteins to study the effect of insulin signaling on CHT activity and function. We find that choline uptake activity measured after acute addition of 20 nM insulin is significantly lower in cells that were grown for 24 h in media containing insulin compared to cells grown in the absence of insulin. This coincides with loss of ability to increase phospho-Protein Kinase B (PKB/Akt levels in response to acute insulin stimulation in the chronic insulin-treated cells. Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3-kinase in cells significantly lowers phospho-PKB/Akt levels and decreases choline uptake activity. We show total internal reflection microscopy (TIRF imaging of the dynamic movement of CHT proteins in live cells in response to depolarization and drug treatments. These data show that acute exposure of depolarized cells to insulin is coupled to transiently increased levels of CHT proteins at the cell surface, and that this is attenuated by chronic insulin exposure. Moreover, prolonged inhibition of PI3-kinase results in enhanced levels of CHT proteins at the cell surface by decreasing their rate of internalization.

  2. Study on the interaction of uranyl with sulfated beta-cyclodextrin by affinity capillary electrophoresis and molecular dynamics simulation.

    Science.gov (United States)

    Li, Linnan; Zhang, Yiding; Li, Xianjiang; Shen, Sensen; Huang, Hexiang; Bai, Yu; Liu, Huwei

    2016-10-01

    The study on sulfated beta-cyclodextrin binding to uranyl ion helps to get a better understanding of uranyl compounds' intermolecular interaction mechanism and facilitates the structure-based design of uranyl binding molecules. Here we investigated the electromigration of the inclusion complex by using affinity capillary electrophoresis in acidic solution. The binding constant was determined to be logK = 2.96 ± 0.02 (R(2) = 0.996) through nonlinear regression approach. The possible configurations and structural features of the inclusion complex were further studied by molecular dynamics simulation. The results suggest the distinctions of coordination environment and hydration compared with bare uranyl ion in aqueous solution. Thus, two water oxygen atoms coordinated with uranyl in the first hydration shell at 2.55 angstrom instead of five in the same distance range. The binding free energy was calculated as -12.10 ± 1.46 kcal/mol by means of thermodynamic perturbation method. The negative value indicates that the process of S-β-CD capture uranyl ion in the aqueous media is spontaneous. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. α4βδ GABA receptors are high-affinity targets for γ-hydroxybutyric acid (GHB)

    DEFF Research Database (Denmark)

    Absalom, N.; Karim, N.; Eghorn, L.F.

    2012-01-01

    γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinit...... and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism....

  4. A pharmacological profile of the high-affinity GluK5 kainate receptor

    DEFF Research Database (Denmark)

    Møllerud, Stine; Kastrup, Jette Sandholm Jensen; Pickering, Darryl S

    2016-01-01

    -hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2 S,4 R)−4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar...

  5. A high affinity recombinant antibody to the human EphA3 receptor with enhanced ADCC activity.

    Science.gov (United States)

    Tomasevic, Nenad; Luehrsen, Kenneth; Baer, Mark; Palath, Varghese; Martinez, David; Williams, Jason; Yi, Christina; Sujatha-Bhaskar, Swathi; Lanke, Rohini; Leung, John; Ching, Wendy; Lee, Andreia; Bai, Lu; Yarranton, Geoffrey; Bebbington, Christopher

    2014-12-01

    EphA3 is expressed in solid tumors and leukemias and is an attractive target for the therapy. We have generated a panel of Humaneered® antibodies to the ligand-binding domain using a Fab epitope-focused library that has the same specificity as monoclonal antibody mIIIA4. A high-affinity antibody was selected that competes with the mIIIA4 antibody for binding to EphA3 and has an improved affinity of ∼1 nM. In order to generate an antibody with potent cell-killing activity the variable regions were assembled with human IgG1k constant regions and expressed in a Chinese hamster ovary (CHO) cell line deficient in fucosyl transferase. Non-fucosylated antibodies have been reported to have enhanced binding affinity for the IgG receptor CD16a (FcγRIIIa). The affinity of the antibody for recombinant CD16a was enhanced approximately 10-fold. This resulted in enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity against EphA3-expressing leukemic cells, providing a potent antibody for the evaluation as a therapeutic agent.

  6. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    NARCIS (Netherlands)

    Jorgensen, T.R.; vanKuyk, P.A.; Poulsen, B.R.; Ruijter, G.J.G.; Visser, J.; Iversen, J.J.L.

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K-s) of a reference strain was about 15 mu M in glucose-limited chemostat culture. Disruption of mstA

  7. High-affinity single-domain binding proteins with a binary-code interface.

    Science.gov (United States)

    Koide, Akiko; Gilbreth, Ryan N; Esaki, Kaori; Tereshko, Valentina; Koide, Shohei

    2007-04-17

    High degrees of sequence and conformation complexity found in natural protein interaction interfaces are generally considered essential for achieving tight and specific interactions. However, it has been demonstrated that specific antibodies can be built by using an interface with a binary code consisting of only Tyr and Ser. This surprising result might be attributed to yet undefined properties of the antibody scaffold that uniquely enhance its capacity for target binding. In this work we tested the generality of the binary-code interface by engineering binding proteins based on a single-domain scaffold. We show that Tyr/Ser binary-code interfaces consisting of only 15-20 positions within a fibronectin type III domain (FN3; 95 residues) are capable of producing specific binding proteins (termed "monobodies") with a low-nanomolar K(d). A 2.35-A x-ray crystal structure of a monobody in complex with its target, maltose-binding protein, and mutation analysis revealed dominant contributions of Tyr residues to binding as well as striking molecular mimicry of a maltose-binding protein substrate, beta-cyclodextrin, by the Tyr/Ser binary interface. This work suggests that an interaction interface with low chemical diversity but with significant conformational diversity is generally sufficient for tight and specific molecular recognition, providing fundamental insights into factors governing protein-protein interactions.

  8. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.

    Science.gov (United States)

    Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-11-05

    14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [(35)S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile(5,6) deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (Emax) and potency (EC50) than morphine in MVD, RVD or [(35)S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Selective induction of high-ouabain-affinity isoform of Na sup + -K sup + -ATPase by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Haber, R.S.; Loeb, J.N. (Columbia Univ., New York, NY (USA))

    1988-12-01

    The administration of thyroid hormone is known to result in an induction of the Na{sup +}-K{sup +}-adenosinetriphosphatase (Na{sup +}-K{sup +}-ATPase) in rat skeletal muscle and other thyroid hormone-responsive tissues. Since the Na{sup +}-K{sup +}-ATPase in a variety of mammalian tissues has recently been reported to exist in at least two forms distinguishable by differing affinities for the inhibitory cardiac glycoside ouabain. The authors have studied the effects of 3,3{prime},5-triiodo-L-thyronine (T{sub 3}) treatment on these two forms of the enzyme in rat diaphragm. The inhibition of Na{sup +}-K{sup +}-ATPase activity in a crude membrane fraction by varying concentrations of ouabain conformed to a biphasic pattern consistent with the presence of two distinct isoforms with inhibition constants (K{sub I}s) for ouabain of {approximately}10{sup {minus}7} and 10{sup {minus}4} M, respectively. Measurement of the specific binding of ({sup 3}H)ouabain to these membranes confirmed the presence of a class of high-affinity ouabain binding sites with a dissociation constant (K{sub d}) of slightly less than 10{sup {minus}7}M, whose maximal binding capacity was increased by T{sub 3} treatment by 185%. Binding studies in unfractionated homogenates of diaphragm similarly demonstrated the presence of high-affinity sites whose maximal binding capacity was increased by T{sub 3} treatment. Quantitation of both the high- and low-ouabain-affinity forms of the Na{sup +}-K{sup +}-ATPase by ouabain-dependent phosphorylation from ({sup 32}P)orthophosphate confirmed that T{sub 3} treatment markedly increased the number of high-affinity sites while having little effect on the number of low-affinity sites. These observations provide, to our knowledge, the first demonstration that these two forms of the Na{sup +}-K{sup +}-ATPase are subject to selective hormonal induction.

  10. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Justin; Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen; Nakano, Hiroyasu

    2017-09-21

    Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.

  11. Phage Display: A Powerful Technology for the Generation of High-Specificity Affinity Reagents from Alternative Immune Sources.

    Science.gov (United States)

    Finlay, William J J; Bloom, Laird; Grant, Joanne; Franklin, Edward; Shúilleabháin, Deirdre Ní; Cunningham, Orla

    2017-01-01

    Antibodies are critical reagents in many fundamental biochemical methods such as affinity chromatography, enzyme-linked immunosorbent assays (ELISA), flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry techniques. As our understanding of the proteome becomes more complex, demand is rising for rapidly generated antibodies of higher specificity than ever before. It is therefore surprising that few investigators have moved beyond the classical methods of antibody production in their search for new reagents. Despite their long-standing efficacy, recombinant antibody generation technologies such as phage display are still largely the tools of biotechnology companies or research groups with a direct interest in protein engineering. In this chapter, we discuss the inherent limitations of classical polyclonal and monoclonal antibody generation and highlight an attractive alternative: generating high-specificity, high-affinity recombinant antibodies from alternative immune sources such as chickens, via phage display.

  12. Twins in spirit part II: DOTATATE and high-affinity DOTATATE - the clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Brogsitter, Claudia; Zoephel, Klaus; Hartmann, Holger; Kotzerke, Joerg [Technische Universitaet Dresden, Department of Nuclear Medicine, Dresden (Germany); Schottelius, Margret; Wester, Hans-Juergen [Technische Universitaet Muenchen, Pharmaceutical Radiochemistry and Department of Nuclear Medicine, Muenchen (Germany)

    2014-06-15

    Over recent decades interest in diagnosis and treatment of neuroendocrine tumours (NET) has steadily grown. The basis for diagnosis and therapy of NET with radiolabelled somatostatin (hsst) analogues is the variable overexpression of hsst receptors (hsst1-5 receptors). We hypothesized that radiometal derivatives of DOTA-iodo-Tyr{sup 3}-octreotide analogues might be excellent candidates for somatostatin receptor imaging. We therefore explored the diagnostic potential of {sup 68}Ga-DOTA-iodo-Tyr{sup 3}-octreotate [{sup 68}Ga-DOTA,3-iodo-Tyr{sup 3},Thr{sup 8}]octreotide ({sup 68}Ga-HA-DOTATATE; HA, high-affinity) compared to the established {sup 68}Ga-DOTA-Tyr{sup 3}-octreotate ({sup 68}Ga-DOTATATE) in vivo. The study included 23 patients with known somatostatin receptor-positive metastases from NETs, thyroid cancer or glomus tumours who were investigated with both {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE. A patient-based and a lesion-based comparative analysis was carried out of normal tissue distribution and lesion detectability in a qualitative and a semiquantitative manner. {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE showed comparable uptake in the liver (SUV{sub mean} 8.9 ± 2.2 vs. 9.3 ± 2.5, n.s.), renal cortex (SUV{sub mean} 13.3 ± 3.9 vs. 14.5 ± 3.7, n.s.) and spleen (SUV{sub mean} 24.0 ± 6.7 vs. 22.9 ± 7.3, n.s.). A somewhat higher pituitary uptake was found with {sup 68}Ga-HA-DOTATATE (SUV{sub mean} 6.3 ± 1.8 vs. 5.4 ± 2.1, p < 0.05). On a lesion-by-lesion basis a total of 344 lesions were detected. {sup 68}Ga-HA-DOTATATE demonstrated 328 lesions (95.3 % of total lesions seen), and {sup 68}Ga-DOTATATE demonstrated 332 lesions (96.4 %). The mean SUV{sub max} of all lesions was not significantly different between {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE (17.8 ± 11.4 vs. 16.7 ± 10.7, n.s.). Our analysis demonstrated very good concordance between {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE PET data. As the availability and use of {sup

  13. Obinutuzumab-mediated high-affinity ligation of FcγRIIIA/CD16 primes NK cells for IFNγ production.

    Science.gov (United States)

    Capuano, Cristina; Pighi, Chiara; Molfetta, Rosa; Paolini, Rossella; Battella, Simone; Palmieri, Gabriella; Giannini, Giuseppe; Belardinilli, Francesca; Santoni, Angela; Galandrini, Ricciarda

    2017-01-01

    Natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), based on the recognition of IgG-opsonized targets by the low-affinity receptor for IgG FcγRIIIA/CD16, represents one of the main mechanisms by which therapeutic antibodies (mAbs) mediate their antitumor effects. Besides ADCC, CD16 ligation also results in cytokine production, in particular, NK-derived IFNγ is endowed with a well-recognized role in the shaping of adaptive immune responses. Obinutuzumab is a glycoengineered anti-CD20 mAb with a modified crystallizable fragment (Fc) domain designed to increase the affinity for CD16 and consequently the killing of mAb-opsonized targets. However, the impact of CD16 ligation in optimized affinity conditions on NK functional program is not completely understood. Herein, we demonstrate that the interaction of NK cells with obinutuzumab-opsonized cells results in enhanced IFNγ production as compared with parental non-glycoengineered mAb or the reference molecule rituximab. We observed that affinity ligation conditions strictly correlate with the ability to induce CD16 down-modulation and lysosomal targeting of receptor-associated signaling elements. Indeed, a preferential degradation of FcεRIγ chain and Syk kinase was observed upon obinutuzumab stimulation independently from CD16-V158F polymorphism. Although the downregulation of FcεRIγ/Syk module leads to the impairment of cytotoxic function induced by NKp46 and NKp30 receptors, obinutuzumab-experienced cells exhibit an increased ability to produce IFNγ in response to different stimuli. These data highlight a relationship between CD16 aggregation conditions and the ability to promote a degradative pathway of CD16-coupled signaling elements associated to the shift of NK functional program.

  14. Functional characterization of the high affinity IgG Receptor : making heads and tails of FcγRI

    NARCIS (Netherlands)

    van der Poel, C.E.

    2011-01-01

    This thesis focuses on human FcγRI, a high affinity receptor for antibodies of the IgG isotype. IgG is the most abundant antibody type in blood and all currently FDA approved therapeutic antibodies are of the IgG isotype. FcγRI, a member of the activating Fcγ receptors, exists as a complex of a

  15. Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells.

    OpenAIRE

    Matthew, E; Laskin, J D; Zimmerman, E A; Weinstein, I B; Hsu, K C; Engelhardt, D L

    1981-01-01

    We found that two markers of differentiation, tyrosinase (monophenol, dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) activity and melanin synthesis, are induced by diazepam in B16/C3 mouse melanoma cells. We also demonstrated high-affinity binding sites for [3H]diazepam in these cells by radioreceptor assay, and we visualized binding to the cell surface by fluorescence microscopy with a benzodiazepine analog conjugated to a fluorescein-labeled protein. Our studies also showed tha...

  16. Salvage of focal cerebral ischemic damage by transfusion of high O2-affinity recombinant hemoglobin polymers in mouse

    OpenAIRE

    Nemoto, Masaaki; Mito, Toshiaki; Brinigar, William S; Fronticelli, Clara; Koehler, Raymond C.

    2006-01-01

    Cell-free hemoglobin solutions with high oxygen affinity might be beneficial for selectively delivering oxygen to ischemic tissue. A recombinant hybrid hemoglobin molecule was designed using the human α-subunit and the bovine β-subunit, with placement of surface cysteines to permit disulfide bond polymerization of the tetramers. The resulting protein generated from an Escherichia coli expression system had a molecular mass >1 MDa, a P50 of ~3 Torr, and a cooperativity of n = 1.0. Anesthetized...

  17. High-affinity aptamers selectively inhibit human nonpancreatic secretory phospholipase A2 (hnps-PLA2).

    Science.gov (United States)

    Bridonneau, P; Chang, Y F; O'Connell, D; Gill, S C; Snyder, D W; Johnson, L; Goodson, T; Herron, D K; Parma, D H

    1998-03-12

    A family of sequence-related 2'-aminopyrimidine, 2'-hydroxylpurine aptamers, developed by oligonucleotide-based combinatorial chemistry, SELEX (systematic evolution of ligand by exponential enrichment) technology, binds human nonpancreatic secretory phospholipase A2 (hnps-PLA2) with nanomolar affinities and inhibits enzymatic activity. Aptamer 15, derived from the family, binds hnps-PLA2 with a Kd equal to 1.7 +/- 0.2 nM and, in a standard chromogenic assay of enzymatic activity, inhibits hnps-PLA2 with an IC50 of 4 nM, at a mole fraction of substrate concentration of 4 x 10(-6) and a calculated Ki of 0.14 nM. Aptamer 15 is selective for hnps-PLA2, having a 25- and 2500-fold lower affinity, respectively, for the unrelated proteins human neutrophil elastase and human IgG. Contractions of guinea pig lung pleural strips induced by hnps-PLA2 are abolished by 0.3 microM aptamer 15, whereas contractions induced by arachidonic acid are not altered. The structure that is essential for binding and inhibition appears to be a 40-base hairpin/loop motif with an asymmetrical internal loop. The affinity and activity of the aptamers demonstrate the ability of the SELEX process to isolate antagonists of nonnucleic-acid-binding proteins from vast oligonucleotide combinatorial libraries.

  18. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    Science.gov (United States)

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  19. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st......In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together....... High-pressure crystallography is the perfect method for studying intermolecular interactions, by forcing the molecules closer together. In all three studied hydroquinone clathrates, new pressure induced phase transitions have been discovered using a mixture of pentane and isopentane as the pressure...... transmitting medium. Through careful structural analysis combined with theoretical calculations, the structures of all the new high-pressure phases identified herein were determined. In the hydroquinone - methanol and hydroquinone - acetonitrile clathrate structures the phase transitions break the host...

  20. Affinity chromatography with pseudobiospecific ligands on high-performance supports for purification of proteins of biotechnological interest

    Directory of Open Access Journals (Sweden)

    N.B. Iannucci

    2003-03-01

    Full Text Available High-performance affinity matrices were obtained by attaching pseudobiospecific ligands to hollow-fibre membranes. The neutral protease contained in FlavourzymeTM was purified to homogeneity with Yellow 4R-HE affinity hollow-fibre membranes. Immobilisation of Red HE-3B allowed purification of a milk-clotting enzyme obtained by solid-state culture of Mucor bacilliformis. Copper immobilisation through iminodiacetic acid allowed fractionation of Biocon Bioconcentrated PlusTM to separate the pectinesterase-containing fraction. The productivity of the developed processes - 1900, 94 and 750 U/ml.min, respectively - was 10- to 15-fold higher than that achieved with the same ligands immobilised on agarose-based soft gels, mainly due to the shortening of the purification processes.

  1. High- and low-affinity binding of S-citalopram to the human serotonin transporter mutated at 20 putatively important amino acid positions

    DEFF Research Database (Denmark)

    Plenge, Per; Wiborg, Ove

    2005-01-01

    for uptake inhibitors and serotonin (5-HT) have been found on SERT. At one site, uptake inhibitors bind with high-affinity to SERT, thereby blocking the uptake of 5-HT. The other site is a low-affinity allosteric site, which influences the dissociation of uptake inhibitors, such as imipramine, paroxetine...

  2. Label-free assessment of high-affinity antibody-antigen binding constants. Comparison of bioassay, SPR, and PEIA-ellipsometry

    NARCIS (Netherlands)

    Rispens, T.; te Velthuis, H.; Hemker, P.; Speijer, H.; Hermens, W.; Aarden, L.

    2011-01-01

    Assessment of high-affinity antibody-antigen binding parameters is important in such diverse areas as selection of therapeutic antibodies, detection of unwanted hormones in cattle and sensitive immunoassays in clinical chemistry. Label-free assessment of binding affinities is often carried out by

  3. Structure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy

    Directory of Open Access Journals (Sweden)

    Eszter Lázár-Molnár

    2017-03-01

    Full Text Available Programmed Cell Death-1 (PD-1 is an inhibitory immune receptor, which plays critical roles in T cell co-inhibition and exhaustion upon binding to its ligands PD-L1 and PD-L2. We report the crystal structure of the human PD-1 ectodomain and the mapping of the PD-1 binding interface. Mutagenesis studies confirmed the crystallographic interface, and resulted in mutant PD-1 receptors with altered affinity and ligand-specificity. In particular, a high-affinity mutant PD-1 (HA PD-1 exhibited 45 and 30-fold increase in binding to PD-L1 and PD-L2, respectively, due to slower dissociation rates. This mutant (A132L was used to engineer a soluble chimeric Ig fusion protein for cell-based and in vivo studies. HA PD-1 Ig showed enhanced binding to human dendritic cells, and increased T cell proliferation and cytokine production in a mixed lymphocyte reaction (MLR assay. Moreover, in an experimental model of murine Lewis lung carcinoma, HA PD-1 Ig treatment synergized with radiation therapy to decrease local and metastatic tumor burden, as well as in the establishment of immunological memory responses. Our studies highlight the value of structural considerations in guiding the design of a high-affinity chimeric PD-1 Ig fusion protein with robust immune modulatory properties, and underscore the power of combination therapies to selectively manipulate the PD-1 pathway for tumor immunotherapy.

  4. ZK91587: a novel synthetic antimineralocorticoid displays high affinity for corticosterone (type I) receptors in the rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Sutanto, W.; de Kloet, E.R.

    1988-01-01

    In vitro cytosol binding assays have shown the properties of binding of a novel steroid, ZK91587 (15..beta.., 16..beta..b-methylene-mexrenone) in the brain of rats. Scatchard and Woolf analyses of the binding data reveal the binding of (/sup 3/H) ZK91587 to the total hippocampal coritcosteroid receptor sites with high affinity, and low capacity. When 100-fold excess RU28362 was included simultaneously with (/sup 3/H) ZK91587, the labelled steroid binds with the same affinity and capacity. Relative binding affinities (RBA) of various steroids for the Type I or Type II corticosteroid receptor in these animals are: Type I: ZK91587 = corticosterone (B) > cortisol (F); Type II: B > F >>> ZK91587. In the binding kinetic study, ZK91587 has a high association rate of binding in the rat. The steroid dissociates following a one slope pattern, indicating, the present data demonstrate that in the rat hippocampus, ZK91587 binds specifically to the Type I (corticosterone-preferring/mineralocorticoid-like receptor.

  5. Structure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lázár-Molnár, Eszter; Scandiuzzi, Lisa; Basu, Indranil; Quinn, Thomas; Sylvestre, Eliezer; Palmieri, Edith; Ramagopal, Udupi A.; Nathenson, Stanley G.; Guha, Chandan; Almo, Steven C.

    2017-03-01

    Programmed Cell Death-1 (PD-1) is an inhibitory immune receptor, which plays critical roles in T cell co-inhibition and exhaustion upon binding to its ligands PD-L1 and PD-L2. We report the crystal structure of the human PD-1 ectodomain and the mapping of the PD-1 binding interface. Mutagenesis studies confirmed the crystallographic interface, and resulted in mutant PD-1 receptors with altered affinity and ligand-specificity. In particular, a high-affinity mutant PD-1 (HA PD-1) exhibited 45 and 30-fold increase in binding to PD-L1 and PD-L2, respectively, due to slower dissociation rates. This mutant (A132L) was used to engineer a soluble chimeric Ig fusion protein for cell-based and in vivo studies. HA PD-1 Ig showed enhanced binding to human dendritic cells, and increased T cell proliferation and cytokine production in a mixed lymphocyte reaction (MLR) assay. Moreover, in an experimental model of murine Lewis lung carcinoma, HA PD-1 Ig treatment synergized with radiation therapy to decrease local and metastatic tumor burden, as well as in the establishment of immunological memory responses. Our studies highlight the value of structural considerations in guiding the design of a high-affinity chimeric PD-1 Ig fusion protein with robust immune modulatory properties, and underscore the power of combination therapies to selectively manipulate the PD-1 pathway for tumor immunotherapy.

  6. Evaluation of the full evaporation technique for quantitative analysis of high boiling compounds with high affinity for apolar matrices.

    Science.gov (United States)

    van Boxtel, Niels; Wolfs, Kris; van Schepdael, Ann; Adams, Erwin

    2014-06-27

    In order to reduce inaccuracies due to possible matrix effects in conventional static headspace-gas chromatography (sHS-GC), it is standard practice to match the composition of calibration standards towards the composition of the sample to be analysed by adding blank matrix. However, the latter is not always available and in that case the full evaporation technique (FET) could be a solution. With FET a small sample volume is introduced in a HS vial and compounds of interest are completely evaporated. Hence no equilibrium between the condensed phase and vapour phase exists. Without the existence of an equilibrium, matrix effects are less likely to occur. Another issue often encountered with sHS-sampling is that low vapour pressure compounds with a high affinity for the dilution medium show a limited sensitivity. FET has proven to be an appropriate solution to address this problem too. In this work, the applicability of FET for the quantitative analysis of high boiling compounds in different complex apolar matrices is examined. Data show that FET is an excellent tool to overcome matrix effects often encountered with conventional sHS analysis. The tested method shows excellent accuracy with recovery values around 100% as well as repeatability with RSD values around 1% for the quantification of high boiling compounds (bp>200°C) such as camphor, menthol, methyl salicylate and ethyl salicylate in various matrices. LOQ values were found to be around 0.3μg per vial. Following validation of the technique, several topical pharmaceutical formulations like ThermoCream(®), Reflexspray(®), Vicks Vaporub(®) and Radosalil(®) were examined. For the latter, a comparison has been made with a sHS-method described in literature. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra.

    Science.gov (United States)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J P; Holstein, Thomas W; Gründer, Stefan

    2010-04-16

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission.

  8. Evaluation of non-covalent interactions between serum albumin and green tea catechins by affinity capillary electrophoresis.

    Science.gov (United States)

    Zinellu, Angelo; Sotgia, Salvatore; Scanu, Bastianina; Pisanu, Elisabetta; Giordo, Roberta; Cossu, Annalisa; Posadino, Anna Maria; Carru, Ciriaco; Pintus, Gianfranco

    2014-11-07

    The natural antioxidant-associated biological responses appear contradictory since biologically active dosages registered in vitro experiments are considerably higher if compared to concentrations found in vivo. The recent research indicates that natural antioxidants, including the major catechins of green tea epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) form non-covalent complexes with albumin, a crucial aspect that may modulate their plasma concentration, tissue delivery and biological activity. Affinity capillary electrophoresis (ACE) was used to characterize the binding of the four catechins to human serum albumin (HSA) and bovine serum albumin (BSA) at near-physiological conditions: 10 mmol/L phosphate buffer, HEPES 50 mmol/L (pH 7.5), temperature 37°C. The studied flavonoids displayed affinities toward the albumin with binding constants in the range 10(3)-10(5)M(-1), with a greater affinity of catechins toward HSA than BSA (between 3 and 3.5 fold higher). We also confirmed that catechins having a galloyl moiety (ECG and EGCG) have a higher binding affinity toward albumin than the catechins lacking the galloyl moiety (EC and EGC), and that for both albumins the order of affinity is EC

  9. Exploring Non-obvious Hydrophobic Binding Pockets on Protein Surfaces: Increasing Affinities in Peptide-Protein Interactions.

    Science.gov (United States)

    Balliu, Aleksandra; Baltzer, Lars

    2017-07-18

    A 42-residue polypeptide conjugated to a small-molecule organic ligand capable of targeting the phosphorylated side chain of Ser15 was shown to bind glycogen phosphorylase a (GPa) with a KD value of 280 nm. The replacement of hydrophobic amino acids by Ala reduced affinities, whereas the incorporation of l-2-aminooctanoic acid (Aoc) increased them. Replacing Nle5, Ile9 and Leu12 by Aoc reduced the KD value from 280 to 27 nm. "Downsizing" the 42-mer to an undecamer gave rise to an affinity for GPa an order of magnitude lower, but the undecamer in which Nle5, Ile9 and Leu12 were replaced by Aoc showed a KD value of 550 nm, comparable with that of the parent 42-mer. The use of Aoc residues offers a convenient route to increased affinity in protein recognition as well as a strategy for the "downsizing" of peptides essentially without loss of affinity. The results show that hydrophobic binding sites can be found on protein surfaces by comparing the affinities of polypeptide conjugates in which Aoc residues replace Nle, Ile, Leu or Phe with those of their unmodified counterparts. Polypeptide conjugates thus provide valuable opportunities for the optimization of peptides and small organic compounds in biotechnology and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Peptide Binding to HLA Class I Molecules: Homogenous, High-Throughput Screening, and Affinity Assays

    DEFF Research Database (Denmark)

    Harndahl, Mikkel; Justesen, Sune Frederik Lamdahl; Lamberth, Kasper

    2009-01-01

    present a homogenous, proximity-based assay for detection of peptide binding to HLA class I molecules. It uses a conformation-dependent anti-HLA class I antibody, W6/32, as one tag and a biotinylated recombinant HLA class I molecule as the other tag, and a proximity-based signal is generated through...... the luminescent oxygen channeling immunoassay technology (abbreviated LOCI and commercialized as AlphaScreen (TM)). Compared with an enzyme-linked immunosorbent assay-based peptide-HLA class I binding assay, the LOCI assay yields virtually identical affinity measurements, although having a broader dynamic range...

  11. From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry.

    Science.gov (United States)

    Li, Xu; Wang, Wenqi; Chen, Junjie

    2015-01-01

    Signal transductions are the basis of biological activities in all living organisms. Studying the signaling pathways, especially under physiological conditions, has become one of the most important facets of modern biological research. During the last decade, MS has been used extensively in biological research and is proven to be effective in addressing important biological questions. Here, we review the current progress in the understanding of signaling networks using MS approaches. We will focus on studies of protein-protein interactions that use affinity purification followed by MS approach. We discuss obstacles to affinity purification, data processing, functional validation, and identification of transient interactions and provide potential solutions for pathway-specific proteomics analysis, which we hope one day will lead to a comprehensive understanding of signaling networks in humans. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Positron-attachment to small molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027 (Japan)

    2015-12-31

    To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.

  13. Irreversible blockade of the high and low affinity ( sup 3 H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    Energy Technology Data Exchange (ETDEWEB)

    Krizsan, D. (EGIS Pharmaceutical Works, Budapest (Hungary)); Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A. (Biological Research Center of the Hungarian Academy of Sciences, Szeged (Hungary)); Hosztafi, S. (Alkaloida Chemical Works, Tiszavasvari (Hungary))

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ({sup 3}H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na{sup +}-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ({sup 3}H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested.

  14. Molecular switch for CLC-K Cl- channel block/activation: optimal pharmacophoric requirements towards high-affinity ligands.

    Science.gov (United States)

    Liantonio, Antonella; Picollo, Alessandra; Carbonara, Giuseppe; Fracchiolla, Giuseppe; Tortorella, Paolo; Loiodice, Fulvio; Laghezza, Antonio; Babini, Elena; Zifarelli, Giovanni; Pusch, Michael; Camerino, Diana Conte

    2008-01-29

    ClC-Ka and ClC-Kb Cl(-) channels are pivotal for renal salt reabsorption and water balance. There is growing interest in identifying ligands that allow pharmacological interventions aimed to modulate their activity. Starting from available ligands, we followed a rational chemical strategy, accompanied by computational modeling and electrophysiological techniques, to identify the molecular requisites for binding to a blocking or to an activating binding site on ClC-Ka. The major molecular determinant that distinguishes activators from blockers is the level of planarity of the aromatic portions of the molecules: only molecules with perfectly coplanar aromatic groups display potentiating activity. Combining several molecular features of various CLC-K ligands, we discovered that phenyl-benzofuran carboxylic acid derivatives yield the most potent ClC-Ka inhibitors so far described (affinity <10 microM). The increase in affinity compared with 3-phenyl-2-p-chlorophenoxy-propionic acid (3-phenyl-CPP) stems primarily from the conformational constraint provided by the phenyl-benzofuran ring. Several other key structural elements for high blocking potency were identified through a detailed structure-activity relationship study. Surprisingly, some benzofuran-based drugs inhibit ClC-Kb with a similar affinity of <10 microM, thus representing the first inhibitors for this CLC-K isoform identified so far. Based on our data, we established a pharmacophore model that will be useful for the development of drugs targeting CLC-K channels.

  15. Application of frontal affinity chromatography with mass spectrometry (FAC-MS) for stereospecific ligand-macromolecule interaction, detection and screening.

    Science.gov (United States)

    Slon-Usakiewicz, Jacek J; Redden, Peter

    2009-01-01

    Using frontal affinity chromatography coupled to mass spectrometry (FAC-MS) we have established a general stereoselective detection and screening method of intact racemates which can generate binding affinity information about the individual enantiomers that is also applicable to other ligand isomeric mixtures. FAC-MS has been shown to be a versatile technology utilizing direct binding in screening assays and extending its application toward chiral drug development, especially in the early discovery stages as well as its utility in secondary Structure-activity relationship (SAR) studies allow this platform to make a significant step toward facilitating the demand for pure enantiomeric drugs. Using renin, which is as an important drug target, we show that for detection and screening purposes there is no need to first use timely and costly methods of separating racemates in order to get precise information about the binding affinities of the composite enantiomers.

  16. Affine-Invariant Geometric Constraints-Based High Accuracy Simultaneous Localization and Mapping

    Directory of Open Access Journals (Sweden)

    Gangchen Hua

    2017-01-01

    Full Text Available In this study we describe a new appearance-based loop-closure detection method for online incremental simultaneous localization and mapping (SLAM using affine-invariant-based geometric constraints. Unlike other pure bag-of-words-based approaches, our proposed method uses geometric constraints as a supplement to improve accuracy. By establishing an affine-invariant hypothesis, the proposed method excludes incorrect visual words and calculates the dispersion of correctly matched visual words to improve the accuracy of the likelihood calculation. In addition, camera’s intrinsic parameters and distortion coefficients are adequate for this method. 3D measuring is not necessary. We use the mechanism of Long-Term Memory and Working Memory (WM to manage the memory. Only a limited size of the WM is used for loop-closure detection; therefore the proposed method is suitable for large-scale real-time SLAM. We tested our method using the CityCenter and Lip6Indoor datasets. Our proposed method results can effectively correct the typical false-positive localization of previous methods, thus gaining better recall ratios and better precision.

  17. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography.

    Science.gov (United States)

    Sadavarte, Rahul; Spearman, Maureen; Okun, Natalie; Butler, Michael; Ghosh, Raja

    2014-06-01

    Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc. © 2014 Wiley Periodicals, Inc.

  18. Quantitative Assessment of the Effects of Trypsin Digestion Methods on Affinity Purification-Mass Spectrometry-based Protein-Protein Interaction Analysis.

    Science.gov (United States)

    Zhang, Yueqing; Sun, Hong; Zhang, Jing; Brasier, Allan R; Zhao, Yingxin

    2017-08-04

    Affinity purification-mass spectrometry (AP-MS) has become the method of choice for discovering protein-protein interactions (PPIs) under native conditions. The success of AP-MS depends on the efficiency of trypsin digestion and the recovery of the tryptic peptides for MS analysis. Several different protocols have been used for trypsin digestion of protein complexes in AP-MS studies, but no systematic studies have been conducted on the impact of trypsin digestion conditions on the identification of PPIs. Here, we used NFκB/RelA and Bromodomain-containing protein 4 (BRD4) as baits and test five distinct trypsin digestion methods (two using "on-beads," three using "elution-digestion" protocols). Although the performance of the trypsin digestion protocols change slightly depending on the different baits, antibodies and cell lines used, we found that elution-digestion methods consistently outperformed on-beads digestion methods. The high-abundance interactors can be identified universally by all five methods, but the identification of low-abundance RelA interactors is significantly affected by the choice of trypsin digestion method. We also found that different digestion protocols influence the selected reaction monitoring (SRM)-MS quantification of PPIs, suggesting that optimization of trypsin digestion conditions may be required for robust targeted analysis of PPIs.

  19. Cross-linked multilayer-dye films deposited onto silica surfaces with high affinity for pepsin

    Science.gov (United States)

    Bucatariu, Florin; Ghiorghita, Claudiu-Augustin; Cocarta, Ana-Irina; Dragan, Ecaterina Stela

    2016-12-01

    Cross-linked thin films based on pH-responsive polymers with a specific ligand inside the organic layer are useful materials in separation processes or in fabrication of controlled delivery systems. Herein, we report the step-by-step deposition of polymer multilayers based on poly(ethyleneimine) (PEI), poly(acrylic acid) (PAA) and poly(sodium methacrylate) (PMAA) followed by the Congo red (CR) immobilization onto composite Daisogel silica microparticles and silicon wafers. The non-crosslinked composites were not stable in extreme basic medium (pH = 13), while thermal and chemical cross-linked samples with CR inside were stable over a wide range of pH. The interaction properties of different proteins [pepsin (PEP), lysozyme, trypsin, bovine serum albumin] with modified solid surfaces were followed by potentiometric titrations, UV and AFM measurements. Only the PEP macromolecules were sorbed onto the Daisogel composite microparticles with CR inside the cross-linked multilayer. The maximum sorbed amount was nearly 200 mg PEP/g Daisogel//(PEI/PAA)4.5 + CR. This high sorbed amount was in accordance with the AFM images, the average high and roughness increased drastically after the sorption of PEP.

  20. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni

    2017-10-12

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  1. Development of immobilized Sn(4+) affinity chromatography material for highly selective enrichment of phosphopeptides.

    Science.gov (United States)

    Lin, Haizhu; Deng, Chunhui

    2016-11-01

    In this work, we first immobilized tin(IV) ion on polydopamine-coated magnetic graphene (magG@PDA) to synthesize Sn(4+) -immobilized magG@PDA (magG@PDA-Sn(4+) ) and successfully applied the material to highly selective enrichment of phosphopeptides. The material gathered the advantages of large surface area of graphene, superparamagnetism of Fe3 O4 , good hydrophilicity and biocompatibility of polydopamine, and strong interaction between Sn(4+) and phosphopeptides. The enrichment performance of magG@PDA-Sn(4+) toward phosphopeptides from digested β-casein at different concentrations, with and without added digested BSA was investigated and compared with magG@PDA-Ti(4+) . The results showed high selectivity and sensitivity of the Sn(4+) -IMAC material toward phosphopeptides, as good as the Ti(4+) -IMAC material. Finally, magG@PDA-Sn(4+) was applied to the analysis of endogenous phosphopeptides from a real sample, human saliva, with both MALDI-TOF MS and nano-LC-ESI-MS/MS. The results indicated that the as-synthesized Sn(4+) -IMAC material not only has good enrichment performance, but also could serve as a supplement to the Ti(4+) -IMAC material and expand the phosphopeptide coverage enriched by the single Ti(4+) -IMAC material, demonstrating the broad application prospects of magG@PDA-Sn(4+) in phosphoproteome research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  3. High Affinity, Developability and Functional Size: The Holy Grail of Combinatorial Antibody Library Generation

    Directory of Open Access Journals (Sweden)

    Kathrin Tissot

    2011-05-01

    Full Text Available Since the initial description of phage display technology for the generation of human antibodies, a variety of selection methods has been developed. The most critical parameter for all in vitro-based approaches is the quality of the antibody library. Concurrent evolution of the libraries has allowed display and selection technologies to reveal their full potential. They come in different flavors, from naïve to fully synthetic and differ in terms of size, quality, method of preparation, framework and CDR composition. Early on, the focus has mainly been on affinities and thus on library size and diversity. Subsequently, the increased awareness of developability and cost of goods as important success factors has spurred efforts to generate libraries with improved biophysical properties and favorable production characteristics. More recently a major focus on reduction of unwanted side effects through reduced immunogenicity and improved overall biophysical behavior has led to a re-evaluation of library design.

  4. Simple and Effective Affinity Purification Procedures for Mass Spectrometry-Based Identification of Protein-Protein Interactions in Cell Signaling Pathways.

    Science.gov (United States)

    Kwan, Julian H M; Emili, Andrew

    2016-01-01

    Identification of protein-protein interactions can be a critical step in understanding the function and regulation of a particular protein and for exploring intracellular signaling cascades. Affinity purification coupled to mass spectrometry (APMS) is a powerful method for isolating and characterizing protein complexes. This approach involves the tagging and subsequent enrichment of a protein of interest along with any stably associated proteins that bind to it, followed by the identification of the interacting proteins using mass spectrometry. The protocol described here offers a quick and simple method for routine sample preparation for APMS analysis of suitably tagged human cell lines.

  5. Identification of a novel snake peptide toxin displaying high affinity and antagonist behaviour for the α2-adrenoceptors.

    Science.gov (United States)

    Rouget, Céline; Quinton, Loïc; Maïga, Arhamatoulaye; Gales, Céline; Masuyer, Geoffrey; Malosse, Christian; Chamot-Rooke, Julia; Thai, Robert; Mourier, Gilles; De Pauw, Edwin; Gilles, Nicolas; Servent, Denis

    2010-11-01

    BACKGROUND AND PURPOSE Muscarinic and adrenergic G protein-coupled receptors (GPCRs) are the targets of rare peptide toxins isolated from snake or cone snail venoms. We used a screen to identify novel toxins from Dendroaspis angusticeps targeting aminergic GPCRs. These toxins may offer new candidates for the development of new tools and drugs. EXPERIMENTAL APPROACH In binding experiments with (3) H-rauwolscine, we studied the interactions of green mamba venom fractions with α(2) -adrenoceptors from rat brain synaptosomes. We isolated, sequenced and chemically synthesized a novel peptide, ρ-Da1b. This peptide was pharmacologically characterized using binding experiments and functional tests on human α(2)-adrenoceptors expressed in mammalian cells. KEY RESULTS ρ-Da1b, a 66-amino acid peptide stabilized by four disulphide bridges, belongs to the three-finger-fold peptide family. Its synthetic homologue inhibited 80% of (3) H-rauwolscine binding to the three α(2)-adrenoceptor subtypes, with an affinity between 14 and 73 nM and Hill slopes close to unity. Functional experiments on α(2A) -adrenoceptor demonstrated that ρ-Da1b is an antagonist, shifting adrenaline activation curves to the right. Schild regression revealed slopes of 0.97 and 0.67 and pA(2) values of 5.93 and 5.32 for yohimbine and ρ-Da1b, respectively. CONCLUSIONS AND IMPLICATIONS ρ-Da1b is the first toxin identified to specifically interact with α(2)-adrenoceptors, extending the list of class A GPCRs sensitive to toxins. Additionally, its affinity and atypical mode of interaction open up the possibility of its use as a new pharmacological tool, in the study of the physiological roles of α(2)-adrenoceptor subtypes. British Journal of Pharmacology © 2010 The British Pharmacological Society. No claim to original French government works.

  6. Engineering Streptavidin and a Streptavidin-Binding Peptide with Infinite Binding Affinity and Reversible Binding Capability: Purification of a Tagged Recombinant Protein to High Purity via Affinity-Driven Thiol Coupling.

    Directory of Open Access Journals (Sweden)

    Dawson Fogen

    Full Text Available To extend and improve the utility of the streptavidin-binding peptide tag (SBP-tag in applications ranging from affinity purification to the reversible immobilization of recombinant proteins, a cysteine residue was introduced to the streptavidin mutein SAVSBPM18 and the SBP-tag to generate SAVSBPM32 and SBP(A18C, respectively. This pair of derivatives is capable of forming a disulfide bond through the newly introduced cysteine residues. SAVSBPM32 binds SBP-tag and biotin with binding affinities (Kd ~ 10-8M that are similar to SAVSBPM18. Although SBP(A18C binds to SAVSBPM32 more weakly than SBP-tag, the binding affinity is sufficient to bring the two binding partners together efficiently before they are locked together via disulfide bond formation-a phenomenon we have named affinity-driven thiol coupling. Under the condition with SBP(A18C tags in excess, two SBP(A18C tags can be captured by a tetrameric SAVSBPM32. The stoichiometry of the disulfide-bonded SAVSBPM32-SBP(A18C complex was determined using a novel two-dimensional electrophoresis method which has general applications for analyzing the composition of disulfide-bonded protein complexes. To illustrate the application of this reversible immobilization technology, optimized conditions were established to use the SAVSBPM32-affinity matrix for the purification of a SBP(A18C-tagged reporter protein to high purity. Furthermore, we show that the SAVSBPM32-affinity matrix can also be applied to purify a biotinylated protein and a reporter protein tagged with the unmodified SBP-tag. The dual (covalent and non-covalent binding modes possible in this system offer great flexibility to many different applications which need reversible immobilization capability.

  7. New high affinity monoclonal antibodies recognize non-overlapping epitopes on mesothelin for monitoring and treating mesothelioma.

    Science.gov (United States)

    Zhang, Yi-Fan; Phung, Yen; Gao, Wei; Kawa, Seiji; Hassan, Raffit; Pastan, Ira; Ho, Mitchell

    2015-05-21

    Mesothelin is an emerging cell surface target in mesothelioma and other solid tumors. Most antibody drug candidates recognize highly immunogenic Region I (296-390) on mesothelin. Here, we report a group of high-affinity non-Region I rabbit monoclonal antibodies. These antibodies do not compete for mesothelin binding with the immunotoxin SS1P that binds Region I of mesothelin. One pair of antibodies (YP218 and YP223) is suitable to detect soluble mesothelin in a sandwich ELISA with high sensitivity. The new assay can also be used to measure serum mesothelin concentration in mesothelioma patients, indicating its potential use for monitoring patients treated with current antibody therapies targeting Region I. The antibodies are highly specific and sensitive in immunostaining of mesothelioma. To explore their use in tumor therapy, we have generated the immunotoxins based on the Fv of these antibodies. One immunotoxin (YP218 Fv-PE38) exhibits potent anti-tumor cytotoxicity towards primary mesothelioma cell lines in vitro and an NCI-H226 xenograft tumor in mice. Furthermore, we have engineered a humanized YP218 Fv that retains full binding affinity for mesothelin-expressing cancer cells. In conclusion, with their unique binding properties, these antibodies may be promising candidates for monitoring and treating mesothelioma and other mesothelin-expressing cancers.

  8. Content-Based High-Resolution Remote Sensing Image Retrieval via Unsupervised Feature Learning and Collaborative Affinity Metric Fusion

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2016-08-01

    Full Text Available With the urgent demand for automatic management of large numbers of high-resolution remote sensing images, content-based high-resolution remote sensing image retrieval (CB-HRRS-IR has attracted much research interest. Accordingly, this paper proposes a novel high-resolution remote sensing image retrieval approach via multiple feature representation and collaborative affinity metric fusion (IRMFRCAMF. In IRMFRCAMF, we design four unsupervised convolutional neural networks with different layers to generate four types of unsupervised features from the fine level to the coarse level. In addition to these four types of unsupervised features, we also implement four traditional feature descriptors, including local binary pattern (LBP, gray level co-occurrence (GLCM, maximal response 8 (MR8, and scale-invariant feature transform (SIFT. In order to fully incorporate the complementary information among multiple features of one image and the mutual information across auxiliary images in the image dataset, this paper advocates collaborative affinity metric fusion to measure the similarity between images. The performance evaluation of high-resolution remote sensing image retrieval is implemented on two public datasets, the UC Merced (UCM dataset and the Wuhan University (WH dataset. Large numbers of experiments show that our proposed IRMFRCAMF can significantly outperform the state-of-the-art approaches.

  9. High-affinity CCK receptors are coupled to phospholipase A2 pathways to mediate pancreatic amylase secretion.

    Science.gov (United States)

    Tsunoda, Y; Owyang, C

    1995-09-01

    It is well recognized that JMV-180, a cholecystokinin (CCK) analogue, acts as an agonist on the high-affinity CCK receptor in pancreatic acinar cells. It caused Ca2+ oscillations and amylase secretion in a manner independent of the phospholipase C-inositol 1,4,5-trisphosphate (IP3) pathway. We investigated the mechanism by which the high-affinity CCK receptor utilizes IP3-independent Ca2+ signal transduction to mediate amylase secretion. JMV-180 (1-1,000 nM)-stimulated Ca2+ oscillations and amylase secretion were significantly inhibited by the phospholipase A2 (PLA2) inhibitor, ONO-RS-082 (10 microM). Using streptolysin O-permeabilized cells, we showed that a porcine pancreatic anti-PLA2 antibody from rabbit serum (250 ng/ml) inhibited JMV-180-stimulated amylase secretion. In contrast to CCK octapeptide, JMV-180 (1 nM-10 microM) had no effect on intracellular IP3 levels. These concentrations of JMV-180 did, however, increase intracellular levels of arachidonic acid (AA) metabolite by 2.5-fold in a biphasic manner. Application of exogenous AA (10 microM) released 60% of ATP-incorporated 45Ca2+ from permeabilized pancreatic acini within 3 min in a transient manner. We also showed that active phorbol ester (100 nM) inhibited Ca2+ oscillations and amylase secretion stimulated by JMV-180 (10 nM) or CCK-OPE (100 nM). Application of Mn2+ (2 mM) to superfused acini resulted in a rapid quench of fura 2 fluorescence during 10 nM JMV-180 stimulation, suggesting an involvement of extracellular Ca2+ influx. However, the major source of Ca2+ utilized for oscillations during high-affinity CCK receptor activation was intracellular. In conclusion, we have demonstrated that the high-affinity CCK receptors are coupled to PLA2 pathways to produce AA, which mediates cytosolic Ca2+ oscillation and monophasic amylase secretion, in rat pancreatic acinar cells.

  10. Structural Basis for Species Selectivity in the HIV-1 gp120-CD4 Interaction: Restoring Affinity to gp120 in Murine CD4 Mimetic Peptides

    Directory of Open Access Journals (Sweden)

    Kristin Kassler

    2011-01-01

    Full Text Available The first step of HIV-1 infection involves interaction between the viral glycoprotein gp120 and the human cellular receptor CD4. Inhibition of the gp120-CD4 interaction represents an attractive strategy to block HIV-1 infection. In an attempt to explore the known lack of affinity of murine CD4 to gp120, we have investigated peptides presenting the putative gp120-binding site of murine CD4 (mCD4. Molecular modeling indicates that mCD4 protein cannot bind gp120 due to steric clashes, while the larger conformational flexibility of mCD4 peptides allows an interaction. This finding is confirmed by experimental binding assays, which also evidenced specificity of the peptide-gp120 interaction. Molecular dynamics simulations indicate that the mCD4-peptide stably interacts with gp120 via an intermolecular β-sheet, while an important salt-bridge formed by a C-terminal lysine is lost. Fixation of the C-terminus by introducing a disulfide bridge between the N- and C-termini of the peptide significantly enhanced the affinity to gp120.

  11. High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li; Li Chunzhong [East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China)], E-mail: czli@ecust.edu.cn; Senna, Mamoru [Keio University, Department of Applied Chemistry, Faculty of Science and Technology (Japan)

    2007-10-15

    Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA-SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic-organic interfacial adhesion. The newly developed HA-SF composites are expected to be attractive biomedical materials for bone repair and remodeling.

  12. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups

    Directory of Open Access Journals (Sweden)

    Sarah Piché-Choquette

    2016-03-01

    Full Text Available Soil microbial communities are continuously exposed to H2 diffusing into the soil from the atmosphere. N2-fixing nodules represent a peculiar microniche in soil where H2 can reach concentrations up to 20,000 fold higher than in the global atmosphere (0.530 ppmv. In this study, we investigated the impact of H2 exposure on soil bacterial community structure using dynamic microcosm chambers simulating soil H2 exposure from the atmosphere and N2-fixing nodules. Biphasic kinetic parameters governing H2 oxidation activity in soil changed drastically upon elevated H2 exposure, corresponding to a slight but significant decay of high affinity H2-oxidizing bacteria population, accompanied by an enrichment or activation of microorganisms displaying low-affinity for H2. In contrast to previous studies that unveiled limited response by a few species, the relative abundance of 958 bacterial ribotypes distributed among various taxonomic groups, rather than a few distinct taxa, was influenced by H2 exposure. Furthermore, correlation networks showed important alterations of ribotype covariation in response to H2 exposure, suggesting that H2 affects microbe-microbe interactions in soil. Taken together, our results demonstrate that H2-rich environments exert a direct influence on soil H2-oxidizing bacteria in addition to indirect effects on other members of the bacterial communities.

  13. [Identification of the interacting proteins with S100A8 or S100A9 by affinity purification and mass spectrometry].

    Science.gov (United States)

    Wang, Jing; Zhang, Xuemei; Li, Zheng; Li, Xiayu; Ma, Jian; Shen, Shourong

    2017-04-28

    To identify the interacting proteins with S100A8 or S100A9 in HEK293 cell line by flag-tag affinity purification and liquid chromatography mass spectrometry/mass spectrometry (LC-MS/MS).
 Methods: The p3×Flag-CMV-S100A8 and p3×Flag-CMV-S100A9 expression vectors were constructed by inserting S100A8 or S100A9 coding sequence. The recombinant plasmids were then transfected into HEK293 cells. Affinity purification and LC-MS/MS were applied to identify the proteins interacting with S100A8 or S100A9. Bioinformatics analysis was used to seek the gene ontology of the interacting proteins. Co-immunoprecipitation (Co-IP) was applied to confirm the proteins interacted with S100A8 or S100A9.
 Results: Fourteen proteins including pyruvate kinase, muscle (PKM), nucleophosmin (NPM1) and eukaryotic translation initiation factor 5A (EIF5A), which potentially interacted with S100A8, were successfully identified by Flag-tag affinity purification followed by LC-MS/MS analysis. Six proteins, such as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (14-3-3ε) and PKM, which potentially interacted with S100A9, were successfully identified. Gene ontology analysis of the identified proteins suggested that proteins interacted with S100A8 or S100A9 were involved in several biological pathways, including canonical glycolysis, positive regulation of NF-κB transcription factor activity, negative regulation of apoptotic process, cell-cell adhesion, etc. Co-IP experiment confirmed that PKM2 can interact with both S100A8 and S100A9, and 14-3-3ε can interact with S100A8.
 Conclusion: PKM2 is identified to interact with both S100A8 and S100A9, while 14-3-3ε can interact with S100A9. These results may provide a new clue for the role of S100A8 or S100A9 in the progression of colitis-associated colorectal cancer.

  14. Structure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy.

    Science.gov (United States)

    Lázár-Molnár, Eszter; Scandiuzzi, Lisa; Basu, Indranil; Quinn, Thomas; Sylvestre, Eliezer; Palmieri, Edith; Ramagopal, Udupi A; Nathenson, Stanley G; Guha, Chandan; Almo, Steven C

    2017-03-01

    Programmed Cell Death-1 (PD-1) is an inhibitory immune receptor, which plays critical roles in T cell co-inhibition and exhaustion upon binding to its ligands PD-L1 and PD-L2. We report the crystal structure of the human PD-1 ectodomain and the mapping of the PD-1 binding interface. Mutagenesis studies confirmed the crystallographic interface, and resulted in mutant PD-1 receptors with altered affinity and ligand-specificity. In particular, a high-affinity mutant PD-1 (HA PD-1) exhibited 45 and 30-fold increase in binding to PD-L1 and PD-L2, respectively, due to slower dissociation rates. This mutant (A132L) was used to engineer a soluble chimeric Ig fusion protein for cell-based and in vivo studies. HA PD-1 Ig showed enhanced binding to human dendritic cells, and increased T cell proliferation and cytokine production in a mixed lymphocyte reaction (MLR) assay. Moreover, in an experimental model of murine Lewis lung carcinoma, HA PD-1 Ig treatment synergized with radiation therapy to decrease local and metastatic tumor burden, as well as in the establishment of immunological memory responses. Our studies highlight the value of structural considerations in guiding the design of a high-affinity chimeric PD-1 Ig fusion protein with robust immune modulatory properties, and underscore the power of combination therapies to selectively manipulate the PD-1 pathway for tumor immunotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors are overexpressed in extramammary Paget's disease.

    Science.gov (United States)

    Qian, Yue; Takeuchi, Satoshi; Chen, Shan-Juan; Dugu, Long; Tsuji, Gaku; Xie, Lining; Nakahara, Takeshi; Moroi, Yoichi; Tu, Ya-Ting; Furue, Masutaka

    2010-11-01

    Neurotrophin (NT) systems appear to play important roles in the pathogenesis of several tumors, but their expression in extramammary Paget's disease (EPD) has not been investigated. Thirty-four paraffin-embedded EPD specimens (32 primary EPD and 2 metastatic to lymph nodes) were subject to immunohistochemical staining for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT3, NT4, their high-affinity receptors (TrkA, TrkB and TrkC) and the common low-affinity receptor, p75 NT receptor (p75). All 34 EPD specimens, including 2 metastatic to lymph nodes, showed cytoplasmic overexpression of NGF, BDNF, TrkA and TrkB. The expression (% positive cells) of NGF, BDNF, NT3, NT4, TrkA and TrkB (81.6 ± 14.9, 86.0 ± 10.4, 89.6 ± 14.9, 87.8 ± 17.9, 83 ± 14.4 and 86.2 ± 11.7%) in EPD was significantly higher than in normal skin (21.6 ± 6.5, 27.6 ± 4.5, 19.7 ± 10.1, 8.2 ± 10.0, 25.0 ± 5.3 and 25.4 ± 6.4%), and the expression of these factors in invasive EPD was significantly higher than in noninvasive EPD. Interestingly, Paget cells were negative for p75 and TrkC in all the 34 EPD specimens. These results suggest that overexpression of NGF, BDNF and their high-affinity receptors (TrkA and TrkB) might play a role in the pathogenesis of EPD. Copyright © 2010 John Wiley & Sons A/S.

  16. A putative high affinity phosphate transporter, CmPT1, enhances tolerance to Pi deficiency of chrysanthemum.

    Science.gov (United States)

    Liu, Peng; Chen, Sumei; Song, Aiping; Zhao, Shuang; Fang, Weimin; Guan, Zhiyong; Liao, Yuan; Jiang, Jiafu; Chen, Fadi

    2014-01-10

    Inorganic phosphate (Pi) is essential for plant growth, and phosphorus deficiency is a main limiting factor in plant development. Its acquisition is largely mediated by Pht1 transporters, a family of plasma membrane-located proteins. Chrysanthemum is one of the most important ornamental plants, its productivity is usually compromised when grown in phosphate deficient soils, but the study of phosphate transporters in chrysanthemum is limited. We described the isolation from chrysanthemum of a homolog of the Phosphate Transporter 1 (PT1) family. Its predicted product is a protein with 12 transmembrane domains, highly homologous with other high affinity plant Pi transporters. Real-time quantitative PCR analysis revealed that the gene was transcribed strongly in the root, weakly in the stem and below the level of detection in the leaf of chrysanthemum plants growing in either sufficient or deficient Pi conditions. Transcript abundance was greatly enhanced in Pi-starved roots. A complementation assay in yeast showed that CmPT1 partially compensated for the absence of phosphate transporter activity in yeast strain MB192. The estimated Km of CmPT1 was 35.2 μM. Under both Pi sufficient and deficient conditions, transgenic plants constitutively expressing CmPT1 grew taller than the non-transformed wild type, produced a greater volume of roots, accumulated more biomass and took up more phosphate. CmPT1 encodes a typical, root-expressed, high affinity phosphate transporter, plays an important role in coping Pi deficiency of chrysanthemum plants.

  17. Identification of a high-affinity Ca sup 2+ pump associated with endocytotic vesicles in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Milne, J.L.; Coukell, M.B. (York Univ., North York, Ontario (Canada))

    1989-11-01

    In the cellular slime mold Dictyostelium discoideum, changes in free cytosolic Ca{sup 2+} are thought to regulate certain processes during cell aggregation and differentiation. To understand the mechanisms controlling free Ca{sup 2+} levels in this organism, the authors previously isolated and characterized an ATP/Mg{sup 2+}-dependent, high-affinity Ca{sup 2+} pump which appeared to be a component of inside-out plasma membrane vesicles. In this report, they demonstrate that a high-affinity Ca{sup 2+} pump, with properties virtually identical to the isolated pump, can be detected in filipin- or digitonin-permeabilized cells of Dictyostelium. Moreover, Ca{sup 2+}-pumping vesicles, which migrate on Percoll/KCl gradients like the vesicles identified earlier, can be isolated from the permeabilized cells. Results of additional experiments suggest that this intracellular Ca{sup 2+} transporter is associated with a high-capacity non-IP{sub 3}-releasable Ca{sup 2+} store which is generated by endocytosis. A possible role for this store in maintaining Ca{sup 2+} homeostasis in Dictyostelium is discussed.

  18. Salvage of focal cerebral ischemic damage by transfusion of high O2-affinity recombinant hemoglobin polymers in mouse.

    Science.gov (United States)

    Nemoto, Masaaki; Mito, Toshiaki; Brinigar, William S; Fronticelli, Clara; Koehler, Raymond C

    2006-05-01

    Cell-free hemoglobin solutions with high oxygen affinity might be beneficial for selectively delivering oxygen to ischemic tissue. A recombinant hybrid hemoglobin molecule was designed using the human alpha-subunit and the bovine beta-subunit, with placement of surface cysteines to permit disulfide bond polymerization of the tetramers. The resulting protein generated from an Escherichia coli expression system had a molecular mass >1 MDa, a P50 of approximately 3 Torr, and a cooperativity of n = 1.0. Anesthetized mice were transfused during 2-h occlusion of the middle cerebral artery. Compared with transfusion with 5% albumin, cerebral infarct volume was reduced by 41% with transfusion of a 3% solution of the high oxygen-affinity hemoglobin polymer and by 50% with transfusion of a 6% solution of the polymer. Transfusion of a 6% solution of a 500-kDa polymer possessing a P50 of 17 Torr and a cooperativity of n = 2.0 resulted in a 66% reduction of infarct volume. These results indicate that cell-free Hb polymers with P50 values much lower than that of red blood cell hemoglobin are highly capable of salvaging ischemic brain. The assumption that the P50 of blood substitutes should be similar to that of blood might not be warranted when used during ischemic conditions.

  19. Specific recognition of the C-terminal end of A beta 42 by a high affinity monoclonal antibody

    DEFF Research Database (Denmark)

    Axelsen, Trine Veje; Holm, Arne; Birkelund, Svend

    2009-01-01

    The neurotoxic peptide A beta(42) is derived from the amyloid precursor protein by proteolytic cleavage and is deposited in the brain of patients suffering from Alzheimer's disease (AD). In this study we generate a high affinity monoclonal antibody that targets the C-terminal end of A beta(42......) with high specificity. By this is meant that the paratope of the antibody must enclose the C-terminal end of A beta(42) including the carboxy-group of amino acid 42, and not just recognize a linear epitope in the C-terminal part of A beta. This has been accomplished by using a unique antigen construct made...... by the Ligand Presenting Assembly technology (LPA technology). This strategy results in dimeric presentation of the free C-terminal end of A beta(42). The generated Mab A beta1.1 is indeed specific for the C-terminal end of A beta(42) to which it binds with high affinity. Mab A beta1.1 recognizes the epitope...

  20. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra

    DEFF Research Database (Denmark)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D

    2010-01-01

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated...... by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore...... properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new...

  1. Analysis of Drug-Protein Binding using On-Line Immunoextraction and High-Performance Affinity Microcolumns: Studies with Normal and Glycated Human Serum Albumin

    Science.gov (United States)

    Matsuda, Ryan; Jobe, Donald; Beyersdorf, Jared; Hage, David S.

    2015-01-01

    A method combining on-line immunoextraction microcolumns with high-performance affinity chromatography (HPAC) was developed and tested for use in examining drug-protein interactions with normal or modified proteins. Normal human serum albumin (HSA) and glycated HSA were used as model proteins for this work. High-performance immunoextraction microcolumns with sizes of 1.0–2.0 cm × 2.1 mm i.d. and containing anti-HSA polyclonal antibodies were developed and tested for their ability to bind normal HSA or glycated HSA. These microcolumns were able to extract up to 82–93% for either type of protein at 0.05–0.10 mL/min and had a binding capacity of 0.34–0.42 nmol HSA for a 1.0 cm × 2.1 mm i.d. microcolumn. The immunoextraction microcolumns and their adsorbed proteins were tested for use in various approaches for drug binding studies. Frontal analysis was used with the adsorbed HSA/glycated HSA to measure the overall affinities of these proteins for the drugs warfarin and gliclazide, giving comparable values to those obtained previously using similar protein preparations that had been covalently immobilized within HPAC columns. Zonal elution competition studies with gliclazide were next performed to examine the specific interactions of this drug at Sudlow sites I and II of the adsorbed proteins. These results were also comparable to those noted in prior work with covalently immobilized samples of normal HSA or glycated HSA. These experiments indicated that drug-protein binding studies can be carried out by using on-line immunoextraction microcolumns with HPAC. The same method could be used in the future with clinical samples and other drugs or proteins of interest in pharmaceutical studies or biomedical research. PMID:26381571

  2. Effects of high affinity leptin antagonist on prolactin receptor deficient male mouse.

    Directory of Open Access Journals (Sweden)

    Nadège Carré

    Full Text Available Hyperprolactinemia occurs during gestation and lactation with marked hyperphagia associated with leptin resistance. Prolactin (PRL induces the expression of orexigenic neuropeptide Y (NPY in hypothalamic dorsomedial nucleus (DMH leading to hyperphagia. Along this line prolactin receptor deficient (PRLR-/- mice are resistant to obesity under high fat diet due to increased energy expenditure. As these mice have an altered food intake, our objective was to test whether leptin is responsible for these characteristics. PRLR-/- male mice and control littermates were injected subcutaneously every other day with 12 mg/kg pegylated superactive mouse leptin antagonist (PEG-SMLA for 3 weeks. We tested the effect of PEG-SMLA on body weight, food intake and metabolic parameters. The antagonist led to a rapid increase in body weight (20% but increased adipose mass in PEG-SMLA treated mice was less pronounced in PRLR-/- than in WT mice. Food intake of PEG-SMLA-injected animals increased during the first week period of the experiment but then declined to a similar level of the control animals during the second week. Interestingly, PRLR-/- mice were found to have the same bone volume than those of control mice although PEG-SMLA increased bone mass by 7% in both strains. In addition, PEG-SMLA led to insulin resistance and glucose intolerance as well as an altered lipid profile in treated mice. Altogether, these results suggest that PRLR-/- mice respond to leptin antagonist similarly to the control mice, indicating no interaction between the actions of the two hormones.

  3. Adsorption and photophysics of fullerene C60 at liquid-zeolite particle interfaces: unusually high affinity for hydrophobic, ultrastabilized zeolite Y.

    Science.gov (United States)

    Ellison, Eric H

    2006-06-15

    Adsorption of fullerene C60 from solution to the external surface of zeolite particles has been investigated. The most intriguing result of this study was the nature of C60 adsorption to ultrastablized zeolite Y (or USY). Two commercial samples of USY were tested: CBV780 (Y780) and CBV901 (Y901). Y901 was shown in previous reports to be more hydrophobic than Y780. Higher affinity of C60 for Y901 was found relative to Y780 in a variety of hydrocarbon solvents, including toluene and cyclohexane. In these same solvents, weak or no affinity for Y901 of typical arenes such as naphthalene or pyrene was observed. In toluene, adsorption isotherms for C60 gave dissociation constants (and values of saturation binding) = 0.5 microM (5.8 micromol g(-1)) and 8 microM (1.4 micromol g(-1)) for Y901 and Y780, respectively. C60 was estimated to cover nearly one-half of the estimated external surface area of Y901 particles at saturation. Significant adsorption of C60 to the ionic zeolites NaX, NaY, and KL was observed in cyclohexane but not in toluene, consistent with the pi-cation effect as a driving force for adsorption to these materials. The main driving force for C60 adsorption to Y901 is postulated to involve the interaction of C60 with lone pair electrons of framework oxygen atoms of the 12-ring entry aperture to the supercage. In the 12-ring site, C60 is located in half-supercage bowls on the exterior particle surface. The adsorptive interaction on Y901 relies on the spherical shape of C60 and the hydrophobicity of the zeolite surface. On ionic zeolites, the presence of specific adsorption sites such as exchangeable cations and hydroxyl groups hinder the special positioning necessary for C60 interaction with the 12-ring site. The ground-state and triplet-state absorption spectrum of adsorbed C60 was solution-like on all zeolites. Quenching of the C60 triplet state was examined by using transient absorption spectroscopy. Rate constants for quenching by rubrene, ferrocene, and

  4. Rare, high-affinity anti-pathogen antibodies from human repertoires, discovered using microfluidics and molecular genomics.

    Science.gov (United States)

    Adler, Adam S; Mizrahi, Rena A; Spindler, Matthew J; Adams, Matthew S; Asensio, Michael A; Edgar, Robert C; Leong, Jackson; Leong, Renee; Roalfe, Lucy; White, Rebecca; Goldblatt, David; Johnson, David S

    Affinity-matured, functional anti-pathogen antibodies are present at low frequencies in natural human repertoires. These antibodies are often excellent candidates for therapeutic monoclonal antibodies. However, mining natural human antibody repertoires is a challenge. In this study, we demonstrate a new method that uses microfluidics, yeast display, and deep sequencing to identify 247 natively paired anti-pathogen single-chain variable fragments (scFvs), which were initially as rare as 1 in 100,000 in the human repertoires. Influenza A vaccination increased the frequency of influenza A antigen-binding scFv within the peripheral B cell repertoire from <0.1% in non-vaccinated donors to 0.3-0.4% in vaccinated donors, whereas pneumococcus vaccination did not increase the frequency of antigen-binding scFv. However, the pneumococcus scFv binders from the vaccinated library had higher heavy and light chain Replacement/Silent mutation (R/S) ratios, a measure of affinity maturation, than the pneumococcus binders from the corresponding non-vaccinated library. Thus, pneumococcus vaccination may increase the frequency of affinity-matured antibodies in human repertoires. We synthesized 10 anti-influenza A and nine anti-pneumococcus full-length antibodies that were highly abundant among antigen-binding scFv. All 10 anti-influenza A antibodies bound the appropriate antigen at KD<10 nM and neutralized virus in cellular assays. All nine anti-pneumococcus full-length antibodies bound at least one polysaccharide serotype, and 71% of the anti-pneumococcus antibodies that we tested were functional in cell killing assays. Our approach has future application in a variety of fields, including the development of therapeutic antibodies for emerging viral diseases, autoimmune disorders, and cancer.

  5. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions.

    Science.gov (United States)

    Cailliatte, Rémy; Schikora, Adam; Briat, Jean-François; Mari, Stéphane; Curie, Catherine

    2010-03-01

    In contrast with many other essential metals, the mechanisms of Mn acquisition in higher eukaryotes are seldom studied and poorly understood. We show here that Arabidopsis thaliana relies on a high-affinity uptake system to acquire Mn from the soil in conditions of low Mn availability and that this activity is catalyzed by the divalent metal transporter NRAMP1 (for Natural Resistance Associated Macrophage Protein 1). The nramp1-1 loss-of-function mutant grows poorly, contains less Mn than the wild type, and fails to take up Mn in conditions of Mn limitation, thus demonstrating that NRAMP1 is the major high-affinity Mn transporter in Arabidopsis. Based on confocal microscopy observation of an NRAMP1-green fluorescent protein fusion, we established that NRAMP1 is localized to the plasma membrane. Consistent with its function in Mn acquisition from the soil, NRAMP1 expression is restricted to the root and stimulated by Mn deficiency. Finally, we show that NRAMP1 restores the capacity of the iron-regulated transporter1 mutant to take up iron and cobalt, indicating that NRAMP1 has a broad selectivity in vivo. The role of transporters of the NRAMP family is well established in higher eukaryotes for iron but has been controversial for Mn. This study demonstrates that NRAMP1 is a physiological manganese transporter in Arabidopsis.

  6. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  7. High-Throughput Melanin-Binding Affinity and In Silico Methods to Aid in the Prediction of Drug Exposure in Ocular Tissue.

    Science.gov (United States)

    Reilly, John; Williams, Sarah L; Forster, Cornelia J; Kansara, Viral; End, Peter; Serrano-Wu, Michael H

    2015-12-01

    Drugs possessing the ability to bind to melanin-rich tissue, such as the eye, are linked with higher ocular exposure, and therefore have the potential to affect the efficacy and safety profiles of therapeutics. A high-throughput melanin chromatographic affinity assay has been developed and validated, which has allowed the rapid melanin affinity assessment for a large number of compounds. Melanin affinity of compounds can be quickly assigned as low, medium, or high melanin binders. A high-throughput chromatographic method has been developed and fully validated to assess melanin affinity of pharmaceuticals and has been useful in predicting ocular tissue distribution in vivo studies. The high-throughput experimental approach has also allowed for a specific training set of 263 molecules for a quantitative structure-affinity relationships (QSAR) method to be developed, which has also been shown to be a predictor of ocular tissue exposure. Previous studies have reported the development of in silico QSAR models based on training sets of relatively small and mostly similar compounds; this model covers a broader range of melanin-binding affinities than what has been previously published and identified several physiochemical descriptors to be considered in the design of compounds where melanin-binding modulation is desired. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. High-throughput screening for enzyme inhibitors using frontal affinity chromatography with liquid chromatography and mass spectrometry.

    Science.gov (United States)

    Ng, Ella S M; Yang, Feng; Kameyama, Akihiko; Palcic, Monica M; Hindsgaul, Ole; Schriemer, David C

    2005-10-01

    This work presents new frontal affinity chromatography (FAC) methodologies for high-throughput screening of compound libraries, designed to increase screening rates and improve sensitivity and ruggedness in performance. A FAC column constructed around the enzyme N-acetylglucosaminyltransferase V (GnT-V) was implemented in the identification of potential enzyme inhibitors from two libraries of trisaccharides. Effluent from the FAC column was fractionated, sequentially processed via LC/MS, and referenced to a similar analysis through a control FAC column lacking the enzyme. The resulting multidimensional data sets were compared across corresponding sample and control fractions to identify binders, in a semiautomated approach. A strong binder in the protonated form at m/z 795 was identified from the first library of 81 compounds, exhibiting an estimated Kd value of 0.3 microM. Other binders yielded Kd values ranging from 0.35 to 3.35 microM. To demonstrate the improvement in performance of this FAC-LC/MS approach over the conventional online FAC/MS approach, 15 compounds from this library were blended with a second library of 1000 synthetic trisaccharides and screened against GnT-V. All ligands in the 15-compound set were identified in this larger screen, and no ligands of greater affinity than compound 1 were found. Our results show that FAC-LC/MS is a reliable method for screening large compound libraries directly and useful for large-scale ligand discovery initiatives.

  9. Selective Distribution of a High-Affinity Plasminogen-Binding Site among Group A Streptococci Associated with Impetigo

    Science.gov (United States)

    Svensson, Mikael D.; Sjöbring, Ulf; Bessen, Debra E.

    1999-01-01

    Group A streptococci can be classified according to their tendency to cause either impetigo, pharyngitis, or both types of infection. Genotypic markers for tissue site preference lie within emm genes, which encode fibrillar surface proteins that play a key role in virulence. emm gene products (M and M-like proteins) display an extensive array of binding activities for tissue and plasma proteins of the human host. In a previous study, a high-affinity binding site for human plasmin(ogen) was mapped to the emm53 gene product. In this report, a structurally similar plasminogen-binding domain is found to be widely and selectively distributed among group A streptococci harboring the emm gene marker for the skin as the preferred tissue site for infection. The findings are highly suggestive of a central role for bacterial modulation of host plasmin(ogen) during localized infection at the epidermis. PMID:10417156

  10. Development and preclinical testing of a high-affinity single-chain antibody against (+)-methamphetamine.

    Science.gov (United States)

    Peterson, Eric C; Laurenzana, Elizabeth M; Atchley, William T; Hendrickson, Howard P; Owens, S Michael

    2008-04-01

    Chronic or excessive (+)-methamphetamine (METH) use often leads to addiction and toxicity to critical organs like the brain. With medical treatment as a goal, a novel single-chain variable fragment (scFv) against METH was engineered from anti-METH monoclonal antibody mAb6H4 (IgG, kappa light chain, K(d) = 11 nM) and found to have similar ligand affinity (K(d) = 10 nM) and specificity as mAb6H4. The anti-METH scFv (scFv6H4) was cloned, expressed in yeast, purified, and formulated as a naturally occurring mixture of monomer ( approximately 75%) and dimer ( approximately 25%). To test the in vivo efficacy of the scFv6H4, male Sprague-Dawley rats (n = 5) were implanted with 3-day s.c. osmotic pumps delivering 3.2 mg/kg/day METH. After reaching steady-state METH concentrations, an i.v. dose of scFv6H4 (36.5 mg/kg, equimolar to the METH body burden) was administered along with a [(3)H]scFv6H4 tracer. Serum pharmacokinetic analysis of METH and [(3)H]scFv6H4 showed that the scFv6H4 caused an immediate 65-fold increase in the METH concentrations and a 12-fold increase in the serum METH area under the concentration-time curve from 0 to 480 min after scFv6H4 administration. The scFv6H4 monomer was quickly cleared or converted to multivalent forms with an apparent t(1/2lambdaz) of 5.8 min. In contrast, the larger scFv6H4 multivalent forms (dimers, trimers, etc.) showed a much longer t(1/2lambdaz) (228 min), and the significantly increased METH serum molar concentrations correlated directly with scFv6H4 serum molar concentrations. Considered together, these data suggested that the scFv6H4 multimers (and not the monomer) were responsible for the prolonged redistribution of METH into the serum.

  11. Premature aging phenotype in mice lacking high affinity nicotinic receptors: region specific changes in layer V pyramidal cell morphology

    Directory of Open Access Journals (Sweden)

    Eleni Konsolaki

    2014-02-01

    2-/- mice is the result of the interaction of aging with the absence of high affinity nAChRs over a relatively prolonged period of life span. This, in turn, may contribute to structural degeneration especially of the circuits that participate in high order functional connectivity of the cerebral cortex. Thus we propose that β2-/- mice can serve as an appropriate animal model with which to study the factors that confer cell-type specific vulnerability to aging and provide a useful tool with which to examine the possible interventions that could restore successful cognitive aging.

  12. The preparation of high-capacity boronate affinity adsorbents by surface initiated reversible addition fragmentation chain transfer polymerization for the enrichment of ribonucleosides in serum.

    Science.gov (United States)

    Wang, Chaozhan; Xu, Huanhuan; Wei, Yinmao

    2016-01-01

    Boronate affinity adsorption is uniquely selective for cis-diol-containing molecules. The preparation and application of boronate affinity materials has attracted much attention in recent years. In this work, a high-capacity boronate affinity adsorbent was prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT). Commercial aminated poly(glycidyl methacrylate) (PGMA) microspheres were modified with the chain transfer agent (CTA) S-1-dodecyl-S-(α,α-dimethyl-α-acetic acid)trithiocarbonate (DDATC). Boronate-affinity adsorbents were then prepared via SI-RAFT polymerization employing 3-acrylamidophenylboronic acid (AAPBA) as the monomer. The Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption and desorption measurements have proven the successful grafting of AAPBA on PGMA microspheres surface. The boronate affinity adsorbents thus prepared possess much higher adsorption capacity (99.2 µmol/g of adenosine) and both faster adsorption and desorption speed towards ribonucleosides, the adsorption and desorption could be completed in 2 min. The high selectivity of the adsorbents to ribonucleosides was verified in the presence of a large excess of deoxynucleosides. The boronate affinity adsorbents were then employed for sample pretreatment before HPLC analysis of ribonucleosides in serum. The ribonucleosides were effectively enriched by boronate affinity dispersive solid-phase extraction (BA-DSPE), with high mass recoveries and good precision. The simultaneous determination of uridine and guanosine in calf serum was achieved by utilizing the standard addition method, their contents were determined to be 170 ± 11.6 ng/mL and 39.6 ± 4.4 ng/mL respectively. The results proved that the prepared boronate affinity materials could be applied for sample pretreatment of cis-diol containing molecules in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  14. High-resolution crystal structure of human Mapkap kinase 3 in complex with a high affinity ligand.

    Science.gov (United States)

    Cheng, Robert; Felicetti, Brunella; Palan, Shilpa; Toogood-Johnson, Ian; Scheich, Christoph; Barker, John; Whittaker, Mark; Hesterkamp, Thomas

    2010-01-01

    The Mapkap kinases 2 and 3 (MK2 and MK3) have been implicated in intracellular signaling pathways leading to the production of the pro-inflammatory cytokine tumor necrosis factor alpha. MK2 has been pursued by the biopharmaceutical industry for many years for the development of a small molecule anti-inflammatory treatment and drug-like inhibitors have been described. The development of some of these compounds, however, has been slowed by the absence of a high-resolution crystal structure of MK2. Herein we present a high-resolution (1.9 A) crystal structure of the highly homologous MK3 in complex with a pharmaceutical lead compound. While all of the canonical features of Ser/Thr kinases in general and MK2 in particular are recapitulated in MK3, the detailed analysis of the binding interaction of the drug-like ligand within the adenine binding pocket allows relevant conclusions to be drawn for the further design of potent and selective drug candidates.

  15. Fundamental and practical studies on high-performance liquid affinity chromatography of biopolymers with novel stationary phases

    Energy Technology Data Exchange (ETDEWEB)

    Bacolod, M.D.

    1992-01-01

    Rigid microparticulate stationary phases having surface-bound metal chelating functions were developed and evaluated in high performance metal chelate affinity chromatography of proteins. Silica- and polystyrene-divinylbenzene-based metal chelate sorbents were produced in wide pore and in non-porous type of column packings. A major effort has been placed on development of non-porous highly crosslinked polystyrene-divinylbenzene (PSDVB). These PSDVB microparticles were produced by a two-step swelling polymerization, and exhibited excellent mechanical strength over a wide range of flow-rates and composition used in high performance liquid chromatography (HPLC). Simple and reproducible hydrophilic coatings were developed for the surface modification of hydrophobic PSDVB supports. A tetradentate metal chelating ligand, ethylenediamine-N, N[prime]-diacetic acid (EDDA), was covalently bound to the surface of the various supports. Sorbents having iminodiacetic acid (IDA) metal chelating functions were also evaluated. The hydrophilic character and surface coverage of various stationary phases were assessed chromatographically. Studies concerning the effects of eluent pH as well as the nature and concentration of salts on retention and selectivity with different metal chelate stationary phases having various immobilized metal ions were carried out. Elution schemes were developed for rapid separation of proteins in metal chelate affinity chromatography. EDDA stationary phases in metal forms can be viewed as complementary to IDA stationary phases since they afforded different selectivity and retentivity toward proteins. Hydrophilic PSDVB could be functionalized with IDA or EDDA metal chelating ligands or lectins. The non-porous metal chelate stationary phases afforded rapid separation of proteins by the development of multiple gradient systems, which permitted higher column peak capacity, enabling the separation of a greater number of proteins in a single chromatographic run.

  16. High Affinity Mannotetraose as an Alternative to Dextran in ConA Based Fluorescent Affinity Glucose Assay Due to Improved FRET Efficiency.

    Science.gov (United States)

    Locke, Andrea K; Cummins, Brian M; Coté, Gerard L

    2016-05-27

    Diabetes mellitus affects millions of people worldwide and requires that individuals tightly self-regulate their blood glucose levels to minimize the associated secondary complications. Continuous monitoring devices potentially offer patients a long-term means to tightly monitor their glucose levels. In recent years, fluorescent affinity sensors based on lectins (e.g., Concanavalin A (ConA)) have been implemented in such devices. Traditionally, these sensors pair the lectin with a multivalent ligand, like dextran, in order to develop a competitive binding assay that changes its fluorescent properties in response to the surrounding glucose concentrations. This work introduces a new type of fluorescent ligand for FRET-based assays in an attempt to improve the sensitivity of such assays. This ligand is rationally designed to present a core trimannose structure and a donor fluorophore in close proximity to one another. This design decreases the distance between the FRET donor and the FRET acceptors on ConA to maximize the FRET efficiency upon binding of the ligand to ConA. This work specifically compares the FRET efficiency and sensitivity of this new competing ligand with a traditional dextran ligand, showing that the new ligand has improved characteristics. This work also tested the long-term thermal stability of the assay based on this new competing ligand and displayed a MARD of less than 10% across the physiological range of glucose after 30 days incubation at 37 °C. Ultimately, this new type of fluorescent ligand has the potential to significantly improve the accuracy of continuous glucose monitoring devices based on the competitive binding sensing approach.

  17. Immobilized metal affinity cryogel-based high-throughput platform for screening bioprocess and chromatographic parameters of His6-GTPase.

    Science.gov (United States)

    Sarkar, Joyita; Kumar, Ashok

    2017-04-01

    Among various tools of product monitoring, chromatography is of vital importance as it also extends to the purification of product. Immobilized metal affinity cryogel (Cu(II)-iminodiacetic acid- and Ni(II)-nitrilotriacetic acid-polyacrylamide) minicolumns (diameter 8 mm, height 4 mm, void volume 250 μl) were inserted in open-ended 96-well plate and different chromatographic parameters and bioprocess conditions were analysed. The platform was first validated with lysozyme. Optimum binding of lysozyme (∼90%) was achieved when 50 μg of protein in 20 mM Tris, pH 8.0 was applied to the minicolumns with maximum recovery (∼90%) upon elution with 300 mM imidazole. Thereafter, the platform was screened for chromatographic conditions of His6-GTPase. Since cryogels have large pore size, they can easily process non-clarified samples containing debris and particulate matters. The bound enzymes on the gel retain its activity and therefore can be assayed on-column by adding substrate and then displacing the product. Highest binding of His6-GTPase was achieved when 50 μl of non-clarified cell lysate was applied to the cryogel and subsequently washed with 50 mM Tris, 150 mM NaCl, 5 mM MgCl2, 10 mM imidazole, pH 8.0 with dynamic and static binding capacities of ∼1.5 and 3 activity units. Maximum recovery was obtained upon elution with 300 mM imidazole with a purification fold of ∼10; the purity was also analysed by SDS-PAGE. The platform showed reproducible results which were validated by Bland-Altman plot. The minicolumn was also scaled up for chromatographic capture and recovery of His6-GTPase. The bioprocess conditions were monitored which displayed that optimum production of His6-GTPase was attained by induction with 200 μM isopropyl-β-D-thiogalactoside at 25 °C for 12 h. It was concluded that immobilized metal affinity cryogel-based platform can be successfully used as a high-throughput platform for screening of bioprocess and chromatographic

  18. Human-Computer Interaction and Sociological Insight: A Theoretical Examination and Experiment in Building Affinity in Small Groups

    Science.gov (United States)

    Oren, Michael Anthony

    2011-01-01

    The juxtaposition of classic sociological theory and the, relatively, young discipline of human-computer interaction (HCI) serves as a powerful mechanism for both exploring the theoretical impacts of technology on human interactions as well as the application of technological systems to moderate interactions. It is the intent of this dissertation…

  19. A fluorescent protein scaffold for presenting structurally constrained peptides provides an effective screening system to identify high affinity target-binding peptides.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kadonosono

    Full Text Available Peptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131-L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides.

  20. A fluorescent protein scaffold for presenting structurally constrained peptides provides an effective screening system to identify high affinity target-binding peptides.

    Science.gov (United States)

    Kadonosono, Tetsuya; Yabe, Etsuri; Furuta, Tadaomi; Yamano, Akihiro; Tsubaki, Takuya; Sekine, Takuya; Kuchimaru, Takahiro; Sakurai, Minoru; Kizaka-Kondoh, Shinae

    2014-01-01

    Peptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131-L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2)-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides.

  1. Substance P downregulates expression of the high affinity IgE receptor (FcepsilonRI) by human mast cells.

    Science.gov (United States)

    McCary, Christine; Tancowny, Brian P; Catalli, Adriana; Grammer, Leslie C; Harris, Kathleen E; Schleimer, Robert P; Kulka, Marianna

    2010-03-30

    The effect of the neuropeptide substance P (SP) on human mast cell (MC) phenotype is poorly understood. In this study, SP effects on human MC expression of the high affinity IgE receptor (FcepsilonRI) were characterized. SP downregulated expression of FcepsilonRI mRNA and protein by approximately 50% and in a concentration dependent manner, the effect was partially mediated by engagement of the neurokinin-1 receptor (NK1R) and resulted in reduced mast cell activation. Sensitization of MC with IgE prior to SP exposure protected MC from SP-mediated FcepsilonRI downregulation. SP release may inhibit MC responses to allergens and these results may have implications in neuroinflammatiion and stress. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  2. Substance P downregulates expression of the high affinity IgE receptor (FcεRI) by human mast cells

    Science.gov (United States)

    McCary, Christine; Tancowny, Brian P.; Catalli, Adriana; Grammer, Leslie C.; Harris, Kathleen E.; Schleimer, Robert P.; Kulka, Marianna

    2013-01-01

    The effect of the neuropeptide substance P (SP) on human mast cell (MC) phenotype is poorly understood. In this study, SP effects on human MC expression of the high affinity IgE receptor (FcεRI) were characterized. SP downregulated expression of FcεRI mRNA and protein by approximately 50% and in a concentration dependent manner, the effect was partially mediated by engagement of the neurokinin-1 receptor (NK1R) and resulted in reduced mast cell activation. Sensitization of MC with IgE prior to SP exposure protected MC from SP-mediated FcεRI downregulation. SP release may inhibit MC responses to allergens and these results may have implications in neuroinflammatiion and stress. PMID:20117843

  3. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Sicheng; Zhou, Yaofeng; Huang, Xiaolin [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Yu, Ruijin [College of Science, Northwest A& F University, Yangling, Shaanxi 712100 (China); Lai, Weihua [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Xiong, Yonghua, E-mail: yhxiongchen@163.com [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2017-06-15

    Herein, for the first time we report a novel direct competitive fluorescence-linked immunosorbent assay (dcFLISA) for the ultrasensitive detection of ochratoxin A (OTA) by introducing a large size polymer beads loaded with quantum dots (QBs) as carrier of competing antigen for decreasing binding affinity to antibody and enhancing the fluorescent signal intensity. When using 255 nm QBs as carrier of competing antigen, the equilibrium dissociation constant of QB based competing antigen to antibodies can be tuned to 100 times higher than that of the horseradish peroxidase (HRP) based competing antigen by controlling labeled amounts of antigen on the surface of QBs. Various parameters that influenced the sensitivity of dcFLISA were investigated and optimized. Under optimum detection parameters, the dynamic linear range of developed dcFLISA for detecting OTA was established at 0.05 pg/mL to 1.56 pg/mL with a half maximal inhibitory concentration at 0.14 ± 0.04 pg/mL (n = 5), which is three orders of magnitude lower than that of conventional HRP-based dcELISA (0.24 ng/mL). The developed FLISA is also highly accurate, reliable, and shows no cross reaction to other mycotoxins. In summary, the proposed method offers a straightforward approach to improve the sensitivity of direct competitive immunoassay for trace small chemical molecule detection in food quality control, environmental monitoring, and clinical diagnosis. - Highlights: • Highly luminescent QBs were used as a carrier of competing antigen for ultrasensitive detection of OTA. • It is the first time to use a large size QBs as a carrier for tuning affinity of competing antigen to antibodies. • IC{sub 50} value of QB-based dcFLISA is three orders of magnitude lower than that of HRP-based dcELISA.

  4. High Affinity Binders to EphA2 Isolated from Abdurin Scaffold Libraries; Characterization, Binding and Tumor Targeting.

    Directory of Open Access Journals (Sweden)

    Christopher Ullman

    Full Text Available Abdurins are a novel antibody-like scaffold derived from the engineering of a single isolated CH2 domain of human IgG. Previous studies established the prolonged serum half-life of Abdurins, the result of a retained FcRn binding motif. Here we present data on the construction of large, diverse, phage-display and cell-free DNA display libraries and the isolation of high affinity binders to the cancer target, membrane-bound ephrin receptor tyrosine kinase class A2 (EphA2. Antigen binding regions were created by designing combinatorial libraries into the structural loops and Abdurins were selected using phage display methods. Initial binders were reformatted into new maturation libraries and low nanomolar binders were isolated using cell-free DNA display, CIS display. Further characterization confirmed binding of the Abdurins to both human and murine EphA2 proteins and exclusively to cell lines that expressed EphA2, followed by rapid internalization. Two different EphA2 binders were labeled with 64Cu, using a bifunctional MeCOSar chelator, and administered to mice bearing tumors from transplanted human prostate cancer cells, followed by PET/CT imaging. The anti-EphA2 Abdurins localized in the tumors as early as 4 hours after injection and continued to accumulate up to 48 hours when the imaging was completed. These data demonstrate the ability to isolate high affinity binders from the engineered Abdurin scaffold, which retain a long serum half-life, and specifically target tumors in a xenograft model.

  5. Molecular identification of high-affinity glutamate transporters in sheep and cattle forestomach, intestine, liver, kidney, and pancreas.

    Science.gov (United States)

    Howell, J A; Matthews, A D; Swanson, K C; Harmon, D L; Matthews, J C

    2001-05-01

    Glutamate metabolism is essential to support many facets of metabolism. The objective of this study was to determine the tissue distribution of glutamate transporters known to support the tissue metabolism of glutamate. The expression of proteins capable of high-affinity glutamate transport (system X-(AG)) by epithelia isolated from the rumen, omasum, duodenum, jejunum, ileum, cecum, and colon and homogenates of liver, kidney, and pancreatic tissues from wethers (n = 4; BW = 28.4 +/- 8.4 kg) and steers (n = 3; BW = 426 +/- 32.3 kg) fed forage-based diets was evaluated by immunoblot analysis. Proteins EAAC1 (62, 93 kDa) and GLT-1 (142, 188, >202 kDa) were expressed by every tissue examined. In contrast, GLAST1 (140 kDa) was expressed only by the pancreas, and EAAT4 (67 kDa) was detected only in sheep brain. To corroborate protein expression data, the presence and size of transporter mRNA in ileal, liver, and pancreatic homogenates were evaluated by Northern analysis. GLAST1 mRNA (2.4, 4.3 kb) was detected only in the pancreas, whereas EAAC1 (2.2, 2.8 kb) and GLT-1 (12.1 kb) mRNA transcripts were detected in all three tissues. The expression of EAAT4 and GLT-1 mRNA was confirmed by reverse transcriptase-polymerase chain reaction analyses. Sequencing of the resulting partial-length ovine GLT-1 cDNA revealed 100% identity with the rat homolog. Overall, these data demonstrate that sheep and cattle share the same pattern of system X-(AG) transporter expression, which differed among tissues and transporter isoforms. Accordingly, these data provide the fundamental knowledge to initiate research that determines whether the expression of high-affinity glutamate transporters by ruminants is sensitive to ontogenic and(or) dietary regulation.

  6. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components.

    Science.gov (United States)

    Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, U A

    2014-10-01

    Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd 's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and impact of the study: Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. © 2014 Soma Logic, Inc. published by John Wiley & Sons Ltd On behalf of the society for Applied Microbiology.

  7. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter.

    Science.gov (United States)

    Brekkan, E; Lundqvist, A; Lundahl, P

    1996-09-17

    Human red cell membrane vesicles stripped of peripheral proteins and proteoliposomes with reconstituted red cell glucose transporter (Glut1) were sterically immobilized in gel beads by freezethawing. The specific interactions between the transport inhibitor cytochalasin B (CB), D-glucose, and Glut1 were analyzed by quantitative frontal affinity chromatography. The dissociation constants, Kd(CB), for the interaction between CB and Glut1 in vesicles and proteoliposomes were similar, the average value being 92 +/- 5 nM at an ionic strength I of 0.05. Kd(CB) for Glut1 in vesicles decreased with increasing ionic strength to become 46 nM at I = 0.5. The affinity of glucose was significantly higher for Glut1 in vesicles (Kd = 24 +/- 2 mM) than for reconstituted Glut1 (Kd = 37 +/- 2 mM). The frontal analysis allowed determination of the amount of CB binding sites, which was found to be 0.33 +/- 0.06 mol per mole of Glut1 monomer (Mr = 54 000). The CB binding capacity of Glut1 in the vesicles and the proteoliposomes was stable in the presence of dithioerythritol over periods of several weeks at room temperature.

  8. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL.

    Science.gov (United States)

    Fresco, Victor M; Kern, Christine B; Mohammadi, Moosa; Twal, Waleed O

    2016-09-02

    Fibulin-1 (FBLN1) is a member of a growing family of extracellular matrix glycoproteins that includes eight members and is involved in cellular functions such as adhesion, migration, and differentiation. FBLN1 has also been implicated in embryonic heart and valve development and in the formation of neural crest-derived structures, including aortic arch, thymus, and cranial nerves. Fibroblast growth factor 8 (FGF8) is a member of a large family of growth factors, and its functions include neural crest cell (NCC) maintenance, specifically NCC migration as well as patterning of structures formed from NCC such as outflow tract and cranial nerves. In this report, we sought to investigate whether FBLN1 and FGF8 have cooperative roles in vivo given their influence on the development of the same NCC-derived structures. Surface plasmon resonance binding data showed that FBLN1 binds tightly to FGF8 and prevents its enzymatic degradation by ADAM17. Moreover, overexpression of FBLN1 up-regulates FGF8 gene expression, and down-regulation of FBLN1 by siRNA inhibits FGF8 expression. The generation of a double mutant Fbln1 and Fgf8 mice (Fbln1(-/-) and Fgf8(-/-)) showed that haplo-insufficiency (Fbln1(+/-) and Fgf8(+/-)) resulted in increased embryonic mortality compared with single heterozygote crosses. The mortality of the FGF8/Fbln1 double heterozygote embryos occurred between 14.5 and 16.5 days post-coitus. In conclusion, FBLN1/FGF8 interaction plays a role in survival of vertebrate embryos, and reduced levels of both proteins resulted in added mortality in utero The FBLN1/FGF8 interaction may also be involved in the survival of neural crest cell population during development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. High-gradient magnetic affinity separation of trypsin from porcine pancreatin

    DEFF Research Database (Denmark)

    Hubbuch, Jürgen; Thomas, Owen R. T.

    2002-01-01

    We introduce a robust and scale-flexible approach to macromolecule purification employing tailor-made magnetic adsorbents and high-gradient magnetic separation technology adapted from the mineral processing industries. Detailed procedures for the synthesis of large quantities of low-cost defined...... increased scale using a high-gradient magnetic separation system to capture loaded benzamidine-linked adsorbents following batch adsorption. With the aid of a simple recycle loop over 80% of the initially adsorbed trypsin was recovered in-line with an overall purification factor of approximate to3.5....... submicron-sized magnetic supports are presented. These support materials exhibit unique features, which facilitate their large-scale processing using high magnetic field gradients, namely sufficiently high magnetization, a relatively narrow particle size distribution and ideal superparamagnetism. Following...

  10. The interaction affinity between vascular cell adhesion molecule-1 (VCAM-1 and very late antigen-4 (VLA-4 analyzed by quantitative FRET.

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    Full Text Available Very late antigen-4 (VLA-4, a member of integrin superfamily, interacts with its major counter ligand vascular cell adhesion molecule-1 (VCAM-1 and plays an important role in leukocyte adhesion to vascular endothelium and immunological synapse formation. However, irregular expressions of these proteins may also lead to several autoimmune diseases and metastasis cancer. Thus, quantifying the interaction affinity of the VCAM-1/VLA-4 interaction is of fundamental importance in further understanding the nature of this interaction and drug discovery. In this study, we report an 'in solution' steady state organic fluorophore based quantitative fluorescence resonance energy transfer (FRET assay to quantify this interaction in terms of the dissociation constant (Kd. We have used, in our FRET assay, the Alexa Fluor 488-VLA-4 conjugate as the donor, and Alexa Fluor 546-VCAM-1 as the acceptor. From the FRET signal analysis, Kd of this interaction was determined to be 41.82 ± 2.36 nM. To further confirm our estimation, we have employed surface plasmon resonance (SPR technique to obtain Kd = 39.60 ± 1.78 nM, which is in good agreement with the result obtained by FRET. This is the first reported work which applies organic fluorophore based 'in solution' simple quantitative FRET assay to obtain the dissociation constant of the VCAM-1/VLA-4 interaction, and is also the first quantification of this interaction. Moreover, the value of Kd can serve as an indicator of abnormal protein-protein interactions; hence, this assay can potentially be further developed into a drug screening platform of VLA-4/VCAM-1 as well as other protein-ligand interactions.

  11. Sequence specific and high affinity recognition of 5′-ACGCGT-3′ by rationally designed pyrrole-imidazole H-pin polyamides: Thermodynamic and structural studies

    Science.gov (United States)

    Mackay, Hilary; Brown, Toni; Uthe, Peter B.; Westrate, Laura; Sielaff, Alan; Jones, Justin; Lajiness, James P.; Kluza, Jerome; O’Hare, Caroline; Nguyen, Binh; Davis, Zach; Bruce, Chrystal; Wilson, W. David; Hartley, John A.; Lee, Moses

    2013-01-01

    Imidazole (Im) and Pyrrole (Py)-containing polyamides that can form stacked dimers can be programmed to target specific sequences in the minor groove of DNA and control gene expression. Even though various designs of polyamides have been thoroughly investigated for DNA sequence recognition, the use of H-pin polyamides (covalently cross-linked polyamides) has not received as much attention. Therefore, experiments were designed to systematically investigate the DNA recognition properties of two symmetrical H-pin polyamides composed of PyImPyIm (5) or f-ImPyIm (3e, f = formamido) tethered with an ethylene glycol linker. These compounds were created to recognize the cognate 5′-ACGCGT-3′ through an overlapped and staggered binding motif, respectively. Results from DNaseI footprinting, thermal denaturation, circular dichroism, surface plasmon resonance and isothermal titration microcalorimetry studies demonstrated that both H-pin polyamides bound with higher affinity than their respective monomers. The binding affinity of formamido-containing H-pin 3e was more than a hundred times greater than that for the tetraamide H-pin 5, demonstrating the importance of having a formamido group and the staggered motif in enhancing affinity. However, compared to H-pin 3e, tetraamide H-pin 5 demonstrated superior binding preference for the cognate sequence over its non-cognates, ACCGGT and AAATTT. Data from SPR experiments yielded binding constants of 1.6 × 108 M−1 and 2.0 × 1010 M−1 for PyImPyIm H-pin 5 and f-ImPyIm H-pin 3e, respectively. Both H-pins bound with significantly higher affinity (ca. 100-fold) than their corresponding unlinked PyImPyIm 4 and f-ImPyIm 2 counterparts. ITC analyses revealed modest enthalpies of reactions at 298 K (ΔH of −3.3 and −1.0 kcal mol−1 for 5 and 3e, respectively), indicating these were entropic-driven interactions. The heat capacities (ΔCp) were determined to be −116 and −499 cal mol−1 K−1, respectively. These results are

  12. Sequence specific and high affinity recognition of 5'-ACGCGT-3' by rationally designed pyrrole-imidazole H-pin polyamides: thermodynamic and structural studies.

    Science.gov (United States)

    Mackay, Hilary; Brown, Toni; Uthe, Peter B; Westrate, Laura; Sielaff, Alan; Jones, Justin; Lajiness, James P; Kluza, Jerome; O'Hare, Caroline; Nguyen, Binh; Davis, Zach; Bruce, Chrystal; Wilson, W David; Hartley, John A; Lee, Moses

    2008-10-15

    Imidazole (Im) and Pyrrole (Py)-containing polyamides that can form stacked dimers can be programmed to target specific sequences in the minor groove of DNA and control gene expression. Even though various designs of polyamides have been thoroughly investigated for DNA sequence recognition, the use of H-pin polyamides (covalently cross-linked polyamides) has not received as much attention. Therefore, experiments were designed to systematically investigate the DNA recognition properties of two symmetrical H-pin polyamides composed of PyImPyIm (5) or f-ImPyIm (3e, f=formamido) tethered with an ethylene glycol linker. These compounds were created to recognize the cognate 5'-ACGCGT-3' through an overlapped and staggered binding motif, respectively. Results from DNaseI footprinting, thermal denaturation, circular dichroism, surface plasmon resonance and isothermal titration microcalorimetry studies demonstrated that both H-pin polyamides bound with higher affinity than their respective monomers. The binding affinity of formamido-containing H-pin 3e was more than a hundred times greater than that for the tetraamide H-pin 5, demonstrating the importance of having a formamido group and the staggered motif in enhancing affinity. However, compared to H-pin 3e, tetraamide H-pin 5 demonstrated superior binding preference for the cognate sequence over its non-cognates, ACCGGT and AAATTT. Data from SPR experiments yielded binding constants of 1.6x10(8)M(-1) and 2.0x10(10)M(-1) for PyImPyIm H-pin 5 and f-ImPyIm H-pin 3e, respectively. Both H-pins bound with significantly higher affinity (ca. 100-fold) than their corresponding unlinked PyImPyIm 4 and f-ImPyIm 2 counterparts. ITC analyses revealed modest enthalpies of reactions at 298 K (DeltaH of -3.3 and -1.0 kcal mol(-1) for 5 and 3e, respectively), indicating these were entropic-driven interactions. The heat capacities (DeltaC(p)) were determined to be -116 and -499 cal mol(-1)K(-1), respectively. These results are in general

  13. Effective Optimization of Antibody Affinity by Phage Display Integrated with High-Throughput DNA Synthesis and Sequencing Technologies.

    Directory of Open Access Journals (Sweden)

    Dongmei Hu

    Full Text Available Phage display technology has been widely used for antibody affinity maturation for decades. The limited library sequence diversity together with excessive redundancy and labour-consuming procedure for candidate identification are two major obstacles to widespread adoption of this technology. We hereby describe a novel library generation and screening approach to address the problems. The approach started with the targeted diversification of multiple complementarity determining regions (CDRs of a humanized anti-ErbB2 antibody, HuA21, with a small perturbation mutagenesis strategy. A combination of three degenerate codons, NWG, NWC, and NSG, were chosen for amino acid saturation mutagenesis without introducing cysteine and stop residues. In total, 7,749 degenerate oligonucleotides were synthesized on two microchips and released to construct five single-chain antibody fragment (scFv gene libraries with 4 x 10(6 DNA sequences. Deep sequencing of the unselected and selected phage libraries using the Illumina platform allowed for an in-depth evaluation of the enrichment landscapes in CDR sequences and amino acid substitutions. Potent candidates were identified according to their high frequencies using NGS analysis, by-passing the need for the primary screening of target-binding clones. Furthermore, a subsequent library by recombination of the 10 most abundant variants from four CDRs was constructed and screened, and a mutant with 158-fold increased affinity (Kd = 25.5 pM was obtained. These results suggest the potential application of the developed methodology for optimizing the binding properties of other antibodies and biomolecules.

  14. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian

    2006-01-01

    Haptoglobin-related protein (Hpr) is a primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL) particles shown to be a part of the innate immune defense. Despite the assumption hitherto that Hpr does not bind to hemoglobin, the present...

  15. Structure of a TCR with High Affinity for Self-antigen Reveals Basis for Escape from Negative Selection

    Energy Technology Data Exchange (ETDEWEB)

    Y Yin; Y Li; M Kerzic; R Martin; R Mariuzza

    2011-12-31

    The failure to eliminate self-reactive T cells during negative selection is a prerequisite for autoimmunity. To escape deletion, autoreactive T-cell receptors (TCRs) may form unstable complexes with self-peptide-MHC by adopting suboptimal binding topologies compared with anti-microbial TCRs. Alternatively, escape can occur by weak binding between self-peptides and MHC. We determined the structure of a human autoimmune TCR (MS2-3C8) bound to a self-peptide from myelin basic protein (MBP) and the multiple sclerosis-associated MHC molecule HLA-DR4. MBP is loosely accommodated in the HLA-DR4-binding groove, accounting for its low affinity. Conversely, MS2-3C8 binds MBP-DR4 as tightly as the most avid anti-microbial TCRs. MS2-3C8 engages self-antigen via a docking mode that resembles the optimal topology of anti-foreign TCRs, but is distinct from that of other autoreactive TCRs. Combined with a unique CDR3 conformation, this docking mode compensates for the weak binding of MBP to HLA-DR4 by maximizing interactions between MS2-3C8 and MBP. Thus, the MS2-3C8-MBP-DR4 complex reveals the basis for an alternative strategy whereby autoreactive T cells escape negative selection, yet retain the ability to initiate autoimmunity.

  16. CM156, a high affinity sigma ligand, attenuates the stimulant and neurotoxic effects of methamphetamine in mice.

    Science.gov (United States)

    Kaushal, Nidhi; Seminerio, Michael J; Shaikh, Jamaluddin; Medina, Mark A; Mesangeau, Christophe; Wilson, Lisa L; McCurdy, Christopher R; Matsumoto, Rae R

    2011-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse. Low and high dose administration of METH leads to locomotor stimulation, and dopaminergic and serotonergic neurotoxicity, respectively. The behavioral stimulant and neurotoxic effects of METH can contribute to addiction and other neuropsychiatric disorders, thus necessitating the identification of potential pharmacotherapeutics against these effects produced by METH. METH binds to σ receptors at physiologically relevant concentrations. Also, σ receptors are present on and can modulate dopaminergic and serotonergic neurons. Therefore, σ receptors provide a viable target for the development of pharmacotherapeutics against the adverse effects of METH. In the present study, CM156, a σ receptor ligand with high affinity and selectivity for σ receptors over 80 other non-σ binding sites, was evaluated against METH-induced stimulant, hyperthermic, and neurotoxic effects. Pretreatment of male, Swiss Webster mice with CM156 dose dependently attenuated the locomotor stimulation, hyperthermia, striatal dopamine and serotonin depletions, and striatal dopamine and serotonin transporter reductions produced by METH, without significant effects of CM156 on its own. These results demonstrate the ability of a highly selective σ ligand to mitigate the effects of METH. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1).

    Science.gov (United States)

    Wanichawan, Pimthanya; Hodne, Kjetil; Hafver, Tandekile Lubelwana; Lunde, Marianne; Martinsen, Marita; Louch, William Edward; Sejersted, Ole Mathias; Carlson, Cathrine Rein

    2016-08-01

    NCX1 (Na(+)/Ca(2+) exchanger 1) is an important regulator of intracellular Ca(2+) and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer(68)-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer(68)-PLM-NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1-PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer(68)-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser(68). © 2016 The Author(s).

  18. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin.

    Science.gov (United States)

    Xu, Yujing; Hong, Tingting; Chen, Xueping; Ji, Yibing

    2017-05-01

    Baseline separation of omeprazole (OME) enantiomers was achieved by affinity capillary electrophoresis (ACE), using human serum albumin (HSA) as the chiral selector. The influence of several experimental variables such as HSA concentration, the type and content of organic modifiers, applied voltage and running buffer concentration on the separation was evaluated. The binding of esomeprazole (S-omeprazole, S-OME) and its R-enantiomer (R-omeprazole, R-OME) to HSA under simulated physiological conditions was studied by ACE and fluorescence spectroscopy which was considered as a reference method. ACE studies demonstrated that the binding constants of the two enantiomers and HSA were 3.18 × 103 M-1 and 5.36 × 103 M-1 , respectively. The binding properties including the fluorescence quenching mechanisms, binding constants, binding sites and the number of binding sites were obtained by fluorescence spectroscopy. Though the ACE method could not get enough data when compared with the fluorescence spectrum method, the separation and binding studies of chiral drugs could be achieved simultaneously via this method. This study is of great significance for the investigation and clinical application of chiral drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.

    Science.gov (United States)

    Belenky, Peter A; Moga, Tiberiu G; Brenner, Charles

    2008-03-28

    NAD(+) is an essential coenzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+)-consuming enzymes. Nicotinamide riboside is a recently discovered eukaryotic NAD(+) precursor converted to NAD(+) via the nicotinamide riboside kinase pathway and by nucleosidase activity and nicotinamide salvage. Nicotinamide riboside supplementation of yeast extends replicative life span on high glucose medium. The molecular basis for nicotinamide riboside uptake was unknown in any eukaryote. Here, we show that deletion of a single gene, YOR071C, abrogates nicotinamide riboside uptake without altering nicotinic acid or nicotinamide import. The gene, which is negatively regulated by Sum1, Hst1, and Rfm1, fully restores nicotinamide riboside import and utilization when resupplied to mutant yeast cells. The encoded polypeptide, Nrt1, is a predicted deca-spanning membrane protein related to the thiamine transporter, which functions as a pH-dependent facilitator with a K(m) for nicotinamide riboside of 22 microm. Nrt1-related molecules are conserved in particular fungi, suggesting a similar basis for nicotinamide riboside uptake.

  20. Arabidopsis INOSITOL TRANSPORTER4 mediates high-affinity H+ symport of myoinositol across the plasma membrane.

    Science.gov (United States)

    Schneider, Sabine; Schneidereit, Alexander; Konrad, Kai R; Hajirezaei, Mohammad-Reza; Gramann, Monika; Hedrich, Rainer; Sauer, Norbert

    2006-06-01

    Four genes of the Arabidopsis (Arabidopsis thaliana) monosaccharide transporter-like superfamily share significant homology with transporter genes previously identified in the common ice plant (Mesembryanthemum crystallinum), a model system for studies on salt tolerance of higher plants. These ice plant transporters had been discussed as tonoplast proteins catalyzing the inositol-dependent efflux of Na(+) ions from vacuoles. The subcellular localization and the physiological role of the homologous proteins in the glycophyte Arabidopsis were unclear. Here we describe Arabidopsis INOSITOL TRANSPORTER4 (AtINT4), the first member of this subgroup of Arabidopsis monosaccharide transporter-like transporters. Functional analyses of the protein in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes characterize this protein as a highly specific H(+) symporter for myoinositol. These activities and analyses of the subcellular localization of an AtINT4 fusion protein in Arabidopsis and tobacco (Nicotiana tabacum) reveal that AtINT4 is located in the plasma membrane. AtINT4 promoter-reporter gene plants demonstrate that AtINT4 is strongly expressed in Arabidopsis pollen and phloem companion cells. The potential physiological role of AtINT4 is discussed.

  1. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs

    Science.gov (United States)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya; Chuang, Yu-Chun; Chen, Yu-Sheng; Daugulis, Olafs; Jacobson, Allan J.; Miljanić, Ognjen Š.

    2014-10-01

    Metal-organic and covalent organic frameworks are porous materials characterized by outstanding thermal stability, high porosities and modular synthesis. Their repeating structures offer a great degree of control over pore sizes, dimensions and surface properties. Similarly precise engineering at the nanoscale is difficult to achieve with discrete molecules, since they rarely crystallize as porous structures. Here we report a small organic molecule that organizes into a noncovalent organic framework with large empty pores. This structure is held together by a combination of [N-H···N] hydrogen bonds between the terminal pyrazole rings and [π···π] stacking between the electron-rich pyrazoles and electron-poor tetrafluorobenzenes. Such a synergistic arrangement makes this structure stable to at least 250 °C and porous, with an accessible surface area of 1,159 m2 g-1. Crystals of this framework adsorb hydrocarbons, CFCs and fluorocarbons—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 75%.

  2. High-Affinity "Click" RGD Peptidomimetics as Radiolabeled Probes for Imaging αvβ3Integrin.

    Science.gov (United States)

    Piras, Monica; Testa, Andrea; Fleming, Ian N; Dall'Angelo, Sergio; Andriu, Alexandra; Menta, Sergio; Mori, Mattia; Brown, Gavin D; Forster, Duncan; Williams, Kaye J; Zanda, Matteo

    2017-07-20

    Nonpeptidic Arg-Gly-Asp (RGD)-mimic ligands were designed and synthesized by click chemistry between an arginine-azide mimic and an aspartic acid-alkyne mimic. Some of these molecules combine excellent in vitro properties (high α v β 3 affinity, selectivity, drug-like logD, high metabolic stability) with a variety of radiolabeling options (e.g., tritium and fluorine-18, plus compatibility with radio-iodination), not requiring the use of chelators or prosthetic groups. The binding mode of the resulting triazole RGD mimics to α v β 3 or α IIb β 3 receptors was investigated by molecular modeling simulations. Lead compound 12 was successfully radiofluorinated and used for in vivo positron emission tomography/computed tomography (PET/CT) studies in U87 tumor models, which showed only modest tumor uptake and retention, owing to rapid excretion. These results demonstrate that the novel click RGD mimics are excellent radiolabeled probes for in vitro and cell-based studies on α v β 3 integrin, whereas further optimization of their pharmacokinetic and dynamic profiles is necessary for successful use in in vivo imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii.

    Directory of Open Access Journals (Sweden)

    Maria José Leandro

    Full Text Available Zygosaccharomyces rouxii is a fructophilic yeast than can grow at very high sugar concentrations. We have identified an ORF encoding a putative fructose/H(+ symporter in the Z. rouxii CBS 732 genome database. Heterologous expression of this ORF in a S. cerevisiae strain lacking its own hexose transporters (hxt-null and subsequent kinetic characterization of its sugar transport activity showed it is a high-affinity low-capacity fructose/H(+ symporter, with Km 0.45 ± 0.07 mM and Vmax 0.57 ± 0.02 mmol h(-1 (gdw(-1. We named it ZrFsy1. This protein also weakly transports xylitol and sorbose, but not glucose or other hexoses. The expression of ZrFSY1 in Z. rouxii is higher when the cells are cultivated at extremely low fructose concentrations (<0.2% and on non-fermentable carbon sources such as mannitol and xylitol, where the cells have a prolonged lag phase, longer duplication times and change their microscopic morphology. A clear phenotype was determined for the first time for the deletion of a fructose/H(+ symporter in the genome where it occurs naturally. The effect of the deletion of ZrFSY1 in Z. rouxii cells is only evident when the cells are cultivated at very low fructose concentrations, when the ZrFsy1 fructose symporter is the main active fructose transporter system.

  4. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    Science.gov (United States)

    Rannversson, Hafsteinn; Andersen, Jacob; Sørensen, Lena; Bang-Andersen, Benny; Park, Minyoung; Huber, Thomas; Sakmar, Thomas P.; Strømgaard, Kristian

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslinking unnatural amino acids (UAAs) into 75 different positions in hSERT. UAAs are incorporated with high specificity, and functionally active transporters have similar transport properties and pharmacological profiles compared with wild-type transporters. We employ ultraviolet-induced crosslinking with p-azido-L-phenylalanine (azF) at selected positions in hSERT to map the binding site of imipramine, a prototypical tricyclic antidepressant, and vortioxetine, a novel multimodal antidepressant. We find that the two antidepressants crosslink with azF incorporated at different positions within the central substrate-binding site of hSERT, while no crosslinking is observed at the vestibular-binding site. Taken together, our data provide direct evidence for defining the high-affinity antidepressant binding site in hSERT. PMID:27089947

  5. Preparation of a novel antiserum to aromatase with high affinity and specificity: Its clinicopathological significance on breast cancer tissue.

    Science.gov (United States)

    Kanomata, Naoki; Matsuura, Shiro; Nomura, Tsunehisa; Kurebayashi, Junichi; Mori, Taisuke; Kitawaki, Jo; Moriya, Takuya

    2017-01-01

    Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 statuses. This antiserum will be applicable to clinicopathological examination of aromatase in addition to ER and PgR for an appropriate use of aromatase inhibitor on the treatment of breast cancer. Further studies on the relationship between Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and

  6. Compensatory changes in GroEL/Gp31 affinity as a mechanism for allele-specific genetic interaction

    NARCIS (Netherlands)

    Richardson, A.; van der Vies, S.; Keppel, F.; Taher, A.; Landry, S.J.; Georgopoulos, C.

    1999-01-01

    Previous work has shown that the GroEL-GroES interaction is primarily mediated by the GroES mobile loop. In bacteriophage T4 infection, GroES is substituted by the gene 31-encoded cochaperonin, Gp31. Using a genetic selection scheme, we have identified a new set of mutations in gene 31 that affect

  7. Fragile X mental retardation protein recognition of G quadruplex structure per se is sufficient for high affinity binding to RNA.

    Science.gov (United States)

    Bole, Medhavi; Menon, Lakshmi; Mihailescu, Mihaela-Rita

    2008-12-01

    Fragile X syndrome, the most common form of inherited mental retardation is caused by the expansion of a CGG trinucleotide repeat in the fragile X mental retardation 1 (fmr1) gene. The abnormal expansion of the CGG repeat causes hypermethylation and subsequent silencing of the fmr1 gene, resulting in the loss of the fragile X mental retardation protein (FMRP). FMRP has been shown to use its arginine-glycine-glycine rich region (RGG box) to bind to messenger RNAs that form G quadruplex structures. Several studies reported that the G quadruplex RNA recognition alone is not sufficient for FMRP RGG box binding and that an additional stem and/or a G quadruplex-stem junction region may also be important in recognition. In this study we have used biophysical methods such as fluorescence, UV, CD and NMR spectroscopy to demonstrate that the recognition of the RNA G quadruplex structure per se, in the absence of a stem region, is sufficient for the FMRP high affinity and specific binding. These findings indicate that the presence of a stem structure in some of the FMRP G quadruplex forming mRNAs is not a requirement for protein recognition as previously believed, but rather for the proper formation of the correct RNA G quadruplex structure recognized by FMRP.

  8. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  9. A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis

    Science.gov (United States)

    Goos, Sarah; Kämper, Jörg; Sauer, Norbert

    2010-01-01

    Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host. PMID:20161717

  10. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Ramon Wahl

    2010-02-01

    Full Text Available Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1 from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host.

  11. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria.

    Science.gov (United States)

    Willmann, Anita; Weiss, Michael; Nehls, Uwe

    2007-02-01

    A main function of ectomycorrhizas, a symbiosis between certain soil fungi and fine roots of woody plants, is the exchange of plant-derived carbohydrates for fungus-derived nutrients. As it is required in large amounts, nitrogen is of special interest. A gene (AmAMT2) coding for a putative fungal ammonium importer was identified in an EST project of functional Amanita muscaria/poplar ectomycorrhizas. Heterologous expression of the entire AmAMT2 coding region in yeast revealed the corresponding protein to be a high-affinity ammonium importer. In axenically grown Amanita hyphae AmAMT2 expression was strongly repressed by nitrogen, independent of whether the offered nitrogen source was transported by AmAMT2 or not. In functional ectomycorrhizas the AmAMT2 transcript level was further decreased in both hyphal networks (sheath and Hartig net), while extraradical hyphae revealed strong gene expression. Together our data suggest that (1) AmAMT2 expression is regulated by the endogenous nitrogen content of hyphae and (2) fungal hyphae in ectomycorrhizas are well supported with nitrogen even when the extraradical mycelium is nitrogen limited. As a consequence of AmAMT2 repression in mycorrhizas, ammonium can be suggested as a potential nitrogen source delivered by fungal hyphae in symbiosis.

  12. VNARs: An Ancient and Unique Repertoire of Molecules That Deliver Small, Soluble, Stable and High Affinity Binders of Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Barelle

    2015-09-01

    Full Text Available At 420 million years, the variable domain of New Antigen Receptors or VNARs are undoubtedly the oldest (and smallest antigen binding single domains identified in the vertebrate kingdom. Their role as an integral part of the adaptive immune system of sharks has been well established and has served to provide a greater understanding of the evolution of humoral immunity; their cellular components and processes as well as the underlying genetic organization and molecular control mechanisms. Intriguingly, unlike the variable domain of the camelid heavy chain antibodies or VHH, VNARs do not conform to all of the characteristic properties of classical antibodies with an ancestral origin that clearly distinguishes them from true immunoglobulin antibodies. However, this uniqueness of their origin only adds to their potential as next generation therapeutic biologics with their structural and functional attributes and commercial freedom all enhancing their profile and current success. In fact their small size, remarkable stability, molecular flexibility and solubility, together with their high affinity and selectivity for target, all reinforce the potential of these domains as drug candidates. The purpose of this review is to provide an overview of the existing basic biology of these unique domains, to highlight the drug-like properties of VNARs and describe current progress in their journey towards the clinic.

  13. An Approach for the High-Level Specification of QoS-Aware Grid Workflows Considering Location Affinity

    Directory of Open Access Journals (Sweden)

    Ivona Brandic

    2006-01-01

    Full Text Available Many important scientific and engineering problems may be solved by combining multiple applications in the form of a Grid workflow. We consider that for the wide acceptance of Grid technology it is important that the user has the possibility to express requirements on Quality of Service (QoS at workflow specification time. However, most of the existing workflow languages lack constructs for QoS specification. In this paper we present an approach for high level workflow specification that considers a comprehensive set of QoS requirements. Besides performance related QoS, it includes economical, legal and security aspects. For instance, for security or legal reasons the user may express the location affinity regarding Grid resources on which certain workflow tasks may be executed. Our QoS-aware workflow system provides support for the whole workflow life cycle from specification to execution. Workflow is specified graphically, in an intuitive manner, based on a standard visual modeling language. A set of QoS-aware service-oriented components is provided for workflow planning to support automatic constraint-based service negotiation and workflow optimization. For reducing the complexity of workflow planning, we introduce a QoS-aware workflow reduction technique. We illustrate our approach with a real-world workflow for maxillo facial surgery simulation.

  14. Expression of NGF, BDNF and their high-affinity receptors in ovine mammary glands during development and lactation.

    Science.gov (United States)

    Colitti, Monica

    2015-12-01

    The distribution of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and their high-affinity tyrosine kinase receptors TrkA and TrkB was investigated by immunohistochemical method in the mammary gland of ewes from prepubertal stage to involution. NGF and BDNF protein expressions were strong during development of glands at prepubertal stage and during pregnancy and decreased during lactation and involution. The expressions localized in both stromal and parenchymal cells of developing gland were mainly arranged in the apical side of secretory cells during lactation. These observations were also confirmed at transcriptional level by RT-PCR analyses. The highest expression of all genes significantly occurred at prepubertal stage. NGF was then down-regulated from pregnancy to involution, and no statistical differences were observed among these stages. The receptor TrkA was also under-expressed from pregnancy to involution, and its expression significantly differed between pregnancy and 30 days of lactation and also between 30 and 60 days of lactation. BDNF was significantly down-regulated at 60 days of lactation in comparison with prepubertal stage and again between pregnancy and 30 days of lactation. The relative abundance of its receptor, TrkB, showed also a significant down-regulation at 60 days of lactation in comparison with pregnancy and involution. Among the myriad of other molecular signals involved in the mammary gland cycle, the local production of neuropeptides and their receptors could be of interest in understanding their potential role in mammary biology.

  15. High energy interactions of cosmic ray particles

    Science.gov (United States)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  16. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human...

  17. Amino propynyl benzoic acid building block in rigid spacers of divalent ligands binding to the Syk SH2 domains with equally high affinity as the natural ligand

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Fischer, Marcel J E; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    The construction of rigid spacers composed of amino propynyl benzoic acid building blocks is described. These spacers were used to link two phosphopeptide ligand sites towards obtaining divalent ligands with a high affinity for Syk tandem SH2 domains, which are important in signal transduction. The

  18. Cytokine-induced immune complex binding to the high-affinity IgG receptor, FcγRI, in the presence of monomeric IgG

    NARCIS (Netherlands)

    van der Poel, C.E.; Karssemeijer, R.A.; Boross, P.; van der Linden, J.A.; Blokland - Fromme, M.; van de Winkel, J.G.J.; Leusen, J.H.W.

    2010-01-01

    FcγRI is the sole high-affinity immunoglobulin G (IgG) receptor on leukocytes. Its role in immunity and the clearance of opsonized particles has been challenged, as the receptor function may well be hindered by serum IgG. Here, we document immune complex binding by FcγRI to be readily enhanced by

  19. RNA Aptamer Binds Heparin-Binding Epidermal Growth Factor-Like Growth Factor with High Affinity and Specificity and Neutralizes Its Activity

    Directory of Open Access Journals (Sweden)

    Masaki Yamato

    2017-09-01

    Conclusion: We identified a novel RNA aptamer that bound with high affinity and specificity to rhHB-EGF and potently inhibited the rhHB-EGF-mediated phosphorylation of EGFR. The anti-HB-EGF aptamer may be a promising therapeutic agent for specifically neutralizing HB-EGF signaling.

  20. Synthesis and biological evaluation of disubstituted N6- cyclopentyladenine analogues: The search for a neutral antagonist with high affinity for the adenosine A1 receptor

    NARCIS (Netherlands)

    Ligt, R.A.F. de; Klein, P.A.M. van der; Frijtag Drabbe Künzel, J.K. von; Lorenzen, A.; El Maate, F.A.; Fujikawa, S.; Westhoven, R. van; Hoven, T. van den; Brussee, J.; Ijzerman, A.P.

    2004-01-01

    Novel 3,8- and 8,9-disubstituted N6-cyclopentyladenine derivatives were synthesised in moderate overall yield from 6-chloropurine. The derivatives were made in an attempt to find a new neutral antagonist with high affinity for adenosine A1 receptors. N6-Cyclopentyl-9- methyladenine (N-0840) was used

  1. Identification of the magnesium-binding domain of the high affinity ATP binding-site of the Bacillus subtilis and Escherichia coli seca protein

    NARCIS (Netherlands)

    van der Wolk, J.P.W.; Klose, M; de Wit, Janny; Blaauwen, T.den; Freudl, R; Driessen, A.J.M.

    1995-01-01

    The homodimeric SecA protein is the peripheral subunit of the translocase, and couples the hydrolysis of ATP to the translocation of precursor proteins across the bacterial cytoplasmic membrane. The high affinity ATP binding activity of SecA resides in the amino-terminal domain of SecA. This domain

  2. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition

    NARCIS (Netherlands)

    Khdhiri, Mondher; Hesse, Laura; Popa, Maria Elena; Quiza, Liliana; Lalonde, Isabelle; Meredith, Laura K.; Röckmann, Thomas; Constant, Philippe

    2015-01-01

    Soil-atmosphere exchange of H2 is controlled by gas diffusion and the microbial production and oxidation activities in soil. Among these parameters, the H2 oxidation activity catalyzed by soil microorganisms harboring high affinity hydrogenase is the most difficult variable to parameterize because

  3. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Science.gov (United States)

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  4. Novel radioiodinated {gamma}-hydroxybutyric acid analogues for radiolabeling and Photolinking of high-affinity {gamma}-hydroxybutyric acid binding sites

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Sabbatini, Paola

    2010-01-01

    ¿-Hydroxybutyric acid (GHB) is a therapeutic drug, a drug of abuse, and an endogenous substance that binds to low- and high-affinity sites in the mammalian brain. To target the specific GHB binding sites, we have developed a (125)I-labeled GHB analog and characterized its binding in rat brain...

  5. Novel Radioiodinated γ-Hydroxybutyric Acid Analogues for Radiolabeling and Photolinking of High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Sabbatini, Paola

    2010-01-01

    γ-Hydroxybutyric acid (GHB) is a therapeutic drug, a drug of abuse, and an endogenous substance that binds to low- and high-affinity sites in the mammalian brain. To target the specific GHB binding sites, we have developed a 125I-labeled GHB analog and characterized its binding in rat brain...

  6. Isolation of a high affinity neutralizing monoclonal antibody against 2009 pandemic H1N1 virus that binds at the 'Sa' antigenic site.

    Directory of Open Access Journals (Sweden)

    Nachiket Shembekar

    Full Text Available Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (K(D = 2.1±0.4 pM murine MAb, MA2077 that binds specifically to the hemagglutinin (HA surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC(50 = 0.08 µg/ml. MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 µg/ml against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein 'Sa' and 'Sb' sites were independently mutated, localized the binding site of MA2077 within the 'Sa' antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus.

  7. High Affinity vs. Native Fibronectin in the Modulation of αvβ3 Integrin Conformational Dynamics: Insights from Computational Analyses and Implications for Molecular Design.

    Directory of Open Access Journals (Sweden)

    Antonella Paladino

    2017-01-01

    Full Text Available Understanding how binding events modulate functional motions of multidomain proteins is a major issue in chemical biology. We address several aspects of this problem by analyzing the differential dynamics of αvβ3 integrin bound to wild type (wtFN10, agonist or high affinity (hFN10, antagonist mutants of fibronectin. We compare the dynamics of complexes from large-scale domain motions to inter-residue coordinated fluctuations to characterize the distinctive traits of conformational evolution and shed light on the determinants of differential αvβ3 activation induced by different FN sequences. We propose an allosteric model for ligand-based integrin modulation: the conserved integrin binding pocket anchors the ligand, while different residues on the two FN10's act as the drivers that reorganize relevant interaction networks, guiding the shift towards inactive (hFN10-bound or active states (wtFN10-bound. We discuss the implications of results for the design of integrin inhibitors.

  8. Binding affinities and interactions among different heat shock element types and heat shock factors in rice (Oryza sativa L.).

    Science.gov (United States)

    Mittal, Dheeraj; Enoki, Yasuaki; Lavania, Dhruv; Singh, Amanjot; Sakurai, Hiroshi; Grover, Anil

    2011-09-01

    Binding of heat shock factors (Hsfs) to heat shock elements (HSEs) leads to transcriptional regulation of heat shock genes. Genome-wide, 953 rice genes contain perfect-type, 695 genes gap-type and 1584 genes step-type HSE sequences in their 1-kb promoter region. The rice genome contains 13 class A, eight class B and four class C Hsfs (OsHsfs) and has OsHsf26 (which is of variant type) genes. Chemical cross-linking analysis of in vitro synthesized OsHsf polypeptides showed formation of homotrimers of OsHsfA2c, OsHsfA9 and OsHsfB4b proteins. Binding analysis of polypeptides with oligonucleotide probes containing perfect-, gap-, and step-type HSE sequences showed that OsHsfA2c, OsHsfA9 and OsHsfB4b differentially recognize various model HSEs as a function of varying reaction temperatures. The homomeric form of OsHsfA2c and OsHsfB4b proteins was further noted by the bimolecular fluorescence complementation approach in onion epidermal cells. In yeast two-hybrid assays, OsHsfB4b showed homomeric interaction as well as distinct heteromeric interactions with OsHsfA2a, OsHsfA7, OsHsfB4c and OsHsf26. Transactivation activity was noted in OsHsfA2c, OsHsfA2d, OsHsfA9, OsHsfC1a and OsHsfC1b in yeast cells. These differential patterns pertaining to binding with HSEs and protein-protein interactions may have a bearing on the cellular functioning of OsHsfs under a range of different physiological and environmental conditions. © 2011 The Authors Journal compilation © 2011 FEBS.

  9. Identification of the High-affinity Substrate-binding Site of the Multidrug and Toxic Compound Extrusion (MATE) Family Transporter from Pseudomonas stutzeri.

    Science.gov (United States)

    Nie, Laiyin; Grell, Ernst; Malviya, Viveka Nand; Xie, Hao; Wang, Jingkang; Michel, Hartmut

    2016-07-22

    Multidrug and toxic compound extrusion (MATE) transporters exist in all three domains of life. They confer multidrug resistance by utilizing H(+) or Na(+) electrochemical gradients to extrude various drugs across the cell membranes. The substrate binding and the transport mechanism of MATE transporters is a fundamental process but so far not fully understood. Here we report a detailed substrate binding study of NorM_PS, a representative MATE transporter from Pseudomonas stutzeri Our results indicate that NorM_PS is a proton-dependent multidrug efflux transporter. Detailed binding studies between NorM_PS and 4',6-diamidino-2-phenylindole (DAPI) were performed by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectrofluorometry. Two exothermic binding events were observed from ITC data, and the high-affinity event was directly correlated with the extrusion of DAPI. The affinities are about 1 μm and 0.1 mm for the high and low affinity binding, respectively. Based on our homology model of NorM_PS, variants with mutations of amino acids that are potentially involved in substrate binding, were constructed. By carrying out the functional characterization of these variants, the critical amino acid residues (Glu-257 and Asp-373) for high-affinity DAPI binding were determined. Taken together, our results suggest a new substrate-binding site for MATE transporters. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Mutual displacement interactions in the binding of two drugs to human serum albumin by frontal affinity chromatography.

    Science.gov (United States)

    Nakano, N I; Shimamori, Y; Yamaguchi, S

    1980-02-01

    A continuous frontal analysis chromatographic method was developed for studying the simultaneous binding of two drugs or ligands with an immobilized macromolecule. The usefulness of this method was demonstrated in the interactions of sulphamethizole and salicylic acid with human serum albumin (HSA). The mutual inhibitory effect on the binding of one drug of the presence of the other was directly shown to be due to displacement of the bound drug from HSA by the other. On the basis of a double-reciprocal plot analysis, these two drugs are interpreted as competing for the same primary binding sites.

  11. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...

  12. Synthesis, Modelling, and Anticonvulsant Studies of New Quinazolines Showing Three Highly Active Compounds with Low Toxicity and High Affinity to the GABA-A Receptor

    Directory of Open Access Journals (Sweden)

    Mohamed F. Zayed

    2017-01-01

    Full Text Available Some novel fluorinated quinazolines (5a–j were designed and synthesized to be evaluated for their anticonvulsant activity and their neurotoxicity. Structures of all newly synthesized compounds were confirmed by their infrared (IR, mass spectrometry (MS spectra, 1H nuclear magnetic resonance (NMR, 13C-NMR, and elemental analysis (CHN. The anticonvulsant activity was evaluated by a subcutaneous pentylenetetrazole (scPTZ test and maximal electroshock (MES-induced seizure test, while neurotoxicity was evaluated by a rotorod test. The molecular docking was performed for all newly-synthesized compounds to assess their binding affinities to the GABA-A receptor in order to rationalize their anticonvulsant activities in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticonvulsant activity for all newly-synthesized compounds. Compounds 5b, 5c, and 5d showed the highest binding affinities toward the GABA-A receptor, along with the highest anticonvulsant activities in experimental mice. These compounds also showed low neurotoxicity and low toxicity in the median lethal dose test compared to the reference drugs. A GABA enzymatic assay was performed for these highly active compounds to confirm the obtained results and explain the possible mechanism for anticonvulsant action. The most active compounds might be used as leads for future modification and optimization.

  13. OsHAK1, a High-Affinity Potassium Transporter, Positively Regulates Responses to Drought Stress in Rice

    Directory of Open Access Journals (Sweden)

    Guang Chen

    2017-11-01

    Full Text Available Drought is one of the environmental factors that severely restrict plant distribution and crop production. Recently, we reported that the high-affinity potassium transporter OsHAK1 plays important roles in K acquisition and translocation in rice over low and high K concentration ranges, however, knowledge on the regulatory roles of OsHAK1 in osmotic/drought stress is limited. Here, transcript levels of OsHAK1 were found transiently elevated by water deficit in roots and shoots, consistent with the enhanced GUS activity in transgenic plants under stress. Under drought conditions, OsHAK1 knockout mutants (KO presented lower tolerance to the stress and displayed stunted growth at both the vegetative and reproductive stages. Phenotypic analysis of OsHAK1 overexpression seedlings (Ox demonstrated that they present better tolerance to drought stress than wild-type (WT. Compared to WT seedlings, OsHAK1 overexpressors had lower level of lipid peroxidation, higher activities of antioxidant enzymes (POX and CAT and higher proline accumulation. Furthermore, qPCR analysis revealed that OsHAK1 act as a positive regulator of the expression of stress-responsive genes as well as of two well-known rice channel genes (OsTPKb and OsAKT1 involved in K homeostasis and stress responses in transgenic plants under dehydration. Most important, OsHAK1-Ox plants displayed enhanced drought tolerance at the reproductive stage, resulting in 35% more grain yield than WT under drought conditions, and without exhibiting significant differences under normal growth conditions. Consequently, OsHAK1 can be considered to be used in molecular breeding for improvement of drought tolerance in rice.

  14. Dephosphorylation and quantification of organic phosphorus in poultry litter by purified phytic-acid high affinity Aspergillus phosphohydrolases.

    Science.gov (United States)

    Dao, Thanh H; Hoang, Khanh Q

    2008-08-01

    Extracellular phosphohydrolases mediate the dephosphorylation of phosphoesters and influence bioavailability and loss of agricultural P to the environment to pose risks of impairment of sensitive aquatic ecosystems. Induction and culture of five strains of Aspergillus were conducted to develop a source of high-affinity and robust phosphohydrolases for detecting environmental P and quantifying bioactive P pools in heterogeneous environmental specimens. Enzyme stability and activity against organic P in poultry litter were evaluated in 71 samples collected across poultry producing regions of Arkansas, Maryland, and Oklahoma of the US Differences existed in strains' adaptability to fermentation medium as they showed a wide range of phytate-degrading activity. Phosphohydrolases from Aspergillus ficuum had highest activity when the strain was cultured on a primarily chemical medium, compared to Aspergillus oryzae which preferred a wheat bran-based organic medium. Kinetics parameters of A. ficuum enzymes (K(m)=210 microM; V(max) of 407 nmol s(-1)) indicated phytic acid-degrading potential equivalent to that of commercial preparations. Purified A. ficuum phosphohydrolases effectively quantified litter bioactive P pools, showing that organic P occurred at an average of 54 (+/-14)% of total P, compared to inorganic phosphates, which averaged 41 (+/-12)%. Litter management and land application options must consider the high water-extractable and organic P concentrations and the biological availability of the organic enzyme-labile P pool. Robustness of A. ficuum enzymes and simplicity of the in situ ligand-based enzyme assay may thus increase routine assessment of litter bioactive P composition to sense for on-farm accumulation of such environmentally-sensitive P forms.

  15. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  16. Identification and Tumour-Binding Properties of a Peptide with High Affinity to the Disialoganglioside GD2.

    Directory of Open Access Journals (Sweden)

    Jan Müller

    Full Text Available Neuroectodermal tumours are characterized by aberrant processing of disialogangliosides concomitant with high expression of GD2 or GD3 on cell surfaces. Antibodies targeting GD2 are already in clinical use for therapy of neuroblastoma, a solid tumour of early childhood. Here, we set out to identify peptides with high affinity to human disialoganglioside GD2. To this end, we performed a combined in vivo and in vitro screen using a recombinant phage displayed peptide library. We isolated a phage displaying the peptide sequence WHWRLPS that specifically binds to the human disialoganglioside GD2. Binding specificity was confirmed by mutational scanning and by comparative analyses using structurally related disialogangliosides. In vivo, significant enrichment of phage binding to xenografts of human neuroblastoma cells in mice was observed. Tumour-specific phage accumulation could be blocked by intravenous coinjection of the corresponding peptide. Comparative pharmacokinetic analyses revealed higher specific accumulation of 68Ga-labelled GD2-binding peptide compared to 111In-labelled peptide in xenografts of human neuroblastoma. In contrast to 124I-MIBG, which is currently evaluated as a neuroblastoma marker in PET/CT, 68Ga-labelled GD2-specific peptide spared the thyroid but was enriched in the kidneys, which could be partially blocked by infusion of amino acids.In summary, we here report on a novel tumour-homing peptide that specifically binds to the disialoganglioside GD2, accumulates in xenografts of neuroblastoma cells in mice and bears the potential for tumour detection using PET/CT. Thus, this peptide may serve as a new scaffold for diagnosing GD2-positive tumours of neuroectodermal origin.

  17. A Versatile Platform to Analyze Low-Affinity and Transient Protein-Protein Interactions in Living Cells in Real Time

    Directory of Open Access Journals (Sweden)

    Yao-Cheng Li

    2014-12-01

    Full Text Available Protein-protein interactions (PPIs play central roles in orchestrating biological processes. While some PPIs are stable, many important ones are transient and hard to detect with conventional approaches. We developed ReBiL, a recombinase enhanced bimolecular luciferase complementation platform, to enable detection of weak PPIs in living cells. ReBiL readily identified challenging transient interactions between an E3 ubiquitin ligase and an E2 ubiquitin-conjugating enzyme. ReBiL’s ability to rapidly interrogate PPIs in diverse conditions revealed that some stapled α-helical peptides, a class of PPI antagonists, induce target-independent cytosolic leakage and cytotoxicity that is antagonized by serum. These results explain the requirement for serum-free conditions to detect stapled peptide activity, and define a required parameter to evaluate for peptide antagonist approaches. ReBiL’s ability to expedite PPI analysis, assess target specificity and cell permeability, and reveal off-target effects of PPI modifiers should facilitate the development of effective, cell-permeable PPI therapeutics and the elaboration of diverse biological mechanisms.

  18. Affinities and densities of high-affinity (/sup 3/H)muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, R.F.; Lavoie, J.; Giguere, J.F.; Pomier-Layrargues, G.

    1988-09-01

    The integrity of GABA-A receptors and of central benzodiazepine receptors was evaluated in membrane preparations from prefrontal cortex and caudate nuclei obtained at autopsy from nine cirrhotic patients who died in hepatic coma and an equal number of age-matched control subjects. Histopathological studies revealed Alzheimer Type II astrocytosis in all cases in the cirrhotic group; controls were free from neurological, psychiatric or hepatic diseases. Binding to GABA-A receptors was studied using (/sup 3/H)muscimol as radioligand. The integrity of central benzodiazepine receptors was evaluated using (/sup 3/H)flunitrazepam and (/sup 3/H)Ro15-1788. Data from saturation binding assays was analyzed by Scatchard plot. No modifications of either affinities (Kd) or densities (Bmax) of (/sup 3/H)muscimol of central benzodiazepine binding sites were observed. These findings do not support recent suggestions that alterations of either high-affinity GABA or benzodiazepine receptors play a significant role in the pathogenesis of hepatic encephalopathy.

  19. The Rice High-Affinity K+ Transporter OsHKT2;4 Mediates Mg2+ Homeostasis under High-Mg2+ Conditions in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-10-01

    Full Text Available Rice (Oryza sativa; background Nipponbare contains nine HKT (high-affinity K+ transport-like genes encoding membrane proteins belonging to the superfamily of Ktr/TRK/HKT. OsHKTs have been proposed to include four selectivity filter-pore-forming domains homologous to the bacterial K+ channel KcsA, and are separated into OsHKT1s with Na+-selective activity and OsHKT2s with Na+-K+ symport activity. As a member of the OsHKT2 subfamily, OsHKT2;4 renders Mg2+ and Ca2+ permeability for yeast cells and Xenopus laevis oocytes, besides K+ and Na+. However, physiological functions related to Mg2+in planta have not yet been identified. Here we report that OsHKT2;4 from rice (O. sativa; background Nipponbare functions as a low-affinity Mg2+ transporter to mediate Mg2+ homeostasis in plants under high-Mg2+ environments. Using the functional complementation assay in Mg2+-uptake deficient Salmonella typhimurium strains MM281 and electrophysiological analysis in X. laevis oocytes, we found that OsHKT2;4 could rescue the growth of MM281 in Mg2+-deficient conditions and induced the Mg2+ currents in oocytes at millimolar range of Mg2+. Additionally, overexpression of OsHKT2;4 to Arabidopsis mutant lines with a knockout of AtMGT6, a gene encoding the transporter protein necessary for Mg2+ adaptation in Arabidopsis, caused the Mg2+ toxicity to the leaves under the high-Mg2+ stress, but not under low-Mg2+ environments. Moreover, this Mg2+ toxicity symptom resulted from the excessive Mg2+ translocation from roots to shoots, and was relieved by the increase in supplemental Ca2+. Together, our results demonstrated that OsHKT2;4 is a low-affinity Mg2+ transporter responsible for Mg2+ transport to aerials in plants under high-Mg2+ conditions.

  20. Combination of phage and Gram-positive bacterial display of human antibody repertoires enables isolation of functional high affinity binders

    DEFF Research Database (Denmark)

    Hu, Francis Jingxin; Volk, Anna-Luisa; Persson, Helena

    2017-01-01

    nanomolar affinity scFv fragments towards human epidermal growth factor receptor 2 (HER2). The ranking and performance of the scFv isolated by flow sorting in surface-immobilised form was retained when expressed as soluble scFv and analysed by biolayer interferometry, as well as after expression as full...... libraries. Here, we describe the first use of a Gram-positive bacterial host for display of a library of human antibody genes which, when combined with phage display, provides ease of use for screening, sorting and ranking by flow cytometry. We demonstrate the utility of this method by identifying low......-length antibodies in mammalian cells. We also demonstrate the possibility of using Gram-positive bacterial display to directly improve the affinity of the identified binders via an affinity maturation step using random mutagenesis and flow sorting. This combined approach has the potential for a more complete scan...

  1. Solubilization of high affinity corticotropin-releasing factor receptors from rat brain: Characterization of an active digitonin-solubilized receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriadis, D.E.; Zaczek, R.; Pearsall, D.M.; De Souza, E.B. (National Institute on Drug Abuse, Baltimore, MD (USA))

    1989-12-01

    The binding characteristics of CRF receptors in rat frontal cerebral cortex membranes solubilized in 1% digitonin were determined. The binding of (125I)Tyro-ovine CRF ((125I)oCRF) to solubilized membrane proteins was dependent on incubation time, temperature, and protein concentration, was saturable and of high affinity, and was absent in boiled tissue. The solubilized receptors retained their high affinity for (125I) oCRF in the solubilized state, exhibiting a dissociation constant (KD) of approximately 200 pM, as determined by direct binding saturation isotherms. Solubilized CRF receptors maintained the rank order of potencies for various related and unrelated CRF peptides characteristic of the membrane CRF receptor: rat/human CRF congruent to ovine CRF congruent to Nle21,38-rat CRF greater than alpha-helical oCRF-(9-41) greater than oCRF-(7-41) much greater than vasoactive intestinal peptide, arginine vasopressin, or the substance-P antagonist. Furthermore, the absolute potencies (Ki values) for the various CRF-related peptides in solubilized receptors were almost identical to those observed in the membrane preparations, indicating that the CRF receptor retained its high affinity binding capacity in the digitonin-solubilized state. Chemical affinity cross-linking of digitonin-solubilized rat cortical membrane proteins revealed a specifically labeled protein with an apparent mol wt of 58,000 which was similar to the labeled protein in native membrane homogenates. Although solubilized CRF receptors retained their high affinity for agonists, their sensitivity for guanine nucleotide was lost. Size exclusion chromatography substantiated these results, demonstrating that in the presence or absence of guanine nucleotides, (125I)oCRF labeled the same size receptor complex.

  2. Binding site number variation and high-affinity binding consensus of Myb-SANT-like transcription factor Adf-1 in Drosophilidae.

    Science.gov (United States)

    Lang, Michael; Juan, Elvira

    2010-10-01

    There is a growing interest in the evolution of transcription factor binding sites and corresponding functional change of transcriptional regulation. In this context, we have examined the structural changes of the ADF-1 binding sites at the Adh promoters of Drosophila funebris and D. virilis. We detected an expanded footprinted region in D. funebris that contains various adjacent binding sites with different binding affinities. ADF-1 was described to direct sequence-specific DNA binding to sites consisting of the multiple trinucleotide repeat . The ADF-1 recognition sites with high binding affinity differ from this trinucleotide repeat consensus sequence and a new consensus sequence is proposed for the high-affinity ADF-1 binding sites. In vitro transcription experiments with the D. funebris and D. virilis ADF-1 binding regions revealed that stronger ADF-1 binding to the expanded D. funebris ADF-1 binding region only moderately lead to increased transcriptional activity of the Adh gene. The potential of this regional expansion is discussed in the context of different ADF-1 cellular concentrations and maintenance of the ADF-1 stimulus. Altogether, evolutionary change of ADF-1 binding regions involves both, rearrangements of complex binding site cluster and also nucleotide substitutions within sites that lead to different binding affinities.

  3. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor.

    Directory of Open Access Journals (Sweden)

    Bryan L Roth

    Full Text Available In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as 'designer drugs' and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS-2-(ethylamino-2-(3-methoxyphenylcyclohexanone and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenylcyclohexanamine and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenylcyclohexyl]piperidine and 1-[1-(4-methoxyphenylcyclohexyl]piperidine, were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.

  4. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor.

    Science.gov (United States)

    Roth, Bryan L; Gibbons, Simon; Arunotayanun, Warunya; Huang, Xi-Ping; Setola, Vincent; Treble, Ric; Iversen, Les

    2013-01-01

    In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as 'designer drugs' and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS)-2-(ethylamino)-2-(3-methoxyphenyl)cyclohexanone) and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenyl)cyclohexanamine) and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenyl)cyclohexyl]piperidine and 1-[1-(4-methoxyphenyl)cyclohexyl]piperidine), were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.

  5. Studies on the glycoprotein nature of the thyrotropin receptor: interaction with lectins and purification of the bovine protein with the use of Bandeiraea (Griffonia) simplicifolia I affinity chromatography.

    Science.gov (United States)

    Kress, B C; Spiro, R G

    1986-03-01

    The TSH receptor from Triton-solubilized bovine microsomal membranes was found to bind to a substantial extent to columns of the immobilized lectins Bandeiraea (Griffonia) simplicifolia I, Ricinus communis I, wheat germ, and Concanavalin A, whereas it was not retained by Dolichos biflorus. Elution of TSH receptor activity from these lectins could be achieved with the appropriate saccharides in all cases except Concanavalin A. The most extensive adsorption of the receptor occurred on B. simplicifolia I-agarose (84%), and the terminal alpha-D-galactosyl specificity of this interaction was substantiated by its susceptibility to alpha-galactosidase treatment. Whereas TSH itself was not bound to this immobilized lectin, a complex of this hormone with its receptor did interact and could be eluted with methyl-alpha-D-galactoside. Purification (800-fold) of the bovine TSH receptor was achieved by a combination of TSH and B. simplicifolia I affinity chromatographies. Polyacrylamide gel electrophoresis of the purified TSH receptor after radioiodination revealed three major components with apparent mol wt of 316,000, 115,000, and 54,000.

  6. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors.

    Science.gov (United States)

    Batsuli, Glaivy; Deng, Wei; Healey, John F; Parker, Ernest T; Baldwin, W Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete; Meeks, Shannon L

    2016-10-20

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. © 2016 by The American Society of Hematology.

  7. Proanthocyanidin oxidation of Arabidopsis seeds is altered in mutant of the high-affinity nitrate transporter NRT2.7

    Science.gov (United States)

    David, Laure C.; Dechorgnat, Julie; Ferrario-Méry, Sylvie

    2014-01-01

    NRT2.7 is a seed-specific high-affinity nitrate transporter controlling nitrate content in Arabidopsis mature seeds. The objective of this work was to analyse further the consequences of the nrt2.7 mutation for the seed metabolism. This work describes a new phenotype for the nrt2.7-2 mutant allele in the Wassilewskija accession, which exhibited a distinctive pale-brown seed coat that is usually associated with a defect in flavonoid oxidation. Indeed, this phenotype resembled those of tt10 mutant seeds defective in the laccase-like enzyme TT10/LAC15, which is involved in the oxidative polymerization of flavonoids such as the proantocyanidins (PAs) (i.e. epicatechin monomers and PA oligomers) and flavonol glycosides. nrt2.7-2 and tt10-2 mutant seeds displayed the same higher accumulation of PAs, but were partially distinct, since flavonol glycoside accumulation was not affected in the nrt2.7-2 seeds. Moreover, measurement of in situ laccase activity excluded a possibility of the nrt2.7-2 mutation affecting the TT10 enzymic activity at the early stage of seed development. Functional complementation of the nrt2.7-2 mutant by overexpression of a full-length NRT2.7 cDNA clearly demonstrated the link between the nrt2.7 mutation and the PA phenotype. However, the PA-related phenotype of nrt2.7-2 seeds was not strictly correlated to the nitrate content of seeds. No correlation was observed when nitrate was lowered in seeds due to limited nitrate nutrition of plants or to lower nitrate storage capacity in leaves of clca mutants deficient in the vacuolar anionic channel CLCa. All together, the results highlight a hitherto-unknown function of NRT2.7 in PA accumulation/oxidation. PMID:24532452

  8. High affinity anti-TIM-3 and anti-KIR monoclonal antibodies cloned from healthy human individuals.

    Directory of Open Access Journals (Sweden)

    Stefan Ryser

    Full Text Available We report here the cloning of native high affinity anti-TIM-3 and anti-KIR IgG monoclonal antibodies (mAbs from peripheral blood mononuclear cells (PBMC of healthy human donors. The cells that express these mAbs are rare, present at a frequency of less than one per 105 memory B-cells. Using our proprietary multiplexed screening and cloning technology CellSpot™ we assessed the presence of memory B-cells reactive to foreign and endogenous disease-associated antigens within the same individual. When comparing the frequencies of antigen-specific memory B-cells analyzed in over 20 screening campaigns, we found a strong correlation of the presence of anti-TIM-3 memory B-cells with memory B-cells expressing mAbs against three disease-associated antigens: (i bacterial DNABII proteins that are a marker for Gram negative and Gram positive bacterial infections, (ii hemagglutinin (HA of influenza virus and (iii the extracellular domain of anaplastic lymphoma kinase (ALK. One of the native anti-KIR mAbs has similar characteristics as lirilumab, an anti-KIR mAb derived from immunization of humanized transgenic mice that is in ongoing clinical trials. It is interesting to speculate that these native anti-TIM-3 and anti-KIR antibodies may function as natural regulatory antibodies, analogous to the pharmacological use in cancer treatment of engineered antibodies against the same targets. Further characterization studies are needed to define the mechanisms through which these native antibodies may function in healthy and disease conditions.

  9. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  10. High-affinity NO(3-)-H+ cotransport in the fungus Neurospora: induction and control by pH and membrane voltage.

    Science.gov (United States)

    Blatt, M R; Maurousset, L; Meharg, A A

    1997-11-01

    High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3- challenge and to quantify transport activity. The NO3(-)-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3(-)-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 microM NO3-. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO3-; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3- additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 microM NO3-; and it was suppressed when NH4+ was present during the first, inductive exposure to NO3-. Voltage clamp measurements carried out immediately before and following NO3- additions showed that the NO3(-)-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (-400 to +100 mV). Measurements of NO3- uptake using NO3(-)-selective macroelectrodes indicated a charge stoichiometry for NO3- transport of 1(+):1(NO3-) with common K(m) and Jmax values around 25 microM and 75 pmol NO3- cm-2sec-1, respectively, and combined measurements of pHo and [NO3-]o showed a net uptake of approx. 1 H+ with each NO3- anion. Analysis of the NO3- current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pHo and [NO3

  11. The interaction region of high energy protons

    CERN Document Server

    Dremin, I.M.

    2016-01-01

    The spatial view of the interaction region of colliding high energy protons (in terms of impact parameter) is considered. It is shown that the region of inelastic collisions has a very peculiar shape. It saturates for central collisions at an energy of 7 TeV. We speculate on the further evolution with energy, which is contrasted to the "black disk" picture.

  12. A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders

    OpenAIRE

    Naiwen Cui; Huidan Zhang; Nils Schneider; Ye Tao; Haruichi Asahara; Zhiyi Sun; Yamei Cai; Koehler, Stephan A.; de Greef, Tom F. A.; Alireza Abbaspourrad; Weitz, David A; Shaorong Chong

    2016-01-01

    Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-...

  13. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype

    DEFF Research Database (Denmark)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte

    2002-01-01

    against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed...

  14. Combination of phage and Gram-positive bacterial display of human antibody repertoires enables isolation of functional high affinity binders.

    Science.gov (United States)

    Hu, Francis Jingxin; Volk, Anna-Luisa; Persson, Helena; Säll, Anna; Borrebaeck, Carl; Uhlen, Mathias; Rockberg, Johan

    2017-08-01

    Surface display couples genotype with a surface exposed phenotype and thereby allows screening of gene-encoded protein libraries for desired characteristics. Of the various display systems available, phage display is by far the most popular, mainly thanks to its ability to harbour large size libraries. Here, we describe the first use of a Gram-positive bacterial host for display of a library of human antibody genes which, when combined with phage display, provides ease of use for screening, sorting and ranking by flow cytometry. We demonstrate the utility of this method by identifying low nanomolar affinity scFv fragments towards human epidermal growth factor receptor 2 (HER2). The ranking and performance of the scFv isolated by flow sorting in surface-immobilised form was retained when expressed as soluble scFv and analysed by biolayer interferometry, as well as after expression as full-length antibodies in mammalian cells. We also demonstrate the possibility of using Gram-positive bacterial display to directly improve the affinity of the identified binders via an affinity maturation step using random mutagenesis and flow sorting. This combined approach has the potential for a more complete scan of the antibody repertoire and for affinity maturation of human antibody formats. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. {sup 99m}Tc(CO){sub 3}-DTMA bombesin conjugates having high affinity for the GRP receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Stephanie R. [Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Veerendra, Bhadrasetty [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Rold, Tammy L. [Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Sieckman, Gary L. [Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Hoffman, Timothy J. [Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Radiopharmaceutical Sciences Institute, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Jurisson, Silvia S. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Smith, Charles J. [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); University of Missouri Research Reactor Center, University of Missouri-Columbia, Columbia, MO 65211 (United States); Radiopharmaceutical Sciences Institute, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States)], E-mail: smithcj@health.missouri.edu

    2008-04-15

    Introduction: Targeted diagnosis of specific human cancer types continues to be of significant interest in nuclear medicine. {sup 99m}Tc is ideally suited as a diagnostic radiometal for in vivo tumor targeting due to its ideal physical characteristics and diverse labeling chemistries in numerous oxidation states. Methods: In this study, we report a synthetic approach toward design of a new tridentate amine ligand for the organometallic aqua-ion [{sup 99m}Tc(H{sub 2}O){sub 3}(CO){sub 3}]{sup +}. The new chelating ligand framework, 2-(N,N'-Bis(tert-butoxycarbonyl)diethylenetriamine) acetic acid (DTMA), was synthesized from a diethylenetriamine precursor and fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy ({sup 1}H and {sup 13}C). DTMA was conjugated to H{sub 2}N-(X)-BBN(7-14)NH{sub 2}, where X=an amino acid or aliphatic pharmacokinetic modifier and BBN=bombesin peptide, by means of solid phase peptide synthesis. DTMA-(X)-BBN(7-14)NH{sub 2} conjugates were purified by reversed-phase high-performance chromatography and characterized by electrospray-ionization mass spectrometry. Results: The new conjugates were radiolabeled with [{sup 99m}Tc(H{sub 2}O){sub 3}(CO){sub 3}]{sup +} produced via Isolink radiolabeling kits to produce [{sup 99m}Tc(CO){sub 3}-DTMA-(X)-BBN(7-14)NH{sub 2}]. Radiolabeled conjugates were purified by reversed-phase high-performance chromatography. Effective receptor binding behavior was evaluated in vitro and in vivo. Conclusions: [{sup 99m}Tc(CO){sub 3}-DTMA-(X)-BBN(7-14)NH{sub 2}] conjugates displayed very high affinity for the gastrin releasing peptide receptor in vitro and in vivo. Therefore, these conjugates hold some propensity to be investigated as molecular imaging agents that specifically target human cancers uniquely expressing the gastrin releasing peptide receptor subtypes.

  16. High intensity laser interactions with atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, T

    2000-08-07

    The development of ultrashort pulse table top lasers with peak pulse powers in excess of 1 TW has permitted an access to studies of matter subject to unprecedented light intensities. Such interactions have accessed exotic regimes of multiphoton atomic and high energy-density plasma physics. Very recently, the nature of the interactions between these very high intensity laser pulses and atomic clusters of a few hundred to a few thousand atoms has come under study. Such studies have found some rather unexpected results, including the striking finding that these interactions appear to be more energetic than interactions with either single atoms or solid density plasmas. Recent experiments have shown that the explosion of such clusters upon intense irradiation can expel ions from the cluster with energies from a few keV to nearly 1 MeV. This phenomenon has recently been exploited to produce DD fusion neutrons in a gas of exploding deuterium clusters. Under this project, we have undertaken a general study of the intense femtosecond laser cluster interaction. Our goal is to understand the macroscopic and microscopic coupling between the laser and the clusters with the aim of optimizing high flux fusion neutron production from the exploding deuterium clusters or the x-ray yield in the hot plasmas that are produced in this interaction. In particular, we are studying the physics governing the cluster explosions. The interplay between a traditional Coulomb explosion description of the cluster disassembly and a plasma-like hydrodynamic explosion is not entirely understood, particularly for small to medium sized clusters (<1000 atoms) and clusters composed of low-Z atoms. We are focusing on experimental studies of the ion and electron energies resulting from such explosions through various experimental techniques. We are also examining how an intense laser pulse propagates through a dense medium containing these clusters.

  17. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: ligand-competition analysis investigated by circular dichroism.

    Science.gov (United States)

    Goncharova, Iryna; Orlov, Sergey; Urbanová, Marie

    2013-01-01

    The locations of three bilirubin (BR)-binding sites with different affinities were identified as subdomains IB, IIA and IIIA for five mammalian serum albumins (SAs): human (HSA), bovine (BSA), rat, (RSA), rabbit (RbSA) and sheep (SSA). The stereoselectivity of a high-affinity BR-binding site was identified in the BR/SA=1/1 system by circular dichroism (CD) spectroscopy, the sites with low affinity to BR were analyzed using difference CD. Site-specific ligand-competition experiments with ibuprofen (marker for subdomain IIIA) and hemin (marker for subdomain IB) did not reveal any changes for the BR/SA=1/1 system and showed a decrease of the bound BR at BR/SA=3/1. Both sites were identified as sites with low affinity to BR. The correlation between stereoselectivity and the arrangement of Arg-Lys residues indicated similarity between the BR-binding sites in subdomain IIIA for all of the SAs studied. Subdomain IB in HSA, BSA, SSA and RbSA has P-stereoselectivity while in RSA it has M-selectivity toward BR. A ligand-competition experiment with gossypol shows a decrease of the CD signal of bound BR for the BR/SA=1/1 system as well as for BR/SA=3/1. Subdomain IIA was assigned as a high-affinity BR-binding site. The P-stereoselectivity of this site in HSA (and RSA, RbSA) was caused by the right-hand localization of charged residues R257/R218-R222, whereas the left-hand orientation of R257/R218-R199 led to the M-stereoselectivity of the primary binding site in BSA (and SSA). Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Kinetic Characterization of a Panel of High-Affinity Monoclonal Antibodies Targeting Ricin and Recombinant Re-Formatting for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Michelle Cummins

    2014-05-01

    Full Text Available Ricin is a potent glycoprotein toxin that is structurally composed of two subunits joined via a disulfide bond: a ~30 kDa subunit A (RTA and a ~32 kDa subunit B (RTB. There are fears of ricin being used as a weapon for warfare and terrorism and, as such, there is an increasing need for the development of immunodiagnostic reagents targeted towards this toxin. This article describes the production and characterization of a panel of six ricin-specific monoclonal IgG antibodies (mAbs, previously selected based upon their ability to inhibit ricin-mediated killing of cultured cells. Subsequent epitope binding analysis using the surface plasmon resonance (SPR array biosensor (ProteOn XPR36 indicated three distinct, non-competitive binding epitopes (“bins”. The association (ka and dissociation (kd rate constants and binding affinities (KD of each of the mAbs to ricin were also determined by SPR using Biacore T100 instrument. Affinities (KD ranged from 0.1 nM to 9 nM. We present the coding sequences of the variable domains of the six mAbs, the expression, kinetic and cytotoxicity assays for two recombinant Fab (rFab fragments and demonstrate a rFab affinity improvement by chain-shuffling. Together, these antibodies and constituent rFabs represent a panel of reagents for high-affinity recognition of ricin with potential national security biosensor applications.

  19. Novel screening system for high-affinity ligand of heredity vitamin D-resistant rickets-associated vitamin D receptor mutant R274L using bioluminescent sensor.

    Science.gov (United States)

    Mano, Hiroki; Nishikawa, Miyu; Yasuda, Kaori; Ikushiro, Shinichi; Saito, Nozomi; Sawada, Daisuke; Honzawa, Shinobu; Takano, Masashi; Kittaka, Atsushi; Sakaki, Toshiyuki

    2017-03-01

    Hereditary vitamin D-resistant rickets (HVDRR) is caused by mutations in the vitamin D receptor (VDR) gene. Arg274 located in the ligand binding domain (LBD) of VDR is responsible for anchoring 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) by forming a hydrogen bond with the 1α-hydroxyl group of 1α,25(OH)2D3. The Arg274Leu (R274L) mutation identified in patients with HVDRR causes a 1000-fold decrease in the affinity for 1α,25(OH)2D3, and dramatically reduces vitamin D- related gene expression. Recently, we successfully constructed fusion proteins consisting of split-luciferase and LBD of the VDR. The chimeric protein LucC-LBD-LucN, which displays the C-terminal domain of luciferase (LucC) at its N-terminus, can detect and discriminate between VDR agonists and antagonists. The LucC-LBD (R274L)-LucN was constructed to screen high-affinity ligands for the mutant VDR (R274L). Of the 33 vitamin D analogs, 5 showed much higher affinities for the mutant VDR (R274L) than 1α,25(OH)2D3, and 2α-[2-(tetrazol-2-yl)ethyl]-1α,25-(OH)2D3 showed the highest affinity. These compounds might be potential therapeutics for HVDRR caused by the mutant VDR (R274L). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure-affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids.

    Science.gov (United States)

    Cao, Hui; Jia, Xueping; Shi, Jian; Xiao, Jianbo; Chen, Xiaoqing

    2016-07-01

    Dietary stilbenoids are associated with many benefits for human health, which depend on their bioavailability and bioaccessibility. The stilbenoid-human serum albumin (HSA) interactions are investigated to explore the structure-affinity relationship and influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. The structure-affinity relationship of the stilbenoids-HSA interaction was found as: (1) the methoxylation enhanced the affinity, (2) an additional hydroxyl group increases the affinity and (3) the glycosylation significantly weakened the affinity. HSA obviously masked the free radical scavenging potential of stilbenoids. The stabilities of stilbenoids in different medium were determined as: HSA solution>human plasma>Dulbecco's modified Eagle's medium. It appears that the milk enhanced the cell uptake of stilbenoids with multi-hydroxyl groups and weakened the cell uptake of stilbenoids with methoxyl group on EA.hy 926 endothelial cells. The stilbenoids are hardly absorbed by human umbilical vein endothelial cells in the presence of milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Screening of protein-ligand interactions using dynamic protein-affinity chromatography solid-phase extraction-liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Jonker, N.; Kool, J.; Krabbe, J.G.; Retra, K.; Lingeman, H.; Irth, H.

    2008-01-01

    A novel methodology is shown enabling the screening of mixtures of compounds for their affinity to a receptor protein. The system presented, dynamic protein-affinity chromatography solid-phase extraction (DPAC-SPE), overcomes the limitations of the existing methods by performing an incubation of the

  2. Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots.

    Science.gov (United States)

    Huang, C; Barker, S J; Langridge, P; Smith, F W; Graham, R D

    2000-09-01

    Phosphate (P) is taken up by plants through high-affinity P transporter proteins embedded in the plasma membrane of certain cell types in plant roots. Expression of the genes that encode these transporters responds to the P status of the plants, and their transcription is normally tightly controlled. However, this tight control of P uptake is lost under Zn deficiency, leading to very high accumulation of P in plants. We examined the effect of plant Zn status on the expression of the genes encoding the HVPT1 and HVPT2 high-affinity P transporters in barley (Hordeum vulgare L. cv Weeah) roots. The results show that the expression of these genes is intimately linked to the Zn status of the plants. Zn deficiency induced the expression of genes encoding these P transporters in plants grown in either P-sufficient or -deficient conditions. Moreover, the role of Zn in the regulation of these genes is specific in that it cannot be replaced by manganese (a divalent cation similar to Zn). It appears that Zn plays a specific role in the signal transduction pathway responsible for the regulation of genes encoding high-affinity P transporters in plant roots. The significance of Zn involvement in the regulation of genes involved in P uptake is discussed.

  3. Interrogating the Molecular Basis for Substrate Recognition in Serotonin and Dopamine Transporters with High-Affinity Substrate-Based Bivalent Ligands

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Kristensen, Trine N. Bjerre

    2016-01-01

    The transporters for the neurotransmitters serotonin and dopamine (SERT and DAT, respectively) are targets for drugs used in the treatment of mental disorders and widely used drugs of abuse. Studies of prokaryotic homologues have advanced our structural understanding of SERT and DAT, but it still...... remains enigmatic whether the human transporters contain one or two high-affinity substrate binding sites. We have designed and employed 24 bivalent ligands possessing a highly systematic combination of substrate moieties (serotonin and/or dopamine) and aliphatic or poly(ethylene glycol) spacers to reveal...... insight into substrate recognition in SERT and DAT. An optimized bivalent ligand comprising two serotonin moieties binds SERT with 3,800-fold increased affinity compared to that of serotonin, suggesting that the human transporters have two distinct substrate binding sites. We show that the bivalent...

  4. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  5. In vivo neutralization of α-cobratoxin with high-affinity llama single-domain antibodies (VHHs and a VHH-Fc antibody.

    Directory of Open Access Journals (Sweden)

    Gabrielle Richard

    Full Text Available Small recombinant antibody fragments (e.g. scFvs and VHHs, which are highly tissue permeable, are being investigated for antivenom production as conventional antivenoms consisting of IgG or F(ab'2 antibody fragments do not effectively neutralize venom toxins located in deep tissues. However, antivenoms composed entirely of small antibody fragments may have poor therapeutic efficacy due to their short serum half-lives. To increase serum persistence and maintain tissue penetration, we prepared low and high molecular mass antivenom antibodies. Four llama VHHs were isolated from an immune VHH-displayed phage library and were shown to have high affinity, in the low nM range, for α-cobratoxin (α-Cbtx, the most lethal component of Naja kaouthia venom. Subsequently, our highest affinity VHH (C2 was fused to a human Fc fragment to create a VHH2-Fc antibody that would offer prolonged serum persistence. After in planta (Nicotiana benthamiana expression and purification, we show that our VHH2-Fc antibody retained high affinity binding to α-Cbtx. Mouse α-Cbtx challenge studies showed that our highest affinity VHHs (C2 and C20 and the VHH2-Fc antibody effectively neutralized lethality induced by α-Cbtx at an antibody:toxin molar ratio as low as ca. 0.75×:1. Further research towards the development of an antivenom therapeutic involving these anti-α-Cbtx VHHs and VHH2-Fc antibody molecules should involve testing them as a combination, to determine whether they maintain tissue penetration capability and low immunogenicity, and whether they exhibit improved serum persistence and therapeutic efficacy.

  6. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-06-01

    Full Text Available Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples.

  7. Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa.

    Science.gov (United States)

    Ekman, Agneta; Sundblad-Elverfors, Charlotta; Landén, Mikael; Eriksson, Tomas; Eriksson, Elias

    2006-06-15

    Impaired serotonin transmission has been suggested to be implicated in the pathophysiology of bulimia nervosa. As an indirect measure of brain serotonergic activity, the binding of tritiated ligands to platelet serotonin transporters has been studied in bulimia nervosa as well as in other putatively serotonin-related psychiatric disorders. In this study, the density and affinity of platelet serotonin transporters were assessed in 20 women meeting the DSM-IV criteria for bulimia nervosa and in 14 controls without previous or ongoing eating disorder using [(3)H]paroxetine as a ligand. In comparison to controls, women with bulimia nervosa had a significantly reduced number of platelet binding sites (B(max) = 721 +/- 313 vs. 1145 +/- 293 fmol/mg protein) and an increase in the affinity for the ligand demonstrated by a lower dissociaton constant (K(d) = 33 +/- 10 vs. 44 +/- 10 pM). A significant correlation between B(max) and K(d) values was found in patients but not in controls. Our results support the notion that bulimia nervosa is associated with a reduction in platelet serotonin transporter density. In addition, our study is the first to report that this reduced transporter density in women with bulimia nervosa is accompanied by an increase in the affinity of the transporter for the ligand.

  8. Carbohydrate chips for studying high-throughput carbohydrate-protein interactions.

    Science.gov (United States)

    Park, Sungjin; Lee, Myung-ryul; Pyo, Soon-Jin; Shin, Injae

    2004-04-21

    Carbohydrate-protein interactions play important biological roles in living organisms. For the most part, biophysical and biochemical methods have been used for studying these biomolecular interactions. Less attention has been given to the development of high-throughput methods to elucidate recognition events between carbohydrates and proteins. In the current effort to develop a novel high-throughput tool for monitoring carbohydrate-protein interactions, we prepared carbohydrate microarrays by immobilizing maleimide-linked carbohydrates on thiol-derivatized glass slides and carried out lectin binding experiments by using these microarrays. The results showed that carbohydrates with different structural features selectively bound to the corresponding lectins with relative binding affinities that correlated with those obtained from solution-based assays. In addition, binding affinities of lectins to carbohydrates were also quantitatively analyzed by determining IC(50) values of soluble carbohydrates with the carbohydrate microarrays. To fabricate carbohydrate chips that contained more diverse carbohydrate probes, solution-phase parallel and enzymatic glycosylations were performed. Three model disaccharides were in parallel synthesized in solution-phase and used as carbohydrate probes for the fabrication of carbohydrate chips. Three enzymatic glycosylations on glass slides were consecutively performed to generate carbohydrate microarrays that contained the complex oligosaccharide, sialyl Le(x). Overall, these works demonstrated that carbohydrate chips could be efficiently prepared by covalent immobilization of maleimide-linked carbohydrates on the thiol-coated glass slides and applied for the high-throughput analyses of carbohydrate-protein interactions.

  9. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    -affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays......A resulted in a two- to fivefold reduction in affinity for glucose and led to expression of a low-affinity glucose transport gene, mstC, at high dilution rate. The effect of mstA disruption was more subtle at low and intermediate dilution rates, pointing to some degree of functional redundancy in the high......, and analysed for expression of mstA and two other transporter genes, mstC and mstF. The capacity for glucose uptake (v(max)) of both strains was significantly reduced at low dilution rate. The glucose uptake assays revealed complex uptake kinetics. This impeded accurate determination of maximum specific uptake...

  10. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Aaron M.; Culbertson, Sannie J.; Shogren-Knaak, Michael A.; Barb, Adam W.

    2017-11-01

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05 and 4.10 Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a KD = 62 ± 13 nM, followed by the binding of two more equivalents of holo-ACPP with KD = 1.2 ± 0.2 μM. Cooperativity was not observed for apo-ACPP which bound with KD = 2.4 ± 0.1 μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis.

  11. Quantitative analysis of fibrin-binding affinity of fibrinolytic components by frontal affinity chromatography.

    Science.gov (United States)

    Kazama, M; Tahara, C; Abe, T; Kasai, K

    1988-01-01

    Binding affinity of fibrinolytic factors to insolubilized lysine and fibrin was quantitatively measured by frontal affinity chromatography using lysine-Toyopearl and fibrin-Sepharose column. The highest binding affinity was found with recombinant tissue-type plasminogen activator (t-PA), followed by lysyl-plasminogen and glutamyl-plasminogen (Glu-PLg) with intermediate affinity, but very low affinity by single chain UK-type plasminogen activator, high molecular weight UK and low molecular weight UK. At the coexistence of EACA, fibrin-binding affinity of Glu-PLg was greatly reduced, but those of UK's were substantially unchanged. It was concluded that high fibrin-binding affinity of t-PA and plasminogens were largely related to the lysine-binding affinity of these enzymes, but that of UK's would be related to the other binding affinity.

  12. Flow Interaction With Highly Flexible Structures

    Science.gov (United States)

    Shoele, Kourosh

    Studying the interaction between fluid and structure is an essential step towards the understanding of many engineering and physical problems, from the flow instability of structures to the biolocomotion of insects, birds and fishes. The simulation of such problems is computationally challenging. This justifies the attempts to develop more sophisticated and more efficient numerical models of fluid-solid interactions. In this dissertation, we proposed numerical models both in potential flow and fully viscous flow for the interaction of immersed structure with a strongly unsteady flow. In particular we have developed efficient approaches to study two groups of problems, the flow interaction with skeleton-reinforced fish fins and flow interaction with highly flexible bluff bodies. Fins of bony fishes are characterized by a skeleton-reinforced membrane structure consisting of a soft collagen membrane strengthened by embedded flexible rays. Morphologically, each ray is connected to a group of muscles so that the fish can control the rotational motion of each ray individually, enabling multi-degree of freedom control over the fin motion and deformation. We have developed fluid-structure interaction models to simulate the kinematics and dynamic performance of a structurally idealized fin. The first method includes a boundary-element model of the fluid motion and a fully-nonlinear Euler-Bernoulli beam model of the embedded rays. In the second method, we use an improved immersed boundary approach. Using these models, we study thrust generation and propulsion efficiency of the fin at different combinations of parameters at both high-Re and intermediate-Re flow. Effects of kinematic as well as structural properties are examined. It has been illustrated that the fish's capacity to control the motion of each individual ray, as well as the anisotropic deformability of the fin determined by distribution of the rays (especially the detailed distribution of ray stiffness), is

  13. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances

    Energy Technology Data Exchange (ETDEWEB)

    Rannug, A.; Rannug, U.; Rosenkranz, H.S.; Winqvist, L.; Westerholm, R.; Agurell, E.; Grafstroem, A.K.

    1987-11-15

    The purpose of the present study was to determine whether ultraviolet light (UV) irradiation of amino acids produces compounds with affinity for the Ah receptor. Aqueous solutions of L-tryptophan were exposed to radiation from an unfiltered high-pressure mercury lamp. The photoproducts formed were solvent-extracted or concentrated on Sep-Pak C18 cartridges. The concentrated extracts or eluants were treated for their ability to compete with /sup 3/H-labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Binding was assayed in liver cytosolic preparations from Sprague-Dawley rats using a technique based on hydroxylapatite separation. Photoproducts with receptor affinity were formed in a time-dependent manner. Histidine and tryptamine also gave products upon UV irradiation that competed with TCDD. Commercial tryptophan, at least aged, contained trace amounts of impurities with receptor affinity. Analysis by TLC and high-pressure liquid chromatography of the photo-products of tryptophan showed a minimum of three different binding compounds. Two of the products were studied in greater detail. One of them, showing UV absorbance and yellow fluorescence, gave a molecular ion (M+) of 284 and the other gave M+ 312 but showed little UV absorption and fluorescence. The concentration, based on mass spectrometry quantifications, of the two compounds that displaced more than 50% of TCDD was found to be extremely low, giving Kd values of 0.44 nM (M+ 312) and 0.07 nM (M+ 284). The existence of high affinity receptors for oxidized amino acids is postulated and their possible role in the proliferative cellular responses to TCDD and tryptophan is discussed briefly.

  14. High-productivity membrane adsorbers: Polymer surface-modification studies for ion-exchange and affinity bioseparations

    Science.gov (United States)

    Chenette, Heather C. S.

    This dissertation centers on the surface-modification of macroporous membranes to make them selective adsorbers for different proteins, and the analysis of the performance of these membranes relative to existing technology. The common approach used in these studies, which is using membrane technology for chromatographic applications and using atom transfer radical polymerization (ATRP) as a surface modification technique, will be introduced and supported by a brief review in Chapter 1. The specific approaches to address the unique challenges and motivations of each study system are given in the introduction sections of the respective dissertation chapters. Chapter 2 describes my work to develop cation-exchange membranes. I discuss the polymer growth kinetics and characterization of the membrane surface. I also present an analysis of productivity, which measures the mass of protein that can bind to the stationary phase per volume of stationary phase adsorbing material per time. Surprisingly and despite its importance, this performance measure was not described in previous literature. Because of the significantly shorter residence time necessary for binding to occur, the productivity of these cation-exchange membrane adsorbers (300 mg/mL/min) is nearly two orders of magnitude higher than the productivity of a commercial resin product (4 mg/mL/min). My work studying membrane adsorbers for affinity separations was built on the productivity potential of this approach, as articulated in the conclusion of Chapter 2. Chapter 3 focuses on the chemical formulation work to incorporate glycoligands into the backbone of polymer tentacles grown from the surface of the same membrane stationary phase. Emphasis is given to characterizing and testing the working formulation for ligand incorporation, and details about how I arrived at this formulation are given in Appendix B. The plant protein, or lectin, Concanavalin A (conA) was used as the target protein. The carbohydrate affinity

  15. The P-glycoprotein (ABCB1) linker domain encodes high-affinity binding sequences to alpha- and beta-tubulins.

    Science.gov (United States)

    Georges, Elias

    2007-06-26

    P-Glycoprotein (or ABCB1) has been shown to cause multidrug resistance in tumor cell lines selected with lipophilic anticancer drugs. ABCB1 encodes a duplicated molecule with two hydrophobic and hydrophilic domains linked by a highly charged region of approximately 90 amino acids, the "linker domain" with as yet unknown function(s). In this report, we demonstrate a role for this domain in binding to other cellular proteins. Using overlapping hexapeptides that encode the entire amino acid sequence of the linker domain of human ABCB1, we show a direct and specific binding between sequences in the linker domain and several intracellular proteins. Three different polypeptide sequences [617EKGIYFKLVTM627 (LDS617-627), 657SRSSLIRKRSTRRSVRGSQA676 (LDS657-676), and 693PVSFWRIMKLNLT705 (LDS693-705)] in the linker domain interacted tightly with several proteins with apparent molecular masses of approximately 80, 57, and 30 kDa. Interestingly, only the 57 kDa protein (or P57) interacted with all three different sequences of the linker domain. Purification and partial N-terminal amino acid sequencing of P57 showed that it encodes the N-terminal amino acids of alpha- and beta-tubulins. The identity of the P57 interacting protein as tubulins was further confirmed by Western blotting using monoclonal antibodies to alpha- and beta-tubulin. Taken together, the results of this study provide the first evidence for ABCB1 protein interaction mediated by sequences in the linker domain. These findings are likely to provide further insight into the functions of ABCB1 in normal and drug resistant tumor cells.

  16. The HLA-DP2 protein binds the immunodominant epitope from myelin basic protein, MBP85-99, with high affinity

    DEFF Research Database (Denmark)

    Hansen, B E; Nielsen, Claus Henrik; Madsen, H O

    2011-01-01

    Myelin basic protein (MBP) is a candidate autoantigen in multiple sclerosis (MS). The immunodominant epitope for T-cell responses is assigned to the amino acid sequence MBP84-102, which binds to human leukocyte antigen (HLA)-DR2a (DRB5*0101) and HLA-DR2b (DRB1*1501) of the HLA-DR2 haplotype...... as the HLA-DRB1*1501, where the MBP89V is preferred as the p1 anchor. Notably, full-length MBP was able to compete for peptide binding with an affinity similar to that seen for the high-affinity binding peptides, DRa170-83 and IIP53-65. In summary, the HLA-DP2 molecule binds the immunodominant epitope in MS...

  17. Molecular Characterization of a High-Affinity Xylobiose Transporter of Streptomyces thermoviolaceus OPC-520 and Its Transcriptional Regulation

    Science.gov (United States)

    Tsujibo, Hiroshi; Kosaka, Mitsuo; Ikenishi, Sadao; Sato, Takaji; Miyamoto, Katsushiro; Inamori, Yoshihiko

    2004-01-01

    Streptomyces thermoviolaceus OPC-520 secretes two types of xylanases (StxI and StxII), an acetyl xylan esterase (StxIII), and an α-l-arabinofuranosidase (StxIV) in the presence of xylan. Xylan degradation products (mainly xylobiose) produced by the action of these enzymes entered the cell and were then degraded to xylose by an intracellular β-xylosidase (BxlA). A gene cluster involved in xylanolytic system of the strain was cloned and sequenced upstream of and including a BxlA-encoding gene (bxlA). The gene cluster consisted of four different open reading frames organized in the order bxlE, bxlF, bxlG, and bxlA. Reverse transcriptase PCR analysis revealed that the gene cluster is transcribed as polycistronic mRNA. The deduced gene products, comprising BxlE (a sugar-binding lipoprotein), BxlF (an integral membrane protein), and BxlG (an integral membrane protein), showed similarity to components of the bacterial ATP-binding cassette (ABC) transport system; however, the gene for the ATP binding protein was not linked to the bxl operon. The soluble recombinant BxlE protein was analyzed for its binding activity for xylooligosaccharides. The protein showed high-level affinity for xylobiose (Kd = 8.75 × 10−9 M) and for xylotriose (Kd = 8.42 × 10−8 M). Antibodies raised against the recombinant BxlE recognized the detergent-soluble BxlE isolated from S. thermoviolaceus membranes. The deduced BxlF and BxlG proteins are predicted to be integral membrane proteins. These proteins contained the conserved EAA loop (between the fourth and the fifth membrane-spanning segments) which is characteristic of membrane proteins from binding-protein-dependent ABC transporters. In addition, the bxlR gene located upstream of the bxl operon was cloned and expressed in Escherichia coli. The bxlR gene encoded a 343-residue polypeptide that is highly homologous to members of the GalR/LacI family of bacterial transcriptional regulators. The purified BxlR protein specifically bound to a 4

  18. Boronate affinity monolith with a gold nanoparticle-modified hydrophilic polymer as a matrix for the highly specific capture of glycoproteins.

    Science.gov (United States)

    Wu, Ci; Liang, Yu; Zhao, Qun; Qu, Yanyan; Zhang, Shen; Wu, Qi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2014-07-07

    As low abundance is the great obstacle for glycoprotein analysis, the development of materials with high efficiency and selectivity for glycoprotein enrichment is a prerequisite in glycoproteome research. Herein, we report a new kind of hydrophilic boronate affinity monolith by attaching 4-mercaptophenylboronic acid (MPBA) with 2-mercaptoethylamine (MPA) on the gold nanoparticle-modified poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate)) monolith for glycoprotein enrichment. With poly(ethylene glycol) diacrylate as the cross-linker and the further modification of gold nanoparticles, the matrix has advantages of good hydrophilicity and enhanced surface area, which are beneficial to improve the enrichment selectivity and efficiency for glycoproteins. The attachment of MPBA and MPA provide intramolecular BN coordination, which could further enhance the specificity of glycoprotein capture. Such a boronate affinity monolith was applied to enrich horseradish peroxidase (HRP) from the mixture of HRP and bovine serum albumin (BSA), and high selectivity was obtained even at a mass ratio of 1:1000. In addition, the binding capacity of ovalbumin on such monolith reached 390 μg g(-1) . Furthermore, the average recovery of HRP on the prepared affinity monoliths was (84.8±1.9) %, obtained in three times enrichment with the same column. Finally, the boronate affinity monolith was successfully applied for the human-plasma glycoproteome analysis. As a result, 160 glycoproteins were credibly identified from 9 μg of human plasma, demonstrating the great potential of such a monolith for large-scale glycoproteome research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metal ion blockage of tritium incorporation into gamma-carboxyglutamic acid of prothrombin. Stoichiometry of gamma-carboxyglutamic acid to Gd3+ for the high affinity sites

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, S.P.; Saini, R.; Katz, A.; Cai, G.Z.; Maki, S.L.; Brodsky, G.L.

    1988-07-15

    Prothrombin possesses two high affinity and four low affinity gamma-carboxyglutamic acid (Gla)-dependent gadolinium binding sites. Earlier work has shown that tritium can be specifically incorporated at the gamma-carbon of Gla in proteins at pH 5. In the present work we show that inclusion of saturating concentrations of Ca2+ in nondenaturing buffer systems ranging from pH 5.5 to 8.5 prevents the exchange of tritium into all 10 Gla residues of prothrombin. Similarly, saturating concentrations of Gd3+ prevent tritium incorporation into Gla at pH 5.5. Positive cooperativity was observed for the binding of Gd3+ to human prothrombin (at pH 5.5) for the two high affinity sites (Kd congruent to 35 nM). The four low affinity sites bind Gd3+ with a Kd congruent to 5 microM. Incubation of prothrombin ranging in concentrations from 10 to 40 microM with 2 eq of Gd3+ at pH 5.5 prevents 5.7 (average of seven determinations) Gla residues from tritium incorporation. Sedimentation velocity experiments conducted at pH 5.5 indicate that prothrombin in the presence of saturating concentrations of Gd3+ polymerizes, most likely, to a trimer. Further, in the presence of 2 eq of Gd3+, calculated percent weight average concentration of monomer prothrombin is congruent to 100% at 10 microM, approximately equal to 95% at 20 microM, and congruento to 80% at 40 microM protein concentration. Thus, it appears that under conditions in which prothrombin primarily exists as a monomer, occupancy of the initial two metal binding sites by Gd3+ involves six Gla residues.

  20. Assessing high affinity binding to HLA-DQ2.5 by a novel peptide library based approach

    DEFF Research Database (Denmark)

    Jüse, Ulrike; Arntzen, Magnus; Højrup, Peter

    2011-01-01

    to HLA are then isolated by size exclusion chromatography and sequenced by tandem mass spectrometry online coupled to liquid chromatography. The MS/MS data are subsequently searched against a library defined database using a search engine such as Mascot, followed by manual inspection of the results. We...... used two dodecamer and two decamer peptide libraries and HLA-DQ2.5 to test possibilities and limits of this method. The selected sequences which we identified in the fraction eluted from HLA-DQ2.5 showed a higher average of their predicted binding affinity values compared to the original peptide...

  1. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  2. The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant {alpha}1-acid glycoprotein: implications for the use of the ligand as a CNS inflammatory marker

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Andrew E-mail: andrew_2_lockhart@gsk.com; Davis, Bill; Matthews, Julian C.; Rahmoune, Hassan; Hong, Guizhu; Gee, Antony; Earnshaw, David; Brown, John

    2003-02-01

    The peripheral benzodiazepine receptor ligand PK11195 has been used as an in vivo marker of neuroinflammation in positron emission tomography studies in man. One of the methodological issues surrounding the use of the ligand in these studies is the highly variable kinetic behavior of [{sup 11}C]PK11195 in plasma. We therefore undertook a study to measure the binding of [{sup 3}H]PK11195 to whole human blood and found a low level of binding to blood cells but extensive binding to plasma proteins. Binding assays using [{sup 3}H]PK11195 and purified human plasma proteins demonstrated a strong binding to {alpha}1-acid glycoprotein (AGP) and a much weaker interaction with albumin. Immunodepletion of AGP from plasma resulted in the loss of plasma [{sup 3}H]PK11195 binding demonstrating: (i) the specificity of the interaction and (ii) that AGP is the major plasma protein to which PK11195 binds with high affinity. PK11195 was able to displace fluorescein-dexamethasone from AGP with IC{sub 50} of <1.2 {mu}M, consistent with a high affinity interaction. These findings are important for understanding the behavior of the ligand in positron emission tomography studies for three reasons. Firstly, AGP is an acute phase protein and its levels will vary during infection and pathological inflammatory diseases such as multiple sclerosis. This could significantly alter the free plasma concentrations of the ligand and contribute to its variable kinetic behavior. Secondly, AGP and AGP-bound ligand may contribute to the access of [{sup 11}C]PK11195 to the brain parenchyma in diseases with blood brain barrier breakdown. Finally, local synthesis of AGP at the site of brain injury may contribute the pattern of [{sup 11}C]PK11195 binding observed in neuroinflammatory diseases.

  3. LysGH15B, the SH3b domain of staphylococcal phage endolysin LysGH15, retains high affinity to staphylococci.

    Science.gov (United States)

    Gu, Jingmin; Lu, Rong; Liu, Xiaohe; Han, Wenyu; Lei, Liancheng; Gao, Yu; Zhao, Honglei; Li, Yue; Diao, Yuwen

    2011-12-01

    LysGH15, a phage endolysin, exhibits a particularly broad lytic spectrum against Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA). Sequence analysis reveals that this endolysin contains a C-terminal cell wall binding domain (SH3b), which causes the endolysin to bind to host strains. In this study, the substrate binding affinity of the SH3b domain (LysGH15B) was evaluated. A fusion protein of LysGH15B and green fluorescent protein (LysGH15B-GFP) were cloned and expressed in Escherichia coli. Laser scanning confocal microscopy was used to detect the fluorescence of the treated cells irradiated at different excitation wavelengths and to determine the binding activity of LysGH15B-GFP and GFP. We found that LysGH15B-GFP not only generated green fluorescence, but, more importantly, also displayed specific affinity to staphylococcal isolates, especially MRSA. In contrast, the single GFP did not display any binding activity. The high affinity was attributed to the portion of LysGH15B and the binding activity of the fusion protein was specific to staphylococci. This study provides an insight into the SH3b domain of LysGH15. The specific binding activity may cause LysGH15B to serve as an anchoring device, and offer an alternative approach for cell surface attachment onto staphylococci.

  4. The C-terminal extension of human telomerase reverse transcriptase is necessary for high affinity binding to telomeric DNA.

    Science.gov (United States)

    Tomlinson, Christopher G; Holien, Jessica K; Mathias, Jordan A T; Parker, Michael W; Bryan, Tracy M

    2016-01-01

    The ribonucleoprotein enzyme telomerase maintains telomeres and is essential for cellular immortality in most cancers. Insight into the telomerase mechanism can be gained from short telomere syndromes, in which mutation of telomerase components manifests in telomere dysfunction. We carried out detailed kinetic analyses and molecular modelling of a disease-associated mutant in the C-terminal extension of the reverse transcriptase subunit of human telomerase. The kinetic analyses revealed that the mutation substantially impacts the affinity of telomerase for telomeric DNA, but the magnitude of this impact varies for primers with different 3' ends. Molecular dynamics simulations corroborate this finding, revealing that the mutation results in greater movement of a nearby loop, impacting the DNA-RNA helix differentially with different DNA primers. Thus, the data indicate that this region is the location of one of the enzyme conformational changes responsible for the long-standing observation that off-rates of telomerase vary with telomeric 3' end sequence. Our data provide a molecular basis for a disease-associated telomerase mutation, and the first direct evidence for a role of the C-terminal extension in DNA binding affinity, a function analogous to the "thumb" domain of retroviral reverse transcriptases. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan

    2011-12-23

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative to all other isoreticular rht-type MOFs. The high adsorption capacity and remarkable selectivity of CO 2 are attributed to the high density of open metal and Lewis basic sites in the framework. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igκ/Igλ loci bearing the rat CH region.

    Science.gov (United States)

    Osborn, Michael J; Ma, Biao; Avis, Suzanne; Binnie, Ashleigh; Dilley, Jeanette; Yang, Xi; Lindquist, Kevin; Ménoret, Séverine; Iscache, Anne-Laure; Ouisse, Laure-Hélène; Rajpal, Arvind; Anegon, Ignacio; Neuberger, Michael S; Buelow, Roland; Brüggemann, Marianne

    2013-02-15

    Mice transgenic for human Ig loci are an invaluable resource for the production of human Abs. However, such mice often do not yield human mAbs as effectively as conventional mice yield mouse mAbs. Suboptimal efficacy in delivery of human Abs might reflect imperfect interaction between the human membrane IgH chains and the mouse cellular signaling machinery. To obviate this problem, in this study we generated a humanized rat strain (OmniRat) carrying a chimeric human/rat IgH locus (comprising 22 human V(H)s, all human D and J(H) segments in natural configuration linked to the rat C(H) locus) together with fully human IgL loci (12 Vκs linked to Jκ-Cκ and 16 Vλs linked to Jλ-Cλ). The endogenous Ig loci were silenced using designer zinc finger nucleases. Breeding to homozygosity resulted in a novel transgenic rat line exclusively producing chimeric Abs with human idiotypes. B cell recovery was indistinguishable from wild-type animals, and human V(D)J transcripts were highly diverse. Following immunization, the OmniRat strain performed as efficiently as did normal rats in yielding high-affinity serum IgG. mAbs, comprising fully human variable regions with subnanomolar Ag affinity and carrying extensive somatic mutations, are readily obtainable, similarly to conventional mAbs from normal rats.

  7. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [11C]MA2 and [18F]MA3

    Science.gov (United States)

    Ahamed, Muneer; van Veghel, Daisy; Ullmer, Christoph; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy M.

    2016-01-01

    The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2) and a fluorine-18 ([18F]MA3) labeled analog of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analog 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted. PMID:27713686

  8. Synthesis, biodistribution and in vitro evaluation of brain permeable high affinity type 2 cannabinoid receptor agonists [11C]MA2 and [18F]MA3

    Directory of Open Access Journals (Sweden)

    Muneer Ahamed

    2016-09-01

    Full Text Available Abstract The type 2 cannabinoid receptor (CB2 is a member of the endocannabinoid system and is known for its important role in (neuroinflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2 and a fluorine-18 ([18F]MA3 labeled analogue of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM. MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analogue 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.

  9. The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: Understanding the determinants of binding affinity by comparison with Abl-SH3

    Directory of Open Access Journals (Sweden)

    van Nuland Nico AJ

    2007-04-01

    Full Text Available Abstract Background SH3 domains are small protein modules of 60–85 amino acids that bind to short proline-rich sequences with moderate-to-low affinity and specificity. Interactions with SH3 domains play a crucial role in regulation of many cellular processes (some are related to cancer and AIDS and have thus been interesting targets in drug design. The decapeptide APSYSPPPPP (p41 binds with relatively high affinity to the SH3 domain of the Abl tyrosine kinase (Abl-SH3, while it has a 100 times lower affinity for the α-spectrin SH3 domain (Spc-SH3. Results Here we present the high-resolution structure of the complex between the R21A mutant of Spc-SH3 and p41 derived from NMR data. Thermodynamic parameters of binding of p41 to both WT and R21A Spc-SH3 were measured by a combination of isothermal titration and differential scanning calorimetry. Mutation of arginine 21 to alanine in Spc-SH3 increases 3- to 4-fold the binding affinity for p41 due to elimination at the binding-site interface of the steric clash produced by the longer arginine side chain. Amide hydrogen-deuterium experiments on the free and p41-bound R21A Spc-SH3 domain indicate that binding elicits a strong reduction in the conformational flexibility of the domain. Despite the great differences in the thermodynamic magnitudes of binding, the structure of the R21A Spc-SH3:P41 complex is remarkably similar to that of the Abl-SH3:P41 complex, with only few differences in protein-ligand contacts at the specificity pocket. Using empirical methods for the prediction of binding energetics based on solvent-accessible surface area calculations, the differences in experimental energetics of binding between the two complexes could not be properly explained only on the basis of the structural differences observed between the complexes. We suggest that the experimental differences in binding energetics can be at least partially ascribed to the absence in the R21A Spc-SH3:P41 complex of several

  10. A tyrosine kinase inhibitor-based high-affinity PET radiopharmaceutical targets vascular endothelial growth factor receptor.

    Science.gov (United States)

    Li, Feng; Jiang, Sheng; Zu, Youli; Lee, Daniel Y; Li, Zheng

    2014-09-01

    Tyrosine kinase receptors including vascular endothelial growth factor receptor (VEGFR) have gained significant attention as pharmacologic targets. However, clinical evaluation of small-molecule drugs or biologics that target these pathways has so far yielded mixed results in a variety of solid tumors. The reasons for response variability remain unknown, including the temporal and spatial patterns of receptor tyrosine kinase expression. Methods to detect and quantify the presence of such cellular receptors would greatly facilitate drug development and therapy response assessment. We aimed to generate specific imaging agents as potential companion diagnostics that could also be used for targeted radionuclide therapy. Here, we report on the synthesis and initial preclinical performance of (64)Cu-labeled probes that were based on the kinase inhibitor already in clinical use, vandetanib (ZD6474), as a VEGFR-selective theranostic radiopharmaceutical. A monomeric (ZD-G1) and a dimeric (ZD-G2) derivative of ZD6474 were synthesized and conjugated with DOTA for chelation with (64)Cu to produce the probes (64)Cu-DOTA-ZD-G1 and (64)Cu-DOTA-ZD-G2. The binding affinity and specificity to VEGFR were measured using U-87 MG cells known to overexpress VEGFR. Small-animal PET and biodistribution studies were performed with (64)Cu-labeled probes (3-4 MBq) intravenously administered in U-87 MG tumor-bearing mice with or without coinjection of unlabeled ZD-G2 for up to 24 h after injection. Receptor-binding assays yielded a mean equilibrium dissociation constant of 44.7 and 0.45 nM for monomeric and dimeric forms, respectively, indicating a synergistic effect in VEGFR affinity by multivalency. Small-animal PET/CT imaging showed rapid tumor accumulation of (64)Cu-DOTA-ZD-G2, with excellent tumor-to-normal tissue contrast by 24 h. Coinjection of the (64)Cu-DOTA-ZD-G2 with 50 nmol (60 μg) of nonradioactive ZD-G2 effectively blocked tumor uptake. A (64)Cu-labeled probe derived from an

  11. Absolute proton affinity of some polyguanides

    Science.gov (United States)

    Maksic; Kovacevic

    2000-06-02

    The problem of the absolute proton affinity (APA) of some polyguanides is addressed by the MP2(fc)/6-311+G//HF/6-31G theoretical model. It is shown that the linear chain polyguanides exhibit increased basicity as a function of the number of guanide subunits. However, the saturation effect yields an asymptotic APA value of 254 kcal/mol. Branched polyguanides on the other hand have higher APAs than their linear counterparts. The largest proton affinity is found in a doubly bifurcated heptaguanide, being as high as 285 kcal/mol, thus potentially representing one of the strongest organic bases. Finally, it is found that all polyguanides protonate at imino nitrogen atoms, since they are apparently susceptible the most to the proton attack. The origin of their very high intrinsic basicity is traced down to a dramatic increase in the resonance interaction of the corresponding conjugate bases. For instance, the increase in the resonance energy in the protonated guanidine is estimated to be in a range of 24-27 kcal/mol, which is higher than the aromatic stabilization in benzene. The proton affinity of some polycyclic guanides including Schwesinger proton sponge and porphine is briefly discussed.

  12. Alkyloxy carbonyl modified hexapeptides as a high affinity compounds for Wnt5A protein in the treatment of psoriasis

    Science.gov (United States)

    Kelotra, Ankit; Gokhale, Sadashiv M; Kelotra, Seema; Mukadam, Vaidehi; Nagwanshi, Komal; Bandaru, Srinivas; Nayarisseri, Anuraj; Bidwai, Anil

    2014-01-01

    Psoriasis is one of the most prevalent chronic inflammatory diseases of the skin. The Wnt pathways have been documented to play essential role in stem cell self-renewal and keratinocyte differentiation in the skin. Antagonizing the Wnt5a protein would emerge as a novel therapeutics in psoriasis treatment. In this view, we have developed and characterized series of compounds by attaching varied tertiary alkyloxy carbonyl groups at the N-terminal end of the hexapeptide (Met-Asp-Gly-Cys-Glu-Leu) bestowed to inhibit Wnt/Ca2+ signaling in psoriasis. Hexapeptide compound with 1,1-diphenylethoxy carbonyl group attached to N-terminal end of hexapeptide demonstrated highest binding affinity amongst all the evaluated compounds. The compound identified in the study can be subjected further for in vitro and in vivo studies for ADMET properties. PMID:25670877

  13. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  14. Applications of silica supports in affinity chromatography.

    Science.gov (United States)

    Schiel, John E; Mallik, Rangan; Soman, Sony; Joseph, Krina S; Hage, David S

    2006-04-01

    The combined use of silica-based chromatographic supports with immobilized affinity ligands can be used in many preparative and analytical applications. One example is the use of silica-based affinity columns in HPLC, giving rise to a method known as high-performance affinity chromatography (HPAC). This review discusses the role that silica has played in the development of affinity chromatography and HPAC and the applications of silica in these methods. This includes a discussion of the types of ligands that have been employed with silica and the methods by which these ligands have been immobilized. Various formats have also been presented for the use of silica in affinity chromatographic methods, including assays involving direct or indirect analyte detection, on-line or off-line affinity extraction, and chiral separations. The use of silica-based affinity columns in studies of biological systems based on zonal elution and frontal analysis methods will also be considered.

  15. Mutation of nonessential cysteines shows that the NF-κB essential modulator forms a constitutive noncovalent dimer that binds IκB kinase-β with high affinity.

    Science.gov (United States)

    Cote, Shaun M; Gilmore, Thomas D; Shaffer, Robert; Weber, Urs; Bollam, Rishitha; Golden, Mary S; Glover, Kimberley; Herscovitch, Melanie; Ennis, Thomas; Allen, Karen N; Whitty, Adrian

    2013-12-23

    NEMO (NF-κB essential modulator) associates with catalytic subunits IKKα and IKKβ to form the IκB kinase (IKK) complex and is a key regulator of NF-κB pathway signaling. Biochemical and structural characterization of NEMO has been challenging, however, leading to conflicting data about basic biochemical properties such as the oligomeric state of active NEMO and its binding affinity for IKKβ. We show that up to seven of NEMO's 11 cysteine residues can be mutated to generate recombinant full-length NEMO that is highly soluble and active. Using a fluorescence anisotropy binding assay, we show that full-length NEMO binds a 44-mer peptide encompassing residues 701-745 of IKKβ with a K(D) of 2.2 ± 0.8 nM. The IKKβ binding affinities of mutants with five and seven Cys-to-Ala substitutions are indistinguishable from that of wild-type NEMO. Moreover, when expressed in NEMO -/- fibroblasts, the five-Ala and seven-Ala NEMO mutants can interact with cellular IKKβ and restore NF-κB signaling to provide protection against tumor necrosis factor α-induced cell death. Treatment of the NEMO-reconstituted cells with H₂O₂ led to the formation of covalent dimers for wild-type NEMO and the five-Ala mutant, but not for the seven-Ala mutant, confirming that Cys54 and/or Cys347 can mediate interchain disulfide bonding. However, the IKKβ binding affinity of NEMO is unaffected by the presence or absence of interchain disulfide bonding at Cys54, which lies within the IKKβ binding domain of NEMO, or at Cys347, indicating that NEMO exists as a noncovalent dimer independent of the redox state of its cysteines. This conclusion was corroborated by the observation that the secondary structure content of NEMO and its thermal stability were independent of the presence or absence of interchain disulfide bonds.

  16. Highly charged Arq+ ions interacting with metals

    Science.gov (United States)

    Wang, Jijin; Zhang, Jian; Gu, Jiangang; Luo, Xianwen; Hu, Bitao

    2009-12-01

    Using computer simulation, alternative methods of the interaction of highly charged ions Arq+ with metals (Au, Ag) are used and verified in the present work. Based on the classical over-barrier model, we discussed the promotion loss and peeling off processes. The simulated total potential electron yields agree well with the experiment data in incident energy ranging from 100 eV to 5 keV and all charge states of Arq+ . Based on the TRIM code, we obtain the side-feeding rate as well as the motion and charge transfer of HCI below the surface. Some results, including the array of KLx x-ray satellite lines, the respective contribution of autoionization, and side-feeding to inner shells, and the filling rates and lifetime of inner shells for Ar agree well with experiment or theory.

  17. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs

    Science.gov (United States)

    Munday, Jane C.; Eze, Anthonius A.; Baker, Nicola; Glover, Lucy; Clucas, Caroline; Aguinaga Andrés, David; Natto, Manal J.; Teka, Ibrahim A.; McDonald, Jennifer; Lee, Rebecca S.; Graf, Fabrice E.; Ludin, Philipp; Burchmore, Richard J. S.; Turner, C. Michael R.; Tait, Andy; MacLeod, Annette; Mäser, Pascal; Barrett, Michael P.; Horn, David; De Koning, Harry P.

    2014-01-01

    Objectives Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. Methods The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. Results All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. Conclusions TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter. PMID:24235095

  18. The High-Affinity Phosphate Transporter GmPT5 Regulates Phosphate Transport to Nodules and Nodulation in Soybean1[W][OA

    Science.gov (United States)

    Qin, Lu; Zhao, Jing; Tian, Jiang; Chen, Liyu; Sun, Zhaoan; Guo, Yongxiang; Lu, Xing; Gu, Mian; Xu, Guohua; Liao, Hong

    2012-01-01

    Legume biological nitrogen (N) fixation is the most important N source in agroecosystems, but it is also a process requiring a considerable amount of phosphorus (P). Therefore, developing legume varieties with effective N2 fixation under P-limited conditions could have profound significance for improving agricultural sustainability. We show here that inoculation with effective rhizobial strains enhanced soybean (Glycine max) N2 fixation and P nutrition in the field as well as in hydroponics. Furthermore, we identified and characterized a nodule high-affinity phosphate (Pi) transporter gene, GmPT5, whose expression was elevated in response to low P. Yeast heterologous expression verified that GmPT5 was indeed a high-affinity Pi transporter. Localization of GmPT5 expression based on β-glucuronidase staining in soybean composite plants with transgenic roots and nodules showed that GmPT5 expression occurred principally in the junction area between roots and young nodules and in the nodule vascular bundles for juvenile and mature nodules, implying that GmPT5 might function in transporting Pi from the root vascular system into nodules. Overexpression or knockdown of GmPT5 in transgenic composite soybean plants altered nodulation and plant growth performance, which was partially dependent on P supply. Through both in situ and in vitro 33P uptake assays using transgenic soybean roots and nodules, we demonstrated that GmPT5 mainly functions in transporting Pi from roots to nodules, especially under P-limited conditions. We conclude that the high-affinity Pi transporter, GmPT5, controls Pi entry from roots to nodules, is critical for maintaining Pi homeostasis in nodules, and subsequently regulates soybean nodulation and growth performance. PMID:22740613

  19. High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis.

    Science.gov (United States)

    Marciniak, Bogumiła C; Pabijaniak, Monika; de Jong, Anne; Dűhring, Robert; Seidel, Gerald; Hillen, Wolfgang; Kuipers, Oscar P

    2012-08-17

    In Bacillus subtilis and its relatives carbon catabolite control, a mechanism enabling to reach maximal efficiency of carbon and energy sources metabolism, is achieved by the global regulator CcpA (carbon catabolite protein A). CcpA in a complex with HPr-Ser-P (seryl-phosphorylated form of histidine-containing protein, HPr) binds to operator sites called catabolite responsive elements, cre. Depending on the cre box position relative to the promoter, the CcpA/HPr-Ser-P complex can either act as a positive or a negative regulator. The cre boxes are highly degenerate semi-palindromes with a lowly conserved consensus sequence. So far, studies aimed at revealing how CcpA can bind such diverse sites were focused on the analysis of single cre boxes. In this study, a genome-wide analysis of cre sites was performed in order to identify differences in cre sequence and position, which determine their binding affinity. The transcriptomes of B. subtilis cultures with three different CcpA expression levels were compared. The higher the amount of CcpA in the cells, the more operons possessing cre sites were differentially regulated. The cre boxes that mediated regulation at low CcpA levels were designated as strong (high affinity) and those which responded only to high amounts of CcpA, as weak (low affinity). Differences in the sequence and position in relation to the transcription start site between strong and weak cre boxes were revealed. Certain residues at specific positions in the cre box as well as, to a certain extent, a more palindromic nature of cre sequences and the location of cre in close vicinity to the transcription start site contribute to the strength of CcpA-dependent regulation. The main factors contributing to cre regulatory efficiencies, enabling subtle differential control of various subregulons of the CcpA regulon, are identified.

  20. High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-08-01

    Full Text Available Abstract Background In Bacillus subtilis and its relatives carbon catabolite control, a mechanism enabling to reach maximal efficiency of carbon and energy sources metabolism, is achieved by the global regulator CcpA (carbon catabolite protein A. CcpA in a complex with HPr-Ser-P (seryl-phosphorylated form of histidine-containing protein, HPr binds to operator sites called catabolite responsive elements, cre. Depending on the cre box position relative to the promoter, the CcpA/HPr-Ser-P complex can either act as a positive or a negative regulator. The cre boxes are highly degenerate semi-palindromes with a lowly conserved consensus sequence. So far, studies aimed at revealing how CcpA can bind such diverse sites were focused on the analysis of single cre boxes. In this study, a genome-wide analysis of cre sites was performed in order to identify differences in cre sequence and position, which determine their binding affinity. Results The transcriptomes of B. subtilis cultures with three different CcpA expression levels were compared. The higher the amount of CcpA in the cells, the more operons possessing cre sites were differentially regulated. The cre boxes that mediated regulation at low CcpA levels were designated as strong (high affinity and those which responded only to high amounts of CcpA, as weak (low affinity. Differences in the sequence and position in relation to the transcription start site between strong and weak cre boxes were revealed. Conclusions Certain residues at specific positions in the cre box as well as, to a certain extent, a more palindromic nature of cre sequences and the location of cre in close vicinity to the transcription start site contribute to the strength of CcpA-dependent regulation. The main factors contributing to cre regulatory efficiencies, enabling subtle differential control of various subregulons of the CcpA regulon, are identified.

  1. On affine rigidity

    Directory of Open Access Journals (Sweden)

    Steven J. Gortler

    2013-12-01

    Full Text Available We study the properties of affine rigidity of a hypergraph and prove a variety of fundamental results. First, we show that affine rigidity is a generic property (i.e., depends only on the hypergraph, not the particular embedding. Then we prove that a graph is generically neighborhood affinely rigid in d-dimensional space if it is (d+1-vertex-connected. We also show neighborhood affine rigidity of a graph implies universal rigidity of its squared graph.  Our results, and affine rigidity more generally, have natural applications in point registration and localization, as well as connections to manifold learning.

  2. High-Affinity LNA-DNA Mixmer Probes for Detection of Chromosome-Specific Polymorphisms of 5S rDNA Repeats in Arabidopsis thaliana.

    Science.gov (United States)

    Simon, Lauriane; Probst, Aline V

    2018-01-01

    Fluorescence in situ hybridization is a standard technique to visualize specific DNA sequences by hybridization with fluorescent probes and, most commonly, relies on DNA probes generated by nick translation. In this chapter, we describe the use of directly labeled LNA-DNA mixmer probes for the rapid detection of repetitive sequences on Arabidopsis thaliana nuclei spreads. We further demonstrate that due to the high thermal stability of the heteroduplexes and the resulting elevated binding affinity of LNA-DNA mixmer probes for their target DNA, these probes can be used to discriminate between repetitive sequences differing by only a few single nucleotide polymorphisms.

  3. Comparison of high affinity binding of {sup 3}H-proadifen and {sup 3}H-(-)-cocaine t rat liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S.B. [Astra Arcus AB, Dept. of Neuropharmacology, Soedertaelje (Sweden)

    1995-06-01

    The characteristics of the binding of {sup 3}H-proadifen to rat liver membranes were studied and compared to those of {sup 3}H-cocaine. It was found that {sup 3}H-proadifen was bound reversibly with high affinity (K{sub D}=1.8{+-}0.5 nM) and large capacity (B{sub max}=2010{+-}340 pmol/g wet tissue) to liver membranes. The corresponding values for the {sup 3}H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of {sup 3}H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 {mu}M CdCl{sub 2} in the incubation buffer it was possible to differentiate between two {sup 3}H-cocaine binding sites with K{sub d} values of 1.6 and 7.7 nM and B{sub max} values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of {sup 3}H-proadifen and {sup 3}H-cocaine inhibited the binding of {sup 3}H-proadifen (IC{sub 50}=10 nM) and proadifen that of {sup 3}H-cocaine (IC{sub 50}=1 nM). There was a high correlation coefficient (r{sub r}=0.972; P<0.01; n=12) in the Spearman rank test between the inhibitory potencies of compounds examined in both systems. Beside some potent alaproclate analogues a couple of compounds had moderately high affinity (IC{sub 50}=100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl{sub 2}, ZnCl{sub 2} and CuCl{sub 2} inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd{sup 2+} on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15{mu}M. The similarity of the characteristics of the binding of these ligands with that of {sup 3}H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.).

  4. A Generalized Design for Affinity Chromatography Columns

    OpenAIRE

    Kao, Lee-Wei; Wang, Nien-Hwa Linda

    2013-01-01

    In affinity chromatography, an adsorbent with a high selectivity for a target solute is used to isolate the target molecule from other impurities. With sufficient selectivity, the target molecule can be isolated in a highly purified and concentrated state. Common applications of affinity chromatography include Protein A chromatography for antibody purification and Immobilized Metal Affinity Chromatography (IMAC) for protein purification. The well-known design method based on constant-pattern ...

  5. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions

    National Research Council Canada - National Science Library

    Nur Hasiba Kamaruddin; Ahmad Ashrif A Bakar; Nadhratun Naiim Mobarak; Mohd Saiful Dzulkefly Zan; Norhana Arsad

    2017-01-01

    The study of binding affinity is essential in surface plasmon resonance (SPR) sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor...

  6. Structural and Affinity Determinants in the Interaction between Alcohol Acyltransferase from F. x ananassa and Several Alcohol Substrates: A Computational Study.

    Directory of Open Access Journals (Sweden)

    Carlos Navarro-Retamal

    Full Text Available Aroma and flavor are important factors of fruit quality and consumer preference. The specific pattern of aroma is generated during ripening by the accumulation of volatiles compounds, which are mainly esters. Alcohol acyltransferase (AAT (EC 2.3.1.84 catalyzes the esterification reaction of aliphatic and aromatic alcohols and acyl-CoA into esters in fruits and flowers. In Fragaria x ananassa, there are different volatiles compounds that are obtained from different alcohol precursors, where octanol and hexanol are the most abundant during fruit ripening. At present, there is not structural evidence about the mechanism used by the AAT to synthesize esters. Experimental data attribute the kinetic role of this enzyme to 2 amino acidic residues in a highly conserved motif (HXXXD that is located in the middle of the protein. With the aim to understand the molecular and energetic aspects of volatiles compound production from F. x ananassa, we first studied the binding modes of a series of alcohols, and also different acyl-CoA substrates, in a molecular model of alcohol acyltransferase from Fragaria x ananassa (SAAT using molecular docking. Afterwards, the dynamical behavior of both substrates, docked within the SAAT binding site, was studied using routine molecular dynamics (MD simulations. In addition, in order to correlate the experimental and theoretical data obtained in our laboratories, binding free energy calculations were performed; which previous results suggested that octanol, followed by hexanol, presented the best affinity for SAAT. Finally, and concerning the SAAT molecular reaction mechanism, it is suggested from molecular dynamics simulations that the reaction mechanism may proceed through the formation of a ternary complex, in where the Histidine residue at the HXXXD motif deprotonates the alcohol substrates. Then, a nucleophilic attack occurs from alcohol charged oxygen atom to the carbon atom at carbonyl group of the acyl CoA. This

  7. Single Nucleotide Polymorphisms of the High Affinity IgG Receptor FcγRI Reduce Immune Complex Binding and Downstream Effector Functions.

    Science.gov (United States)

    Brandsma, Arianne M; Ten Broeke, Toine; van Dueren den Hollander, Evelien; Caniels, Thomas G; Kardol-Hoefnagel, Tineke; Kuball, Jürgen; Leusen, Jeanette H W

    2017-10-01

    Binding of IgG Abs to FcγRs on immune cells induces FcγR cross-linking that leads to cellular effector functions, such as phagocytosis, Ab-dependent cellular cytotoxicity, and cytokine release. However, polymorphisms in low affinity FcγRs have been associated with altered avidity toward IgG, thereby substantially impacting clinical outcomes of multimodular therapy when targeting cancer or autoimmune diseases with mAbs as well as the frequency and severity of autoimmune diseases. In this context, we investigated the consequences of three nonsynonymous single nucleotide polymorphisms (SNPs) for the high affinity receptor for IgG, FcγRI. Only SNP V39I, located in the extracellular domain of FcγRI, reduces immune-complex binding of FcγRI whereas monomeric IgG binding is unaffected. This leads to reduced FcγRI effector functions, including Fc receptor γ-chain signaling and intracellular calcium mobilization. SNPs I301M and I338T, located in the transmembrane or intracellular domain, respectively, have no influence on monomeric IgG or immune complex binding, but FcRγ signaling is decreased for both SNPs, especially for I338T. We also found that the frequency of these SNPs in a cohort of healthy Dutch individuals is very low within the population. To our knowledge, this study addresses for the first time the biological consequences of SNPs in the high affinity FcγR, and reveals reduction in several FcγRI functions, which have the potential to alter efficacy of therapeutic Abs. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Isolation of a high affinity Bet v 1-specific IgG-derived ScFv from a subject vaccinated with hypoallergenic Bet v 1 fragments.

    Science.gov (United States)

    Gadermaier, Elisabeth; Marth, Katharina; Lupinek, Christian; Campana, Raffaela; Hofer, Gerhard; Blatt, Katharina; Smiljkovic, Dubravka; Roder, Uwe; Focke-Tejkl, Margarete; Vrtala, Susanne; Keller, Walter; Valent, Peter; Valenta, Rudolf; Flicker, Sabine

    2018-01-09

    Recombinant hypoallergenic allergen derivatives have been used in clinical immunotherapy studies and clinical efficacy seems to be related to the induction of blocking IgG antibodies recognizing the wild type allergens. However, so far no treatment-induced IgG antibodies have been characterized. To clone, express and characterize IgG antibodies induced by vaccination with two hypoallergenic recombinant fragments of the major birch pollen allergen, Bet v 1 in a non-allergic subject. A phage-displayed combinatorial single chain fragment (ScFv) library was constructed from blood of the immunized subject and screened for Bet v 1-reactive antibody fragments. ScFvs were tested for specificity and cross-reactivity to native Bet v 1 and related pollen and food allergens and epitope mapping was performed. Germline ancestor genes of the antibody were analyzed with the ImMunoGeneTics (IMGT) database. The affinity to Bet v 1 and cross-reactive allergens was determined by surface plasmon resonance measurements. The ability to inhibit patients' IgE binding to ELISA plate-bound allergens and allergen-induced basophil activation was assessed. A combinatorial ScFv library was obtained from the vaccinated donor after three injections with the Bet v 1 fragments. Despite being almost in germline configuration, ScFv (clone H3-1) reacted with high affinity to native Bet v 1 and homologous allergens, inhibited allergic patients' polyclonal IgE binding to Bet v 1 and partially suppressed allergen-induced basophil activation. Immunization with unfolded hypoallergenic allergen derivatives induces high affinity antibodies even in non-allergic subjects which recognize the folded wild-type allergens and inhibit polyclonal IgE binding of allergic patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Screening for Natural Inhibitors of Topoisomerases I from Rhamnus davurica by Affinity Ultrafiltration and High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Chen, Guilin; Guo, Mingquan

    2017-01-01

    Topoisomerase I (Topo I) catalyzes topological interconversion of duplex DNA during DNA replication and transcription, and has been deemed as important antineoplastic targets. In this study, the fraction R.d-60 from ethyl acetate extracts of Rhamnus davurica showed higher inhibitory rates against SGC-7901 and HT-29 compared with the R.d-30 fraction in vitro. However, the specific active components of R.d-60 fraction remain elusive. To this end, a method based on bio-affinity ultrafiltration and high performance liquid chromatography/electrospray mass spectrometry (HPLC- ESI-MS/MS) was developed to rapidly screen and identify the Topo I inhibitors in this fraction. The enrichment factors (EFs) were calculated to evaluate the binding affinities between the bioactive constituents and Topo I. As a result, eight ligands were identified and six of which with higher EFs showed more potential antitumor activity. Furthermore, antiproliferative assays in vitro (IC50 values) with two representative candidates (apigenin, quercetin) against SGC-7901, HT-29 and Hep G2 cells were conducted and further validated. Finally, the structure-activity relationships revealed that flavones contain a C2-C3 double bond of C ring exhibited higher bio-affinities to Topo I than those without it. This integrated method combining Topo I ultrafiltration with HPLC-MS/MS proved to be very efficient in rapid screening and identification of potential Topo I inhibitors from the complex extracts of medicinal plants, and could be further explored as a valuable high-throughput screening platform in the early drug discovery stage.

  10. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice

    Science.gov (United States)

    Nguyen, Hai T; Guiard, Bruno P; Bacq, Alexandre; David, Denis J; David, Indira; Quesseveur, Gaël; Gautron, Sophie; Sanchez, Connie; Gardier, Alain M

    2013-01-01

    BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT]ext). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA]ext). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT]ext and [NA]ext in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT−/−) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA]ext, either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT]ext elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT]ext and/or [NA]ext affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT]ext and [NA]ext. As expected, escitalopram failed to increase cortical [5-HT]ext in SERT−/− mice, whereas its neurochemical effects on [NA]ext persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA]extin vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET). PMID:22233336

  11. Laser interactions with high brightness electron beams

    Science.gov (United States)

    Malton, Stephen P.

    The International Linear Collider will be a high-precision machine to study the next energy frontier in particle physics. At the TeV energy scale, the ILC is expected to deliver luminosities in excess of 1034 cni" 2s_1. In order to achieve this, beam conditions must be monitored throughout the machine. Measurment of the beam emittance is essential to ensuring that the high luminosity can be provided at the interaction point. At the de sign beam sizes in the ILC beam delivery system, the Laserwire provides a non-invasive real-time method of measuring the emittance by the method of inverse Compton scattering. The prototype Laserwire at the PETRA stor age ring has produced consistent results with measured beam sizes of below 100 /nn. The Energy Recovery Linac Prototype (ERLP) is a technology testbed for the 4th Generation Light Source (4GLS). Inverse Compton scattering can be used in the ERLP as a proof of concept for a proposed 4GLS upgrade, and to produce soft X-rays for condensed matter experiments. The design constraints for the main running mode of the ERLP differ from those required for inverse Compton scattering. Suitable modifications to the optical lattice have been developed under the constraint that no new magnetic structures may be introduced, and the resulting photon distributions are described.

  12. In vivo effector functions of high-affinity mouse IgG receptor FcγRI in disease and therapy models.

    Science.gov (United States)

    Gillis, Caitlin M; Zenatti, Priscila P; Mancardi, David A; Beutier, Héloïse; Fiette, Laurence; Macdonald, Lynn E; Murphy, Andrew J; Celli, Susanna; Bousso, Philippe; Jönsson, Friederike; Bruhns, Pierre

    2017-06-01

    Two activating mouse IgG receptors (FcγRs) have the ability to bind monomeric IgG, the high-affinity mouse FcγRI and FcγRIV. Despite high circulating levels of IgG, reports using FcγRI(-/-) or FcγRIV(-/-) mice or FcγRIV-blocking antibodies implicate these receptors in IgG-induced disease severity or therapeutic Ab efficacy. From these studies, however, one cannot conclude on the effector capabilities of a given receptor, because different activating FcγRs possess redundant properties in vivo, and cooperation between FcγRs may occur, or priming phenomena. To help resolve these uncertainties, we used mice expressing only FcγRI to determine its intrinsic properties in vivo. FcγRI(only) mice were sensitive to IgG-induced autoimmune thrombocytopenia and anti-CD20 and anti-tumour immunotherapy, but resistant to IgG-induced autoimmune arthritis, anaphylaxis and airway inflammation. Our results show that the in vivo roles of FcγRI are more restricted than initially reported using FcγRI(-/-) mice, but confirm effector capabilities for this high-affinity IgG receptor in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Single-chain site-specific mutations of fluorescein-amino acid contact residues in high affinity monoclonal antibody 4-4-20.

    Science.gov (United States)

    Denzin, L K; Whitlow, M; Voss, E W

    1991-07-25

    Previous crystallographic studies of high affinity anti-fluorescein monoclonal antibody 4-4-20 (Ka = 1.7 x 10(10) M-1) complexed with fluorescyl ligand resolved active site contact residues involved in binding. For better definition of the relative roles of three light chain antigen contact residues (L27dhis, L32tyr and L34arg), four site-specific mutations (L27dhis to L27lys, L32tyr to L32phe, and L34arg to L34lys and L34his) were generated and expressed in single-chain antigen binding derivatives of monoclonal antibody 4-4-20 containing two different polypeptide linkers (SCA 4-4-20/205c, 25 amino acids and SCA 4-4-20/212, 14 amino acids). Results showed that L27dhis and L32tyr were necessary for wild type binding affinities, however, were not required for near-wild type Qmax values (where Qmax is the maximum fluoroscein fluorescence quenching expressed as percent). Tyrosine L32 which hydrogen bonds with ligand was also characterized at the haptenic level through the use of 9-hydroxyphenylfluoron which lacks the carboxyl group to which L32 tyrosine forms a hydrogen bond. Results demonstrated that wild type SCA and mutant L32phe possessed similar HPF binding characteristics. Active site contact residue L34arg was important for fluorescein quenching maxima and binding affinity (L34his mutant), however, substitution of lysine for arginine at L34 did not have a significant effect on observed Qmax value. In addition, substitutions had no effect on structural and topological characteristics, since all mutants retained similar idiotypic and metatypic properties. Finally, two linkers were comparatively examined to determine relative contributions to mutant binding properties and stability. No linker effects were observed. Collectively, these results verified the importance of these light chain fluorescein contact residues in the binding pocket of monoclonal antibody 4-4-20.

  14. An automated method for high-throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography

    Directory of Open Access Journals (Sweden)

    Büssow Konrad

    2003-07-01

    Full Text Available Abstract Background Functional Genomics, the systematic characterisation of the functions of an organism's genes, includes the study of the gene products, the proteins. Such studies require methods to express and purify these proteins in a parallel, time and cost effective manner. Results We developed a method for parallel expression and purification of recombinant proteins with a hexahistidine tag (His-tag or glutathione S-transferase (GST-tag from bacterial expression systems. Proteins are expressed in 96-well microplates and are purified by a fully automated procedure on a pipetting robot. Up to 90 microgram purified protein can be obtained from 1 ml microplate cultures. The procedure is readily reproducible and 96 proteins can be purified in approximately three hours. It avoids clearing of crude cellular lysates and the use of magnetic affinity beads and is therefore less expensive than comparable commercial systems. We have used this method to compare purification of a set of human proteins via His-tag or GST-tag. Proteins were expressed as fusions to an N-terminal tandem His- and GST-tag and were purified by metal chelating or glutathione affinity chromatography. The purity of the obtained protein samples was similar, yet His-tag purification resulted in higher yields for some proteins. Conclusion A fully automated, robust and cost effective method was developed for the purification of proteins that can be used to quickly characterise expression clones in high throughput and to produce large numbers of proteins for functional studies. His-tag affinity purification was found to be more efficient than purification via GST-tag for some proteins.

  15. Synthesis of hapten and preparation of specific polyclonal antibody with high affinity for lenalidomide, the potent drug for treatment of multiple myeloma

    Directory of Open Access Journals (Sweden)

    Darwish Ibrahim A

    2012-10-01

    Full Text Available Abstract Background For therapeutic monitoring and pharmacokinetic studies of lenalidomide (LND, the potent drug for treatment of multiple myeloma (MM, a specific antibody was required for the development of a sensitive immunoassay system for the accurate determination of LND in plasma. Results In this study, a hapten of LND (N-glutaryl-LND was synthesized by introducing the glutaryl moiety, as a spacer, into the primary aromatic amine site of the LND molecular structure. The structure of the hapten (G-LND was confirmed by mass, 1H-NMR, and 13C spectrometric techniques. G-LND was coupled to each of bovine serum albumin (BSA and keyhole limpet hemocyanin (KLH proteins by ethyl-3-(3-dimethylaminopropyl carbodiimide as a coupling reagent. LND-KLH conjugate was used as an immunogen. Four female 2-3 months old New Zealand white rabbits were immunized with an emulsion of LND-KLH with Freund`s adjuvant. The immune response of the rabbits was monitored by direct enzyme-linked immunosorbent assay (ELISA using LND-BSA immobilized onto microwell plates as a solid phase. The rabbit that showed the highest antibody titer and affinity to LND was scarified and its sera were collected. The IgG fraction was isolated and purified by affinity chromatography on protein A column. The specificity of the purified antibody for LND was evaluated by indirect competitive ELISA using dexamethasone as a competitor as it is used with LND in a combination therapy. Conclusions The high affinity of the antibody (IC50 = 10 ng/mL will be useful in the development of an immunoassay system for the determination of plasma LND concentrations. Current research is going to optimize the assay conditions and validate the procedures for the routine application in clinical laboratories.

  16. High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions[C][W

    Science.gov (United States)

    Cailliatte, Rémy; Schikora, Adam; Briat, Jean-François; Mari, Stéphane; Curie, Catherine

    2010-01-01

    In contrast with many other essential metals, the mechanisms of Mn acquisition in higher eukaryotes are seldom studied and poorly understood. We show here that Arabidopsis thaliana relies on a high-affinity uptake system to acquire Mn from the soil in conditions of low Mn availability and that this activity is catalyzed by the divalent metal transporter NRAMP1 (for Natural Resistance Associated Macrophage Protein 1). The nramp1-1 loss-of-function mutant grows poorly, contains less Mn than the wild type, and fails to take up Mn in conditions of Mn limitation, thus demonstrating that NRAMP1 is the major high-affinity Mn transporter in Arabidopsis. Based on confocal microscopy observation of an NRAMP1-green fluorescent protein fusion, we established that NRAMP1 is localized to the plasma membrane. Consistent with its function in Mn acquisition from the soil, NRAMP1 expression is restricted to the root and stimulated by Mn deficiency. Finally, we show that NRAMP1 restores the capacity of the iron-regulated transporter1 mutant to take up iron and cobalt, indicating that NRAMP1 has a broad selectivity in vivo. The role of transporters of the NRAMP family is well established in higher eukaryotes for iron but has been controversial for Mn. This study demonstrates that NRAMP1 is a physiological manganese transporter in Arabidopsis. PMID:20228245

  17. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.

    Science.gov (United States)

    Yang, Xiaoting; Hu, Yufei; Li, Gongke

    2014-05-16

    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical