WorldWideScience

Sample records for high acceleration high

  1. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  2. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  3. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  4. HIGH ENERGY PARTICLE ACCELERATOR

    Science.gov (United States)

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  5. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  6. High-Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  7. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  8. New accelerators in high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  9. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  10. Development of high quality electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kando, Masaki; Dewa, Hideki; Kotaki, Hideyuki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Nakajima, Kazuhisa [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute, Kizu, Kyoto (Japan)

    2000-03-01

    A design study on a high quality electron beam accelerator is described. This accelerator will be used for second generation experiments of laser wakefield acceleration, short x-ray generation, and other experiments of interaction of high intensity laser with an electron beam at Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute. The system consists of a photocathode rf gun and a race-track microtron (RTM). To combine these two components, injection and extraction beamlines are designed employing transfer matrix and compute codes. A present status of the accelerator system is also presented. (author)

  11. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  12. A Statistical Perspective on Highly Accelerated Testing

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  13. A Statistical Perspective on Highly Accelerated Testing.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward V.

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  14. Laser pulse shaping for high gradient accelerators

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  15. Technology development for high power induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Birx, D.L.; Reginato, L.L.

    1985-06-11

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  16. Laser pulse shaping for high gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Villa, F., E-mail: fabio.villa@lnf.infn.it [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Anania, M.P.; Bellaveglia, M. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Bisesto, F. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Chiadroni, E. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-Roma Tor Vergata and Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Moreno, M.; Petrarca, M. [Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Pompili, R.; Vaccarezza, C. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc-lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  17. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  18. High-field dipoles for future accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  19. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  20. HAMSA: Highly Accelerated Multiple Sequence Aligner

    Directory of Open Access Journals (Sweden)

    Naglaa M. Reda

    2016-06-01

    Full Text Available For biologists, the existence of an efficient tool for multiple sequence alignment is essential. This work presents a new parallel aligner called HAMSA. HAMSA is a bioinformatics application designed for highly accelerated alignment of multiple sequences of proteins and DNA/RNA on a multi-core cluster system. The design of HAMSA is based on a combination of our new optimized algorithms proposed recently of vectorization, partitioning, and scheduling. It mainly operates on a distance vector instead of a distance matrix. It accomplishes similarity computations and generates the guide tree in a highly accelerated and accurate manner. HAMSA outperforms MSAProbs with 21.9- fold speedup, and ClustalW-MPI of 11-fold speedup. It can be considered as an essential tool for structure prediction, protein classification, motive finding and drug design studies.

  1. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  2. High-Gradient, Millimeter Wave Accelerating Structure

    CERN Document Server

    Kuzikov, S V; Peskov, N Yu

    2015-01-01

    The millimeter wave all-metallic accelerating structure, aimed to provide more than 100 MeV/m gradient and fed by feeding RF pulses of 20-30 ns duration, is proposed. The structure is based on a waveguide with small helical corrugation. Each section of 10-20 wavelengths long has big circular cross-section aperture comparable with wavelength. Because short wavelength structures are expected to be critical to wakefields excitation and emittance growth, we suggest to combine in one structure properties of a linear accelerator and a cooling damping ring simultaneously. It provides acceleration of straight on-axis beam as well as cooling of this beam due to the synchrotron radiation of particles in strong non-synchronous transverse fields. These properties are provided by specific slow eigen mode which consists of two partial waves, TM01 and TM11. Simulations show that shunt impedance can be as high as 100 MOhm/m. Results of the first low-power tests with 30 GHz accelerating section are analyzed.

  3. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  4. Siberian Snakes in high-energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mane, S R [Convergent Computing Inc, PO Box 561, Shoreham, NY 11786 (United States); Shatunov, Yu M [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Yokoya, K [National Laboratory for High-Energy Physics (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-09-01

    We review modern techniques to accelerate spin-polarized beams to high energy and to preserve their polarization in storage rings. Crucial to the success of such work is the use of so-called Siberian Snakes. We explain these devices and the reason for their necessity. Closely related to Snakes is the concept of 'spin rotators'. The designs and merits of several types of Snakes and spin rotators are examined. Theoretical work with Snakes and spin rotators, and experimental results from several storage rings, are reviewed, including the so-called Snake resonances. (topical review)

  5. Polarized beams in high energy circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1979-05-01

    In recent years, high energy physicists have become increasingly interested in the possible spin effects at high energies. To study those spin effects, it is desirable to have beams with high energy, high intensity and high polarization. In this talk, we briefly review the present status and the prospects for the near future of high energy polarized beams. 30 refs.

  6. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard [Univ. of Maryland, College Park, MD (United States)

    2016-07-01

    This grant supported basic experimental, theoretical and computer simulation research into developing a compact, high pulse repetition rate laser accelerator using the direct laser acceleration mechanism in plasma-based slow wave structures.

  7. Electric rail gun projectile acceleration to high velocity

    Science.gov (United States)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  8. Capacitive MEMS accelerometers for measuring high-g accelerations

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2017-05-01

    A possibility of creating a capacitive accelerometer for measuring high- g accelerations (up to 106 g and higher) is discussed. It is demonstrated that insertion of a thin electret film with a high surface potential into the gap between the electrodes ensures significant expansion of the frequency and amplitude ranges of acceleration measurements, whereas the size of the proposed device is smaller than that of available MEMS accelerometers for measuring high- g accelerations. A mathematical model of an electret accelerometer for high- g accelerations is developed, and the main specific features of accelerometer operation are analyzed.

  9. Acceleration of objects to high velocity by electromagnetic forces

    Energy Technology Data Exchange (ETDEWEB)

    Post, Richard F

    2017-02-28

    Two exemplary approaches to the acceleration of projectiles are provided. Both approaches can utilize concepts associated with the Inductrack maglev system. Either of them provides an effective means of accelerating multi-kilogram projectiles to velocities of several kilometers per second, using launchers of order 10 meters in length, thus enabling the acceleration of projectiles to high velocities by electromagnetic forces.

  10. Requirements for very high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Richter, B.

    1985-04-01

    In this introductory paper at the second Workshop on Laser Acceleration my main goal is to set what I believe to be the energy and luminosity requirements of the machines of the future. These specifications are independent of the technique of accelerations. But, before getting to these technical questions, I will briefly review where we are in particle physics, for it is the large number of unanswered questions in physics that motivates the search for effective accelerators.

  11. Distributed coupling high efficiency linear accelerator

    Science.gov (United States)

    Tantawi, Sami G.; Neilson, Jeffrey

    2016-07-19

    A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.

  12. Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J.; Jablonski, S.; Pisarczyk, T.; Raczka, P.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Rosinski, M.; Borodziuk, S. [Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw (Poland); Krousky, E. [Institute of Physics, AS CR, 182 21 Prague 8 (Czech Republic); Liska, R.; Kucharik, M. [Czech Technical University, FNSPE, 160 41 Prague 6 (Czech Republic); Ullschmied, J. [Institute of Plasma Physics, AS CR, 182 20 Prague 8 (Czech Republic)

    2012-05-15

    Acceleration of dense matter to high velocities is of high importance for high energy density physics, inertial confinement fusion, or space research. The acceleration schemes employed so far are capable of accelerating dense microprojectiles to velocities approaching 1000 km/s; however, the energetic efficiency of acceleration is low. Here, we propose and demonstrate a highly efficient scheme of acceleration of dense matter in which a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and then accelerated in a guiding channel by the pressure of a hot plasma produced in the cavity by the laser beam or by the photon pressure of the ultra-intense laser radiation trapped in the cavity. We show that the acceleration efficiency in this scheme can be much higher than that achieved so far and that sub-relativisitic projectile velocities are feasible in the radiation pressure regime.

  13. Upgrading of the high-current accelerator 'Tonus'

    CERN Document Server

    Ryabchikov, A I; Karpov, V B; Usov, Y P

    2001-01-01

    In the paper presented,the new technical development of the high-current electron accelerator 'Tonus - NT' (Tomsk nanosecond accelerator - new technologies ) is described. It has been developed taking into account the experience of 30-years exploitation of the previous analogue - the accelerator 'Tonus'. The scheme of the accelerator includes the high-voltage transformer with resonant contours (Tesla transformer) charging the double forming line filled with the transformer oil and the high-voltage diode. The gas-filled trigatron spark gap with up to 10 atm operating pressure is used for the double forming line switching. The main accelerator parameters are as follows:accelerating voltage range 0.4-1.7 MeV, line impedance 36.6 OMEGA, pulse duration 60 ns, pulse repetition rate up to 10 pps.

  14. CAS - CERN Accelerator School: Course on High Power Hadron Machines

    CERN Document Server

    2013-01-01

    These proceedings collate lectures given at the twenty-fifth specialized course organised by the CERN Accelerator School (CAS). The course was held in Bilbao, Spain from 24 May to 2 June 2011, in collaboration with ESS Bilbao. The course covered the background accelerator physics, different types of particle accelerators and the underlying accelerator systems and technologies, all from the perspective of high beam power. The participants pursued one of six case studies in order to get “hands-on” experience of the issues connected with high power machines.

  15. High-brightness rf linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines. (LEW)

  16. High-brightness rf linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines. (LEW)

  17. High Intensity Accelerator and Neutron Source in China

    Science.gov (United States)

    Guan, Xialing; Wei, J.; Loong, Chun

    2011-06-01

    High intensity Accelerator is being studied all over world for numerous applications, which includes the waste transmutation, spallation neutron source and material irradiation facilities. The R/D activities of the technology of High intensity accelerator are also developed in China for some year, and have some good facilities around China. This paper will reports the status of some high intensity accelerators and neutron source in China, which including ADS/RFQ; CARR; CSNS; PKUNIFTY & CPHS. This paper will emphatically report the Compact Pulsed Hadron Source (CPHS) led by the Department of Engineering Physics of Tsinghua University in Beijing, China.

  18. High Energy Density Physics and Exotic Acceleration Schemes

    Science.gov (United States)

    Cowan, Thomas; Colby, Eric

    2002-12-01

    We summarize the reported results and the principal technical discussions that occurred in our Working Group on High Energy Density Physics and Exotic Acceleration Schemes at the 2002 workshop on Advanced Accelerator Concepts at the Mandalay Beach resort, June 22-28, 2002.

  19. High performance current controller for particle accelerator magnets supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig;

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used in ...

  20. High-Field Accelerator Magnets Beyond LHC

    CERN Document Server

    Devred, Arnaud

    2003-01-01

    The LHC magnet R&D Program has shown that the limit of NbTi technology at 1.8 K was in the range 10 to 10.5 T. Hence, to go beyond the 10-T threshold, it is necessary to change of superconducting material. Given the state of the art in HTS, the only serious candidate is Nb3Sn. A series of dipole magnet models built at Twente University and LBNL and a vigorous program underway at FNAL have demonstrated the feasibility of Nb3Sn magnet technology. The next step is to bring this technology to maturity, which requires further conductor and conductor insulation development and a simplification of manufacturing processes. After outlining a roadmap to address outstanding issues, we evoke the US proposal for a second generation of LHC Insertion Region (IR) magnets and the Next European Dipole (NED) initiative promoted by the European Steering Group on Accelerator R&D (ESGARD).

  1. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  2. The joint project for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) agreed to promote the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This document describes the joint proposal prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  3. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator.

    Science.gov (United States)

    Litos, M; Adli, E; An, W; Clarke, C I; Clayton, C E; Corde, S; Delahaye, J P; England, R J; Fisher, A S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Muggli, P; Vafaei-Najafabadi, N; Walz, D; White, G; Wu, Z; Yakimenko, V; Yocky, G

    2014-11-06

    High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a

  4. CAS Accelerator Physics (High-Power Hadron Machines) in Spain

    CERN Multimedia

    CAS

    2011-01-01

    The CERN Accelerator School (CAS) and ESS-Bilbao jointly organised a specialised course on High-Power Hadron Machines, held at the Hotel Barceló Nervión in Bilbao, Spain, from 24 May to 2 June, 2011.   CERN Accelerator School students. After recapitulation lectures on the essentials of accelerator physics and review lectures on the different types of accelerators, the programme focussed on the challenges of designing and operating high-power facilities. The particular problems for RF systems, beam instrumentation, vacuum, cryogenics, collimators and beam dumps were examined. Activation of equipment, radioprotection and remote handling issues were also addressed. The school was very successful, with 69 participants of 22 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants w...

  5. Ion sources for high-power hadron accelerators

    CERN Document Server

    Faircloth, Dan

    2013-01-01

    Ion sources are a critical component of all particle accelerators. They create the initial beam that is accelerated by the rest of the machine. This paper will introduce the many methods of creating a beam for high-power hadron accelerators. A brief introduction to some of the relevant concepts of plasma physics and beam formation is given. The different types of ion source used in accelerators today are examined. Positive ion sources for producing H+ ions and multiply charged heavy ions are covered. The physical principles involved with negative ion production are outlined and different types of negative ion sources are described. Cutting edge ion source technology and the techniques used to develop sources for the next generation of accelerators are discussed.

  6. A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

    2011-07-22

    In order to build a compact, staged laser plasma accelerator the in-coupling of the laser beam to the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage.

  7. High Energy Density Physics and Exotic Acceleration Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  8. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  9. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  10. A Phenomenological Cost Model for High Energy Particle Accelerators

    CERN Document Server

    Shiltsev, Vladimir

    2014-01-01

    Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  11. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power HEMT testing, and battery design. In summary, we have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). And finally, we are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  12. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhijie [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-31

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  13. Survey of high field superconducting material for accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  14. Computational modeling of high pressure combustion mechanism in scram accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.Y. [Pusan Nat. Univ. (Korea); Lee, B.J. [Pusan Nat. Univ. (Korea); Agency for Defense Development, Taejon (Korea); Jeung, I.S. [Pusan Nat. Univ. (Korea); Seoul National Univ. (Korea). Dept. of Aerospace Engineering

    2000-11-01

    A computational study was carried out to analyze a high-pressure combustion in scram accelerator. Fluid dynamic modeling was based on RANS equations for reactive flows, which were solved in a fully coupled manner using a fully implicit-upwind TVD scheme. For the accurate simulation of high-pressure combustion in ram accelerator, 9-species, 25-step fully detailed reaction mechanism was incorporated with the existing CFD code previously used for the ram accelerator studies. The mechanism is based on GRI-Mech. 2.11 that includes pressure-dependent reaction rate formulations indispensable for the correct prediction of induction time in high-pressure environment. A real gas equation of state was also included to account for molecular interactions and real gas effects of high-pressure gases. The present combustion modeling is compared with previous 8-step and 19-step mechanisms with ideal gas assumption. The result shows that mixture ignition characteristics are very sensitive to the combustion mechanisms, and different mechanism results in different reactive flow-field characteristics that have a significant relevance to the operation mode and the performance of scram accelerator. (orig.)

  15. Teaching Electromagnetism to High-School Students Using Particle Accelerators

    Science.gov (United States)

    Sinflorio, D. A.; Fonseca, P.; Coelho, L. F. S.; Santos, A. C. F.

    2006-01-01

    In this article we describe two simple experiments using an ion accelerator as an aid to the teaching of electromagnetism to high-school students. This is part of a programme developed by a Brazilian State funding agency (FAPERJ) which aims to help scientifically minded students take their first steps in research.

  16. Annotated bibliography on high-intensity linear accelerators. [240 citations

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases.

  17. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Floyd; /Diversified Tech., Bedford; Kardo-Sysoev, A.; /Ioffe Phys. Tech. Inst.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to

  18. Kerr black holes as particle accelerators to arbitrarily high energy.

    Science.gov (United States)

    Bañados, Máximo; Silk, Joseph; West, Stephen M

    2009-09-11

    We show that intermediate mass black holes conjectured to be the early precursors of supermassive black holes and surrounded by relic cold dark matter density spikes can act as particle accelerators with collisions, in principle, at arbitrarily high center-of-mass energies in the case of Kerr black holes. While the ejecta from such interactions will be highly redshifted, we may anticipate the possibility of a unique probe of Planck-scale physics.

  19. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  20. Yang-Mills Theories at High-Energy Accelerators

    CERN Document Server

    Sterman, George

    2016-01-01

    I'll begin with a brief review of the triumph of Yang-Mills theory at particle accelerators, a development that began some years after their historic paper. This story reached a culmination, or at least local extremum, with the discovery at the Large Hadron Collider of a Higgs-like scalar boson in 2012. The talk then proceeds to a slightly more technical level, discussing how we derive predictions from the gauge field theories of the Standard Model and its extensions for use at high energy accelerators.

  1. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  2. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  3. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  4. Development of X-band accelerating structures for high gradients

    Institute of Scientific and Technical Information of China (English)

    S. Bini; M. G. Grimaldi; L. Romano; F. Ruffino; R. Parodi; V. Chimenti; A. Marcelli; L. Palumbo; B. Spataro; V. A. Dolgashev; S. Tantawi; A.D. Yeremian; Y. Higashi

    2012-01-01

    Short copper standing wave (SW) structures operating at an X-band frequency have been recently designed and manufactured at the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare (INFN) using the vacuum brazing technique.High power tests of the structures have been performed at the SLAC National Accelerator Laboratory.In this manuscript we report the results of these tests and the activity in progress to enhance the high gradient performance of the next generation of structures,particularly the technological characterization of high performance coatings obtained via molybdenum sputtering.

  5. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  6. Dielectric-Lined High-Gradient Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  7. Electron acceleration and high harmonic generation by relativistic surface plasmons

    Science.gov (United States)

    Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team

    2016-10-01

    Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.

  8. Coaxial two-channel high-gradient dielectric wakefield accelerator

    Directory of Open Access Journals (Sweden)

    G. V. Sotnikov

    2009-06-01

    Full Text Available A new scheme for a dielectric wakefield accelerator is proposed that employs a cylindrical multizone dielectric structure configured as two concentric dielectric tubes with outer and inner vacuum channels for drive and accelerated bunches. Analytical and numerical studies have been carried out for such coaxial dielectric-loaded structures (CDS for high-gradient acceleration. An analytical theory of wakefield excitation by particle bunches in a multizone CDS has been formulated. Numerical calculations are presented for an example of a CDS using dielectric tubes with dielectric permittivity 5.7, having external diameters of 2.121 and 0.179 mm with inner diameters of 2.095 and 0.1 mm. An annular 5 GeV, 6 nC electron bunch with rms length of 0.035 mm energizes a wakefield on the structure axis having an accelerating gradient of ∼600  MeV/m with a transformer ratio ∼8∶1. The period of the accelerating field is ∼0.33  mm. If the width of the drive bunch channel is decreased, it is possible to obtain an accelerating gradient of >1  GeV/m while keeping the transformer ratio approximately the same. Full numerical simulations using a particle-in-cell code have confirmed results of the linear theory and furthermore have shown the important influence of the quenching wave that restricts the region of the wakefield to within several periods following the drive bunch. Numerical simulations for another example have shown nearly stable transport of drive and accelerated bunches through the CDS, using a short train of drive bunches.

  9. High Voltage Operation of Helical Pulseline Structures for Ion Acceleration

    CERN Document Server

    Waldron, William; Reginato, Lou

    2005-01-01

    The basic concept for the acceleration of heavy ions using a helical pulseline requires the launching of a high voltage traveling wave with a waveform determined by the beam transport physics in order to maintain stability and acceleration.* This waveform is applied to the front of the helix, creating over the region of the ion bunch a constant axial acceleration electric field that travels down the line in synchronism with the ions. Several methods of driving the helix have been considered. Presently, the best method of generating the waveform and also maintaining the high voltage integrity appears to be a transformer primary loosely coupled to the front of the helix, generating the desired waveform and achieving a voltage step-up from primary to secondary (the helix). This can reduce the drive voltage that must be brought into the helix enclosure through the feedthroughs by factors of 5 or more. The accelerating gradient is limited by the voltage holding of the vacuum insulator, and the material and helix g...

  10. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  11. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  12. Ionizing wave via high-power HF acceleration

    CERN Document Server

    Mishin, Evgeny

    2010-01-01

    Recent ionospheric modification experiments with the 3.6 MW transmitter at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska led to discovery of artificial ionization descending from the nominal interaction altitude in the background F-region ionosphere by ~60 km. This paper presents a physical model of an ionizing wavefront created by suprathermal electrons accelerated by the HF-excited plasma turbulence.

  13. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    was used instead. This code makes the assumption that the background ion and electron behaviour can be approximated with a fluid model whilst...electron behaviour occurring from this aperture was also published in High Power Laser Science and Engineering [4]. A significant breakthrough was also...acceleration to transparency. This was published in Physics of Plasmas [12]. Through one- dimensional modelling of the interaction, it was also

  14. Ionizing wave via high-power HF acceleration

    OpenAIRE

    Mishin, Evgeny; Pedersen, Todd

    2010-01-01

    Recent ionospheric modification experiments with the 3.6 MW transmitter at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska led to discovery of artificial ionization descending from the nominal interaction altitude in the background F-region ionosphere by ~60 km. This paper presents a physical model of an ionizing wavefront created by suprathermal electrons accelerated by the HF-excited plasma turbulence.

  15. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  16. Diffusive Shock Acceleration of High Energy Cosmic Rays

    CERN Document Server

    Baring, M G

    2004-01-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. A key characteristic of this statistical energization mechanism is the absence of a momentum scale; astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and even beyond, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration tim...

  17. Flyer acceleration experiments using high-power laser

    Directory of Open Access Journals (Sweden)

    Kadono T.

    2013-11-01

    Full Text Available Flyer acceleration technique using high-power lasers has several advantages such as the achieved velocities higher than 10 km/s and non-contamination to the products generated by impacts. In this study, we show that a high-power laser can achieve flyer velocities higher than 10 km/s up to 60 km/s using spherical projectiles with a diameter of 0.1 − 0.3mm. We discuss the projectile condition during the flight based on the results of numerical simulations.

  18. Rectangular Dielectric-loaded Structures for Achieving High Acceleration Gradients

    Science.gov (United States)

    Wang, Changbiao; Yakovlev, V. P.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    2006-11-01

    Rectangular dielectric-loaded structures are described that may sustain higher acceleration gradients than conventional all-metal structures with similar apertures. One structure is a test cavity designed to ascertain the breakdown limits of dielectrics, while a second structure could be the basis for a two-beam accelerator. CVD diamond is an attractive dielectric for a high-gradient structure, since the published DC breakdown limit for CVD diamond is ˜ 2 GV/m, although the limit has never been determined for RF fields. Here we present a design of a diamond-lined test cavity to measure the breakdown limit. The designed cavity operates at 34 GHz, where with 10-MW input power it is expected to produce an ˜800 MV/m field on the diamond surface—provided breakdown is avoided. The two channel rectangular dielectric-loaded waveguide could be a two-beam accelerator structure, in which a drive beam is in one channel and an accelerated beam is in the other. The RF power produced by drive bunches in the drive channel is continuously coupled to the acceleration channel. The ratio of fields in the channels (transformer ratio) for the operating mode can be designed by adjusting the dimensions of the structure. An example of the two-channel structure is described, in which a train of five 3-nC drive bunches excites wake fields in the accelerator channel of up to 1.3 GV/m with a transformer ratio of 10 for the design mode.

  19. High Power RF Induced Thermal Fatigue in the High Gradient CLIC Accelerating Structures

    CERN Document Server

    Arnau-Izquierdo, G; Heikkinen, S; Neupert, N; Wuensch, W

    2007-01-01

    The need for high accelerating gradients for the CLIC (Compact Linear Collider) imposes considerable constraints on the materials of the accelerating structures. The surfaces exposed to high pulsed RF (Radio Frequency) currents are subjected to cyclic thermal stresses possibly resulting in surface break up by fatigue. Various high strength alloys from the group of high conductivity copper alloys have been selected and have been tested in different states, with different surface treatments and in different stress ratios. Low to medium cycle fatigue data (up to 108 cycles) of fully compressive surface thermal stresses has been collected by means of a pulsed laser surface heating apparatus. The surface damage has been characterized by SEM observations and roughness measurements. High cycle fatigue data, up to 7x1010 cycles, of varying stress ratio has been collected in high frequency bulk fatigue tests using an ultrasonic apparatus. Up-to-date results from these experiments are presented.

  20. High Temperature μSR Experiments for Accelerator Developments

    Science.gov (United States)

    Ohmori, Chihiro; Koda, Akihiro; Miyake, Yasuhiro; Nishiyama, Kusuo; Shimomura, Koichiro; Schnase, Alexander; Ezura, Eiji; Hara, Keigo; Hasegawa, Katsushi; Nomura, Masahiro; Shimada, Taihei; Takata, Koji; Tamura, Fumihiko; Toda, Makoto; Yamamoto, Masanobu; Yoshii, Masahito

    High temperature μSR is a powerful technique to study magnetic materials. In J-PARC accelerator synchrotrons, the Rapid Cycling Synchrotron (RCS) and Main Ring (MR), a unique magnetic alloy-loaded cavity is used for the beam acceleration and much higher field gradient has been achieved. Such high field gradient cavities made a compact RCS possible by reducing the length for beam acceleration. Now, further upgrades of the J-PARC, RF cavities with higher RF voltage and less power loss in the magnetic core are needed for the MR. For the improvements of the magnetic property of magnetic alloy core, the high temperature μSR (muon Spin Rotation/Relaxation) was used to investigate the crystallization process of the material. Based on the measurement results, the test production of the large ring cores of a magnetic alloy, FT3L, was tried. The FT3L is the magnetic alloy which has two times better performance than the present one, FT3M. For the FT3L production, the magnetic annealing is needed to control the easy-magnetized axis of the crystalline. After the success of the test production, a mass production was started in the industry to replace all existing cavities in the MR. The first 5-cell FT3L cavity is assembled for the bench test before the installation in the accelerator tunnel. By the new cavities, the total RF voltage of J-PARC MR will be doubled to increase the beam power for neutrino experiment. In future, the cavities will be also used for the RCS to increase the beam power beyond 1 MW.

  1. Irradiation damage studies of high power accelerator materials

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N. [Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: simos@bnl.gov; Kirk, H.G.; Thieberger, P.; Ludewig, H.; Conor, J.O.; Mausner, L. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Trung, P.-T. [SUNY Stony Brook, Stony Brook, NY 11794 (United States); McDonald, K.T. [Princeton University, Princeton, NJ 08544 (United States); Yoshimura, K. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Bennett, J.R.J. [Rutherford Appleton Laboratory, CCLRC, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2008-06-30

    High-performance production targets and other critical accelerator components intercepting intense, energetic proton beams are essential as the accelerator community envisions the next generation, multi-MW accelerators. Materials that have served the nuclear sector well may not be suitable to play such a role which demands that the material comprising the beam-intercepting element must, in addition to the long exposure which leads to accumulated irradiation damage, also endure short exposure that manifests itself as thermo-mechanical shock. The ability of materials to resist irradiation-induced degradation of its properties that control shock and fatigue is of primary interest. The need for such materials that extend beyond resistance to the neutron-driven irradiation damage of reactor components has led to an extensive search and experimentation with new alloys and composites. These new high-performance materials, which appear to possess the right combination of mechanical and physical properties, are explored through a multi-phased experimental study at Brookhaven National Laboratory (BNL). This study, which brings together the interest in accelerator targets of different facilities around the world, seeks to simulate conditions of both short and long exposure to proton beams to assess the survivability potential of these new alloys and composite materials. While thermo-mechanical shock effects have been studied in the early stages of this comprehensive effort, it is irradiation damage that is currently the focus of the study and results to-date are presented in this paper along with the status and objectives of on-going studies. Of special interest are results depicting damage reversal through post-irradiation annealing in some of the materials. High fluences of 200 and/or 117 MeV protons provided by the BNL Linac beam that serves the Isotope Production Facility were used to assess irradiation damage in these new composites and alloys.

  2. High-field plasma acceleration in a high-ionization-potential gas.

    Science.gov (United States)

    Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clausse, B; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

  3. Acceleration Measurement of Projectile High Velocity Penetrating Concrete Target and Acceleration Signal Analysis

    Institute of Scientific and Technical Information of China (English)

    Peng XU; Jing ZU; Jing-biao FAN

    2010-01-01

    A kind of novel on-boand memory acceleratian measure equipment, self-developed, had been employed in recent field test to obtain the acceleration of projectile penetrating many kinds of concrete target. At the same time, the aluminum foam with different density and pore-diameters had been utilized to protect cirruit modules. Fur-thermore, with the theoretical analysis, computer simulation and field test, the high frequency's impact on the tested acceleration of the projectile had been discussed; At last, the analysis on output signal tested the validity of test data.

  4. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  5. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  6. Experimental and theoretical investigation of high gradient acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Bekefi, G.; Chen, C.; Chen, S.; Danly, B.; Temkin, R.J.; Wurtele, J.S.

    1992-02-01

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-FG0291ER-40648. Experimental and Theoretical Investigations of High Gradient Acceleration.'' This grant supports three research tasks: Task A consists of the design and fabrication of a 17GHz of photocathode gun, Task B supports the testing of high gradient acceleration using a 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders. This report is organized as follows. The development of an rf gun design and research progress on the picosecond laser system is summarized in Sec. 2, the status of the studies of the LBL/Haimson high gradient structure, using a 50 MW free-electron laser is summarized in Sec. 3, and theoretical research progress is described in Sec. 4. Supporting material is contained in Appendices A-G.

  7. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  8. High performance/low cost accelerator control system

    Science.gov (United States)

    Magyary, S.; Glatz, J.; Lancaster, H.; Selph, F.; Fahmie, M.; Ritchie, A.; Timossi, C.; Hinkson, C.; Benjegerdes, R.

    1980-10-01

    Implementation of a high performance computer control system tailored to the requirements of the Super HILAC accelerator is described. This system uses a distributed structure with fiber optic data links; multiple CPUs operate in parallel at each node. A large number of the latest 16 bit microcomputer boards are used to get a significant processor bandwidth. Dynamically assigned and labeled knobs together with touch screens allow a flexible and efficient operator interface. An X-Y vector graphics system allows display and labeling of real time signals as well as general plotting functions. Both the accelerator parameters and the graphics system can be driven from BASIC interactive programs in addition to the precanned user routines.

  9. Neuromuscular onset succession of high level gymnasts during dynamic leg acceleration phases on high bar.

    Science.gov (United States)

    von Laßberg, Christoph; Rapp, Walter; Mohler, Betty; Krug, Jürgen

    2013-10-01

    In several athletic disciplines there is evidence that for generating the most effective acceleration of a specific body part the transfer of momentum should run in a "whip-like" consecutive succession of body parts towards the segment which shall be accelerated most effectively (e.g. the arm in throwing disciplines). This study investigated the question how this relates to the succession of neuromuscular activation to induce such "whip like" leg acceleration in sports like gymnastics with changed conditions concerning the body position and momentary rotational axis of movements (e.g. performing giant swings on high bar). The study demonstrates that during different long hang elements, performed by 12 high level gymnasts, the succession of the neuromuscular activation runs primarily from the bar (punctum fixum) towards the legs (punctum mobile). This demonstrates that the frequently used teaching instruction, first to accelerate the legs for a successful realization of such movements, according to a high level kinematic output, is contradictory to the neuromuscular input patterns, being used in high level athletes, realizing these skills with high efficiency. Based on these findings new approaches could be developed for more direct and more adequate teaching methods regarding to an earlier optimization and facilitation of fundamental movement requirements.

  10. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  11. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    CERN Document Server

    2003-01-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accompli...

  12. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in

  13. Aging of organic materials around high-energy particle accelerators

    Science.gov (United States)

    Tavlet, Marc

    1997-08-01

    Around particle accelerators used for fundamental research on the basic structure of matter, materials and components are exposed to ionizing radiation caused by beam losses in the proton machines and by synchrotron radiation in the lepton machines. Furthermore, with the high-energy and high-intensity collisions produced from future colliders, radiation damage is also to be expected in particle-physics detectors. Therefore, for a safe and reliable operation, the radiation aging of most of the components has to be assessed prior to their selection. An extensive radiation-damage test program has been carried out at CERN for decades on a routine basis and many results have been published. The tests have mainly concentrated on magnet-coil insulations and cable-insulating materials; they are carried out in accordance with the IEC 544 standard which defines the mechanical tests to be performed and the methods of degradation evaluation. The mechanical tests are also used to assess the degradation of composite structural materials. Moreover, electrical properties of high-voltage insulations and optical properties of organic scintillators and wave guides have also been studied. Our long-term experience has pointed out many parameters to be taken into account for the estimate of the lifetime of components in the radiation environment of our accelerators. One of the main parameters is the dose-rate effect, but the influence of other parameters has sometimes to be taken into account.

  14. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Parsons, Gregory [North Carolina State Univ., Raleigh, NC (United States); Williams, Philip [North Carolina State Univ., Raleigh, NC (United States); Oldham, Christopher [North Carolina State Univ., Raleigh, NC (United States); Mundy, Zach [North Carolina State Univ., Raleigh, NC (United States); Dolgashev, Valery [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  15. High-performance insulator structures for accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O. [Lawrence Livermore National Lab., CA (United States); Elizondo, J.; Krogh, M.L.; Wieskamp, T.F. [Allied Signal, Inc., Kansas City, MO (United States). Federal Mfg. and Technologies

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress.

  16. High power solid state rf amplifier for proton accelerator.

    Science.gov (United States)

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2008-01-01

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  17. Operational radiation protection in high-energy physics accelerators.

    Science.gov (United States)

    Rokni, S H; Fassò, A; Liu, J C

    2009-11-01

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  18. Proceedings of the third ICFA mini-workshop on high intensity, high brightness hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Roser, T.

    1997-11-01

    The third mini-workshop on high intensity, high brightness hadron accelerators was held at Brookhaven National Laboratory on May 7-9, 1997 and had about 30 participants. The workshop focussed on rf and longitudinal dynamics issues relevant to intense and/or bright hadron synchrotrons. A plenary session was followed by four sessions on particular topics. This document contains copies of the viewgraphs used as well as summaries written by the session chairs.

  19. Proceedings of the third ICFA mini-workshop on high intensity, high brightness hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Roser, T.

    1997-11-01

    The third mini-workshop on high intensity, high brightness hadron accelerators was held at Brookhaven National Laboratory on May 7-9, 1997 and had about 30 participants. The workshop focussed on rf and longitudinal dynamics issues relevant to intense and/or bright hadron synchrotrons. A plenary session was followed by four sessions on particular topics. This document contains copies of the viewgraphs used as well as summaries written by the session chairs.

  20. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  1. Single event effects in high-energy accelerators

    Science.gov (United States)

    García Alía, Rubén; Brugger, Markus; Danzeca, Salvatore; Cerutti, Francesco; de Carvalho Saraiva, Joao Pedro; Denz, Reiner; Ferrari, Alfredo; Foro, Lionel L.; Peronnard, Paul; Røed, Ketil; Secondo, Raffaello; Steckert, Jens; Thurel, Yves; Toccafondo, Iacocpo; Uznanski, Slawosz

    2017-03-01

    The radiation environment encountered at high-energy hadron accelerators strongly differs from the environment relevant for space applications. The mixed-field expected at modern accelerators is composed of charged and neutral hadrons (protons, pions, kaons and neutrons), photons, electrons, positrons and muons, ranging from very low (thermal) energies up to the TeV range. This complex field, which is extensively simulated by Monte Carlo codes (e.g. FLUKA) is due to beam losses in the experimental areas, distributed along the machine (e.g. collimation points) and deriving from the interaction with the residual gas inside the beam pipe. The resulting intensity, energy distribution and proportion of the different particles largely depends on the distance and angle with respect to the interaction point as well as the amount of installed shielding material. Electronics operating in the vicinity of the accelerator will therefore be subject to both cumulative damage from radiation (total ionizing dose, displacement damage) as well as single event effects which can seriously compromise the operation of the machine. This, combined with the extensive use of commercial-off-the-shelf components due to budget, performance and availability reasons, results in the need to carefully characterize the response of the devices and systems to representative radiation conditions.

  2. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  3. Induced radioactivity in and around high-energy particle accelerators.

    Science.gov (United States)

    Vincke, Helmut; Theis, Chris; Roesler, Stefan

    2011-07-01

    Particle accelerators and their surroundings are locations of residual radioactivity production that is induced by the interaction of high-energy particles with matter. This paper gives an overview of the principles of activation caused at proton accelerators, which are the main machines operated at Conseil Européen pour la Recherche Nucléaire. It describes the parameters defining radio-nuclide production caused by beam losses. The second part of the paper concentrates on the analytic calculation of activation and the Monte Carlo approach as it is implemented in the FLUKA code. Techniques used to obtain, on the one hand, estimates of radioactivity in Becquerel and, on the other hand, residual dose rates caused by the activated material are discussed. The last part of the paper focuses on experiments that allow for benchmarking FLUKA activation calculations and on simulations used to predict activation in and around high-energy proton machines. In that respect, the paper addresses the residual dose rate that will be induced by proton-proton collisions at an energy of two times 7 TeV in and around the Compact Muon Solenoid (CMS) detector. Besides activation of solid materials, the air activation expected in the CMS cavern caused by this beam operation is also discussed.

  4. On the acceleration of Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Fraschetti, Federico

    2008-01-01

    Ultra High Energy Cosmic Rays (UHECRs) hit the Earth's atmosphere with energies exceeding $10^{18}$ eV. This is the same energy as carried by a tennis ball moving at 100 km/h, but concentrated on a sub-atomic particle. UHECRs are so rare (the flux of particles with $E > 10^{20}$ eV is 0.5/km$^2$/century) that only a few such particles have been detected over the past 50 years. Recently, the HiRes and Auger experiments have reported the discovery of a high-energy cut-off in the UHECR spectrum, and Auger has found an apparent clustering of the highest energy events towards nearby active galactic nuclei. Consensus is building that the highest energy particles are accelerated within the radio-bright lobes of these objects, but it remains unclear how this actually happens, and whether the cut-off is due to propagation effects or reflects an intrinsically physical limitation of the acceleration process. The low event statistics presently allows for many different plausible models; nevertheless observations are begi...

  5. Cerebrolysin Accelerates Metamorphosis and Attenuates Aging-Accelerating Effect of High Temperature in Drosophila Melanogaster.

    Science.gov (United States)

    Navrotskaya, V; Oxenkrug, G; Vorobyova, L; Sharma, H; Muresanu, D; Summergrad, P

    2014-10-01

    Cerebrolysin® (CBL) is a neuroprotective drug used for the treatment of neurodegenerative diseases. CBL's mechanisms of action remain unclear. Involvement of tryptophan (TRP)-kynurenine (KYN) pathway in neuroprotective effect of CBL might be suggested considering that modulation of KYN pathway of TRP metabolism by CBL, and protection against eclosion defect and prolongation of life span of Drosophila melanogaster with pharmacologically or genetically-induced down-regulation of TRP conversion into KYN. To investigate possible involvement of TRP-KYN pathway in mechanisms of neuroprotective effect of CBL, we evaluated CBL effects on metamorphosis and life span of Drosophila melanogaster maintained at 23 °C and 28 °C ambient temperature. CBL accelerated metamorphosis, exerted strong tendency (p = 0.04) to prolong life span in female but not in male flies, and attenuated aging-accelerating effect of high (28 °C) ambient temperature in both female and male flies. Further research of CBL effects on metamorphosis and resistance to aging-accelerating effect of high temperature might offer new insights in mechanisms of its neuroprotective action and expand its clinical applications.

  6. Summary report of working group 3: Laser and high-gradient structure-based acceleration

    Science.gov (United States)

    Andonian, Gerard; Simakov, Evgenya

    2017-03-01

    High-gradient particle acceleration with reduced power demands is essential for miniaturization and cost reduction of future accelerators. Applications for compact accelerators span collider research for High Energy Physics, light source development for Basic Energy Sciences and National Security, and industrial accelerators for Energy and Environmental Applications. Working Group 3 discussed and surveyed the recent advances in achieving higher gradients and better acceleration efficiency in externally powered, structure-based accelerators. The topics covered in Working Group 3 included dielectric laser acceleration, millimeter-wave accelerators, breakdown phenomena, exotic topologies such as photonic band-gap structures, artificial materials, and nanostructures, and novel rf technology.

  7. Accelerating the Reduction of Excess Russian Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Benton, J; Wall, D; Parker, E; Rutkowski, E

    2004-02-18

    This paper presents the latest information on one of the Accelerated Highly Enriched Uranium (HEU) Disposition initiatives that resulted from the May 2002 Summit meeting between Presidents George W. Bush and Vladimir V. Putin. These initiatives are meant to strengthen nuclear nonproliferation objectives by accelerating the disposition of nuclear weapons-useable materials. The HEU Transparency Implementation Program (TIP), within the National Nuclear Security Administration (NNSA) is working to implement one of the selected initiatives that would purchase excess Russian HEU (93% 235U) for use as fuel in U.S. research reactors over the next ten years. This will parallel efforts to convert the reactors' fuel core from HEU to low enriched uranium (LEU) material, where feasible. The paper will examine important aspects associated with the U.S. research reactor HEU purchase. In particular: (1) the establishment of specifications for the Russian HEU, and (2) transportation safeguard considerations for moving the HEU from the Mayak Production Facility in Ozersk, Russia, to the Y-12 National Security Complex in Oak Ridge, TN.

  8. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  9. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  10. Development of high current injector for tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Takashi; Iwamoto, Eiji [Nissin - High Voltage Co. Ltd., Kyoto (Japan); Kishimoto, Naoki; Saito, Tetsuya; Mori, Yoshiharu

    1997-02-01

    The development of the electrostatic type tandem accelerators has been carried out so far, but by the recent remarkable progress of negative ion sources, the beam current which was inconceivable so far has become obtainable, and the use as the electrostatic type tandem accelerators is expanding rapidly. The problem which must be solved in the development of a high energy, large current heavy ion injection device is the development of an injector. As to the generation of negative ions, by the development of plasma sputter negative ion sources, the almost satisfactory performance has been obtained in beam current, emittance, life and so on, but as for the transport and control of generated negative ion beam, there is the large problem of spatial charge effect. This time, the verifying test on this problem was carried out, therefore, its contents and results are reported. The equipment which was developed this time was delivered to the Institute for Materials Research. Its specifications are shown. The whole constitution, negative ion source, and beam transport system are described. Beam generation test and spatial charge effect test are reported. The test stand was made, and in the verifying test, the maximum beams of 4 mA in Cu and 3 mA in Ni were able to be generated and transported. The effect of the countermeasures to spatial charge effect was confirmed. (K.I.)

  11. Towards Integrated Design and Modeling of High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.; Ferracin, P.

    2006-06-01

    The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.

  12. Exploration of highly accelerated magnetic resonance elastography using high-density array coils

    Science.gov (United States)

    Bosshard, John C.; Yallapragada, Naresh; McDougall, Mary P.

    2017-01-01

    Background Magnetic resonance elastography (MRE) measures tissue mechanical properties by applying a shear wave and capturing its propagation using magnetic resonance imaging (MRI). By using high density array coils, MRE images are acquired using single echo acquisition (SEA) and at high resolutions with significantly reduced scan times. Methods Sixty-four channel uniplanar and 32×32 channel biplanar receive arrays are used to acquire MRE wave image sets from agar samples containing regions of varying stiffness. A mechanical actuator triggered by a stepped delay time introduces vibrations into the sample while a motion sensitizing gradient encodes micrometer displacements into the phase. SEA imaging is used to acquire each temporal offset in a single echo, while multiple echoes from the same array are employed for highly accelerated imaging at high resolutions. Additionally, stiffness variations as a function of temperature are studied by using a localized heat source above the sample. A custom insertable gradient coil is employed for phase compensation of SEA imaging with the biplanar array to allow imaging of multiple slices. Results SEA MRE images show a mechanical shear wave propagating into and across agar samples. A set of 720 images was obtained in 720 echoes, plus a single reference scan for both harmonic and transient MRE. A set of 2,950 wave image frames was acquired from pairs of SEA images captured during heating, showing the change in mechanical wavelength with the change in agar properties. A set of 240 frames was acquired from two slices simultaneously using the biplanar array, with phase images processed into displacement maps. Combining the narrow sensitivity patterns and SNR advantage of the SEA array coil geometry allowed acquisition of a data set with a resolution of 156 µm × 125 µm × 1,000 µm in only 64 echoes, demonstrating high resolution and high acceleration factors. Conclusions MRE using high-density arrays offers the unique ability

  13. A Beam Interlock System for CERN High Energy Accelerators

    CERN Document Server

    Todd, Benjamin; Schmidt, R

    2006-01-01

    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero...

  14. Modified Magnicon for High-Gradient Accelerator R&D

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-12-19

    Analysis, and low-power cold tests are described on a modified design intended for the Ka-band pulsed magnicon now in use for high-gradient accelerator R and D and rare elementary particle searches at the Yale University Beam Physics Laboratory. The modification is mainly to the output cavity of the magnicon, which presently operates in the TM310 mode. It is proposed to substitute for this a dual-chamber TE311 cavity structure. The first chamber is to extract about 40% of the beam power (about 25 MW) at 34.272 GHz, while the second chamber is to convey the power to four WR-28 output waveguides. Minor design changes are also proposed for the penultimate 11.424 GHz cavity and the beam collector. The intention of these design changes is to allow the magnicon to operate reliably 24/7, with minor sensitivity to operating parameters.

  15. Development of high purity niobium used in SRF accelerating cavity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Niobium is widely used in SRF(Superconducting Radio Frequency)cavities due to its excellent superconductivity and workability.With the continuous development of technology,higher demands of material are raised.One of the key issues is that RRR(Residual Resistance Ratio)of the Nb material should be more than 300.which requires that the Nb ingot have even higher RRR.This article introduces the development and the experimental results of high purity niobium in OTIC in Ningxia(Ningxia Orient Tantalum Industry Co.Ltd.),and the test results of the single cell TESLA(Tera Electron volt energy Superconducting Linear Accelerator)shaped cavity manufactured by Peking University using Nb material from OTIC.

  16. Simplified shielding calculation system for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Masumura, Tomomi; Nakashima, Hiroshi; Nakane, Yoshihiro; Sasamoto, Nobuo [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-06-01

    A simplified shielding calculation system is developed for applying conceptual shielding design of facilities in the joint project for high-intensity proton accelerators. The system is composed of neutron transmission calculation part for bulk shielding using simplified formulas: Moyer model and Tesch's formula, and neutron skyshine calculation part using an empirical formula: Stapleton's formula. The system is made with the Microsoft Excel software for user's convenience. This report provides a manual for the system as well as calculation conditions used in the calculation such as Moyer model's parameters. In this report preliminary results based on data at December 8, 1999, are also shown as an example. (author)

  17. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  18. Dosimetry in radiation fields around high-energy proton accelerators

    CERN Document Server

    Agosteo, S; Silari, M; Theis, C

    2008-01-01

    Radiation dosimetry at high-energy proton accelerators is a difficult task because of the complexity of the stray radiation field. A good knowledge of this mixed radiation field is very important to be able to select the type of detectors (active and/or passive) to be employed for routine area monitoring and to choose the personal dosimeter legally required for estimating the effective dose received by individuals. At the same time, the response function of the detectors to the mixed field must be thoroughly understood. A proper calibration of a device, which may involve a complex series of measurements in various reference fields, is needed. Monte Carlo simulations provide a complementary – and sometimes the principal – mean of determining the response function. The ambient dose equivalent rates during operation range from a few hundreds of μSv per year to a few mSv per year. To measure such rates one needs detectors of high sensitivity and/or capable of integrating over long periods. The main challenge...

  19. Accelerating high-dimensional clustering with lossless data reduction.

    Science.gov (United States)

    Qaqish, Bahjat F; O'Brien, Jonathon J; Hibbard, Jonathan C; Clowers, Katie J

    2017-09-15

    For cluster analysis, high-dimensional data are associated with instability, decreased classification accuracy and high-computational burden. The latter challenge can be eliminated as a serious concern. For applications where dimension reduction techniques are not implemented, we propose a temporary transformation which accelerates computations with no loss of information. The algorithm can be applied for any statistical procedure depending only on Euclidean distances and can be implemented sequentially to enable analyses of data that would otherwise exceed memory limitations. The method is easily implemented in common statistical software as a standard pre-processing step. The benefit of our algorithm grows with the dimensionality of the problem and the complexity of the analysis. Consequently, our simple algorithm not only decreases the computation time for routine analyses, it opens the door to performing calculations that may have otherwise been too burdensome to attempt. R, Matlab and SAS/IML code for implementing lossless data reduction is freely available in the Appendix. obrienj@hms.harvard.edu.

  20. Ultra-high vacuum in superconducting accelerator rings

    Science.gov (United States)

    Bazanov, A. M.; Butenko, A. V.; Galimov, A. R.; Lugovnin, A. K.; Smirnov, A. V.

    2016-12-01

    Achieving the ultra-high vacuum (UHV) in the collider and booster of the NICA project is one of the main challenges when creating this device. It determines the need for a serious approach to this issue and conducting research in this direction. First, it is necessary to understand the effect of the various components of the vacuum systems on the degree of vacuum. It is also necessary to carry out studies of pumping devices for producing the required vacuum (10-9 Pa) in the beam chamber and choose the most optimal pumping scheme. At the same time, it is necessary to figure out how various operations are carried out with the vacuum chamber: preparation of vacuum surfaces, letting in the atmosphere, and warming the chamber after closing the influence on the degree of vacuum and the composition of the residual gas. The temperature may vary from room temperature to liquid helium temperature due to the difficulty of keeping the beam-chamber walls at a constant temperature, including the inner components. This complicates the processes taking place within it. Additional complexity arises due the heating of the chamber walls by various processes during the operation of the accelerator (for example, cycling the magnetic field).

  1. Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation

    Science.gov (United States)

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.

    2013-01-01

    Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279

  2. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  3. Operational radiation protection in high-energy physics accelerators: implementation of ALARA in design and operation of accelerators.

    Science.gov (United States)

    Fassò, A; Rokni, S

    2009-11-01

    This paper considers the historical evolution of the concept of optimisation of radiation exposures, as commonly expressed by the acronym ALARA, and discusses its application to various aspects of radiation protection at high-energy accelerators.

  4. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    Science.gov (United States)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W

  5. Radiation Shielding at High-Energy Electron and Proton Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Sayed H.; /SLAC; Cossairt, J.Donald; /Fermilab; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  6. Energy Efficient Beam Transfer Channels for High Energy Particle Accelerators

    CERN Document Server

    Gardlowski, Philipp; Ondreka, David

    2016-01-01

    conducting (NC) magnets or high current pulsed (HCP) magnets are an economic solution. For high repetition rates above 1.0 Hz, superconducting Cos(N) (SC) magnets or superferric (SF) magnets are more attractive; at least if they are operated in DC mode and if no dynamic losses occur in the cryogenic system. Unfortunately, a range between these values exist, in which no...

  7. Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    CERN Document Server

    Arridge, Simon; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-01-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then...

  8. Design concept of radiation control system for the high intensity proton accelerator facility

    CERN Document Server

    Miyamoto, Y; Harada, Y; Ikeno, K

    2002-01-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics.

  9. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  10. Advanced test accelerator: a high-current induction linac

    Energy Technology Data Exchange (ETDEWEB)

    Cook, E.G.; Birx, D.L.; Reginato, L.L.

    1982-11-01

    The Advanced Test Accelerator (ATA) is a linear induction accelerator being built at Lawrence Livermore National Laboratory. The aim of the ATA, together with its associated physics program is the research and development necessary to resolve whether particle-beam propagation is possible. Since the accelerator is the tool needed to do the basic propagation experiment, many of its design parameters are specified by the physics. The accelerator parameters are: 50 MeV, 10 kA, 70 ns pulse width (FWHM), and a 1 kHz rep-rate during a ten-pulse burst. In addition, beam quality and pulse-to-pulse repeatability must be excellent. The unique features of the accelerator are the 10 kA beam and the 1 kHz burst frequency.

  11. Ionization and acceleration of heavy ions in high-Z solid target irradiated by high intensity laser

    Science.gov (United States)

    Kawahito, D.; Kishimoto, Y.

    2016-05-01

    In the interaction between high intensity laser and solid film, an ionization dynamics inside the solid is dominated by fast time scale convective propagation of the internal sheath field and the slow one by impact ionization due to heated high energy electrons coupled with nonlocal heat transport. Furthermore, ionization and acceleration due to the localized external sheath field which co- propagates with Al ions constituting the high energy front in the vacuum region. Through this process, the maximum charge state and then q/A increase in the rear side, so that ions near the front are further accelerated to high energy.

  12. An introduction to the Physics of High Energy Accelerators

    CERN Document Server

    Edwards, Donald A

    1993-01-01

    The first half deals with the motion of a single particle under the influence of electronic and magnetic fields. The basic language of linear and circular accelerators is developed. The principle of phase stability is introduced along with phase oscillations in linear accelerators and synchrotrons. Presents a treatment of betatron oscillations followed by an excursion into nonlinear dynamics and its application to accelerators. The second half discusses intensity dependent effects, particularly space charge and coherent instabilities. Includes tables of parameters for a selection of accelerato

  13. High Power Operation of the JLab IR FEL Driver Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

    2007-08-01

    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  14. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  15. Molybdenum sputtering film characterization for high gradient accelerating structures

    Institute of Scientific and Technical Information of China (English)

    S.Bini; B.Spataro; A.Marcelli; S.Sarti; V.A.Dolgashev; S.Tantawi; A.D.Yeremian

    2013-01-01

    Technological advancements are strongly required to fulfill the demands of new accelerator devices with the highest accelerating gradients and operation reliability for the future colliders.To this purpose an extensive R&D regarding molybdenum coatings on copper is in progress.In this contribution we describe chemical composition,deposition quality and resistivity properties of different molybdenum coatings obtained via sputtering.The deposited films are thick metallic disorder layers with different resistivity values above and below the molibdenum dioxide reference value.Chemical and electrical properties of these sputtered coatings have been characterized by Rutherford backscattering,XANES and photoemission spectroscopy.We will also consider multiple cells standing wave section coated by a molybdenum layer designed to improve the performance of X-Band accelerating systems.

  16. Molybdenum sputtering film characterization for high gradient accelerating structures

    CERN Document Server

    Bini, S; Marcelli, A; Sarti, S; Dolgashev, V A; Tantawi, S; Yeremian, A D; Higashi, Y; Grimaldi, M G; Romano, L; Ruffino, F; Parodi, R; Cibin, G; Marrelli, C; Migliorati, M; Caliendo, C

    2012-01-01

    Technological advancements are strongly required to fulfill the demands of new accelerator devices with the highest accelerating gradients and operation reliability for the future colliders. To this purpose an extensive R&D regarding molybdenum coatings on copper is in progress. In this contribution we describe chemical composition, deposition quality and resistivity properties of different molybdenum coatings obtained via sputtering. The deposited films are thick metallic disorder layers with different resistivity values above and below the molibdenum dioxide reference value. Chemical and electrical properties of these sputtered coatings have been characterized by Rutherford backscattering, XANES and photoemission spectroscopy. We will also present a three cells standing wave section coated by a molybdenum layer $\\sim$ 500 nm thick designed to improve the performance of X-Band accelerating systems.

  17. Superconducting travelling wave ring with high gradient accelerating section

    Energy Technology Data Exchange (ETDEWEB)

    Avrakhov, P.; Solyak, N.; /Fermilab

    2007-06-01

    Use of a superconducting traveling wave accelerating (STWA) structure instead of a standing wave cavity has major advantages in increasing the accelerating gradient in the ILC. In contrast with standing wave cavity STWA requires feedback loop, which sends wave from the structure output to input, making a superconducting traveling wave ring (STWR). One or few input couplers need to excite STWR and compensate power dissipations due to beam loading. To control traveling wave regime in the structure two independent knobs can be used for tuning both resonant ring frequency and backward wave. We discuss two variants of the STWR with one and two feed couplers.

  18. A Reliability Accelerated Test of High-speed Punch Based on Failure Analysis

    Directory of Open Access Journals (Sweden)

    Chen Lan

    2016-01-01

    Full Text Available By analyzing the maintainability data of a certain high-speed punch, its main fault modes, such as oil/gas parts damage, parts damage and leakages, were identified. According to the fault signal measurability and the accelerated failure mechanism, the content and scheme of a reliability accelerated test (RAT were planned specifically, which was partly verified by some tests on a high-speed punch. This paper provides a basis for the RAT of high-speed punch.

  19. Beam-commissioning study of high-intensity accelerators using virtual accelerator model

    Science.gov (United States)

    Harada, H.; Shigaki, K.; Irie, Y.; Noda, F.; Hotchi, H.; Saha, P. K.; Shobuda, Y.; Sako, H.; Furukawa, K.; Machida, S.

    2009-04-01

    In order to control large-scale accelerators efficiently, a control system with a virtual accelerator model was constructed. The virtual accelerator (VA) is an on-line beam simulator provided with a beam monitor scheme. The VA is based upon the Experimental Physics and Industrial Control System (EPICS) and is configured under the EPICS input/output controller (IOC) in parallel with a real accelerator (RA). Thus, the machine operator can access the parameters of the RA through the channel access client and then feed them to the VA, and vice versa. Such a control scheme facilitates developments of the commissioning tools, feasibility study of the proposed accelerator parameters and examination of the measured accelerator data. This paper describes the beam commissioning results and activities by using the VA at the J-PARC 3-GeV rapid-cycling synchrotron (RCS).

  20. Beam-commissioning study of high-intensity accelerators using virtual accelerator model

    Energy Technology Data Exchange (ETDEWEB)

    Harada, H. [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima-shi, Hiroshima 739-8526 (Japan)], E-mail: harada@hepl.hiroshima-u.ac.jp; Shigaki, K. [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima-shi, Hiroshima 739-8526 (Japan); Irie, Y. [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Ibaraki 305-0801 (Japan); Noda, F. [Energy and Environmental Systems Laboratory, Hitachi, Ltd, 7-2-1 Omika-cho, Hitachi-shi, Ibaraki 319-1221 (Japan); Hotchi, H.; Saha, P.K.; Shobuda, Y.; Sako, H. [Japan Proton Accelerator Research Complex, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Furukawa, K. [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Ibaraki 305-0801 (Japan); Machida, S. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11, 0QX (United Kingdom)

    2009-04-21

    In order to control large-scale accelerators efficiently, a control system with a virtual accelerator model was constructed. The virtual accelerator (VA) is an on-line beam simulator provided with a beam monitor scheme. The VA is based upon the Experimental Physics and Industrial Control System (EPICS) and is configured under the EPICS input/output controller (IOC) in parallel with a real accelerator (RA). Thus, the machine operator can access the parameters of the RA through the channel access client and then feed them to the VA, and vice versa. Such a control scheme facilitates developments of the commissioning tools, feasibility study of the proposed accelerator parameters and examination of the measured accelerator data. This paper describes the beam commissioning results and activities by using the VA at the J-PARC 3-GeV rapid-cycling synchrotron (RCS)

  1. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    Institute of Scientific and Technical Information of China (English)

    H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong

    2008-01-01

    @@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.

  2. High gradient insulator technology for the dielectric wall accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S.; Caporaso, G.; Carder, B. [and others

    1995-04-27

    Insulators composed of finely spaced alternating layers of dielectric and metal are thought to minimize secondary emission avalanche (SEA) growth. Most data to date was taken with small samples (order 10 cm{sup 2} area) in the absence of an ion or electron beam. The authors have begun long pulse (>1 {mu}s) high voltage testing of small hard seal samples. Further, they have performed short pulse (20 ns) high voltage testing of moderate scale bonded samples (order 100 cm{sup 2} area) in the presence of a 1 kA electron beam. Results thus far indicate a 1.0 to 4.0 increase in the breakdown electric field stress is possible with this technology.

  3. Accelerating R with high performance linear algebra libraries

    Directory of Open Access Journals (Sweden)

    Bogdan Oancea

    2015-09-01

    Full Text Available Linear algebra routines are basic building blocks for the statistical software. In this paper we analyzed how can we improve R performance for matrix computations. We benchmarked few matrix operations using the standard linear algebra libraries included in the R distribution and high performance libraries like OpenBLAS, GotoBLAS and MKL. Our tests showed the best results are obtained with the MKL library, the other two libraries having similar performances, but lower than MKL.

  4. Accelerator Production and Separations for High Specific Activity Rhenium-186

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia S. [Univ. of Missouri, Columbia, MO (United States); Wilbur, D. Scott [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  5. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  6. A New Scheme for High-Intensity Laser-Driven Electron Acceleration in a Plasma 2

    CERN Document Server

    Sadykova, S P; Samkharadze, T G

    2015-01-01

    We propose a new approach to high-intensity relativistic laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward-scattering of a high-intensity laser pulse in a plasma.

  7. Comparison of the conditioning of High Gradient Accelerating Structures

    CERN Document Server

    Degiovanni, Alberto; Giner Navarro, Jorge

    2016-01-01

    Accelerating gradients in excess of 100 MV/m, at very low breakdown rates, have been successfully achieved in numerous CLIC prototype accelerating structures. The conditioning and operational histories of several structures, tested at KEK and CERN, have been compared and there is clear evidence that the conditioning progresses with the number of RF pulses and not the number of breakdowns. This observation opens the possibility that the optimum conditioning strategy, which minimizes the total number of breakdowns the structure is subject to without increasing conditioning time, may be to never exceed the breakdown rate target for operation. The result is also likely to have a strong impact on efforts to understand the physical mechanism underlying conditioning and may lead to preparation procedures which reduce conditioning time.

  8. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    impregnated with epoxy and mounted between a support of stainless steel and a collar made from aluminum. The cold mass consisting of the coil assembly and a laminated steel yoke is cooled by two cryocoolers from via copper bars to below 20 K. Current leads were made from the same batch of HTS tape. Cryogen...... for accelerator applications in many fields, in particular where cryogenic liquid cooling is not an option....

  9. High-gradient two-beam electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  10. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  11. High-Voltage Terminal Test of Test Stand for 1-MV Electrostatic Accelerator

    CERN Document Server

    Park, Sae-Hoon

    2015-01-01

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  12. High brightness 50 MeV Cyclotron for Accelerator-Driven Subcritical Fission

    Science.gov (United States)

    Assadi, Saeed; Badgley, Karie; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2011-10-01

    The Accelerator Research Lab at Texas A&M University is developing new accelerator technology for a high-brightness, high-current cyclotron with capabilities that will be beneficial for applications to accelerator-driven subcritical fission, medical isotope production, and proton therapy. As a first embodiment of the technology, we are developing a detailed design for TAMU-50, a 50 MeV, 5 mA proton cyclotron with high beam brightness. In this presentation we present devices and beamline components for injection, extraction, controls and diagnostics. We emphasize the system integration and implementation of TAMU-50 for production of medical radioisotopes.

  13. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [Univ. of Maryland, College Park, MD (United States)

    2014-07-22

    This report consists of two parts. In the first part we describe a study of the heating of microprotrusions on surfaces of accelerating structures. This ;process is believed to lead to breakdown in these structures. Our study revealed that for current accelerator parameters melting should not occur due to space charge limitations of the current emitted by a protrusion. The second part describes a novel concept to develop THz range sources based on harmonic cyclotron masers for driving future colliders. This work was stimulated by a recent request of SLAC to develop high power, high-efficiency sources of sub-THz radiation for future high-gradient accelerators.

  14. Nuclear design aspect of the Korean high intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Song, Tae-Yung [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1998-11-01

    A plan to construct a high current proton accelerator has been proposed by KAERI. We are presenting the required nuclear design to support the project as well as a brief overview of the proposed proton accelerator. The target and core design is highlighted to show feasibility of incineration of minor actinides from the spent fuel of light water reactors. Radiation shielding and activation analyses are also important for the design and the license of the accelerator. (author)

  15. Ionization and acceleration of heavy ions in high-Z solid target irradiated by high intensity laser

    OpenAIRE

    Kawahito, D.; Kishimoto, Y

    2016-01-01

    In the interaction between high intensity laser and solid film, an ionization dynamics inside the solid is dominated by fast time scale convective propagation of the internal sheath field and the slow one by impact ionization due to heated high energy electrons coupled with nonlocal heat transport. Furthermore, ionization and acceleration due to the localized external sheath field which co- propagates with Al ions constituting the high energy front in the vacuum region. Through this process, ...

  16. R and D status of high-current accelerators at IFP

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J. J.; Shi, J. S.; Xie, W. P. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan (China); and others

    2011-12-15

    High-current accelerators have many important applications in Z-pinches, high-power microwaves, and free electron lasers, imploding liners and radiography and so on. Research activities on Z-pinches, imploding liners, radiography at the Institute of Fluid Physics (IFP) are introduced. Several main high-current accelerators developed and being developed at IFP are described, such as the Linear Induction Accelerator X-Ray Facility Upgrade (LIAXFU, 12 MeV, 2.5 kA, 90 ns), the Dragon-I linear induction accelerator (20 MeV, 2.5 kA, 60 ns), and the Primary Test Stand for Z-pinch (PTS, 10 MA, 120 ns). The design of Dragon-II linear induction accelerator (20 MeV, 2.5 kA, 3 x 60 ns) to be built will be presented briefly.

  17. GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Yu-Chiu Chao

    2007-06-25

    Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.

  18. Beam instrumentation for future high intense hadron accelerators at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  19. Highly Productive Application Development with ViennaCL for Accelerators

    Science.gov (United States)

    Rupp, K.; Weinbub, J.; Rudolf, F.

    2012-12-01

    The use of graphics processing units (GPUs) for the acceleration of general purpose computations has become very attractive over the last years, and accelerators based on many integrated CPU cores are about to hit the market. However, there are discussions about the benefit of GPU computing when comparing the reduction of execution times with the increased development effort [1]. To counter these concerns, our open-source linear algebra library ViennaCL [2,3] uses modern programming techniques such as generic programming in order to provide a convenient access layer for accelerator and GPU computing. Other GPU-accelerated libraries are primarily tuned for performance, but less tailored to productivity and portability: MAGMA [4] provides dense linear algebra operations via a LAPACK-comparable interface, but no dedicated matrix and vector types. Cusp [5] is closest in functionality to ViennaCL for sparse matrices, but is based on CUDA and thus restricted to devices from NVIDIA. However, no convenience layer for dense linear algebra is provided with Cusp. ViennaCL is written in C++ and uses OpenCL to access the resources of accelerators, GPUs and multi-core CPUs in a unified way. On the one hand, the library provides iterative solvers from the family of Krylov methods, including various preconditioners, for the solution of linear systems typically obtained from the discretization of partial differential equations. On the other hand, dense linear algebra operations are supported, including algorithms such as QR factorization and singular value decomposition. The user application interface of ViennaCL is compatible to uBLAS [6], which is part of the peer-reviewed Boost C++ libraries [7]. This allows to port existing applications based on uBLAS with a minimum of effort to ViennaCL. Conversely, the interface compatibility allows to use the iterative solvers from ViennaCL with uBLAS types directly, thus enabling code reuse beyond CPU-GPU boundaries. Out-of-the-box support

  20. High precision survey and alignment techniques in accelerator construction

    CERN Document Server

    Gervaise, J

    1974-01-01

    Basic concepts of precision surveying are briefly reviewed, and an historical account is given of instruments and techniques used during the construction of the Proton Synchrotron (1954-59), the Intersecting Storage Rings (1966-71), and the Super Proton Synchrotron (1971). A nylon wire device, distinvar, invar wire and tape, and recent automation of the gyrotheodolite and distinvar as well as auxiliary equipment (polyurethane jacks, Centipede) are discussed in detail. The paper ends summarizing the present accuracy in accelerator metrology, giving an outlook of possible improvement, and some aspects of staffing for the CERN Survey Group. (0 refs).

  1. Symposium on the Occassion of 70th Birthday of Juwen Wang : High Gradient Accelerating Structure

    CERN Document Server

    2015-01-01

    This proceedings volume, for the symposium in honor of Junwen Wang's 70th anniversary, is dedicated to his many important achievements in the field of accelerator physics.It includes the discussions of recent advances and challenging problems in the field of high gradient accelerating structure development.

  2. ACCELERATION AND ENRICHMENT IN THE JUNIOR HIGH SCHOOL. A FOLLOW-UP STUDY.

    Science.gov (United States)

    ARENDS, RICHARD H.; FORD, PAUL M.

    THE 1963-64 STUDY INVOLVED AN INVESTIGATION OF ACCELERATION IN MATHEMATICS AND ENRICHMENT IN READING AND SCIENCE IN THE JUNIOR HIGH SCHOOL. BUT THE RESEARCH WAS BROADENED AND, UNLIKE THE 1962-63 STUDY, EXPLORED MORE DEEPLY THE EFFECTS OF ACCELERATION AND ENRICHMENT. A NUMBER OF SCHOOLS OUTSIDE OF WALLA WALLA WAS USED. PROBLEMS CONSIDERED WERE--(1)…

  3. Can low energy electrons affect high energy physics accelerators?

    CERN Document Server

    Cimino, R; Furman, M A; Pivi, M; Ruggiero, F; Rumolo, Giovanni; Zimmermann, Frank

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at whic...

  4. Experimental Studies of W-Band Accelerator Structures at High Field

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Marc E

    2001-02-09

    A high-gradient electron accelerator is desired for high-energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, a higher gradient than any collider. Planar accelerator devices naturally have an rf quadrupole component of the accelerating field. Presented for the first time are the measurements of this effect.

  5. A High Performance QDWH-SVD Solver using Hardware Accelerators

    KAUST Repository

    Sukkari, Dalal E.

    2015-04-08

    This paper describes a new high performance implementation of the QR-based Dynamically Weighted Halley Singular Value Decomposition (QDWH-SVD) solver on multicore architecture enhanced with multiple GPUs. The standard QDWH-SVD algorithm was introduced by Nakatsukasa and Higham (SIAM SISC, 2013) and combines three successive computational stages: (1) the polar decomposition calculation of the original matrix using the QDWH algorithm, (2) the symmetric eigendecomposition of the resulting polar factor to obtain the singular values and the right singular vectors and (3) the matrix-matrix multiplication to get the associated left singular vectors. A comprehensive test suite highlights the numerical robustness of the QDWH-SVD solver. Although it performs up to two times more flops when computing all singular vectors compared to the standard SVD solver algorithm, our new high performance implementation on single GPU results in up to 3.8x improvements for asymptotic matrix sizes, compared to the equivalent routines from existing state-of-the-art open-source and commercial libraries. However, when only singular values are needed, QDWH-SVD is penalized by performing up to 14 times more flops. The singular value only implementation of QDWH-SVD on single GPU can still run up to 18% faster than the best existing equivalent routines. Integrating mixed precision techniques in the solver can additionally provide up to 40% improvement at the price of losing few digits of accuracy, compared to the full double precision floating point arithmetic. We further leverage the single GPU QDWH-SVD implementation by introducing the first multi-GPU SVD solver to study the scalability of the QDWH-SVD framework.

  6. High field accelerator magnet R&D in Europe

    CERN Document Server

    Devred, Arnaud; Bottura, L; Chorowski, M; Fabbricatore, P; Leroy, D; den Ouden, A; Rifflet, J M; Rossi, L; Vincent-Viry, O; Volpini, G

    2004-01-01

    The LHC magnet R&D program has shown that the limit of NbTi technology at 1.9 K was in the 10-to-10.5-T range. Hence, to go beyond the 10-T threshold, it is necessary to change the superconducting material. Given the state of the art in HTS, the only serious candidate is Nb3Sn. A series of dipole magnet models built at Twente University and LBNL as well as a vigorous program carried out at Fermilab have demonstrated the feasibility of Nb3Sn magnet technology. The next step is to bring this technology to maturity, which require further conductor and conductor insulation development and a simplification of manufacturing processes. After a brief history, we review ongoing R&D programs in Europe and we present the Next European Dipole (NED) initiative promoted by the European Steering Group on Accelerator R&D (ESGARD).

  7. FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation

    Science.gov (United States)

    Veltri, M.

    2016-09-01

    This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.

  8. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    Science.gov (United States)

    Lebrun, Ph

    2017-02-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.

  9. Influence of pulse line switch inductance on output characteristics of high-current nanosecond accelerators

    Science.gov (United States)

    Mashchenko, A. I.; Vintizenko, I. I.

    2016-06-01

    Various types of high-current nanosecond accelerators are simulated numerically using an equivalent circuit representation. The influence of pulse forming line switch inductance on the amplitude and waveform of output voltage and current pulses is analyzed.

  10. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    CERN Document Server

    AUTHOR|(CDS)2067931

    2016-01-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic flu...

  11. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    CERN Document Server

    Chang, Feng-Yin; Lin, Guey-Lin; Reil, Kevin; Sydora, Richard

    2007-01-01

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultra high energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield so induced validates precisely the theoretical prediction. We show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over a macroscopic distance. Invoking gamma ray burst (GRB) as the source, we show that MPWA production of ultra high energy cosmic rays (UHECR) beyond ZeV 10^21 eV is possible.

  12. Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Tang, V; Adams, M L; Rusnak, B

    2009-07-24

    The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.

  13. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    Energy Technology Data Exchange (ETDEWEB)

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  14. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  15. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  16. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    Science.gov (United States)

    Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the

  17. Scaling and design of high-energy laser plasma electron acceleration

    Institute of Scientific and Technical Information of China (English)

    Kazuhisa Nakajima; Hyung Taek Kim; Tae Moon Jeong; Chang Hee Nam

    2015-01-01

    Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the laser wakefield acceleration mechanism. While, to date, worldwide research on laser plasma accelerators has been focused on the creation of compact particle and radiation sources for basic sciences, medical and industrial applications, there is great interest in applications for high-energy physics and astrophysics, exploring unprecedented high-energy frontier phenomena. In this context, we present an overview of experimental achievements in laser plasma acceleration from the perspective of the production of GeV-level electron beams, and deduce the scaling formulas capable of predicting experimental results self-consistently, taking into account the propagation of a relativistic laser pulse through plasma and the accelerating field reduction due to beam loading. Finally, we present design examples for 10-GeV-level laser plasma acceleration, which is expected in near-term experiments by means of petawatt-class lasers.

  18. Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running.

    Science.gov (United States)

    Alexander, Jeremy P; Hopkinson, Trent L; Wundersitz, Daniel W T; Serpell, Benjamin G; Mara, Jocelyn K; Ball, Nick B

    2016-11-01

    Alexander, JP, Hopkinson, TL, Wundersitz, DWT, Serpell, BG, Mara, JK, and Ball, NB. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J Strength Cond Res 30(11): 3007-3013, 2016-The aim of this study was to determine the validity of an accelerometer to measure average acceleration values during high-speed running. Thirteen subjects performed three sprint efforts over a 40-m distance (n = 39). Acceleration was measured using a 100-Hz triaxial accelerometer integrated within a wearable tracking device (SPI-HPU; GPSports). To provide a concurrent measure of acceleration, timing gates were positioned at 10-m intervals (0-40 m). Accelerometer data collected during 0-10 m and 10-20 m provided a measure of average acceleration values. Accelerometer data was recorded as the raw output and filtered by applying a 3-point moving average and a 10-point moving average. The accelerometer could not measure average acceleration values during high-speed running. The accelerometer significantly overestimated average acceleration values during both 0-10 m and 10-20 m, regardless of the data filtering technique (p < 0.001). Body mass significantly affected all accelerometer variables (p < 0.10, partial η = 0.091-0.219). Body mass and the absence of a gravity compensation formula affect the accuracy and practicality of accelerometers. Until GPSports-integrated accelerometers incorporate a gravity compensation formula, the usefulness of any accelerometer-derived algorithms is questionable.

  19. Acceleration and Utilization of Highly Stripped Charge State Heavy Ions at HI-13 Acceleration

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Even higher linear energy transfer (LET) values of the heavy ions are necessary as the investigationsof single event effects (SEE) of satellite devices are developing rapidly. For example, the researches aredeveloped from the single-event upset (SEU) which needs comparatively low LET values towards singleevent latch up (SEL) and single event burnout (SEB) which requires high LET values, namely LET’s arehigher than 80 MeV mg-1,cm-2 and range of the ions in the silicon should be large than 20 micrometers,

  20. Effects of Early Acceleration of Students in Mathematics on Taking Advanced Mathematics Coursework in High School

    Science.gov (United States)

    Ma, Xin

    2010-01-01

    Based on data from the Longitudinal Study of American Youth (LSAY), students were classified into high-, middle-, and low-ability students. The effects of early acceleration in mathematics on the most advanced mathematics coursework (precalculus and calculus) in high school were examined in each category. Results showed that although early…

  1. Effects of Early Acceleration of Students in Mathematics on Taking Advanced Mathematics Coursework in High School

    Science.gov (United States)

    Ma, Xin

    2010-01-01

    Based on data from the Longitudinal Study of American Youth (LSAY), students were classified into high-, middle-, and low-ability students. The effects of early acceleration in mathematics on the most advanced mathematics coursework (precalculus and calculus) in high school were examined in each category. Results showed that although early…

  2. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Feng-Yin; /Taiwan, Natl. Chiao Tung U. /Taiwan, Natl. Taiwan U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC; Lin, Guey-Lin; /Taiwan, Natl. Chiao Tung U. /Taiwan, Natl. Taiwan U.; Noble, Robert; /SLAC; Sydora, Richard; /Alberta U.

    2009-10-17

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultrahigh energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield obtained in the simulations compares favorably with our newly developed relativistic theory of the MPWA. We show that, under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over hundreds of plasma skin depths. Invoking active galactic nuclei as the site, we show that MPWA production of ultrahigh energy cosmic rays beyond ZeV (10{sup 21} eV) is possible.

  3. Acceleration of dust grains by means of the high energy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S.M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Sabzinezhad, F. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A.R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2013-11-08

    The acceleration of charged dust grains by a high energy ion beam is investigated by obtaining the dispersion relation. The Cherenkov and cyclotron acceleration mechanisms of dust grains are compared with each other. The role of dusty plasma parameters and the magnetic field strength in the acceleration process are discussed. In addition, the stimulated waves by an ion beam in a fully magnetized dust–ion plasma are studied. It is shown that these waves are unstable at different angles with respect to the external magnetic field. It is also indicated that the growth rates increase by either increasing the ion and dust densities or decreasing the magnetic field strength. Finally, the results of our research show that the high energy ion beam can accelerate charged dust grains.

  4. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S

    2003-01-01

    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  5. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S

    2003-01-01

    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  6. Post-acceleration of laser driven protons with a compact high field linac

    Science.gov (United States)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  7. Report of the Subpanel on Accelerator Research and Development of the High Energy Physics Advisory Panel

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Accelerator R and D in the US High Energy Physics (HEP) program is reviewed. As a result of this study, some shift in priority, particularly as regards long-range accelerator R and D, is suggested to best serve the future needs of the US HEP program. Some specific new directions for the US R and D effort are set forth. 18 figures, 5 tables. (RWR)

  8. Technological Issues and High Gradient Test Results on X-Band Molybdenum Accelerating Structures

    Energy Technology Data Exchange (ETDEWEB)

    Spataro, B.; /LNF, Dafne Light; Alesini, D.; /LNF, Dafne Light; Chimenti, V.; /LNF, Dafne Light; Dolgashev, V.; /SLAC; Haase, A.; /SLAC; Tantawi, S.G.; /SLAC; Higashi, Y.; /KEK, Tsukuba; Marrelli, C.; /Rome U.; Mostacci, A.; /Rome U.; Parodi, R.; /INFN, Genoa; Yeremian, A.D.; /SLAC

    2012-04-24

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC (Stanford Linear Accelerator Center) and KEK (Ko Enerugi Kasokuki Kenkyu Kiko). The technological issues to build both sections are discussed.

  9. Technological issues and high gradient test results on X-band molybdenum accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Spataro, B., E-mail: bruno.spataro@lnf.infn.it [INFN-LNF, Via E. Fermi 40, 00044 Frascati (Italy); Alesini, D.; Chimenti, V. [INFN-LNF, Via E. Fermi 40, 00044 Frascati (Italy); Dolgashev, V.; Haase, A.; Tantawi, S.G. [SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Higashi, Y. [KEK 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Marrelli, C.; Mostacci, A. [University of Rome Sapienza, Department of Fundamental and Applied Science for Engineering, Via A. Scarpa 14, 00185 Rome (Italy); Parodi, R. [INFN-Genova, Via Dodecaneso 33, 16146 Genova (Italy); Yeremian, A.D. [SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2011-11-21

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC (Stanford Linear Accelerator Center) and KEK (Ko Enerugi Kasokuki Kenkyu Kiko). The technological issues to build both sections are discussed.

  10. A project of accelerator-recuperator for Novosibirsk high-power FEL

    Science.gov (United States)

    Bolotin, V. P.; Vinokurov, N. A.; Kayran, D. A.; Knyazev, B. A.; Kolobanov, E. I.; Kotenkov, V. V.; Kubarev, V. V.; Kulipanov, G. N.; Matveenko, A. N.; Medvedev, L. E.; Miginsky, S. V.; Mironenko, L. A.; Oreshkov, A. D.; Ovchar, V. K.; Popik, V. M.; Salikova, T. V.; Serednyakov, S. S.; Skrinsky, A. N.; Tcheskidov, V. G.; Shevchenko, O. A.; Scheglov, M. A.

    2006-12-01

    The first stage of the Novosibirsk high-power free-electron laser (FEL) was commissioned in 2003. It is driven by a CW energy recovery linac. The next step will be the full-scale machine, a four-track accelerator-recuperator based on the same RF accelerating structure. This upgrade will permit to get shorter wavelengths in the infrared region and increase the average power of the FEL by several times. The scheme and some technical details of the project are set out. The installation will be a prototype for future multiturn accelerator-recuperators.

  11. SLAB symmetric dielectric micron scale structures for high gradient electron acceleration.

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J. B.; Schoessow, P. V.

    1999-06-12

    A class of planar microstructure is proposed which provide high accelerating gradients when excited by an infrared laser pulse. These structures consist of parallel dielectric slabs separated by a vacuum gap; the dielectric or the outer surface coating are spatially modulated at the laser wavelength along the beam direction so as to support a standing wave accelerating field. We have developed numerical and analytic models of the accelerating mode fields in the structure. We show an optimized coupling scheme such that this mode is excited resonantly with a large quality factor. The status of planned experiments on fabricating and measuring these planar structures will be described.

  12. Radiation Fields in High Energy Accelerators and their impact on Single Event Effects

    CERN Document Server

    García Alía, Rubén; Wrobel, Frédéric; Brugger, Markus

    Including calculation models and measurements for a variety of electronic components and their concerned radiation environments, this thesis describes the complex radiation field present in the surrounding of a high-energy hadron accelerator and assesses the risks related to it in terms of Single Event Effects (SEE). It is shown that this poses not only a serious threat to the respective operation of modern accelerators but also highlights the impact on other high-energy radiation environments such as those for ground and avionics applications. Different LHC-like radiation environments are described in terms of their hadron composition and energy spectra. They are compared with other environments relevant for electronic component operation such as the ground-level, avionics or proton belt. The main characteristic of the high-energy accelerator radiation field is its mixed nature, both in terms of hadron types and energy interval. The threat to electronics ranges from neutrons of thermal energies to GeV hadron...

  13. Kinetic Modeling of Next-Generation High-Energy, High-Intensity Laser-Ion Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yin, Lin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stark, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    One of the long-standing problems in the community is the question of how we can model “next-generation” laser-ion acceleration in a computationally tractable way. A new particle tracking capability in the LANL VPIC kinetic plasma modeling code has enabled us to solve this long-standing problem

  14. Design of waveguide damped cells for 12 GHz high gradient accelerating structures

    CERN Document Server

    Sjobak, Kyrre Ness; Adli, Erik

    2014-01-01

    This document describes the design procedure and numerical techniques used to optimize waveguidedamped traveling wave accelerating structure cells for high gradients, and characterize their wakefields. All simulations where made using ACE3P. The document also contains the design data for a collection of such cells operating at accelerating mode frequency = 11.9942 GHz and 120° phase-advance. This collection of highly optimized cells is created for use with the fast RF structure parameter estimator CLICopti, which is used for CLIC rebaselining

  15. High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches.

    Science.gov (United States)

    Kallos, Efthymios; Katsouleas, Tom; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Stolyarov, Daniil; Yakimenko, Vitaly

    2008-02-22

    A plasma-wakefield experiment is presented where two 60 MeV subpicosecond electron bunches are sent into a plasma produced by a capillary discharge. Both bunches are shorter than the plasma wavelength, and the phase of the second bunch relative to the plasma wave is adjusted by tuning the plasma density. It is shown that the second bunch experiences a 150 MeV/m loaded accelerating gradient in the wakefield driven by the first bunch. This is the first experiment to directly demonstrate high-gradient, controlled acceleration of a short-pulse trailing electron bunch in a high-density plasma.

  16. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, Ben [NICADD, DeKalb; Mihalcea, Daniel [NICADD, DeKalb; Panuganti, Harsha [NICADD, DeKalb; Piot, Philippe [Fermilab; Brau, Charles [Vanderbilt U.; Choi, Bo [Vanderbilt U.; Gabella, William [Vanderbilt U.; Ivanov, Borislav [Vanderbilt U.; Mendenhall, Marcus [Vanderbilt U.; Lynn, Christopher [Swarthmore Coll.; Sen, Tanaji [Fermilab; Wagner, Wolfgang [Forschungszentrum Dresden Rossendorf

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  17. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  18. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  19. High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    CERN Document Server

    Li, Yangmei; Lotov, Konstantin V; Sosedkin, Alexander P; Hanahoe, Kieran; Mete-Apsimon, Oznur

    2016-01-01

    Proton-driven plasma wakefield accelerators have numerically demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to energy frontier in a single plasma stage. However, due to the intrinsic strong and radially varying transverse fields, the beam quality is still far from suitable for practical application in future colliders. Here we propose a new accelerating region which is free from both plasma electrons and ions in the proton-driven hollow plasma channel. The high quality electron beam is therefore generated with this scheme without transverse plasma fields. The results show that a 1 TeV proton driver can propagate and accelerate an electron beam to 0.62 TeV with correlated energy spread of 4.6% and well-preserved normalized emittance below 2.4 mm mrad in a single hollow plasma channel of 700 m. More importantly, the beam loading tolerance is significantly improved compared to the uniform plasma case. This high quality an...

  20. Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Chan [Univ. of California, Los Angeles, CA (United States); Mori, W. [Univ. of California, Los Angeles, CA (United States)

    2013-10-21

    This is the final report on the DOE grant number DE-FG02-92ER40727 titled, “Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators.” During this grant period the UCLA program on Advanced Plasma Based Accelerators, headed by Professor C. Joshi has made many key scientific advances and trained a generation of students, many of whom have stayed in this research field and even started research programs of their own. In this final report however, we will focus on the last three years of the grant and report on the scientific progress made in each of the four tasks listed under this grant. Four tasks are focused on: Plasma Wakefield Accelerator Research at FACET, SLAC National Accelerator Laboratory, In House Research at UCLA’s Neptune and 20 TW Laser Laboratories, Laser-Wakefield Acceleration (LWFA) in Self Guided Regime: Experiments at the Callisto Laser at LLNL, and Theory and Simulations. Major scientific results have been obtained in each of the four tasks described in this report. These have led to publications in the prestigious scientific journals, graduation and continued training of high quality Ph.D. level students and have kept the U.S. at the forefront of plasma-based accelerators research field.

  1. High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel

    Directory of Open Access Journals (Sweden)

    Yutaka Kazoe

    2016-08-01

    Full Text Available Microfluidics has been used to perform various chemical operations for pL–nL volumes of samples, such as mixing, reaction and separation, by exploiting diffusion, viscous forces, and surface tension, which are dominant in spaces with dimensions on the micrometer scale. To further develop this field, we previously developed a novel microfluidic device, termed a microdroplet collider, which exploits spatially and temporally localized kinetic energy. This device accelerates a microdroplet in the gas phase along a microchannel until it collides with a target. We demonstrated 6000-fold faster mixing compared to mixing by diffusion; however, the droplet acceleration was not optimized, because the experiments were conducted for only one droplet size and at pressures in the 10–100 kPa range. In this study, we investigated the acceleration of a microdroplet using a high-pressure (MPa control system, in order to achieve higher acceleration and kinetic energy. The motion of the nL droplet was observed using a high-speed complementary metal oxide semiconductor (CMOS camera. A maximum droplet velocity of ~5 m/s was achieved at a pressure of 1–2 MPa. Despite the higher fluid resistance, longer droplets yielded higher acceleration and kinetic energy, because droplet splitting was a determining factor in the acceleration and using a longer droplet helped prevent it. The results provide design guidelines for achieving higher kinetic energies in the microdroplet collider for various microfluidic applications.

  2. High-speed hydrogen pellet acceleration using an electromagnetic railgun system

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Oda, Y. [Mitsubishi Heavy Ind., Ltd., Yokohama (Japan). Nucl. Fuel Cycle Eng. Dept.; Azuma, K.; Kasai, S.; Hasegawa, K. [Japan Atomic Energy Res. Inst., Tokai (Japan)

    1997-07-01

    Using a low electric energy railgun system, solid hydrogen pellet acceleration test have been conducted to investigate the application of the electromagnetic railgun system for high-speed pellet injection into fusion plasmas. Pneumatically pre-accelerated hydrogen pellets measuring 3 mm in diameter and 4-9 mm in length were successfully accelerated by a railgun system that uses a laser-induced plasma armature formation. A 2 m long single railgun with ceramic insulators accelerated th hydrogen pellet to 2.6 kms{sup -1} with a supplied energy of 1.7 kJ. The average acceleration rate and the energy conversion coefficient were improved to about 1.6 x 10{sup 6} ms{sup -2} and 0.37%, which is 1.6 times and three times as large as that using a railgun with plastic insulators, respectively. Furthermore, using the 1 m long augment railgun with ceramic insulators, the energy conversion coefficient was improved to about 0.55% while the acceleration rate was increased to 2.4 x 10{sup 6} ms{sup -2}. The highest hydrogen pellet velocity attained was about 2.3 kms{sup -1} for the augment railgun under an energy supply of 1.1 kJ. Based on the findings, it is expected that the acceleration efficiency and the pellet velocity can be further improved by using a longer augment railgun with ceramic insulators and by applying an optimal power supply. (orig.)

  3. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    Energy Technology Data Exchange (ETDEWEB)

    Pelicon, Primož, E-mail: primoz.pelicon@ijs.si [Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana (Slovenia); Podaru, Nicolae C., E-mail: info@highvolteng.com [High Voltage Engineering Europa B.V., P.O. Box 99, Amersfoort 3800AB (Netherlands); Vavpetič, Primož; Jeromel, Luka [Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potocnik, Nina [Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana (Slovenia); LOTRIČ Metrology ltd, Selca 163, SI-4227 Selca (Slovenia); Ondračka, Simon [Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana (Slovenia); Gottdang, Andreas; Mous, Dirk J.M. [High Voltage Engineering Europa B.V., P.O. Box 99, Amersfoort 3800AB (Netherlands)

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H{sup −} ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H{sup −} ion beams with a measured brightness of 17.1 A m{sup −2} rad{sup −2} eV{sup −1} at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV{sup 1/2}. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of {sup 3}He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m{sup −2} rad{sup −2} eV{sup −1}, with the output current at 18% of its available maximum.

  4. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control

    Science.gov (United States)

    Wang, W. T.; Li, W. T.; Liu, J. S.; Zhang, Z. J.; Qi, R.; Yu, C. H.; Liu, J. Q.; Fang, M.; Qin, Z. Y.; Wang, C.; Xu, Y.; Wu, F. X.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2016-09-01

    By designing a structured gas density profile between the dual-stage gas jets to manipulate electron seeding and energy chirp reversal for compressing the energy spread, we have experimentally produced high-brightness high-energy electron beams from a cascaded laser wakefield accelerator with peak energies in the range of 200-600 MeV, 0.4%-1.2% rms energy spread, 10-80 pC charge, and ˜0.2 mrad rms divergence. The maximum six-dimensional brightness B6 D ,n is estimated as ˜6.5 ×1 015 A /m2/0.1 % , which is very close to the typical brightness of e beams from state-of-the-art linac drivers. These high-brightness high-energy e beams may lead to the realization of compact monoenergetic gamma-ray and intense coherent x-ray radiation sources.

  5. Neutron dose per fluence and weighting factors for use at high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.

  6. Design of a high DC voltage generator and D-T fuser based on particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wagner L.; Campos, Tarcisio P.R., E-mail: wagnerleite@ufmg.b, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/ UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    This paper approaches a design and simulation of a high voltage Cockcroft Walton multiplier and a compact size deuteron accelerator addressed in neutron generation by d-t fusion. We proposed a circuit arrangement, which was led to simulations. The particle accelerator was computer-generated providing particle transport and electric potential analysis. As results, the simulated voltage multiplier achieved 119 kV, and the accelerator presented a deuteron beam current up to 15 mA, achieving energies in order to 100 keV. In conclusion, the simulation motivates experimental essays in order to investigate the viability of a deuteron accelerator powered by a Cockcroft-Walton source. Such d-t fusor shall produce an interesting ion beam profile, reaching energy values near the d-t fusion cross section peak. (author)

  7. High-Energy Ion Acceleration Mechanisms in a Dense Plasma Focus Z-Pinch

    Science.gov (United States)

    Higginson, D. P.; Link, A.; Schmidt, A.; Welch, D.

    2016-10-01

    The compression of a Z-pinch plasma, specifically in a dense plasma focus (DPF), is known to accelerate high-energy electrons, ions and, if using fusion-reactant ions (e.g. D, T), neutrons. The acceleration of particles is known to coincide with the peak constriction of the pinch, however, the exact physical mechanism responsible for the acceleration remains an area of debate and uncertainty. Recent work has suggested that this acceleration is linked to the growth of an m =0 (sausage) instability that evacuates a region of low-density, highly-magnetized plasma and creates a strong (>MV/cm) electric field. Using the fully kinetic particle-in-cell code LSP in 2D-3V, we simulate the compression of a 2 MA, 35 kV DPF plasma and investigate in detail the formation of the electric field. The electric field is found to be predominantly in the axial direction and driven via charge-separation effects related to the resistivity of the kinetic plasma. The strong electric and magnetic fields are shown to induce non-Maxwellian distributions in both the ions and electrons and lead to the acceleration of high-energy tails. We compare the results in the kinetic simulations to assumptions of magnetohydrodynamics (MHD). Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Proton acceleration in the interaction of high power laser and cryogenic hydrogen targets

    Science.gov (United States)

    Mishra, Rohini; Fiuza, Frederico; Glenzer, Siegfried

    2014-10-01

    High intensity laser driven ion acceleration has attracted great interest due to many prospective applications ranging from inertial confinement fusion, cancer therapy, particle accelerators. Particle-in-Cell (PIC) simulations are performed to model and design experiments at MEC for high power laser interaction with cryogenic hydrogen targets of tunable density and thickness. Preliminary 1D and 2D simulations, using fully relativistic particle-in-cell code PICLS, show a unique regime of proton acceleration, e.g. ~ 300 MeV peak energy protons are observed in the 1D run for interaction of ~1020 W/cm2, 110 fs intense laser with 6nc dense (nc = 1021 cm-3) and 2 micron thin target. The target is relativistically under-dense for the laser and we observe that a strong (multi-terawatt) shock electric field is produced and protons are reflected to high velocities by this field. Further, the shock field and the laser field keep propagating through the hydrogen target and meets up with target normal sheath acceleration (TNSA) electric field produced at the target rear edge and vacuum interface and this superposition amplifies the TNSA fields resulting in higher proton energy. In addition, the electrons present at the rear edge of the target continue to gain energy via strong interaction with laser that crosses the target and these accelerated electrons maintains higher electric sheath fields which further provides acceleration to protons. We will also present detailed investigation with 2D PICLS simulations to gain a better insight of such physical processes to characterize multidimensional effects and establish analytical scaling between laser and target conditions for the optimization of proton acceleration.

  9. Accelerator Technology and High Energy Physic Experiments, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the ...

  10. Experimental and theoretical investigation of high gradient acceleration. Progress report, June 1, 1991--February 1, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bekefi, G.; Chen, C.; Chen, S.; Danly, B.; Temkin, R.J.; Wurtele, J.S.

    1992-02-01

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-FG0291ER-40648. ``Experimental and Theoretical Investigations of High Gradient Acceleration.`` This grant supports three research tasks: Task A consists of the design and fabrication of a 17GHz of photocathode gun, Task B supports the testing of high gradient acceleration using a 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders. This report is organized as follows. The development of an rf gun design and research progress on the picosecond laser system is summarized in Sec. 2, the status of the studies of the LBL/Haimson high gradient structure, using a 50 MW free-electron laser is summarized in Sec. 3, and theoretical research progress is described in Sec. 4. Supporting material is contained in Appendices A-G.

  11. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  12. Compilation of radiation damage test data part III: materials used around high-energy accelerators

    CERN Document Server

    Beynel, P; Schönbacher, H; CERN. Geneva

    1982-01-01

    For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

  13. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  14. Ultra-high energy interaction on accelerators and in cosmic rays.

    Science.gov (United States)

    Nikolskij, S. I.

    1989-03-01

    The violations of Feinman scaling, accelerator data concerning multiproduction hadron scaling, and relations between the real and imaginary parts of the forward elastic scattering amplitude in pp collisions are discussed. Experimental cosmic ray data indicate the existence of some new energy-threshold processes of the multiproduction of photons and leptons in hadron interaction at ultra-high energies.

  15. The Effects of Acceleration on High-Ability Learners: A Meta-Analysis

    Science.gov (United States)

    Steenbergen-Hu, Saiying; Moon, Sidney M.

    2011-01-01

    Current empirical research about the effects of acceleration on high-ability learners' academic achievement and social-emotional development were synthesized using meta-analytic techniques. A total of 38 primary studies conducted between 1984 and 2008 were included. The results were broken down by developmental level (P-12 and postsecondary) and…

  16. Accelerated Mathematics and High-Ability Students' Math Achievement in Grades Three and Four

    Science.gov (United States)

    Stanley, Ashley M.

    2011-01-01

    The purpose of this study was to explore the relationship between the use of a computer-managed integrated learning system entitled Accelerated Math (AM) as a supplement to traditional mathematics instruction on achievement as measured by TerraNova achievement tests of third and fourth grade high-ability students. Gender, socioeconomic status, and…

  17. Study of particle transport in a high power spallation target for an accelerator driven transmutation system

    OpenAIRE

    Shetty, Nikhil Vittal

    2013-01-01

    Transmutation of highly radioactive nuclear waste can be performed using an accelerator driven system (ADS), where high energy protons impinge on a spallation target to produce neutrons. These neutrons are multiplied in a subcritical core, while simultaneously fissioning the minor actinides into short lived or stable nuclides. AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled ADS using solid spallation target. Development of the spallation t...

  18. The R&D Works on the High Intensity Proton Linear Accelerator for Nuclear Waste Transmutation

    CERN Document Server

    Ito, N; Ino, H; Kawai, M; Kusano, J; Mizumoto, M; Murata, H; Oguri, H; Okumura, Y; Touchi, Y

    1996-01-01

    The R&D works of the 10MeV/10mA proton linear accelerator have been carried out for last four years. A high brightness hydrogen ion source, an RFQ and an RF power source have been developed and examined to achieve 2MeV proton beam. A DTL hot test model was also fabricated and a high power test has been carried out. The present status of the R&D works are described in this paper.

  19. Improvement in the Design of Metal-Ceramic High Voltage Feedthroughs for use in High Energy Particle Accelerators

    CERN Document Server

    Weterings, W

    1999-01-01

    Large high-voltage devices operate in particle accelerators to steer charged particles in the desired direction. Solid and hollow rods of sintered alumina are used as insulating supports and high-voltage feedthroughs to power the electrodes of these electrostatic systems. The performance of the systems is often limited by voltage breakdown along the surface of the ceramic insulator (so-called surface flashover) or discharge between feedthrough and vacuum tank, which can lead to significant disruptions in terms of overall machine efficiency. Available results on the influence of the mechanical preparation, thermal history and particular cleaning techniques on commercially obtainable alumina samples have been studied in order to investigate possibilities for better preparation methodology of the insulating supports. Also the influence of the relative position of the feedthrough inside the vacuum tank on the high-voltage breakdown behaviour has been studied. This paper describes the theoretical and practical bac...

  20. Can Trained Runners Effectively Attenuate Impact Acceleration During Repeated High-Intensity Running Bouts?

    Science.gov (United States)

    Clansey, Adam C; Lake, Mark J; Wallace, Eric S; Feehally, Tom; Hanlon, Michael

    2016-06-01

    The purpose of this study was to investigate the effects of prolonged high-intensity running on impact accelerations in trained runners. Thirteen male distance runners completed two 20-minute treadmill runs at speeds corresponding to 95% of onset of blood lactate accumulation. Leg and head accelerations were collected for 20 s every fourth minute. Rating of perceived exertion (RPE) scores were recorded during the third and last minute of each run. RPE responses increased (P run to the end (17.7 ± 1.5, very hard) of the second run. Runners maintained their leg impact acceleration, impact attenuation, stride length, and stride frequency characteristics with prolonged run duration. However, a small (0.11-0.14g) but significant increase (P < .001) in head impact accelerations were observed at the end of both first and second runs. It was concluded that trained runners are able to control leg impact accelerations during sustained high-intensity running. Alongside the substantial increases in perceived exertion levels, running mechanics and frequency domain impact attenuation levels remained constant. This suggests that the present trained runners are able to cope from a mechanical perspective despite an increased physiological demand.

  1. RF properties of 700 MHz, = 0.42 elliptical cavity for high current proton acceleration

    Indian Academy of Sciences (India)

    Amitava Roy; J Mondal; K C Mittal

    2008-12-01

    BARC is developing a technology for the accelerator-driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator-driven subcritical system project. We have studied RF properties of 700 MHz, = 0.42 single cell elliptical cavity for possible use in high current proton acceleration. The cavity shape optimization studies have been done using SUPERFISH code. A calculation has been done to find out the velocity range over which this cavity can accelerate protons efficiently and to select the number of cells/cavity. The cavity's peak electric and magnetic fields, power dissipation c, quality factor and effective shunt impedance 2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameters for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  2. An Evaluation of High Frequency Acceleration Test at XLPE Cable’s Insulator

    Science.gov (United States)

    Iwasaki, Kimihiro; Nakade, Masahiko; Tanaka, Atsushi; Tanimoto, Mihoko; Okashita, Minoru; Ito, Kazumi

    We investigated whether a high frequency acceleration method has validity at the degradation of XLPE in case of no influence of water for realizing a lifetime test at near the operating electric field. The tests was carried out at 50Hz, 1000Hz, and 3000Hz frequency using Recessed specimen and the specimen under Needle-plane electrode system, time-to-breakdown was measured. A clear property of frequency acceleration was checked in both results of tests, and the validity of the frequency acceleration technique was shown. And we realize that frequency acceleration factor is lower than the frequency ratio at both tests of specimens. We think the reason is that the amount of accumulation of the space charge per cycle at a defect or a tree tip at high frequency is less than the accumulation at 50Hz. Moreover, tree growth time effects at the time to breakdown of Needle-plane system specimen, but it effects a little at Recessed specimen, so there is difference of acceleration rate between both specimens. The lifetime exponent of V-t characteristic, n, increases at a 3000Hz examination, so it is suggested that n has a frequency dependence.

  3. The neutron dose equivalent around high energy medical electron linear accelerators

    Directory of Open Access Journals (Sweden)

    Poje Marina

    2014-01-01

    Full Text Available The measurement of neutron dose equivalent was made in four dual energy linear accelerator rooms. Two of the rooms were reconstructed after decommissioning of 60Co units, so the main limitation was the space. The measurements were performed by a nuclear track etched detectors LR-115 associated with the converter (radiator that consist of 10B and with the active neutron detector Thermo BIOREM FHT 742. The detectors were set at several locations to evaluate the neutron ambient dose equivalent and/or neutron dose rate to which medical personnel could be exposed. Also, the neutron dose dependence on collimator aperture was analyzed. The obtained neutron dose rates outside the accelerator rooms were several times smaller than the neutron dose rates inside the accelerator rooms. Nevertheless, the measured neutron dose equivalent was not negligible from the aspect of the personal dosimetry with almost 2 mSv a year per person in the areas occupied by staff (conservative estimation. In rooms with 15 MV accelerators, the neutron exposure to the personnel was significantly lower than in the rooms having 18 MV accelerators installed. It was even more pronounced in the room reconstructed after the 60Co decommissioning. This study confirms that shielding from the neutron radiation should be considered when building vaults for high energy linear accelerators, especially when the space constraints exist.

  4. The Gent University 15 MeV high-current linear electron accelerator facility

    Science.gov (United States)

    Mondelaers, W.; Van Laere, K.; Goedefroot, A.; Van den Bossche, K.

    1996-01-01

    The Gent University 15 MeV 20kW linear electron accelerator facility was initially designed for fundamental nuclear physics research. During the last years a large effort has been devoted to the expansion of the range of machine applications in view of a new extensive experimental programme in the fields of atomic and solid-state physics, biomaterials research, polymer chemistry, space research, food technology, high-dose dosimetry and radiation therapy. The accelerator facility in its present configuration, the peripheral equipment and the experimental programme are described with emphasis on the original features.

  5. Acceleration to high velocities and heating by impact using Nike KrF lasera)

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Oh, J.; Velikovich, A. L.; Zalesak, S. T.; Bates, J. W.; Obenschain, S. P.; Schmitt, A. J.; Murakami, M.; Azechi, H.

    2010-05-01

    The Nike krypton fluoride laser [S. P. Obenschain, S. E. Bodner, D. Colombant, et al., Phys. Plasmas 3, 2098 (1996)] is used to accelerate planar plastic foils to velocities that for the first time reach 1000 km/s. Collision of the highly accelerated deuterated polystyrene foil with a stationary target produces ˜Gbar shock pressures and results in heating of the foil to thermonuclear temperatures. The impact conditions are diagnosed using DD fusion neutron yield, with ˜106 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2-3 keV.

  6. DESIGN DEVELOPMENT OF A PASSIVE NEUTRON DOSEMETER FOR THE USE AT HIGH-ENERGY ACCELERATORS.

    Science.gov (United States)

    Sokolov, Alexey; Fehrenbacher, Georg; Radon, Torsten

    2016-09-01

    For the radiation survey at intermediate and high-energy accelerators, there is a need for a neutron dosemeter which provides reliable readings of the neutron dose in a wide energy range for continuous and pulsed radiation. The objective of this development is to find a dosemeter that fulfils the necessary requirements and can be reliably used to prove that the radiation levels in areas around accelerators are in accordance with the limits of the respective radiation protection legislation. A simple layout with small dimensions and light weight as well as the usage of common materials to lower the production costs is to be achieved.

  7. Design studies of a high-current radiofrequency quadrupole for accelerator-driven systems programme

    Indian Academy of Sciences (India)

    S V L S Rao; P Singh

    2010-02-01

    A 3 MeV, 30 mA radiofrequency quadrupole (RFQ) accelerator has been designed for the low-energy high-intensity proton accelerator (LEHIPA) project at BARC, India. The beam and cavity dynamics studies were performed using the computer codes LIDOS, TOUTATIS, SUPERFISH and CST microwave studio. We have followed the conventional design technique with slight modifications and compared that with the equipartitioned (EP) type of design. The sensitivity of the RFQ to the variation of input beam Twiss–Courant parameters and emittance has also been studied. In this article we discuss both design strategies and the details of the 3D cavity simulation studies.

  8. Physics design of a CW high-power proton Linac for accelerator-driven system

    Indian Academy of Sciences (India)

    Rajni Pande; Shweta Roy; S V L S Rao; P Singh; S Kailas

    2012-02-01

    Accelerator-driven systems (ADS) have evoked lot of interest the world over because of their capability to incinerate the MA (minor actinides) and LLFP (long-lived fission products) radiotoxic waste and their ability to utilize thorium as an alternative nuclear fuel. One of the main subsystems of ADS is a high energy (∼1 GeV) and high current (∼30 mA) CW proton Linac. The accelerator for ADS should have high efficiency and reliability and very low beam losses to allow hands-on maintenance. With these criteria, the beam dynamics simulations for a 1 GeV, 30 mA proton Linac has been done. The Linac consists of normal-conducting radio-frequency quadrupole (RFQ), drift tube linac (DTL) and coupled cavity drift tube Linac (CCDTL) structures that accelerate the beam to about 100 MeV followed by superconducting (SC) elliptical cavities, which accelerate the beam from 100 MeV to 1 GeV. The details of the design are presented in this paper.

  9. TERA high gradient test program of RF cavities for medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Degiovanni, A., E-mail: alberto.degiovanni@cern.ch [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Ecole Polytechnique Federale Lausanne EPFL-1015 Lausanne (Switzerland); Amaldi, U. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Universita Milano Bicocca-Piazza della Scienza 1, 20126 Milan (Italy); Bonomi, R. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Politecnico di Torino-Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garlasche, M. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Garonna, A. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Ecole Polytechnique Federale Lausanne EPFL-1015 Lausanne (Switzerland); Verdu-Andres, S. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Instituto de Fisica Corpuscular IFIC (CSIC-UVEG)-Paterna, 46071 Valencia (Spain); Wegner, R. [CERN- 1211 Geneva (Switzerland)

    2011-11-21

    The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.

  10. TERA high gradient test program of RF cavities for medical linear accelerators

    Science.gov (United States)

    Degiovanni, A.; Amaldi, U.; Bonomi, R.; Garlasché, M.; Garonna, A.; Verdú-Andrés, S.; Wegner, R.

    2011-11-01

    The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.

  11. A conceptual design of the DTL-SDTL for the JAERI high intensity proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Hiroshi; Kabeya, Zenzaburo [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Chishiro, Etsuji; Ouchi, Nobuo; Hasegawa, Kazuo; Mizumoto, Motoharu

    1998-08-01

    A high intensity proton linear accelerator with an energy of 1.5 GeV and an average beam power of 8 MW has been proposed for the Neutron Science Project (NSP) at JAERI. This linac starts with radio-frequency quadrupole (RFQ) linac, which is followed by a drift-tube linac (DTL), separated-type DTL (SDTL), and a superconducting structure. In this report, we focus on the DTL and SDTL part of the accelerator. The DTL accelerates the beam from 2 to 51 MeV, and SDTL accelerates the beam from 51 to 10 MeV. Since the main features of the requirement for the DTL-SDTL are high peak current ({approx}30 mA) and a high-duty factor ({approx}CW), the conceptual design should be determined not only based on the result of a beam-dynamics calculation, but by careful study of the cooling problems. The design processes of the DTL-SDTL and the matching sections (RFQ to DTL, CW-Pulse merge section, and SDTL to SCC) and the result of a heat transfer analysis of DTL are described. (author)

  12. Research on cubic polynomial acceleration and deceleration control model for high speed NC machining

    Institute of Scientific and Technical Information of China (English)

    Hong-bin LENG; Yi-jie WU; Xiao-hong PAN

    2008-01-01

    To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (aec/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.

  13. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  14. Method and Apparatus for measuring Gravitational Acceleration Utilizing a high Temperature Superconducting Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R.

    1998-11-06

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operative temperature at or below 77K, whereby cooling maybe accomplished with liquid nitrogen.

  15. Progress on High Power Tests of Dielectric-Loaded Accelerating Structures

    CERN Document Server

    Jing, Chunguang; Gold, Steven H; Kinkead, Allen; Konecny, Richard; Power, John G

    2005-01-01

    This paper presents a progress report on a series of high-power rf experiments that were carried out to evaluate the potential of the Dielectric-Loaded Accelerating (DLA) structure for high-gradient accelerator operation. Since the last PAC meeting in 2003, we have tested DLA structures loaded with two different ceramic materials: Alumina (Al2O3) and MCT (MgxCa1-xTiO3). The alumina-based DLA experiments have concentrated on the effects of multipactor in the structures under high-power operation, and its suppression using TiN coatings, while the MCT experiments have investigated the dielectric joint breakdown observed in the structures due to local field enhancement. In both cases, physical models have been set up, and the potential engineering solutions are being investigated.

  16. Accelerator mass spectrometer with ion selection in high-voltage terminal

    Science.gov (United States)

    Rastigeev, S. A.; Goncharov, A. D.; Klyuev, V. F.; Konstantinov, E. S.; Kutnyakova, L. A.; Parkhomchuk, V. V.; Petrozhitskii, A. V.; Frolov, A. R.

    2016-12-01

    The folded electrostatic tandem accelerator with ion selection in a high-voltage terminal is the basis of accelerator mass spectrometry (AMS) at the BINP. Additional features of the BINP AMS are the target based on magnesium vapors as a stripper without vacuum deterioration and a time-of-flight telescope with thin films for reliable ion identification. The acceleration complex demonstrates reliable operation in a mode of 1 MV with 50 Hz counting rate of 14C+3 radiocarbon for modern samples (14C/12C 1.2 × 10-12). The current state of the AMS has been considered and the experimental results of the radiocarbon concentration measurements in test samples have been presented.

  17. Monte Carlo simulations of ultra high vacuum and synchrotron radiation for particle accelerators

    CERN Document Server

    AUTHOR|(CDS)2082330; Leonid, Rivkin

    With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overvi...

  18. Design and realization of a high productivity cluster-based network application reconfigurable accelerator board

    Institute of Scientific and Technical Information of China (English)

    Zeng Yu; Li Jun; Sun Ninghui; Wang Jie; Liu Zhaohui

    2008-01-01

    Improving processor frequency to strengthen massive data processing capability will lead to incremental server marginal costs and bring about a series of problems such as power consumption, management complexity, etc. Based on the field programmable gate array (FPGA), TCP offload engine (TOE), zero-copy and other key technologies, this paper describes the design and realization of a reconfigurable accelerator board. In this board, TCP/IP protocol will be moved to high-speed reconfigurable accelerator board. The packets will be labeled according to the protocol and submitted to the upper data processing software after IP-quintuple filtering in hardware. Reconfigurable accelerator board obtains higher performance speed-up compared with ordinary NIC card.

  19. Research and Development of Wires and Cables for High-Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-04-01

    The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-proton (pp) collider. This paper describes the multi-decade R&D investment in the Nb3Sn superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting Nb3Sn wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the Nb3Sn technology to its limits for future pp colliders.

  20. Research and Development of Nb3Sn Wires and Cables for High-Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, Emanuela [Fermilab; Zlobin, Alexander V. [Fermilab

    2016-02-18

    The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-proton (pp) collider. This paper describes the multi-decade R&D investment in the Nb3Sn superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting Nb3Sn wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the Nb3Sn technology to its limits for future pp colliders.

  1. Diagnostic and Detectors for Charging and Damage of Dielectrics in High-gradient Accelerators

    CERN Document Server

    Shchelkunov, S V; Hirshfield, J L

    2015-01-01

    The research is aimed to address issues of analysis and mitigation of high repetition rate effects in Dielectric Wakefield Accelerators, and more specifically, to study charging rate and charge distribution in a thin walled dielectric wakefield accelerator from a passing charge bunch and the physics of conductivity and discharge phenomena in dielectric materials useful for such accelerator applications. The issue is the role played by the beam halo and intense wakefields in charging of the dielectric, possibly leading to undesired deflection of charge bunches and degradation of the dielectric material. The detector that was developed is based on measurement of the complex electrical conductivity, which would appear as a transient phenomenon accompanying the passage of one or more charge bunches, by observing the change of complex admittance of a resonant microwave cavity that is fitted around the dielectric tubing. The detector also can detect permanent damage to the material. During initial stage of developm...

  2. High quality electron bunch generation with CO2-laser plasma accelerator

    CERN Document Server

    Zhang, L G; Xu, J C; Ji, L L; Zhang, X M; Wang, W P; Zhao, X Y; Yi, L Q; Yu, Y H; Shi, Y; Xu, T J; Xu, Z Z

    2014-01-01

    CO2 laser-driven electron acceleration is demonstrated with particle-in-cell simulation in low-density plasma. An intense CO2 laser pulse with long wavelength excites wakefield. The bubble behind it has a broad space to sustain a large amount of electrons before reaching its charge saturation limit. A transversely propagating inject pulse is used to induce and control the ambient electron injection. The accelerated electron bunch with total charge up to 10 nC and the average charge per energy interval of more than 0.6 nC/MeV are obtained. Plasma-based electron acceleration driven by intense CO2 laser provides a new potential way to generate high-charge electron bunch with low energy spread, which has broad applications, especially for X-ray generation by table-top FEL and bremsstrahlung.

  3. High Accuracy Speed-fed Grating Angular Acceleration Measurement System Based on FPGA

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2012-09-01

    Full Text Available Shaft angular acceleration is one of the most important parameter of rotary machines, the error of angular acceleration increased when the shaft speed up. For this problem, a new high accuracy angular acceleration measurement system is presented, the principle of measurement is self-regulating the period of speed sampling signal according to the proportion of the shaft speed up. This measurement system combined FPGA and SCM, the speed of shaft is received by the timer of SCM responding the interrupts of FPGA, and then set the parameter of frequency divider in FPGA, so as to make the period of speed sampling consistent with the proportion of the speed up. This measurement system could overcome the error when system speed up according to the experiment.

  4. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.

    Science.gov (United States)

    Shakoor, Nadia; Lee, Scott; Mockler, Todd C

    2017-08-01

    Effective implementation of technology that facilitates accurate and high-throughput screening of thousands of field-grown lines is critical for accelerating crop improvement and breeding strategies for higher yield and disease tolerance. Progress in the development of field-based high throughput phenotyping methods has advanced considerably in the last 10 years through technological progress in sensor development and high-performance computing. Here, we review recent advances in high throughput field phenotyping technologies designed to inform the genetics of quantitative traits, including crop yield and disease tolerance. Successful application of phenotyping platforms to advance crop breeding and identify and monitor disease requires: (1) high resolution of imaging and environmental sensors; (2) quality data products that facilitate computer vision, machine learning and GIS; (3) capacity infrastructure for data management and analysis; and (4) automated environmental data collection. Accelerated breeding for agriculturally relevant crop traits is key to the development of improved varieties and is critically dependent on high-resolution, high-throughput field-scale phenotyping technologies that can efficiently discriminate better performing lines within a larger population and across multiple environments. Copyright © 2017. Published by Elsevier Ltd.

  5. High efficiency RF amplifier development over wide dynamic range for accelerator application

    Science.gov (United States)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  6. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  7. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  8. Why is the Sun No Longer Accelerating Particles to High Energy in Solar Cycle 24?

    Science.gov (United States)

    Mewaldt, R. A.; Cohen, C. M.; Li, G.; Mason, G. M.; Smith, C. W.; von Rosenvinge, T. T.; Vourlidas, A.

    2015-12-01

    Why is the Sun No Longer Accelerating Particles to High Energy in Solar Cycle 24?Measurements by ACE, STEREO, and GOES show that the number of large Solar Energetic Particle (SEP) events in solar cycle 24 is reduced by a factor of ~2 compared to this point of solar cycle 23, while the fluences of >10 MeV/nuc ions from H to Fe are reduced by factors ranging from ~4 to ~10. Compared to solar Cycle 22 and 23, the fluence of >100 MeV protons is reduced by factors of ~7 to ~10 in the current cycle. A common element of these observations is that the observed Cycle-24 energy spectra have "breaks" that suddenly steepen 2 to 4 times lower in energy/nucleon than in Cycle 23. We investigate the origin of these cycle-to-cycle spectral differences by evaluating possible factors that control the maximum energy of CME-shock-accelerated particles in the two cycles, including seed-particle densities of suprathermal ions, the interplanetary magnetic field strength and turbulence level, and properties of the associated CMEs. The effect of these conditions will be evaluated in the context of existing SEP acceleration models by comparing SEP data with simulations and with analytic evaluations of the maximum kinetic energy to which CME shocks can accelerate solar energetic ions from H to Fe. Understanding the properties that control the maximum kinetic energy of CME-shock accelerated particles has important implications for predicting future solar activity.

  9. Longitudinal Ion Acceleration from High-Intensity Laser Interactions with Underdense Plasma

    CERN Document Server

    Willingale, L; Nilson, P M; Clarke, R J; Dangor, A E; Kaluza, M C; Karsch, S; Lancaster, K L; Mori, W B; Schreiber, J; Thomas, A G R; Wei, M S; Krushelnick, K; Najmudin, Z

    2007-01-01

    Longitudinal ion acceleration from high-intensity (I ~ 10^20 Wcm^-2) laser interactions with helium gas jet targets (n_e ~ 0.04 n_c) have been observed. The ion beam has a maximum energy for He^2+ of approximately 40 MeV and was directional along the laser propagation path, with the highest energy ions being collimated to a cone of less than 10 degrees. 2D particle-in-cell simulations have been used to investigate the acceleration mechanism. The time varying magnetic field associated with the fast electron current provides a contribution to the accelerating electric field as well as providing a collimating field for the ions. A strong correlation between the plasma density and the ion acceleration was found. A short plasma scale-length at the vacuum interface was observed to be beneficial for the maximum ion energies, but the collimation appears to be improved with longer scale-lengths due to enhanced magnetic fields in the ramp acceleration region.

  10. Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers

    Science.gov (United States)

    Wittor, D.; Vazza, F.; Brüggen, M.

    2017-02-01

    Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magnetohydrodynamical simulation of a galaxy cluster using the mesh refinement code ENZO. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio-emitting electrons found in relics have been typically shocked many times before z = 0. On the other hand, the hadronic γ-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic ray protons. This might reduce the tension with the low upper limits on γ-ray emission from clusters set by the Fermi satellite.

  11. Flare vs. Shock Acceleration of High-energy Protons in Solar Energetic Particle Events

    Science.gov (United States)

    Cliver, E. W.

    2016-12-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 105) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ˜2 × 103, similar to those of comparably sized well-connected (W20-W90) SEP events.

  12. Front versus rear side light-ion acceleration from high-intensity laser-solid interactions

    Science.gov (United States)

    Willingale, L.; Petrov, G. M.; Maksimchuk, A.; Davis, J.; Freeman, R. R.; Matsuoka, T.; Murphy, C. D.; Ovchinnikov, V. M.; Van Woerkom, L.; Krushelnick, K.

    2011-01-01

    The source of ions accelerated from high-intensity laser interactions with thin foil targets is investigated by coating a deuterated plastic layer either on the front, rear or both surfaces of thin foil targets. The originating surface of the deuterons is therefore known and this method is used to assess the relative source contributions and maximum energies using a Thomson parabola spectrometer to obtain high-resolution light-ion spectra. Under these experimental conditions, laser intensity of (0.5-2.5) × 1019 W cm-2, pulse duration of 400 fs and target thickness of 6-13 µm, deuterons originating from the front surface can gain comparable maximum energies as those from the rear surface and spectra from either side can deviate from Maxwellian. Two-dimensional particle-in-cell simulations model the acceleration and show that any presence of a proton rich contamination layer over the surface is detrimental to the deuteron acceleration from the rear surface, whereas it is likely to be less influential on the front side acceleration mechanism.

  13. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.

    Science.gov (United States)

    Motaal, Abdallah G; Coolen, Bram F; Abdurrachim, Desiree; Castro, Rui M; Prompers, Jeanine J; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2013-04-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k-t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self-gated FLASH sequence with a total acquisition time of 10 min was used to produce single-slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k-t space undersampled Cine movies were produced from 2.5- and 1.5-min data acquisitions, respectively. The accelerated 90-frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end-systolic and end-diastolic lumen surface areas and early-to-late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical. Copyright © 2012 John Wiley & Sons, Ltd.

  14. A facility for studying irradiation accelerated corrosion in high temperature water

    Science.gov (United States)

    Raiman, Stephen S.; Flick, Alexander; Toader, Ovidiu; Wang, Peng; Samad, Nassim A.; Jiao, Zhijie; Was, Gary S.

    2014-08-01

    A facility for the study of irradiation accelerated corrosion in high temperature water using in situ proton irradiation has been developed and validated. A specially designed beamline and flowing-water corrosion cell added to the 1.7 MV tandem accelerator at the Michigan Ion Beam Laboratory provide the capability to study the simultaneous effects of displacement damage and radiolysis on corrosion. A thin sample serves as both a “window” into the corrosion cell through which the proton beam passes completely, and the sample for assessing irradiation accelerated corrosion. The facility was tested by irradiating stainless steel samples at beam current densities between 0.5 and 10 μA/cm2 in 130 °C and 320 °C deaerated water, and 320 °C water with 3 wppm H2. Increases in the conductivity and dissolved oxygen content of the water varied with the proton beam current, suggesting that proton irradiation was accelerating the corrosion of the sample. Conductivity increases were greatest at 320 °C, while DO increases were highest at 130 °C. The addition of 3 wppm H2 suppressed DO below detectable levels. The facility will enable future studies into the effect of irradiation on corrosion in high temperature water with in situ proton irradiation.

  15. Large area polycrystalline diamond films as high current photocathodes for linear induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.; Springer, R.W.

    1997-08-01

    Investigations are underway at Los Alamos to develop a new generation of high current, low source temperature photo cathodes able to operate in vacuum environments with pressures above 10e-6 torr without poisoning or degradation of emission properties. Polycrystalline diamond films are emerging as the ideal material for these photocathodes. Robustness, high quantum efficiency and high thermal conductivity are fundamental necessary attributes that are found in diamond. The high electron/hole mobility in the boron doped diamond lattice and the ability to create a negative electron affinity surface through downward band bending allow for high current density emission with quantum efficiencies of 0.5% when illuminated by a ArF laser. We report the results to date toward the development of a four kiloampere photocathode with a source temperature below 5eV for the DARHT linear induction Accelerator

  16. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  17. A Monolithic High-G SOI-MEMS Accelerometer for Measuring Projectile Launch and Flight Accelerations

    Directory of Open Access Journals (Sweden)

    Bradford S. Davis

    2006-01-01

    Full Text Available Analog Devices (ADI has designed and fabricated a monolithic high-g acceleration sensor (ADXSTC3-HG fabricated with the ADI silicon-on-insulator micro-electro-mechanical system (SOI-MEMS process. The SOI-MEMS sensor structure has a thickness of 10 um, allowing for the design of inertial sensors with excellent cross-axis rejection. The high-g accelerometer discussed in this paper was designed to measure in-plane acceleration to 10,000 g while subjected to 100,000 g in the orthogonal axes. These requirements were intended to meet Army munition applications. The monolithic sensor was packaged in an 8-pin leadless chip carrier (LCC-8 and was successfully demonstrated by the US Army Research Laboratory (ARL as part of an inertial measurement unit during an instrumented flight experiment of artillery projectiles launched at 15,000 g.

  18. Laser acceleration of electrons to giga-electron-volt energies using highly charged ions.

    Science.gov (United States)

    Hu, S X; Starace, Anthony F

    2006-06-01

    The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components-are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highly charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.

  19. New methods for high current fast ion beam production by laser-driven acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B. [Institute of Physics, ASCR, v.v.i., PALS Centre, Prague (Czech Republic); Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F. [INFN-Laboratori Nazionali del Sud, Catania, Messina University (Italy); Picciotto, A.; Serra, E. [Fondazione Bruno Kessler - IRST, Trento (Italy); Giuffrida, L. [CELIA, Centre Lasers Intenses et Applications (France); Mangione, A. [ITA - Istituto Tecnologie Avanzate, Trapani (Italy); Rosinski, M.; Parys, P. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  20. New methods for high current fast ion beam production by laser-driven acceleration.

    Science.gov (United States)

    Margarone, D; Krasa, J; Prokupek, J; Velyhan, A; Torrisi, L; Picciotto, A; Giuffrida, L; Gammino, S; Cirrone, P; Cutroneo, M; Romano, F; Serra, E; Mangione, A; Rosinski, M; Parys, P; Ryc, L; Limpouch, J; Laska, L; Jungwirth, K; Ullschmied, J; Mocek, T; Korn, G; Rus, B

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  1. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  2. Power supply design for the filament of the high-voltage electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lige; Yang, Lei; Yang, Jun, E-mail: jyang@mail.hust.edu.cn; Huang, Jiang; Liu, Kaifeng; Zuo, Chen

    2015-12-21

    The filament is a key component for the electron emission in the high-voltage electron accelerator. In order to guarantee the stability of the beam intensity and ensure the proper functioning for the power supply in the airtight steel barrel, an efficient filament power supply under accurate control is required. The paper, based on the dual-switch forward converter and synchronous rectification technology, puts forward a prototype of power supply design for the filament of the high-voltage accelerator. The simulation is conducted with MATLAB-Simulink on the main topology and the control method. Loss analysis and thermal analysis are evaluated using the FEA method. Tests show that in this prototype, the accuracy of current control is higher than 97.5%, and the efficiency of the power supply reaches 87.8% when the output current is 40 A.

  3. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    Science.gov (United States)

    Beck, A.; Frederiksen, J. T.; Dérouillat, J.

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  4. Study on radiation damage to high energy accelerator components by irradiation in a nuclear reactor

    CERN Document Server

    Schönbacher, Helmut; Casta, J; Van de Voorde, M H

    1975-01-01

    The structural and other components used in high energy accelerators are continuously exposed to a wide spectrum of high energy particles and electromagnetic radiation. The resulting radiation damage may severely influence the functional capability of accelerator facilities. In order to arrive at an estimate of the service life of various materials in the radiation field, simulating experiments have to be carried out in a nuclear reactor. A large number of organic and inorganic materials, electronic components, metals, etc., intended specifically for use in 400 GeV proton synchrotron of CERN near Geneva, were irradiated in the ASTRA reactor in Seibersdorf near Vienna. The paper reports on the irradiation facilities available in this reactor for this purpose, on the dosimetry methods used, on the most important materials irradiated and on the results obtained in these experiments. (14 refs).

  5. Modelling of radiation losses for ion acceleration at ultra-high laser intensities

    Directory of Open Access Journals (Sweden)

    Capdessus Remi

    2013-11-01

    Full Text Available Radiation losses of charged particles can become important in ultra high intensity laser plasma interaction. This process is described by the radiation back reaction term in the electron equation of motion. This term is implemented in the relativistic particle-in-cell code by using a renormalized Lorentz-Abraham-Dirac model. In the hole boring regime case of laser ion acceleration it is shown that radiation losses results in a decrease of the piston velocity.

  6. Accelerated Thermal Ageing of Polypropylene Fibres under High Oxygen pressure In Aqueous Media : Methodological Aspects

    OpenAIRE

    Richaud, E.; Farcas, F.; FAYOLLE, B.; Audouin, L.; VERDU, J.

    2005-01-01

    Polypropylene materials are currently used in civil engineering, for example for soils reinforcement or concrete protection in tunnels. The expected lifetime (100 years) makes accelerated tests necessary in order to evaluate durability. These one are traditionally performed in ventilated ovens at high temperature (110°C-130°C). This approach is nonetheless very questionable for many reasons (stabilizers efficiency and degradation mechanism changes with temperature) so a new test is now under ...

  7. Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli

    Science.gov (United States)

    Maas, E. F.; Huebner, W. P.; Seidman, S. H.; Leigh, R. J.

    1989-01-01

    The horizontal vestibulo-ocular reflex (VOR) during transient, high-acceleration (1900-7100 deg/sec-squared) head rotations was studied in four human subjects. Such stimuli perturbed the angle of gaze and caused illusory movement of a viewed target (oscillopsia). The disturbance of gaze could be attributed to the latency of the VOR (which ranged from 6-15 ms) and inadequate compensatory eye rotations (median VOR gain ranged from 0.61-0.83).

  8. Solving radiative transfer problems in highly heterogeneous media via domain decomposition and convergence acceleration techniques.

    Science.gov (United States)

    Previti, Alberto; Furfaro, Roberto; Picca, Paolo; Ganapol, Barry D; Mostacci, Domiziano

    2011-08-01

    This paper deals with finding accurate solutions for photon transport problems in highly heterogeneous media fastly, efficiently and with modest memory resources. We propose an extended version of the analytical discrete ordinates method, coupled with domain decomposition-derived algorithms and non-linear convergence acceleration techniques. Numerical performances are evaluated using a challenging case study available in the literature. A study of accuracy versus computational time and memory requirements is reported for transport calculations that are relevant for remote sensing applications.

  9. Neutron dose measurements with the GSI ball at high-energy accelerators.

    Science.gov (United States)

    Fehrenbacher, G; Gutermuth, F; Kozlova, E; Radon, T; Schuetz, R

    2007-01-01

    A moderator-type neutron monitor containing pairs of TLD 600/700 elements (Harshaw) modified with the addition of a lead layer (GSI ball) for the measurement of the ambient dose equivalent from neutrons at medium- and high-energy accelerators, is introduced in this work. Measurements were performed with the Gesellschaft für Schwerionenforschung (GSI) ball as well as with conventional polyethylene (PE) spheres at the high-energy accelerator SPS at European Organization for Nuclear Research [CERN (CERF)] and in Cave A of the heavy-ion synchrotron SIS at GSI. The measured dose values are compared with dose values derived from calculated neutron spectra folded with dose conversion coefficients. The estimated reading of the spheres calculated by means of the response functions and the neutron spectra is also included in the comparison. The analysis of the measurements shows that the PE/Pb sphere gives an improved estimate on the ambient dose equivalent of the neutron radiation transmitted through shielding of medium- and high-energy accelerators.

  10. Acceleration to High Velocities and Heating by Impact Using Nike KrF laser

    Science.gov (United States)

    Karasik, Max

    2009-11-01

    Shock ignition, impact ignition, as well as higher intensity conventional hot spot ignition designs reduce driver energy requirement by pushing the envelope in laser intensity and target implosion velocities. This talk will describe experiments that for the first time reach target velocities in the range of 700 -- 1000 km/s. The highly accelerated planar foils of deuterated polystyrene, some with bromine doping, are made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Target acceleration and collision are diagnosed using large field of view monochromatic x-ray imaging with backlighting as well as bremsstrahlung self-emission. The impact conditions are diagnosed using DD fusion neutron yield, with over 10^6 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2 -- 3 keV. The experiments are performed on the Nike facility, reconfigured specifically for high intensity operation. The short wavelength and high illumination uniformity of Nike KrF laser uniquely enable access to this new parameter regime. Intensities of (0.4 -- 1.2) x 10^15 W/cm^2 and pulse durations of 0.4 -- 2 ns were utilized. Modeling of the target acceleration, collision, and neutron production is performed using the FAST3D radiation hydrodynamics code with a non-LTE radiation model. Work is supported by US Department of Energy.

  11. A Stable High-Energy Electron Source from Laser Wakefield Acceleration

    Science.gov (United States)

    Zhang, Ping; Zhao, Baozhen; Liu, Cheng; Yan, Wenchao; Golovin, Grigory; Banerjee, Sudeep; Chen, Shouyuan; Haden, Daniel; Fruhling, Colton; Umstadter, Donald

    2016-10-01

    The stability of the electron source from laser wake-field acceleration (LWFA) is essential for applications, such as novel x-ray sources and fundamental experiments in high field physics. To obtain such a stable source, we used an optimal laser pulse and a novel gas nozzle. The high-power laser pulse on target was focused to a diffraction-limited spot by the use of adaptive wavefront correction and the pulse duration was transform limited by the use of spectral feedback control. An innovative design for the nozzle led to a stable, flat-top profile with diameters of 4 mm and 8 mm with a high Mach-number ( 6). In experiments to generate high-energy electron beams by LWFA, we were able to obtain reproducible results with beam energy of 800 MeV and charge >10 pC. Higher charge but broader energy spectrum resulted when the plasma density was increased. These developments have resulted in a laser-driven wakefield accelerator that is stable and robust. With this device, we show that narrowband high-energy x-rays beams can be generated by the inverse-Compton scattering process. This accelerator has also been used in recent experiments to study nonlinear effects in the interaction of high-energy electron beams with ultraintense laser pulses. This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  12. Development of a large proton accelerator for innovative researches; development of high power RF source

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K. H.; Lee, K. O.; Shin, H. M.; Chung, I. Y. [KAPRA, Seoul (Korea); Kim, D. I. [Inha University, Incheon (Korea); Noh, S. J. [Dankook University, Seoul (Korea); Ko, S. K. [Ulsan University, Ulsan (Korea); Lee, H. J. [Cheju National University, Cheju (Korea); Choi, W. H. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-05-01

    This study was performed with objective to design and develop the KOMAC proton accelerator RF system. For the development of the high power RF source for CCDTL(coupled cavity drift tube linac), the medium power RF system using the UHF klystron for broadcasting was integrated and with this RF system we obtained the basic design data, operation experience and code-validity test data. Based on the medium power RF system experimental data, the high power RF system for CCDTL was designed and its performed was analyzed. 16 refs., 64 figs., 27 tabs. (Author)

  13. Advanced high brightness ion rf accelerator applications in the nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.

    1991-01-01

    The capability of modern rf linear accelerators to provide intense high quality beams of protons, deuterons, or heavier ions is opening new possibilities for transmuting existing nuclear wastes, for generating electricity from readily available fuels with minimal residual wastes, for building intense neutron sources for materials research, for inertial confinement fusion using heavy ions, and for other new applications. These are briefly described, couched in a perspective of the advances in the understanding of the high brightness beams that has enabled these new programs. 32 refs., 2 figs.

  14. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, T; Madsen, S; Sudowe, R [University of Nevada, Las Vegas, Las Vegas, NV (United States); Meigooni, A Soleimani [University of Nevada, Las Vegas, Las Vegas, NV (United States); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States)

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  15. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming

    Science.gov (United States)

    Su, Jingzhi; Zhang, Renhe; Wang, Huijun

    2017-01-01

    Closely following the hiatus warming period, two astonishing high temperature records reached in 2014 and 2015 consecutively. To investigate the occurrence features of record-breaking high temperatures in recent years, a new index focusing the frequency of the top 10 high annual mean temperatures was defined in this study. Analyses based on this index shown that record-breaking high temperatures occurred over most regions of the globe with a salient increasing trend after 1960 s, even during the so-called hiatus period. Overlapped on the ongoing background warming trend and the interdecadal climate variabilities, the El Niño events, particularly the strong ones, can make a significant contribution to the occurrence of high temperatures on interannual timescale. High temperatures associated with El Niño events mainly occurred during the winter annual period. As the Pacific Decadal Oscillation (PDO) struggled back to its positive phase since 2014, the global warming returned back to a new accelerated warming period, marked by the record-breaking high temperatures in 2014. Intensified by the super strong El Niño, successive high records occurred in 2015 and 2016. Higher frequencies of record high temperatures would occur in the near future because the PDO tends to maintain a continuously positive phase. PMID:28256561

  16. Highly accelerated cardiac cine parallel MRI using low-rank matrix completion and partial separability model

    Science.gov (United States)

    Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie

    2016-05-01

    This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.

  17. Thermal performance of a flat polymer heat pipe heat spreader under high acceleration

    Science.gov (United States)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Lee, Y. C.; Bright, Victor M.; Sharar, Darin J.; Jankowski, Nicholas R.; Morgan, Brian C.

    2012-04-01

    This paper presents the fabrication and application of a micro-scale hybrid wicking structure in a flat polymer-based heat pipe heat spreader, which improves the heat transfer performance under high adverse acceleration. The hybrid wicking structure which enhances evaporation and condensation heat transfer under adverse acceleration consists of 100 µm high, 200 µm wide square electroplated copper micro-pillars with 31 µm wide grooves for liquid flow and a woven copper mesh with 51 µm diameter wires and 76 µm spacing. The interior vapor chamber of the heat pipe heat spreader was 30×30×1.0 mm3. The casing of the heat spreader is a 100 µm thick liquid crystal polymer which contains a two-dimensional array of copper-filled vias to reduce the overall thermal resistance. The device performance was assessed under 0-10 g acceleration with 20, 30 and 40 W power input on an evaporator area of 8×8 mm2. The effective thermal conductivity of the device was determined to range from 1653 W (m K)-1 at 0 g to 541 W (m K)-1 at 10 g using finite element analysis in conjunction with a copper reference sample. In all cases, the effective thermal conductivity remained higher than that of the copper reference sample. This work illustrates the possibility of fabricating flexible, polymer-based heat pipe heat spreaders compatible with standardized printed circuit board technologies that are capable of efficiently extracting heat at relatively high dynamic acceleration levels.

  18. DSP accelerator for the wavelet compression/decompression of high- resolution images

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, M.A.; Gleason, S.S.; Jatko, W.B.

    1993-07-23

    A Texas Instruments (TI) TMS320C30-based S-Bus digital signal processing (DSP) module was used to accelerate a wavelet-based compression and decompression algorithm applied to high-resolution fingerprint images. The law enforcement community, together with the National Institute of Standards and Technology (NISI), is adopting a standard based on the wavelet transform for the compression, transmission, and decompression of scanned fingerprint images. A two-dimensional wavelet transform of the input image is computed. Then spatial/frequency regions are automatically analyzed for information content and quantized for subsequent Huffman encoding. Compression ratios range from 10:1 to 30:1 while maintaining the level of image quality necessary for identification. Several prototype systems were developed using SUN SPARCstation 2 with a 1280 {times} 1024 8-bit display, 64-Mbyte random access memory (RAM), Tiber distributed data interface (FDDI), and Spirit-30 S-Bus DSP-accelerators from Sonitech. The final implementation of the DSP-accelerated algorithm performed the compression or decompression operation in 3.5 s per print. Further increases in system throughput were obtained by adding several DSP accelerators operating in parallel.

  19. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  20. Highly-Accelerated Real-Time Cardiac Cine MRI Using k-t SPARSE-SENSE

    Science.gov (United States)

    Feng, Li; Srichai, Monvadi B.; Lim, Ruth P.; Harrison, Alexis; King, Wilson; Adluru, Ganesh; Dibella, Edward VR.; Sodickson, Daniel K.; Otazo, Ricardo; Kim, Daniel

    2012-01-01

    For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (~2.5mm × 2.5mm) and temporal resolution (~40ms), to produce high-quality real-time cine MR images that could be applied clinically for wall motion assessment and measurement of left ventricular (LV) function. In this work, we present an 8-fold accelerated real-time cardiac cine MRI pulse sequence using a combination of compressed sensing and parallel imaging (k-t SPARSE-SENSE). Compared with reference, breath-hold cine MRI, our 8-fold accelerated real-time cine MRI produced significantly worse qualitative grades (1–5 scale), but its image quality and temporal fidelity scores were above 3.0 (adequate) and artifacts and noise scores were below 3.0 (moderate), suggesting that acceptable diagnostic image quality can be achieved. Additionally, both 8-fold accelerated real-time cine and breath-hold cine MRI yielded comparable LV function measurements, with coefficient of variation cine MRI with k-t SPARSE-SENSE is a promising modality for rapid imaging of myocardial function. PMID:22887290

  1. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE.

    Science.gov (United States)

    Feng, Li; Srichai, Monvadi B; Lim, Ruth P; Harrison, Alexis; King, Wilson; Adluru, Ganesh; Dibella, Edward V R; Sodickson, Daniel K; Otazo, Ricardo; Kim, Daniel

    2013-07-01

    For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (∼2.5 × 2.5 mm(2)) and temporal resolution (∼40 ms), to produce high-quality real-time cine MR images that could be applied clinically for wall motion assessment and measurement of left ventricular function. In this work, we present an eightfold accelerated real-time cardiac cine MRI pulse sequence using a combination of compressed sensing and parallel imaging (k-t SPARSE-SENSE). Compared with reference, breath-hold cine MRI, our eightfold accelerated real-time cine MRI produced significantly worse qualitative grades (1-5 scale), but its image quality and temporal fidelity scores were above 3.0 (adequate) and artifacts and noise scores were below 3.0 (moderate), suggesting that acceptable diagnostic image quality can be achieved. Additionally, both eightfold accelerated real-time cine and breath-hold cine MRI yielded comparable left ventricular function measurements, with coefficient of variation cine MRI with k-t SPARSE-SENSE is a promising modality for rapid imaging of myocardial function. Copyright © 2012 Wiley Periodicals, Inc.

  2. Control of Switching Characteristics of Silicon-based Semiconductor Diode Using High Energy Linear Accelerator

    Directory of Open Access Journals (Sweden)

    N. Harihara Krishnan

    2013-05-01

    Full Text Available This paper reports control of switching characteristics of silicon-based semiconductor diode using electron beam produced using linear accelerator. Conventionally, p-n junction chips of diode are exposed to gamma rays from a radioactive source or electron beam from a microtron, depending upon the required level of correction. High energy linear accelerators featuring simultaneous exposure of multiple chips are recent advancements in radiation technology. The paper presents the results of the radiation process using a 10 MeV linear accelerator as applied in industrial manufacturing of a high voltage diode (2600 V. The achieved values of reverse recovery time were found to be within the design limits. The suitability of the new process was verified by constructing the trade-off curve between the switching and conduction parameters of the diode for the complete range using large number of experimental samples. The paper summarizes the advantages of the new process over the conventional methods specifically with reference to industrial requirements. The developed process has been successfully implemented in semiconductor manufacturing.

  3. Matched and equipartitioned design method for modern high-intensity radio frequency quadrupole accelerators

    Science.gov (United States)

    Yan, X. Q.; Jameson, R. A.; Lu, Y. R.; Guo, Z. Y.; Fang, J. X.; Chen, J. E.

    2007-07-01

    A new design method—Matched and equipartitioned (EP) design method—has been proposed for radio frequency quadrupole (RFQ) dynamics design, on the considerations of preventing emittance growth and halo formation in high-intensity linacs by means of keeping beam envelope matched and energy balance within the beam, as well as avoiding structure resonances [R.A. Jameson, IEEE Trans. Nucl. Sci. NS-28 (1981) 2408; R.A. Jameson et al., Scaling and optimization in high-intensity linear accelerators, LA-CP-91-272, Los Alamos National Laboratory, July 1991 (introduction of LINACS design code); R.A. Jameson, AIP Conf. Proc. 279 (1992) 969; R.A. Jameson, An approach to fundamental study of beam loss minimization, in: Y.K. Batygin (Ed.), AIP Conference Proceedings, vol. 480, Space Charge Dominated Beam Physics for Heavy Ion Fusion, Saitama, Japan, December 1998]. As there are more than three parameters for a linear accelerator, but only three equations (two envelope equations and an EP equation) are available to design the structural parameters of the RFQ accelerator around the beam, therefore the others have to be determined by additional rules. Following these equations and rules, a new RFQ design code named MATCHDESIGN has been written at Peking University. Three example designs are generated by this code and their simulation results have been compared with a conventional RFQ, which had proved the feasibilities and merits of the new method.

  4. High Power Test on an x-Band Slotted-Iris Accelerator Structure at NLCTA

    CERN Document Server

    Adolphsen, C; Fandos, R; Grudiev, A; Heikkinen, S; Laurent, L; Rodríguez, José Alberto; Taborelli, M; Wuensch, W

    2007-01-01

    The CLIC study group at CERN has built two X-band HDS (Hybrid Damped Structure) accelerating structures for high-power testing in NLCTA at SLAC. These accelerating structures are novel with respect to their rf-design and their fabrication technique. The eleven-cell constant impedance structures, one made out of copper and one out of molybdenum, are assembled from clamped high-speed milled quadrants. They feature the same heavy higher-order-mode damping as nominal CLIC structures achieved by slotted irises and radial damping waveguides for each cell. The X-band accelerators are exactly scaled versions of structures tested at 30 GHz in the CLIC test facility, CTF3. The results of the X-band tests are presented and compared to those at 30 GHz to determine frequency scaling, and are compared to the extensive copper data from the NLC structure development program to determine material dependence and make a basic validation of the HDS design. INTRODUCTION

  5. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    Science.gov (United States)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  6. Estimation of myocardial strain from non-rigid registration and highly accelerated cine CMR.

    Science.gov (United States)

    Langton, Jonathan E N; Lam, Hoi-Ieng; Cowan, Brett R; Occleshaw, Christopher J; Gabriel, Ruvin; Lowe, Boris; Lydiard, Suzanne; Greiser, Andreas; Schmidt, Michaela; Young, Alistair A

    2017-01-01

    Sparsely sampled cardiac cine accelerated acquisitions show promise for faster evaluation of left-ventricular function. Myocardial strain estimation using image feature tracking methods is also becoming widespread. However, it is not known whether highly accelerated acquisitions also provide reliable feature tracking strain estimates. Twenty patients and twenty healthy volunteers were imaged with conventional 14-beat/slice cine acquisition (STD), 4× accelerated 4-beat/slice acquisition with iterative reconstruction (R4), and a 9.2× accelerated 2-beat/slice real-time acquisition with sparse sampling and iterative reconstruction (R9.2). Radial and circumferential strains were calculated using non-rigid registration in the mid-ventricle short-axis slice and inter-observer errors were evaluated. Consistency was assessed using intra-class correlation coefficients (ICC) and bias with Bland-Altman analysis. Peak circumferential strain magnitude was highly consistent between STD and R4 and R9.2 (ICC = 0.876 and 0.884, respectively). Average bias was -1.7 ± 2.0 %, p < 0.001, for R4 and -2.7 ± 1.9 %, p < 0.001 for R9.2. Peak radial strain was also highly consistent (ICC = 0.829 and 0.785, respectively), with average bias -11.2 ± 18.4 %, p < 0.001, for R4 and -15.0 ± 21.2 %, p < 0.001 for R9.2. STD circumferential strain could be predicted by linear regression from R9.2 with an R(2) of 0.82 and a root mean squared error of 1.8 %. Similarly, radial strain could be predicted with an R(2) of 0.67 and a root mean squared error of 21.3 %. Inter-observer errors were not significantly different between methods, except for peak circumferential strain R9.2 (1.1 ± 1.9 %) versus STD (0.3 ± 1.0 %), p = 0.011. Although small systematic differences were observed in strain, these were highly consistent with standard acquisitions, suggesting that accelerated myocardial strain is feasible and reliable in patients who

  7. Generating, Detecting, and Analyzing High Frequency Acoustic Signals in Accelerator-Grade Copper

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Elizabeth L

    2002-12-11

    One of the major limitations on the Next Linear Collider (NLC), a high-gradient particle accelerator in development, is that sparks form within the copper structure, damaging the material. The sparks also generate high frequency acoustic signals that can be used as diagnostics to solve the problem. First, however, the signals' location, attenuation, and propagation must be established, so an effective method for generating and detecting these signals in a simple copper block is necessary. Impact trials with ball bearings and a BB gun as well as tests with a grinder, a laser, and a sparker were conducted to determine how to produce the greatest ratio of high to low frequency acoustic signals. The laser had the largest ratio, but the sparker was chosen because it also had high ratios and was both more practical and more analogous to the actual signals in the accelerator. Further tests were then conducted to determine the best sensor; an International Transducer Corporation 9020 1 N57 was chosen. Subsequent analysis of signals using this setup could establish the location and types of signals and, ultimately, how to solve the problem in the structure.

  8. Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider

    CERN Document Server

    Lebrun, Philippe

    2010-01-01

    High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

  9. Proposal of the Electrically Charged Stellar Black Holes as Accelerators of Ultra High Energy Cosmic Rays

    CERN Document Server

    Soto-Manriquez, Jose

    2016-01-01

    A new mechanism for the acceleration of ultra high energy cosmic rays (UHECR) is presented here. It is based on the tunnel-ionization of neutral atoms approaching electrically charged stellar black holes and on the repulsion of the resulting positively charged atomic part by huge, long-range electric fields. Energies above $10^{18}$ eV for these particles are calculated in a simple way by means of this single-shot, all-electrical model. When this acceleration mechanism is combined with the supernova explosions in the galactic halo of the massive runaway stars expelled from the galactic disk, this model predicts nearly the correct values of the measured top energy of the UHECRs and their flux in a specified EeV energy range. It also explains the near isotropy of the arrivals of these energetic particles to Earth, as has been recently measured by the Auger Observatory.

  10. Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing.

    Science.gov (United States)

    Ge, Hu; Wang, Yu; Li, Chanjuan; Chen, Nanhao; Xie, Yufang; Xu, Mengyan; He, Yingyan; Gu, Xinchun; Wu, Ruibo; Gu, Qiong; Zeng, Liang; Xu, Jun

    2013-10-28

    High-performance computing (HPC) has become a state strategic technology in a number of countries. One hypothesis is that HPC can accelerate biopharmaceutical innovation. Our experimental data demonstrate that HPC can significantly accelerate biopharmaceutical innovation by employing molecular dynamics-based virtual screening (MDVS). Without using HPC, MDVS for a 10K compound library with tens of nanoseconds of MD simulations requires years of computer time. In contrast, a state of the art HPC can be 600 times faster than an eight-core PC server is in screening a typical drug target (which contains about 40K atoms). Also, careful design of the GPU/CPU architecture can reduce the HPC costs. However, the communication cost of parallel computing is a bottleneck that acts as the main limit of further virtual screening improvements for drug innovations.

  11. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    Science.gov (United States)

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples.

  12. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  13. An Ultra-High Gradient Cherenkov Wakefield Acceleration Experiment at SLAC FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B.; Hoover, S.; Hogan, M.J.; Muggli, P.; Thompson, M.; Travish, G.; Yoder, R.; /UCLA /SLAC /Southern California U.

    2005-08-02

    The creation of ultra-high current, ultra-short pulse beams Q=3 nC, {sigma}{sub z} = 20{micro}m at the SLAC FFTB has opened the way for very high gradient plasma wakefield acceleration experiments. We study here the use of these beams in a proposed Cherenkov wakefield experiment, where one may excite electromagnetic wakes in a simple dielectric tube with inner diameter of few 100 microns that exceed the GV/m level. We discuss the scaling of the fields with design geometric design parameters, and choice of dielectric. We also examine measurable aspects of the experiment, such as the total coherent Cerenkov radiation energy one may collect, and the expected aspects of dielectric breakdown at high fields.

  14. Enhanced electron yield from a laser-plasma accelerator using high-Z gas jet targets

    CERN Document Server

    Mirzaie, Mohammad; Li, Song; Sokollik, Thomas; He, Fei; Cheng, Ya; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    An investigation of the multi-hundred MeV electron beam yield (charge) form helium, nitrogen, neon and argon gas jet plasmas in a laser-plasma wakefield acceleration experiment was carried out. The charge measurement has been made via imaging the electron beam intensity profile on a fluorescent screen into a 14-bit charge coupled device (CCD) which was cross-calibrated with nondestructive electronics-based method. Within given laser and plasma parameters, we found that laser-driven low Z- gas jet targets generate high-quality and well-collimated electron beams with reasonable yields at the level of 10-100 pC. On the other hand, filamentary electron beams which were observed from high-Z gas jets at higher densities reached much higher yield. Evidences for cluster formation were clearly observed in high-Z gases, especially in the argon gas jet target where we received the highest yield of ~ 3 nC

  15. Terahertz radiation source using a high-power industrial electron linear accelerator

    Indian Academy of Sciences (India)

    YASHVIR KALKAL; VINIT KUMAR

    2017-04-01

    High-power $(\\sim 100 kW)$ industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc.We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of $\\mu$W can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  16. Terahertz radiation source using a high-power industrial electron linear accelerator

    Science.gov (United States)

    Kalkal, Yashvir; Kumar, Vinit

    2017-04-01

    High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  17. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik

    2005-01-01

    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  18. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Science.gov (United States)

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  19. Is there a temperature? conceptual challenges at high energy, acceleration and complexity

    CERN Document Server

    Sándor Biró, Tamás

    2011-01-01

    Physical bodies can be hot or cold, moving or standing,simple or complex. In all such cases one assumes that their respective temperature is a well defined attribute.  What if, however, the ordinary measurement of temperature by direct body contact is not possible?  One conjectures its value, and yes, its very existence, by reasoning based on basic principles of thermodynamics. Is There a Temperature?  Conceptual Challenges at High Energy, Acceleration and Complexity, by Dr. Tamás Sándor Bíró, begins by asking the questions “Do we understand and can we explain in a unified framework the temperature of distant radiation sources, including event horizons, and that of the quark matter produced in high energy accelerator experiments? Or the astounding fluctuations on financial markets?” The book reviews the concept of temperature from its beginnings through the evolution of classical thermodynamics and atomic statistical physics through contemporary models of high energy particle matter.  Based on the...

  20. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  1. Nonlinear ghost waves accelerate the progression of high-grade brain tumors

    Science.gov (United States)

    Pardo, Rosa; Martínez-González, Alicia; Pérez-García, Víctor M.

    2016-10-01

    We study a reduced continuous model describing the evolution of high grade gliomas in response to hypoxic events through the interplay of different cellular phenotypes. We show that hypoxic events, even when sporadic and/or limited in space, may have a crucial role on the acceleration of high grade gliomas growth. Our modeling approach is based on two cellular phenotypes. One of them is more migratory and a second one is more proliferative. Transitions between both phenotypes are driven by the local oxygen values, assumed in this simple model to be uniform. Surprisingly, even very localized in time hypoxia events leading to transient migratory populations have the potential to accelerate the tumor's invasion speed up to speeds close to those of the migratory phenotype. The high invasion speed persists for times much longer than the lifetime of the hypoxic event. Moreover, the phenomenon is observed both when the migratory cells form a persistent wave of cells located on the invasion front and when they form a evanescent "ghost" wave disappearing after a short time by decay to the more proliferative phenotype. Our findings are obtained through numerical simulations of the model equations both in 1D and higher dimensional scenarios. We also provide a deeper mathematical analysis of some aspects of the problem such as the conditions for the existence of persistent waves of cells with a more migratory phenotype.

  2. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    Science.gov (United States)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  3. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  4. A preliminary study of the feasibility of using superconducting quarter-wave resonators for accelerating high intensity proton beams

    Institute of Scientific and Technical Information of China (English)

    YANG Liu; LU Xiang-Yang; QUAN Sheng-Wen; YAO Zhong-Yuan; LUO Xing; ZHOU Kui

    2012-01-01

    The superconducting (SC) cavities currently used for the acceleration of protons at a low velocity range are based on half-wave resonators.Due to the rising demand on high current,the issue of beam loading and space-charge problems has arisen.Qualities of low cost and high accelerating efficiency are required for SC cavities,which are properly fitted by using SC quarter-wave resonators (QWR).We propose a concept of using QWRs with frequency 162.5 MHz to accelerate high current proton beams.The main factor limiting SC QWRs being applied to high current proton beams is vertical beam steering,which is dominantly caused by the magnetic field on axis.In this paper,we intend to analyze steering and eliminate it to verify the qualification of using QWRs to accelerate high intensity proton beams.

  5. A Four-Cell Periodically HOM-Damped RF Cavity for High Current Accelerators

    CERN Document Server

    Wu, G; Wang, H

    2004-01-01

    A periodically Higher Order Mode (HOM) damped RF cavity is a weakly coupled multi-cell RF cavity with HOM couplers periodically mounted between the cells. It was studied as an alternative RF structure between the single cell cavity and superstructure cavity in high beam current application requiring strong damping of the HOMs. The acceleration mode in this design is the lowest frequency mode (Zero Mode) in the pass band, in contrast to the traditional “π” acceleration mode. The acceleration mode of a four-cell Zero Mode cavity has been studied along with the monopole and dipole HOMs. Some HOMs have been modeled in HFSS with waveguide HOM couplers, which were subsequently verified by MAFIA time domain analysis. To understand the tuning challenge for the weakly coupled cavity, ANSYS and SUPERFISH codes were used to simulate the cavity frequency sensitivity and field flatness change within proper tuning range, which will influence the design of the tuner structure. This paper presen...

  6. Orbit Error Correction on the High Energy Beam Transport Line at the KHIMA Accelerator System

    CERN Document Server

    Park, Chawon; Hahn, Garam; An, Dong Hyun

    2016-01-01

    For the purpose of treatment of various cancer and medical research, the synchrotron based medical machine under the Korea Heavy Ion Medical Accelerator (KHIMA) project have been conducted and is going to treat the patient at the beginning of 2018. The KHIMA synchrotron is designed to accelerate and extract the carbon ion (proton) beam with various energy range, 110 up to 430 MeV/u (60 up to 230 MeV). A lattice design and beam optics studies for the High Energy Beam Transport (HEBT) line at the KHIMA accelerator system have been carried out with WinAgile and the MAD-X codes. Because the magnetic eld errors and the mis-alignments introduce to the deviations from the design parameters, these error sources should be treated explicitly and the sensitivity of the machine's lattice to di erent individual error sources is considered. Various types of errors which are static and dynamic one have been taken into account and have been consequentially corrected with a dedicated correction algorithm by using the MAD-X pr...

  7. Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron GR; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Gonsalves, Anthony J.; Lin, Chen; Cormier-Michel, Estelle; Matlis, Nicholas H.; Nakamura, Kei; Bakeman, Mike; Panasenko, Dmitriy; Plateau, Guillaume R.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2008-09-08

    Compact high-energy linacs are important to applications including monochromatic gamma sources for nuclear material security applications. Recent laser wakefield accelerator experiments at LBNL demonstrated narrow energy spread beams, now with energies of up to 1 GeV in 3 cm using a plasma channel at low density. This demonstrates the production of GeV beams from devices much smaller than conventional linacs, and confirms the anticipated scaling of laser driven accelerators to GeV energies. Stable performance at 0.5 GeV was demonstrated. Experiments and simulations are in progress to control injection of particles into the wake and hence to improve beam quality and stability. Using plasma density gradients to control injection, stable beams at 1 MeV over days of operation, and with an order of magnitude lower absolute momentum spread than previously observed, have been demonstrated. New experiments are post-accelerating the beams from controlled injection experiments to increase beam quality and stability. Thomson scattering from such beams is being developed to provide collimated multi-MeV monoenergetic gamma sources for security applications from compact devices. Such sources can reduce dose to target and increase accuracy for applications including photofission and nuclear resonance fluorescence.

  8. Orbit error correction on the high energy beam transport line at the KHIMA accelerator system

    Science.gov (United States)

    Park, Chawon; Yim, Heejoong; Hahn, Garam; An, Dong Hyun

    2016-09-01

    For the purpose of treatment of various cancers and medical research, a synchrotron based medical machine has been developed under the Korea Heavy Ion Medical Accelerator (KHIMA) project and is scheduled for use to treat patient at the beginning of 2018. The KHIMA synchrotron is designed to accelerate and extract carbon ion (proton) beams with various energies from 110 to 430 MeV/u (60 to 230 MeV). Studies on the lattice design and beam optics for the High Energy Beam Transport (HEBT) line at the KHIMA accelerator system have been carried out using the WinAgile and the MAD-X codes. Because magnetic field errors and misalignments introduce deviations from the design parameters, these error sources should be treated explicitly, and the sensitivity of the machine's lattice to different individual error sources should be considered. Various types of errors, both static and dynamic, have been taken into account and have been consequentially corrected with a dedicated correction algorithm by using the MAD-X program. Based on the error analysis, the optimized correction setup is decided, and the specifications for the correcting magnets of the HEBT lines are determined.

  9. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Parro Albeniz, M.

    2015-07-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  10. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  11. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    Science.gov (United States)

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The coherent acceleration of ultra high energy cosmic rays and the galactic dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, S.A.

    1995-05-01

    In order to accelerate cosmic rays to ultra high energy, >10{sup 18} ev, requires that the step size in energy in a diffusive process be very much larger than occurs in galactic or extra galactic hydrodynamic mechanisms where {Delta}E/F {approximately} v/c{approximately}1/300 per step. This step size requires >10{sup 5} scatterings per doubling in energy (the shock mechanism) and therefore <10{sup {minus}5} energy loss per scattering. Coherent acceleration (CA), on the other hand, is proposed in which the energy gained, {Delta}E per particle in the CA region is very much larger so that only one or several scatterings are required to reach the final energy. The power law spectrum is created by the probability of loss from the CA region where this probability is inversely proportional to the particle`s rigidity, E. Therefore the fractional loss in number per fractional gain in energy, dN/N {approximately} {minus}{Gamma} dE/E, results in a power law spectrum. CA depends upon the electric field, E = {eta}J, J, the current density, in a force free field, where magnetic helicity, J={alpha}B, arises universally in all evolving mass condensations due to twisting of magnetic flux by the large number of turns before pressure support. The acceleration process is E*v, where universe beam instabilities enhance {eta} leading to phased coherent acceleration (PCA). The result of the energy transfer from field energy to matter energy is the relaxation of the field helicity, or reconnection but with J{parallel}B rather than J{perpendicular}B.

  13. Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power

    Directory of Open Access Journals (Sweden)

    R. B. Yoder

    2005-11-01

    Full Text Available A slab-symmetric dielectric-loaded accelerator structure, consisting of a vacuum gap between dielectric-lined conducting walls, is described. The device is resonantly excited by an external drive laser which is side coupled into the acceleration region; a novel coupling scheme, which consists of an array of narrow, equally spaced slots in the upper structure boundary, is presented and analyzed in detail. This structure partakes of the advantages of earlier slab-symmetric optical acceleration proposals, but will use a terahertz-frequency external radiation source (λ=340   μm, allowing realistic electron beams to be used in a proof-of-principle experiment. Two- and three-dimensional electromagnetic simulations are used to verify the mode patterns and study the effects of the couplers, including time-dependent calculations of the filling of the structure and particle-in-cell computations of the beam wakefields. Details of the resonance are found to be highly sensitive to the coupling slot geometry: the presence of the couplers can lead to frequency detuning, changes in the field breakdown limits and overall Q factor, and distortions of the field pattern. Beam wakefields are enhanced by the presence of the slots, but found to have no significant effect on the beam transport. The resonant accelerating fields, which are nearly constant along the short transverse direction, are found to have between 10 and 15 times the amplitude of the driving radiation, with only a small (<10% admixture of other nonaccelerating modes. Field gradients are computed to be near 100  MV/m when the structure is driven with 100 MW of terahertz laser power. Possible manufacturing methods for a prototype device are discussed.

  14. Accelerating Scientific Applications using High Performance Dense and Sparse Linear Algebra Kernels on GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2015-01-15

    High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The

  15. High-Gradient test results from a CLIC prototype accelerating structure : TD26CC

    CERN Document Server

    Degiovanni, A; Farabolini, W; Grudiev, A; Kovermann, J; Montessinos, E; Riddone, G; Syratchev, I; Wegner, R; Wuensch, W; Solodko, A; Woolley, B

    2014-01-01

    The CLIC study has progressively tested prototype accelerating structures which incorporate an ever increasing number of features which are needed for a final version ready to be installed in a linear collider. The most recent high power test made in the CERN X-band test stand, Xbox-1, is of a CERN-built prototype which includes damping features but also compact input and output power couplers, which maximize the overall length to active gradient ratio of the structure. The structure’s high-gradient performance, 105 MV/m at 250 ns pulse length and low breakdown rate, matches previously tested structures validating both CERN fabrication and the compact coupler design.

  16. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Science.gov (United States)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  17. High Power Amplifiers Chain nonlinearity influence on the accelerating beam stability in free electron laser (FLASH)

    CERN Document Server

    Cichalewski, w

    2010-01-01

    The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.

  18. High Power test of a low group velocity X-band Accelerator Structure for CLIC

    CERN Document Server

    Döbert, S; Riddone, G; Taborelli, M; Wuensch, W; Zennaro, R; Fukuda, S; Higashi, Y; Higo, T; Matsumoto, S; Ueno, K; Yokoyama, K; Adolphsen, C; Dolgashev, V; Laurent, L; Lewandowski, J; Tantawi, S; Wang, F; Wang, JW

    2008-01-01

    In recent years evidence has been found that the maximum sustainable gradient in an accelerating structure depends on the rf power flow through the structure. The CLIC study group has consequently designed a new prototype structure for CLIC with a very low group velocity, input power and average aperture ( = 0.13). The 18 cell structure has a group velocity of 2.6 % at the entrance and 1 % at the last cell. Several of these structures have been made in a collaboration between KEK, SLAC and CERN. A total of five brazed-disk structures and two quadrant structures have been made. The high power results of the first KEK/SLAC built structure is presented which reached an unloaded gradient in excess of 100 MV/m at a pulse length of 230 ns with a breakdown rate below 10-6 per meter active length. The high-power testing was done using the NLCTA facility at SLAC.

  19. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    Science.gov (United States)

    Mihalcea, D.; Jacobson, B.; Murokh, A.; Piot, P.; Ruan, J.

    2017-03-01

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ˜1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  20. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  1. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juwen; /SLAC; Lewandowski, James; /SLAC; Van Pelt, John; /SLAC; Yoneda, Charles; /SLAC; Gudkov, Boris; /CERN; Riddone, Germana; /CERN; Higo, Toshiyasu; /KEK, Tsukuba; Takatomi, Toshikazu; /KEK, Tsukuba

    2012-07-03

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed.

  2. Electron acceleration in a nonrelativistic shock with very high Alfv\\'en Mach number

    CERN Document Server

    Matsumoto, Y; Hoshino, M

    2013-01-01

    Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic, very-high-Alfv\\'en Mach-number ($M_A \\sim 45$) shock is revealed by means of a two-dimensional fully kinetic PIC simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-hi...

  3. Design of high power radio frequency radial combiner for proton accelerator.

    Science.gov (United States)

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2009-01-01

    A simplified design method has been proposed for systematic design of novel radio frequency (rf) power combiner and divider, incorporating radial slab-line structure, without using isolation resistor and external tuning mechanism. Due to low insertion loss, high power capability, and rigid mechanical configuration, this structure is advantageous for modern solid state rf power source used for feeding rf energy to superconducting accelerating structures. Analysis, based on equivalent circuit and radial transmission line approximation, provides simple design formula for calculating combiner parameters. Based on this method, novel 8-way and 16-way power combiners, with power handling capability of 4 kW, have been designed, as part of high power solid state rf amplifier development. Detailed experiments showed good performance in accordance with theory.

  4. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions.

    Science.gov (United States)

    Volino, Ralph John

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong (K = {nuover U_sp{infty} {2}}{dUinftyover dx} as high as 9times 10^{ -6}) acceleration. The high FSTI experiments are the main focus of the work. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. The high FSTI boundary layers undergo transition from a strongly disturbed non-turbulent state to a fully-turbulent state. Due to the stabilizing effect of strong acceleration, the transition zones are of extended length in spite of the high FSTI. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low FSTI, turbulent flow correlations, but remain well above laminar flow values. Mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. Turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. Turbulent transport is strongly suppressed below values in unaccelerated turbulent boundary layers. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Octant analysis shows a fundamental difference between transitional and fully-turbulent boundary layers. Transitional boundary layers are characterized by incomplete mixing compared to fully-turbulent boundary layers. Similar octant analysis results are observed in both low and high FSTI cases. Spectral analysis suggests that the non-turbulent zone of the high FSTI flow is dominated by large scale

  5. SRAM-Based Passive Dosimeter for High-Energy Accelerator Environments

    CERN Document Server

    Makowski, D R; Napieralski, A; Swiercz, B P

    2005-01-01

    This paper reports a novel NVRAM-based neutron dose monitor (REM counter). The principle of this device is based on the radiation effect initiating the Single Event Upset SEU in high density microelectronic memories. Several batches of Non-Volatile memories from different manufactures were examined in various radiation environments, i.e. 241Am-Be (alpha,n) and Linear accelerators produced radiation fields. A suitable moderator was used to enhance the detector sensitivity. Further experiments were carried out in Linear Accelerators: Linac II, TTF2 and Beam Loss Environment of various Experimental Facilities at DESY Research Centre in Hamburg. A separate batch of SRAM was irradiated with 60Co-gamma rays up to a dose of about 60 Gy. No Single Event Upset (SEU) was registered. This validates, that gamma radiation has a negligible effect to trigger SEU in the SRAM. The proposed detector could be ideal for a neutron dose measurement produced by a high-energy electron linac, including synchrotron and Free Electron L...

  6. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    Science.gov (United States)

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  7. Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications

    Science.gov (United States)

    Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles

    2003-08-01

    The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant.

  8. High-efficiency combinatorial approach as an effective tool for accelerating metallic biomaterials research and discovery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.D. [School of Material Science and Engineering, Central South University, Changsha, Hunan, 410083 (China); Liu, L.B., E-mail: lbliu.csu@gmail.com [School of Material Science and Engineering, Central South University, Changsha, Hunan, 410083 (China); State Key Laboratory for Powder Metallurgy, Changsha, Hunan, 410083 (China); Zhao, J.-C. [State Key Laboratory for Powder Metallurgy, Changsha, Hunan, 410083 (China); Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Wang, J.L.; Zheng, F.; Jin, Z.P. [School of Material Science and Engineering, Central South University, Changsha, Hunan, 410083 (China)

    2014-06-01

    A high-efficiency combinatorial approach has been applied to rapidly build the database of composition-dependent elastic modulus and hardness of the Ti–Ta and Ti–Zr–Ta systems. A diffusion multiple of the Ti–Zr–Ta system was manufactured, then annealed at 1173 K for 1800 h, and water quenched to room temperature. Extensive interdiffusion among Ti, Zr and Ta has taken place. Combining nanoindentation and electron probe micro-analysis (EPMA), the elastic modulus, hardness as well as composition across the diffusion multiple were determined. The composition/elastic modulus/hardness relationship of the Ti–Ta and Ti–Zr–Ta alloys has been obtained. It was found that the elastic modulus and hardness depend strongly on the Ta and Zr content. The result can be used to accelerate the discovery/development of bio-titanium alloys for different components in implant prosthesis. - Highlights: • High-efficiency diffusion multiple of Ti–Zr–Ta was manufactured. • Composition-dependent elastic modulus and hardness of the Ti–Ta and Ti–Zr–Ta systems have been obtained effectively, • The methodology and the information can be used to accelerate the discovery/development of bio-titanium alloys.

  9. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaie, Mohammad; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Li, Song; Liu, Feng; Zhang, Jie [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); He, Fei; Cheng, Ya [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  10. Proton acceleration experiments and warm dense matter research using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C R D [Plasma Physics Group, Imperial College London, SW7 2BZ (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory (RAL), Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 (United States); Geissel, M [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gregori, G, E-mail: markus.roth@physik.tu-darmstadt.d [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2009-12-15

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  11. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  12. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Science.gov (United States)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.

    2014-09-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  13. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka-shi, Ibaraki 311-0193 Japan (Japan)

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  14. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses

    Science.gov (United States)

    Minor, L. B.; Lasker, D. M.; Backous, D. D.; Hullar, T. E.; Shelhamer, M. J. (Principal Investigator)

    1999-01-01

    The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in five squirrel monkeys with intact vestibular function. The VOR evoked by steps of acceleration in darkness (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) began after a latency of 7.3 +/- 1.5 ms (mean +/- SD). Gain of the reflex during the acceleration was 14.2 +/- 5.2% greater than that measured once the plateau head velocity had been reached. A polynomial regression was used to analyze the trajectory of the responses to steps of acceleration. A better representation of the data was obtained from a polynomial that included a cubic term in contrast to an exclusively linear fit. For sinusoidal rotations of 0.5-15 Hz with a peak velocity of 20 degrees /s, the VOR gain measured 0.83 +/- 0.06 and did not vary across frequencies or animals. The phase of these responses was close to compensatory except at 15 Hz where a lag of 5.0 +/- 0.9 degrees was noted. The VOR gain did not vary with head velocity at 0.5 Hz but increased with velocity for rotations at frequencies of >/=4 Hz (0. 85 +/- 0.04 at 4 Hz, 20 degrees /s; 1.01 +/- 0.05 at 100 degrees /s, P < 0.0001). No responses to these rotations were noted in two animals that had undergone bilateral labyrinthectomy indicating that inertia of the eye had a negligible effect for these stimuli. We developed a mathematical model of VOR dynamics to account for these findings. The inputs to the reflex come from linear and nonlinear pathways. The linear pathway is responsible for the constant gain across frequencies at peak head velocity of 20 degrees /s and also for the phase lag at higher frequencies being less than that expected based on the reflex delay. The frequency- and velocity-dependent nonlinearity in VOR gain is accounted for by the dynamics of the nonlinear pathway. A transfer function that increases the gain of this pathway with frequency and a term related to the third power of head

  15. Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput Zn reduction method.

    Science.gov (United States)

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2009-07-15

    The high-throughput Zn reduction method was developed and optimized for various biological/biomedical accelerator mass spectrometry (AMS) applications of mg of C size samples. However, high levels of background carbon from the high-throughput Zn reduction method were not suitable for sub-mg of C size samples in environmental, geochronology, and biological/biomedical AMS applications. This study investigated the effect of background carbon mass (mc) and background 14C level (Fc) from the high-throughput Zn reduction method. Background mc was 0.011 mg of C and background Fc was 1.5445. Background subtraction, two-component mixing, and expanded formulas were used for background correction. All three formulas accurately corrected for backgrounds to 0.025 mg of C in the aerosol standard (NIST SRM 1648a). Only the background subtraction and the two-component mixing formulas accurately corrected for backgrounds to 0.1 mg of C in the IAEA-C6 and -C7 standards. After the background corrections, our high-throughput Zn reduction method was suitable for biological (diet)/biomedical (drug) and environmental (fine particulate matter) applications of sub-mg of C samples (> or = 0.1 mg of C) in keeping with a balance between throughput (270 samples/day/analyst) and sensitivity/accuracy/precision of AMS measurement. The development of a high-throughput method for examination of > or = 0.1 mg of C size samples opens up a range of applications for 14C AMS studies. While other methods do exist for > or = 0.1 mg of C size samples, the low throughput has made them cost prohibitive for many applications.

  16. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    Science.gov (United States)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL Z target via bremsstrahlung into low-divergence (Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  17. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  18. Evaluation of High Energy Nuclear Data of Importance for Use in Accelerator and Space Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ouk

    2005-10-15

    New evaluation were performed for neutron- and proton-induced reactions for energies up to 250 400 MeV on C-12, N-14, O-16, Al-27, Si-28, Ca-40, Ar-40, Fe-54,58, Ni-64, Cu-63,65, Zr-90, Pb-208, Th-232, U-233,234,236, and Cm-243246. The evaluated results are then applied to the accelerator and space technology. A set of optical model parameters were optimized by searching a number of adjustable coefficients with the Simulated Annealing(SA) method for the spherical nuclei. A parameterization of the empirical formula was proposed to describe the proton-nucleus non-elastic cross sections of high-priority elements for space shielding purpose for proton energies from reaction threshold up to 400 MeV, which was then implemented into the fast scoping space shielding code CHARGE, based on the results of the optical model analysis utilizing up-to-date measurements. For proton energies up to 400 MeV covering most of the incident spectrum for trapped protons and solar energetic particle events, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction were prepared. The evaluated cross section set was applied to the thick target yield (TTY) and promp radiation benchmarks for the accelerator shielding. As for the assessment of the radiological impact of the accelerator to the environment, relevant nuclear reaction cross sections for the activation of the air were recommended among the author's evaluations and existing library based on the available measurements.

  19. 30 years of high-intensity negative ion sources for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Vadim Dudnikov

    2001-07-25

    Thirty years ago, July 1, 1971, significant enhancement of negative ion emission from a gas discharge following an admixture of cesium was observed for the first time. This observation became the basis for the development of Surface Plasma Sources (SPS) for efficient production of negative ions from the interaction of plasma particles with electrodes on which adsorbed cesium reduced the surface work-function. The emission current density of negative ions increased rapidly from j {approximately} 10 mA/cm{sup 2} to 3.7 A/cm{sup 2} with a flat cathode and up to 8 A/cm{sup 2} with an optimized geometrical focusing in the long pulse SPS, and to 0.3 A/cm{sup 2} for DC SPS, recently increased up to 0.7 A/cm{sup 2}. Discovery of charge-exchange cooling helped decrease the negative ion temperature T below 1 eV, and increase brightness by many orders to a level compatible with the best proton sources, B = j/T> 1 A/cm{sup 2} eV. The combination of the SPS with charge-exchange injection improved large accelerators operation and has permitted beam accumulation up to space-charge limit and overcome this limit several times. The early SPS for accelerators have been in operation without modification for {approximately} 25 years. Advanced version of the SPS for accelerators is described. Features of negative ion beam formation, transportation, space-charge neutralization-overneutralization, and instability damping is considered. Practical aspects of SPS operation and high brightness beam production is discussed.

  20. Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators

    Science.gov (United States)

    Chmielewski, Andrzej G.; Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej; Licki, Janusz

    2003-08-01

    Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

  1. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [University of Maryland; Antonsen, Thomas M. [University of Maryland; Kishek, Rami [University of Maryland

    2014-07-25

    This final report summarizes the research performed during the time period from 8/1/2010 to 7/31/2013. It consists of two parts describing our studies in two directions: (a) analysis of factors limiting operation of dielectric-loaded accelerating (DLA) structures where the main problem is the occurrence of multipactor on dielectric surfaces, and (b) studies of effects associated with either RF magnetic or RF electric fields which may cause the RF breakdown in high-gradient metallic accelerating structures. In the studies of DLA structures, at least, two accomplishments should be mentioned: the development of a 3D non-stationary, self-consistent code describing the multipactor phenomena and yielding very good agreement with some experimental data obtained in joint ANL/NRL experiments. In the metallic structures, such phenomena as the heating and melting of micro-particles (metallic dust) by RF electric and magnetic fields in single-shot and rep-rate regimes is analyzed. Also, such processes in micro-protrusions on the structure surfaces as heating and melting due to the field emitted current and the Nottingham effect are thoroughly investigated with the account for space charge of emitted current on the field emission from the tip.

  2. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  3. Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

    Directory of Open Access Journals (Sweden)

    Di Vece Marcel

    2015-12-01

    Full Text Available The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

  4. Reduction of steel-ball velocity using sand or water layer accelerated by high explosive

    Science.gov (United States)

    Homae, Tomotaka; Wakabayashi, Kunihiko; Matsumura, Tomoharu; Nakayama, Yoshio

    2007-06-01

    The reduction of steel-ball velocity using sand or water was studied. A steel ball, diameter of 9.525 mm, was accelerated using comp. C-4 explosive of 37-52 g. After free flight of about 500-750 mm, the steel ball passed through a sand layer in thickness of 30-125 mm, or a water layer in thickness of 75 or 150 mm. The velocities before and after passage of the layer were determined using a high-speed camera. Although the velocity before the passage was varied from about 300 m/s to about 750 m/s, the velocity after passage was almost constant. The velocity depended only on the kind of materials or thickness of the layer. Sand was more effective in reduction than water for same areal density. Moreover, the steel-ball was accelerated in contact with sand layer in thickness of 30-125 mm. The terminal velocity in such case was comparable to that experienced free fright described above.

  5. Materials irradiation facilities at the high-power Swiss proton accelerator complex

    Science.gov (United States)

    Wagner, Werner; Dai, Yong; Glasbrenner, Heike; Aebersold, Hans-Ulrich

    2007-04-01

    Within the Swiss proton accelerator complex at the Paul-Scherrer-Institute (PSI), several irradiation facilities are operated for investigation of materials behavior under high-dose irradiation conditions as well as for neutron activation analysis and isotope production. In LiSoR (liquid solid reaction), a liquid metal loop connected to the 72 MeV proton accelerator Injector 1, steel samples are irradiated while being in contact with flowing lead-bismuth-eutectic (LBE) at elevated temperatures and under tensile stress. In the spallation neutron source SINQ, the STIP program (SINQ Target Irradiation Program) allows materials irradiation under realistic spallation conditions, i.e. in a mixed spectrum of 570 MeV protons and spallation neutrons. Hundreds of samples, mainly austenitic and ferritic-martensitic steels such as 316L, T91 or F82H, were irradiated to doses up to 20 dpa as part of STIP. These also included steel samples in contact with liquid Hg and liquid LBE. MEGAPIE (MEGAwatt PIlot Experiment), a liquid metal target employing LBE, operated in SINQ during the second half of 2006, can be taken as a materials irradiation facility on its own. Adjacent to the target position, SINQ houses a neutron irradiation rabbit system serving activation analysis and isotope production.

  6. Laser-accelerated high-energy ions: state of-the-art and applications

    Energy Technology Data Exchange (ETDEWEB)

    Borghesi, M [School of Mathematics and Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Fuchs, J [Laboratoire pour l' Utilisation des Lasers Intenses, Ecole Polytechnique, Palaiseau (France); Willi, O [Institut fuer Laser-und Plasmaphysik, Heinrich-Heine-Universitaet, Duesseldorf (Germany)

    2007-03-01

    The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short (t < 1ps) and intense (I{lambda}{sup 2}> 10{sup 18} W cm{sup -2} {mu}m{sup -2}) laser pulses with solid targets has been one of the most important results of recent laser-plasma research. The acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large ({approx}TV/m) space charge fields at the target interfaces. In view of a number of advantageous properties, laser-driven ion beams can be employed in a number of innovative applications in the scientific, technological and medical areas. Among these, their possible use in hadrontherapy, with potential reduction of facility costs, has been proposed recently. This paper will briefly review the current state-of-the-art in laser-driven proton/ion source development, and will discuss the progress needed in order to implement some of the above applications. Recent results relating to the optimization of beam energy, spectrum and collimation will be presented.

  7. Accelerating a water maser face-on jet from a high mass young stellar object

    Science.gov (United States)

    Motogi, Kazuhito; Sorai, Kazuo; Honma, Mareki; Hirota, Tomoya; Hachisuka, Kazuya; Niinuma, Kotaro; Sugiyama, Koichiro; Yonekura, Yoshinori; Fujisawa, Kenta

    2016-10-01

    We report on long-term single-dish and VLBI monitoring for intermittent flare activities of a dominant blue-shifted H2O maser associated with a southern high mass young stellar object, G353.273+0.641. Bi-weekly single-dish monitoring using the Hokkaido University Tomakomai 11 m radio telescope has shown that a systematic acceleration continues over four years beyond the lifetime of individual maser features. This fact suggests that the H2O maser traces a region where molecular gas is steadily accelerated. There were five maser flares during the five years of monitoring, and maser distributions in four of them were densely monitored by VLBI Exploration of Radio Astrometry (VERA). The overall distribution of the maser features suggests the presence of a bipolar jet, with the 3D kinematics indicating that it is almost face-on (inclination angle of ˜ 8°-17° from the line of sight). Most maser features were recurrently excited within a region of 100×100 au2 around the radio continuum peak, while their spatial distributions significantly varied between each flare. This confirms that episodic propagations of outflow shocks recurrently invoke intermittent flare activities. We also measured annual parallax, deriving a source distance of 1.70^{+0.19}_{-0.16} kpc that is consistent with the commonly used photometric distance.

  8. Accelerating an Water Maser Face-on Jet from a High Mass Young Stellar Object

    CERN Document Server

    Motogi, Kazuhito; Honma, Mareki; Hirota, Tomoya; Hachisuka, Kazuya; Niinuma, Kotaro; Sugiyama, Koichiro; Yonekura, Yosinori; Fujisawa, Kenta

    2015-01-01

    We report on a long-term single-dish and VLBI monitoring for intermittent flare activities of a Dominant Blue-Shifted H$_{2}$O Maser (DBSM) associated with a southern high mass young stellar object, G353.273+0.641. Bi-weekly single-dish monitoring using Hokkaido University Tomakomai 11-m radio telescope has shown that a systematic acceleration continues over four years beyond a lifetime of individual maser features. This fact suggests that the H$_{2}$O maser traces a region where molecular gas is steadily accelerated. There were five maser flares during five-years monitoring, and maser distributions in four of them were densely monitored by the VLBI Exploration of Radio Astrometry (VERA). The overall distribution of the maser features suggests the presence of a bipolar jet, with the 3D kinematics indicating that it is almost face-on (inclination angle of $\\sim$ 8$^{\\fdg}$--17$^{\\fdg}$ from the line-of-sight). Most of maser features were recurrently excited within a region of 100$\\times$100 AU$^{2}$ around the...

  9. Revisiting FPGA Acceleration of Molecular Dynamics Simulation with Dynamic Data Flow Behavior in High-Level Synthesis

    CERN Document Server

    Cong, Jason; Kianinejad, Hassan; Wei, Peng

    2016-01-01

    Molecular dynamics (MD) simulation is one of the past decade's most important tools for enabling biology scientists and researchers to explore human health and diseases. However, due to the computation complexity of the MD algorithm, it takes weeks or even months to simulate a comparatively simple biology entity on conventional multicore processors. The critical path in molecular dynamics simulations is the force calculation between particles inside the simulated environment, which has abundant parallelism. Among various acceleration platforms, FPGA is an attractive alternative because of its low power and high energy efficiency. However, due to its high programming cost using RTL, none of the mainstream MD software packages has yet adopted FPGA for acceleration. In this paper we revisit the FPGA acceleration of MD in high-level synthesis (HLS) so as to provide affordable programming cost. Our experience with the MD acceleration demonstrates that HLS optimizations such as loop pipelining, module duplication a...

  10. High Temperature Superconducting Magnets: Revolutionizing Next Generation Accelerators and Other Applications (466th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh (BNL Superconducting Magnet Division)

    2011-02-16

    BNL has always been a leader in the world of superconducting magnets, which are essential to the great modern ccelerators such as the Relativistic Heavy Ion Collider at BNL, or the Large Hadron Collider at CERN, Switzerland. These magnets are made of material that, cooled to 4 Kelvins (K) (-452° Farenheit) become superconducting, that is, lose essentially all resistance to electricity. For the past decade, however, Lab researchers have been exploring the use of new materials that become superconducting at higher temperatures. These materials can operate at the relatively high temperature of 77 K (-351°F), allowing them to be cooled by cheap, plentiful liquid nitrogen, rather than helium, and can create very high magnetic fields. Now far in the lead of this area of research, BNL scientists are exploring avenues for high temperature superconducting magnets that are energy efficient and have magnetic fields that are a million times stronger than the Earth’s. If successful, these new magnets could potentially revolutionize usage in future accelerators, play a key role in energy efficiency and storage, and make possible new applications such as muon colliders and MRI screening in remote areas.

  11. The response of various neutron dose meters considering the application at a high energy particle accelerator

    CERN Document Server

    Gutermuth, F; Fehrenbacher, G; Festag, J G

    2003-01-01

    The applicability of several neutron detectors for dose measurements at a neutron field typical for high energy particle accelerators is investigated. The response of four commercially available active neutron dose meters and two passive detectors to neutrons from a sup 2 sup 4 sup 1 Am-Be(alpha,n) source and to neutrons at the CERN EU high energy reference field was determined experimentally and simulated using the Monte-Carlo code FLUKA. Fluence response functions and dose responses for the different detectors were calculated in the energy range between 1 keV and 10 GeV. The results show that the dose response to the high energy neutron field at CERN of the conventional rem-counters is lower by a factor of 2 to 2.5 if compared to the dose response to a sup 2 sup 4 sup 1 Am-Be(alpha,n) neutron source. The rem-counters exhibiting an additional layer of lead inside the moderating structure showed dose readings which differ only up to 25%. A thermoluminescent based neutron detector was tested for comparison. Th...

  12. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger

    2016-01-01

    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  13. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W; Sandberg, J; Parson, W M; Walstrom, P; Murray, M M; Cook, E; Hartouni, E

    2001-06-12

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed.

  14. Quantum mechanics, high energy physics and accelerators selected papers of John S Bell (with commentary)

    CERN Document Server

    Bell, John Stewart; Gottfried, Kurt; Veltman, Martinus J G

    1994-01-01

    The scientific career of John Stewart Bell was distinguished by its breadth and its quality. He made several very important contributions to scientific fields as diverse as accelerator physics, high energy physics and the foundations of quantum mechanics. This book contains a large part of J S Bell's publications, including those that are recognized as his most important achievements, as well as others that are for no good reason less well known. The selection was made by Mary Bell, Martinus Veltman and Kurt Gottfried, all of whom were involved with John Bell both personally and professionally throughout a large part of his life. An introductory chapter has been written to help place the selected papers in a historical context and to review their significance. This book comprises an impressive collection of outstanding scientific work of one of the greatest scientists of the recent past, and it will remain important and influential for a long time to come.

  15. Use of Uniformly Distributed Concentrated Sunlight for Highly Accelerated Testing of Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Bingham, C.; King, D.; Lewandowski, A.; Netter, J.; Terwilliger, K.; Adamsons, K.

    2000-12-14

    NREL has developed a new ultraviolet (UV) light concentrator that allows material samples to be subjected to uniform intensity levels of 50-100X solar UV at closely controlled sample exposure temperatures. In collaboration with industry, representative coating systems have been exposed without introducing unrealistic degradation mechanisms. Furthermore, correlations have been derived between these highly accelerated test conditions and results obtained at 1-2 suns. Such information is used to predict the degradation of materials in real-world applications. These predictions are compared with measured in-service performance losses to validate the approach. This allows valuable information to be obtained in greatly reduced timeframes, which can provide tremendous competitive advantage in the commercial marketplace.

  16. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.

    Science.gov (United States)

    García-Cañadas, Jorge; Adkins, Nicholas J E; McCain, Stephen; Hauptstein, Bastian; Brew, Ashley; Jarvis, David J; Min, Gao

    2016-06-13

    A series of processes have been developed to facilitate the rapid discovery of new promising thermoelectric alloys. A novel combinatorial facility where elements are wire-fed and laser-melted was designed and constructed. Different sample compositions can be achieved by feeding different element wires at specific rates. The composition of all the samples prepared was tested by energy dispersive X-ray spectroscopy (EDS). Then, their thermoelectric properties (power factor) at room temperature were screened in a specially designed new high-throughput setup. After the screening, the thermoelectric properties can be mapped with the possibility of identifying compositional trends. As a proof-of-concept, a promising thermoelectric ternary system, Al-Fe-Ti, has been identified, demonstrating the capability of this accelerated approach.

  17. Possible role of rf melted microparticles on the operation of high-gradient accelerating structures

    Directory of Open Access Journals (Sweden)

    G. S. Nusinovich

    2009-10-01

    Full Text Available High-gradient accelerating structures should operate reliably for a long time. Therefore studies of various processes which may lead to disruption of such an operation are so important. In the present paper, the dissipation of rf electromagnetic energy in metallic microparticles is analyzed accounting for the temperature dependence of the skin depth. Such particles may appear in structures, for example, due to mechanical fracture of irises in strong rf electric fields. It is shown that such microparticles with dimensions on the order of the skin depth, being immersed in the region of strong rf magnetic field, can absorb enough energy in long-pulse operation to be melted. Then, the melted clumps can impinge on the surface of a structure and create nonuniformities leading to field enhancement and corresponding emission of dark current. Results are given for several geometries and materials of microparticles.

  18. Development of a PCI Based Data Acquisition Platform for High Intensity Accelerator Experiments

    CERN Document Server

    Higuchi, T; Ikeno, M; Igarashi, Y; Inoue, E; Itoh, R; Kodama, H; Murakami, T; Nakao, M; Nakayoshi, K; Saitoh, M; Shimazaki, S; Suzuki, S Y; Tanaka, M; Tauchi, K; Yamauchi, M; Yasu, Y; Varner, G; Nagasaka, Y; Katayama, T; Watanabe, K; Ishizuka, M; Onozawa, S; Li, C J

    2003-01-01

    Data logging at an upgraded KEKB accelerator or the J-PARC facility, currently under commission, requires a high density data acquisition platform with integrated data reduction CPUs. To follow market trends, we have developed a DAQ platform based on the PCI bus, a choice which permits a fast DAQ and a long expected lifetime of the system. The platform is a 9U-VME motherboard consisting of four slots for signal digitization modules, readout FIFOs for data buffering, and three PMC slots, on one of which resides a data reduction CPU. We have performed long term and thermal stability tests. The readout speed on the platform has been measured up to 125 MB/s in DMA mode.

  19. High-speed data acquisition system application of LHC particles on the accelerator

    CERN Document Server

    Torres, J; González, V; Sanchis, E; Soret, J

    2003-01-01

    In data acquisition processes appropriate to large particle detectors, there is a key component for processing data in real time as an integral part of the hierarchic system of information filtering. It is a read out driver (ROD), responsible for data reception, reprocessing, routing and broadcasting to the next acquisition level. In order to implement a system with these features it is essential to count on advanced programmable logic devices that allow for all the information collected at high speed to be handled conveniently. In the European Laboratory for Particle Physics (CERN), the construction of a new particle accelerator, the Large Hadron Collider (LHC), is being completed. It is envisaged that in 2006 proton packets will collide with the production of energy approaching 14 TeV. For the study of basic questions in particle physics large detectors (ATLAS and CMS) were set up, capable of absorbing all the information generated by these collisions (50 TB/s). (5 refs).

  20. Tools for simulation of high beam intensity ion accelerators; Simulationswerkzeuge fuer die Berechnung hochintensiver Ionenbeschleuniger

    Energy Technology Data Exchange (ETDEWEB)

    Tiede, Rudolf

    2009-07-09

    A new particle-in-cell space charge routine based on a fast Fourier transform was developed and implemented to the LORASR code. It provides the ability to perform up to several 100 batch run simulations with up to 1 million macroparticles each within reasonable computation time. The new space charge routine was successfully validated in the framework of the European ''High Intensity Pulsed Proton Injectors'' (HIPPI) collaboration: Several static Poisson solver benchmarking comparisons were performed, as well as particle tracking comparisons along the GSI UNILAC Alvarez section. Moreover machine error setting routines and data analysis tools were developed and applied on error studies for the ''Heidelberg Cacer Therapy'' (HICAT) IH-type drift tube linear accelerator (linac), the FAIR Facility Proton Linac and the proposal of a linac for the ''International Fusion Materials Irradiation Facility'' (IFMIF) based on superconducting CH-type structures. (orig.)

  1. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Roderich [Los Alamos National Laboratory

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  2. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  3. How an integrated change programme has accelerated the reduction in high hazard nuclear facilities at Sellafield

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, Angela [Change Manager, Decommissioning, Sellafield Ltd, Seascale, Cumbria (United Kingdom)

    2013-07-01

    For over five decades the Sellafield Site has been central to the UK's nuclear programme. Now operated by Sellafield Ltd, under the management of Parent Body Organisation Nuclear Management Partners (NMP), a consortium of URS Washington Division, AMEC and AREVA is focussed on the decommissioning of historical facilities. When Decommissioning commenced in the late 1980's the site focus at that time was on commercial reprocessing and waste management. Now through the implementation of a company change programme, emphasis has shifted towards accelerated risk and hazard reduction of degraded legacy plants with nuclear inventory whilst ensuring value for money for the customer, the Nuclear Decommissioning Authority. This paper will describe the management success by the Site owners in delivering a successful change programme. The paper will explain how the site has transitioned to the INPO Standard Nuclear Performance Model (SNPM) and how through the use of a change maturity matrix has contributed to the accelerated reduction in high risk high hazard nuclear facilities. The paper will explain in detail how the Decommissioning Programme Office has facilitated and coordinated the Governance and assured delivery of the change plan and how successful application of visual management has aided the communication of its progress. Finally, the paper will discuss how the Delivery Schedules have proved critical for presenting the change plan to Key Stakeholders, Government Owners and Powerful Regulators. Overall, this paper provides an insight into how a massive change programme is being managed within one of the world's highest regulated industries. (authors)

  4. Accelerating process and catalyst development in reforming reactions with high throughput technologies under industrially relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, S.A.; Bollmann, G.; Froescher, A.; Kaiser, H.; Lange de Oliveira, A.; Roussiere, T.; Wasserschaff, G. [hte Aktiengesellschaft, Heidelberg (Germany); Domke, I. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    The generation of hydrogen via reforming of a variety of carbon containing feed-stocks in the presence of water is up to date one of the most versatile technologies for the production of hydrogen and syngas. Although these reforming technologies are in principle well established, understood and commercialized, there are still a number of technological challenges that are not solved up to a satisfactorily degree and there is a constant demand for appropriate answers to the challenges posed. High throughput experimentation can be a valuable tool in helping accelerate the development of suitable solutions on the catalyst and process development side. In order to be able to generate test data that are close or identical to process relevant conditions, hte has developed a new technology portfolio of test technologies named Stage-IV technology. In contrast to earlier developments which address more small scale testing on the basis of catalyst volumes of 1ml up to 10 ml under isothermal conditions, our new technology portfolio offers the advantage of test volumes at sub-pilot scale also realizing reactor dimensions close to technical applications. This does not only ensure a good mimic of the hydrodynamic conditions of the technical scale, but also allows a fingerprinting of features like temperature gradients in the catalyst bed which play a large role for catalyst performance. Apart from catalyst tests with granulates when screening for optimized catalyst compositions, the units are designed to accommodate tests with shaped catalysts. In order to demonstrate how these technologies can accelerate catalyst and process development we have chosen technically challenging application examples: (I) Pre-reforming and reforming of methane based feeds which accelerate coking and catalyst deactivation. Higher reaction pressures, high CO{sub 2} contents in the feedgas (which occur typically in sources like bio-gas or certain types of natural gas), the presence of higher alkanes

  5. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  6. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Univ. of Delhi, New Delhi (India)

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  7. Kernel based methods for accelerated failure time model with ultra-high dimensional data

    Directory of Open Access Journals (Sweden)

    Jiang Feng

    2010-12-01

    Full Text Available Abstract Background Most genomic data have ultra-high dimensions with more than 10,000 genes (probes. Regularization methods with L1 and Lp penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size n ≪ m (the number of genes, directly identifying a small subset of genes from ultra-high (m > 10, 000 dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes. Results The accelerated failure time (AFT model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller n × n matrix. It is very efficient when the number of unknown variables (genes is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited. Conclusions Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.

  8. High Brightness Gamma-Ray Production at Fermilab Accelerator Science and Technology (FAST) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Daniel [Northern Illinois U.; Jacobson, B. [RadiaBeam Tech.; Murokh, A. [RadiaBeam Tech.; Piiot, P. [Northern Illinois U.; Ruan, J. [Fermilab

    2016-10-10

    Electron beams with energies of the order of a few 100’s of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ∼ 1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  9. An accelerating high-latitude jet in Earth’s core

    Science.gov (United States)

    Livermore, Philip W.; Hollerbach, Rainer; Finlay, Christopher C.

    2017-01-01

    Observations of the change in Earth’s magnetic field--the secular variation--provide information about the motion of liquid metal within the core that is responsible for the magnetic field’s generation. High-resolution observations from the European Space Agency’s Swarm satellite mission show intense field change at high latitude, localized in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we show that this feature can be explained by a localized, non-axisymmetric, westward jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000-2016 to about 40 km yr-1, and is now much stronger than typical large-scale flows inferred for the core. We suggest that the current accelerating phase may be part of a longer-term fluctuation of the jet causing both eastward and westward movement of magnetic features over historical periods, and may contribute to recent changes in torsional-wave activity and the rotation direction of the inner core.

  10. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  11. High power acceleration of an HSC type injector for cancer therapy

    Science.gov (United States)

    Lu, Liang; Hattori, Toshiyuki; Zhao, Huan-Yu; Kawasaki, Katsunori; Sun, Lie-Peng; Jin, Qian-Yu; Zhang, Jun-Jie; Sun, Liang-Ting; He, Yuan; Zhao, Hong-Wei

    2016-07-01

    A hybrid single cavity (HSC) linac, which is formed by combining a radio frequency quadrupole (RFQ) and a drift tube (DT) structure into one interdigital-H (IH) cavity, is fabricated and assembled as a proof of principle injector for cancer therapy synchrotron, based on the culmination of several years of research. The HSC linac adopts a direct plasma injection scheme (DPIS), which can inject a high intensity heavy ion beam produced by a laser ion source (LIS). The input beam current of the HSC is designed to be 20 mA C6+ ions. According to numerical simulations, the HSC linac can accelerate a 6-mA C6+beam, which meets the requirement of the needed particle number for cancer therapy (108-9 ions/pulse). The HSC injector with the DPIS method makes the existing multi-turn injection system and stripping system unnecessary, and can also bring down the size of the beam pipe in existing synchrotron magnets, which could reduce the whole cost of synchrotron. The radio frequency (rf) measurements show excellent rf properties for the resonator, with a measured Q equal to 91% of the simulated value. A C6+ ion beam extracted from the LIS was used for the HSC commissioning. In beam testing, we found the measured beam parameters agreed with simulations. More details of the measurements and the results of the high power test are reported in this paper. Supported by National Natural Science Foundation of China and One Hundred Person Project of CAS

  12. Aggressive, accelerated subdomain smoothers for Stokes flow with highly heterogeneous viscosity structure

    Science.gov (United States)

    Sanan, Patrick; May, Dave; Schenk, Olaf; Rupp, Karl

    2016-04-01

    Scalable solvers for mantle convection and lithospheric dynamics with highly heterogeneous viscosity structure typically require the use of a multigrid method. To leverage new hybrid CPU-accelerator architectures on leadership compute clusters, multigrid hierarchies which can reduce communication and use high available arithmetic intensity are at a premium, motivating more aggressive coarsening schemes and smoothers. We present results of a comparative study of two competitive GPU-enabled subdomain smoothers within an additive Schwarz method. Chebyshev-Jacobi smoothing has been shown to be an effective smoother, and its nature as a low-communication method built from basic linear algebra routines allows its use on a wide range of devices with current libraries. ILU smoothing is also of interest and is known to provide robust smoothing in some cases, but has traditionally been difficult to use in a fine-grained parallel environment. However, a recently-introduced variant by Chow and Patel allows for incomplete factorizations to be computed and applied in these environments, hence allowing us to study them as well. We use and extend the pTatin3D, PETSc, and ViennaCL libraries to integrate promising methods into a realistic application framework.

  13. Factors affecting high-pressure solvent extraction (accelerated solvent extraction) of additives from polymers.

    Science.gov (United States)

    Vandenburg, H J; Clifford, A A; Bartle, K D; Zhu, S A; Carroll, J; Newton, I D; Garden, L M

    1998-05-01

    Irganox 1010 (pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)] propionate) is successfully extracted from polypropylene using solvents at high temperatures and pressures in a homemade accelerated solvent extraction system. For example, using freeze-ground polymer, 90% extraction is possible within 5 min with 2-propanol at 150 °C. Extraction curves for 2-propanol and acetone fit well to the "hot ball" model, previously developed for supercritical fluid extraction. Diffusion coefficients are determined for extractions with 2-propanol, acetone, and cyclohexane over a range of temperatures, and the activation energies for the diffusion are 134, 107, and 61 kJ mol(-)(1), respectively. The lower figure for acetone and cyclohexane indicates that these solvents swell the polymer more than does 2-propanol. The polymer dissolves in the solvent at too high a temperature, which causes blockage of the transfer lines. For maximum extraction rates, the highest temperature for each solvent that avoids dissolution of the polymer should be used. The use of mixed solvents is investigated and shows advantages in some cases, with the aim of producing a solvent that will swell the polymer but not dissolve it.

  14. Thermal Design of an Nb3Sn High Field Accelerator Magnet

    CERN Document Server

    Pietrowicz, S

    2011-01-01

    Within the framework of the European project EuCARD, a Nb3Sn high field accelerator magnet is under design to serve as a test bed for future high field magnets and to upgrade the vertical CERN cable test facility, Fresca. The Fresca 2 block coil type magnet will be operated at 1.9 K or 4.2 K and is designed to produce about 13 T. A 2D numerical thermal model was developed to determinate the temperature margin of the coil in working conditions and the appropriate cool-down scenario. The temperature margin, which is DTmarge=5.8 K at 1.9 K and DTmarge=3.5 K at 4.2 K, was investigated in steady state condition with the AC losses due to field ramp rate as input heat generation. Several cool-down scenarios were examined in order to minimize the temperature difference and therefore reducing the mechanical constraints within the structure. The paper presents the numerical model, the assumptions taken for the calculations and several results of the simulation for the cool-down and temperature distributions due to seve...

  15. High doses of pseudoephedrine hydrochloride accelerate onset of CNS oxygen toxicity seizures in unanesthetized rats.

    Science.gov (United States)

    Pilla, R; Held, H E; Landon, C S; Dean, J B

    2013-08-29

    Pseudoephedrine (PSE) salts (hydrochloride and sulfate) are commonly used as nasal and paranasal decongestants by scuba divers. Anecdotal reports from the Divers Alert Network suggest that taking PSE prior to diving while breathing pure O₂ increases the risk for CNS oxygen toxicity (CNS-OT), which manifests as seizures. We hypothesized that high doses of PSE reduce the latency time to seizure (LS) in unanesthetized rats breathing 5 atmospheres absolute (ATA) of hyperbaric oxygen. Sixty-three male rats were implanted with radio-transmitters that recorded electroencephalogram activity and body temperature. After ≥7-day recovery, and 2 h before "diving", each rat was administered either saline solution (control) or PSE hydrochloride intragastrically at the following doses (mg PSE/kg): 0, 40, 80, 100, 120, 160, and 320. Rats breathed pure O₂ and were dived to 5ATA until the onset of behavioral seizures coincident with neurological seizures. LS was the time elapsed between reaching 5ATA and exhibiting seizures. We observed a significant dose-dependent decrease in the LS at doses of 100-320 mg/kg, whereas no significant differences in LS from control value were observed at doses ≤80 mg/kg. Our findings showed that high doses of PSE accelerate the onset of CNS-OT seizures in unanesthetized rats breathing 5ATA of poikilocapnic hyperoxia. Extrapolating our findings to humans, we conclude that the recommended daily dose of PSE should not be abused prior to diving with oxygen-enriched gas mixes or pure O₂.

  16. An accelerating high-latitude jet in Earth’s core

    DEFF Research Database (Denmark)

    W. Livermore, Philip; Hollerbach, Rainer; Finlay, Chris

    2016-01-01

    Observations of the change in Earth’s magnetic field—the secular variation—provide information about the motion of liquid metal within the core that is responsible for the magnetic field’s generation. High-resolution observations from the European Space Agency’s Swarm satellite mission show intense...... field change at high latitude, localized in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we show that this feature can be explained by a localized, non-axisymmetric, westward jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core...... that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000–2016 to about 40 km yr−1, and is now much stronger than typical large-scale flows inferred for the core. We suggest that the current accelerating...

  17. Evaluation of high density polyethylene composite filled with bagasse after accelerated weathering followed by biodegradation

    Directory of Open Access Journals (Sweden)

    Peyvand Darabi

    2012-11-01

    Full Text Available Wood-plastic composites (WPC have many applications as structural and non-structural material. As their outdoor application becomes more widespread, their resistance against weathering, particularly ultraviolet light and biodegradation becomes of more concern. In the present study, natural fiber composites (NFPC made of bagasse and high density polyethylene, with and without pigments, were prepared by extrusion and subjected to accelerated weathering for 1440 h; then weathered and un-weathered samples were exposed to fungal and termite resistance tests. The chemical and surface qualities of samples were studied by ATR-FTIR spectroscopy, colorimetry, contact angle, and roughness tests before and after weathering. Using bagasse as filler does reduce the discoloration of weathered samples. Adding pigments may reduce the effect of weathering on lignin degradation, although it favors polymer oxidation, but it increases the weight loss caused by fungi. Despite the high resistance of samples against biological attack, weathering triggers attack by termites and fungi on the surface and causes surface quality loss.

  18. Understanding nature's particle accelerators using high energy gamma-ray survey instruments

    Science.gov (United States)

    Abeysekara, Anushka Udara

    Nature's particle accelerators, such as Pulsars, Pulsar Wind Nebulae, Active Galactic Nuclei and Supernova Remnants accelerate charged particles to very high energies that then produce high energy photons. The particle acceleration mechanisms and the high energy photon emission mechanisms are poorly understood phenomena. These mechanisms can be understood either by studying individual sources in detail or, alternatively, using the collective properties of a sample of sources. Recent development of GeV survey instruments, such as Fermi-LAT, and TeV survey instruments, such as Milagro, provides a large sample of high energy gamma-ray flux measurements from galactic and extra-galactic sources. In this thesis I provide constraints on GeV and TeV radiation mechanisms using the X-ray-TeV correlations and GeV-TeV correlations. My data sample was obtained from three targeted searches for extragalactic sources and two targeted search for galactic sources, using the existing Milagro sky maps. The first extragalactic candidate list consists of Fermi-LAT GeV extragalactic sources, and the second extragalactic candidate list consists of TeVCat extragalactic sources that have been detected by Imaging Atmospheric Cerenkov Telescopes (IACTs). In both extragalactic candidate lists Markarian 421 was the only source detected by Milagro. A comparison between the Markarian 421 time-averaged flux, measured by Milagro, and the flux measurements of transient states, measured by IACTs, is discussed. The third extragalactic candidate list is a list of potential TeV emitting BL Lac candidates that was synthesized using X-ray observations of BL Lac objects and a Synchrotron Self-Compton model. Milagro's sensitivity was not sufficient to detect any of those candidates. However, the 95% confidence flux upper limits of those sources were above the predicted flux. Therefore, these results provide evidence to conclude that the Synchrotron Self-Compton model for BL Lac objects is still a viable

  19. Dynamic imaging and hydrodynamics study of high velocity, laser-accelerated thin foil targets using multiframe optical shadowgraphy

    Indian Academy of Sciences (India)

    S Tripathi; S Chaurasia; P Leshma; L J Dhareshwar

    2012-12-01

    The main aim of the study of thin target foil–laser interaction experiments is to understand the physics of hydrodynamics of the foil acceleration, which is highly relevant to inertial confinement fusion (ICF). This paper discusses a simple, inexpensive multiframe optical shadow-graphy diagnostics developed for dynamic imaging of high velocity laser-accelerated target foils of different thicknesses. The diagnostic has a spatial and temporal resolution of 12 m and 500 ps respectively in the measurements. The target velocity is in the range of 106 - 107 cm/s. Hydrodynamic efficiency of such targets was measured by energy balance experiments together with the measurement of kinetic energy of the laser-driven targets. Effect of target foil thickness on the hydrodynamics of aluminum foils was studied for determining the optimum conditions for obtaining a directed kinetic energy transfer of the accelerated foil. The diagnostics has also been successfully used to study ablatively accelerated targets of other novel materials.

  20. Highly-Damped Spectral Acceleration as a Ground Motion Intensity Measure for Estimating Collapse Vulnerability of Buildings

    Science.gov (United States)

    Buyco, K.; Heaton, T. H.

    2016-12-01

    Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.

  1. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  2. High-Speed Digital Signal Processing Method for Detection of Repeating Earthquakes Using GPGPU-Acceleration

    Science.gov (United States)

    Kawakami, Taiki; Okubo, Kan; Uchida, Naoki; Takeuchi, Nobunao; Matsuzawa, Toru

    2013-04-01

    Repeating earthquakes are occurring on the similar asperity at the plate boundary. These earthquakes have an important property; the seismic waveforms observed at the identical observation site are very similar regardless of their occurrence time. The slip histories of repeating earthquakes could reveal the existence of asperities: The Analysis of repeating earthquakes can detect the characteristics of the asperities and realize the temporal and spatial monitoring of the slip in the plate boundary. Moreover, we are expecting the medium-term predictions of earthquake at the plate boundary by means of analysis of repeating earthquakes. Although the previous works mostly clarified the existence of asperity and repeating earthquake, and relationship between asperity and quasi-static slip area, the stable and robust method for automatic detection of repeating earthquakes has not been established yet. Furthermore, in order to process the enormous data (so-called big data) the speedup of the signal processing is an important issue. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for the signal processing in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. That is, a PC (personal computer) with GPUs might be a personal supercomputer. GPU computing gives us the high-performance computing environment at a lower cost than before. Therefore, the use of GPUs contributes to a significant reduction of the execution time in signal processing of the huge seismic data. In this study, first, we applied the band-limited Fourier phase correlation as a fast method of detecting repeating earthquake. This method utilizes only band-limited phase information and yields the correlation values between two seismic signals. Secondly, we employ coherence function using three orthogonal components (East-West, North-South, and Up-Down) of seismic data as a

  3. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  4. Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments

    CERN Document Server

    AUTHOR|(CDS)2090137; Brugger, Markus

    The aim of this Thesis is to investigate the feasibility of a distributed optical fiber radiation sensing system to be used at high energy physics accelerators and experiments where complex mixed-field environments are present. In particular, after having characterized the response of a selection of radiation sensitive optical fibers to ionizing radiation coming from a 60Co source, the results of distributed optical fiber radiation measurements in a mixed-field environment are presented along with the method to actually estimate the dose variation. This study demonstrates that distributed optical fiber dosimetry in the above mentioned mixed-field radiation environment is feasible, allowing to detect dose variations of about 10-15 Gy with a 1 m spatial resolution. The proof of principle has fully succeeded and we can now tackle the challenge of an industrial installation taking into account that some optimizations need to be done both on the control unit of the system as well as on the choice of the sensing f...

  5. Calculations of dose attenuation in slowly curving tunnel geometries at a high-energy proton accelerator

    CERN Document Server

    Vincke, Helmut H

    2003-01-01

    The CERN Neutrino beam to Gran Sasso (CNGS) project and the Large Hadron Collider (LHC) will receive 450 GeV/c protons extracted from the Super Proton Synchrotron (SPS). In the tunnels leading to the CNGS target and the LHC accelerator there is a 150 m straight section where a beam dump (TED) can be moved into the beam chamber, intercepting the proton beam. After the TED, the beam is routed into either the 700m slowly curving TT41 tunnel (CNGS) or the TI8 tunnel consisting of a 400 m straight section followed by a curved 1.5 km long tunnel (LHC). The curved tunnels have a radius of approximately 1 km. During tests a proton beam of 1.2 multiplied by 10**1**3 s**- **1 could be sent to the dump. The question posed was how close to the TED could access be allowed during dumping operations. Initial simulations using the FLUKA Monte-Carlo transport program were optimised assuming that the high-energy muon contribution dominates. Discrepancies with an analytically based calculation led to a revision of this optimisa...

  6. High Power Proton Accelerator Development at KAERI and its Vacuum System

    Science.gov (United States)

    Choi, Byung-Ho; Park, Mi Young; Kim, Kui Young; Kim, Kye Ryung; Kim, Jun Yeon; Cho, Yong-Sub

    The Proton Engineering Frontier Project (PEFP), approved and launched by the Korean government in July 2002, includes a 100 MeV proton linear accelerator (linac) development and programs for its utilization and application. The main goals in the first phase of the project, spanning from 2002 to 2005, were the design of a 100 MeV proton linac and the development of a 20 MeV linac consisting of a 50 keV proton injector, a 3 MeV radio frequency quadrupole (RFQ), and a 20 MeV drift tube linac (DTL). The 50 keV injector and 3 MeV RFQ have been installed and tested, and the 20 MeV DTL is being assembled, tuned and under a beam test. At the same time, the utilization programs using the proton beam have been planned, and some are now under way. The vacuum system of the 20 MeV proton linac and its related issues, especially in operation with a high duty, are discussed in detail.

  7. Rotational IMRT delivery using a digital linear accelerator in very high dose rate 'burst mode'

    Science.gov (United States)

    Salter, Bill J.; Sarkar, Vikren; Wang, Brian; Shukla, Himanshu; Szegedi, Martin; Rassiah-Szegedi, Prema

    2011-04-01

    Recently, there has been a resurgence of interest in arc-based IMRT, through the use of 'conventional' multileaf collimator (MLC) systems that can treat large tumor volumes in a single, or very few pass(es) of the gantry. Here we present a novel 'burst mode' modulated arc delivery approach, wherein 2000 monitor units per minute (MU min-1) high dose rate bursts of dose are facilitated by a flattening-filter-free treatment beam on a Siemens Artiste (Oncology Care Systems, Siemens Medical Solutions, Concord, CA, USA) digital linear accelerator in a non-clinical configuration. Burst mode delivery differs from continuous mode delivery, used by Elekta's VMAT (Elekta Ltd, Crawley, UK) and Varian's RapidArc (Varian Medical Systems, Palo Alto, CA, USA) implementations, in that dose is not delivered while MLC leaves are moving. Instead, dose is delivered in bursts over very short arc angles and only after an MLC segment shape has been completely formed and verified by the controller. The new system was confirmed to be capable of delivering a wide array of clinically relevant treatment plans, without machine fault or other delivery anomalies. Dosimetric accuracy of the modulated arc platform, as well as the Prowess (Prowess Inc., Concord, CA, USA) prototype treatment planning version utilized here, was quantified and confirmed, and delivery times were measured as significantly brief, even with large hypofractionated doses. The burst mode modulated arc approach evaluated here appears to represent a capable, accurate and efficient delivery approach.

  8. Accelerated maturation of white matter in young children with autism: a high b value DWI study.

    Science.gov (United States)

    Ben Bashat, Dafna; Kronfeld-Duenias, Vered; Zachor, Ditza A; Ekstein, Perla M; Hendler, Talma; Tarrasch, Ricardo; Even, Ariela; Levy, Yonata; Ben Sira, Liat

    2007-08-01

    The goal of this work was to study white matter maturation in young children with autism following previous reports of increased cerebral volume during early development, as well as arguments for abnormal neural growth patterns and regulation at this critical developmental period. We applied diffusion tensor imaging (DTI) and high b value diffusion-weighted imaging (DWI) to young children diagnosed with autism and to a typically developing (TD) control group. Fractional anisotropy (FA), probability and displacement were measured in overall analysis as well as in regions of interest (ROI). Individual data points of children with autism were compared to the developmental curves obtained from typically developing children. Increased restriction, reflected in significantly increased FA and probability along with reduced displacement values, was detected in overall analysis as well as in several brain regions. Increased restriction, suggesting an early and accelerated abnormal maturation of white matter, was more dominant in the left hemisphere and was mainly detected in the frontal lobe. No changes were detected in the occipital lobes. These results support previous claims of abnormal brain overgrowth in young children with autism and are in contrast to the decreased restricted diffusion reported in previous studies in adolescent with autism.

  9. Accelerated search for biomolecular network models to interpret high-throughput experimental data

    Directory of Open Access Journals (Sweden)

    Sokhansanj Bahrad A

    2007-07-01

    Full Text Available Abstract Background The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables. Results Optimal parameters for the evolutionary search were identified based on artificial data, and the algorithm showed scalable and consistent performance for as many as 150 variables. The method was tested on previously published human cell cycle gene expression microarray data sets. The evolutionary search method was found to converge to the results of exhaustive search. The randomized evolutionary search was able to converge on a set of similar best-fitting network models on different training data sets after 30 generations running 30 models per generation. Consistent results were found regardless of which of the published data sets were used to train or verify the quantitative predictions of the best-fitting models for cell cycle gene dynamics. Conclusion Our results demonstrate the capability of scalable evolutionary search for fuzzy network models to address the problem of inferring models based on complex, noisy biomolecular

  10. High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity.

    Directory of Open Access Journals (Sweden)

    Lisa Gruber

    Full Text Available BACKGROUND: Obesity has been associated with a more severe disease course in inflammatory bowel disease (IBD and epidemiological data identified dietary fats but not obesity as risk factors for the development of IBD. Crohn's disease is one of the two major IBD phenotypes and mostly affects the terminal ileum. Despite recent observations that high fat diets (HFD impair intestinal barrier functions and drive pathobiont selection relevant for chronic inflammation in the colon, mechanisms of high fat diets in the pathogenesis of Crohn's disease are not known. The aim of this study was to characterize the effect of HFD on the development of chronic ileal inflammation in a murine model of Crohn's disease-like ileitis. METHODS: TNF(ΔARE/WT mice and wildtype C57BL/6 littermates were fed a HFD compared to control diet for different durations. Intestinal pathology and metabolic parameters (glucose tolerance, mesenteric tissue characteristics were assessed. Intestinal barrier integrity was characterized at different levels including polyethylene glycol (PEG translocation, endotoxin in portal vein plasma and cellular markers of barrier function. Inflammatory activation of epithelial cells as well as immune cell infiltration into ileal tissue were determined and related to luminal factors. RESULTS: HFD aggravated ileal inflammation but did not induce significant overweight or typical metabolic disorders in TNF(ΔARE/WT. Expression of the tight junction protein Occludin was markedly reduced in the ileal epithelium of HFD mice independently of inflammation, and translocation of endotoxin was increased. Epithelial cells showed enhanced expression of inflammation-related activation markers, along with enhanced luminal factors-driven recruitment of dendritic cells and Th17-biased lymphocyte infiltration into the lamina propria. CONCLUSIONS: HFD feeding, independently of obesity, accelerated disease onset of small intestinal inflammation in Crohn's disease

  11. High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity.

    Science.gov (United States)

    Gruber, Lisa; Kisling, Sigrid; Lichti, Pia; Martin, François-Pierre; May, Stephanie; Klingenspor, Martin; Lichtenegger, Martina; Rychlik, Michael; Haller, Dirk

    2013-01-01

    Obesity has been associated with a more severe disease course in inflammatory bowel disease (IBD) and epidemiological data identified dietary fats but not obesity as risk factors for the development of IBD. Crohn's disease is one of the two major IBD phenotypes and mostly affects the terminal ileum. Despite recent observations that high fat diets (HFD) impair intestinal barrier functions and drive pathobiont selection relevant for chronic inflammation in the colon, mechanisms of high fat diets in the pathogenesis of Crohn's disease are not known. The aim of this study was to characterize the effect of HFD on the development of chronic ileal inflammation in a murine model of Crohn's disease-like ileitis. TNF(ΔARE/WT) mice and wildtype C57BL/6 littermates were fed a HFD compared to control diet for different durations. Intestinal pathology and metabolic parameters (glucose tolerance, mesenteric tissue characteristics) were assessed. Intestinal barrier integrity was characterized at different levels including polyethylene glycol (PEG) translocation, endotoxin in portal vein plasma and cellular markers of barrier function. Inflammatory activation of epithelial cells as well as immune cell infiltration into ileal tissue were determined and related to luminal factors. HFD aggravated ileal inflammation but did not induce significant overweight or typical metabolic disorders in TNF(ΔARE/WT). Expression of the tight junction protein Occludin was markedly reduced in the ileal epithelium of HFD mice independently of inflammation, and translocation of endotoxin was increased. Epithelial cells showed enhanced expression of inflammation-related activation markers, along with enhanced luminal factors-driven recruitment of dendritic cells and Th17-biased lymphocyte infiltration into the lamina propria. HFD feeding, independently of obesity, accelerated disease onset of small intestinal inflammation in Crohn's disease-relevant mouse model through mechanisms that involve increased

  12. Two-stage acceleration of interstellar ions due to the interaction of high-energy lepton plasma flow

    CERN Document Server

    Cui, Yun-Qian; Lu, Quan-Ming; Li, Yu-Tong; Zhang, Jie

    2015-01-01

    We present the particle-in-cell (PIC) simulation results of the interaction of a high-energy lepton plasma flow with background electron-proton plasma and focus on the acceleration processes of the protons. It is found that the acceleration follows a two-stage processes. In the first stage, protons are accelerated transversely (perpendicular to the lepton flow) by the turbulent magnetic field "islands" generated via the strong Weibel-type instabilities. The accelerated protons shows a perfect inverse-power energy spectrum. As the interaction continues, a shockwave structure forms and the protons in front of the shockwave are reflected at twice of the shock speed, resulting in a quasi-monoenergetic peak located near 200MeV under the simulation parameters.

  13. Aerodynamics in arbitrarily accelerating frames: application to high-g turns

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available Fifth-generation missilies accelerate up to 100 g in turns, and higher accelerations are expected as agility increases. The authors have developed the theory of aerodynamics for arbitrary accelerations, and have validated modelling in a...

  14. Aerodynamics in arbitrarily accelerating frames: application to high-g turns

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available Fifth-generation missiles accelerate up to 100 g in turns, and higher accelerations are expected as agility increases. The auhtors have developed the theory of aerodynamics for arbitrary accelerations, and have validated modelling in a Computational...

  15. Production of high-energy colliding. gamma gamma. and. gamma. e beams with a high luminosity at VLEPP accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Serbo, V.G.; Tel' nov, V.I.

    1981-11-05

    Colliding ..gamma gamma.. and ..gamma..e beams with an energy and luminosity of the same order of magnitude as for e/sup +/e/sup -/ beams can be produced by scattering a laser light at the accelerators with colliding e/sup +/e/sup -/ beams with an energy > or approx. =100 GeV. Such accelerators are currently in the design stage.

  16. Towards swift ion bunch acceleration by high-power laser pulses at the Centre for Advanced Laser Applications (CALA)

    Science.gov (United States)

    Lindner, F. H.; Haffa, D.; Bin, J. H.; Englbrecht, F.; Gao, Y.; Gebhard, J.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Lehrack, S.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Würl, M.; Parodi, K.; Schreiber, J.; Thirolf, P. G.

    2017-07-01

    Laser-driven acceleration of ions has inspired novel applications, that can benefit from ion bunch properties different from conventionally (non-laser based) accelerated particle beams. Those differences range from extremely short bunch durations, broad energy spectra, large divergence angles and small source sizes to ultra-high ion bunch densities. So far, the main focus of research has been concentrating on the physics of the interaction of intense laser pulses with plasmas and the related mechanisms of ion acceleration. Now, the new Centre for Advanced Laser Applications (CALA) near Munich aims at pushing these ion bunches towards applications, including radiation therapy of tumors and the development of heavy ion bunches with solid-state-like density. These are needed for novel reaction mechanisms ('fission-fusion') to study the origin of heavy elements in the universe and to prepare for related studies at the upcoming EU-funded high-power laser facility ELI - Nuclear Physics in Bucharest.

  17. Planned High-gradient Flat-beam-driven Dielectric Wakefield Experiments at the Fermilab’s Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [NICADD, DeKalb; Mihalcea, Daniel [NICADD, DeKalb; Piot, Philippe [Fermilab; Zhu, Jun [Mianyang CAEP

    2014-07-01

    In beam driven dielectric wakefield acceleration (DWA), high-gradient short-wavelength accelerating fields are generally achieved by employing dielectric-lined waveguides (DLWs)  with small aperture which constraints the beam sizes. In this paper we investigate the possibility of using a low-energy (50-MeV) flat beams to induce high-gradient wakes in a slab-symmetric DLW. We demonstrate via numerical simulations the possibility to produce axial electric field with peak amplitude close to 0.5 GV/m. Our studies are carried out using the Fermilab's Advanced Superconducting Test Accelerator (ASTA) photoinjector beamline. We finally discuss a possible experiment that could be performed in the ASTA photoinjector and eventually at higher energies.  

  18. Collimated Propagation of Fast Electron Beams Accelerated by High-Contrast Laser Pulses in Highly Resistive Shocked Carbon

    Science.gov (United States)

    Vaisseau, X.; Morace, A.; Touati, M.; Nakatsutsumi, M.; Baton, S. D.; Hulin, S.; Nicolaï, Ph.; Nuter, R.; Batani, D.; Beg, F. N.; Breil, J.; Fedosejevs, R.; Feugeas, J.-L.; Forestier-Colleoni, P.; Fourment, C.; Fujioka, S.; Giuffrida, L.; Kerr, S.; McLean, H. S.; Sawada, H.; Tikhonchuk, V. T.; Santos, J. J.

    2017-05-01

    Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism—observed only for times before the shock breakout at the inner cone tip—is due to self-generated resistive magnetic fields of ˜0.5 - 1 kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.

  19. A New Approach of Studying Correlation between Outdoor Exposure and Indoor Accelerated Corrosion Test for High Polymer Materials

    Institute of Scientific and Technical Information of China (English)

    YANG Lixia; LI Xiaogang; ZHANG Sanping

    2006-01-01

    The correlation between outdoor exposure and indoor accelerated corrosion test for high polymer materials was investigated according to the variation of the functional group of exposure models aged. Environment aging intensities at different zones ( Wuhan and Lasa with the same latitude ) and the influences of indoor accelerating factors including water and ultraviolet on weathering performance of high polymer materials were also studied by comparing different indoor accelerated corrosion testing results. The experimental results show that: by testing variations of carbonyl exponent of polythene ( which represented the degradation behavior of highpolymer materials due to ultraviolet oxidation of double bond) and ultraviolet absorbance of polycarbonate ( which represented the degradation behavior of high polymer materials due to abevacuation of branched chain), the degradation behavior of high polymer materials could be studied. Carbonyl exponent of polythene exposed in Wuhan and Lasa for 1 year was equal to that exposed in indoor cycle ultraviolet for 128 h and 170 h, respectively, the ultraviolet absorbance of polycarbonate exposed in Wuhan for 1 year was equal to that exposed in indoor cycle ultraviolet for 240 h. The ratio of environment aging intensity of Lasa to Wuhan was around 1.2. With the prolongation of cycle accelerated ultraviolet exposure time, the variations of carbonyl exponent of polythene and the ultraviolet absorbance of polycarbonate were in the same shape of first order exponential decay curve. Accompanied with ultraviolet, the effect of water condensated on the sample on weathering performance of polythene was more significant than that of polycarbonate.

  20. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    Science.gov (United States)

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons (P high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests

  1. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Nishiuchi, M., E-mail: nishiuchi.mamiko@jaea.go.jp; Sakaki, H.; Esirkepov, T. Zh.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Bulanov, S. V.; Kondo, K. [Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto (Japan); Nishio, K.; Orlandi, R.; Koura, H.; Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai, Ibaraki (Japan); Pikuz, T. A.; Faenov, A. Ya. [Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto (Japan); Joint Institute for High Temperature of RAS, Izhorskaya St. 13 Bd. 2, Moscow (Russian Federation); Skobelev, I. Yu. [Joint Institute for High Temperature of RAS, Izhorskaya St. 13 Bd. 2, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sako, H. [Advanced Science Research Center, Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai, Ibaraki (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai, Ibaraki (Japan); Matsukawa, K. [Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto (Japan); Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukae-minami, Higashinada, Kobe (Japan); and others

    2015-03-15

    Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated with a 200 TW femtosecond high-intensity laser irradiating a micron-thick Al foil with Fe impurity on the surface. An energetic low-emittance high-density beam of heavy ions with a large charge-to-mass ratio can be obtained, which is useful for many applications, such as a compact radio isotope source in combination with conventional technology.

  2. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser

    Science.gov (United States)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Sako, H.; Pirozhkov, A. S.; Matsukawa, K.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-03-01

    Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated with a 200 TW femtosecond high-intensity laser irradiating a micron-thick Al foil with Fe impurity on the surface. An energetic low-emittance high-density beam of heavy ions with a large charge-to-mass ratio can be obtained, which is useful for many applications, such as a compact radio isotope source in combination with conventional technology.

  3. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  4. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection.

    Science.gov (United States)

    van Amerom, Joshua F P; Lloyd, David F A; Price, Anthony N; Kuklisova Murgasova, Maria; Aljabar, Paul; Malik, Shaihan J; Lohezic, Maelene; Rutherford, Mary A; Pushparajah, Kuberan; Razavi, Reza; Hajnal, Joseph V

    2017-04-03

    Development of a MRI acquisition and reconstruction strategy to depict fetal cardiac anatomy in the presence of maternal and fetal motion. The proposed strategy involves i) acquisition and reconstruction of highly accelerated dynamic MRI, followed by image-based ii) cardiac synchronization, iii) motion correction, iv) outlier rejection, and finally v) cardiac cine reconstruction. Postprocessing entirely was automated, aside from a user-defined region of interest delineating the fetal heart. The method was evaluated in 30 mid- to late gestational age singleton pregnancies scanned without maternal breath-hold. The combination of complementary acquisition/reconstruction and correction/rejection steps in the pipeline served to improve the quality of the reconstructed 2D cine images, resulting in increased visibility of small, dynamic anatomical features. Artifact-free cine images successfully were produced in 36 of 39 acquired data sets; prolonged general fetal movements precluded processing of the remaining three data sets. The proposed method shows promise as a motion-tolerant framework to enable further detail in MRI studies of the fetal heart and great vessels. Processing data in image-space allowed for spatial and temporal operations to be applied to the fetal heart in isolation, separate from extraneous changes elsewhere in the field of view. Magn Reson Med, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  5. Stochastic Acceleration of Electrons by the Right-Hand Extraordinary Mode in the High Density Plasma Region

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; ZHENG Hui-Nan; WANG Shui

    2005-01-01

    @@ The resonant acceleration of electrons by the superluminous R-X mode is evaluated in the high density plasma region of Earth, specifically around the geostationary orbit. The corresponding resonant frequency range together with the harmonic N required for producing a significant acceleration is studied in detail. It is found that the stochastic acceleration is basically controlled by the harmonic N and a dimensionless parameter α = |Ωe2|/ωp2e (where |Ωe| and ωpe are the electron gyrofrequency and plasma frequency respectively). For α = 0.1 (around the geostationary orbit), there are not gyroresonances occurring between electrons and right-hand extraordinarymode electromagnetic waves until higher harmonics N ≥ 4; while for α = 0.5, the gyroresonance begins at N = 2.Substantial acceleration of electrons by the right-hand extraordinary mode is possible for those higher harmonic(N > 1) resonances over a wide range of wave normal angles θ. This indicates that higher harmonic resonance can play an important role on the electron acceleration in the high density plasma region (α< 1).

  6. Evaluation of ‘OpenCL for FPGA’ for Data Acquisition and Acceleration in High Energy Physics

    Science.gov (United States)

    Sridharan, Srikanth

    2015-12-01

    The increase in the data acquisition and processing needs of High Energy Physics experiments has made it more essential to use FPGAs to meet those needs. However harnessing the capabilities of the FPGAs has been hard for anyone but expert FPGA developers. The arrival of OpenCL with the two major FPGA vendors supporting it, offers an easy software-based approach to taking advantage of FPGAs in applications such as High Energy Physics. OpenCL is a language for using heterogeneous architectures in order to accelerate applications. However, FPGAs are capable of far more than acceleration, hence it is interesting to explore if OpenCL can be used to take advantage of FPGAs for more generic applications. To answer these questions, especially in the context of High Energy Physics, two applications, a DAQ module and an acceleration workload, were tested for implementation with OpenCL on FPGAs2. The challenges on using OpenCL for a DAQ application and their solutions, together with the performance of the OpenCL based acceleration are discussed. Many of the design elements needed to realize a DAQ system in OpenCL already exists, mostly as FPGA vendor extensions, but a small number of elements were found to be missing. For acceleration of OpenCL applications, using FPGAs has become as easy as using GPUs. OpenCL has the potential for a massive gain in productivity and ease of use enabling non FPGA experts to design, debug and maintain the code. Also, FPGA power consumption is much lower than other implementations. This paper describes one of the first attempts to explore the use of OpenCL for applications outside the acceleration workloads.

  7. Enhanced high-energy neutrino emission from choked gamma-ray bursts due to meson and muon acceleration

    CERN Document Server

    Koers, Hylke B J

    2007-01-01

    It has been suggested that a potentially large fraction of supernovae could be accompanied by relativistic outflows that stall below the stellar surface. In this letter we point out that internal shocks that are believed to accelerate protons to very high energies in these flows will also accelerate secondary mesons and muons. As a result the neutrino spectrum from meson and muon decay is expected to be much harder compared to previous estimates, extending as a single power law up to ~10^3 TeV. This greatly improves the detection prospects.

  8. Plasma wakefield excitation by incoherent laser pulses: a path towards high-average power laser-plasma accelerators

    CERN Document Server

    Benedetti, C; Esarey, E; Leemans, W P

    2014-01-01

    In a laser plasma accelerator (LPA), a short and intense laser pulse propagating in a plasma drives a wakefield (a plasma wave with a relativistic phase velocity) that can sustain extremely large electric fields, enabling compact accelerating structures. Potential LPA applications include compact radiation sources and high energy linear colliders. We propose and study plasma wave excitation by an incoherent combination of a large number of low energy laser pulses (i.e., without constraining the pulse phases). We show that, in spite of the incoherent nature of electromagnetic fields within the volume occupied by the pulses, the excited wakefield is regular and its amplitude is comparable or equal to that obtained using a single, coherent pulse with the same energy. These results provide a path to the next generation of LPA-based applications, where incoherently combined multiple pulses may enable high repetition rate, high average power LPAs.

  9. Getting Ahead: Current Secondary and Postsecondary Acceleration Options for High-Ability Students in Indiana

    Science.gov (United States)

    Peters, Scott J.; Mann, Rebecca L.

    2009-01-01

    The International Baccalaureate and concurrent enrollment programs are both options available for high-ability high school students. Their value lies in their potential to provide greater depth and breadth of curriculum than is traditionally possible in public high schools. This study surveyed public school corporations in Indiana to examine the…

  10. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Green, A. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zhang, X. [Shanhai Inst. of Optics and Fine Mechanics, Shanghai (China); Farinella, D. M. [Univ. of California, Irvine, CA (United States); Taborek, P. [Univ. of California, Irvine, CA (United States); Tajima, T. [Univ. of California, Irvine, CA (United States); Wheeler, J. A. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science and FOCUS Center; Ecole Polytechnique, CNRS, Palaiseau (France). Lab. d' Optique Appliquee; Mourou, G. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science and FOCUS Center; Ecole Polytechnique, CNRS, Palaiseau (France). Lab. d' Optique Appliquee

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n0 = ~ 1020 – 1023 cm-3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a

  11. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young min [Fermilab; Green, A. [NICADD, DeKalb; Lumpkin, A. H. [Fermilab; Thurman-Keup, R. M. [Fermilab; Shiltsev, V. [Fermilab; Zhang, X. [Shanghai, Inst. Optics, Fine Mech.; Farinella, D. M. [UC, Irvine; Taborek, P. [UC, Irvine; Tajima, T. [UC, Irvine; Wheeler, J. A. [U. Michigan, Ann Arbor; Mourou, G. [U. Michigan, Ann Arbor

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1] in principle since the density of charge carriers (conduction electrons) in solids n0 = ~ 10 to the power of 20 – 10 to the power of 23 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a

  12. Ultra-high gradient channeling acceleration in nanostructures: Design/progress of proof-of-concept (POC) experiments

    Science.gov (United States)

    Shin, Y. M.; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.-A.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.

    2017-03-01

    A short bunch of relativistic particles, or a short-pulse laser, perturb the density state of conduction electrons in a solid crystal and excite wakefields along atomic lattices in a crystal. Under a coupling condition between a driver and plasma, the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1], in principle, since the density of charge carriers (conduction electrons) in solids n0 = 1020 - 1023 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The de-channeling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from the Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and Northern Illinois University (NIU). In the FAST facility, the electron beamline was successfully commissioned at 50 MeV, and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration proof-of-concept (POC). Another POC experiment is also designed for the NIU accelerator lab with time

  13. Double-Relativistic-Electron-Layer Proton Acceleration With High-Contrast Circular-Polarization Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yong-sheng; WANG; Nai-yan; TANG; Xiu-zhang; SHI; Yi-jin

    2012-01-01

    <正>Laser-ion acceleration has been the focus of international research for many years. However, obtaining mono-energetic proton beams larger than 100 MeV is still a challenge. Although the field strength in laser-plasma acceleration is 3-4 orders higher than that in classic accelerators, it quickly decreases to zero in 1-2 pulse durations for target normal sheath acceleration (TNSA), which is dominated

  14. Direct High-Power Laser Acceleration of Ions for Medical Applications

    CERN Document Server

    Salamin, Y I; Keitel, C H

    2008-01-01

    Theoretical investigations show that linearly and radially polarized multiterawatt and petawatt laser beams, focused to subwavelength waist radii, can directly accelerate protons and carbon nuclei, over micron-size distances, to the energies required for hadron cancer therapy. Ions accelerated by radially polarized lasers have generally a more favorable energy spread than those accelerated by linearly polarized lasers of the same intensity.

  15. An accelerator scenario for hard X-ray free electron laser joint with high energy electron radiography

    CERN Document Server

    Wei, Tao; Yang, Guojun; Pang, Jian; Li, Yuhui; Li, Peng; Pflueger, Joachim; He, Xiaozhong; Lu, Yaxing; Wang, Ke; Long, Jidong; Zhang, Linwen; Wu, Qiang

    2016-01-01

    In order to study the dynamic response of the material and the physical mechanism of the fluid dynamics, an accelerator scenario which can be applied to hard X-ray free electron laser and high energy electron radiography was proposed. This accelerator is mainly composed of a 12GeV linac, an undulator branch and an eRad beamline. In order to characterize sample's dynamic behavior in situ and real-time with XFEL and eRad simultaneously, the linac should be capable of accelerating the two kinds of beam within the same operation mode. Combining with in-vacuum and tapering techniques, the undulator branch can produce more than 1E11 photons per pulse in 0.1 precent bandwidth at 42keV. Finally, the eRad amplifying beamline with 1:10 ratio was proposed as an important complementary tool for the wider view field and density identification ability.

  16. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method

    Science.gov (United States)

    Vay, J.-L.; Lehe, R.; Vincenti, H.; Godfrey, B. B.; Haber, I.; Lee, P.

    2016-09-01

    Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.

  17. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L., E-mail: jlvay@lbl.gov [LBNL, Berkeley, CA 94720 (United States); Lehe, R. [LBNL, Berkeley, CA 94720 (United States); Vincenti, H. [CEA, Saclay (France); Godfrey, B.B. [LBNL, Berkeley, CA 94720 (United States); U. Maryland, College Park, MD 20742 (United States); Haber, I. [U. Maryland, College Park, MD 20742 (United States); Lee, P. [LPGP, CNRS, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.

  18. An Efficient Framework for Compressed Sensing Reconstruction of Highly Accelerated Dynamic Cardiac MRI

    Science.gov (United States)

    Ting, Samuel T.

    cine images. First, algorithmic and implementational approaches are proposed for reducing the computational time for a compressed sensing reconstruction framework. Specific optimization algorithms based on the fast iterative/shrinkage algorithm (FISTA) are applied in the context of real-time cine image reconstruction to achieve efficient per-iteration computation time. Implementation within a code framework utilizing commercially available graphics processing units (GPUs) allows for practical and efficient implementation directly within the clinical environment. Second, patch-based sparsity models are proposed to enable compressed sensing signal recovery from highly undersampled data. Numerical studies demonstrate that this approach can help improve image quality at higher undersampling ratios, enabling real-time cine imaging at higher acceleration rates. In this work, it is shown that these techniques yield a holistic framework for achieving efficient reconstruction of real-time cine images with spatial and temporal resolution sufficient for use in the clinical environment. A thorough description of these techniques from both a theoretical and practical view is provided - both of which may be of interest to the reader in terms of future work.

  19. High energy physics advisory panel`s composite subpanel for the assessment of the status of accelerator physics and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation`s scientific research, and it has significantly enhanced the nation`s biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE`s OER programs and the DOE`s predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation.

  20. Accelerated Testing of High Temperature Permanent Magnets for Spacecraft Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature permanent magnet materials play an important role in NASA's space missions in electric propulsion, energy generation and storage and other...

  1. Overview of Accelerator Physics Studies and High Level Software for the Diamond Light Source

    CERN Document Server

    Bartolini, Riccardo; Belgroune, Mahdia; Christou, Chris; Holder, David J; Jones, James; Kempson, Vince; Martin, Ian; Rowland, James H; Singh, Beni; Smith, Susan L; Varley, Jennifer Anne; Wyles, Naomi

    2005-01-01

    DIAMOND is a 3 GeV synchrotron light source under construction at Rutherford Appleton Laboratory in Oxfordshire (UK). The accelerators complex consists of a 100 MeV LINAC, a full energy booster and a 3GeV storage ring with 22 straight sections available for IDs. Installation of all three accelerators has begun, and LINAC commissioning is due to start in Spring 2005. This paper will give an overview of the accelerator physics activity to produce final layouts and prepare for the commissioning of the accelerator complex. The DIAMOND facility is expected to be operational for users in 2007

  2. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb3Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb3Sn magnets with different heater geometries. ...

  3. Use of zooming and pulseshaping for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.

    2011-10-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al, Phys. Plasmas 17, 056317(2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ~ 1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is using the focal zoom capability of Nike and shaping the driving pulse to minimize shock heating of the accelerated target to achieve higher densities and velocities. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Work is supported by US DOE (NNSA) and Office of Naval Research. SAIC

  4. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  5. How the Accelerated Reader Program Can Become Counterproductive for High School Students

    Science.gov (United States)

    Thompson, Gail; Madhuri, Marga; Taylor, Deborah

    2008-01-01

    Two pressing education reforms entail improving students' reading skills and improving high schools in the United States. In this article, the authors focus on both of these issues by adding the voices of students in an underperforming high school to the discussion about reading reform. We present the results of a larger study pertaining…

  6. Computations of longitudinal electron dynamics in the recirculating cw RF accelerator-recuperator for the high average power FEL

    Science.gov (United States)

    Sokolov, A. S.; Vinokurov, N. A.

    1994-03-01

    The use of optimal longitudinal phase-energy motion conditions for bunched electrons in a recirculating RF accelerator gives the possibility to increase the final electron peak current and, correspondingly, the FEL gain. The computer code RECFEL, developed for simulations of the longitudinal compression of electron bunches with high average current, essentially loading the cw RF cavities of the recirculator-recuperator, is briefly described and illustrated by some computational results.

  7. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liang, E-mail: luliang@riken.jp [Institute of Modern Physics, 509 Nanchang Road, Lanzhou 730000 (China); Riken Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hattori, Toshiyuki [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan); Hayashizaki, Noriyosu [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-25 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Ishibashi, Takuya [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kashiwagi, Hirotsugu [Japan Atomic Energy Research Institute, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Takeuchi, Takeshi [Accelerator Engineering Corporation, 301, 6-18-1 Konakadai, Inage-ku, Chiba 263-0043 (Japan); Zhao, Hongwei; He, Yuan [Institute of Modern Physics, 509 Nanchang Road, Lanzhou 730000 (China)

    2013-11-21

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO{sub 2}-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C{sup 4+}. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  8. Test of a device for accelerated ageing of polymeric material in high concentrated sunlight at the DLR solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Witzke, A.; Neumann, A.; Kaluza, J. [German Aerospace Center (DLR), Solar Energy Technology, Cologne (Germany); Demuth, M.; Ritterskamp, P. [Max-Planck-Inst. fuer Strahlenchemie, Muelheim a.d.R. (Germany)

    2001-07-01

    Within this study the design and first tests of a device for accelerated ageing with high concentrated sunlight have been described. Firstly, the device was designed for testing samples of lacquer for the car industry. It is based on two points: first, the photochemical effect that the ageing of polymers is mainly initiated by the UV solar radiation and, second, on the idea to accelerate the ageing process by increasing the UV radiation dose. Therefore the concentrated sunlight at the DLR Solar Furnace is filtered by a cold-mirror that reflects the radiation with a wavelength below 450 nm onto the samples. The samples are fixed in a chamber where they can simultaneously be wetted by a spraying device. The first tests show that this device enables us to radiate the relevant samples with a high UV radiation intensity without overheating them. During one day irradiation at the DLR Solar Furnace in March 2001 we reach an UV radiation dose which is about sixteen times higher than the dose after 24 hours irradiation in common used weathering devices. Further tests at the DLR Solar Furnace have to examine in what way this increased radiation dose leads to a high accelerated ageing of the polymeric material. (orig.)

  9. Radical Acceleration in Educational Process of Highly Gifted Students and the Situation of Turkey

    Directory of Open Access Journals (Sweden)

    Hasan Said TORTOP

    2012-01-01

    Full Text Available A number of programs are implemented in order to meet cognitive, social and emotional needs of gifted students. One of them is the radical acceleration that ensures gifted students gaining access to university three or more years before than their peers. First performed in 1971, radical acceleration is currently implemented in many universities in United State and Asian and European countries. There are many researches on radical acceleration showing that it has no negative impacts on gifted students, rather it provides important outcomes. This study investigated radical acceleration and its outcomes on gifted students, as well as suggestions regarding to its application. Finally, situation of many countries in terms of radical acceleration, and legal regulations in Turkey's were presented.

  10. Methods of Generating High-Quality Beams in Laser Wakefield Accelerators through Self-Injection

    Science.gov (United States)

    Davidson, Asher Warren

    In the pursuit of discovering the fundamental laws and particles of nature, physicists have been colliding particles at ever increasing energy for almost a century. Lepton (electrons and positrons) colliders rely on linear accelerators (LINACS) because leptons radiate copious amounts of energy when accelerated in a circular machine. The size and cost of a linear collider is mainly determined by the acceleration gradient. Modern linear accelerators have gradients limited to 20-100 MeV/m because of the breakdown of the walls of the accelerator. Plasma based acceleration is receiving much attention because a plasma wave with a phase velocity near the speed of light can support acceleration gradients at least three orders of magnitude larger than those in modern accelerators. There is no breakdown limit in a plasma since it is already ionized. Such a plasma wave can be excited by the radiation pressure of an intense short pulse laser. This is called laser wakefield acceleration (LWFA). Much progress has been made in LWFA research in the past 30 years. Particle-in-cell (PIC) simulations have played a major part in this progress. The physics inherent in LWFA is nonlinear and three-dimensional in nature. Three-dimensional PIC simulations are computationally intensive. In this dissertation, we present and describe in detail a new algorithm that was introduced into the Particle-In-Cell Simulation Framework. We subsequently use this new quasi three-dimensional algorithm to efficiently explore the parameter regimes of LWFA that are accessible for existing and near term lasers. This regimes cannot be explored using full three-dimensional simulations even on leadership class computing facilities. The simulations presented in this dissertation show that the nonlinear, self-guided regime of LWFA described through phenomenological scaling laws by Lu et al., in 2007 is still useful for accelerating electrons to energies greater than 10 GeV. (Abstract shortened by ProQuest.).

  11. Modeling particle acceleration and transport during high-energy solar gamma-ray events: Results from the HESPERIA project

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Vainio, Rami; Rouillard, Alexis; Aran, Angels; Sipola, Robert; Pomoell, Jens

    2016-04-01

    The EU/H2020 project "High Energy Solar Particle Events foRecastIng and Analysis" (HESPERIA) has an objective to gain improved understanding of solar energetic particle (SEP) acceleration, release and transport related to long-duration gamma-ray emissions recently observed by Fermi/LAT. We have performed simulation studies for particle acceleration and transport for the 17 May 2012 event, which is also a Ground Level Enhancement (GLE) of solar cosmic rays. The particle event is modeled assuming that it is accelerated by the shock wave driven by the erupting coronal mass ejection (CME). We first analyze the 3-dimensional propagation of the shock through the corona using imaging observations from SDO, SOHO and STEREO spacecraft. The derived kinematics of the shock is combined with magnetohydrodynamic and potential field modeling of the ambient corona to derive the evolution of the shock parameters on a large set of field lines. We then employ the self-consistent Coronal Shock Acceleration (CSA) simulation model of the University of Turku to study the acceleration process on selected field lines and combine it with a new model of downstream particle transport to assess the energy spectrum and time profile of accelerated particles precipitating in the dense surface regions below the corona. We also employ the Shock and Particle (SaP) simulation model of the University of Barcelona to analyze the interplanetary counterpart of the Fermi event. In this paper, we will present the observations of the event, our approach to the modeling and the first results of the analysis. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA).

  12. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Science.gov (United States)

    Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.

    2017-09-01

    Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.

  13. Design, construction and operational results of the IGBT controlled solid state modulator high voltage power supply used in the high power RF systems of the Low Energy Demonstration Accelerator of the accelerator production of tritium (APT) project

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.T. III; Rees, D.; Przeklasa, R.S. [Los Alamos National Lab., NM (United States); Scott, M.C. [Continental Electronics Corp., Dallas, TX (United States)

    1998-12-31

    The 1700 MeV, 100 mA Accelerator Production of Tritium (APT) Proton Linac will require 244 1 MW, continuous wave RF systems. 1 MW continuous wave klystrons are used as the RF source and each klystron requires 95 kV, 17 A of beam voltage and current. The cost of the DC power supplies is the single largest percentage of the total RF system cost. Power supply reliability is crucial to overall RF system availability and AC to DC conversion efficiency affects the operating cost. The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory (LANL) will serve as the prototype and test bed for APT. The design of the RF systems used in LEDA is driven by the need to field test high efficiency systems with extremely high reliability before APT is built. The authors present a detailed description and test results of one type of advanced high voltage power supply system using Insulated Gate Bipolar Transistors (IGBTs) that has been used with the LEDA High Power RF systems. The authors also present some of the distinctive features offered by this power supply topology, including crowbarless tube protection and modular construction which allows graceful degradation of power supply operation.

  14. Linear accelerators for high energies. A report on the 1962 conference at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, John P.

    1963-01-01

    The linear accelerator was invented very early in the history of particle accelerators, but it has been one of the latest accelerators to be exploited. This is principally because of the very large quantities of radio-frequency power required to attain respectable energies in a reasonable distance. Radar developments during World War II resulted in production of the necessary megawatt oscillators or amplifiers, and linear accelerators, both for electrons and positive ions, are now operating in several centers. The electron linear accelerator has been extended to billion-volt energies, and in the Stanford two-mile version it will soon set new energy records between 20 and 40 BeV. The proton linear accelerator has had a less spectacular history. The highest energy yet achieved in a proton linac is about 70 MeV (at the University of Minnesota). Smaller proton linacs are in use as injectors for proton-synchrotrons, but no machine has been built or is under construction for the range above 100 MeV. This is because synchro-cyclotrons for this energy range are much cheaper and have been preferred for this reason, in spite of the fact that the beam from a synchro-cyclotron cannot be nearly as intense or as well collimated as the beam from a linear accelerator.

  15. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Science.gov (United States)

    Wang, Yu; Du, Haixiao; Xia, Mingrui; Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong

    2013-01-01

    Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  16. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  17. A High Performance FPGA-Based Sorting Accelerator with a Data Compression Mechanism

    National Research Council Canada - National Science Library

    KOBAYASHI, Ryohei; KISE, Kenji

    2017-01-01

    ... performance machines like embedded systems. In this paper, we present an FPGA-based sorting accelerator combining Sorting Network and Merge Sorter Tree, which is customizable by means of tuning design parameters...

  18. Acceleration of particles to high energy via gravitational repulsion in the Schwarzschild field

    Science.gov (United States)

    McGruder, Charles H.

    2017-01-01

    Gravitational repulsion is an inherent aspect of the Schwarzschild solution of the Einstein-Hilbert field equations of general relativity. We show that this circumstance means that it is possible to gravitationally accelerate particles to the highest cosmic ray energies.

  19. Testing cosmic-ray acceleration with radio relics: a high-resolution study using MHD and tracers

    CERN Document Server

    Wittor, Denis; Brüggen, Marcus

    2016-01-01

    Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magneto-hydrodynamical simulation of a galaxy cluster using the mesh refinement code \\enzo. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic $\\gamma$-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio emitting electrons found in relics have been typically sho...

  20. Acceleration of the rate of ethanol fermentation by addition of nitrogen in high tannin grain sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, J.T.; NeSmith, C.C.

    1987-01-01

    In this communication, the authors show that accelerated rates of ethanol production, comparable to sorghum varieties containing low levels of tannins and to corn, can occur without the removal of the tannins. The basis of the inhibition appears to be a lack of sufficient nitrogen in the mash for protein synthesis required to support an accelerated fermentative metabolism in Saccharomyces. No inhibition of the enzymes used for starch hydrolysis was found.

  1. The R/D of high power proton accelerator technology in China

    Indian Academy of Sciences (India)

    Guan Xialing

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  2. Highly symmetric interfacial structures in Rayleigh Taylor instability with time-dependent acceleration

    Science.gov (United States)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-10-01

    Rayleigh Taylor instability in a power-law time dependent acceleration field is investigated for a flow with the symmetry group p6mm (hexagonal) in the plane normal to acceleration. The Regular asymptotic solutions form a one-parameter family and the physically significant solution is identified with the one having the fastest growth and being stable (bubble tip velocity). Two distinct regimes are identified dependent on the acceleration exponent, the RM-type regime, where the dynamics is identical to conventional RM instability and is dominated by initial conditions, and the RT-type regime where the dynamics is dominated by the acceleration term. For the latter, the time dependence has profound effects on the dynamics. In the RT non-linear regime, the time dependence has no consequence on the morphology of the bubbles but the growth rate (bubble tip velocity) evolves as power law with the exponent set by the acceleration. The solutions for a one-parameter family, and are convergent with exponential decay of Fourier amplitudes close to the physical solution. The solutions are stable at maximum tip velocity and flat bubbles are unstable, and the growth/decay of perturbations is no longer purely exponential and depends on the acceleration exponent. The work is supported by the US National Science Foundation.

  3. Highly symmetric interfacial coherent structures in Rayleigh Taylor instability with time-dependent acceleration

    Science.gov (United States)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-11-01

    Rayleigh Taylor instability in a power-law time dependent acceleration field is investigated theoretically for a flow with the symmetry group p6mm (hexagon) in the plane normal to acceleration. In the nonlinear regime, regular asymptotic solutions form a one-parameter family. The physically significant solution is identified with the one having the fastest growth and being stable (bubble tip velocity). Two distinct regimes are identified depending on the acceleration exponent. Particularly, the RM-type regime, where the dynamics is identical to conventional RM instability and is dominated by initial conditions, and the RT-type regime where the dynamics is dominated by the acceleration term. For the latter, the time dependence has profound effects on the dynamics. In the RT non-linear regime, the time dependence has no consequence on the morphology of the bubbles; the growth rate (bubble tip velocity) evolves as power law with the exponent set by the acceleration. The solutions for a one-parameter family, and are convergent with exponential decay of Fourier amplitudes. The solutions are stable at maximum tip velocity, whereas flat bubbles are unstable, and the growth/decay of perturbations is no longer purely exponential and depends on the acceleration exponent. The work is supported by the US National Science Foundation.

  4. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  5. Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage uses a VCM (voice coil motor) driven macro positioning stage and a PZT piezo-electric driven micro positioning stage. The coupling characteristics of the system are analyzed to produce a control structure with a micro positioning stage that can dynamically compensate for the positioning error produced by the macro positioning stage. Models of the two positioning stages are described. The models cover both the mechanism and the actuator. For the macro positioning stage, friction characteristics are taken into account, and a controller with an LQG (linear-quadratic-Gaussian) control algorithm combining a feed-forward compensation algorithm is derived. A PID controller is used to control the micro positioning stage. Detailed designs are derived for the proposed approach, and the performance is validated by simulation.

  6. A high energy, heavy ion microprobe for ion beam research on the tandem accelerator at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Siegele, R.; Dytlewski, N.

    1996-04-01

    A comprehensive review is given on the production and use of heavy ion beams with spot sizes of a few {mu}m. The development of a high energy, heavy ion microprobe at ANSTO and its possible applications are discussed. The microprobe is designed to focus a wide range of ion beam types, from light ions such as protons up to ions as heavy as iodine. Details of the ion beam optics, optical calculations and a description of the proposed microbeam design are given. The unique combination of high energy, heavy ions and improved detection systems will provide high sensitivity elemental composition and depth profiling information, allowing surface topography and 3D surface reconstruction to be performed on a broad range of materials. 86 refs., 5 tabs., 15 figs.

  7. High-Repeatable Data Acquisition Systems for Pulsed Power Converters in Particle Accelerator Structures

    CERN Document Server

    AUTHOR|(CDS)2087245; Martino, Michele; Zinno, Raffaele

    In this Ph.D. thesis, the issues related to the metrological characterization of high-performance pulsed power converters are addressed. Initially, a background and a state of the art on the measurement systems needed to correctly operate a high-performance power converter are presented. As a matter of fact, power converters usually exploits digital control loops to enhance their performance. In this context the final performance of a power converter has to be validated by a reference instrument with higher metrological characteristics. In addition, an on-line measurement systemis also needed to digitize the quantity to be controlled with high accuracy. Then, in industrial applications of power converters metrology, specifications are given in terms of Worst-Case Uncertainty (WCU). Therefore, an analytical model for predicting the Worst-Case Uncertainty (WCU) of a measurement system is discussed and detailed for an instrument affected by Gaussian noise. Furthermore, the study and the design of a Reference Acq...

  8. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  9. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    Science.gov (United States)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  10. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    Science.gov (United States)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  11. Machine learning in computational biology to accelerate high-throughput protein expression

    DEFF Research Database (Denmark)

    Sastry, Anand; Monk, Jonathan M.; Tegel, Hanna

    2017-01-01

    and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide...... the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. Availability and implementation: We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template...

  12. Accelerating Virtual High-Throughput Ligand Docking: current technology and case study on a petascale supercomputer.

    Science.gov (United States)

    Ellingson, Sally R; Dakshanamurthy, Sivanesan; Brown, Milton; Smith, Jeremy C; Baudry, Jerome

    2014-04-25

    In this paper we give the current state of high-throughput virtual screening. We describe a case study of using a task-parallel MPI (Message Passing Interface) version of Autodock4 [1], [2] to run a virtual high-throughput screen of one-million compounds on the Jaguar Cray XK6 Supercomputer at Oak Ridge National Laboratory. We include a description of scripts developed to increase the efficiency of the predocking file preparation and postdocking analysis. A detailed tutorial, scripts, and source code for this MPI version of Autodock4 are available online at http://www.bio.utk.edu/baudrylab/autodockmpi.htm.

  13. High quality electron beam acceleration by ionization injection in laser wakefields with mid-infrared dual-color lasers

    CERN Document Server

    Zeng, Ming; Chen, Min; Mori, Warren B; Sheng, Zheng-Ming; Hidding, Bernhard

    2016-01-01

    For the laser wakefield acceleration, suppression of beam energy spread while keeping sufficient charge is one of the key challenges. In order to achieve this, we propose bichromatic laser ionization injection with combined laser wavelengths of $2.4\\rm \\mu m$ and $0.8\\rm \\mu m$ for wakefield excitation and for triggering electron injection via field ionization, respectively. A laser pulse at $2.4\\rm \\mu m$ wavelength enables one to drive an intense acceleration structure with relatively low laser power. To further reduce the requirement of laser power, we also propose to use carbon dioxide as the working gas medium, where carbon acts as the injection element. Our full three dimensional particle-in-cell simulations show that electron beams at the GeV energy level with both low energy spreads (around one percent) and high charges (several tens of picocoulomb) can be obtained by this scheme with laser parameters achievable in the near future.

  14. High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator.

    Science.gov (United States)

    Zhao, T Z; Behm, K; Dong, C F; Davoine, X; Kalmykov, S Y; Petrov, V; Chvykov, V; Cummings, P; Hou, B; Maksimchuk, A; Nees, J A; Yanovsky, V; Thomas, A G R; Krushelnick, K

    2016-08-26

    Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays.

  15. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  16. A new measurement tool for characterization of superconducting rf accelerator cavities using high-performance LTS SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Neubert, R [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Nietzsche, S [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Seidel, P [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Knaack, K [DESY Hamburg (Germany); Wittenburg, K [DESY Hamburg (Germany); Peters, A [Heidelberger Ionenstrahl-Therapiezentrum, Heidelberg (Germany)

    2007-11-15

    This paper presents a new system to measure very low currents in an accelerator environment, using a cryogenic current comparator (CCC). In principle a CCC is a conventional current transformer using the high-performance SQUID technology to sense the magnetic fields caused by the beam current. Since the system is sensitive on a pA level, it is an optimum device to detect dark currents of superconducting cavities. The system presented here is designed for the test facilities of the superconducting accelerator modules for the European XFEL at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg. Measurements in a quiet environment showed that an intrinsic noise level of the CCC of 40 pA Hz{sup -1/2} could be achieved.

  17. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    Science.gov (United States)

    Brenner, C. M.; Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Gray, R. J.; Rosinski, M.; Deppert, O.; Badziak, J.; Batani, D.; Davies, J. R.; Hassan, S. M.; Lancaster, K. L.; Li, K.; Musgrave, I. O.; Norreys, P. A.; Pasley, J.; Roth, M.; Schlenvoigt, H.-P.; Spindloe, C.; Tatarakis, M.; Winstone, T.; Wolowski, J.; Wyatt, D.; McKenna, P.; Neely, D.

    2014-02-01

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5-30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ˜1 ps.

  18. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C. M. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Gray, R. J.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Rosinski, M.; Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, 00-908 Warsaw (Poland); Deppert, O. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Batani, D. [Dipartimento di Fisica G. Occhialini, Universita di Milano Bicocca, 20126 Milan (Italy); Davies, J. R. [Laboratory for Laser Energetics, Fusion Science Center for Extreme States of Matter, University of Rochester, Rochester, New York 14623 (United States); Hassan, S. M.; Tatarakis, M. [Department of Electronics Engineering, Centre for Plasma Physics and Lasers, 73133 Chania, 74100 Rethymno, Crete (Greece); and others

    2014-02-24

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ∼1 ps.

  19. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  20. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro...... and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did...

  1. Field-reversed bubble in deep plasma channels for high quality electron acceleration

    CERN Document Server

    Pukhov, A; Tueckmantel, T; Thomas, J; Kostyukov, I Yu

    2014-01-01

    We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10^{-3} r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultra-short pancake-like laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy.

  2. Controlled high-energy ion acceleration with intense chirped standing waves

    Science.gov (United States)

    Mackenroth, Felix; Gonoskov, Arkady; Marklund, Mattias

    2016-10-01

    We present the latest results of the recently proposed ion acceleration mechanism ``chirped standing wave acceleration''. This mechanism is based on locking the electrons of a thin plasma layer to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the thin layer. The resulting longitudinal charge separation field between the displaced electrons and the residual ions then accelerates the latter. Since the plasma layer is stabilized by the standing wave, the formation of plasma instabilities is suppressed. Furthermore, the experimentally accessible laser chirp provides a versatile tool for manipulating the resulting ion beam in terms of maximum particle energy, particle number and spectral distribution. Through this scheme, proton beams, with energy spectra peaked around 100 MeV, were shown to be feasible for pulse energies at the level of 10 J. Wallenberg Foundation within the Grant ''Plasma based compact ion sources'' (PLIONA).

  3. Nitrogen heat treatments of superconducting niobium radio frequency cavities: a pathway to highly efficient accelerating structures

    CERN Document Server

    Grassellino, A; Melnychuk, O; Trenikhina, Y; Crawford, A; Rowe, A; Wong, M; Sergatskov, D; Khabiboulline, T; Barkov, F

    2013-01-01

    We report the experimental finding of a new surface treatment that systematically improves the quality factor of niobium radio frequency cavities for particle acceleration. A combination of annealing in a partial pressure of nitrogen and subsequent electropolishing of the niobium cavity surface leads to extremely low values of the cavities microwave surface resistance, and an improvement in the efficiency of these accelerating structures up to a factor of 3 compared to standard surface treatments, significantly reducing the cryogenic load of SRF cavities for both pulsed and continuous duty cycles. The field dependence of the Mattis-Bardeen/BCS surface resistance RBCS is reversed compared to that of standard chemically polished niobium with dRBCS/dB < 0 in the full range of investigated fields. This treatment can lead to even larger efficiency gains at increasing operating frequencies, and potentially to even larger cost savings by reducing the size of the accelerating structures.

  4. Field-reversed bubble in deep plasma channels for high quality electron acceleration

    CERN Document Server

    Pukhov, A; Tueckmantel, T; Thomas, J; Yu, I; Kostyukov, Yu

    2014-01-01

    We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10−3 r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultra-short pancake-like laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy.

  5. Evaluation of highly accelerated real-time cardiac cine MRI in tachycardia.

    Science.gov (United States)

    Bassett, Elwin C; Kholmovski, Eugene G; Wilson, Brent D; DiBella, Edward V R; Dosdall, Derek J; Ranjan, Ravi; McGann, Christopher J; Kim, Daniel

    2014-02-01

    Electrocardiogram (ECG)-gated breath-hold cine MRI is considered to be the gold standard test for the assessment of cardiac function. However, it may fail in patients with arrhythmia, impaired breath-hold capacity and poor ECG gating. Although ungated real-time cine MRI may mitigate these problems, commercially available real-time cine MRI pulse sequences using parallel imaging typically yield relatively poor spatiotemporal resolution because of their low image acquisition efficiency. As an extension of our previous work, the purpose of this study was to evaluate the diagnostic quality and accuracy of eight-fold-accelerated real-time cine MRI with compressed sensing (CS) for the quantification of cardiac function in tachycardia, where it is challenging for real-time cine MRI to provide sufficient spatiotemporal resolution. We evaluated the performances of eight-fold-accelerated cine MRI with CS, three-fold-accelerated real-time cine MRI with temporal generalized autocalibrating partially parallel acquisitions (TGRAPPA) and ECG-gated breath-hold cine MRI in 21 large animals with tachycardia (mean heart rate, 104 beats per minute) at 3T. For each cine MRI method, two expert readers evaluated the diagnostic quality in four categories (image quality, temporal fidelity of wall motion, artifacts and apparent noise) using a Likert scale (1-5, worst to best). One reader evaluated the left ventricular functional parameters. The diagnostic quality scores were significantly different between the three cine pulse sequences, except for the artifact level between CS and TGRAPPA real-time cine MRI. Both ECG-gated breath-hold cine MRI and eight-fold accelerated real-time cine MRI yielded all four scores of ≥ 3.0 (acceptable), whereas three-fold-accelerated real-time cine MRI yielded all scores below 3.0, except for artifact (3.0). The left ventricular ejection fraction (LVEF) measurements agreed better between ECG-gated cine MRI and eight-fold-accelerated real-time cine MRI

  6. High-resolution 3D-GRE imaging of the abdomen using controlled aliasing acceleration technique - a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    AlObaidy, Mamdoh; Ramalho, Miguel; Busireddy, Kiran K.R.; Liu, Baodong; Burke, Lauren M.; Altun, Ersan; Semelka, Richard C. [University of North Carolina at Chapel Hill, Department of Radiology, Chapel Hill, NC (United States); Dale, Brian M. [Siemens Medical Solutions, MR Research and Development, Morrisville, NC (United States)

    2015-12-15

    To assess the feasibility of high-resolution 3D-gradient-recalled echo (GRE) fat-suppressed T1-weighted images using controlled aliasing acceleration technique (CAIPIRINHA-VIBE), and compare image quality and lesion detection to standard-resolution 3D-GRE images using conventional acceleration technique (GRAPPA-VIBE). Eighty-four patients (41 males, 43 females; age range: 14-90 years, 58.8 ± 15.6 years) underwent abdominal MRI at 1.5 T with CAIPIRINHA-VIBE [spatial resolution, 0.76 ± 0.04 mm] and GRAPPA-VIBE [spatial resolution, 1.17 ± 0.14 mm]. Two readers independently reviewed image quality, presence of artefacts, lesion conspicuity, and lesion detection. Kappa statistic was used to assess interobserver agreement. Wilcoxon signed-rank test was used for image qualitative pairwise comparisons. Logistic regression with post-hoc testing was used to evaluate statistical significance of lesions evaluation. Interobserver agreement ranged between 0.45-0.93. Pre-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and lesion conspicuity with decreased residual aliasing, but more noise enhancement and inferior image quality. Post-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and higher lesion conspicuity, with less respiratory motion and residual aliasing artefacts. Inferior fat-suppression was noticeable on CAIPIRINHA-VIBE sequences (p < 0.001). High in-plane resolution abdominal 3D-GRE fat-suppressed T1-weighted imaging using controlled-aliasing acceleration technique is feasible and yields sharper images compared to standard-resolution images using standard acceleration, with higher post-contrast image quality and trend for improved hepatic lesions detection. (orig.)

  7. Application of Nb3Sn superconductors in high-field accelerator magnets

    NARCIS (Netherlands)

    Ouden, den Andries; Wessel, Sander; Krooshoop, Erik; Kate, ten Herman

    1997-01-01

    Last year a record central field of 11 T at first excitation at 4.4 K has been achieved with the experimental LHC model dipole magnet MSUT by utilising a high Jc powder-in-tube Nb3Sn conductor. This is the first real breakthrough towards fields well above 10 T at 4 K. The clear influence of magnetis

  8. Emerging Consumerism and the Accelerated "Education Divide": The Case of Specialized High Schools in South Korea

    Science.gov (United States)

    Park, Hyu-Yong

    2007-01-01

    This paper criticizes the neoliberal shift in Korean education toward educational consumerism by analyzing the boom in Specialized High schools (SHs). For its theoretical background, this paper discusses the issues of freedom, equal opportunity, and choice in education, and investigates how neoliberal consumerism has been encouraging the boom in…

  9. Comment on "Kerr Black Holes as Particle Accelerators to Arbitrarily High Energy"

    CERN Document Server

    Berti, Emanuele; Gualtieri, Leonardo; Pretorius, Frans; Sperhake, Ulrich

    2009-01-01

    It has been suggested that rotating black holes could serve as particle colliders with arbitrarily high center-of-mass energy. Astrophysical limitations on the maximal spin, back-reaction effects and sensitivity to the initial conditions impose severe limits on the likelihood of such collisions.

  10. Students' Perceptions of Factors That Contribute to Risk and Success in Accelerated High School Courses

    Science.gov (United States)

    Shaunessy-Dedrick, Elizabeth; Suldo, Shannon M.; Roth, Rachel A.; Fefer, Sarah A.

    2015-01-01

    In this qualitative study, we investigated 15 successful and 15 struggling high school students, perceived stressors, coping strategies, and intrapersonal and environmental factors that students perceive to influence their success in college-level courses. We found that students' primary sources of stress involved meeting numerous academic demands…

  11. Application of accelerated acquisition and highly constrained reconstruction methods to MR

    Science.gov (United States)

    Wang, Kang

    2011-12-01

    There are many Magnetic Resonance Imaging (MRI) applications that require rapid data acquisition. In conventional proton MRI, representative applications include real-time dynamic imaging, whole-chest pulmonary perfusion imaging, high resolution coronary imaging, MR T1 or T2 mapping, etc. The requirement for fast acquisition and novel reconstruction methods is either due to clinical demand for high temporal resolution, high spatial resolution, or both. Another important category in which fast MRI methods are highly desirable is imaging with hyperpolarized (HP) contrast media, such as HP 3He imaging for evaluation of pulmonary function, and imaging of HP 13C-labeled substrates for the study of in vivo metabolic processes. To address these needs, numerous MR undersampling methods have been developed and combined with novel image reconstruction techniques. This thesis aims to develop novel data acquisition and image reconstruction techniques for the following applications. (I) Ultrashort echo time spectroscopic imaging (UTESI). The need for acquiring many echo images in spectroscopic imaging with high spatial resolution usually results in extended scan times, and thus requires k-space undersampling and novel imaging reconstruction methods to overcome the artifacts related to the undersampling. (2) Dynamic hyperpolarized 13C spectroscopic imaging. HP 13C compounds exhibit non-equilibrium T1 decay and rapidly evolving spectral dynamics, and therefore it is vital to utilize the polarized signal wisely and efficiently to observe the entire temporal dynamic of the injected "C compounds as well as the corresponding downstream metabolites. (3) Time-resolved contrast-enhanced MR angiography. The diagnosis of vascular diseases often requires large coverage of human body anatomies with high spatial resolution and sufficient temporal resolution for the separation of arterial phases from venous phases. The goal of simultaneously achieving high spatial and temporal resolution has

  12. Special diagnostic methods and beam loss control on high intensity proton synchrotrons and storage rings Circular proton accelerator

    CERN Document Server

    Warsop, C M

    2002-01-01

    Two topics concerning high intensity, medium energy, circular proton accelerators have been studied: specialist diagnostics and beam loss control. The use of specially configured, low intensity diagnostic beams to help measure, understand and control high intensity beams is described. The ideas are developed and demonstrated on the ISIS 800 MeV, high intensity proton synchrotron at the Rutherford Appleton Laboratory in the UK. It is shown that these techniques make much new and valuable information available, which is particularly useful in achieving the precise beam optimisation required for low and controlled losses. Beam loss control in the proposed European Spallation Source (ESS) accumulator rings is studied. The expected losses are summarised, and a design for the beam collimation system presented. A new code for the simulation of loss control is outlined, and then used to test the collimation system under most foreseeable conditions. It is expected that the required loss control levels will be achievab...

  13. Acceleration of PIC and CR algorithms for High Fidelity In-Space Propulsion Modeling (Briefing Charts)

    Science.gov (United States)

    2013-07-29

    stepping integrator for finite-Larmor radius particle trajectories, accelerated collisional-radiative non -equilibrium ionization kinetics through...Reproduces 3-4 Orders of Magnitude Random Merge -> Thermalization 3000 First Point, 1500 First Cross Bi- Maxwellian Specifically Difficult Octree Merge...Merge -> Thermalization 3000 First Point, 1500 First Cross Bi- Maxwellian Specifically Difficult Octree Merge Significantly Better Merge & Split Adapts

  14. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    CERN Document Server

    Muslimov, A G; Muslimov, Alex G.; Harding, Alice K.

    2003-01-01

    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to "favorably curved" field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very h...

  15. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Leemans, W P; Bulanov, S V; Margarone, D; Korn, G; Haberer, T

    2015-01-01

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the ...

  16. High-energy electron acceleration in the gas-puff Z-pinch plasma

    Science.gov (United States)

    Takasugi, Keiichi; Miyazaki, Takanori; Nishio, Mineyuki

    2014-12-01

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  17. High-energy electron acceleration in the gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takasugi, Keiichi, E-mail: takasugi@phys.cst.nihon-u.ac.jp [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308 (Japan); Miyazaki, Takanori [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308, Japan and Dept. Innovation Systems Eng., Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Nishio, Mineyuki [Anan National College of Technology, 265 Aoki, Minobayashi, Anan, Tokushima 774-0017 (Japan)

    2014-12-15

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  18. Acceleration and radiation of ultra-high energy protons in galaxy clusters

    CERN Document Server

    Vannoni, G; Gabici, S; Kelner, S R; Prosekin, A

    2009-01-01

    Clusters of galaxies are believed to be capable to accelerate protons at accretion shocks to energies exceeding 10^18 eV. At these energies, the losses caused by interactions of cosmic rays with photons of the Cosmic Microwave Background Radiation (CMBR) become effective and determine the maximum energy of protons and the shape of the energy spectrum in the cutoff region. The aim of this work is the study of the formation of the energy spectrum of accelerated protons at accretion shocks of galaxy clusters and of the characteristics of their broad band emission. The proton energy distribution is calculated self-consistently via a time-dependent numerical treatment of the shock acceleration process which takes into account the proton energy losses due to interactions with the CMBR. We calculate the energy distribution of accelerated protons, as well as the flux of broad-band emission produced by secondary electrons and positrons via synchrotron and inverse Compton scattering processes. We find that the downstre...

  19. Novel Ways of Heat Removal from Highly Irradiated Superconducting Windings in Accelerator Magnets

    NARCIS (Netherlands)

    Bielert, Erwin R.; Verweij, Arjan P.; Kate, ten Herman H.J.

    2012-01-01

    Novel ideas of heat removal from superconducting windings in accelerator type magnets are investigated with the help of a recently developed and validated thermal model of a magnet cold mass implemented in COMSOL Multiphysics. Here the focus is on how to improve heat removal from the midplane of a s

  20. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  1. Promoting Acceleration of Comprehension and Content through Text in High School Social Studies Classes

    Science.gov (United States)

    Wanzek, Jeanne; Swanson, Elizabeth A.; Roberts, Greg; Vaughn, Sharon; Kent, Shawn C.

    2015-01-01

    The purpose of this study was to evaluate the efficacy of Promoting Acceleration of Comprehension and Content Through Text intervention implemented with 11th-grade students enrolled in U.S. History classes. Using a within-teacher randomized design, the study was conducted in 41 classes (23 treatment classes) with 14 teachers providing the…

  2. New estimation method of neutron skyshine for a high-energy particle accelerator

    Science.gov (United States)

    Oh, Joo-Hee; Jung, Nam-Suk; Lee, Hee-Seock; Ko, Seung-Kook

    2016-09-01

    A skyshine is the dominant component of the prompt radiation at off-site. Several experimental studies have been done to estimate the neutron skyshine at a few accelerator facilities. In this work, the neutron transports from a source place to off-site location were simulated using the Monte Carlo codes, FLUKA and PHITS. The transport paths were classified as skyshine, direct (transport), groundshine and multiple-shine to understand the contribution of each path and to develop a general evaluation method. The effect of each path was estimated in the view of the dose at far locations. The neutron dose was calculated using the neutron energy spectra obtained from each detector placed up to a maximum of 1 km from the accelerator. The highest altitude of the sky region in this simulation was set as 2 km from the floor of the accelerator facility. The initial model of this study was the 10 GeV electron accelerator, PAL-XFEL. Different compositions and densities of air, soil and ordinary concrete were applied in this calculation, and their dependences were reviewed. The estimation method used in this study was compared with the well-known methods suggested by Rindi, Stevenson and Stepleton, and also with the simple code, SHINE3. The results obtained using this method agreed well with those using Rindi's formula.

  3. Acceleration of high resolution temperature based optimization for hyperthermia treatment planning using element grouping.

    Science.gov (United States)

    Kok, H P; de Greef, M; Bel, A; Crezee, J

    2009-08-01

    In regional hyperthermia, optimization is useful to obtain adequate applicator settings. A speed-up of the previously published method for high resolution temperature based optimization is proposed. Element grouping as described in literature uses selected voxel sets instead of single voxels to reduce computation time. Elements which achieve their maximum heating potential for approximately the same phase/amplitude setting are grouped. To form groups, eigenvalues and eigenvectors of precomputed temperature matrices are used. At high resolution temperature matrices are unknown and temperatures are estimated using low resolution (1 cm) computations and the high resolution (2 mm) temperature distribution computed for low resolution optimized settings using zooming. This technique can be applied to estimate an upper bound for high resolution eigenvalues. The heating potential of elements was estimated using these upper bounds. Correlations between elements were estimated with low resolution eigenvalues and eigenvectors, since high resolution eigenvectors remain unknown. Four different grouping criteria were applied. Constraints were set to the average group temperatures. Element grouping was applied for five patients and optimal settings for the AMC-8 system were determined. Without element grouping the average computation times for five and ten runs were 7.1 and 14.4 h, respectively. Strict grouping criteria were necessary to prevent an unacceptable exceeding of the normal tissue constraints (up to approximately 2 degrees C), caused by constraining average instead of maximum temperatures. When strict criteria were applied, speed-up factors of 1.8-2.1 and 2.6-3.5 were achieved for five and ten runs, respectively, depending on the grouping criteria. When many runs are performed, the speed-up factor will converge to 4.3-8.5, which is the average reduction factor of the constraints and depends on the grouping criteria. Tumor temperatures were comparable. Maximum exceeding

  4. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  5. Preliminary Research Results for the Generation and Diagnostics of High Power Ion Beams on FLASH II Accelerator

    Science.gov (United States)

    Yang, Hailiang; Qiu, Aici; Sun, Jianfeng; He, Xiaoping; Tang, Junping; Wang, Haiyang; Li, Hongyu; Li, Jingya; Ren, Shuqing; Ouyang, Xiaoping; Zhang, Guoguang

    2004-12-01

    The preliminary experimental results of the generation and diagnostics of high-power ion beams of FLASH II accelerator are reported. The high-power ion beams presently are being produced in a pinched diode. The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow. Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electron and anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and an energy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number and current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a 12C target by the proton beams. The prompt γ-rays and diode bremsstrahlung x-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector. The current density distribution of ion beam were measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector.

  6. Preliminary Research Results for the Generation and Diagnostics of High Power Ion Beams on FLASH II Accelerator

    Institute of Scientific and Technical Information of China (English)

    杨海亮; 邱爱慈; 孙剑锋; 何小平; 汤俊萍; 王海洋; 李洪玉; 李静雅; 任书庆; 欧阳小平; 张国光

    2004-01-01

    The preliminary experimental results of the generation and diagnostics of high power ion beams on FLASH II accelerator are reported. The high-power ion beams presently are being produced in a pinched diode. The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow. Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electronand anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and anen ergy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number ard current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a 12C target by the proton beams. The prompt γ-rays and diode bremsstrahlung X-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector. The current density distribution of ion beam were measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector.

  7. Method for detecting moment connection fracture using high-frequency transients in recorded accelerations

    Science.gov (United States)

    Rodgers, J.E.; Elebi, M.

    2011-01-01

    The 1994 Northridge earthquake caused brittle fractures in steel moment frame building connections, despite causing little visible building damage in most cases. Future strong earthquakes are likely to cause similar damage to the many un-retrofitted pre-Northridge buildings in the western US and elsewhere. Without obvious permanent building deformation, costly intrusive inspections are currently the only way to determine if major fracture damage that compromises building safety has occurred. Building instrumentation has the potential to provide engineers and owners with timely information on fracture occurrence. Structural dynamics theory predicts and scale model experiments have demonstrated that sudden, large changes in structure properties caused by moment connection fractures will cause transient dynamic response. A method is proposed for detecting the building-wide level of connection fracture damage, based on observing high-frequency, fracture-induced transient dynamic responses in strong motion accelerograms. High-frequency transients are short (Elsevier B.V. All rights reserved.

  8. Possibilities of production of nanopowders with high power ELV electron accelerator

    Indian Academy of Sciences (India)

    Vladimir Ivanovich Lysenko; Sergey Bardakhanov; Alexey Korchagin; Nikolay Kuksanov; Alexander Lavrukhin; Rustam Salimov; Sergey Fadeev; Vladislav Cherepkov; Mikhail Veis; Andrey Nomoev

    2011-07-01

    Electron-beam evaporation of various natural and industrial materials in the atmosphere of different gases at atmospheric pressure can be used for the synthesis of nanosize powders. These powders are characterized by high purity and may exhibit unusual properties. In particular, nanopowders of silicon dioxide and oxide (SiO2, SiO), magnesia (MgO), alumina (Al2O3), titania (TiO2), gadolinium oxide (Gd2O3), various metals (tantalum, molybdenum, nickel, aluminium, copper, silver), semiconductor (Si), nitrides (AlN, TiN), and some other substances had been produced. The process of nanopowder synthesis is highly effective; in particular, the yield of oxides can exceed ten kilograms per hour.

  9. Observation of gaseous nitric acid production at a high-energy proton accelerator facility

    CERN Document Server

    Kanda, Y; Nakajima, H

    2005-01-01

    High-energy protons and neutrons produce a variety of radionuclides as well as noxious and oxidative gases, such as ozone and nitric acid, in the air mainly through the nuclear spallation of atmospheric elements. Samples were collected from the surfaces of magnets, walls, and floors in the neutrino beamline tunnel and the target station of the KEK 12-GeV proton synchrotron facility by wiping surfaces with filter paper. Considerably good correlations were found between the amounts of nitrate and tritium and between those of nitrate and /sup 7/Be. This finding gives evidence that at high-energy proton facilities, nitric acid is produced in the radiolysis of air in beam- loss regions. Also, the nitric acid on the surfaces was found to be desorbed and tended to be more uniform throughout the tunnel due to air circulation. The magnitude of diminishing from the surfaces was in the order of tritium>nitrate>/sup 7/Be1).

  10. A compact high efficiency 8 kW 325 MHz power amplifier for accelerator applications

    Science.gov (United States)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Singh, P.

    2014-11-01

    A solid state RF power amplifier (SSRFPA) has been designed and developed for 8 kW RF power at 325 MHz. The work was carried out to achieve high efficiency (over 70% efficiency), high gain and compact size for the amplifier module. The sub-components of this amplifier like a 1 kW amplifier module at 325 MHz, an 8-way RF power combiner rated for 8 kW RF power and a micro-strip based power divider have been designed and developed in-house. The size of the amplifier is miniaturized by incorporating innovative design techniques and proper selection of the substrate material in the input/output matching networks. Measured power gain and conversion efficiency of the solid state RF power amplifier module at 1.06 kW output is 21.7 dB and 73.2%, respectively. A coaxial line based 8-way Wilkinson power combiner has been designed and developed. Return loss of the combiner at the output (combined) port is 26.4 dB at 325 MHz. Transmission parameters of the combiner from each input (splitting) port to output port are 9.1 dB±0.15 dB. This amplifier uses a pre-driver of 20 W and a driver amplifier of 150 W. Total power gain and efficiency of 8 kW SSRFPA have been 92.3 dB (including the driver stages) and 68.3%, respectively. The harmonic content in the RF output is less than -50 dBc for all the harmonics. Main features of this development are high power density (kW/cm3), large value for kW/module, high efficiency (68.3%) for 8 kW SSRFPA at 325 MHz and rugged operation.

  11. A compact high efficiency 8 kW 325 MHz power amplifier for accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Jitendra Kumar, E-mail: jkmishra@barc.gov.in; Ramarao, B.V.; Pande, Manjiri M.; Singh, P.

    2014-11-11

    A solid state RF power amplifier (SSRFPA) has been designed and developed for 8 kW RF power at 325 MHz. The work was carried out to achieve high efficiency (over 70% efficiency), high gain and compact size for the amplifier module. The sub-components of this amplifier like a 1 kW amplifier module at 325 MHz, an 8-way RF power combiner rated for 8 kW RF power and a micro-strip based power divider have been designed and developed in-house. The size of the amplifier is miniaturized by incorporating innovative design techniques and proper selection of the substrate material in the input/output matching networks. Measured power gain and conversion efficiency of the solid state RF power amplifier module at 1.06 kW output is 21.7 dB and 73.2%, respectively. A coaxial line based 8-way Wilkinson power combiner has been designed and developed. Return loss of the combiner at the output (combined) port is 26.4 dB at 325 MHz. Transmission parameters of the combiner from each input (splitting) port to output port are 9.1 dB±0.15 dB. This amplifier uses a pre-driver of 20 W and a driver amplifier of 150 W. Total power gain and efficiency of 8 kW SSRFPA have been 92.3 dB (including the driver stages) and 68.3%, respectively. The harmonic content in the RF output is less than −50 dBc for all the harmonics. Main features of this development are high power density (kW/cm{sup 3}), large value for kW/module, high efficiency (68.3%) for 8 kW SSRFPA at 325 MHz and rugged operation.

  12. Throughput Analysis for a High-Performance FPGA-Accelerated Real-Time Search Application

    Directory of Open Access Journals (Sweden)

    Wim Vanderbauwhede

    2012-01-01

    Full Text Available We propose an FPGA design for the relevancy computation part of a high-throughput real-time search application. The application matches terms in a stream of documents against a static profile, held in off-chip memory. We present a mathematical analysis of the throughput of the application and apply it to the problem of scaling the Bloom filter used to discard nonmatches.

  13. Accelerated decline in renal function after acute myocardial infarction in patients with high low-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol ratio.

    Science.gov (United States)

    Okumura, Satoshi; Sakakibara, Masaki; Hayashida, Ryo; Jinno, Yasushi; Tanaka, Akihito; Okada, Koji; Hayashi, Mutsuharu; Ishii, Hideki; Murohara, Toyoaki

    2014-01-01

    High low-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol (L/H) ratio is associated with progressions of coronary arteriosclerosis and chronic kidney disease. On the other hand, renal function markedly declined after acute myocardial infarction (AMI). The aims of the present study were (1) to identify what type of patients with AMI would have high L/H ratio at follow-up and (2) to evaluate whether decline in renal function after AMI had accelerated or not in patients with high L/H ratio. The 190 eligible AMI patients who underwent primary percutaneous coronary intervention (PCI) and received atorvastatin (10 mg) were divided into one of two groups according to the L/H ratio at 6-month follow-up: L/H >2 group (n = 81) or L/H ≤2 group (n = 109). The characteristics on admission in the two groups were examined. Furthermore, changes in serum creatinine (sCr) and estimated glomerular filtration rate (eGFR) during 1- and 6-month follow-up were compared between the two groups. L/H >2 group were significantly younger and had greater body mass index (BMI) and worse lipid profile on admission compared with L/H ≤2 group. Percentage increase in sCr and percentage decrease in eGFR during 1-month follow-up in L/H >2 group tended to be greater than in L/H ≤2 group, and those during 6-month follow-up were significantly greater (16.5 ± 2.77 vs. 9.79 ± 2.23 %, p = 0.03 and 11.8 ± 1.93 vs. 2.75 ± 3.85 %, p = 0.04, respectively). In AMI patients undergoing primary PCI, those who were young and had large BMI and poor lipid profile on admission were likely to have a high L/H ratio at follow-up despite statin therapy. In addition, the decline in renal function after AMI had significantly accelerated in patients with high L/H ratio.

  14. The impact of accelerator processors for high-throughput molecular modeling and simulation.

    Science.gov (United States)

    Giupponi, G; Harvey, M J; De Fabritiis, G

    2008-12-01

    The recent introduction of cost-effective accelerator processors (APs), such as the IBM Cell processor and Nvidia's graphics processing units (GPUs), represents an important technological innovation which promises to unleash the full potential of atomistic molecular modeling and simulation for the biotechnology industry. Present APs can deliver over an order of magnitude more floating-point operations per second (flops) than standard processors, broadly equivalent to a decade of Moore's law growth, and significantly reduce the cost of current atom-based molecular simulations. In conjunction with distributed and grid-computing solutions, accelerated molecular simulations may finally be used to extend current in silico protocols by the use of accurate thermodynamic calculations instead of approximate methods and simulate hundreds of protein-ligand complexes with full molecular specificity, a crucial requirement of in silico drug discovery workflows.

  15. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator

    Science.gov (United States)

    Shen, Yi; Wang, Wei; Liu, Yi; Xia, Liansheng; Zhang, Huang; Pan, Haifeng; Zhu, Jun; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2015-05-01

    Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.

  16. Combining rigorous diffraction calculation and GPU accelerated nonsequential raytracing for high precision simulation of a linear grating spectrometer

    Science.gov (United States)

    Mauch, Florian; Fleischle, David; Lyda, Wolfram; Osten, Wolfgang; Krug, Torsten; Häring, Reto

    2011-05-01

    Simulation of grating spectrometers constitutes the problem of propagating a spectrally broad light field through a macroscopic optical system that contains a nanostructured grating surface. The interest of the simulation is to quantify and optimize the stray light behaviour, which is the limiting factor in modern high end spectrometers. In order to accomplish this we present a simulation scheme that combines a RCWA (rigorous coupled wave analysis) simulation of the grating surface with a selfmade GPU (graphics processor unit) accelerated nonsequential raytracer. Using this, we are able to represent the broad spectrum of the light field as a superposition of many monochromatic raysets and handle the huge raynumber in reasonable time.

  17. Acceleration Response Mode Decomposition for Quantifying Wave Impact Load in High-Speed Planing Craft

    Science.gov (United States)

    2014-04-01

    valid OMB control number. 1. REPORT DATE 17 APR 2014 2. REPORT TYPE Final 3. DATES COVERED - 4. TITLE AND SUBTITLE ACCELERATION RESPONSE MODE...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD/MM/YY) 17-04-2014 2. REPORT...Science and Engineering ( NISE ) Section 219 research and development program. Acknowledgements The authors would like to thank Dr. Jack L. Price

  18. Recent Progress in High Intensity Operation of the Fermilab Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Convery, Mary E [Fermilab

    2016-10-05

    We report on the status of the Fermilab accelerator com-plex. Beam delivery to the neutrino experiments surpassed our goals for the past year. The Proton Improvement Plan is well underway with successful 15 Hz beam operation. Beam power of 700 kW to the NOvA experiment was demonstrated and will be routine in the next year. We are also preparing the Muon Campus to commission beam to the g-2 experiment.

  19. Photoneutron production in tungsten, praseodymium, copper and beryllium by using high energy electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F. E-mail: jalluf@macadam.cea.fr; Lyoussi, A.; Payan, E.; Recroix, H.; Mariani, A.; Nurdin, G.; Buisson, A.; Allano, J

    1999-09-01

    This paper presents comparisons between photoneutron production measurements in tungsten, copper, praseodymium and beryllium, and calculated data resulting from the ELEPHANT (ELEctron, PHoton And Neutron Transport) code. Measurements were made using the DGA/ETCA linear electron accelerator located at Arcueil, France. Bremsstrahlung endpoints varying in the 15-25 MeV energy range were used. Detectors were positioned at different angles with respect to the electron beam axis. Each measured value is compared with the corresponding calculated value.

  20. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinigardi, Stefano, E-mail: sinigardi@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Giove, Dario; De Martinis, Carlo [Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, Via F.lli Cervi 201, I-20090 Segrate (Italy); Bolton, Paul R. [Kansai Photon Science Institute (JAEA), Umemidai 8-1-7, Kizugawa-shi, Kyoto 619-0215 (Japan)

    2014-03-11

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.