WorldWideScience

Sample records for hifu thermal ablation

  1. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    Science.gov (United States)

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  2. Development of a high-field MR-guided HIFU setup for thermal and mechanical ablation methods in small animals

    NARCIS (Netherlands)

    Hoogenboom, M.; Amerongen, M.J. van; Eikelenboom, D.C.; Wassink, M.; Brok, M.H. den; Hulsbergen-van de Kaa, C.A.; Dumont, E.; Adema, G.J.; Heerschap, A.; Futterer, J.J.

    2015-01-01

    BACKGROUND: Thermal and mechanical high intensity focused ultrasound (HIFU) ablation techniques are in development for non-invasive treatment of cancer. However, knowledge of in vivo histopathologic and immunologic reactions after HIFU ablation is still limited. This study aims to create a setup for

  3. TU-B-210-01: MRg HIFU - Bone and Soft Tissue Tumor Ablation

    International Nuclear Information System (INIS)

    Ghanouni, P.

    2015-01-01

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advanced techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips

  4. TU-B-210-02: MRg HIFU - Advanced Approaches for Ablation and Hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Moonen, C. [University Medical Center Utrecht (Netherlands)

    2015-06-15

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advanced techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.

  5. TU-B-210-01: MRg HIFU - Bone and Soft Tissue Tumor Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ghanouni, P. [Stanford University (United States)

    2015-06-15

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advanced techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.

  6. Tissue Necrosis Monitoring for HIFU Ablation with T1 Contrast MRI Imaging

    Science.gov (United States)

    Hwang, San-Chao; Yao, Ching; Kuo, Ih-Yuan; Tsai, Wei-Cheng; Chang, Hsu

    2011-09-01

    In MR-guided HIFU ablation, MTC (Magnetization Transfer Contrast) or perfusion imaging is usually used after ablation to evaluate the ablated area based on the thermally induced necrosis contrast. In our MR-guided HIFU ablation study, a T1 contrast MRI scan sequence has been used to distinguish between necrotic and non-necrotic tissue. The ablation of porcine meat in-vitro and in-vivo pig leg muscle show that the necrotic area of T1 contrast MRI image coincides with the photographs of sliced specimen. The sequence is considerably easier to apply than MTC or perfusion imaging, while giving good necrosis contrast. In addition, no injection of contrast agent is needed, allowing multiple scans to be applied throughout the entire ablation procedure.

  7. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    Science.gov (United States)

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  8. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies.

    Science.gov (United States)

    van den Bijgaart, Renske J E; Eikelenboom, Dylan C; Hoogenboom, Martijn; Fütterer, Jurgen J; den Brok, Martijn H; Adema, Gosse J

    2017-02-01

    Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4 + and CD8 + T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.

  9. Effects of oxytocin on high intensity focused ultrasound (HIFU) ablation of adenomysis: A prospective study

    International Nuclear Information System (INIS)

    Zhang, Xin; Zou, Min; Zhang, Cai; He, Jia; Mao, Shihua; Wu, Qingrong; He, Min; Wang, Jian; Zhang, Ruitao; Zhang, Lian

    2014-01-01

    Objective: To investigate the effects of oxytocin on high-intensity focused ultrasound (HIFU) ablation for the treatment of adenomyosis. Materials and methods: Eighty-six patients with adenomyosis from three hospitals were randomly assigned to the oxytocin group or control group for HIFU treatment. During HIFU treatment, 80 units of oxytocin was added in 500 ml of 0.9% normal saline running at the rate of 2 ml/min (0.32 U/min) in the oxytocin group, while 0.9% normal saline was used in the control group. Both patients and HIFU operators were blinded to oxytocin or saline application. Treatment results, adverse effects were compared. Results: When using oxytocin, the non-perfused volume (NPV) ratio was 80.7 ± 11.6%, the energy-efficiency factor (EEF) was 8.1 ± 9.9 J/mm 3 , and the sonication time required to ablate 1 cm 3 was 30.0 ± 36.0 s/cm 3 . When not using oxytocin, the non-perfused volume ratio was 70.8 ± 16.7%, the EEF was 15.8 ± 19.6 J/mm 3 , and the sonication time required to ablate 1 cm 3 was 58.2 ± 72.7 S/cm 3 . Significant difference in the NPV ratio, EEF, and the sonication time required to ablate 1 cm 3 between the two groups was observed. No oxytocin related adverse effects occurred. Conclusion: Oxytocin could significantly decrease the energy for ablating adenomyosis with HIFU, safely enhance the treatment efficiency

  10. Numerical Study for Optimizing Parameters of High-Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator

    Directory of Open Access Journals (Sweden)

    Somayeh gharloghi

    2017-03-01

    Full Text Available Introduction High intensity focused ultrasound (HIFU is considered a noninvasive and effective technique for tumor ablation. Frequency and acoustic power are the most effective parameters for temperature distribution and the extent of tissue damage. The aim of this study was to optimize the operating transducer parameters such as frequency and input power in order to acquire suitable temperature and thermal dose distribution in the course of a numerical assessment. Materials and Methods To model the sound propagation, the Khokhlov-Zabolotskava-Kuznetsov (KZK nonlinear wave equation was used and simulation was carried out using MATLAB HIFU toolbox. Bioheat equation was applied to calculate the transient temperature in the liver tissue. Frequency ranges of 2, 3, 4, and 5 MHz and power levels of 50 and 100 W were applied using an extracorporeal transducer. Results Using a frequency of 2 MHz, the maximum temperatures reached 53°C and 90°C in the focal point for power levels of 50 W and 100 W, respectively. With the same powers and using a frequency of 3 MHz, the temperature reached to 71°C and 170°C, respectively. In addition, for these power levels at the frequency of 4 MHz, the temperature reached to 72°C and 145°C, respectively. However, at the 5 MHz frequency, the temperature in the focal spot was either 57°C or 79°C. Conclusion Use of frequency of 2 MHz and power of 100 W led to higher thermal dose distribution, and subsequently, reduction of the treatment duration and complications at the same exposure time in ablation of large tumors.

  11. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    Science.gov (United States)

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  12. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Chenot, J; Melodelima, D; N' Djin, W A; Souchon, Remi; Rivoire, M; Chapelon, J Y, E-mail: jeremy.chenot@inserm.f [Inserm, U556, Lyon, F-69003 (France)

    2010-06-07

    The use of hand-held ultrasound strain imaging for the intra-operative real-time visualization of HIFU (high-intensity focused ultrasound) ablations produced in the liver by a toroidal transducer was investigated. A linear 12 MHz ultrasound imaging probe was used to obtain radiofrequency signals. Using a fast cross-correlation algorithm, strain images were calculated and displayed at 60 frames s{sup -1}, allowing the use of hand-held strain imaging intra-operatively. Fourteen HIFU lesions were produced in four pigs. Intra-operative strain imaging of HIFU ablations in the liver was feasible owing to the high frame rate. The correlation between dimensions measured on gross pathology and dimensions measured on B-mode images and on strain images were R = 0.72 and R = 0.94 respectively. The contrast between ablated and non-ablated tissue was significantly higher (p < 0.05) in the strain images (22 dB) than in the B-mode images (9 dB). Strain images allowed equivalent or improved definition of ablated regions when compared with B-mode images. Real-time intra-operative hand-held strain imaging seems to be a promising complement to conventional B-mode imaging for the guidance of HIFU ablations produced in the liver during an open procedure. These results support that hand-held strain imaging outperforms conventional B-mode ultrasound and could potentially be used for the assessment of thermal therapies.

  13. Thermal Ablation of the Pancreas With Intraoperative High-Intensity Focused Ultrasound: Safety and Efficacy in a Porcine Model.

    Science.gov (United States)

    Dupré, Aurélien; Melodelima, David; Pflieger, Hannah; Chen, Yao; Vincenot, Jérémy; Kocot, Anthony; Langonnet, Stéphan; Rivoire, Michel

    2017-02-01

    New focal destruction technologies such as high-intensity focused ultrasound (HIFU) may improve the prognosis of pancreatic ductal adenocarcinoma. Our objectives were to demonstrate the safety and efficacy of intraoperative pancreatic HIFU ablation in a porcine model. In a porcine model (N = 12), a single HIFU ablation was performed in either the body or tail of the pancreas, distant to superior mesenteric vessels. All animals were sacrificed on the eighth day. The primary objective was to obtain an HIFU ablation measuring at least 1 cm without premature death. In total, 12 HIFU ablations were carried out. These ablations were performed within 160 seconds and on average measured 20 (15-27) × 16 (8-26) mm. The primary objective was fulfilled in all but 1 pig. There were no premature deaths or severe complications. High-intensity focused ultrasound treatment was associated with a transitory increase in amylase and lipase levels, and pseudocysts were observed in half of the pigs without being clinically apparent. All ablations were well delimited at both gross and histological examinations. Intraoperative thermal destruction of porcine pancreas with HIFU is feasible. Reproducibility and safety have to be confirmed when applied close to mesenteric vessels and in long-term preclinical studies.

  14. Cranial nerve threshold for thermal injury induced by MRI-guided high-intensity focused ultrasound (MRgHIFU): preliminary results on an optic nerve model.

    Science.gov (United States)

    Harnof, Sagi; Zibly, Zion; Cohen, Zvi; Shaw, Andrew; Schlaff, Cody; Kassel, Neal F

    2013-04-01

    Future clinical applications of magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) are moving toward the management of different intracranial pathologies. We sought to validate the production, safety, and efficacy of thermal injury to cranial nerves generated by MRgHIFU. In this study, five female domestic pigs underwent a standard bifrontal craniectomy under general anesthesia. Treatment was then given using an MRgHIFU system to induce hyperthermic ablative sonication (6 to 10 s; 50 to 2000 J.) Histological analyses were done to confirm nerve damage; temperature measured on the optic nerve was approximately 53.4°C (range: 39°C to 70°C.) Histology demonstrated a clear definition between a necrotic, transitional zone, and normal tissue. MRgHIFU induces targeted thermal injury to nervous tissue within a specific threshold of 50°C to 60°C with the tissue near the sonication center yielding the greatest effect; adjacent tissue showed minimal changes. Additional studies utilizing this technology are required to further establish accurate threshold parameters for optic nerve thermo-ablation.

  15. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  16. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    Directory of Open Access Journals (Sweden)

    Lyerly H Kim

    2007-07-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly investigated. In particular, endogenous danger signals from HIFU-damaged tumor cells may trigger the activation of dendritic cells. This response may play a critical role in a HIFU-elicited anti-tumor immune response which can be harnessed for more effective treatment. Methods Mice bearing MC-38 colon adenocarcinoma tumors were treated with thermal and mechanical HIFU exposure settings in order to independently observe HIFU-induced effects on the host's immunological response. In vivo dendritic cell activity was assessed along with the host's response to challenge tumor growth. Results Thermal and mechanical HIFU were found to increase CD11c+ cells 3.1-fold and 4-fold, respectively, as compared to 1.5-fold observed for DC injection alone. In addition, thermal and mechanical HIFU increased CFSE+ DC accumulation in draining lymph nodes 5-fold and 10-fold, respectively. Moreover, focused ultrasound treatments not only caused a reduction in the growth of primary tumors, with tumor volume decreasing by 85% for thermal HIFU and 43% for mechanical HIFU, but they also provided protection against subcutaneous tumor re-challenge. Further immunological assays confirmed an enhanced CTL activity and increased tumor-specific IFN-γ-secreting cells in the mice treated by focused ultrasound, with cytotoxicity induced by mechanical HIFU reaching as high as 27% at a 10:1 effector:target ratio. Conclusion These studies present initial encouraging results confirming that focused ultrasound treatment can elicit a systemic anti-tumor immune response, and they suggest that this immunity is closely related to

  17. Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation

    Science.gov (United States)

    MacDonell, Jacquelyn; Patel, Niravkumar; Rubino, Sebastian; Ghoshal, Goutam; Fischer, Gregory; Burdette, E. Clif; Hwang, Roy; Pilitsis, Julie G.

    2018-01-01

    Currently, treatment of brain tumors is limited to resection, chemotherapy, and radiotherapy. Thermal ablation has been recently explored. High-intensity focused ultrasound (HIFU) is being explored as an alternative. Specifically, the authors propose delivering HIFU internally to the tumor with an MRI-guided robotic assistant (MRgRA). The advantage of the authors’ interstitial device over external MRI-guided HIFU (MRgHIFU) is that it allows for conformal, precise ablation and concurrent tissue sampling. The authors describe their workflow for MRgRA HIFU delivery. PMID:29385926

  18. Thermal ablation of a confluent lesion in the porcine kidney with a clinically available MR-HIFU system

    Science.gov (United States)

    van Breugel, J. M. M.; de Greef, M.; Wijlemans, J. W.; Schubert, G.; van den Bosch, M. A. A. J.; Moonen, C. T. W.; Ries, M. G.

    2017-07-01

    The incidence of small renal masses (SRMs) sized  weighted MR (T 1 w) imaging. Cell viability staining was performed to visualize the extent of necrosis. Results: a median NPV of 0.62 ml was observed on CE-T 1 w images (IQR 0.58-1.57 ml, range 0.33-2.75 ml). Cell viability staining showed a median damaged volume of 0.59 ml (IQR 0.24-1.35 ml, range 0-4.1 ml). Overlooking of the false rib, shivering of the pig, and too large depth combined with a large heat-sink effect resulted in insufficient heating in 4 cases. The NPV and necrosed volume were confluent in all cases in which an ablated volume could be observed. Our results demonstrated the feasibility of creating a confluent volume of ablated kidney cortical tissue in vivo with MR-HIFU on a clinically available system using respiratory gating and near-field cooling and showed its reproducibility.

  19. Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach

    International Nuclear Information System (INIS)

    Jensen, C R; Cleveland, R O; Coussios, C C

    2013-01-01

    Passive acoustic mapping (PAM) has been recently demonstrated as a method of monitoring focused ultrasound therapy by reconstructing the emissions created by inertially cavitating bubbles (Jensen et al 2012 Radiology 262 252–61). The published method sums energy emitted by cavitation from the focal region within the tissue and uses a threshold to determine when sufficient energy has been delivered for ablation. The present work builds on this approach to provide a high-intensity focused ultrasound (HIFU) treatment monitoring software that displays both real-time temperature maps and a prediction of the ablated tissue region. This is achieved by determining heat deposition from two sources: (i) acoustic absorption of the primary HIFU beam which is calculated via a nonlinear model, and (ii) absorption of energy from bubble acoustic emissions which is estimated from measurements. The two sources of heat are used as inputs to the bioheat equation that gives an estimate of the temperature of the tissue as well as estimates of tissue ablation. The method has been applied to ex vivo ox liver samples and the estimated temperature is compared to the measured temperature and shows good agreement, capturing the effect of cavitation-enhanced heating on temperature evolution. In conclusion, it is demonstrated that by using PAM and predictions of heating it is possible to produce an evolving estimate of cell death during exposure in order to guide treatment for monitoring ablative HIFU therapy. (paper)

  20. A framework for continuous target tracking during MR-guided high intensity focused ultrasound thermal ablations in the abdomen

    NARCIS (Netherlands)

    Zachiu, Cornel; Denis de Senneville, Baudouin; Dmitriev, Ivan D.; Moonen, Chrit T.W.; Ries, Mario

    2017-01-01

    Background: During lengthy magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU) thermal ablations in abdominal organs, the therapeutic work-flow is frequently hampered by various types of physiological motion occurring at different time-scales. If left un-addressed this can lead to

  1. TU-A-210-01: HIFU Physics and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Eames, M. [Focused Ultrasound Foundation (United States)

    2015-06-15

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis in 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with

  2. TU-A-210-00: HIFU Therapies - A Primer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis in 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with

  3. TU-A-210-01: HIFU Physics and Delivery

    International Nuclear Information System (INIS)

    Eames, M.

    2015-01-01

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis in 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with

  4. TU-A-210-00: HIFU Therapies - A Primer

    International Nuclear Information System (INIS)

    2015-01-01

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis in 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with

  5. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions

    OpenAIRE

    Kopechek, Jonathan A; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I; McDannold, Nathan J; Porter, Tyrone M

    2014-01-01

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acous...

  6. MR-guided HIFU treatment of symptomatic uterine fibroids using novel feedback-regulated volumetric ablation: effectiveness and clinical practice.

    Science.gov (United States)

    Ruhnke, H; Eckey, T; Bohlmann, M K; Beldoch, M P; Neumann, A; Agic, A; Hägele, J; Diedrich, K; Barkhausen, J; Hunold, P

    2013-09-01

    To evaluate a novel feedback-regulated volumetric sonication method in MR-guided HIFU treatment of symptomatic uterine fibroids. 27 fibroids with an average volume of 124.9 ± 139.8 cc in 18 women with symptomatic uterine fibroids were ablated using the new HIFU system Sonalleve (1.5 T MR system Achieva, Philips). 21 myomas in 13 women were reevaluated 6 months later. Standard (treatment) cells (TC) and feedback-regulated (feedback) cells (FC) with a diameter of 4, 8, 12, and 16 mm were used and compared concerning sonication success, diameter of induced necrosis, and maximum achieved temperature. The non-perfused volume ratio (NPV related to myoma volume) was quantified. The fibroid volume was measured before, 1 month, and 6 months after therapy. Symptoms were quantified using a specific questionnaire (UFS-QoL). In total, 205 TC and 227 FC were applied. The NPV ratio was 23 ± 15 % (2 - 55). The TC were slightly smaller than intended (-3.9 ± 52 %; range, -100 - 81), while the FC were 20.1 ± 25.3 % bigger (p = 0.02). Feedback mechanism is less diversifying in diameter (p feedback cells leads to more contiguous necrosis in diameter and a less diversifying temperature. ▶ MR-guided HIFU ablation of symptomatic uterine fibroids is a valuable treatment option. ▶ By non-invasive HIFU fibroid volumes can be reduced and symptoms improved. ▶ The novel feedback-regulated treatment cells offer advantages over standard treatment cells. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Targeted Vessel Ablation for More Efficient Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Voogt, Marianne J., E-mail: m.voogt@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Stralen, Marijn van [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Ikink, Marlijne E. [University Medical Center Utrecht, Department of Radiology (Netherlands); Deckers, Roel; Vincken, Koen L.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M.; Bosch, Maurice A. A. J. van den [University Medical Center Utrecht, Department of Radiology (Netherlands)

    2012-10-15

    Purpose: To report the first clinical experience with targeted vessel ablation during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic uterine fibroids. Methods: Pretreatment T1-weighted contrast-enhanced magnetic resonance angiography was used to create a detailed map of the uterine arteries and feeding branches to the fibroids. A three-dimensional overlay of the magnetic resonance angiography images was registered on 3D T2-weighted pretreatment imaging data. Treatment was focused primarily on locations where supplying vessels entered the fibroid. Patients were followed 6 months after treatment with a questionnaire to assess symptoms and quality of life (Uterine Fibroid Symptom and Quality of Life) and magnetic resonance imaging to quantify shrinkage of fibroid volumes. Results: In two patients, three fibroids were treated with targeted vessel ablation during MR-HIFU. The treatments resulted in almost total fibroid devascularization with nonperfused volume to total fibroid volume ratios of 84, 68, and 86%, respectively, of treated fibroids. The predicted ablated volumes during MR-HIFU in patients 1 and 2 were 45, 40, and 82 ml, respectively, while the nonperfused volumes determined immediately after treatment were 195, 92, and 190 ml respectively, which is 4.3 (patient 1) and 2.3 (patient 2) times higher than expected based on the thermal dose distribution. Fibroid-related symptoms reduced after treatment, and quality of life improved. Fibroid volume reduction ranged 31-59% at 6 months after treatment. Conclusion: Targeted vessel ablation during MR-HIFU allowed nearly complete fibroid ablation in both patients. This technique may enhance the use of MR-HIFU for fibroid treatment in clinical practice.

  8. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions

    Science.gov (United States)

    Kopechek, Jonathan A.; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I.; McDannold, Nathan J.; Porter, Tyrone M.

    2014-07-01

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could potentially be used to reduce the time and/or acoustic intensity required for HIFU-mediated heating, thereby increasing the feasibility and clinical efficacy of HIFU thermal ablation therapy.

  9. A Novel Combination of Thermal Ablation and Heat-Inducible Gene therapy for Breast Cancer Treatment

    Science.gov (United States)

    2009-04-01

    11. Khokhlova, V.A., et al., Effects of nonlinear propagation, cavitation , and boiling in lesion formation by high intensity focused ultrasound in...intensity focused ultrasound (HIFU) has been developed as an emerging non-invasive strategy for cancer treatment by thermal ablation of tumor tissue. The...Concepts, Seattle, WA) operating at its fundamental frequency (1.1 MHz) or its third harmonics (3.3 MHz). The ultrasound imaging system was a 5/7

  10. TU-A-210-02: HIFU: Why Should a Radiation Oncology Physicist Pay Attention?

    International Nuclear Information System (INIS)

    Schlesinger, D.

    2015-01-01

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis in 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with

  11. TU-A-210-02: HIFU: Why Should a Radiation Oncology Physicist Pay Attention?

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, D. [University of Virginia Health Systems (United States)

    2015-06-15

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis in 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with

  12. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions

    International Nuclear Information System (INIS)

    Kopechek, Jonathan A; Porter, Tyrone M; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I; McDannold, Nathan J

    2014-01-01

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P < 0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P < 0.05) after PSNE injection. For example, the mean per cent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could

  13. T2-based temperature monitoring in abdominal fat during HIFU treatment of patients with uterine fibroids

    Science.gov (United States)

    Ozhinsky, Eugene; Kohi, Maureen; Ghanouni, Pejman; Rieke, Viola

    2017-03-01

    In this study, we have implemented T2-based monitoring of near-field heating in patients undergoing HIFU ablation of uterine fibroids using Insightec ExAblate system. In certain areas, near-field heating can reach 18°C and the tissue may experience sustained heating of more than 10°C for the period of 2 hours or more. This indicates a cumulative thermal dose that may cause necrosis. Our results show the feasibility and importance of measuring near-field heating in subcutaneous fat.

  14. Effect of microbubble contrast agent during high intensity focused ultrasound ablation on rabbit liver in vivo

    International Nuclear Information System (INIS)

    Chung, Dong Jin; Cho, Se Hyun; Lee, Jae Mun; Hahn, Seong-Tae

    2012-01-01

    Objective: To evaluate the effect of a microbubble contrast agent (SonoVue) during HIFU ablation of a rabbit liver. Materials and methods: HIFU ablations (intensity of 400 W/cm 2 for 4 s, six times, with a 5 s interval between exposures) were performed upon 16 in vivo rabbit livers before and after intravenous injection of a microbubble contrast agent (0.8 ml). A Wilcoxon signed rank test was used to compare mean ablation volume and time required to tissue ablation on real-time US. Shape of ablation and pattern of coagulative necrosis were analyzed by Fisher's exact test. Results: The volume of coagulative necrosis was significantly larger in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). Also, time to reach ablation was shorter in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). When analyzing the shape of tissue ablation, a pyramidal shape was more prevalently in the HIFU alone group compared to the combination microbubble and HIFU group (P < 0.05). Following an analysis of the pattern of coagulative necrosis, non-cavitary necrosis was found in ten and cavitary necrosis in six of the samples in the combination microbubble and HIFU group. Conversely, non-cavitary necrosis occurred in all 16 samples in the HIFU alone group (P < 0.05). Conclusion: HIFU of in vivo rabbit livers with a microbubble contrast agent produced larger zones of ablation and more cavitary tissue necrosis than without the use of a microbubble contrast agent. Microbubble contrast agents may be useful in tissue ablation by enhancing the treatment effect of HIFU.

  15. PREVENTION OF DYSURIA AFTER HIFU THERAPY FOR PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    A. Yu. Shestaev

    2014-01-01

    Full Text Available Objective: to identify factors for the development of dysuria and its prevention in patients with prostate cancer (PC after high-intensity focused ultrasound (HIFU therapy.Subjects and methods. In September 2008 to June 2013, the Clinic of Urology, S.M. Kirov Military Medical Academy, treated 98 patients, by performing HIFU sessions on an Ablatherm apparatus (EDAP, France. All the patients underwent transurethral resection of the prostate (TURP to reduce the volume of the ablated tissue. The patients were divided into 2 groups: 1 29 patients underwent TURP 3 days before HIFU therapy; 2 69 did this 1 month before major surgery. Each group was divided into 2 subgroups: 1 after ultrasound ablation, a urethral catheter was inserted for 10 days; 2 epicystostoma was applied, followed by its overlapping on day 3 postablation and spontaneous urination. The postoperative incidence of dysuria was estimated from subjective (complaints, voiding diary, and Inter-national Prostate Symptom Score and objective (uroflowmetry, small pelvic ultrasonography with determination of residual urine volume criteria.Results. In the patients who had undergone TURP one month before HIFU therapy, grades I–II urinary incontinence and urethral pros-tatic stricture occurred much less infrequently than in those who had undergone this maneuver 3 days prior to major surgery. Urinary in-continence and urethral prostatic stricture occurred 2-fold more frequently after TURP being carried out 3 days before HIFU therapy than after the urethral catheter being inserted. TURP performed one month before HIFU therapy showed no great difference in the incidence complications regardless of the type of bladder drainage.Conclusion. The short interval between TURP and HIFU therapy for PC increases the risk of postoperative dysuric events. The optimal time to perform TURP prior to HIFU therapy is 1 month.

  16. PREVENTION OF DYSURIA AFTER HIFU THERAPY FOR PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    A. Yu. Shestaev

    2014-07-01

    Full Text Available Objective: to identify factors for the development of dysuria and its prevention in patients with prostate cancer (PC after high-intensity focused ultrasound (HIFU therapy.Subjects and methods. In September 2008 to June 2013, the Clinic of Urology, S.M. Kirov Military Medical Academy, treated 98 patients, by performing HIFU sessions on an Ablatherm apparatus (EDAP, France. All the patients underwent transurethral resection of the prostate (TURP to reduce the volume of the ablated tissue. The patients were divided into 2 groups: 1 29 patients underwent TURP 3 days before HIFU therapy; 2 69 did this 1 month before major surgery. Each group was divided into 2 subgroups: 1 after ultrasound ablation, a urethral catheter was inserted for 10 days; 2 epicystostoma was applied, followed by its overlapping on day 3 postablation and spontaneous urination. The postoperative incidence of dysuria was estimated from subjective (complaints, voiding diary, and Inter-national Prostate Symptom Score and objective (uroflowmetry, small pelvic ultrasonography with determination of residual urine volume criteria.Results. In the patients who had undergone TURP one month before HIFU therapy, grades I–II urinary incontinence and urethral pros-tatic stricture occurred much less infrequently than in those who had undergone this maneuver 3 days prior to major surgery. Urinary in-continence and urethral prostatic stricture occurred 2-fold more frequently after TURP being carried out 3 days before HIFU therapy than after the urethral catheter being inserted. TURP performed one month before HIFU therapy showed no great difference in the incidence complications regardless of the type of bladder drainage.Conclusion. The short interval between TURP and HIFU therapy for PC increases the risk of postoperative dysuric events. The optimal time to perform TURP prior to HIFU therapy is 1 month.

  17. Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy

    Science.gov (United States)

    Georg, O.; Wilkens, V.

    2017-03-01

    The use of HIFU for thermal ablation of human tissues requires safe real-time monitoring of the lesion formation during the treatment to avoid damage of the surrounding healthy tissues and to control temperature rise. Besides MR imaging, several methods have been proposed for temperature imaging using diagnostic ultrasound, and echoshift estimation (using speckle tracking) is the most promising and commonly used technique. It is based on the thermal dependence of the ultrasound echo that accounts for two different physical phenomena: local change in speed of sound and thermal expansion of the propagating medium due to changes in temperature. In our experiments we have used two separate transducers: HIFU exposure was performed using a 1.06 MHz single element focusing transducer of 64 mm aperture and 63.2 mm focal length; the ultrasound diagnostic probe of 11 MHz operated in B-mode for image guidance. The temperature measurements were performed in an agar-based tissue-mimicking phantom. To verify the obtained results, numerical modeling of the acoustic and temperature fields was carried out using KZK and Pennes Bioheat equations, as well as measurements with thermocouples were performed.

  18. Feasibility Study on MR-Guided High-Intensity Focused Ultrasound Ablation of Sciatic Nerve in a Swine Model: Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, Elena A., E-mail: kayee@mskcc.org [Memorial Sloan Kettering Cancer Center, Department of Medical Physics (United States); Gutta, Narendra Babu, E-mail: gnbabu.aiims@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Radiology (United States); Monette, Sebastien, E-mail: monettes@mskcc.org [The Rockefeller University, Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College (United States); Gulati, Amitabh, E-mail: gulatia@mskcc.org; Loh, Jeffrey, E-mail: jeffreyloh@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Anesthesiology-Critical Care (United States); Srimathveeravalli, Govindarajan, E-mail: srimaths@mskcc.org [Memorial Sloan Kettering Cancer Center, Department of Radiology (United States); Ezell, Paula C., E-mail: paula.ezell@intusurg.com [The Rockefeller University, Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College (United States); Erinjeri, Joseph P., E-mail: erinjerj@mskcc.org; Solomon, Stephen B., E-mail: solomons@mskcc.org; Maybody, Majid, E-mail: maybodym@mskcc.org [Memorial Sloan Kettering Cancer Center, Department of Radiology (United States)

    2015-08-15

    IntroductionSpastic patients often seek neurolysis, the permanent destruction of the sciatic nerve, for better pain management. MRI-guided high-intensity focused ultrasound (MRgHIFU) may serve as a noninvasive alternative to the prevailing, more intrusive techniques. This in vivo acute study is aimed at performing sciatic nerve neurolysis using a clinical MRgHIFU system.MethodsThe HIFU ablation of sciatic nerves was performed in swine (n = 5) using a HIFU system integrated with a 3 T MRI scanner. Acute lesions were confirmed using T1-weighted contrast-enhanced (CE) MRI and histopathology using hematoxylin and eosin staining. The animals were euthanized immediately following post-ablation imaging.ResultsReddening and mild thickening of the nerve and pallor of the adjacent muscle were seen in all animals. The HIFU-treated sections of the nerves displayed nuclear pyknosis of Schwann cells, vascular hyperemia, perineural edema, hyalinization of the collagenous stroma of the nerve, myelin sheet swelling, and loss of axons. Ablations were visible on CE MRI. Non-perfused volume of the lesions (5.8–64.6 cc) linearly correlated with estimated lethal thermal dose volume (4.7–34.2 cc). Skin burn adjacent to the largest ablated zone was observed in the first animal. Bilateral treatment time ranged from 55 to 138 min, and preparation time required 2 h on average.ConclusionThe acute pilot study in swine demonstrated the feasibility of a noninvasive neurolysis of the sciatic nerve using a clinical MRgHIFU system. Results revealed that acute HIFU nerve lesions were detectable on CE MRI, gross pathology, and histology.

  19. High-Intensity Focused Ultrasound (HIFU) in Localized Prostate Cancer Treatment

    International Nuclear Information System (INIS)

    Alkhorayef, Mohammed; Mahmoud, Mustafa Z.; Alzimami, Khalid S.; Sulieman, Abdelmoneim; Fagiri, Maram A.

    2015-01-01

    High-intensity focused ultrasound (HIFU) applies high-intensity focused ultrasound energy to locally heat and destroy diseased or damaged tissue through ablation. This study intended to review HIFU to explain the fundamentals of HIFU, evaluate the evidence concerning the role of HIFU in the treatment of prostate cancer (PC), review the technologies used to perform HIFU and the published clinical literature regarding the procedure as a primary treatment for PC. Studies addressing HIFU in localized PC were identified in a search of internet scientific databases. The analysis of outcomes was limited to journal articles written in English and published between 2000 and 2013. HIFU is a non-invasive approach that uses a precisely delivered ultrasound energy to achieve tumor cell necrosis without radiation or surgical excision. In current urological oncology, HIFU is used clinically in the treatment of PC. Clinical research on HIFU therapy for localized PC began in the 1990s, and the majority of PC patients were treated with the Ablatherm device. HIFU treatment for localized PC can be considered as an alternative minimally invasive therapeutic modality for patients who are not candidates for radical prostatectomy. Patients with lower pre-HIFU PSA level and favourable pathologic Gleason score seem to present better oncologic outcomes. Future advances in technology and safety will undoubtedly expand the HIFU role in this indication as more of patient series are published, with a longer follow-up period

  20. A retrospective comparison of microwave ablation and high intensity focused ultrasound for treating symptomatic uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wen-Peng, E-mail: zwp215@163.com; Han, Zhi-Yu, E-mail: hanzhiyu301@hotmail.com; Zhang, Jing, E-mail: zjbch@sina.com; Liang, Ping, E-mail: liangping301@hotmail.com

    2015-03-15

    Highlights: •Both HIFU and PMWA are thermal ablation techniques and they all provide safe and reliable alternative treatment methods for uterine fibroids. •However, whether there are obvious difference between these two kinds of approaches in improving symptom, treatment time, ablation rate, regression rate and adverse events, until now, there are no clinical trials which have been performed to compare the therapeutic effects of HIFU and PMWA. •In this research, we retrospectively compare the results of these two treatment methods. •To our knowledge, our study is the first directly comparing long-term outcome after PMWA and HIFU in patients with uterine fibroids. -- Abstract: Objectives: To retrospectively compare the effectiveness and safety of percutaneous microwave ablation (PMWA) and ultrasound-guided high-intensity focused ultrasound (USgHIFU) for treating symptomatic uterine fibroids. Methods: Seventy-three women with symptomatic uterine fibroids who met the inclusion criteria were enrolled in our study from September 2012 to December 2013. Thirty-one patients with forty uterine fibroids underwent PMWA, and forty-two patients with fifty-one uterine fibroids underwent USgHIFU. A contrast-enhanced MRI was performed before and after treatment, and all patients were followed up for 6 months. Assessment endpoints included symptom severity scores (SSS), treatment time, ablation rate, fibroid regression rate and adverse events. Results: The mean age of the patients in our study was 35.4 ± 6.2 years (range, 21–49 years), and the median volume of uterine fibroids was 95.7 cm{sup 3} (60.3–131.5 cm{sup 3}). The ablation rate of uterine fibroids was 79.8 ± 18.2% and 77.1 ± 14.9% in the PMWA group and the USgHIFU group, respectively, and showed no significant difference between the groups. Changes in SSS after PMWA were similar in the PMWA group (47.7 pre-treatment vs. 29.9 post-treatment) and USgHIFU group (42.1 pre-treatment vs. 24.6 post-treatment). The

  1. MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform

    International Nuclear Information System (INIS)

    Merckel, Laura G.; Bartels, Lambertus W.; Köhler, Max O.; Bongard, H. J. G. Desirée van den; Deckers, Roel; Mali, Willem P. Th. M.; Binkert, Christoph A.; Moonen, Chrit T.; Gilhuijs, Kenneth G. A.; Bosch, Maurice A. A. J. van den

    2013-01-01

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  2. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    Science.gov (United States)

    Casper, Andrew Jacob

    The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an

  3. Suitability of a tumour-mimicking material for the evaluation of high-intensity focused ultrasound ablation under magnetic resonance guidance

    International Nuclear Information System (INIS)

    Pichardo, S; Kivinen, J; Curiel, L; Melodelima, D

    2013-01-01

    This study tests the suitability of a tumour-mimic for targeting magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU). An agarose-based tumour-mimic was injected as a warm solution that polymerized in tissue. Thermal characteristics and acoustic absorption of the mimic were observed within the values reported for tissues. The relaxation times at 3T were 1679 ± 15 ms for T1 and 41 ± 1 ms for T2. The mimic was clearly visible on in vivo images. With lower contrast the tumour-mimic was visible on T2-weighted images, where it was possible to detect the ablated tissue surrounding the mimic after sonications. HIFU sonications were performed to induce thermal ablation on and around the mimic using a Sonalleve system (Philips). MR thermometry maps were performed during HIFU. The average temperature when the sonication was done at the tumour-mimic was 67.6 ± 8.0 °C in vitro and 67.6 ± 5.0 °C in vivo. The average temperature for sonications at tissues was 68.4 ± 8.7 °C in vitro (liver) and 66.0 ± 2.6 °C in vivo (muscle), with no significant difference between tissue and tumour-mimic (p > 0.05). The tumour-mimic behaviour when using MR-guided HIFU was similar to tissues, showing that this mimic can be used as an alternative to tumour models for validating MR-guided HIFU devices targeting. (paper)

  4. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  5. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-21

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s -1 ) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  6. Percutaneous thermal ablation of renal neoplasms

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.H.; Guenther, R.W.

    2005-01-01

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  7. Procedural sedation and analgesia for respiratory-gated MR-HIFU in the liver : a feasibility study

    NARCIS (Netherlands)

    van Breugel, Marjolein; Wijlemans, JW; Vaessen, Hermanus H B; de Greef, Martijn; Moonen, Chrit T W; van den Bosch, Maurice A A J; Ries, Mario G

    2016-01-01

    BACKGROUND: Previous studies demonstrated both pre-clinically and clinically the feasibility of magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablations in the liver. To overcome the associated problem of respiratory motion of the ablation area, general anesthesia (GA) and

  8. High-Intensity Focused Ultrasound (HIFU) in Uterine Fibroid Treatment: Review Study

    International Nuclear Information System (INIS)

    Mahmoud, Mustafa Z.; Alkhorayef, Mohammed; Alzimami, Khalid S.; Aljuhani, Manal Saud; Sulieman, Abdelmoneim

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a highly precise medical procedure used locally to heat and destroy diseased tissue through ablation. This study intended to review HIFU in uterine fibroid therapy, to evaluate the role of HIFU in the therapy of leiomyomas as well as to review the actual clinical activities in this field including efficacy and safety measures beside the published clinical literature. An inclusive literature review was carried out in order to review the scientific foundation, and how it resulted in the development of extracorporeal distinct devices. Studies addressing HIFU in leiomyomas were identified from a search of the Internet scientific databases. The analysis of literature was limited to journal articles written in English and published between 2000 and 2013. In current gynecologic oncology, HIFU is used clinically in the treatment of leiomyomas. Clinical research on HIFU therapy for leiomyomas began in the 1990s, and the majority of patients with leiomyomas were treated predominantly with HIFUNIT 9000 and prototype single focus ultrasound devices. HIFU is a non-invasive and highly effective standard treatment with a large indication range for all sizes of leiomyomas, associated with high efficacy, low operative morbidity and no systemic side effects. Uterine fibroid treatment using HIFU was effective and safe in treating symptomatic uterine fibroids. Few studies are available in the literature regarding uterine artery embolization (UAE). HIFU provides an excellent option to treat uterine fibroids

  9. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo

    Science.gov (United States)

    Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa

    2017-04-01

    The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2  =  0.81, slope  =  0.90), width (r 2  =  0.85, slope  =  1.12) and area (r 2  =  0.58, slope  =  0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.

  10. HIFU scattering by the ribs: constrained optimisation with a complex surface impedance boundary condition

    Science.gov (United States)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2014-04-01

    High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more established treatment modalities such as resection, chemotherapy and ionising radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element (BE) approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. Dissipative mechanisms inside the propagating medium have since been implemented, together with a complex surface impedance condition at the surface of the ribs. A reformulation of the boundary element equations as a constrained optimisation problem was carried out to determine the complex surface velocities of a multi-element HIFU array which generated the acoustic pressure field that best fitted a required acoustic pressure distribution in a least-squares sense. This was done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was kept below a specified threshold. The methodology was tested at an

  11. Evaluation of the therapeutic efficacy of high-intensity focused ultrasound ablation of hepatocellular carcinoma by three-dimensional sonography with a perflubutane-based contrast agent

    International Nuclear Information System (INIS)

    Numata, Kazushi; Fukuda, Hiroyuki; Ohto, Masao; Itou, Ryu; Nozaki, Akito; Kondou, Masaaki; Morimoto, Manabu; Karasawa, Eii; Tanaka, Katsuaki

    2010-01-01

    Objective: We performed contrast-enhanced three-dimensional sonography (CE 3D US) with a perflubutane-based contrast agent to immediately evaluate the completeness of ablation of small hepatocellular carcinoma (HCC) lesions by extracorporeal high-intensity focused ultrasound (HIFU). Subjects and methods: Twenty-one HCC lesions were treated by a single ultrasound-guided HIFU ablation session, and CE 3D US was performed before, immediately after, and 1 week, and 1 month after HIFU, and contrast-enhanced CT (CE CT) or contrast-enhanced MRI (CE MRI) was performed before HIFU, 1 week and 1 month after HIFU, and during the follow-up period. Results: Immediately and 1 month after HIFU, 17 lesions were evaluated as adequately ablated by CE 3D US, and the other 4 lesions as residual tumors. One month after HIFU, 18 were evaluated as adequately ablated by CE CT or CE MRI, and the other 3 as residual tumors. The evaluation by CE 3D US immediately after HIFU and by CE CT or CE MRI 1 month after HIFU was concordant with 20 lesions. The kappa value for agreement between the findings of CE 3D US and other modalities by two blinded observers was 0.83. When the 1-month CE CT or CE MRI findings were used as the reference standard, the sensitivity, specificity, and accuracy of CE 3D US immediately after HIFU for the diagnosis of the adequate ablation were 100%, 75%, and 95%, respectively. Conclusion: CE 3D US appears to be a useful method for immediate evaluation of therapeutic efficacy of HIFU ablation of HCC lesions.

  12. Evaluation of the therapeutic efficacy of high-intensity focused ultrasound ablation of hepatocellular carcinoma by three-dimensional sonography with a perflubutane-based contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazushi, E-mail: kz-numa@urahp.yokohama-cu.ac.j [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Fukuda, Hiroyuki; Ohto, Masao; Itou, Ryu [Department of Internal Medicine, Naruto General Hospital, 167 Naruto, Sanbu, Chiba 289-1326 (Japan); Nozaki, Akito; Kondou, Masaaki; Morimoto, Manabu [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Karasawa, Eii [Department of Gastroenterology, International University of Health and Welfare Atami Hospital, 13-1 Higashi Kaigan-cho, Atami, Shizuoka 413-0012 (Japan); Tanaka, Katsuaki [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan)

    2010-08-15

    Objective: We performed contrast-enhanced three-dimensional sonography (CE 3D US) with a perflubutane-based contrast agent to immediately evaluate the completeness of ablation of small hepatocellular carcinoma (HCC) lesions by extracorporeal high-intensity focused ultrasound (HIFU). Subjects and methods: Twenty-one HCC lesions were treated by a single ultrasound-guided HIFU ablation session, and CE 3D US was performed before, immediately after, and 1 week, and 1 month after HIFU, and contrast-enhanced CT (CE CT) or contrast-enhanced MRI (CE MRI) was performed before HIFU, 1 week and 1 month after HIFU, and during the follow-up period. Results: Immediately and 1 month after HIFU, 17 lesions were evaluated as adequately ablated by CE 3D US, and the other 4 lesions as residual tumors. One month after HIFU, 18 were evaluated as adequately ablated by CE CT or CE MRI, and the other 3 as residual tumors. The evaluation by CE 3D US immediately after HIFU and by CE CT or CE MRI 1 month after HIFU was concordant with 20 lesions. The kappa value for agreement between the findings of CE 3D US and other modalities by two blinded observers was 0.83. When the 1-month CE CT or CE MRI findings were used as the reference standard, the sensitivity, specificity, and accuracy of CE 3D US immediately after HIFU for the diagnosis of the adequate ablation were 100%, 75%, and 95%, respectively. Conclusion: CE 3D US appears to be a useful method for immediate evaluation of therapeutic efficacy of HIFU ablation of HCC lesions.

  13. Comparison between coupled KZK-BHTE numerical simulations and scanned HIFU exposures in excised bovine liver

    Science.gov (United States)

    Andrew, Marilee A.; Brayman, Andrew A.; Kaczkowski, Peter J.; Kargl, Steven G.

    2004-05-01

    The use of moving high intensity focused ultrasound (HIFU) treatment protocols is of interest in achieving efficient formation of large-volume lesions in tissue. However, potentially unwanted thermal effects, such as prefocal heating, should be considered. A KZK acoustic model coupled with the BioHeat Transfer Equation has been extended to simulate multiple, moving scans in tissue. Simulation results are compared with experimental data collected over a range of exposure regimes for linear and concentric circular scans with a 3.5-MHz single-element transducer in ex vivo bovine liver. Of particular interest are investigating prefocal thermal buildup and ablating the central core of a circular pattern through conductive heating, that is without direct HIFU exposure. Qualitative agreement is observed between experimental and simulated data; limits of the predictive capability of the model in cavitation regimes will be discussed. [Support provided by the U.S. Army Medical Research Acquisition Activity through The University of Mississippi under terms of Agreement No. DAMD17-02-2-0014. The opinions expressed herein are those of the author(s) and do not necessarily reflect the views of U.S. Army Medical Research Acquisition Activity or The University of Mississippi.

  14. Experimental study on ablation of leiomyoma by combination high-intensity focused ultrasound and iodized oil in vitro.

    Science.gov (United States)

    Liang, Zhi-Gang; Gao, Yi; Ren, Xiao-Yan; Sun, Cui; Gu, Heng-Fang; Mou, Meng; Xiao, Yan-Bing

    2017-10-01

    The aim of the current study was to investigate whether iodized oil (IO) enhances high-intensity focused ultrasound (HIFU) ablation of uterine leiomyoma and to determine the features of hyperechoic changes in the target region. Forty samples of uterine leiomyoma were randomly divided into an experimental group and a control group. In the experimental group, the leiomyoma was ablated by HIFU 30 min after 1 mL of iodized oil had been injected into the center of the myoma. The hyperechoic values and areas in the target region were observed by B-modal ultrasound after HIFU ablation. The samples were cut successively into slices and stained by triphenyltetrazolium chloride (TTC) solution within 1 h after HIFU ablation. The diameters of TTC-non-stained areas were measured and tissues in the borderline of the TTC-stained and -non-stained areas were observed pathologically. All procedures in the control group were the same as those in the experimental group except IO was replaced by physiological saline. The hyperechoic value in the target region in the experimental group was higher than that in the control group 4 min after HIFU ablation (P leiomyoma occurred in the target region in both groups. IO causes coagulation necrosis, enlarges tissue damage, and postpones the attenuation of hyperechoic changes in the target region when HIFU ablation is carried out for leiomyoma in vitro. © 2017 Japan Society of Obstetrics and Gynecology.

  15. The impact of vaporized nanoemulsions on ultrasound-mediated ablation.

    Science.gov (United States)

    Zhang, Peng; Kopechek, Jonathan A; Porter, Tyrone M

    2013-01-01

    The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm(2)) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating

  16. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  17. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling

    NARCIS (Netherlands)

    Yeoh, S.Y.; Arias Moreno, A.J.; Rietbergen, van B.; Hoeve, ter N.D.; Diest, van P.J.; Grull, H.

    2015-01-01

    Background Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. Methods A total of 12 healthy rat femurs were ablated

  18. Radiofrequency thermal ablation of malignant hepatic tumors: post-ablation syndrome

    International Nuclear Information System (INIS)

    Choi, Jung Bin; Rhim, Hyunchul; Kim, Yongsoo; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Lee, Seung Ro

    2000-01-01

    To evaluate post-ablation syndrome after radiofrequency thermal ablation of malignant hepatic tumors. Forty-two patients with primary (n=3D29) or secondary (n=3D13) hepatic tumors underwent radiofrequency thermal ablation. A total of 65 nodules ranging in size from 1.1 to 5.0 (mean, 3.1) cm were treated percutaneously using a 50W RF generator with 15G expandable needle electrodes. We retrospectively evaluated the spectrum of post-ablation syndrome including pain, fever (≥3D 38 deg C), nausea, vomiting, right shoulder pain, and chest discomfort according to frequency, intensity and duration, and the findings were correlated with tumor location and number of ablations. We also evaluated changes in pre-/post-ablation serum aminotransferase (ALT/AST) and prothrombin time, and correlated these findings with the number of ablations. Post-ablation syndrome was noted in 29 of 42 patients (69.0%), and most symptoms improved with conservative treatment. The most important of these were abdominal plan (n=3D20, 47.6%), fever (n=3D8, 19.0%), and nausea (n=3D7, 16.7%), and four of 42 (9.5%) patients complained of severe pain. The abdominal pain lasted from 3 hours to 5.5 days (mean; 20.4 hours), the fever from 6 hours to 5 days (mean; 63.0 hours). And the nausea from 1 hours to 4 days (mean; 21.0 hours). Other symptoms were right shoulder pain (n=3D6, 14.3%), chest discomfort (n=3D3, 7.1%), and headache (n=3D3, 7.1%). Seventeen of 20 patients (85%) with abdominal pain had subcapsular tumor of the liver. There was significant correlation between pain, location of the tumor, and a number of ablations. After ablation, ALT/AST was elevated more than two-fold in 52.6%/73.7% of patients, respectively but there was no significant correlation with the number of ablation. Post-ablation syndrome is a frequent and tolerable post-procedural process after radiofrequency thermal ablation. The spectrum of this syndrome provides a useful guideline for the post-ablation management. (author)

  19. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation

    Energy Technology Data Exchange (ETDEWEB)

    Merckel, Laura G.; Knuttel, Floor M.; Peters, Nicky H.G.M.; Mali, Willem P.T.M.; Bosch, Maurice A.A.J. van den [University Medical Center Utrecht, Department of Radiology, HP E 01.132, Utrecht (Netherlands); Deckers, Roel; Moonen, Chrit T.W.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Dalen, Thijs van [Diakonessenhuis Utrecht, Department of Surgery, Utrecht (Netherlands); Schubert, Gerald [Philips Healthcare, Best (Netherlands); Weits, Teun [Diakonessenhuis Utrecht, Department of Radiology, Utrecht (Netherlands); Diest, Paul J. van [University Medical Center Utrecht, Department of Pathology, Utrecht (Netherlands); Vaessen, Paul H.H.B. [University Medical Center Utrecht, Department of Anesthesiology, Utrecht (Netherlands); Gorp, Joost M.H.H. van [Diakonessenhuis Utrecht, Department of Pathology, Utrecht (Netherlands)

    2016-11-15

    To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. (orig.)

  20. WE-EF-BRA-12: Magnetic Resonance- Guided High-Intensity Focused Ultrasound for Localized Ablation of Head and Neck Tissue Structures: A Feasibility Study in An Animal Model

    International Nuclear Information System (INIS)

    Partanen, A; Ellens, N; Noureldine, S; Tufano, R; Burdette, E; Farahani, K

    2015-01-01

    Purpose: High-intensity focused ultrasound (HIFU) ablation is feasible in the head and neck [1]. This study aims to expand upon these findings to assess the feasibility of treatment planning and monitoring via magnetic resonance imaging (MRI) guidance using a clinical MR-guided HIFU platform. Methods: Two 31 kg pigs were anaesthetized, shaved, and positioned prone on the HIFU table (Sonalleve, Philips Healthcare, Vantaa, Finland). The necks were acoustically coupled to the integrated transducer using gel pads and degassed water. MR imaging verified acoustic coupling and facilitated target selection in the thyroid and thymus. Targets were thermally ablated with 130–200 W of acoustic power over a period of 16 s at a frequency of 1.2 MHz while being monitored through real-time, multi-planar MR-thermometry. Contrast-enhanced MR imaging was used to assess treatment efficacy. Post-treatment, animals were euthanized and sonicated tissues were harvested for histology assessment. Results: MR-thermometry, post-contrast-imaging, and gross pathology demonstrated that the system was capable of causing localized thermal ablation in both the thyroid and the thymus without damaging the aerodigestive tract. In one animal, superficial bruising was observed in the ultrasound beam path. Otherwise, there were no adverse events. Analysis of the tissue histology found regions of damage consistent with acute thermal injury at the targeted locations. Conclusion: It is feasible to use a clinical MR-guided HIFU platform for extracorporeal ablation of porcine head and neck tissues. MR guidance and thermometry are sufficient to target and monitor treatment in the thyroid region, despite the presence of the inhomogeneous aerodigestive tract. Further study is necessary to assess efficacy and survival using a tumor model, and to examine what modifications should be made to the transducer positioning system and associated patient positioning aids to adapt it for clinical head and neck targets

  1. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    Science.gov (United States)

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  2. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: Proof of concept

    International Nuclear Information System (INIS)

    Zachiu, Cornel; Moonen, Chrit; Ries, Mario; Denis de Senneville, Baudouin

    2015-01-01

    slow physiological motion can exceed acceptable therapeutic margins. In the animal experiment, motion tracking revealed an initial shift of up to 4 mm during the first 10 min and a subsequent continuous shift of ∼2 mm/h until the end of the intervention. This leads to a continuously increasing mismatch of the initial shot planning, the thermal dose measurements, and the true underlying anatomy. The estimated displacements allowed correcting the planned sonication cell cluster positions to the true target position, as well as the thermal dose estimates during the entire intervention and to correct the nonperfused volume measurement. A spatial coherence of all three is particularly important to assure a confluent ablation volume and to prevent remaining islets of viable malignant tissue. Conclusions: This study proposes a motion correction strategy for displacements resulting from slowly varying physiological motion that might occur during a MR-guided HIFU intervention. The authors have shown that such drifts can lead to a misalignment between interventional planning, energy delivery, and therapeutic validation. The presented volunteer study and in vivo experiment demonstrate both the relevance of the problem for HIFU therapies and the compatibility of the proposed motion compensation framework with the workflow of a HIFU intervention under clinical conditions

  3. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: Proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Zachiu, Cornel, E-mail: C.Zachiu@umcutrecht.nl; Moonen, Chrit; Ries, Mario [Imaging Division, UMC Utrecht, Heidelberglaan 100, Utrecht 3584 CX (Netherlands); Denis de Senneville, Baudouin [Imaging Division, UMC Utrecht, Heidelberglaan 100, Utrecht 3584 CX (Netherlands); Mathematical Institute of Bordeaux, University of Bordeaux, Talence Cedex 33405 (France)

    2015-07-15

    slow physiological motion can exceed acceptable therapeutic margins. In the animal experiment, motion tracking revealed an initial shift of up to 4 mm during the first 10 min and a subsequent continuous shift of ∼2 mm/h until the end of the intervention. This leads to a continuously increasing mismatch of the initial shot planning, the thermal dose measurements, and the true underlying anatomy. The estimated displacements allowed correcting the planned sonication cell cluster positions to the true target position, as well as the thermal dose estimates during the entire intervention and to correct the nonperfused volume measurement. A spatial coherence of all three is particularly important to assure a confluent ablation volume and to prevent remaining islets of viable malignant tissue. Conclusions: This study proposes a motion correction strategy for displacements resulting from slowly varying physiological motion that might occur during a MR-guided HIFU intervention. The authors have shown that such drifts can lead to a misalignment between interventional planning, energy delivery, and therapeutic validation. The presented volunteer study and in vivo experiment demonstrate both the relevance of the problem for HIFU therapies and the compatibility of the proposed motion compensation framework with the workflow of a HIFU intervention under clinical conditions.

  4. Acoustic Cavitation Enhances Focused Ultrasound Ablation with Phase-Shift Inorganic Perfluorohexane Nanoemulsions: An In Vitro Study Using a Clinical Device

    Directory of Open Access Journals (Sweden)

    Lu-Yan Zhao

    2016-01-01

    Full Text Available Purpose. To investigate whether acoustic cavitation could increase the evaporation of a phase-shift inorganic perfluorohexane (PFH nanoemulsion and enhance high intensity focused ultrasound (HIFU ablation. Materials and Methods. PFH was encapsulated by mesoporous silica nanocapsule (MSNC to form a nanometer-sized droplet (MSNC-PFH. It was added to a tissue-mimicking phantom, whereas phosphate buffered saline (PBS was added as a control (PBS-control. HIFU (Pac=150 W, t=5/10 s exposures were performed in both phantoms with various duty cycles (DC. US images, temperature, and cavitation emissions were recorded during HIFU exposure. HIFU-induced lesions were measured and calculated. Results. Compared to PBS-control, MSNC-PFH nanoemulsion could significantly increase the volume of HIFU-induced lesion (P<0.01. Peak temperatures were 78.16 ± 5.64°C at a DC of 100%, 70.17 ± 6.43°C at 10%, 53.17 ± 4.54°C at 5%, and 42.00 ± 5.55°C at 2%, respectively. Inertial cavitation was much stronger in the pulsed-HIFU than that in the continuous-wave HIFU exposure. Compared to 100%-DC exposure, the mean volume of lesion induced by 5 s exposure at 10%-DC was significantly larger, but smaller at 2%-DC. Conclusions. MSNC-PFH nanoemulsion can significantly enhance HIFU ablation. Appropriate pulsed-HIFU exposure could significantly increase the volume of lesion and reduce total US energy required for HIFU ablation.

  5. Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions.

    Science.gov (United States)

    Roujol, Sébastien; de Senneville, Baudouin Denis; Hey, Silke; Moonen, Chrit; Ries, Mario

    2012-03-01

    Real time magnetic resonance (MR) thermometry is gaining clinical importance for monitoring and guiding high intensity focused ultrasound (HIFU) ablations of tumorous tissue. The temperature information can be employed to adjust the position and the power of the HIFU system in real time and to determine the therapy endpoint. The requirement to resolve both physiological motion of mobile organs and the rapid temperature variations induced by state-of-the-art high-power HIFU systems require fast MRI-acquisition schemes, which are generally hampered by low signal-to-noise ratios (SNRs). This directly limits the precision of real time MR-thermometry and thus in many cases the feasibility of sophisticated control algorithms. To overcome these limitations, temporal filtering of the temperature has been suggested in the past, which has generally an adverse impact on the accuracy and latency of the filtered data. Here, we propose a novel filter that aims to improve the precision of MR-thermometry while monitoring and adapting its impact on the accuracy. For this, an adaptive extended Kalman filter using a model describing the heat transfer for acoustic heating in biological tissues was employed together with an additional outlier rejection to address the problem of sparse artifacted temperature points. The filter was compared to an efficient matched FIR filter and outperformed the latter in all tested cases. The filter was first evaluated on simulated data and provided in the worst case (with an approximate configuration of the model) a substantial improvement of the accuracy by a factor 3 and 15 during heat up and cool down periods, respectively. The robustness of the filter was then evaluated during HIFU experiments on a phantom and in vivo in porcine kidney. The presence of strong temperature artifacts did not affect the thermal dose measurement using our filter whereas a high measurement variation of 70% was observed with the FIR filter.

  6. Ablative thermal protection systems

    International Nuclear Information System (INIS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed. 5 references

  7. High-intensity focused ultrasound ablation around the tubing.

    Science.gov (United States)

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  8. A User-Friendly Software Package for HIFU Simulation

    Science.gov (United States)

    Soneson, Joshua E.

    2009-04-01

    A freely-distributed, MATLAB (The Mathworks, Inc., Natick, MA)-based software package for simulating axisymmetric high-intensity focused ultrasound (HIFU) beams and their heating effects is discussed. The package (HIFU_Simulator) consists of a propagation module which solves the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and a heating module which solves Pennes' bioheat transfer (BHT) equation. The pressure, intensity, heating rate, temperature, and thermal dose fields are computed, plotted, the output is released to the MATLAB workspace for further user analysis or postprocessing.

  9. THE POSSIBILITY OF HIFU THERAPY AT THE PRESENT STAGE

    Directory of Open Access Journals (Sweden)

    E. A. Suleimanov

    2016-01-01

    Full Text Available Writing this article is prompted by growing interest in the technology of high intensity focused ultrasound (high-intensity focused ultrasound, HIFU, which, in turn, is associated with a wide range of potential points of use, minimal invasiveness of this method, minimal impact on the patient’s body, characterized by a short period of rehabilitation. Also, this treatment method has a high reproducibility, which in turn contributes to the rapid spread of HIFU therapy in practice. The review is devoted to the history of development, study and application of the method of ultrasonic ablation, the modern view on how to conduct HIFU therapy, the currently available technical possibilities for non-invasive high-intensity focused ultrasound therapy as well as demonstrate the effectiveness of this treatment in patients with malignant and benign tumors of different localization, as in a standalone version or in combination with other treatment options (surgery, drug therapy, radiation therapy, an attempt to systematize the early and remote results of treatment. The article represents the data of world and national literature. One of the important directions of the study of the described technique is an expansion of possible application in various malignant pathologies, both local and generalized nature of the lesion. A separate item is the application of HIFU therapy in the treatment of chronic pain syndrome.

  10. High Intensity Focused Ultrasound Ablation of Pancreatic Neuroendocrine Tumours: Report of Two Cases

    International Nuclear Information System (INIS)

    Orgera, Gianluigi; Krokidis, Miltiadis; Monfardini, Lorenzo; Bonomo, Guido; Della Vigna, Paolo; Fazio, Nicola; Orsi, Franco

    2011-01-01

    We describe the use of ultrasound-guided high-intensity focused ultrasound (HIFU) for ablation of two pancreatic neuroendocrine tumours (NETs; insulinomas) in two inoperable young female patients. Both suffered from episodes of severe nightly hypoglycemia that was not efficiently controlled by medical treatment. After HIFU ablation, local disease control and symptom relief were achieved without postinterventional complications. The patients remained free of symptoms during 9-month follow-up. The lesions appeared to be decreased in volume, and there was decreased enhancing pattern in the multidetector computed tomography control (MDCT). HIFU is likely to be a valid alternative for symptoms control in patients with pancreatic NETs. However, currently the procedure should be reserved for inoperable patients for whom symptoms cannot be controlled by medical therapy.

  11. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  12. Design of HIFU Transducers to Generate Specific Nonlinear Ultrasound Fields

    Science.gov (United States)

    Khokhlova, Vera A.; Yuldashev, Petr V.; Rosnitskiy, Pavel B.; Maxwell, Adam D.; Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation oftissue. In this work, an inverse problem of determining transducer parameters to enable formation of shockswith desired amplitude at the focus is solved. The solution was obtained by performing multipledirect simulations of the parabolic Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sourcesas well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocksare formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90-100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University.

  13. Percutaneous thermal ablation of renal neoplasms; Perkutane Thermoablation von Nierentumoren

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, J. [Inst. fuer Diagnostische und Interventionelle Radiologie/Neuroradiologie, Klinikum Passau (Germany); Mahnken, A.H.; Guenther, R.W. [Klinik fuer Radiologische Diagnostik, Universitaetsklinikum Aachen (Germany)

    2005-12-15

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  14. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  15. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    International Nuclear Information System (INIS)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D.; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J.

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  16. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling.

    Science.gov (United States)

    Yeo, Sin Yuin; Arias Moreno, Andrés J; van Rietbergen, Bert; Ter Hoeve, Natalie D; van Diest, Paul J; Grüll, Holger

    2015-01-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. A total of 12 healthy rat femurs were ablated using 10 W for 46 ± 4 s per sonication with 4 sonications for each femur. At 7 days after treatments, all animals underwent MR and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. Then, six animals were euthanized. At 1 month following ablations, the remaining six animals were scanned again with MR and SPECT/CT prior to euthanization. Thereafter, both the HIFU-treated and contralateral control bones of three animals from each time interval were processed for histology, whereas the remaining bones were subjected to micro-CT (μCT), three-point bending tests, and micro-finite element (micro-FE) analyses. At 7 days after HIFU ablations, edema formation around the treated bones coupled with bone marrow and cortical bone necrosis was observed on MRI and histological images. SPECT/CT and μCT images revealed presence of bone modeling through an increased uptake of (99m)Tc-MDP and formation of woven bone, respectively. At 31 days after ablations, as illustrated by imaging and histology, healing of the treated bone and the surrounding soft tissue was noted, marked by decreased in amount of tissue damage, formation of scar tissue, and sub-periosteal reaction. The results of three-point bending tests showed no significant differences in elastic stiffness, ultimate load, and yield load between the HIFU-treated and contralateral control bones at 7 days and 1 month after treatments. Similarly, the elastic stiffness and Young's moduli determined by micro-FE analyses at both time intervals were not statistically different. Multimodality imaging and histological data illustrated the presence of HIFU-induced bone damage at the cellular level, which activated the

  17. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation

    NARCIS (Netherlands)

    Knuttel, Floor; Waaijer, Laurien; Merckel, LG; van den Bosch, Maurice A A J; Witkamp, Arjen J.; Deckers, Roel; van Diest, Paul J.

    AIMS: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This

  18. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    Science.gov (United States)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-18

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  19. Evaluation of short-term response of high intensity focused ultrasound ablation for primary hepatic carcinoma: Utility of contrast-enhanced MRI and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuanyuan; Zhao Jiannong [Department of Radiology, Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010 (China); Guo Dajing, E-mail: guodaj@163.com [Department of Radiology, Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010 (China); Zhong Weijia [Department of Radiology, Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010 (China); Ran Lifen [Clinical Center for Tumor Therapy, Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010 (China)

    2011-09-15

    Objective: To explore the significance of contrast-enhanced MRI (CE-MRI) and diffusion-weighted imaging (DWI) in evaluating the short-term response of high intensity focused ultrasound (HIFU) ablation for primary hepatic carcinoma (PHC). Methods: Thirty-nine lesions in the livers of 27 patients were performed HIFU ablation. Conventional MRI sequences, CE-MRI and DWI were performed 1 week before HIFU and 1 week, 3 months after the therapy, respectively. The short-term responses of HIFU for all lesions were evaluated with MRI. Results: 28 of the 39 lesions (28/39, 71.8%) showed complete necrosis with no enhancement 1 week and 3 months after HIFU. The apparent diffusion coefficient (ADC) values 1 week and 3 months after HIFU were significantly higher than those 1 week before treatment (p < 0.05). The tumor recurrence was detected in 7 of the 39 lesions (7/39, 17.9%) which had no significant enhancement 1 week after HIFU. On the 3 months follow-up, focal nodules were found on the inner aspects of the treated areas. The ADC values had no significant difference between 1 week before and after treatment (p > 0.05), however, they were significantly higher 3 months after HIFU (p < 0.05). The tumor residuals were detected in 4 of the 39 lesions (4/39, 10.3%) showing enhancement 1 week after treatment and increased size 3 months after HIFU. The ADC values had no significant difference among 1 week before HIFU, 1 week and 3 months after treatment (p > 0.05). Conclusion: CE-MRI and DWI can be employed to evaluate the short-term response of HIFU ablation for PHC and to guide the patient management.

  20. HIFU e nanobolle di ossigeno: due differenti approcci per il trattamento del cancro - HIFU and oxygen load nanobubbles:two different approches for cancer treatment

    Directory of Open Access Journals (Sweden)

    Chiara Magnetto

    2015-07-01

    Full Text Available L’utilizzo di ultrasuoni focalizzati ad alta intensità (HIFU ha ottenuto un rapido consenso in ambito clinico come strumento chirurgico non invasivo per l’ablazione di cellule tumorali. L’impiego di tale tecnologia, applicata simultaneamente a nano-bolle riempite di ossigeno (OLN, realizzate e caratterizzate presso l’INRiM e volte a trattare patologie associate all’ipossia (come i tumori, costituiscono un innovativo strumento terapeutico per la cura del cancro proposto in questo lavoro. ---------- Use of high intensity focused ultrasound (HIFU beam has gained rapid agreement in clinical environment as a tool for non-invasive surgical ablation of tumor cells. This technology, applied simultaneously to nano-bubbles filled with oxygen (OLN, realized and characterized at INRiM with the purpose of treating diseases associated to hypoxia (such as tumors, constitute an innovative therapeutic tool for cancer treatment proposed in this article.

  1. SU-F-J-215: Non-Thermal Pulsed High Intensity Focused Ultrasound Therapy Combined with 5-Aminolevulinic Acid: An in Vivo Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; He, W; Cvetkovic, D; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: It has recently been shown that non-thermal pulsed high intensity focused ultrasound (pHIFU) has a cell-killing effect. The purpose of the study is to investigate the sonosensitizing effect of 5-Aminolevulinic Acid (5-ALA) in non-thermal pHIFU cancer therapy. Methods: FaDu human head and neck squamous cell carcinoma cells were injected subcutaneously in the flanks of nude mice. After one to two weeks, the tumors reached the volume of 112 ± 8 mm3 and were assigned randomly into a non-thermal pHIFU group (n=9) and a non-thermal sonodynamic therapy (pHIFU after 5-ALA administration) group (n=7). The pHIFU treatments (parameters: 1 MHz frequency; 25 W acoustic power; 0.1 duty cycle; 60 seconds duration) were delivered using an InSightec ExAblate 2000 system with a GE Signa 1.5T MR scanner. The mice in the non-thermal sonodynamic group received 5-ALA tail-vein injection 4 hours prior to the pHIFU treatment. The tumor growth was monitored using the CT scanner on a Sofie-Biosciences G8 PET/CT system. Results: The tumors in this study grew very aggressively and about 60% of the tumors in this study developed ulcerations at various stages. Tumor growth delay after treatments was observed by comparing the treated (n=9 in pHIFU group; n=7 in sonodynamic group) and untreated tumors (n=17). However, no statistically significant differences were found between the non-thermal pHIFU and non-thermal sonodynamic group. The mean normalized tumor volume of the untreated tumors on Day 7 after their first CT scans was 7.05 ± 0.54, while the normalized volume of the treated tumors on Day 7 after treatment was 5.89 ± 0.79 and 6.27 ± 0.47 for the sonodynamic group and pHIFU group, respectively. Conclusion: In this study, no significant sonosensitizing effects of 5-ALA were obtained on aggressive FaDu tumors despite apparent tumor growth delay in some mice treated with non-thermal sonodynamic therapy.

  2. Thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism.

    Science.gov (United States)

    Duan, Ya-Qi; Liang, Ping

    2013-05-01

    Many studies have been conducted on splenic thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In this article, we review the evolution and current status of radiofrequency and microwave ablation in the treatment of spleen diseases. All publications from 1990 to 2011 on radiofrequency and microwave ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism were retrieved by searching PubMed. Thermal ablation in the spleen for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism can preserve part of the spleen and maintain splenic immunologic function. Thermal ablation for assisting hemostasis in partial splenectomy minimizes blood loss during operation. Thermal ablation for spleen trauma reduces the number of splenectomy and the amount of blood transfusion. Thermal ablation for splenic metastasis is minimally invasive and can be done under the guidance of an ultrasound, which helps shorten the recovery time. Thermal ablation for hypersplenism increases platelet (PLT) and white blood cell (WBC) counts and improves liver function. It also helps to maintain splenic immunologic function and even improves splenic immunologic function in the short-term. In conclusion, thermal ablative approaches are promising for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In order to improve therapeutic effects, directions for future studies may include standardized therapeutic indications, prolonged observation periods and enlarged sample sizes.

  3. Robotic-assisted thermal ablation of liver tumours

    International Nuclear Information System (INIS)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong; Goh, Khean Lee; Yoong, Boon Koon; Ho, Gwo Fuang; Yim, Carolyn Chue Wai; Kulkarni, Anjali

    2015-01-01

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  4. Robotic-assisted thermal ablation of liver tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong [University of Malaya, Department of Biomedical Imaging and University of Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur (Malaysia); University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Goh, Khean Lee [University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Yoong, Boon Koon [University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur (Malaysia); Ho, Gwo Fuang [University of Malaya, Department of Oncology, Faculty of Medicine, Kuala Lumpur (Malaysia); Yim, Carolyn Chue Wai [University of Malaya, Department of Anesthesia, Faculty of Medicine, Kuala Lumpur (Malaysia); Kulkarni, Anjali [Perfint Healthcare Corporation, Florence, OR (United States)

    2015-01-15

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  5. Ablation of clinically relevant kidney tissue volumes by high-intensity focused ultrasound: Preliminary results of standardized ex-vivo investigations.

    Science.gov (United States)

    Häcker, Axel; Peters, Kristina; Knoll, Thomas; Marlinghaus, Ernst; Alken, Peter; Jenne, Jürgen W; Michel, Maurice Stephan

    2006-11-01

    To investigate strategies to achieve confluent kidney-tissue ablation by high-intensity focused ultrasound (HIFU). Our model of the perfused ex-vivo porcine kidney was used. Tissue ablation was performed with an experimental HIFU device (Storz Medical, Kreuzlingen, Switzerland). Lesion-to-lesion interaction was investigated by varying the lesion distance (5 to 2.5 mm), generator power (300, 280, and 260 W), cooling time (10, 20, and 30 seconds), and exposure time (4, 3, and 2 seconds). The lesion rows were analyzed grossly and by histologic examination (hematoxylin-eosin and nicotinamide adenine dinucleotide staining). It was possible to achieve complete homogeneous ablation of a clinically relevant tissue volume but only by meticulous adjustment of the exposure parameters. Minimal changes in these parameters caused changes in lesion formation with holes within the lesions and lesion-to-lesion interaction. Our preliminary results show that when using this new device, HIFU can ablate a large tissue volume homogeneously in perfused ex-vivo porcine tissue under standardized conditions with meticulous adjustment of exposure parameters. Further investigations in vivo are necessary to test whether large tissue volumes can be ablated completely and reliably despite the influence of physiologic tissue and organ movement.

  6. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.

    Science.gov (United States)

    Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2005-10-01

    To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.

  7. Segmental liver resection assisted by HIFU: tissue precauterization using a toroidal-shaped HIFU transducer

    Science.gov (United States)

    N'Djin, W. A.; Melodelima, D.; Schenone, F.; Rivoire, M.; Chapelon, J. Y.

    2010-03-01

    The development of new cauterization techniques for hepatic resection is critical for improving the safety of the procedure. Previous studies showed the feasibility of using HIFU or radiofrequency precoagulation to limit blood loss during dissection of the organ. Here we report a new therapeutic modality using high intensity focused ultrasound (HIFU) to perform a bloodless hepatic resection that could represent a promising alternative. A comparative study was performed to evaluate the interest of using this complementary tool to improve surgical resection in the liver. This study used a 3 MHz HIFU toroidal-shaped phased array transducer which allows the generation of a single conical lesion of 7 cm3 in 40 seconds. In order to minimize blood loss and dissection time, a barrier of coagulative necrosis was generated with the HIFU device before hepatectomy, by juxtaposing single conical lesions on the line of dissection. Resection assisted by HIFU (RA-HIFU) was compared with classical dissections with clamping (RC) and without clamping (Control). For each technique 14 partial liver resections were performed in seven pigs. The parameters examined were vascular control and times of treatment. Precoagulation allowed the vascular isolation of small vessels and surgical clips were mainly used for the control of vessels>5 mm in diameter. The number of clips used per unit of liver surface dissected in RA-HIFU (0.8±0.3 cm-2) was significantly lower than in the other groups (RC: 1.6±0.4 cm-2, Control: 1.8±0.8 cm-2, p<0.01). In addition, blood loss was lower in RA-HIFU (7.4±6.5 ml.cm-2) than in RC (11.2±4.5 ml.cm-2) and Control (14.0±6.7 ml.cm-2). The time of dissection in RA-HIFU (13±5 min) was shorter than in RC (23±8 minutes) and Control (18±5 minutes). The feasibility and the efficiency of RA-HIFU using a toroidal-shaped HIFU transducer without additional devices were demonstrated. This technique enhances the resection procedure and will be able to be tested in

  8. Transpiration cooling assisted ablative thermal protection of aerospace substructures

    International Nuclear Information System (INIS)

    Khan, M.B.; Iqbal, N.; Haider, Z.

    2009-01-01

    Ablatives are heat-shielding materials used to protect aerospace substructures. These materials are sacrificial in nature and provide protection primarily through the large endothermic transformation during exposure to hyper thermal environment such as encountered in re-entry modules. The performance of certain ablatives was reported in terms of their TGA/DTA in Advanced Materials-97 (pp 57-65). The focus of this earlier research resided in the consolidation of interface between the refractory inclusion and the host polymeric matrix to improve thermal resistance. In the present work we explore the scope of transpiration cooling in ablative performance through flash evaporation of liquid incorporated in the host EPDM (Ethylene Propylene Diene Monomer) matrix. The compression-molded specimens were exposed separately to plasma flame (15000 C) and oxyacetylene torch (3000 C) and the back face transient temperature is recorded in situ employing a thermocouple/data logger system. Both head on impingement (HOI) and parallel flow (PF) through a central cavity in the ablator were used. It is observed that transpiration cooling is effective and yields (a) rapid thermal equilibrium in the specimen, (b) lower back face temperature and (c) lower ablation rate, compared to conventional ablatives. SEM/EDS analysis is presented to amplify the point. (author)

  9. TU-B-210-00: MR-Guided Focused Ultrasound Therapy in Oncology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advanced techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.

  10. Salvage HIFU after radiotherapy and salvage radiotherapy after HIFU in locally recurrent prostate cancer: Retrospective analysis of morbidity

    International Nuclear Information System (INIS)

    Lee, J.-W.; Hannoun-Leviac, J.-M.; Chevallier, D.; Rouscoff, Y.; Durand, M.; Amiel, J.; Gal, J.; Natale, R.; Chand, M.-E.; Raffaelli, C.; Ambrosetti, D.

    2012-01-01

    To evaluate the toxicity of therapeutic sequences High Intensity Focused Ultrasound (HIFU)-salvage radiotherapy (HIFU-RT) or radiotherapy-salvage HIFU (RT-HIFU) in case of locally recurrent prostate cancer. Nineteen patients had a local recurrence of prostate cancer. Among them, 10 patients were treated by HIFU-RT and 9 patients by RT- HIFU (4 by external beam radiotherapy [EBR] and 5 by brachytherapy [BRACHY]). Urinary side effects were assessed using CTCAE v4. At the time of the initial management, the median age was 66.5 years (53 72), the median PSA was 10.8 ng/mL (3.4 50) and the median initial Gleason score was 6.3 (5 8). Median follow-up after salvage treatment was 46.3 months (2 108). Thirty percent of the patients in the HIFU-RT group and 33.3 % of the patients in the RT-HIFU group, all belonging to the sub-group BRACHY-HIFU, had urinary complication greater than or equal to grade 2. Among all the patients, only 1 had grade 1 gastrointestinal toxicity. BRACHY-HIFU sequence seems to be purveyor of many significant urinary side effects. A larger database is needed to confirm this conclusion. (authors)

  11. Endometrial ablation by rollerball electrocoagulation compared to uterine balloon thermal ablation. Technical and safety aspects.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2003-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal (UBT) ablation (Thermachoice), regarding intra- and post-operative technical complications and safety aspects. STUDY DESIGN: A randomised

  12. Correlation of p63 immunohistochemistry with histology and contrast enhanced MRI in characteristic lesions induced by minimally invasive thermal treatments in a dog prostate

    Science.gov (United States)

    Pascal, A.; Butts-Pauly, K.; Plata, J.; Sommer, G.; Daniel, B.; Bouley, D. M.

    2017-03-01

    Thermal ablation techniques are important tools to treat low grade tumors in the prostate gland. The use of Magnetic Resonance Imaging (MRI) has been an excellent tool to visualize and assess the thermally ablated areas in real time. In this study slides from dog prostates previously treated with cryoablation or High Intensity Focal Ultrasound (HIFU) were immunohistochemically stained with the biomarker p63, in order to determine if this marker would be helpful for differentiatiating between viable, sub lethally damaged and normal glands. Digitized slides were analyzed using Sedeen Viewer software, and compared with corresponding representative H&E slides and MR images. p63 staining in the cryoablated acute duration prostates was negative in the coagulation necrosis zone (region of interest subjected to the coldest temperatures). In acute duration HIFU treated prostates, the central heat-fixed zone (region of interest subjected to the hottest temperatures) still displayed + p63 staining. Cryoablated or HIFU subacute duration treated prostates were very hemorrhagic, but presented the same stain pattern in the treated areas as the acute duration prostates, and in chronic duration prostates, whether treated with cryo or HIFU, glands displayed robust p63 staining most prevalent in the outer edges of the lesion where there was extensive glandular regeneration. In conclusion, this study demonstrates the value of p63 IHC and its usefulness in detecting viable prostate basal cells in normal dog prostates following either cryoablation of HIFU. Our results suggest that the portions of the lesion with complete loss of p63 staining correspond well to the non-enhancing region in cryoablated prostates, as viewed with MRI. However, p63 staining in the heat-fixed zone in acute harvested HIFU treated prostates remains positive, suggesting either inadequate heat to destroy basal cells, or heat-fixation of the p63 antigen and false positive staining. Therefore p63 staining does not

  13. High intensity focused ultrasound (HIFU) applied to hepato-bilio-pancreatic and the digestive system—current state of the art and future perspectives

    Science.gov (United States)

    Diana, Michele; Schiraldi, Luigi; Liu, Yu-Yin; Memeo, Riccardo; Mutter, Didier; Pessaux, Patrick

    2016-01-01

    Background High intensity focused ultrasound (HIFU) is emerging as a valid minimally-invasive image-guided treatment of malignancies. We aimed to review to current state of the art of HIFU therapy applied to the digestive system and discuss some promising avenues of the technology. Methods Pertinent studies were identified through PubMed and Embase search engines using the following keywords, combined in different ways: HIFU, esophagus, stomach, liver, pancreas, gallbladder, colon, rectum, and cancer. Experimental proof of the concept of endoluminal HIFU mucosa/submucosa ablation using a custom-made transducer has been obtained in vivo in the porcine model. Results Forty-four studies reported on the clinical use of HIFU to treat liver lesions, while 19 series were found on HIFU treatment of pancreatic cancers and four studies included patients suffering from both liver and pancreatic cancers, reporting on a total of 1,682 and 823 cases for liver and pancreas, respectively. Only very limited comparative prospective studies have been reported. Conclusions Digestive system clinical applications of HIFU are limited to pancreatic and liver cancer. It is safe and well tolerated. The exact place in the hepatocellular carcinoma (HCC) management algorithm remains to be defined. HIFU seems to add clear survival advantages over trans arterial chemo embolization (TACE) alone and similar results when compared to radio frequency (RF). For pancreatic cancer, HIFU achieves consistent cancer-related pain relief. Further research is warranted to improve targeting accuracy and efficacy monitoring. Furthermore, additional work is required to transfer this technology on appealing treatments such as endoscopic HIFU-based therapies. PMID:27500145

  14. In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions.

    Science.gov (United States)

    Puett, Connor; Phillips, Linsey C; Sheeran, Paul S; Dayton, Paul A

    2013-01-01

    Phase-shift nanoemulsions (PSNEs) provide cavitation sites when the perfluorocarbon (PFC) nanodroplets (ND) are vaporized to microbubbles by acoustic energy. Their presence lowers the power required to ablate tissue by high-intensity focused ultrasound (HIFU), potentially making it a safer option for a broader range of treatment sites. However, spatial control over the ablation region can be problematic when cavitation is used to enhance heating. This study explored relationships between vaporization, ablation, and the PSNE concentration in vitro to optimize the acoustic intensity and insonation time required for spatially controlled ablation enhancement using a PSNE that included a volatile PFC component. HIFU (continuous wave at 1 MHz; insonation times of 5, 10, 15, and 20 s; cool-down times of 2, 4, and 6 s; peak negative pressures of 2, 3, and 4 MPa) was applied to albumin-acrylamide gels containing PFC agents (1:1 mix of volatile decafluorobutane and more stable dodecafluoropentane at 10(5) to 10(8) PFC ND per milliliter) or agent-free controls. Vaporization fields (microbubble clouds) were imaged by conventional ultrasound, and ablation lesions were measured directly by calipers. Controlled ablation was defined as the production of 'cigar'-shaped lesions corresponding with the acoustic focal zone. This control was considered to be lost when ablation occurred in prefocal vaporization fields having a predominantly 'tadpole' or oblong shape. Changes in the vaporization field shape and location occurred on a continuum with increasing PSNE concentration and acoustic intensity. Working with the maximum concentration-intensity combinations resulting in controlled ablation demonstrated a dose-responsive relationship between insonation time and volumes of both the vaporization fields (approximately 20 to 240 mm(3)) and the ablation lesions (1 to 135 mm(3)) within them. HIFU ablation was enhanced by this PSNE and could be achieved using intensities ≤650 W/cm(2

  15. In vivo preclinical evaluation of the accuracy of toroidal-shaped HIFU treatments using a tumor-mimic model

    International Nuclear Information System (INIS)

    N'Djin, W A; Melodelima, D; Parmentier, H; Chapelon, J Y; Rivoire, M

    2010-01-01

    The pig is an ideal animal model for preclinical evaluation of HIFU treatments, especially in the liver. However, there is no liver tumor model available for pigs. In this work, we propose to study an in vivo tumor-mimic model as a tool for evaluating if a sonographycally guided HIFU treatment, delivered by a toroidal-shaped device dedicated for the treatment of liver metastases, is correctly located in the liver. One centimeter tumor-mimics were created in liver tissues. These tumor-mimics were detectable on ultrasound imaging and on gross pathology. Two studies were carried out. First, an in vivo study of tolerance at mid-term (30 days, 10 pigs) revealed that tumor-mimics are suitable for studying HIFU treatments at a preclinical stage, since local and biological tolerances were excellent. The dimensions of the tumor-mimics were reproducible (diameter at day 0: 9.7 ± 2.0 mm) and were the same as a function of time (p = 0.64). A second in vivo study was carried out in ten pigs. Tumor mimics were used as targets in liver tissues in order to determine if the HIFU treatment is correctly located in the liver. A procedure of extensive HIFU ablation using multiple HIFU lesions juxtaposed manually was then tested on eight tumor-mimics. In 88% of the cases (seven out of eight), tumor-mimics were treated with negative margins (≥1 mm) in all directions. On average, negative margins measured 10.0 ± 6.7 mm. These tumor-mimics constitute an excellent reference for studying in vivo the accuracy of HIFU therapy in the liver.

  16. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  17. Study of a scanning HIFU therapy protocol, Part II: Experiment and results

    Science.gov (United States)

    Andrew, Marilee A.; Kaczkowski, Peter; Cunitz, Bryan W.; Brayman, Andrew A.; Kargl, Steven G.

    2003-04-01

    Instrumentation and protocols for creating scanned HIFU lesions in freshly excised bovine liver were developed in order to study the in vitro HIFU dose response and validate models. Computer-control of the HIFU transducer and 3-axis positioning system provided precise spatial placement of the thermal lesions. Scan speeds were selected in the range of 1 to 8 mm/s, and the applied electrical power was varied from 20 to 60 W. These parameters were chosen to hold the thermal dose constant. A total of six valid scans of 15 mm length were created in each sample; a 3.5 MHz single-element, spherically focused transducer was used. Treated samples were frozen, then sliced in 1.27 mm increments. Digital photographs of slices were downloaded to computer for image processing and analysis. Lesion characteristics, including the depth within the tissue, axial length, and radial width, were computed. Results were compared with those generated from modified KZK and BHTE models, and include a comparison of the statistical variation in the across-scan lesion radial width. [Work supported by USAMRMC.

  18. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues

    International Nuclear Information System (INIS)

    Maleke, C; Konofagou, E E

    2008-01-01

    FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 deg. C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 μm deg. C -1 (r = 0.93, p -1 , r = -0.92, p -1 , prior to and after lesion formation in seven bovine liver samples, respectively. This technique was thus capable of following the protein-denatured lesion formation based on the

  19. Volumetric MR-Guided High-Intensity Focused Ultrasound with Direct Skin Cooling for the Treatment of Symptomatic Uterine Fibroids: Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Marlijne E. Ikink

    2015-01-01

    Full Text Available Objective. To prospectively assess the safety and technical feasibility of volumetric magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU ablation with direct skin cooling (DISC during treatment of uterine fibroids. Methods. In this proof-of-concept study, eight patients were consecutively selected for clinical MR-HIFU ablation of uterine fibroids with the use of an additional DISC device to maintain a constant temperature (T≈20°C at the interface between the HIFU table top and the skin. Technical feasibility was verified by successful completion of MR-HIFU ablation. Contrast-enhanced T1-weighted MRI was used to measure the treatment effect (nonperfused volume (NPV ratio. Safety was evaluated by recording of adverse events (AEs within 30 days’ follow-up. Results. All MR-HIFU treatments were successfully completed in an outpatient setting. The median NPV ratio was 0.56 (IQR [0.27–0.72]. Immediately after treatment, two patients experienced coldness related discomfort which resolved at the same day. No serious (device-related AEs were reported. Specifically, no skin burns, cold injuries, or subcutaneous edema were observed. Conclusion. This study showed that it is safe and technically feasible to complete a volumetric MR-HIFU ablation with DISC. This technique may reduce the risk of thermal injury to the abdominal wall during MR-HIFU ablation of uterine fibroids. This trial is registered with NTR4189.

  20. [High-intensity focused ultrasound (HIFU) for tumor pain relief in inoperable pancreatic cancer : Evaluation with the pain sensation scale (SES)].

    Science.gov (United States)

    Marinova, M; Strunk, H M; Rauch, M; Henseler, J; Clarens, T; Brüx, L; Dolscheid-Pommerich, R; Conrad, R; Cuhls, H; Radbruch, L; Schild, H H; Mücke, M

    2017-02-01

    High-intensity focused ultrasound (HIFU) in combination with palliative standard therapy is an innovative and effective treatment option for pain reduction in patients with inoperable pancreatic cancer. Evaluation of the effects of additive ultrasound (US)-guided HIFU treatment in inoperable pancreatic cancer on the sensory and affective pain perception using validated questionnaries. In this study 20 patients with locally advanced inoperable pancreatic cancer and tumor-related pain were treated by US-guided HIFU (6 stage III, 12 stage IV according to UICC and 2 with local recurrence after surgery). Ablation was performed using the JC HIFU system (HAIFU, Chongqing, China) with an ultrasonic device for real-time imaging. Clinical assessment included evaluation of pain severity using validated questionnaires with particular attention to the pain sensation scale (SES) with its affective and sensory component and the numeric rating scale (NRS). The average pain reduction after HIFU was 2.87 points on the NRS scale and 57.3 % compared to the mean baseline score (n = 15, 75 %) in 19 of 20 treated patients. Four patients did not report pain relief, however, the previous opioid medication could be stopped (n = 2) or the analgesic dosage could be reduced (n = 2). No pain reduction was achieved in one patient. Furthermore, after HIFU emotional as well as sensory pain aspects were significantly reduced (before vs. 1 week after HIFU, p pain scales). US-guided HIFU can be used for effective and early pain relief and reduction of emotional and sensory pain sensation in patients with locally advanced pancreatic cancer.

  1. Respiratory-Gated MRgHIFU in Upper Abdomen Using an MR-Compatible In-Bore Digital Camera

    Directory of Open Access Journals (Sweden)

    Vincent Auboiroux

    2014-01-01

    Full Text Available Objective. To demonstrate the technical feasibility and the potential interest of using a digital optical camera inside the MR magnet bore for monitoring the breathing cycle and subsequently gating the PRFS MR thermometry, MR-ARFI measurement, and MRgHIFU sonication in the upper abdomen. Materials and Methods. A digital camera was reengineered to remove its magnetic parts and was further equipped with a 7 m long USB cable. The system was electromagnetically shielded and operated inside the bore of a closed 3T clinical scanner. Suitable triggers were generated based on real-time motion analysis of the images produced by the camera (resolution 640×480 pixels, 30 fps. Respiratory-gated MR-ARFI prepared MRgHIFU ablation was performed in the kidney and liver of two sheep in vivo, under general anaesthesia and ventilator-driven forced breathing. Results. The optical device demonstrated very good MR compatibility. The current setup permitted the acquisition of motion artefact-free and high resolution MR 2D ARFI and multiplanar interleaved PRFS thermometry (average SNR 30 in liver and 56 in kidney. Microscopic histology indicated precise focal lesions with sharply delineated margins following the respiratory-gated HIFU sonications. Conclusion. The proof-of-concept for respiratory motion management in MRgHIFU using an in-bore digital camera has been validated in vivo.

  2. Cavitation enhances coagulated size during pulsed high-intensity focussed ultrasound ablation in an isolated liver perfusion system.

    Science.gov (United States)

    Zhao, Lu-Yan; Liu, Shan; Chen, Zong-Gui; Zou, Jian-Zhong; Wu, Feng

    2016-11-24

    To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

  3. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  4. Analysis of internal ablation for the thermal control of aerospace vehicles

    Science.gov (United States)

    Camberos, Jose A.; Roberts, Leonard

    1989-01-01

    A new method of thermal protection for transatmospheric vehicles is introduced. The method involves the combination of radiation, ablation and transpiration cooling. By placing an ablating material behind a fixed-shape, porous outer shield, the effectiveness of transpiration cooling is made possible while retaining the simplicity of a passive mechanism. A simplified one-dimensional approach is used to derive the governing equations. Reduction of these equations to non-dimensional form yields two parameters which characterize the thermal protection effectiveness of the shield and ablator combination for a given trajectory. The non-dimensional equations are solved numerically for a sample trajectory corresponding to glide re-entry. Four typical ablators are tested and compared with results obtained by using the thermal properties of water. For the present level of analysis, the numerical computations adequately support the analytical model.

  5. High intensity focused ultrasound (HIFU) therapy for local treatment of hepatocellular carcinoma: Role of partial rib resection

    International Nuclear Information System (INIS)

    Zhu Hui; Zhou Kun; Zhang Lian; Jin Chengbin; Peng Song; Yang Wei; Li Kequan; Su Haibing; Chen Wenzhi; Bai Jin; Wu Feng; Wang, Zhibiao

    2009-01-01

    Objective: It has long been known that high intensity focused ultrasound (HIFU) can kill tissue through coagulative necrosis. However, it is only in recent years that practical clinical applications are becoming possible. Since the ribs have strong reflections to ultrasonic beams, they may affect the deposition of ultrasound energy, decreasing the efficacy of HIFU treatment and increasing the chance of adverse events when the intra-abdominal tumours concealed by ribs are treated. The aim of this study was to evaluate the influence of partial rib resection on the efficacy and safety of HIFU treatment. Methods: This prospective study was approved by the ethics committee at Chongqing University of Medical Sciences. An informed consent form was obtained from each patient and family member. A total of 16 patients with hepatocellular carcinoma (HCC), consisting of 13 males and 3 females, were studied. All patients had the successful HIFU treatment. To create a better acoustic pathway for HIFU treatment, all of the 16 patients had the ribs that shield the tumour mass to be removed. Magnetic resonance imaging (MRI) was used to evaluate the efficacy of HIFU treatment. Results: Sixteen cases had 23 nodules, including 12 cases with a single nodule, 1 case with 2 nodules, 3 cases with 3 nodules. The mean diameter of tumours was 7.0 ± 2.1 cm (5-10 cm). According to TNM classification, 9 patients were diagnosed as stage II, 4 patients were stage III, and 3 patients were stage IV. Follow-up imaging showed an absence of tumour blood supply and shrinkage of all treated lesions. The survival rates at 1, 2, 3, 4, and 5 years were 100%, 83.3%, 69.4%, 55.6%, and 55.6%, respectively. No serious complications were observed in the patients treated with HIFU. Conclusion: Partial rib resection can create a better acoustic pathway of HIFU therapy. Even though it is an invasive treatment, this measure offers patients an improved prospect of complete tumour ablation when no other treatment is

  6. Thermal Protection with 5% Dextrose Solution Blanket During Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Chen, Enn Alexandria; Neeman, Ziv; Lee, Fred T.; Kam, Anthony; Wood, Brad

    2006-01-01

    A serious complication for any thermal radiofrequency ablation is thermal injury to adjacent structures, particularly the bowel, which can result in additional major surgery or death. Several methods using air, gas, fluid, or thermometry to protect adjacent structures from thermal injury have been reported. In the cases presented in this report, 5% dextrose water (D5W) was instilled to prevent injury to the bowel and diaphragm during radiofrequency ablation. Creating an Insulating envelope or moving organs with D5W might reduce risk for complications such as bowel perforation

  7. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Reininghaus, M. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074 (Germany)

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation of ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.

  8. An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design

    Science.gov (United States)

    Dec, John A.; Braun, Robert D.

    2006-01-01

    A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.

  9. HIFU as a Neoadjuvant Therapy in Cancer Treatment

    Science.gov (United States)

    Zhong, P.; Xing, F.; Huang, X.; Zhu, H.; Lo, H. W.; Zhong, X.; Pruitt, S.; Robertson, C.

    2011-09-01

    To broaden the application spectrum of HIFU in cancer therapy, we performed a pilot experiment to evaluate the potential of using HIFU as a neoadjuvant therapy prior to surgery. Mice bearing wild-type B16F10 melanoma inoculated subcutaneously were either untreated (control) or treated by HIFU, CPA-7 or HIFU+CPA-7 before surgical resection of the primary tumor two days after HIFU treatment. The animals were then followed for four weeks or up to the humane endpoint to determine local recurrence, distant metastasis, and survival rate. The results demonstrate that animals treated by HIFU+CPA-7 (which is a small molecule that suppresses STAT3 activity) had a significantly lower recurrence rate, and slower growth of the recurrent tumor, with concomitantly higher survival rate, followed by those treated with CPA-7 and HIFU, respectively. Immunological assays revealed that CPA-7 treatment could significantly lower STAT3, and subsequently, Treg activities. In particular, the combination of HIFU and CPA-7 can induce a much stronger anti-tumor immune response than HIFU or surgery alone, as assessed by CTL and IFN-γ secretion. Overall, our results suggest that HIFU in combination with immunotherapy strategies has the potential to be used as a neoadjuvant therapy to prime the host with a strong anti-tumor immune response before surgical resection of the primary tumor. This multimodality, combinational therapy has the potential to greatly broaden the range of HIFU applications in cancer therapy with lower tumor recurrence and improved survival rate.

  10. The effect of ethanol infusion on the size of the ablated lesion in radiofrequency thermal ablation: A pilot study

    International Nuclear Information System (INIS)

    Kim, Young Sun; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Joo, Kyoung Bin

    2001-01-01

    To assess the effect of ethanol infusion on the size of ablated lesion during radiofrequency (RF) thermal ablation. We performed an ex vivo experimental study using a total of 15 pig livers. Three groups were designed: 1)normal control (n=10), 2) saline infusion (n=10) 3) ethanol infusion (n=10). Two radiofrequency ablations were done using a 50 watt RF generator and a 15 guage expandable elections with four prongs in each liver. During ablation for 8 minutes, continuous infusion of fluid at a rate of 0.5 ml/min through the side arm of electrode was performed. We checked the frequency of the 'impeded-out' phenomenon due to abrupt increase of impedance during ablation. Size of ablated lesion was measured according to length, width, height, and subsequently volume after the ablations. The sizes of the ablated lesions were compared between the three groups. 'Impeded-out' phenomenon during ablation was noted 4 times in control group, although that never happened in saline or ethanol infusion groups. There were significant differences in the volumes of ablated lesions between control group (10.62 ± 1.45 cm 3 ) and saline infusion group (15.33 ± 2.47 cm 3 ), and saline infusion group and ethanol infusion group (18.78 ± 3.58 cm 3 ) (p<0.05). Fluid infusion during radiofrequency thermal ablation decrease a chance of charming and increase the volume of the ablated lesion. Ethanol infusion during ablation may induce larger volume of ablated lesion than saline infusion.

  11. Meta-analysis of bipolar radiofrequency endometrial ablation versus thermal balloon endometrial ablation for the treatment of heavy menstrual bleeding.

    Science.gov (United States)

    Zhai, Yan; Zhang, Zihan; Wang, Wei; Zheng, Tingping; Zhang, Huili

    2018-01-01

    Heavy menstrual bleeding is a common problem that can severely affect quality of life. To compare bipolar radiofrequency endometrial ablation and thermal balloon ablation for heavy menstrual bleeding in terms of efficacy and health-related quality of life (HRQoL). Online registries were systematically searched using relevant terms without language restriction from inception to November 24, 2016. Randomized control trials or cohort studies of women with heavy menstrual bleeding comparing the efficacy of two treatments were eligible. Data were extracted. Results were expressed as risk ratios (RRs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs). Six studies involving 901 patients were included. Amenorrhea rate at 12 months was significantly higher after bipolar radiofrequency endometrial ablation than after thermal balloon ablation (RR 2.73, 95% CI 2.00-3.73). However, no difference at 12 months was noted for dysmenorrhea (RR 1.04, 95% CI 0.68-1.58) or treatment failure (RR 0.78, 95% CI 0.38-1.60). The only significant difference for HRQoL outcomes was for change in SAQ pleasure score (12 months: WMD -3.51, 95% CI -5.42 to -1.60). Bipolar radiofrequency endometrial ablation and thermal balloon ablation reduce menstrual loss and improve quality of life. However, bipolar radiofrequency endometrial ablation is more effective in terms of amenorrhea rate and SAQ pleasure. © 2017 International Federation of Gynecology and Obstetrics.

  12. Hyperecho in ultrasound images during high-intensity focused ultrasound ablation for hepatocellular carcinomas

    International Nuclear Information System (INIS)

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Tanaka, Katsuaki; Ito, Ryu; Ohto, Masao; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang Zhibiao

    2011-01-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method that can cause complete coagulation necrosis without requiring the insertion of any instruments. The hyperechoic grayscale change (hyperechoic region) is used as a sign that the treated lesion has been completely coagulated. The purpose of this study was to evaluate the first hyperechoic region during treatment using HIFU ablation according to various conditions, such as the sonication power, the depth of the tumor from the surface of the skin, and the shield rate. HIFU treatment was performed in 20 patients. The HIFU system (Chongqing Haifu Tech, Chongqing, China) was used under ultrasound guidance. Complete coagulation was achieved in 17 cases. Hyperechoic region were detected after HIFU ablation in 17 patients. The size of the hyperechoic region at a depth of >50 mm was significantly smaller than that at a depth of ≤50 mm. The number and power of the sonications for areas at a depth of >50 mm were significantly larger than those for areas at a depth of ≤50 mm. The number and power in cases with a shield rate of 31–60% were significantly larger than those in cases with a shield rate of 0–30%. When the shield rate was 0%, a hyperechoic region occurred, even when a maximum sonication power was not used. In all three cases with tumors located at a depth of greater than 70 mm and a shield rate of larger than 60%, a hyperechoic region was not seen. In conclusion, hyperechoic regions are easy to visualize in cases with tumors located at a depth of ≤50 mm or shield rates of 0–30%.

  13. Spatial and temporal observation of phase-shift nano-emulsions assisted cavitation and ablation during focused ultrasound exposure.

    Science.gov (United States)

    Qiao, Yangzi; Zong, Yujin; Yin, Hui; Chang, Nan; Li, Zhaopeng; Wan, Mingxi

    2014-09-01

    Phase-shift nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at the target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The threshold of droplet vaporization and influence of acoustic parameters have always been research hotspots in order to spatially control the potential of bioeffects and optimize experimental conditions. However, when the pressure is much higher than PSNEs' vaporization threshold, there were little reports on their cavitation and thermal effects. In this study, PSNEs induced cavitation and ablation effects during pulsed high-intensity focused ultrasound (HIFU) exposure were investigated, including the spatial and temporal information and the influence of acoustic parameters. Two kinds of tissue-mimicking phantoms with uniform PSNEs were prepared because of their optical transparency. The Sonoluminescence (SL) method was employed to visualize the cavitation activities. And the ablation process was observed as the heat deposition could produce white lesion. Precisely controlled HIFU cavitation and ablation can be realized at a relatively low input power. But when the input power was high, PSNEs can accelerate cavitation and ablation in pre-focal region. The cavitation happened layer by layer advancing the transducer. While the lesion appeared to be separated into two parts, one in pre-focal region stemmed from one point and grew quickly, the other in focal region grew much more slowly. The influence of duty cycle has also been examined. Longer pulse off time would cause heat transfer to the surrounding media, and generate smaller lesion. On the other hand, this would give outer layer bubbles enough time to dissolve, and inner bubbles can undergo violent collapse and emit bright light. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Efficacy and safety of ultrasound-guided high intensity focused ultrasound ablation of symptomatic uterine fibroids in Black women: a preliminary study.

    Science.gov (United States)

    Zhang, C; Jacobson, H; Ngobese, Z E; Setzen, R

    2017-08-01

    To evaluate the therapeutic effect and safety of ultrasound-guided high-intensity focused ultrasound (USgHIFU) treatment on symptomatic uterine fibroids in Black women. A feasibility study. Gynaecological department in a teaching hospital in South Africa. Premenopausal women with uterus fibroids. Twenty-six patients with 53 fibroids who underwent USgHIFU treatment were enrolled. The USgHIFU treatment information was recorded, including treatment time, sonication time and total energy. Adverse events were also observed and recorded during and after treatment. Safety and efficacy of USgHIFU for the treatment of uterine fibroids in Black women. The median volume of fibroids was 52.7 (interquartile range, 18.6-177.4) cm 3 . According to USgHIFU treatment plan, total energy of 298.6 ± 169.3 kJ (range, 76.0-889.2) within treatment time of 90.3 ± 43.3 minutes (range, 14.0-208.0), in which sonication time of 774.0 ± 432.9 seconds (range, 190.0-2224.0) was used to ablate fibroids. The average ablation rate was 80.6 ± 9.7% (range, 46.5-94.5%). During the procedure, 69.2% of the patients reported lower abdominal pain, 57.7% sciatic/buttock pain, 38.5% burning skin, and 34.6% transient leg pain. No severe complications were observed. USgHIFU is feasible and safe to use to treat symptomatic uterine fibroids in Black women. Multiple uterine fibroids are more frequently detected in Black women. USgHIFU is feasible and safe for the treatment of uterine fibroids in Black women. © 2017 Royal College of Obstetricians and Gynaecologists.

  15. High-intensity focused ultrasound for potential treatment of polycystic ovary syndrome: toward a noninvasive surgery.

    Science.gov (United States)

    Shehata, Islam A; Ballard, John R; Casper, Andrew J; Hennings, Leah J; Cressman, Erik; Ebbini, Emad S

    2014-02-01

    To investigate the feasibility of using high-intensity focused ultrasound (HIFU), under dual-mode ultrasound arrays (DMUAs) guidance, to induce localized thermal damage inside ovaries without damage to the ovarian surface. Laboratory feasibility study. University-based laboratory. Ex vivo canine and bovine ovaries. DMUA-guided HIFU. Detection of ovarian damage by ultrasound imaging, gross pathology, and histology. It is feasible to induce localized thermal damage inside ovaries without damage to the ovarian surface. DMUA provided sensitive imaging feedback regarding the anatomy of the treated ovaries and the ablation process. Different ablation protocols were tested, and thermal damage within the treated ovaries was histologically characterized. The absence of damage to the ovarian surface may eliminate many of the complications linked to current laparoscopic ovarian drilling (LOD) techniques. HIFU may be used as a less traumatic tool to perform LOD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Efficacy and satisfaction rate comparing endometrial ablation by rollerball electrocoagulation to uterine balloon thermal ablation in a randomised controlled trial.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2004-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal ablation (Thermachoice trade mark ), regarding efficacy for reducing dysfunctional uterine bleeding and patients satisfaction rate. METHODS: A

  17. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    International Nuclear Information System (INIS)

    Tsoumakidou, Georgia; Garnon, Julien; Ramamurthy, Nitin; Buy, Xavier; Gangi, Afshin

    2013-01-01

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO 2 insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve

  18. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Garnon, Julien, E-mail: juliengarnon@gmail.com; Ramamurthy, Nitin, E-mail: nitin_ramamurthy@hotmail.com; Buy, Xavier, E-mail: xbuy@ymail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [University Hospital of Strasbourg (France)

    2013-12-15

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO{sub 2} insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve.

  19. Influence of cavitation bubble growth by rectified diffusion on cavitation-enhanced HIFU

    Science.gov (United States)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2017-11-01

    Cavitation is becoming increasingly important in therapeutic ultrasound applications such as diagnostic, tumor ablation and lithotripsy. Mass transfer through gas-liquid interface due to rectified diffusion is important role in an initial stage of cavitation bubble growth. In the present study, influences of the rectified diffusion on cavitation-enhanced high-intensity focused ultrasound (HIFU) was investigated numerically. Firstly, the mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the result, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Next, the cavitation-enhanced HIFU, which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves, was reproduced by the present simulation. The heating region obtained by the simulation is agree to the treatment region of an in vitro experiment. Additionally, the simulation result shows that the localized heating is enhanced by the increase of the equilibrium bubble size due to the rectified diffusion. This work was supported by JSPS KAKENHI Grant Numbers JP26420125,JP17K06170.

  20. MR-guided focused ultrasound. Current and future applications

    International Nuclear Information System (INIS)

    Trumm, C.G.; Peller, M.; Clevert, D.A.; Stahl, R.; Reiser, M.; Napoli, A.; Matzko, M.

    2013-01-01

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier. (orig.) [de

  1. [MR-guided focused ultrasound. Current and future applications].

    Science.gov (United States)

    Trumm, C G; Napoli, A; Peller, M; Clevert, D-A; Stahl, R; Reiser, M; Matzko, M

    2013-03-01

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier.

  2. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  3. [Control parameters for high-intensity focused ultrasound (HIFU) for tissue ablation in the ex-vivo kidney].

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P

    2002-01-01

    Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.

  4. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus

    International Nuclear Information System (INIS)

    Zhang Lian; Chen Wenzhi; Liu Yinjiang; Hu Xiao; Zhou Kun; Chen Li; Peng Song; Zhu Hui; Zou Huiling; Bai Jin; Wang Zhibiao

    2010-01-01

    Purpose: To prospectively evaluate the feasibility of magnetic resonance (MR) imaging-guided high intensity focused ultrasound (HIFU) therapeutic ablation of uterine fibroids in patients with bowel lies anterior to uterus. Materials and methods: Twenty-one patients with 23 uterine fibroids underwent MR imaging-guided high intensity focused ultrasound treatment, with a mean age of 39.4 ± 6.9 (20-49) years, with fibroids average measuring 6.0 ± 1.6 (range, 2.9-9.5) cm in diameter. After being compressed with a degassed water balloon on abdominal wall, MR imaging-guided high intensity focused ultrasound treatment was performed under conscious sedation by using fentanyl and midazolam. This procedure was performed by a Haifu JM focused ultrasound tumour therapeutic system (JM2.5C, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Symphony, Siemens, Germany), which provides real-time guidance and control. Contrast-enhanced MR imaging was performed to evaluate the efficacy of thermal ablation immediately and 3 months after HIFU treatment. The treatment time and adverse events were recorded. Results: The mean fibroid volume was 97.0 ± 78.3 (range, 12.7-318.3) cm 3 . According to the treatment plan, an average 75.0 ± 11.4% (range, 37.8-92.4%) of the fibroid volume was treated. The mean fibroid volume immediately after HIFU was 109.7 ± 93.1 (range, 11.9-389.6) cm 3 , slightly enlarged because of edema. The average non-perfused volume was 83.3 ± 71.7 (range, 7.7-282.9) cm 3 , the average fractional ablation, which was defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 76.9 ± 18.7% (range, 21.0-97.0%). There were no statistically significant differences between the treatment volume and the non-perfused volume. Follow-up magnetic resonance imaging (MRI) at 3 months obtained in 12 patients, the fibroid volume decreased by 31.4 ± 29.3% (range, -1.9 to 60.0%) in average, with paired t

  5. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lian; Chen Wenzhi [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Liu Yinjiang; Hu Xiao [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Zhou Kun [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Chen Li [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Peng Song; Zhu Hui [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Zou Huiling [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Bai Jin [Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China); Wang Zhibiao [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China)], E-mail: wangzhibiao@haifu.com.cn

    2010-02-15

    Purpose: To prospectively evaluate the feasibility of magnetic resonance (MR) imaging-guided high intensity focused ultrasound (HIFU) therapeutic ablation of uterine fibroids in patients with bowel lies anterior to uterus. Materials and methods: Twenty-one patients with 23 uterine fibroids underwent MR imaging-guided high intensity focused ultrasound treatment, with a mean age of 39.4 {+-} 6.9 (20-49) years, with fibroids average measuring 6.0 {+-} 1.6 (range, 2.9-9.5) cm in diameter. After being compressed with a degassed water balloon on abdominal wall, MR imaging-guided high intensity focused ultrasound treatment was performed under conscious sedation by using fentanyl and midazolam. This procedure was performed by a Haifu JM focused ultrasound tumour therapeutic system (JM2.5C, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Symphony, Siemens, Germany), which provides real-time guidance and control. Contrast-enhanced MR imaging was performed to evaluate the efficacy of thermal ablation immediately and 3 months after HIFU treatment. The treatment time and adverse events were recorded. Results: The mean fibroid volume was 97.0 {+-} 78.3 (range, 12.7-318.3) cm{sup 3}. According to the treatment plan, an average 75.0 {+-} 11.4% (range, 37.8-92.4%) of the fibroid volume was treated. The mean fibroid volume immediately after HIFU was 109.7 {+-} 93.1 (range, 11.9-389.6) cm{sup 3}, slightly enlarged because of edema. The average non-perfused volume was 83.3 {+-} 71.7 (range, 7.7-282.9) cm{sup 3}, the average fractional ablation, which was defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 76.9 {+-} 18.7% (range, 21.0-97.0%). There were no statistically significant differences between the treatment volume and the non-perfused volume. Follow-up magnetic resonance imaging (MRI) at 3 months obtained in 12 patients, the fibroid volume decreased by 31.4 {+-} 29.3% (range, -1.9 to 60

  6. T1 ρ mapping for the evaluation of high intensity focused ultrasound tumor treatment

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Moonen, Rik P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2015-01-01

    This study was aimed to assess the effects of High Intensity Focused Ultrasound (HIFU) thermal ablation on tumor T1ρ . In vivo T1ρ measurements of murine tumors at various spin-lock amplitudes (B1 = 0-2000 Hz) were performed before (n = 13), directly after (n = 13) and 3 days (n = 7) after HIFU

  7. TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, K. [University of California - Davis (United States)

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  8. TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy

    International Nuclear Information System (INIS)

    Ferrara, K.

    2015-01-01

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare

  9. On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor

    International Nuclear Information System (INIS)

    Solovchuk, Maxim A.; Sheu, Tony W.H.; Thiriet, Marc; Lin, Win-Li

    2013-01-01

    The influences of blood vessels and focused location on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors are studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field in the hepatic cancerous region. The model construction is based on the linear Westervelt and bioheat equations as well as the nonlinear Navier–Stokes equations for the liver parenchyma and blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. Different blood vessel diameters and focal point locations were investigated. We found from this three-dimensional numerical study that in large blood vessels both the convective cooling and acoustic streaming can considerably change the temperature field and the thermal lesion near blood vessels. If the blood vessel is located within the beam width, both acoustic streaming and blood flow cooling effects should be addressed. The temperature rise on the blood vessel wall generated by a 1.0 MHz focused ultrasound transducer with the focal intensity 327 W/cm 2 was 54% lower when acoustic streaming effect was taken into account. Subject to the applied acoustic power the streaming velocity in a 3 mm blood vessel is 12 cm/s. Thirty percent of the necrosed volume can be reduced, when taking into account the acoustic streaming effect. -- Highlights: • 3D three-field coupling physical model for focused ultrasound tumor ablation is presented. • Acoustic streaming and blood flow cooling effects on ultrasound heating are investigated. • Acoustic streaming can considerably affect the temperature distribution. • The lesion can be reduced by 30% due to the acoustic streaming effect. • Temperature on the blood vessel wall is reduced by 54% due to the acoustic streaming effect

  10. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  11. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    International Nuclear Information System (INIS)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  12. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    Science.gov (United States)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  13. Percutaneous thermal ablation for stage IA non-small cell lung cancer: long-term follow-up.

    Science.gov (United States)

    Narsule, Chaitan K; Sridhar, Praveen; Nair, Divya; Gupta, Avneesh; Oommen, Roy G; Ebright, Michael I; Litle, Virginia R; Fernando, Hiran C

    2017-10-01

    Surgical resection is the most effective curative therapy for non-small cell lung cancer (NSCLC). However, many patients are unable to tolerate resection secondary to poor reserve or comorbid disease. Radiofrequency ablation (RFA) and microwave ablation (MWA) are methods of percutaneous thermal ablation that can be used to treat medically inoperable patients with NSCLC. We present long-term outcomes following thermal ablation of stage IA NSCLC from a single center. Patients with stage IA NSCLC and factors precluding resection who underwent RFA or MWA from July 2005 to September 2009 were studied. CT and PET-CT scans were performed at 3 and 6 month intervals, respectively, for first 24 months of follow-up. Factors associated with local progression (LP) and overall survival (OS) were analyzed. Twenty-one patients underwent 21 RFA and 4 MWA for a total of 25 ablations. Fifteen patients had T1a and six patients had T1b tumors. Mean follow-up was 42 months, median survival was 39 months, and OS at three years was 52%. There was no significant difference in median survival between T1a nodules and T1b nodules (36 vs . 39 months, P=0.29) or for RFA and MWA (36 vs . 50 months, P=0.80). Ten patients had LP (47.6%), at a median time of 35 months. There was no significant difference in LP between T1a and T1b tumors (22 vs . 35 months, P=0.94) or RFA and MWA (35 vs . 17 months, P=0.18). Median OS with LP was 32 months compared to 39 months without LP (P=0.68). Three patients underwent repeat ablations. Mean time to LP following repeat ablation was 14.75 months. One patient had two repeat ablations and was disease free at 40-month follow-up. Thermal ablation effectively treated or controlled stage IA NSCLC in medically inoperable patients. Three-year OS exceeded 50%, and LP did not affect OS. Therefore, thermal ablation is a viable option for medically inoperable patients with early stage NSCLC.

  14. High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate

    Science.gov (United States)

    Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.

    2017-03-01

    Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal

  15. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  16. An optimum method for pulsed high intensity focused ultrasound treatment of large volumes using the InSightec ExAblate (registered) 2000 system

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, B E; Karmonik, C; Li, K C P, E-mail: beoneill@tmhs.or [The Methodist Hospital Research Institute, 6565 Fannin, Houston TX 77030 (United States)

    2010-11-07

    Pulsed high intensity focused ultrasound (pHIFU) is a method for delivering ultrasound to tissue while avoiding high temperatures. The technique has been suggested for non-destructively enhancing local uptake of drugs. Side effects include thermal necrosis; therefore, real-time monitoring of tissue temperature is advantageous. This paper outlines a method for improving the treatment efficiency of pHIFU using the MR image-guided InSightec ExAblate (registered) 2000 system, an ultrasound system integrated into a whole body human MRI scanner with the ability to measure temperature at the treatment location in near real time. Thermal measurements obtained during treatment of a tissue phantom were used to determine appropriate heating parameters, and compared to in vivo treatment of rabbit muscle. Optimization of the treatment procedure and ultrasound transducer steering patterns was then conducted with the goal of minimizing treatment time while avoiding overheating. The optimization was performed on the basis of approximate solutions to the standard bioheat equation. The commercial system software of the Exablate (registered) system was modified to assist in this optimization. Depending on the size of the treatment volume, the presented results demonstrate that it is possible to use the technique described to cut treatment times significantly, up to one-third of that required by the current standard treatment cycle.

  17. Preservation of the endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound ablation of submucosal uterine fibroids

    International Nuclear Information System (INIS)

    Kim, Young-sun; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Ahn, Joong Hyun

    2017-01-01

    To evaluate the integrity of endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of submucosal uterine fibroids based on contrast-enhanced MRI findings, and to identify the risk factors for endometrial impairment. In total, 117 submucosal fibroids (diameter: 5.9 ± 3.0 cm) in 101 women (age: 43.6 ± 4.4 years) treated with MR-HIFU ablation were retrospectively analysed. Endometrial integrity was assessed with contrast-enhanced T1-weighted images at immediate (n = 101), 3-month (n = 62) and 12-month (n = 15) follow-ups. Endometrial impairment was classified into grades 0 (continuous endometrium), 1 (pin-point, full-thickness discontinuity), 2 (between grade 1 and 3), or 3 (full-thickness discontinuity >1 cm). Risk factors were assessed with generalized estimating equation (GEE) analysis. Among 117 fibroids, grades 0, 1, 2 and 3 endometrial impairments were observed at initial examination in 56.4%, 24.8%, 13.7% and 4.3%, respectively. Among 37 fibroid cases of endometrial impairment for which follow-ups were conducted, 30 showed improvements at 3- and/or 12-month follow-up. GEE analysis revealed the degree of endometrial protrusion was significantly associated with severity of endometrial injury (P < 0.0001). After MR-HIFU ablation of submucosal fibroids, endometrial enhancement was preserved intact or minimally impaired in most cases. Impaired endometrium, which is more common after treating endometrially-protruded fibroids, may recover spontaneously. (orig.)

  18. Preservation of the endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound ablation of submucosal uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-sun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); Uterine Fibroid Integrated Management Center, MINT Intervention Hospital, Department of Radiology, Seoul (Korea, Republic of); Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of); Lim, Hyo Keun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); SAIHST, Sungkyunkwan University, Department of Health Sciences and Technology, Seoul (Korea, Republic of); Rhim, Hyunchul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); Jung, Sin-Ho [SAIHST, Sungkyunkwan University, Department of Health Sciences and Technology, Seoul (Korea, Republic of); Samsung Medical Center, Department of Biostatistics and Clinical Epidemiology, Seoul (Korea, Republic of); Ahn, Joong Hyun [Samsung Biomedical Research Institute, Samsung Medical Center, Biostatistics Team, Seoul (Korea, Republic of)

    2017-09-15

    To evaluate the integrity of endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of submucosal uterine fibroids based on contrast-enhanced MRI findings, and to identify the risk factors for endometrial impairment. In total, 117 submucosal fibroids (diameter: 5.9 ± 3.0 cm) in 101 women (age: 43.6 ± 4.4 years) treated with MR-HIFU ablation were retrospectively analysed. Endometrial integrity was assessed with contrast-enhanced T1-weighted images at immediate (n = 101), 3-month (n = 62) and 12-month (n = 15) follow-ups. Endometrial impairment was classified into grades 0 (continuous endometrium), 1 (pin-point, full-thickness discontinuity), 2 (between grade 1 and 3), or 3 (full-thickness discontinuity >1 cm). Risk factors were assessed with generalized estimating equation (GEE) analysis. Among 117 fibroids, grades 0, 1, 2 and 3 endometrial impairments were observed at initial examination in 56.4%, 24.8%, 13.7% and 4.3%, respectively. Among 37 fibroid cases of endometrial impairment for which follow-ups were conducted, 30 showed improvements at 3- and/or 12-month follow-up. GEE analysis revealed the degree of endometrial protrusion was significantly associated with severity of endometrial injury (P < 0.0001). After MR-HIFU ablation of submucosal fibroids, endometrial enhancement was preserved intact or minimally impaired in most cases. Impaired endometrium, which is more common after treating endometrially-protruded fibroids, may recover spontaneously. (orig.)

  19. Ultrasound guided high-intensity focused ultrasound combined with gonadotropin releasing hormone analogue (GnRHa) ablating uterine leiomyoma with homogeneous hyperintensity on T2 weighted MR imaging.

    Science.gov (United States)

    Yang, Shenghua; Kong, Fanjing; Hou, Ruijie; Rong, Fengmei; Ma, Nana; Li, Shaoping; Yang, Jun

    2017-05-01

    The study aimed to evaluate the safety and efficiency of ultrasound-guided high-intensity focused ultrasound (USgHIFU) combined with gonadotropin-releasing hormone analogue (GnRHa)-ablating symptomatic uterine leiomyoma with homogeneous hyperintensity on T 2 weighted MRI prospectively. A total of 34 patients with 42 symptomatic uterine leiomyomas with homogeneous hyperintensity on T 2 weighted MRI were enrolled in our study. In the patient who had multiple uterine leiomyomas, only one dominant leiomyoma was treated. According to the principles of voluntariness, 18 patients underwent a 3-month therapy of GnRHa (once a month) before the high-intensity focused ultrasound (HIFU) treatment, while 16 patients received only HIFU treatment. Enhanced MRI was performed before and after GnRHa and HIFU treatment. Evaluation of the main indicators included treatment time, sonication time, treatment efficiency, non-perfused volume (NPV) (indicative of successful ablation) ratio and energy effect ratio; adverse events were also recorded. The treatment time and sonication time of the combination group were 102.0 min (55.8-152.2 min) and 25.4 min (12.2-34.1 min); however, they were 149.0 min (87.0-210.0 min) and 38.9 min (14.0-46.7 min) in the simple USgHIFU group. The treatment and sonication time for the combination group was significantly shorter than that for the simple USgHIFU group. Treatment efficiency, NPV ratio and energy effect ratio were 46.7 mm 3  s -1 (28.5-95.8 mm 3  s -1 ), 69.2 ± 29.8% (35.5-97.4%) and 9.9 KJ mm -3 (4.5-15.7 KJ mm -3 ) in the combination group, respectively; but, the lowest treatment efficiency, lowest NPV ratio and more energy effect ratio were observed in the simple HIFU group, which were 16.8 mm 3  s -1 (8.9-32.9 mm 3  s -1 ), 50.2 ± 27.3% (0-78.6%) and 23.8 KJ mm -3 (12.4-46.2 KJ mm -3 ), respectively. Pain scores in the combination group were 3.0 ± 0.5 points (2-4 points

  20. 3D Multifunctional Ablative Thermal Protection System

    Science.gov (United States)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  1. Study of organic ablative thermal-protection coating for solid rocket motor

    Science.gov (United States)

    Hua, Zenggong

    1992-06-01

    A study is conducted to find a new interior thermal-protection material that possesses good thermal-protection performance and simple manufacturing possibilities. Quartz powder and Cr2O3 are investigated using epoxy resin as a binder and Al2O3 as the burning inhibitor. Results indicate that the developed thermal-protection coating is suitable as ablative insulation material for solid rocket motors.

  2. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    Science.gov (United States)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio

  3. Planar strain analysis of liver undergoing microwave thermal ablation using x-ray CT.

    Science.gov (United States)

    Weiss, Noam; Goldberg, S Nahum; Nissenbaum, Yitzhak; Sosna, Jacob; Azhari, Haim

    2015-01-01

    To study the planar strain effects in liver during microwave (MW) thermal ablation as a means for tracking tissue expansion and contraction as a method for improving ablation monitoring. 1.4 mm circular metallic markers were inserted into 16 ex-vivo bovine fresh liver specimens, that were subsequently ablated (with the markers inside the specimen) by 40 W of microwave energy, for 1, 2, 3, 6, and 10 min. The markers were tracked during the ablation using an x-ray CT scanner. Images were acquired every 5-10 s enabling determination of the markers' coordinates over time. The 2D principal strains were calculated for triangles formed by subgroups of three markers, and their planar strain index, Ω, was plotted vs time. In addition, the radial distance of the markers from the antenna was measured at the end of each ablation. Subsequently, the tissue was sliced parallel to the imaged planes and the ablation zone was traced and digitized. The average ablation radius was then computed and compared to the radial distance. The planar strain, Ω(t), profile demonstrated an ascending pattern until reaching a maximum at about 180 s, with a mean peak value (Ω = 1.31 ± 0.04) indicating tissue expansion. Thereafter, Ω progressively declined over the remaining duration of the ablation treatment, indicating tissue contraction. Furthermore, when plotting the ablation size vs time and the markers' mean radial distance vs time, it was found that the two curves intercepted at a time corresponding to the time of peak planar strain. By detecting the point of maximal planar strain in tissues during MW application, it is possible to noninvasively identify the location of the ablation zone front. The fact that the liver tissue proximal to the ablated zone expands during the first part of the treatment and then contracts when the ablation front reaches it, may serve as an index for monitoring the thermal treatment.

  4. Prognostic factors for the success of thermal balloon ablation in the treatment of menorrhagia

    NARCIS (Netherlands)

    Bongers, M. Y.; Mol, B. W. J.; Brölmann, H. A. M.

    2002-01-01

    OBJECTIVE: To identify predictive factors that will ensure successful menorrhagia treatment using hot fluid balloon endometrial ablation. METHODS: This is a prospective study on patients referred for menorrhagia and treated with hot fluid thermal balloon ablation. Potential prognostic factors for

  5. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen

    Science.gov (United States)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2012-12-01

    High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach

  6. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Science.gov (United States)

    Liu, Ran; Wang, Jia; Liu, Jing

    2015-07-01

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  7. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Directory of Open Access Journals (Sweden)

    Ran Liu

    2015-07-01

    Full Text Available Hyperthermia (42-46°C, treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  8. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Jia [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-07-15

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  9. MR-guided focused ultrasound. Current and future applications; MR-gesteuerter fokussierter Ultraschall. Aktuelle und potenzielle Indikationen

    Energy Technology Data Exchange (ETDEWEB)

    Trumm, C.G.; Peller, M.; Clevert, D.A.; Stahl, R.; Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen-Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Napoli, A. [Sapienza Universitaet Rom, Abteilung fuer Radiologie (Department of Radiological Sciences), MRgFUS and Cardiovascular Imaging Unit, Rom (Italy); Matzko, M. [Klinikum Dachau, Abteilung fuer diagnostische und interventionelle Radiologie, Dachau (Germany)

    2013-03-15

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier. (orig.) [German] MRT-gesteuerter hochintensiver fokussierter Ultraschall (MRgFUS bzw. MR-HIFU) ist ein nichtinvasives Verfahren zur praezisen Thermoablation eines Zielgewebes. Bei dieser Methode werden benachbarte Gewebe und Organe geschont. Die Kombination des fokussierten Ultraschalls (FUS) mit der MRT zwecks Planung und Monitoring (nahezu) in Echtzeit sowie zur Erfolgskontrolle von Behandlungen traegt wesentlich zur Sicherheit dieser Methode bei. MRgFUS ist klinisch v. a. zur Behandlung von symptomatischen Uterusmyomen etabliert, gefolgt von der palliativen Ablation von Knochenmetastasen. Weitere vielversprechende Anwendungsgebiete des MRgFUS sind die Adenomyose des Uterus, die Behandlung von Prostata-, Mamma- und Lebertumoren sowie der intrakranielle Einsatz. (orig.)

  10. Experimental evidences of electro-thermal ablation acceleration of water

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1987-07-01

    We report the first demonstrations of driving water of about 1000 grams by electro-thermally ablated gas pressure in a cavity with a single exhauster. A blob of water was shot into the air with a shooting angle of about 45 deg, and the flight velocity observed was about 13 meters per second with the capacitor (28μF) charged up to 10 KV. The discharge sound was almost suppressed by the water blob loaded in the chamber possilbly because the energy of sound was dissipated into the water blob. The application of this ablation water driver to ship propulsion is also discussed. (author)

  11. Can pre- and postoperative magnetic resonance imaging predict recurrence-free survival after whole-gland high-intensity focused ablation for prostate cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Rosset, Remy; Bratan, Flavie [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Lyon (France); Crouzet, Sebastien [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urology, Lyon (France); Universite de Lyon, Lyon (France); Faculte de Medecine Lyon Est, Universite Lyon 1, Lyon (France); Inserm, U1032, LabTau, Lyon (France); Tonoli-Catez, Helene [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urology, Lyon (France); Mege-Lechevallier, Florence [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Pathology, Lyon (France); Gelet, Albert [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urology, Lyon (France); Inserm, U1032, LabTau, Lyon (France); Rouviere, Olivier [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Lyon (France); Universite de Lyon, Lyon (France); Faculte de Medecine Lyon Est, Universite Lyon 1, Lyon (France); Inserm, U1032, LabTau, Lyon (France)

    2017-04-15

    Our aim was to assess whether magnetic resonance imaging (MRI) features predict recurrence-free survival (RFS) after prostate cancer high-intensity focused ultrasound (HIFU) ablation. We retrospectively selected 81 patients who underwent (i) whole-gland HIFU ablation between 2007 and 2011 as first-line therapy or salvage treatment after radiotherapy or brachytherapy, and (ii) pre- and postoperative MRI. On preoperative imaging, two senior (R1, R2) and one junior (R3) readers assessed the number of sectors invaded by the lesion with the highest Likert score (dominant lesion) using a 27-sector diagram. On postoperative imaging, readers assessed destruction of the dominant lesion using a three-level score. Multivariate analysis included the number of sectors invaded by the dominant lesion, its Likert and destruction scores, the pre-HIFU prostate-specific antigen (PSA) level, Gleason score, and the clinical setting (primary/salvage). The most significant predictor was the number of prostate sectors invaded by the dominant lesion for R2 and R3 (p≤0.001) and the destruction score of the dominant lesion for R1 (p = 0.011). The pre-HIFU PSA level was an independent predictor for R2 (p = 0.014), but with only marginal significance for R1 (p = 0.059) and R3 (p = 0.053). The dominant lesion's size and destruction assessed by MRI provide independent prognostic information compared with usual predictors. (orig.)

  12. Transluminal radio-frequency thermal ablation using a stent-type electrode: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Sun; Rhim, Hyun Chul [Hanyang University College of Medicine, Seoul (Korea, Republic of); Song, Ho Young [Asan Medical Center, Seoul (Korea, Republic of)] [and others

    2003-06-01

    To assess the feasibility of transluminal radiofrequency thermal ablation using a stent-type electrode and to determine, by means of in-vivo and in-vivo animal studies, the appropriate parameters. In-vivo: the radiofrequency electrode used was a self-expandable nitinol stent with 1cm insulated ends. A stent was placed in the portal vein of bovine liver, and ablations at target temperatures of 70, 80, 90, and 100 .deg. C were performed. Ablated sizes were measured longitudinally. In vivo: four mongrel dogs were anesthetized, and a stent was inserted in the common bile duct under fluoroscopic guidance through an ultrasound-guided gall bladder puncture site. The ablation temperature was set at 80 .deg. C, and each dog underwent proximal and distal esophageal ablations lasting 12 minutes. They were sacrificed immediately. In-vivo: ablated sizes showed significant correlation with target temperatures (r>0.04; p<0.05). Although most lesions were fusiform, dumbbell-shaped lesions with central thinning were found in two cases in the 70 .deg. C group. In all cases in the 70 .deg. C and 80 .deg. C group, the length of the insulated segment was less than 1cm. In-vivo: at microscopy, tissues at the center of the biliary stent showed more prominent pathological change than those at the periphery while those remote from the stent showed minimal or no change. In esophageal ablations, the mean highest temperature was 48.6 .deg. C. Microscopy demonstrated the destruction and shedding of mucosa, edema, and coagulation necrosis of submucosa, but in muscle layers no abnormalities were apparent. Transluminal radio-frequency thermal ablation using a stent-type electrode may be useful for elongating patency. The appropriate target temperature for biliary ablation is 80 .deg. C.

  13. HIFU procedures at moderate intensities-effect of large blood vessels

    International Nuclear Information System (INIS)

    Hariharan, P; Myers, M R; Banerjee, R K

    2007-01-01

    A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams

  14. HIFU procedures at moderate intensities-effect of large blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, P [Mechanical, Industrial, and Nuclear Engineering Department, University of Cincinnati, Cincinnati, OH (United States); Myers, M R [Division of Solid and Fluid Mechanics, Center for Devices and Radiological Health, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 62, Silver Spring, MD 20993-0002 (United States); Banerjee, R K [Mechanical, Industrial, and Nuclear Engineering Department, University of Cincinnati, Cincinnati, OH (United States)

    2007-07-21

    A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams.

  15. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    Science.gov (United States)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  16. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: A systematic review and meta-analysis.

    Science.gov (United States)

    Mauri, Giovanni; Sconfienza, Luca Maria; Pescatori, Lorenzo Carlo; Fedeli, Maria Paola; Alì, Marco; Di Leo, Giovanni; Sardanelli, Francesco

    2017-08-01

    To systematically review studies concerning imaging-guided minimally-invasive breast cancer treatments. An online database search was performed for English-language articles evaluating percutaneous breast cancer ablation. Pooled data and 95% confidence intervals (CIs) were calculated. Technical success, technique efficacy, minor and major complications were analysed, including ablation technique subgroup analysis and effect of tumour size on outcome. Forty-five studies were analysed, including 1,156 patients and 1,168 lesions. Radiofrequency (n=577; 50%), microwaves (n=78; 7%), laser (n=227; 19%), cryoablation (n=156; 13%) and high-intensity focused ultrasound (HIFU, n=129; 11%) were used. Pooled technical success was 96% (95%CI 94-97%) [laser=98% (95-99%); HIFU=96% (90-98%); radiofrequency=96% (93-97%); cryoablation=95% (90-98%); microwave=93% (81-98%)]. Pooled technique efficacy was 75% (67-81%) [radiofrequency=82% (74-88); cryoablation=75% (51-90); laser=59% (35-79); HIFU=49% (26-74)]. Major complications pooled rate was 6% (4-8). Minor complications pooled rate was 8% (5-13%). Differences between techniques were not significant for technical success (p=0.449), major complications (p=0.181) or minor complications (p=0.762), but significant for technique efficacy (p=0.009). Tumour size did not impact on variables (p>0.142). Imaging-guided percutaneous ablation techniques of breast cancer have a high rate of technical success, while technique efficacy remains suboptimal. Complication rates are relatively low. • Imaging-guided ablation techniques for breast cancer are 96% technically successful. • Overall technique efficacy rate is 75% but largely inhomogeneous among studies. • Overall major and minor complication rates are low (6-8%).

  17. An in-vitro animal experiment on metal implants’ thermal effect on radiofrequency ablation

    Science.gov (United States)

    2013-01-01

    Background To explore metal implants’ thermal effect on radiofrequency ablation (RFA) and ascertain distance-thermal relationship between the metal implants and radiofrequency (RF) electrode. Methods Metal implants models were established in seven in-vitro porcine livers using silver clips or 125I seeds. RFA were conducted centering the RF electrode axis1 cm away from them, with one side containing a metal implants model the test group and the other side the control group. The thermometric needles were used to measure multi-point temperatures in order to compare the time-distance-temperature difference between the two groups. The gross scopes of the ablation of the two groups were measured and the tissues were analyzed for microscopic histology. Results At the ablation times of 8, 12, and 15 min, the average multi-point temperatures of the test group and the control group were 48.2±18.07°C, 51.5±19.57°C, 54.6±19.75°C, and 48.6±17.69°C, 52.2±19.73°C, 54.9±19.24°C, respectively, and the differences were not statistically significant (n=126, P>0.05). At the ablation times of 12 and 15 min, the ablation scopes of the test group and the control group were (horizontal/longitudinal diameter) 1.55/3.48 cm, 1.89/3.72 cm, and 1.56/3.48 cm, 1.89/3.72 cm, respectively, and the differences were not statistically significant (n=14, P>0.05). The two groups had the same manifestations in microscopy. Conclusions Metal implants do not cause significant thermal effect on RFA. PMID:23799942

  18. A Spectrum of Nerve Injury after Thermal Ablation: A Report of Four Cases and Review of the Literature

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Asher [The University of Texas Medical School (United States); Gupta, Sanjay, E-mail: sgupta@mdanderson.org; Ahrar, Kamran, E-mail: kahrar@mdanderson.org; Tam, Alda L., E-mail: alda.tam@di.mdacc.tmc.edu [The University of Texas, MD Anderson Cancer Center, Department of Diagnostic Radiology, Section of Interventional Radiology (United States)

    2013-10-15

    Thermal ablation is an accepted alternative for the palliation of pain from bone metastases. Although rare, neurologic complications after thermal ablation have been reported. We present four cases, including two cases of rapid reversal of postcryoablation neurapraxia after the administration of steroid therapy, and review the literature.

  19. High-frequency irreversible electroporation (H-FIRE for non-thermal ablation without muscle contraction

    Directory of Open Access Journals (Sweden)

    Arena Christopher B

    2011-11-01

    Full Text Available Abstract Background Therapeutic irreversible electroporation (IRE is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. Methods A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE. A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. Results No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. Conclusions H-FIRE is a feasible technique for

  20. The role of numerical simulation for the development of an advanced HIFU system

    Science.gov (United States)

    Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro

    2014-10-01

    High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.

  1. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    International Nuclear Information System (INIS)

    Wang Yang; Wang Wei; Wang Longxia; Wang Junyan; Tang Jie

    2011-01-01

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  2. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Wei, E-mail: wangyang301301@yahoo.com.cn [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Longxia; Wang Junyan; Tang Jie [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2011-07-15

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  3. Experimental Validation of a Novel MRI-Compatible HIFU Device for the Treatment of Superficial Venous Insufficiency

    Science.gov (United States)

    Salomir, Rares; Pichardo, Samuel; Petrusca, Lorena; Angel, Yves; Lacoste, François; Chapelon, Jean-Yves

    2007-05-01

    A novel High Intensity Focused Ultrasound (HIFU) probe has been designed for minimally-invasive treatment of valvular dysfunction in the saphenous vein, which is known to be the cause of superficial venous insufficiency (SVI) and varicose veins. Treating SVI with HIFU is possible, since venous tissue undergoes localized partial shrinkage when subjected to high temperature elevation. In a previous study in vitro we demonstrated that diameter shrinkage should be sufficient to restore valvular function, as this is done in the more aggressive approach known as external valvuloplasty. Numerical optimization using fast simulations of pressure field have led to a non-spherically shaped probe design with two HIFU elements that focus ultrasound uniformly over a line of length 7 mm, at a depth of 15 mm from the skin. A MR-compatible prototype of the probe has been constructed and this was characterized 1). by electroacustical mapping of the pressure field in water, and 2). by fast, high resolution MR thermal mapping ex vivo on fresh meat samples. Results were in good agreement with those predicted by an analytical approach and numerical simulations. Available experimental data suggest that a short sonication (less than 10 sec duration) should permit sufficient temperature elevation to obtain vein shrinkage. Further studies will be performed on surgically excised samples of human veins under MR thermal mapping in order to determine the optimal sonication parameters (duration and power level).

  4. Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter

    International Nuclear Information System (INIS)

    Butt, M Z

    2014-01-01

    The interaction of a high intensity laser pulse with a solid target results in the formation of a crater and a plasma plume. The characteristics of both depend on physical properties of target material, environmental conditions, and laser parameters (e.g. wavelength, pulse duration, energy, beam diameter) etc. It has been shown for numerous metals and their alloys that plasma threshold fluence, plasma threshold energy, ablation efficiency, ablation yield, angular distribution of laser produced plasma (LPP) ions, etc. are a unique function of the Debye-Waller thermal parameter B or the mean-square amplitude of atomic vibration of the target material for given experimental conditions. The FWHM of the angular distribution of LPP ions, ablation yield, and ablation efficiency increase whereas plasma threshold fluence and plasma threshold energy decrease as B-factor of the target material increases

  5. Enhanced thermal effect using magnetic nano-particles during high-intensity focused ultrasound.

    Science.gov (United States)

    Devarakonda, Surendra Balaji; Myers, Matthew R; Giridhar, Dushyanth; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak Kumar

    2017-01-01

    Collateral damage and long sonication times occurring during high-intensity focused ultrasound (HIFU) ablation procedures limit clinical advancement. In this reserarch, we investigated whether the use of magnetic nano-particles (mNPs) can reduce the power required to ablate tissue or, for the same power, reduce the duration of the procedure. Tissue-mimicking phantoms containing embedded thermocouples and physiologically acceptable concentrations (0%, 0.0047%, and 0.047%) of mNPs were sonicated at acoustic powers of 5.2 W, 9.2 W, and 14.5 W, for 30 seconds. Lesion volumes were determined for the phantoms with and without mNPs. It was found that with the 0.047% mNP concentration, the power required to obtain a lesion volume of 13 mm3 can be halved, and the time required to achieve a 21 mm3 lesion decreased by a factor of 5. We conclude that mNPs have the potential to reduce damage to healthy tissue, and reduce the procedure time, during tumor ablation using HIFU.

  6. Evaluation of temperature rise in a tissue mimicking material during HIFU exposure

    International Nuclear Information System (INIS)

    Maruvada, S; Liu, Y; Herman, B A; Harris, G R

    2011-01-01

    In pre-clinical testing it is essential to characterize clinical high intensity focused ultrasound (HIFU) devices using tissue-mimicking materials (TMMs) with well known characteristics, including temperature rise and cavitation properties. The purpose of this study was to monitor cavitation behavior and correlate its effect with temperature rise in a HIFU TMM containing an embedded thermocouple. A 75-μm fine wire thermocouple was embedded in a hydrogel-based TMM previously developed for HIFU. HIFU at 1.1 and 3.3 MHz was focused at the thermocouple junction. Focal pressures from 1-11 MPa were applied and the temperature profiles were recorded. Three hydrophones were used to monitor cavitation activity during sonication. A hydrophone confocal with the HIFU transducer and a cylindrical hydrophone lateral to the HIFU beam were used as passive cavitation detectors for spectral analysis of signals, and a needle hydrophone placed beyond the HIFU focus was used to record changes in the pressure amplitude due to blockage by bubbles at or near the focus. B-mode imaging scans were employed to visualize bubble presence during sonication. In a separate measurement, schlieren imaging was used to monitor the change in field distribution behind the TMM. All hydrophone methods correlated well with cavitation in the TMM.

  7. Evaluation of temperature rise in a tissue mimicking material during HIFU exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maruvada, S; Liu, Y; Herman, B A; Harris, G R, E-mail: subha.maruvada@fda.hhs.gov [Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Ave., Bldg., Silver Spring, MD 20993 (United States)

    2011-02-01

    In pre-clinical testing it is essential to characterize clinical high intensity focused ultrasound (HIFU) devices using tissue-mimicking materials (TMMs) with well known characteristics, including temperature rise and cavitation properties. The purpose of this study was to monitor cavitation behavior and correlate its effect with temperature rise in a HIFU TMM containing an embedded thermocouple. A 75-{mu}m fine wire thermocouple was embedded in a hydrogel-based TMM previously developed for HIFU. HIFU at 1.1 and 3.3 MHz was focused at the thermocouple junction. Focal pressures from 1-11 MPa were applied and the temperature profiles were recorded. Three hydrophones were used to monitor cavitation activity during sonication. A hydrophone confocal with the HIFU transducer and a cylindrical hydrophone lateral to the HIFU beam were used as passive cavitation detectors for spectral analysis of signals, and a needle hydrophone placed beyond the HIFU focus was used to record changes in the pressure amplitude due to blockage by bubbles at or near the focus. B-mode imaging scans were employed to visualize bubble presence during sonication. In a separate measurement, schlieren imaging was used to monitor the change in field distribution behind the TMM. All hydrophone methods correlated well with cavitation in the TMM.

  8. Thermal ablation of intrahepatic cholangiocarcinoma: Safety, efficacy, and factors affecting local tumor progression.

    Science.gov (United States)

    Takahashi, Edwin A; Kinsman, Kristin A; Schmit, Grant D; Atwell, Thomas D; Schmitz, John J; Welch, Brian T; Callstrom, Matthew R; Geske, Jennifer R; Kurup, A Nicholas

    2018-06-04

    To evaluate the safety and oncologic efficacy of percutaneous thermal ablation of intrahepatic cholangiocarcinoma (ICC) and identify risk factors for local tumor progression (LTP). Retrospective review of an institutional tumor ablation registry demonstrated that 20 patients (9 males, 11 females; mean age 62.5 ± 15.8 years) with 50 ICCs (mean size 1.8 ± 1.3 cm) were treated with percutaneous radiofrequency ablation (RFA) or microwave ablation (MWA) between 2006 and 2015. Thirty-eight of the treated ICCs (76%) were metastases that developed after surgical resection of the primary tumor. Patient demographics, procedure technical parameters, and clinical outcomes were reviewed. A Cox proportional hazards model was used to examine the risk of LTP by ablation modality. Survival analyses were performed using the Kaplan-Meier method. Mean imaging follow-up time was 41.5 ± 42.7 months. Forty-four (88%) ICCs were treated with RFA, and 6 (12%) with MWA. Eleven (22%) cases of LTP developed in 5 (25%) patients. The median time to LTP among these 11 tumors was 7.1 months (range, 2.3-22.9 months). Risk of LTP was not significantly different for ICCs treated with MWA compared to RFA (HR 2.72; 95% CI 0.58-12.84; p = 03.21). Median disease-free survival was 8.2 months (1.1-70.4 months), and median overall survival was 23.6 months (7.4-122.5 months). No major complication occurred. Percutaneous thermal ablation is a safe and effective treatment for patients with ICCs and may be particularly valuable in unresectable patients, or those who have already undergone hepatic surgery. Tumor size and ablation modality were not associated with LTP, whereas primary tumors and superficially located tumors were more likely to subsequently recur.

  9. Whole Body Bone Scan Findings after High Intensity Focused Ultrasound (HIFU) Treatment

    International Nuclear Information System (INIS)

    Seo, Ye Young; O, Joo Hyun; Sohn, Hyung Sun; Choi, Eun Kyoung; Yoo, Ik Dong; Oh, Jin Kyoung; Han, Eun Ji; Jung, Seung Eun; Kim, Sung Hoon

    2011-01-01

    This study aims to examine the findings of 99mT c diphosphonate bone scans in cancer patients with a history of HIFU treatment. Bone scan images of patients with a history of HIFU treatment for primary of metastatic cancer from January 2006 to July 2010 were retrospectively reviewed. Cases of primary bone tumor or HIFU treatment reaching only the superficial soft tissue layer were excluded. Bone scan images of 62 patients (26 female, 36 male; mean age 57±9 years) were studied. HIFU treatment was performed in the liver (n=40), pancreas (n=40), pancreas (n=16), and breast (n=6). Mean interval time between HIFU treatment and bone scan was 106±105 days (range: 1-572 days). Of 62 scans, 43 showed diffusely decreased uptake of bone within the path of HIFU treatment: antero axillary and/or posterior arcs of right 5th to 11th ribs in 34 cases after treatment of hepatic lesions; anterior arcs of 2nd to 5th ribs in 5 cases after treatment for breast tumors; and posterior arcs of left 9th to 11th ribs or thoraco lumbar vertebrae in 4 cases after treatment for pancreas tumor. Of 20 patients who had bone scans more than twice, five showed recovered uptake of the radiotracer in the involved ribs in the follow up bone scan. Of 62 bone scans in patients with a history of HIFU treatment for primary of metastatic cancer, 69% presented diffusely decreased uptake in the bone in the path of HIFU treatment.

  10. Radiofrequency thermal ablation of benign cystic lesion: an experimental pilot study in a porcine gallbladder model

    International Nuclear Information System (INIS)

    Song, Ho Taek; Rhim, Hyun Chul; Choi, Jung Bin; Oh, Jae Cheon; Cho, On Koo; Koh, Byung Hee; Kim, Yong Soo; Seo, Heung Suk; Joo, Kyung Bin

    2001-01-01

    To determine whether radiofrequency thermal ablation can be used to treat benign cystic lesions in a porcine gallbladder model. This experimental study of radiofrequency thermal ablation involved the use of 15 exvivo porcine gallbladders and 15-G expandable needle electrodes. To investigate optimal temperature parameters, three groups of five were designated according to target temperature:Group A: 70 deg C; Group B: 80 deg C; Group C: 90 deg C. After the target temperature was reached, ablation lasted for one minute. Gallbladder width, height and length were measured before and after ablation , and the estimated volume reduction ratios of the three groups were compared. Whether adjacent liver parenchyma around the gallbladder fossa was ablated by heat conducted from hot bile was also determined, and the thickness of the ablated area of the liver was measured. The volume reduction ratio in Group A, B and C was 42.7%, 41.7% and 42.9%, respectively (ρ>.05). In all 15 cases, gallbladder walls lost their transparency and elasticity at about 70 deg C. In nine of ten cases in Groups B and C, the hepatic capsule around the gallbladder fossa was retracted at about 80 deg C. The mean thickness of liver parenchymal damage adjacent to the gallbladder was 5.4 mm in Group B and 9.8 mm in Group C. In Group A livers, only one case showed minimal gradual parenchymal change. Microscopically, all three groups showed complete coagulation necrosis of the wall. On the basis of this feasibility study, radiofrequency thermal ablation is potentially suitable for the ultrasound-guided treatment of symptomatic cystic lesions including benign hepatic or renal cyst

  11. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  12. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    Science.gov (United States)

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  13. Radiofrequency (thermal) ablation versus no intervention or other interventions for hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Weis, Sebastian; Franke, Annegret; Mössner, Joachim

    2013-01-01

    Hepatocellular carcinoma is the fifth most common cancer worldwide. Percutaneous interventional therapies, such as radiofrequency (thermal) ablation (RFA), have been developed for early hepatocellular carcinoma. RFA competes with other interventional techniques such as percutaneous ethanol...

  14. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    Science.gov (United States)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  15. LAPAROSCOPIC NEPHRECTOMY USING RADIOFREQUENCY THERMAL ABLATION

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2012-01-01

    Full Text Available The wide use of current diagnostic techniques, such as ultrasound study, computed tomography, and magnetic resonance imaging, has led to significantly increased detection rates for disease in its early stages. This gave rise to a change in the standards for the treatment of locally advanced renal cell carcinoma (RCC. Laparoscopic nephrectomy (LN has recently become the standard treatment of locally advanced RCC in the clinics having much experience with laparoscopic surgery. The chief drawback of LN is difficulties in maintaining intraoperative hemostasis and a need for creating renal tissue ischemia. The paper gives the intermediate results of application of the new procedure of LN using radiofrequency thermal ablation in patients with non-ischemic early-stage RCC.

  16. Pulmonary ablation: a primer.

    Science.gov (United States)

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  17. A New Clinical HIFU System (Teleson II)

    Science.gov (United States)

    Ma, Yixin; Symonds-Tayler, Richard; Rivens, Ian H.; ter Haar, Gail R.

    2007-05-01

    Previous clinical trials with our first prototype HIFU system (Teleson I) for the treatment of liver tumors, demonstrated a major challenge to be treatment of those tumors located behind the ribs. We have designed a new multi-element transducer for rib sparing. Initial simulation and experimental results (using a single channel power amplifier) are very encouraging. A new clinical HIFU system which can drive the multi-element transducer and control each channel independently is being designed and constructed. This second version of a clinical prototype HIFU system consists of a 3D motorised gantry, a multi-channel signal generator, a multi-channel power amplifier, a user interface PC, an embedded controller and auxiliary circuits for real-time interleaving/synchronization control and a to-be-implemented safety monitoring and data logging unit. For multi-element transducers, each element can be individually switched on and off for rib sparing, and phase and amplitude modulated for potential phased array applications. The multi-channel power amplifier can be switched on/off very rapidly at required intervals to interleave with ultrasound B-Scan imaging for HIFU monitoring or radiation force elastography imaging via a dedicated interleaving/timing module. The gantry movement can also be synchronised with power amplifier on/off and phase/amplitude updating for lesion generation under a wide variety of conditions including single lesions, lesion arrays and lesions "tracks" created whilst translating the active transducer. Results from testing the system using excised tissue will be presented.

  18. Model-based ultrasound temperature visualization during and following HIFU exposure.

    Science.gov (United States)

    Ye, Guoliang; Smith, Penny Probert; Noble, J Alison

    2010-02-01

    This paper describes the application of signal processing techniques to improve the robustness of ultrasound feedback for displaying changes in temperature distribution in treatment using high-intensity focused ultrasound (HIFU), especially at the low signal-to-noise ratios that might be expected in in vivo abdominal treatment. Temperature estimation is based on the local displacements in ultrasound images taken during HIFU treatment, and a method to improve robustness to outliers is introduced. The main contribution of the paper is in the application of a Kalman filter, a statistical signal processing technique, which uses a simple analytical temperature model of heat dispersion to improve the temperature estimation from the ultrasound measurements during and after HIFU exposure. To reduce the sensitivity of the method to previous assumptions on the material homogeneity and signal-to-noise ratio, an adaptive form is introduced. The method is illustrated using data from HIFU exposure of ex vivo bovine liver. A particular advantage of the stability it introduces is that the temperature can be visualized not only in the intervals between HIFU exposure but also, for some configurations, during the exposure itself. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. More Than Just Tumor Destruction: Immunomodulation by Thermal Ablation of Cancer

    Directory of Open Access Journals (Sweden)

    Sebastian P. Haen

    2011-01-01

    Full Text Available Over the past decades, thermoablative techniques for the therapy of localized tumors have gained importance in the treatment of patients not eligible for surgical resection. Anecdotal reports have described spontaneous distant tumor regression after thermal ablation, indicating a possible involvement of the immune system, hence an induction of antitumor immunity after thermoinduced therapy. In recent years, a growing body of evidence for modulation of both adaptive and innate immunity, as well as for the induction of danger signals through thermoablation, has emerged. Induced immune responses, however, are mostly weak and not sufficient for the complete eradication of established tumors or durable prevention of disease progression, and combination therapies with immunomodulating drugs are being evaluated with promising results. This article aims to summarize published findings on immune modulation through radiofrequency ablation, cryoablation, microwave ablation therapy, high-intensity focused ultrasound, and laser-induced thermotherapy.

  20. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study

    International Nuclear Information System (INIS)

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2014-01-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with

  1. Near-IR imaging of thermal changes in enamel during laser ablation

    Science.gov (United States)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  2. Therapeutic response assessment of high intensity focused ultrasound therapy for uterine fibroid: Utility of contrast-enhanced ultrasonography

    International Nuclear Information System (INIS)

    Zhou Xiaodong; Ren Xiaolong; Zhang Jun; He Guangbin; Zheng Minjuan; Tian Xue; Li Li; Zhu Ting; Zhang Min; Wang Lei; Luo Wen

    2007-01-01

    Purpose: To assess the utility of contrast-enhanced ultrasonography (ceUS) in the assessment of the therapeutic response to high intensity focused ultrasound (HIFU) ablation in patients with uterine fibroid. Materials and methods: Sixty-four patients with a total of 64 uterine fibroids (mean: 5.3 ± 1.2 cm; range: 3.2-8.9 cm) treated with HIFU ablation under the ultrasound guidance were evaluated with ceUS after receiving an intravenous bolus injection of a microbubble contrast agent (SonoVue) within 1 week after intervention. We obtained serial ceUS images during the time period from beginning to 5 min after the initiation of the bolus contrast injection. All of the patients underwent a contrast enhanced MRI (ceMRI) and ultrasound guided needle puncture biopsy within 1 week after HIFU ablation. And as a follow-up, all of the patients underwent US at 1, 3, 6 and 12 months after HIFU treatment. The volume change was observed and compared to pre- and post-HIFU ablation. The results of the ceUS were compared with those of the ceMRI in terms of the presence or absence of residual unablated tumor and pathologic change in the treated lesions. Results: On ceUS, diagnostic accuracy was 100%, while residual unablated tumors were found in three uterine fibroids (4.7%) and failed treatment was found in eight uterine fibroids (12.5%). All the 11 fibroids were subjected to additional HIFU ablation. Of the 58 ablated fibroids without residual tumors on both the ceUS and ceMRI after the HIFU ablation, the volumes of all the fibroids decreased in different degrees during the 1 year follow-up USs. And histologic examinations confirmed findings of necrotic and viable tumor tissue, respectively. Conclusion: CEUS is potentially useful for evaluating the early therapeutic effect of percutaneous HIFU ablation for uterine fibroids

  3. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array

    Science.gov (United States)

    Salgaonkar, Vasant A.; Prakash, Punit; Rieke, Viola; Ozhinsky, Eugene; Plata, Juan; Kurhanewicz, John; Hsu, I.-C. Joe; Diederich, Chris J.

    2017-03-01

    Here, operational modifications to a commercial MR-guided ultrasound phased array designed for prostate ablation (part of ExAblate 2100, InSightec Ltd) are presented for the delivery of protracted mild (40 - 45°C) hyperthermia to large contiguous target volumes in the prostate. This high-intensity focused ultrasound phased array is already in clinical trials for prostate ablation, and can be potentially fast-tracked for clinical hyperthermia treatments. As a part of this preliminary feasibility study, patient-specific numerical simulations were performed using Pennes bioheat model and acoustic field calculations were conducted using the rectangular radiator method for the ExAblate prostate array (2.3 MHz, 2.3×4.0 cm2, ˜1000 channels). Thermal solutions were computed using 3D finite element methods (FEM) implemented using Comsol Multiphysics (Comsol Inc). The patient-specific geometries were created through manual segmentation of anatomical structures from representative patient MRIs and 3D rendering (Mimics 15.01, Materialise) and generation of finite element meshes (3-Matic 7.01, Materialise). Array beamforming was employed and acoustic fields were synthesized (Matlab 2010a, MathWorks) to deliver protracted continuous wave hyperthermia to focal prostate cancer targets identified in the patient-specific models. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Sonication strategies explored during modeling were implemented on the ExAblate prostate array and preliminary experiments were conducted in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). Therapeutic temperatures (40 - 45 °C) could be established conformably in focal cancer volumes in a single prostate quadrant using focused heating patterns and hemi-gland heating was possible using diffused heating patterns (iso-phase or diverging). T>41 °C was calculated in 13

  4. Gold Nanoparticles as a Photothermal Agent in Cancer Therapy: The Thermal Ablation Characteristic Length

    Directory of Open Access Journals (Sweden)

    Thomas Grosges

    2018-05-01

    Full Text Available In cancer therapy, the thermal ablation of diseased cells by embedded nanoparticles is one of the known therapies. It is based on the absorption of the energy of the illuminating laser by nanoparticles. The resulting heating of nanoparticles kills the cell where these photothermal agents are embedded. One of the main constraints of this therapy is preserving the surrounding healthy cells. Therefore, two parameters are of interest. The first one is the thermal ablation characteristic length, which corresponds to an action distance around the nanoparticles for which the temperature exceeds the ablation threshold. This critical geometric parameter is related to the expected conservation of the body temperature in the surroundings of the diseased cell. The second parameter is the temperature that should be reached to achieve active thermal agents. The temperature depends on the power of the illuminating laser, on the size of nanoparticles and on their physical properties. The purpose of this paper is to propose behavior laws under the constraints of both the body temperature at the boundary of the cell to preserve surrounding cells and an acceptable range of temperature in the target cell. The behavior laws are deduced from the finite element method, which is able to model aggregates of nanoparticles. We deduce sensitivities to the laser power and to the particle size. We show that the tuning of the temperature elevation and of the distance of action of a single nanoparticle is not significantly affected by variations of the particle size and of the laser power. Aggregates of nanoparticles are much more efficient, but represent a potential risk to the surrounding cells. Fortunately, by tuning the laser power, the thermal ablation characteristic length can be controlled.

  5. Prognostic value of preoperative absolute lymphocyte count in recurrent hepatocellular carcinoma following thermal ablation: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Li X

    2014-10-01

    Full Text Available Xin Li, Zhiyu Han, Zhigang Cheng, Jie Yu, Xiaoling Yu, Ping Liang Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, People's Republic of China Purpose: To investigate the prognostic value of preoperative absolute lymphocyte count (ALC in recurrent hepatocellular carcinoma (RHCC following thermal ablation. Materials and methods: We retrospectively analyzed the relationship between preoperative ALC and the clinicopathologic factors and long-term prognosis in 423 RHCC patients who underwent curative thermal ablation. Correlation analysis, receiver operating characteristic (ROC calculation, Kaplan–Meier curves, and multivariate regression were used for statistical analysis. Results: The median time to recurrence was 12 months for RHCC patients after thermal ablation. On multivariate Cox regression analysis, preoperative ALC was an independent risk factor for cancer recurrence, along with tumor differentiation and α-fetoprotein level. ALC ≥1.64×109/L defined by ROC calculation was associated with prolonged survival (area under the curve 0.741, P<0.001. Patients with ALC ≥1.64×109/L showed a mean survival of 20.2 months versus 11.6 months for patients with ALC <1.64×109/L (P<0.001. Patients were stratified into high and low groups according to ALC status. After excluding the basic parameters between groups, the 1- and 3-year recurrence rates in the high group were 20.9% and 29.5%, respectively, which were significantly lower than those of the low group (58.4% and 71.9%, respectively; P<0.001. The recurrence-free survival rates in the two groups analyzed by Kaplan–Meier curves were significantly different (P<0.001. Conclusion: Preoperative ALC is a powerful prognostic factor for RHCC recurrence after thermal ablation, which suggests that maintaining a high ALC in RHCC patients might improve cancer outcomes. Keywords: absolute lymphocyte count, recurrent hepatocellular carcinoma, thermal ablation, recurrence  

  6. An analytical solution for improved HIFU SAR estimation

    International Nuclear Information System (INIS)

    Dillon, C R; Vyas, U; Christensen, D A; Roemer, R B; Payne, A

    2012-01-01

    Accurate determination of the specific absorption rates (SARs) present during high intensity focused ultrasound (HIFU) experiments and treatments provides a solid physical basis for scientific comparison of results among HIFU studies and is necessary to validate and improve SAR predictive software, which will improve patient treatment planning, control and evaluation. This study develops and tests an analytical solution that significantly improves the accuracy of SAR values obtained from HIFU temperature data. SAR estimates are obtained by fitting the analytical temperature solution for a one-dimensional radial Gaussian heating pattern to the temperature versus time data following a step in applied power and evaluating the initial slope of the analytical solution. The analytical method is evaluated in multiple parametric simulations for which it consistently (except at high perfusions) yields maximum errors of less than 10% at the center of the focal zone compared with errors up to 90% and 55% for the commonly used linear method and an exponential method, respectively. For high perfusion, an extension of the analytical method estimates SAR with less than 10% error. The analytical method is validated experimentally by showing that the temperature elevations predicted using the analytical method's SAR values determined for the entire 3D focal region agree well with the experimental temperature elevations in a HIFU-heated tissue-mimicking phantom. (paper)

  7. An experimental study of simultaneous ablation with dual probes in radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Jang, Il Soo; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Kim, Young Sun; Heo, Jeong Nam

    2003-01-01

    To determine the differences between sequential ablation with a single probe and simultaneous ablation with dual probes. Using two 14-gauge expandable probes (nine internal prongs with 4-cm deployment), radiofrequency was applied sequentially (n=8) or simultaneously (n=8) to ten ex-vivo cow livers. Before starting ablation, two RF probes with an inter-probe space of 2 cm (n=8) or 3 cm (n=8) were inserted. In the sequential group, switching the connecting cable to an RF generator permitted ablation with the second probe just after ablation with the first probe had finished. In the simultaneous group, single ablation was performed only after connecting the shafts of both RF probes using a connection device. Each ablation lasted 7 minutes at a target temperature of 105-110 .deg. C. The size and shape of the ablated area, and total ablation time were then compared between the two groups. With 2-cm spacing, the group, mean length and overlapping width of ablated lesions were, respectively, 5.20 and 5.05 cm in the sequential group (n=4), and 5.81 and 5.65 cm in the simultaneous group (n=4). With 3-cm spacing, the corresponding figures were 4.99 and 5.60 cm in the sequential group (n=4), and 6.04 and 6.78 cm in the simultaneous group (n=4). With 2-cm spacing, the mean depth of the proximal waist was 0.58 cm in the sequential (group and 0.28 cm in the simultaneous group, while with 3-cm spacing, the corresponding figures were 1.65 and 1.48 cm. In neither group was there a distal waist. Mean total ablation time was 23.4 minutes in the sequential group and 14 minutes in the simultaneous group. In terms of ablation size and ablation time, simultaneous radiofrequency ablation with dual probes is superior to sequential ablation with a single probe. A simultaneous approach will enable an operator to overcome difficulty in probe repositioning during overlapping ablation, resulting in complete ablation with a successful safety margin

  8. Requirements and prototype for supporting the planning of patient specific thermal ablation interventions

    International Nuclear Information System (INIS)

    Schramm, W.

    2010-01-01

    Background Thermal ablation is the process of destroying pathological tissue by either high temperatures of approximately 105 o C as achieved in radiofrequency ablation or low temperatures of approximately - 40 o C as used in cryotherapy. Ablations are widely used in clinical practice and provide a safe and generally well tolerated minimal invasive treatment if surgery is not an option. Thermal ablations are usually performed under image guidance, either by ultrasound, CT or MR. Even though ablations are widely used, very little textbook knowledge is available. Because of the treatment complexity there is a need for a well defined process which can be followed by an experienced radiologist as well as an inexperienced one. There is also a need for a planning platform which is capable of supporting the physician in planning the intervention on the basis of the patient's anatomy. For additional benefit this platform should also provide the means for estimating the final coagulation zone by simulations based on the patient's anatomy. The most widely used method to simulate the extend of a coagulation zone is by the usage of finite element analysis (FEA). FEA uses a defined geometry with the physical properties of the tissue and the ablation modality to create a model which can then be solved to make estimations about the extend of the final coagulation zone. Method and Results To deal with the problem of ablation knowledge being only available in distributed form, a workflow was abstracted and translated into diagrams. These workflow diagrams visualize the required steps and decisions when performing thermal ablations. The workflow is split into a planning, applicator placement, ablation and result evaluation phase. The information gained from this knowledge is then used to define the requirements for a platform which is capable of helping the physician when performing the ablation. In the next step I examined the possibility to increase an ablation's coagulation zone

  9. Clinical utility of a microbubble-enhancing contrast (“SonoVue”) in treatment of uterine fibroids with high intensity focused ultrasound: A retrospective study

    International Nuclear Information System (INIS)

    Peng, Song; Xiong, Yu; Li, Kequan; He, Min; Deng, Yongbin; Chen, Li; Zou, Min; Chen, Wenzhi; Wang, Zhibiao; He, Jia

    2012-01-01

    Purpose: To evaluate the clinical value of the contrast agent SonoVue in the treatment of uterine fibroids with ultrasound-guided high intensity focused ultrasound (HIFU) therapeutic ablation. Materials and Methods: A total of 291 patients with solitary uterine fibroid from three centers were treated with ultrasound-guided HIFU. Among them, 129 patients from Suining Central Hospital of Sichuan were treated without using SonoVue. 162 patients from the First Hospital of Chongqing Medical University and Chongqing Haifu Hospital were treated with using SonoVue before, during and after HIFU procedure to assess the extent of HIFU. Results: The non-perfused volume (indicative of successful ablation) was observed in all treated uterine fibroids immediately after HIFU ablation; median fractional ablation, defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 86.0% (range, 28.8–100.0%) in the group with using SonoVue, and 83.0% (8.7–100.0%) without SonoVue. The rate of massive gray scale changes was higher with SonoVue than without the agent. The sonication time to achieve massive gray scale changes was shorter with SonoVue than without. The sonication time for ablating 1 cm 3 of fibroid volume was significantly shorter with using SonoVue than without. No major complications were observed in any patients. Conclusions: Based on our results, SonoVue may enhance the outcome of HIFU ablation and can be used to assess the extent of treatment.

  10. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    Science.gov (United States)

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  11. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation

    Directory of Open Access Journals (Sweden)

    Rosa Scapaticci

    2017-01-01

    Full Text Available Microwave thermal ablation is a cancer treatment that exploits local heating caused by a microwave electromagnetic field to induce coagulative necrosis of tumor cells. Recently, such a technique has significantly progressed in the clinical practice. However, its effectiveness would dramatically improve if paired with a noninvasive system for the real-time monitoring of the evolving dimension and shape of the thermally ablated area. In this respect, microwave imaging can be a potential candidate to monitor the overall treatment evolution in a noninvasive way, as it takes direct advantage from the dependence of the electromagnetic properties of biological tissues from temperature. This paper explores such a possibility by presenting a proof of concept validation based on accurate simulated imaging experiments, run with respect to a scenario that mimics an ex vivo experimental setup. In particular, two model-based inversion algorithms are exploited to tackle the imaging task. These methods provide independent results in real-time and their integration improves the quality of the overall tracking of the variations occurring in the target and surrounding regions.

  12. Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays.

    Science.gov (United States)

    Ballard, John R; Casper, Andrew J; Ebbini, Emad S

    2009-01-01

    We present experimental results illustrating the unique advantages of dual-mode array (DMUA) systems in monitoring and guidance of high intensity focused ultrasound (HIFU) lesion formation. DMUAs offer a unique paradigm in image-guided surgery; one in which images obtained using the same therapeutic transducer provide feedback for: 1) refocusing the array in the presence of strongly scattering objects, e.g. the ribs, 2) temperature change at the intended location of the HIFU focus, and 3) changes in the echogenicity of the tissue in response to therapeutic HIFU. These forms of feedback have been demonstrated in vitro in preparation for the design and implementation of a real-time system for imaging and therapy with DMUAs. The results clearly demonstrate that DMUA image feedback is spatially accurate and provide sufficient spatial and contrast resolution for identification of high contrast objects like the ribs and significant blood vessels in the path of the HIFU beam.

  13. Measurement of thermally ablated lesions in sonoelastographic images using level set methods

    Science.gov (United States)

    Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.

    2008-03-01

    The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.

  14. Tumour eradication using synchronous thermal ablation and Hsp90 chemotherapy with protein engineered triblock biopolymer-geldanamycin conjugates.

    Science.gov (United States)

    Chen, Yizhe; Youn, Pilju; Pysher, Theodore J; Scaife, Courtney L; Furgeson, Darin Y

    2014-12-01

    Hepatocellular carcinoma (HCC) suffers high tumour recurrence rate after thermal ablation. Heat shock protein 90 (Hsp90) induced post-ablation is critical for tumour survival and progression. A combination therapy of thermal ablation and polymer conjugated Hsp90 chemotherapy was designed and evaluated for complete tumour eradication of HCC. A thermo-responsive, elastin-like polypeptide (ELP)-based tri-block biopolymer was developed and conjugated with a potent Hsp90 inhibitor, geldanamycin (GA). The anti-cancer efficacy of conjugates was evaluated in HCC cell cultures with and without hyperthermia (43 °C). The conjugates were also administered twice weekly in a murine HCC model as a single treatment or in combination with single electrocautery as the ablation method. ELP-GA conjugates displayed enhanced cytotoxicity in vitro and effective heat shock inhibition under hyperthermia. The conjugates alone significantly slowed the tumour growth without systemic toxicity. Four doses of thermo-responsive ELP-GA conjugates with concomitant simple electrocautery accomplished significant Hsp90 inhibition and sustained tumour suppression. Hsp90 inhibition plays a key role in preventing the recurrence of HCC, and the combination of ablation with targeted therapy holds great potential to improve prognosis and survival of HCC patients.

  15. Pilot study: safety and effectiveness of simple ultrasound-guided high-intensity focused ultrasound ablating uterine leiomyoma with a diameter greater than 10 cm.

    Science.gov (United States)

    Hou, Ruijie; Wang, Liwei; Li, Shaoping; Rong, Fengmin; Wang, Yuanyuan; Qin, Xuena; Wang, Shijin

    2018-02-01

    The study aimed to prospectively investigate whether uterine leiomyoma greater than 10 cm in diameter could be treated with simple ultrasound-guided high-intensity focused ultrasound (USgHIFU) in one-time treatment. A total of 36 patients with 36 symptomatic uterine leiomyoma greater than 10 cm in diameter who underwent simple USgHIFU treatment alone were analysed. Enhanced MRI was performed before and after HIFU treatment, and all patients had follow-up for 6 months after treatment. Symptom severity scores, treatment time, treatment speed, ablation rate, energy effect ratio, uterine leiomyoma regression rate, adverse events, liver and kidney functions, coagulation function and routine blood count were included in the study endpoints. The mean diameter of uterine leiomyoma was 11.2 ± 1.3 cm (10.0-14.3 cm). The median treatment time and treatment speed were 104.0 min (90.0-140.0 min) and 118.8 cm 3  h -1  (86.2-247.1 cm 3  h -1 ), respectively. The ablation rate of uterine leiomyoma was 71.9 ± 20.4% (32.1-100.0%), and the regression rate of uterine leiomyoma was 40.8 ± 7.5% (25.6-59.9%) at 6 months after treatment. The mean symptom severity scores decreased by an average of approximately 8.6 ± 2.3 (5-14) points. There were no significant changes in haemogram and blood chemical indexes of patients, except for the transient elevation of aspartate aminotransferase, total bilirubin and white blood cells after treatment. No serious adverse reactions occurred. According to our preliminary results, simple USgHIFU is a safe and effective single-treatment method of treating uterine leiomyoma greater than 10 cm in diameter and is an almost innocuous alternative therapeutic strategy. Advances in knowledge: The conclusions indicate simple USgHIFU is safe and effective as one-time treatment of uterine leiomyoma greater than 10 cm in diameter, it could be a promising therapeutic strategy.

  16. Numerical study and ex vivo assessment of HIFU treatment time reduction through optimization of focal point trajectory

    Science.gov (United States)

    Grisey, A.; Yon, S.; Pechoux, T.; Letort, V.; Lafitte, P.

    2017-03-01

    Treatment time reduction is a key issue to expand the use of high intensity focused ultrasound (HIFU) surgery, especially for benign pathologies. This study aims at quantitatively assessing the potential reduction of the treatment time arising from moving the focal point during long pulses. In this context, the optimization of the focal point trajectory is crucial to achieve a uniform thermal dose repartition and avoid boiling. At first, a numerical optimization algorithm was used to generate efficient trajectories. Thermal conduction was simulated in 3D with a finite difference code and damages to the tissue were modeled using the thermal dose formula. Given an initial trajectory, the thermal dose field was first computed, then, making use of Pontryagin's maximum principle, the trajectory was iteratively refined. Several initial trajectories were tested. Then, an ex vivo study was conducted in order to validate the efficicency of the resulting optimized strategies. Single pulses were performed at 3MHz on fresh veal liver samples with an Echopulse and the size of each unitary lesion was assessed by cutting each sample along three orthogonal planes and measuring the dimension of the whitened area based on photographs. We propose a promising approach to significantly shorten HIFU treatment time: the numerical optimization algorithm was shown to provide a reliable insight on trajectories that can improve treatment strategies. The model must now be improved in order to take in vivo conditions into account and extensively validated.

  17. Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells

    Science.gov (United States)

    Beck, R.; Gasch, M.; Stackpoole, M.; Wilder, M.; Boghozian, T.; Chavez-Garcia, J.; Prabhu, Dinesh; Kazemba, Cole D.; Venkatapathy, E.

    2016-01-01

    This poster provides an overview of the work performed to date on the Conformal Ablative TPS (CA-TPS) element of the TPSM project out of GCDP. Under this element, NASA is developing improved ablative TPS materials based on flexible felt for reinforcement rather than rigid reinforcements. By replacing the reinforcements with felt, the resulting materials have much higher strain-to-failure and are much lower in thermal conductivity than their rigid counterparts. These characteristics should allow for larger tile sizes, direct bonding to aeroshells and even lower weight TPS. The conformal phenolic impregnated carbon felt (C-PICA) is a candidate for backshell TPS for both Venus and Saturn entry vehicles.

  18. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging

    International Nuclear Information System (INIS)

    Keserci, Bilgin M.; Kokuryo, Daisuke; Suzuki, Kyohei; Kumamoto, Etsuko; Okada, Atsuya; Khankan, Azzam A.; Kuroda, Kagayaki

    2006-01-01

    Our challenge was to design and implement a dedicated temperature imaging feedback control system to guide and assist in a thermal liver ablation procedure in a double-donut 0.5T open MR scanner. This system has near-real-time feedback capability based on a newly developed 'self-referenced' temperature imaging method using 'moving-slab' and complex-field-fitting techniques. Two phantom validation studies and one ex vivo experiment were performed to compare the newly developed self-referenced method with the conventional subtraction method and evaluate the ability of the feedback control system in the same MR scanner. The near-real-time feedback system was achieved by integrating the following primary functions: (1) imaging of the moving organ temperature; (2) on-line needle tip tracking; (3) automatic turn-on/off the heating devices; (4) a Windows operating system-based novel user-interfaces. In the first part of the validation studies, microwave heating was applied in an agar phantom using a fast spoiled gradient recalled echo in a steady state sequence. In the second part of the validation and ex vivo study, target visualization, treatment planning and monitoring, and temperature and thermal dose visualization with the graphical user interface of the thermal ablation software were demonstrated. Furthermore, MR imaging with the 'self-referenced' temperature imaging method has the ability to localize the hot spot in the heated region and measure temperature elevation during the experiment. In conclusion, we have demonstrated an interactively controllable feedback control system that offers a new method for the guidance of liver thermal ablation procedures, as well as improving the ability to assist ablation procedures in an open MR scanner

  19. [Thermal balloon endometrial ablation for dysfunctional uterine bleeding: technical aspects and results. A prospective cohort study of 152 cases].

    Science.gov (United States)

    Kdous, Moez; Jacob, Denis; Gervaise, Amélie; Risk, Elie; Sauvanet, Eric

    2008-05-01

    Thermal balloon endometrial ablation is a new operative technique recently proposed in the treatment of dysfunctional uterine bleeding. To evaluate the efficacy of thermal balloon endometrial ablation in the treatment of dysfunctional uterine bleeding, and to identify the possible predictive factors for a successful outcome. A prospective study was conducted including 152 patients with chronic abnormal uterine bleeding refractory to medical treatment. All patients were treated by thermal balloon endometrial ablation (Thermachoice, Gynecare) between January 1, 1996 and December 31, 2003. patients were included if their uterine cavities sounded to less than 12 cm and had undergone hysteroscopy, pelvic ultrasound and endometrial biopsie showing no structural or (pre) malignant endometrial abnormalities. A balloon catheter was placed through the cervix and after inflation in the endometrial cavity with 5% dextrose in water, was heated to 87 +/- 5 degrees C. No one required cervical dilatation. Balloon pressures were 160 to 170 mm Hg. All patients underwent 8 minutes of therapy. The average patient was 47 years (range: 30-62 years) and was followed for a mean of 3 years and 7 months (range: 6 months - 8 years). 31.6% of women reported amennorhea, 16.5% hypomenorrhea and 21% eumenorrhea. Menorrhagea persisted in 11.2% of patients. No intraoperative complications and minor postoperative morbidity occured in 10.5% of patients. Three prgnancy complicated by spontaneous abortions were reported after the treatment. A total of 78% of women reported overall satisfaction with the endometrial ablation procedure and 18% were dissatisfied. 17.8% of patients underwent hysterectomy within 1 to 5 years of balloon endometrial ablation. Increasing age and menopause were significantly associated with increased odds of success (p < 0.05). Thermal balloon endometrial ablation is a simple, easy, effective, and minimally invasive procedure in menhorragic women with no desire for further

  20. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MRgHIFU) for Treatment of Symptomatic Uterine Fibroids: An Economic Analysis

    Science.gov (United States)

    Babashov, V; Palimaka, S; Blackhouse, G; O'Reilly, D

    2015-01-01

    Background Uterine fibroids, or leiomyomas, are the most common benign tumours in women of childbearing age. Some women experience symptoms (e.g., heavy bleeding) that require aggressive forms of treatment such as uterine artery embolization (UAE), myomectomy, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), and even hysterectomy. It is important to note that hysterectomy is not appropriate for women who desire future childbearing. Objectives The objective of this analysis was to evaluate the cost-effectiveness and budgetary impact of implementing MRgHIFU as a treatment option for symptomatic uterine fibroids in premenopausal women for whom drugs have been ineffective. Review Methods We performed an original cost-effectiveness analysis to assess the long-term costs and effects of MRgHIFU compared with hysterectomy, myomectomy, and UAE as a strategy for treating symptomatic uterine fibroids in premenopausal women aged 40 to 51 years. We explored a number of scenarios, e.g., comparing MRgHIFU with uterine-preserving procedures only, considering MRgHIFU-eligible patients only, and eliminating UAE as a treatment option. In addition, we performed a one-year budget impact analysis, using data from Ontario administrative sources. Four scenarios were explored in the budgetary impact analysis: MRgHIFU funded at 2 centres MRgHIFU funded at 2 centres and replacing only uterine-preserving procedures MRgHIFU funded at 6 centres MRgHIFU funded at 6 centres and replacing only uterine-preserving procedures Analyses were conducted from the Ontario public payer perspective. Results The base case determined that the uterine artery embolization (UAE) treatment strategy was the cost-effective option at commonly accepted willingness-to-pay values. Compared with hysterectomy, UAE was calculated as having an incremental cost-effectiveness ratio (ICER) of $46,480 per quality-adjusted life-year (QALY) gained. The MRgHIFU strategy was extendedly dominated by a

  1. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    International Nuclear Information System (INIS)

    Gebauer, Bernhard; Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-01-01

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation

  2. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-05-15

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75

  3. Tissue ablation accelerated by peripheral scanning mode with high-intensity focused ultrasound: a study on isolated porcine liver perfusion.

    Science.gov (United States)

    Bu, Rui; Yin, Li; Yang, Han; Wang, Qi; Wu, Feng; Zou, Jian Zhong

    2013-08-01

    The aims of this study were to investigate the feasibility of accelerated tissue ablation using a peripheral scanning mode with high-intensity focused ultrasound (HIFU) and to explore the effect of flow rate on total energy consumption of the target tissues. Using a model of isolated porcine liver perfusion via the portal vein and hepatic artery, we conducted a scanning protocol along the periphery of the target tissues using linear-scanned HIFU to carefully adjust the varying focal depth, generator power, scanning velocity and line-by-line interval over the entire ablation range. Porcine livers were divided into four ablation groups: group 1, n = 12, with dual-vessel perfusion; group 2, n = 11, with portal vein perfusion alone; group 3, n = 10, with hepatic artery perfusion alone; and group 4, n = 11, control group with no-flow perfusion. The samples were cut open consecutively at a thickness of 3 mm, and the actual ablation ranges were calculated along the periphery of the target tissues after triphenyl tetrazolium chloride staining. Total energy consumption was calculated as the sum of the energy requirements at various focal depths in each group. On the basis of the pre-supposed scanning protocol, the peripheral region of the target tissue formed a complete coagulation necrosis barrier in each group with varying dose combinations, and the volume of the peripheral necrotic area did not differ significantly among the four groups (p > 0.05). Furthermore, total energy consumption in each group significantly decreased with the corresponding decrease in flow rate (p Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. [Focused ultrasound therapy: current status and potential applications in neurosurgery].

    Science.gov (United States)

    Dervishi, E; Aubry, J-F; Delattre, J-Y; Boch, A-L

    2013-12-01

    High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model

    Science.gov (United States)

    Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang

    2017-12-01

    In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.

  6. Laser ablation in CdZnTe crystal due to thermal self-focusing: Secondary phase hydrodynamic expansion

    Energy Technology Data Exchange (ETDEWEB)

    Medvid’, A., E-mail: mychko@latnet.lv [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Mychko, A.; Dauksta, E. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Kosyak, V. [Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy (Ukraine); Grase, L. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia)

    2016-06-30

    Highlights: • We found two laser induced threshold intensity for CdZnTe crystal. • The laser beam self-focusing lead to increase of intensity of laser radiation at exit surface. • Laser ablation is a result of Te inclusion hydrodynamic expansion. - Abstract: The present paper deals with the laser ablation in CdZnTe crystal irradiated by pulsed infrared laser. Two values of threshold intensities of the laser ablation were determined, namely of about 8.5 and 6.2 MW/cm{sup 2} for the incident and the rear surfaces, correspondingly. Lower intensity of the laser ablation for the rear surface is explained by thermal self-focusing of the laser beam in the CdZnTe crystal due to heating of Te inclusions with a following hydrodynamic expansion.

  7. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn

    2014-01-01

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  8. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  9. Light Weight Ceramic Ablators for Mars Follow-on Mission Vehicle Thermal Protection System

    Science.gov (United States)

    Tran, Huy K.; Rasky, Daniel J.; Hsu, Ming-Ta; Turan, Ryan

    1994-01-01

    New Light Weight Ceramic Ablators (LCA) were produced by using ceramic and carbon fibrous substrates, impregnated with silicone and phenolic resins. The special infiltration techniques (patent pending) were developed to control the amount of organic resins in the highly porous fiber matrices so that the final densities of LCA's range from 0.22 to 0.24 g/cc. This paper presents the thermal and ablative performance of the Silicone Impregnated Reusable Ceramic Ablators (SIRCA) in simulated entry conditions for Mars-Pathfinder in the Ames 60 MW Interaction Heating Facility (I HF). Arc jet test results yielded no evidence of char erosion and mass loss at high stagnation pressures to 0.25 atm. Minimal silica melt was detected on surface char at a stagnation pressure of 0.31 atm. Four ceramic substrates were used in the production of SIRCA's to obtain the effective of boron oxide present in substrate so the thermal performance of SIRCA's. A sample of SIRCA was also exposed to the same heating condition for five cycles and no significant mass loss or recession was observed. Tensile testing established that the SIRCA tensile strength is about a factor of two higher than that of the virgin substrates. Thermogravimetric Analysis (TGA) of the char in nitrogen and air showed no evidence of free carbon in the char. Scanning Electron Microscopy of the post test sample showed that the char surface consists of a fibrous structure that was sealed with a thin layer of silicon oxide melt.

  10. A region-based segmentation method for ultrasound images in HIFU therapy

    International Nuclear Information System (INIS)

    Zhang, Dong; Liu, Yu; Yang, Yan; Xu, Menglong; Yan, Yu; Qin, Qianqing

    2016-01-01

    Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentation becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori

  11. A region-based segmentation method for ultrasound images in HIFU therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong, E-mail: dongz@whu.edu.cn; Liu, Yu; Yang, Yan; Xu, Menglong; Yan, Yu [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Qin, Qianqing [State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072 (China)

    2016-06-15

    Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentation becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori

  12. In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology.

    Science.gov (United States)

    Hoogenboom, Martijn; Eikelenboom, Dylan; den Brok, Martijn H; Veltien, Andor; Wassink, Melissa; Wesseling, Pieter; Dumont, Erik; Fütterer, Jurgen J; Adema, Gosse J; Heerschap, Arend

    2016-06-01

    Boiling histotripsy (BH) is a new high intensity focused ultrasound (HIFU) ablation technique to mechanically fragmentize soft tissue into submicrometer fragments. So far, ultrasound has been used for BH treatment guidance and evaluation. The in vivo histopathological effects of this treatment are largely unknown. Here, we report on an MR guided BH method to treat subcutaneous tumors in a mouse model. The treatment effects of BH were evaluated one hour and four days later with MRI and histopathology, and compared with the effects of thermal HIFU (T-HIFU). The lesions caused by BH were easily detected with T2 w imaging as a hyper-intense signal area with a hypo-intense rim. Histopathological evaluation showed that the targeted tissue was completely disintegrated and that a narrow transition zone (<200 µm) containing many apoptotic cells was present between disintegrated and vital tumor tissue. A high level of agreement was found between T2 w imaging and H&E stained sections, making T2 w imaging a suitable method for treatment evaluation during or directly after BH. After T-HIFU, contrast enhanced imaging was required for adequate detection of the ablation zone. On histopathology, an ablation zone with concentric layers was seen after T-HIFU. In line with histopathology, contrast enhanced MRI revealed that after BH or T-HIFU perfusion within the lesion was absent, while after BH in the transition zone some micro-hemorrhaging appeared. Four days after BH, the transition zone with apoptotic cells was histologically no longer detectable, corresponding to the absence of a hypo-intense rim around the lesion in T2 w images. This study demonstrates the first results of in vivo BH on mouse tumor using MRI for treatment guidance and evaluation and opens the way for more detailed investigation of the in vivo effects of BH. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    International Nuclear Information System (INIS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-01-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy. (paper)

  14. Characterisation of tissue shrinkage during microwave thermal ablation.

    Science.gov (United States)

    Farina, Laura; Weiss, Noam; Nissenbaum, Yitzhak; Cavagnaro, Marta; Lopresto, Vanni; Pinto, Rosanna; Tosoratti, Nevio; Amabile, Claudio; Cassarino, Simone; Goldberg, S Nahum

    2014-11-01

    The aim of this study was to characterise changes in tissue volume during image-guided microwave ablation in order to arrive at a more precise determination of the true ablation zone. The effect of power (20-80 W) and time (1-10 min) on microwave-induced tissue contraction was experimentally evaluated in various-sized cubes of ex vivo liver (10-40 mm ± 2 mm) and muscle (20 and 40 mm ± 2 mm) embedded in agar phantoms (N = 119). Post-ablation linear and volumetric dimensions of the tissue cubes were measured and compared with pre-ablation dimensions. Subsequently, the process of tissue contraction was investigated dynamically during the ablation procedure through real-time X-ray CT scanning. Overall, substantial shrinkage of 52-74% of initial tissue volume was noted. The shrinkage was non-uniform over time and space, with observed asymmetry favouring the radial (23-43 % range) over the longitudinal (21-29%) direction. Algorithmic relationships for the shrinkage as a function of time were demonstrated. Furthermore, the smallest cubes showed more substantial and faster contraction (28-40% after 1 min), with more considerable volumetric shrinkage (>10%) in muscle than in liver tissue. Additionally, CT imaging demonstrated initial expansion of the tissue volume, lasting in some cases up to 3 min during the microwave ablation procedure, prior to the contraction phenomenon. In addition to an asymmetric substantial shrinkage of the ablated tissue volume, an initial expansion phenomenon occurs during MW ablation. Thus, complex modifications of the tissue close to a radiating antenna will likely need to be taken into account for future methods of real-time ablation monitoring.

  15. Health-related quality of life after salvage high-intensity focused ultrasound (HIFU) treatment for locally radiorecurrent prostate cancer

    International Nuclear Information System (INIS)

    Berge, V.; Baco, E.; Dahl, A.A.; Karlsen, S.J.

    2011-01-01

    The objective of this study was to evaluate health-related quality of life (HRQOL) after salvage high-intensity focused ultrasound (HIFU) for locally radiorecurrent prostate cancer (PCa). Since June 2006 we have treated 61 patients consecutively by salvage HIFU. All patients were offered the University of California, Los Angeles Prostate Cancer Index (UCLA-PCI) questionnaire at baseline and at follow-up. Scores ranged from 0 (worst) to 100 (best). Clinically significant changes were defined as a minimum difference of 10 points between the baseline score and the score at follow-up. Fifty-seven patients (93%) had evaluable data at baseline, compared with 46 (75%) after treatment. The mean time lapse between HIFU treatment and questionnaire response was 17.5 months (range 6-29 months). The mean score for urinary function decreased from 79.7±12.1 prior to HIFU to 67.4±17.8 after HIFU (P<0.001). The mean score for sexual function decreased from 32.1±24.1 prior to HIFU to 17.2±17.0 after HIFU (P<0.001). There were no significant effects on bowel function. There was a significant reduction in the mean score for Physical HRQOL, but the mean score for Mental HRQOL was did not change significantly. Treatment of localized radiorecurrent PCa by salvage HIFU is associated with clinically significant reductions in urinary and sexual function domains after a mean follow-up of 17.5 months. (author)

  16. Feasibility of ultrasound-guided high intensity focused ultrasound ablating uterine fibroids with hyperintense on T2-weighted MR imaging

    International Nuclear Information System (INIS)

    Zhao, Wen-Peng; Chen, Jin-Yun; Zhang, Lian; Li, Quan; Qin, Juan

    2013-01-01

    Purpose: To retrospectively investigate whether uterine fibroids with hyperintense on pretreatment T2-weighted magnetic resonance imaging (MRI) could be treated with ultrasound-guided high intensity focused ultrasound (USgHIFU). Materials and methods: 282 patients with 282 symptomatic uterine fibroids who underwent USgHIFU treatment were retrospectively analyzed. Based on the signal intensity of T2-weighted MRI, uterine fibroids were classified as hypointense, isointense and hyperintense. Hyperintense fibroids were subjectively further subdivided into heterogeneous hyperintense, slightly homogeneous hyperintense and markedly homogeneous hyperintense based on the signal intensity of fibroid relative to myometrium and endometrium on T2-weighted MRI. Enhanced MRI was performed within one month after HIFU treatment. Non-perfused volume (NPV, indicative of successful ablation) ratio, treatment time, treatment efficiency, energy effect ratio and adverse events were recorded. Results: The median volume of uterine fibroids was 70.3 cm 3 (interquartile range, 41.1–132.5 cm 3 ). The average NPV ratio, defined as non-perfused volume divided by the fibroid volume after HIFU treatment, was 76.8 ± 19.0% (range, 0–100%) in the 282 patients. It was 86.3 ± 11.9% (range, 40.9–100.0%) in the group with hypointense fibroids, 77.1 ± 16.5% (range, 32.2–100.0%) in isointense fibroids, and 67.6 ± 23.9% (range, 0–100.0%) in hyperintense fibroids. The lowest NPV ratio, lowest treatment efficiency, more treatment time, more sonication energy and pain scores were observed in the slightly homogeneous hyperintense fibroids, and the NPV ratio was 55.8 ± 26.7% (range, 0–83.9%) in this subgroup. Conclusion: Based on our results, the heterogeneous and markedly homogeneous hyperintense fibroids were suitable for USgHIFU, and only the slightly homogeneous hyperintense fibroids should be excluded

  17. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    OpenAIRE

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitatio...

  18. Percutaneous tumor ablation in medical radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.J.; Mack, M.G. [University Hospital Frankfurt Univ. (Germany). Inst. for Diagnostic and Interventional Radiology; Helmberger, T.K. [Klinikum Bogenhausen, Academic Teaching Hospital of the Technical Univ. Munich (Germany). Dept. for Diagnostic and Interventional Radiology and Nuclear Medicine; Reiser, M.F. (eds.) [University Hospitals - Grosshadern and Innenstadt Munich Univ. (Germany). Dept. of Clinical Radiology

    2008-07-01

    Thermal ablation has become an integral part of oncology, especially in the field of interventional oncology. This very comprehensive book encompasses the different technologies employed in thermal ablation, its indications and the results achieved in various clinical conditions. The first part of the book clearly explains the basics of thermal ablative techniques such as laser-induced thermotherapy, radiofrequency ablation, microwave ablation, cryotherapy, and localized tumor therapy. The latest developments in the application of minimally invasive therapies in localized neoplastic disease are demonstrated. In the main part of the book, techniques of guiding the applicators to the target structures by use of different imaging tools such as ultrasound, computed tomography and magnetic resonance imaging are discussed. The results are presented for a variety of clinical indications, including liver and lung tumors and metastases and some rather rare conditions involving the kidney, the head and neck, the prostate, and soft tissue structures. A large number of acknowledged experts have contributed to the book, which benefits from a lucid structure and excellent images. (orig.)

  19. Percutaneous tumor ablation in medical radiology

    International Nuclear Information System (INIS)

    Vogl, T.J.; Mack, M.G.; Helmberger, T.K.; Reiser, M.F.

    2008-01-01

    Thermal ablation has become an integral part of oncology, especially in the field of interventional oncology. This very comprehensive book encompasses the different technologies employed in thermal ablation, its indications and the results achieved in various clinical conditions. The first part of the book clearly explains the basics of thermal ablative techniques such as laser-induced thermotherapy, radiofrequency ablation, microwave ablation, cryotherapy, and localized tumor therapy. The latest developments in the application of minimally invasive therapies in localized neoplastic disease are demonstrated. In the main part of the book, techniques of guiding the applicators to the target structures by use of different imaging tools such as ultrasound, computed tomography and magnetic resonance imaging are discussed. The results are presented for a variety of clinical indications, including liver and lung tumors and metastases and some rather rare conditions involving the kidney, the head and neck, the prostate, and soft tissue structures. A large number of acknowledged experts have contributed to the book, which benefits from a lucid structure and excellent images. (orig.)

  20. The ablated volume and the thermal field distribution in swine vertebral body created by multi-polar radiofrequency ablation: an experiment in vitro

    International Nuclear Information System (INIS)

    Peng Zhaohong; Zhao Wei; Shen Jin; Hu Jihong; Li Zhaopeng; Wang Tao

    2009-01-01

    Objective: To observe the extent of bone coagulation and the thermal field distribution created in ablating the swine vertebral bodies in vitro with multi-polar radiofrequency and to discuss the correlation between the electrode position in the vertebral body and the safety of the spinal cord as well as the soft tissue injury around the vertebral body. Methods: Thirty fresh adult porcine vertebrae were randomly and equally divided into two groups. The depth of the electrode needle was 10 mm or 20 mm.When the ablation process reached to a stable state, the temperature at the scheduled spots was estimated. Twenty minutes after ablation, the vertebral body was cut along the electrode needle plane and also along the plane perpendicular to the electrode needle to observe the extent of bone coagulation. Results: The temperature at the scheduled spots reached to a stable state in 3.5 minutes. The more close to the electrode the spot was, the more quickly the temperature rose. No soft tissue injury around the vertebral body was observed in both groups and no spinal cord injury occurred when the electrode needle was 10 mm or 20 mm deep in the vertebral body. Conclusion: In treating vertebral metastases, the radiofrequency ablation is safe and reliable if the posterior wall of the vertebral body remains intact. (authors)

  1. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation.

    Science.gov (United States)

    Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M

    2009-05-01

    We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.

  2. The contemporary role of ablative treatment approaches in the management of renal cell carcinoma (RCC): focus on radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), and cryoablation.

    Science.gov (United States)

    Klatte, Tobias; Kroeger, Nils; Zimmermann, Uwe; Burchardt, Martin; Belldegrun, Arie S; Pantuck, Allan J

    2014-06-01

    Currently, most of renal tumors are small, low grade, with a slow growth rate, a low metastatic potential, and with up to 30 % of these tumors being benign on the final pathology. Moreover, they are often diagnosed in elderly patients with preexisting medical comorbidities in whom the underlying medical conditions may pose a greater risk of death than the small renal mass. Concerns regarding overdiagnosis and overtreatment of patients with indolent small renal tumors have led to an increasing interest in minimally invasive, ablative as an alternative to extirpative interventions for selected patients. To provide an overview about the state of the art in radiofrequency ablation (RFA), high-intensity focused ultrasound, and cryoablation in the clinical management of renal cell carcinoma. A PubMed wide the literature search of was conducted. International consensus panels recommend ablative techniques in patients who are unfit for surgery, who are not considered candidates for or elect against elective surveillance, and who have small renal masses. The most often used techniques are cryoablation and RFA. These ablative techniques offer potentially curative outcomes while conferring several advantages over extirpative surgery, including improved patient procedural tolerance, faster recovery, preservation of renal function, and reduction in the risk of intraoperative and postsurgical complications. While it is likely that outcomes associated with ablative modalities will improve with further advances in technology, their application will expand to more elective indications as longer-term efficacy data become available. Ablative techniques pose a valid treatment option in selected patients.

  3. Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario

    Science.gov (United States)

    Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele

    2018-03-01

    In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.

  4. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jung Hwan; Lee, Jeong Hyun [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Valcavi, Roberto [Endocrinology Division and Thyroid Disease Center, Arcispedale Santa Maria Nuova, Reggio Emilia (Italy); Pacella, Claudio M. [Diagnostic Imaging and Interventional Radiology Department, Ospedale Regina Apostolorum, Albano Laziale-Rome (IT); Rhim, Hyun Chul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Na, Dong Kyu [Human Medical Imaging and Intervention Center, Seoul (Korea, Republic of)

    2011-10-15

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation.

  5. Fracture in Phenolic Impregnated Carbon Ablator

    Science.gov (United States)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  6. MR-guided high intensity focused ultrasound thermoablation under temperature mapping monitoring for the treatment of uterine fibroids

    International Nuclear Information System (INIS)

    Xu Yonghua; Fu Zhongxiang; Yang Lixia; Chen Wenzhi; Liu Yingjiang; Ye Fangwei; Wang Zhibiao

    2010-01-01

    Objective: To assess the feasibility and effectiveness of MR-guided high intensity focused ultrasound (MRgHIFU) thermoablation under temperature mapping monitoring for the treatment of uterine fibroids. Methods: MRgHIFU was carried out in 52 patients with a total of 61 uterine fibroids. The mean age was (39.6 ± 7.3) years (ranged between 23-56 years), and the average diameter of the fibroids was(6.1 ± 2.1) cm (ranged between 1.2-10.7 cm). This procedure was accomplished by a JM-HIFU system (Mode JM15100, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Avanto TIM, Siemens, Germany), which provided real-time guidance and temperature mapping. Contrast-enhanced MR imaging was performed both immediately and three months after MRgHIFU treatment in order to evaluate the efficacy of thermal ablation. The treatment time and adverse events were recorded. The percentage of ablation volume was calculated after the procedure. The changes in the size of the uterine fibroid and in the clinical symptoms three months after the procedure were evaluated. Results: The mean fibroid volume for each case before and three months after MRgHIFU treatment was (113.3 ± 87.7) cm 3 and (58.1 ± 45.0) cm 3 respectively(P 3 (ranged between 7.7-282.9 cm 3 ) of fibroid volume was (19.8 ± 8.8) minutes. The mean energy of focused ultrasound delivered into the ablated fibroid tissue was (7.1 ± 6.7) J/mm 3 (ranged between 0.9-32.1 J/mm 3 ). The symptoms were relieved, the mean overall points decreased from (24.7 ± 4.8) to (16.7 ± 3.2) after therapy (P < 0.05). One patient experienced mild skin burn (small blisters), which subsided within two days. No other adverse events and complications were observed. Two patients got pregnant at three months after the treatment. Conclusion: MR-guided high intensity focused ultrasound treatment is a safe, effective and non-invasive technique for ablating uterine fibroids. A single thermoablation procedure is enough to

  7. MRI evaluation following partial HIFU therapy for localized prostate cancer: A single-center study.

    Science.gov (United States)

    Hoquetis, L; Malavaud, B; Game, X; Beauval, J B; Portalez, D; Soulie, M; Rischmann, P

    2016-09-01

    To evaluate the value of MRI for surveillance of primary hemi-HIFU therapy for localized PCa in a single-center. Patients with localized prostate cancer were treated with hemi-HIFU from October 2009 to March 2014. All patients performed MRI before focal therapy, the reader was blinded to the treatment. Oncological failure was defined as positive biopsy or biochemical recurrence (Phoenix). Twenty-five patients were treated with hemi-HIFU in one center. The median nadir PSA was 1.45±1.4ng/mL. Prostate volume decreased from 45 cc to 25 cc on MRI findings. At 20 months, none of the patients had histological recurrence. Biochemical-free survival rate was 88%. MRI evaluation had a negative predictive value of 100% on the treated area and 81% on the untreated area. PSAd≥0.1ng/mL(2) was a predictive factor for cancer on untreated area (P=0.042). MRI control at 6 months is a potentially effective evaluation of treated area after hemi-HIFU and may replace randomized biopsies if PSAd<0.1ng/mL(2) during follow-up. 4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Moldable cork ablation material

    Science.gov (United States)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  9. Effects of pressure rise on cw laser ablation of tissue

    Science.gov (United States)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  10. Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

    2012-11-28

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  11. A thermal model for nanosecond pulsed laser ablation of aluminum

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-07-01

    Full Text Available In order to simulate the nanosecond pulsed laser ablation of aluminum, a novel model was presented for the target ablation and plume expansion. The simulation of the target ablation was based on one-dimensional heat conduction, taking into account temperature dependent material properties, phase transition, dielectric transition and phase explosion. While the simulation of the plume expansion was based on one-dimensional gas-dynamical equation, taking into account ionization, plume absorption and shielding. By coupling the calculations of the target ablation and plume expansion, the characteristics of the target and plume were obtained. And the calculated results were in good agreement with the experimental data, in terms of ablation threshold and depth within the fluence range of the tested laser. Subsequently, investigations were carried out to analyze the mechanisms of nanosecond pulsed laser ablation. The calculated results showed that the maximum surface temperature remained at about 90% of the critical temperature (0.9Tc due to phase explosion. Moreover, the plume shielding has significant effects on the laser ablation, and the plume shielding proportion increase as the laser fluence increasing. The ambient pressure belows 100 Pa is more suitable for laser ablation, which can obtained larger ablation depth.

  12. Actual role of radiofrequency ablation of liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Philippe L. [Eberhard-Karls-University of Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany)

    2007-08-15

    The liver is, second only to lymph nodes, the most common site for metastatic disease irrespective of the primary tumour. More than 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improved survival in patients with colorectal metastases, only approximately 20% of patients are eligible for surgery. Thermal ablation and especially radiofrequency ablation emerge as an important additional therapy modality for the treatment of liver metastases. RF ablation shows a benefit in life expectancy and may lead in a selected patient group to cure. Percutaneous RF ablation appears safer (versus cryotherapy), easier (versus laser), and more effective (versus ethanol instillation and transarterial chemoembolisation) compared with other minimally invasive procedures. RF ablation can be performed by a percutaneous, laparoscopical or laparotomic approach, and may be potentially combined with chemotherapy and surgery. At present ideal candidates have tumours with a maximum diameter less than 3.5 cm. An untreatable primary tumour or a systemic disease represents contraindications for performing local therapies. Permanent technical improvements of thermal ablation devices and a better integration of thermal ablation in the overall patient care may lead to prognosis improvement in patients with liver metastases. (orig.)

  13. Actual role of radiofrequency ablation of liver metastases

    International Nuclear Information System (INIS)

    Pereira, Philippe L.

    2007-01-01

    The liver is, second only to lymph nodes, the most common site for metastatic disease irrespective of the primary tumour. More than 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improved survival in patients with colorectal metastases, only approximately 20% of patients are eligible for surgery. Thermal ablation and especially radiofrequency ablation emerge as an important additional therapy modality for the treatment of liver metastases. RF ablation shows a benefit in life expectancy and may lead in a selected patient group to cure. Percutaneous RF ablation appears safer (versus cryotherapy), easier (versus laser), and more effective (versus ethanol instillation and transarterial chemoembolisation) compared with other minimally invasive procedures. RF ablation can be performed by a percutaneous, laparoscopical or laparotomic approach, and may be potentially combined with chemotherapy and surgery. At present ideal candidates have tumours with a maximum diameter less than 3.5 cm. An untreatable primary tumour or a systemic disease represents contraindications for performing local therapies. Permanent technical improvements of thermal ablation devices and a better integration of thermal ablation in the overall patient care may lead to prognosis improvement in patients with liver metastases. (orig.)

  14. Ablative skin resurfacing.

    Science.gov (United States)

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    Science.gov (United States)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  16. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered.

  17. Ablation of atrial fibrillation with the Epicor system: a prospective observational trial to evaluate safety and efficacy and predictors of success

    Directory of Open Access Journals (Sweden)

    Diez Claudius

    2010-05-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU energy has evolved as a new surgical tool to treat atrial fibrillation (AF. We evaluated safety and efficacy of AF ablation with HIFU and analyzed predictors of success in a prospective clinical study. Methods From January 2007 to June 2008, 110 patients with AF and concomitant open heart surgery were enrolled into the study. Main underlying heart diseases were aortic valve disease (50%, ischemic heart disease (48%, and mitral valve disease (18%. AF was paroxysmal in 29%, persistent in 31%, and long standing persistent in 40% of patients, lasting for 1 to 240 months (mean 24 months. Mean left atrial diameter was 50 ± 7 mm. Each patient underwent left atrial ablation with the Epicor system prior to open heart surgery. After surgery, the patients were treated with amiodarone and coumadin for 6 months. Follow-up studies including resting ECG, 24 h Holter ECG, and echocardiography were obtained at 6 and 12 months. Results All patients had successful application of the system on the beating heart prior to initiation of extracorporeal circulation. On average, 11 ± 1 ultrasound transducer elements were used to create the box lesion. The hand-held probe for additional linear lesions was employed in 83 cases. No device-related deaths occurred. Postoperative pacemaker insertion was necessary in 4 patients. At 6 months, 62% of patients presented with sinus rhythm. No significant changes were noted at 12 months. Type of AF and a left atrial diameter > 50 mm were predictors for failure of AF ablation. Conclusion AF ablation with the Epicor system as a concomitant procedure during open heart surgery is safe and acceptably effective. Our overall conversion rate was lower than in previously published reports, which may be related to the lower proportion of isolated mitral valve disease in our study population. Left atrial size may be useful to determine patients who are most likely to benefit from

  18. HIFU Ultrasound Power Measurements at INRiM

    International Nuclear Information System (INIS)

    Durando, G; Guglielmone, C; Musacchio, C

    2011-01-01

    In this work the new system for the ultrasound power measurement of High Intensity Focused Ultrasound transducers realized at INRIM ultrasounds laboratory is presented. The system is based on a submersible load cell that takes the place of the balance. This solution presents essentially two advantages. The first one, of mechanical nature, is relevant to the fact that the target is directly connected to the force transducer, eliminating unwanted target motion at high power. The second, of electric nature, concerns the possibility to reduce the insonation time (the ON period of the electric driving signal to the HIFU transducer) under of 2 s, and is allowed for by the faster response of the force transducer (700 Hz bandwidth). The main components of uncertainty and the overall budget of the measurement system are presented together with the results of measures of conductance, G, carried on a HIFU transducer, at the work frequencies 2.0 MHz and 6.38 MHz, for values of power ranging from 10 W to 100 W. The results of the ultrasonic conductance, G, obtained with the new system are compared with values obtained using the traditional measuring system for low powers (P ≤ 20W).

  19. Pulmonary Vein Isolation by High Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Matthias Antz

    2007-04-01

    Full Text Available Pulmonary vein isolation (PVI using radiofrequency current (RFC ablation is a potentially curative treatment option for patients with atrial fibrillation (AF. The shortcomings of the RFC technology (technically challenging, long procedure times, complications steadily kindle the interest in new energy sources and catheter designs. High intensity focused ultrasound (HIFU has the ability to precisely focus ultrasound waves in a defined area with a high energy density. HIFU balloon catheters (BC positioned at the PV ostia appear to be an ideal tool to transmit the ablation energy in a circumferential manner to the PV ostia and may therefore bear substantial advantage over conventional ablation catheters in PVI procedures. In clinical trials the HIFU BC has shown promising success rates similar to RFC catheter ablation for PVI in patients with AF. However, procedure times are still long and serious complications have been observed. Therefore, it may be a valuable alternative to the conventional techniques in selected patients but further clinical trials have to be initiated.

  20. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress.

    Directory of Open Access Journals (Sweden)

    Scott M Thompson

    Full Text Available Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC, but lesions larger than 2-3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC. Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K/mammalian target of rapamycin (mTOR dependent-protein kinase B (AKT survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3 and prognosis (AKT1. Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin.

  1. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Science.gov (United States)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  2. Influence of wavelength and pulse duration on peripheral thermal and mechanical damage to dentin and alveolar bone during IR laser ablation

    Science.gov (United States)

    Lee, C.; Ragadio, Jerome N.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the peripheral thermal damage produced during the laser ablation of alveolar bone and dentin for clinically relevant IR laser systems. Previous studies have demonstrated that a char layer produced around the laser incision site can inhibit the wound healing process. Moreover, in the case of dentin, a char layer is unsightly and is difficult to bond to with restorative materials. Thermal damage was assessed using polarized light microscopy for laser pulse widths from 500 ns to 300 microseconds at 2.94 micrometer and 9.6 micrometer. Water- cooling was not employed to alleviate thermal damage during the laser irradiation. At 9.6 micrometer, minimal thermal damage was observed for pulse widths on the order of the thermal relaxation time of the deposited laser energy in the tissue, 3 - 4 microseconds, and peripheral thermal damage increased with increasing pulse duration. At 2.94 micrometer, thermal damage was minimal for the Q-switched (500 ns) laser system. This study shows that 9.6 micrometer CO2 laser pulses with pulse widths of 5 - 10 microseconds are well suited for the efficient ablation of dentin and bone with minimal peripheral damage. This work was supported by NIH/NIDCR R29DE12091.

  3. Hydrodynamic instabilities in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A R; Portugues, R F

    2004-01-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved

  4. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  5. Significant skin burns may occur with the use of a water balloon in HIFU treatment

    Science.gov (United States)

    Ritchie, Robert; Collin, Jamie; Wu, Feng; Coussios, Constantin; Leslie, Tom; Cranston, David

    2012-10-01

    HIFU is a minimally-invasive therapy suitable for treating selected intra-abdominal tumors. Treatment is safe although skin burns may occur due to pre-focal heating. HIFU treatment of a renal transplant tumor located in the left lower abdomen was undertaken in our centre. Treatment was performed prone, requiring displacement of the abdominal wall away from the treatment field using a water balloon, constructed of natural rubber latex and filled with degassed water. Intra-operatively, ultrasound imaging and physical examination of the skin directly over the focal region was normal. Immediately post-operative, a full-thickness skin burn was evident at the periphery of the balloon location, outside the expected HIFU path. Three possibilities may account for this complication. Firstly, the water balloon may have acted as a lens, focusing the HIFU to a neo-focus off axis. Secondly, air bubbles may have been entrapped between the balloon and the skin, causing heating at the interface. Finally, heating of the isolated water within the balloon may have been sufficient to cause burning. In this case, the placement of a water balloon caused a significant skin burn. Care should be taken in their use as burns, situated off axis, may occur even if the overlying skin appears normal.

  6. Fiber-Optic Temperature and Pressure Sensors Applied to Radiofrequency Thermal Ablation in Liver Phantom: Methodology and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2015-01-01

    Full Text Available Radiofrequency thermal ablation (RFA is a procedure aimed at interventional cancer care and is applied to the treatment of small- and midsize tumors in lung, kidney, liver, and other tissues. RFA generates a selective high-temperature field in the tissue; temperature values and their persistency are directly related to the mortality rate of tumor cells. Temperature measurement in up to 3–5 points, using electrical thermocouples, belongs to the present clinical practice of RFA and is the foundation of a physical model of the ablation process. Fiber-optic sensors allow extending the detection of biophysical parameters to a vast plurality of sensing points, using miniature and noninvasive technologies that do not alter the RFA pattern. This work addresses the methodology for optical measurement of temperature distribution and pressure using four different fiber-optic technologies: fiber Bragg gratings (FBGs, linearly chirped FBGs (LCFBGs, Rayleigh scattering-based distributed temperature system (DTS, and extrinsic Fabry-Perot interferometry (EFPI. For each instrument, methodology for ex vivo sensing, as well as experimental results, is reported, leading to the application of fiber-optic technologies in vivo. The possibility of using a fiber-optic sensor network, in conjunction with a suitable ablation device, can enable smart ablation procedure whereas ablation parameters are dynamically changed.

  7. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    Science.gov (United States)

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  8. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, penamel without excessive heat accumulation and with minimal thermal damage. It is not clear whether the small (16%) but statistically significant reduction in the shear bond strength to enamel is clinically significant since the mean shear bond strength exceeded 30 MPa.

  9. Chemothermal Therapy for Localized Heating and Ablation of Tumor

    Directory of Open Access Journals (Sweden)

    Zhong-Shan Deng

    2013-01-01

    Full Text Available Chemothermal therapy is a new hyperthermia treatment on tumor using heat released from exothermic chemical reaction between the injected reactants and the diseased tissues. With the highly minimally invasive feature and localized heating performance, this method is expected to overcome the ubiquitous shortcomings encountered by many existing hyperthermia approaches in ablating irregular tumor. This review provides a relatively comprehensive review on the latest advancements and state of the art in chemothermal therapy. The basic principles and features of two typical chemothermal ablation strategies (acid-base neutralization-reaction-enabled thermal ablation and alkali-metal-enabled thermal/chemical ablation are illustrated. The prospects and possible challenges facing chemothermal ablation are analyzed. The chemothermal therapy is expected to open many clinical possibilities for precise tumor treatment in a minimally invasive way.

  10. Effect of biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging, on ultrasound-guided high-intensity focused ultrasound ablation.

    Science.gov (United States)

    Zhao, Wen-Peng; Chen, Jin-Yun; Chen, Wen-Zhi

    2015-02-01

    The aims of this study were to assess the effects of the biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging (MRI), on ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation. Thirty-five patients with 39 symptomatic uterine fibroids who underwent myomectomy or hysterectomy were enrolled. Before surgery, the uterine fibroids were subdivided into hypo-intense, iso-intense, heterogeneous hyper-intense and homogeneous hyper-intense categories based on signal intensity on T2-weighted MRI. Tissue density and moisture content were determined in post-operative samples and normal uterine tissue, the isolated uterine fibroids were subjected to USgHIFU, and the extent of ablation was measured using triphenyltetrazolium chloride. Hematoxylin and eosin staining and sirius red staining were undertaken to investigate the organizational structure of the uterine fibroids. Estrogen and progesterone receptor expression was assayed via immunohistochemical staining. The mean diameter of uterine fibroids was 6.9 ± 2.8 cm. For all uterine fibroids, the average density and moisture content were 10.7 ± 0.7 mg/mL and 75.7 ± 2.4%, respectively; and for the homogeneous hyper-intense fibroids, 10.3 ± 0.5 mg/mL and 76.6 ± 2.3%. The latter subgroup had lower density and higher moisture content compared with the other subgroups. After USgHIFU treatment, the extent of ablation of the hyper-intense fibroids was 102.7 ± 42.1 mm(2), which was significantly less than those of the hypo-intense and heterogeneous hyper-intense fibroids. Hematoxylin and eosin staining and sirius red staining revealed that the homogeneous hyper-intense fibroids had sparse collagen fibers and abundant cells. Immunohistochemistry results revealed that estrogen and progesterone receptors were highly expressed in the homogeneous hyper-intense fibroids. This study revealed that lower density, higher moisture content, sparse collagen

  11. Microwave ablation of renal tumors: state of the art and development trends.

    Science.gov (United States)

    Floridi, Chiara; De Bernardi, Irene; Fontana, Federico; Muollo, Alessandra; Ierardi, Anna Maria; Agostini, Andrea; Fonio, Paolo; Squillaci, Ettore; Brunese, Luca; Fugazzola, Carlo; Carrafiello, Gianpaolo

    2014-07-01

    In the last decades an increased incidence of new renal tumor cases has been for clinically localized, small tumors elderly patients, with medical comorbidities whom the risk of surgical complications may pose a greater risk of death than that due to the tumor itself. In these patients, unsuitable for surgical approach, thermal ablation represents a valid alternative to traditional surgery. Thermal ablation is a less invasive, less morbid treatment option thanks to reduced blood loss, lower incidence of complications during the procedure and a less long convalescence. At present, the most widely used thermal ablative techniques are cryoablation, radiofrequency ablation and microwave ablation (MWA). MWA offers many benefits of other ablation techniques and offers several other advantages: higher intratumoral temperatures, larger tumor ablation volumes, faster ablation times, the ability to use multiple applicators simultaneously, optimal heating of cystic masses and tumors close to the vessels and less procedural pain. This review aims to provide the reader with an overview about the state of the art of microwave ablation for renal tumors and to cast a glance on the new development trends of this technique.

  12. In vivo characterization of tissue thermal properties of the kidney during local hyperthermia induced by MR-guided high-intensity focused ultrasound.

    Science.gov (United States)

    Cornelis, François; Grenier, Nicolas; Moonen, Chrit T; Quesson, Bruno

    2011-08-01

    The purpose of this study was to evaluate quantitatively in vivo the tissue thermal properties during high-intensity focused ultrasound (HIFU) heating. For this purpose, a total of 52 localized sonications were performed in the kidneys of six pigs with HIFU monitored in real time by volumetric MR thermometry. The kidney perfusion was modified by modulation of the flow in the aorta by insertion of an inflatable angioplasty balloon. The resulting temperature data were analyzed using the bio-heat transfer model in order to validate the model under in vivo conditions and to estimate quantitatively the absorption (α), thermal diffusivity (D) and perfusion (w(b)) of renal tissue. An excellent correspondence was observed between the bio-heat transfer model and the experimental data. The absorption and thermal diffusivity were independent of the flow, with mean values (± standard deviation) of 20.7 ± 5.1 mm(3) K J(-1) and 0.23 ± 0.11 mm(2) s(-1), respectively, whereas the perfusion decreased significantly by 84% (p < 0.01) with arterial flow (mean values of w(b) of 0.06 ± 0.02 and 0.008 ± 0.007 mL(-1) mL s(-1)), as predicted by the model. The quantitative analysis of the volumetric temperature distribution during nondestructive HIFU sonication allows the determination of the thermal parameters, and may therefore improve the quality of the planning of noninvasive therapy with MR-guided HIFU. Copyright © 2010 John Wiley & Sons, Ltd.

  13. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    Science.gov (United States)

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses

  14. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.

    Science.gov (United States)

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-07-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped

  15. Radiofrequency thermal ablation of a metastatic lung nodule

    Energy Technology Data Exchange (ETDEWEB)

    Highland, Adrian M. [Department of Clinical Radiology, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ (United Kingdom); Mack, Paul [Diana Princess of Wales Hospital, Scartho Road, Grimsby, DN33 2BA (United Kingdom); Breen, David J. [Department of Radiology, Southampton University Hospitals, Tremona Road, Southampton, SO16 6YD (United Kingdom)

    2002-07-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  16. Radiofrequency thermal ablation of a metastatic lung nodule

    International Nuclear Information System (INIS)

    Highland, Adrian M.; Mack, Paul; Breen, David J.

    2002-01-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  17. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Science.gov (United States)

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  18. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  19. Image-Guided Spinal Ablation: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr; Garnon, Julien, E-mail: julien.garnon@chru-strasbourg.fr; Cazzato, Roberto Luigi, E-mail: roberto-luigi.cazzato@chru-strasbourg.fr; Edalat, Faramarz, E-mail: faramarz.edalat@gmail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [Strasbourg University Hospital (France)

    2016-09-15

    The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of the ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option.

  20. Computational modeling of ultra-short-pulse ablation of enamel

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A. [and others

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  1. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  2. Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System

    International Nuclear Information System (INIS)

    Schafer, Mark E.; Gessert, James

    2009-01-01

    The growing clinical use of High Intensity Focused Ultrasound (HIFU) has driven a need for reliable, reproducible measurements of HIFU acoustic fields. We have previously presented data on a reflective scatterer approach, incorporating several novel features for improved bandwidth, reliability, and reproducibility [Proc. 2005 IEEE Ultrasonics Symposium, 1739-1742]. We now report on several design improvements which have increase the signal to noise ratio of the system, and potentially reduced the cost of implementation. For the scattering element, we now use an artificial sapphire material to provide a more uniform radiating surface. The receiver is a segmented, truncated spherical structure with a 10 cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. In the new design, a specialized backing material provides the stiffness required to maintain structural stability, while at the same time providing both electrical shielding and ultrasonic absorption. Compared with the previous version, the new receiver design has improved the noise performance by 8-12 dB; the new scattering sphere has reduced the scattering loss by another 14 dB, producing an effective sensitivity of -298 dB re 1 microVolt/Pa. The design trade-off still involves receiver sensitivity with effective spot size, and signal distortion from the scatter structure. However, the reduced cost and improved repeatability of the new scatter approach makes the overall design more robust for routine waveform measurements of HIFU systems.

  3. Nonlinear Analysis of Two-phase Circumferential Motion in the Ablation Circumstance

    Science.gov (United States)

    Xiao-liang, Xu; Hai-ming, Huang; Zi-mao, Zhang

    2010-05-01

    In aerospace craft reentry and solid rocket propellant nozzle, thermal chemistry ablation is a complex process coupling with convection, heat transfer, mass transfer and chemical reaction. Based on discrete vortex method (DVM), thermal chemical ablation model and particle kinetic model, a computational module dealing with the two-phase circumferential motion in ablation circumstance is designed, the ablation velocity and circumferential field can be thus calculated. The calculated nonlinear time series are analyzed in chaotic identification method: relative chaotic characters such as correlation dimension and the maximum Lyapunov exponent are calculated, fractal dimension of vortex bulbs and particles distributions are also obtained, thus the nonlinear ablation process can be judged as a spatiotemporal chaotic process.

  4. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    Science.gov (United States)

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  5. Non-thermal effects on femtosecond laser ablation of polymers extracted from the oscillation of time-resolved reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Takayuki, E-mail: kumada.takayuki@jaea.go.jp; Akagi, Hiroshi; Itakura, Ryuji; Otobe, Tomohito; Nishikino, Masaharu; Yokoyama, Atsushi [Kansai Photon Science Institute, Japan Atomic Energy Agency, Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

    2015-06-01

    The dynamics of femtosecond laser ablation of transparent polymers were examined using time-resolved reflectivity. When these polymers were irradiated by a pump pulse with fluence above the ablation threshold of 0.8–2.0 J/cm{sup 2}, we observed the oscillation of the reflectivity caused by the interference between the reflected probe pulses from the sample surface and the thin layer due to the non-thermal photomechanical effects of spallation. As the fluence of the pump pulse increased, the separation velocity of the thin layer increased from 6 km/s to the asymptotic value of 11 km/s. It is suggested that the velocities are determined by shock-wave velocities of the photo-excited layer.

  6. Tumor lysis syndrome following endoscopic radiofrequency interstitial thermal ablation of colorectal liver metastases.

    LENUS (Irish Health Repository)

    Barry, B D

    2012-02-03

    Radiofrequency interstitial thermal ablation (RITA) provides a palliative option for patients suffering from metastatic liver disease. This procedure can be performed using a laparoscopic approach with laparoscopic ultrasound used to position the RITA probe. We describe a case of laparoscopic RITA performed for colorectal liver metastasis that was complicated by tumor lysis syndrome (TLS) following treatment. We consider RITA to be a safe procedure, as supported by the literature, but where intracorporal tumor lysis is the treatment goal we believe that the systemic release of tumor products can overwhelm the excretory capacity; therefore, TLS is an inevitable consequence in some patients.

  7. Impact of MR-guided boiling histotripsy in distinct murine tumor models

    NARCIS (Netherlands)

    Hoogenboom, Martijn; Eikelenboom, Dylan C.; van den Bijgaart, Renske J E; Heerschap, Arend; Wesseling, Pieter; den Brok, Martijn H; Fütterer, Jurgen J.; Adema, Gosse J

    2017-01-01

    Interest in mechanical high intensity focused ultrasound (HIFU) ablation is rapidly growing. Boiling histotripsy (BH) is applied for mechanical fragmentation of soft tissue into submicron fragments with limited temperature increase using the shock wave and cavitation effects of HIFU. Research on BH

  8. Fiber-optic combined FPI/FBG sensors for monitoring of radiofrequency thermal ablation of liver tumors: ex vivo experiments.

    Science.gov (United States)

    Tosi, Daniele; Macchi, Edoardo Gino; Braschi, Giovanni; Cigada, Alfredo; Gallati, Mario; Rossi, Sandro; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2014-04-01

    We present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry-Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy. The sensing system has been applied to monitor online the radiofrequency thermal ablation of tumors in liver tissue. Preliminary experiments have been performed in a reference chamber with uniform heating; further experiments have been carried out on ex vivo porcine liver, which allowed the measurement of a steep temperature gradient and monitoring of the local pressure increase during the ablation procedure.

  9. An experimental study on hepatic ablation using an expandable radio-frequency needle electrode

    International Nuclear Information System (INIS)

    Choi, Dong Il; Lim, Hyo Keun; Park, Jong Min; Kang, Bo Kyung; Woo, Ji Young; Jang, Hyun Jung; Kim, Seung Hoon; Lee, Won Jae; Park, Cheol Keun; Heo, Jin Seok

    1999-01-01

    The purpose of this study was to determine the factors influencing on the size of thermal lesions after ablation using an expendable radio-frequency needle electrode in porcine liver. Ablation procedures involved the use of a monopolar radio-frequency generator and 15-G needle electrodes with four and seven retractable hooks (RITA Medical System, Mountain View, Cal., U.S.A.). The ablation protocol in fresh porcine liver comprised of combinations of varying hook deployment, highest set temperature, and ablation time. Following ablation, the maximum diameter of all thermal lesions was measured on a longitudinal section of the specimen. Ten representive lesions were examined by an experienced pathologist. At 3-cm hook deployment of the needle electrode with four lateral hooks, the size of spherical thermal lesions increased substantially with increases in the highest set temperature and ablation time until 11 minutes. After 11 minutes lesion size remained similar, with a maximum diameter of 3.3 cm. At 2-cm hook deployment, sizes decreased to about 2/3 of those at 3 cm , and at 1-cm hook deployment lesions were oblong. At 3-cm hook deployment of a needle electrode with seven hooks, the size of thermal lesions increased with increasing ablation time until 14 minutes, and the maximum diameter was 4.1 cm. Microscopic examination showed a wide zone of degeneration and focal coagulation necrosis. The size of thermal lesions produced by the use of an expandable radio-frequency needle electrode were predictable, varying according to degree of hook deployment, highest set temperature, and ablation time

  10. Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells

    Science.gov (United States)

    Beck, R.; Gasch, M.; Stackpoole, M.; Wilder, M.; Boghozian, T.; Chavez-Garcia, J.; Prabhu, D.; Kazemba, C.; Venkatapathy, E.

    2015-01-01

    The new conformal ablator C-PICA, which was developed under STMD GCD, is an optimal candidate for use on the backshells for high velocity entry vehicles at both Venus and Saturn. The material has been tested at heat fluxes up to 400 Wcm2 in shear and over 1800 Wcm2 and 1.5 atm in stagnation with good results. C-PICA has similar density to PICA, but shows half the thermal penetration and similar recession at the same conditions, allowing for a lighter weight TPS to be flown. This poster for VEXAG will show the progress made in the development of the material and why it should be considered for use.

  11. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.

    Science.gov (United States)

    Ahmed, Muneeb; Liu, Zhengjun; Humphries, Stanley; Goldberg, S Nahum

    2008-11-01

    To use an established computer simulation model of radiofrequency (RF) ablation to characterize the combined effects of varying perfusion, and electrical and thermal conductivity on RF heating. Two-compartment computer simulation of RF heating using 2-D and 3-D finite element analysis (ETherm) was performed in three phases (n = 88 matrices, 144 data points each). In each phase, RF application was systematically modeled on a clinically relevant template of application parameters (i.e., varying tumor and surrounding tissue perfusion: 0-5 kg/m(3)-s) for internally cooled 3 cm single and 2.5 cm cluster electrodes for tumor diameters ranging from 2-5 cm, and RF application times (6-20 min). In the first phase, outer thermal conductivity was changed to reflect three common clinical scenarios: soft tissue, fat, and ascites (0.5, 0.23, and 0.7 W/m- degrees C, respectively). In the second phase, electrical conductivity was changed to reflect different tumor electrical conductivities (0.5 and 4.0 S/m, representing soft tissue and adjuvant saline injection, respectively) and background electrical conductivity representing soft tissue, lung, and kidney (0.5, 0.1, and 3.3 S/m, respectively). In the third phase, the best and worst combinations of electrical and thermal conductivity characteristics were modeled in combination. Tissue heating patterns and the time required to heat the entire tumor +/-a 5 mm margin to >50 degrees C were assessed. Increasing background tissue thermal conductivity increases the time required to achieve a 50 degrees C isotherm for all tumor sizes and electrode types, but enabled ablation of a given tumor size at higher tissue perfusions. An inner thermal conductivity equivalent to soft tissue (0.5 W/m- degrees C) surrounded by fat (0.23 W/m- degrees C) permitted the greatest degree of tumor heating in the shortest time, while soft tissue surrounded by ascites (0.7 W/m- degrees C) took longer to achieve the 50 degrees C isotherm, and complete ablation

  12. Oncological and functional outcomes of elderly men treated with HIFU vs. minimally invasive radical prostatectomy: A propensity score analysis.

    Science.gov (United States)

    Capogrosso, Paolo; Barret, Eric; Sanchez-Salas, Rafael; Nunes-Silva, Igor; Rozet, François; Galiano, Marc; Ventimiglia, Eugenio; Briganti, Alberto; Salonia, Andrea; Montorsi, Francesco; Cathelineau, Xavier

    2018-01-01

    To assess outcomes of whole gland high-intensity focused ultrasound (HIFU) as compared with minimally-invasive radical prostatectomy (MIRP) in elderly patients. Patients aged ≥70 years with, cT1-cT2 disease, biopsy Gleason score (GS) 3 + 3 or 3 + 4 and preoperative PSA ≤10 ng/mL were submitted to either whole-gland HIFU or MIRP. Propensity-score matching analysis was performed to ensure the baseline equivalence of groups. Follow-up visits were routinely performed assessing PSA and urinary function according to the International Continence Score (ICS) and the International Prostatic Symptoms Score (IPSS) questionnaires. Estimated rates of salvage-treatment free survival (SFS) overall-survival (OS), cancer-specific survival (CSS) and metastasis-free survival (MTS) were assessed and compared. Overall, 84 (33.3%) and 168 (66.7%) patients were treated with HIFU and MIRP, respectively. MIRP was associated with a 5-yrs SFS of 93.4% compared to 74.8% for HIFU (p < 0.01). The two groups did not differ in terms of OS and MTS. No cancer-related deaths were registered. Patients treated with HIFU showed better short-term (6-mos) continence outcomes [mean-ICS: 1.7 vs. 4.8; p = 0.005] but higher IPSS mean scores at 12-mos assessment. A comparable rate of patients experiencing post-treatment Clavien-Dindo grade ≥III complications was observed within the two groups. Whole-gland HIFU is a feasible treatment in elderly men with low-to intermediate-risk PCa and could be considered for patients either unfit for surgery, or willing a non-invasive treatment with a low morbidity burden, although a non-negligible risk of requiring subsequent treatment for recurrence should be expected. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  13. The potential of high intensity focused ultrasound (HIFU) combine phase-sensitive optical coherence tomography (PhS-OCT) for diseases diagnosis, treatment and monitoring

    Science.gov (United States)

    Zhou, Kanheng; Wang, Yan; Feng, Kairui; Li, Chunhui; Huang, Zhihong

    2018-02-01

    HIFU is a truly noninvasive, acoustic therapeutic technique that utilizes high intensity acoustic field in the focus to kill the targeted tissue for disease treatment purpose. The mechanical properties of targeted tissue changes before and after treatment, and this change can be accurately detected by shear wave elastography. Hence, shear wave elastography is usually used for monitoring HIFU treatment asynchronously. To improve the low spatial resolution in ultrasound shear wave elastography, and to perform diseases diagnosis, treatment and monitoring in the same system, a new setup that combines HIFU and PhS-OCT system was proposed in this study. This proposed setup could do 1) HIFU treatment when the transducer works at high energy level, 2) ultrasound induced shear wave optical coherence elastography for HIFU treatment asynchronous monitoring when the transducer works at low energy level. Ex-vivo bovine liver tissue was treated at the same energy level for different time (0s, 1s, 5s, 9s) in this research. Elastography was performed on the lesion area of the sample after HIFU treatment, and the elastogram was reconstructed by the time of flight time method. The elastogram results clearly show the boundary of HIFU lesion area and surrounding normal tissue, even for 1s treatment time. And the average elasticity of the lesion grows linearly as the treatment time increases. Combined with OCT needle probe, the proposed method has a large potential not only to be used for superficial diseases treatment, but also to be used for high-precision-demanded diseases treatment, e.g. nervous disease treatment.

  14. Ablation of musculoskeletal metastases: pain palliation, fracture risk reduction, and oligometastatic disease.

    Science.gov (United States)

    Kurup, Anil Nicholas; Callstrom, Matthew R

    2013-12-01

    Thermal ablation is an effective, minimally invasive alternative to conventional therapies in the palliation of painful musculoskeletal metastases and an emerging approach to obtain local tumor control in the setting of limited metastatic disease. Various thermal ablation technologies have been applied to bone and soft tissue tumors and may be used in combination with percutaneous cement instillation for skeletal lesions with or at risk for pathologic fracture. This article reviews current practices of percutaneous ablation of musculoskeletal metastases with an emphasis on radiofrequency ablation and cryoablation of painful skeletal metastases. © 2013 Elsevier Inc. All rights reserved.

  15. Ablation of liver metastases by radiofrequency

    International Nuclear Information System (INIS)

    Baere, T. de

    2012-01-01

    Radiofrequency is a thermal ablative technique that is most often used percuteanously under image guidance. Thermal damage is obtained through frictional heating of a high frequency current. The maximal volume of destruction obtained in one radiofrequency delivery is around 4 cm and consequently, best indication for treatment are tumours below 3 cm. When compared, radiofrequency and surgical removal for tumours below 25 mm in diameter demonstrated a rate of incomplete resection/ablation of 6% and 7.3% respectively. Median survival after the first radiofrequency of a liver metastasis of CRC is reported to be 24 to 52 months with a 5 years overall survival of 18 to 44%. The median overall survival increases from 22 to 48 months depending on the use of radiofrequency ablation as rescue treatment after failure of others, or as a first line treatment. For patients with a single tumour, less than 4 cm, the survival rates at 1, 3, and 5 years are respectively 97%, 84% and 40%, with a median survival of 50 months. Follow-up imaging requires to use contrast-enhanced CT or MRI, looking for local recurrences evidenced by local foci of enhancement at the periphery of the ablation zone. (author)

  16. Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue

    Science.gov (United States)

    Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A.; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano

    2017-09-01

    The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment.

  17. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    International Nuclear Information System (INIS)

    Crocetti, Laura; Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-01-01

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  18. Prognostic factors for long-term outcome after percutaneous thermal ablation for hepatocellular carcinoma: a survival analysis of 137 consecutive patients

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X. [Department of Medical Ultrasonics, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Lu, M.-D. [Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xie, X.-Y. [Department of Medical Ultrasonics, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Yin, X.-Y. [Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Kuang, M. [Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, J.-W. [Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Z.-F. [Department of Medical Ultrasonics, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, G.-J. [Department of Medical Ultrasonics, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China)

    2005-09-01

    AIM: To identify prognostic factors for long-term outcome for patients with hepatocellular carcinoma (HCC) after percutaneous microwave or radiofrequency ablation. MATERIALS AND METHODS: In total, 137 consecutive patients with HCC underwent microwave or radiofrequency ablation with curative intent; 16 possible prognostic factors were evaluated for their association with overall survival (OS) and disease-free survival (DFS) using univariate and multivariate analysis. RESULTS: The median OS and DFS were 27.0 months and 8.2 months, respectively. OS rates for all patients at 1, 2, 3, 4 and 5 years were 73.9%, 52.1%, 42.8%, 26.2% and 20.1%, respectively. DFS rates at 1, 2, 3 and 4 years were 38.1%, 21.9%, 18.8%, and 14.1%, respectively. Pretreatment serum alpha-fetoprotein (AFP) >200 ng/ml, pretreatment serum albumin {<=}35 g/dl, liver function Child's class C and incomplete ablation were found to be significant predictors for OS by univariate analysis. Using multivariate analysis, incomplete ablation was identified to be the most significant independent predictor for OS. Other independent predictors for OS were serum albumin level, serum AFP level and Child-Pugh classification. Recurrence after hepatectomy and prothrombin time >14 s were identified to be significant predictors for DFS by univariate analysis, and the former was the only independent predictor for DFS by multivariate analysis. CONCLUSION: Prognosis for patients with HCC after thermal ablation with curative intent was determined by treatment response to ablation, pretreatment serum AFP, and liver function reserve. Tumour response to treatment was the most predictive factor for long-term survival and was related to tumour size, thus careful selection of patients for ablation therapy is recommended.

  19. Prognostic factors for long-term outcome after percutaneous thermal ablation for hepatocellular carcinoma: a survival analysis of 137 consecutive patients

    International Nuclear Information System (INIS)

    Xu, H.-X.; Lu, M.-D.; Xie, X.-Y.; Yin, X.-Y.; Kuang, M.; Chen, J.-W.; Xu, Z.-F.; Liu, G.-J.

    2005-01-01

    AIM: To identify prognostic factors for long-term outcome for patients with hepatocellular carcinoma (HCC) after percutaneous microwave or radiofrequency ablation. MATERIALS AND METHODS: In total, 137 consecutive patients with HCC underwent microwave or radiofrequency ablation with curative intent; 16 possible prognostic factors were evaluated for their association with overall survival (OS) and disease-free survival (DFS) using univariate and multivariate analysis. RESULTS: The median OS and DFS were 27.0 months and 8.2 months, respectively. OS rates for all patients at 1, 2, 3, 4 and 5 years were 73.9%, 52.1%, 42.8%, 26.2% and 20.1%, respectively. DFS rates at 1, 2, 3 and 4 years were 38.1%, 21.9%, 18.8%, and 14.1%, respectively. Pretreatment serum alpha-fetoprotein (AFP) >200 ng/ml, pretreatment serum albumin ≤35 g/dl, liver function Child's class C and incomplete ablation were found to be significant predictors for OS by univariate analysis. Using multivariate analysis, incomplete ablation was identified to be the most significant independent predictor for OS. Other independent predictors for OS were serum albumin level, serum AFP level and Child-Pugh classification. Recurrence after hepatectomy and prothrombin time >14 s were identified to be significant predictors for DFS by univariate analysis, and the former was the only independent predictor for DFS by multivariate analysis. CONCLUSION: Prognosis for patients with HCC after thermal ablation with curative intent was determined by treatment response to ablation, pretreatment serum AFP, and liver function reserve. Tumour response to treatment was the most predictive factor for long-term survival and was related to tumour size, thus careful selection of patients for ablation therapy is recommended

  20. Characterization of HIFU transducers designed for sonochemistry application: Cavitation distribution and quantification

    Czech Academy of Sciences Publication Activity Database

    Hallez, L.; Touyeraz, F.; Hihn, J. Y.; Klíma, Jiří; Guey, J.-L.; Spajer, M.; Bailly, Y.

    2010-01-01

    Roč. 50, č. 2 (2010), s. 310-317 ISSN 0041-624X Institutional research plan: CEZ:AV0Z40400503 Keywords : HIFU * acoustic cavitation * MBSCL threshold * sonoreactors Subject RIV: CG - Electrochemistry Impact factor: 1.599, year: 2010

  1. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules.

    Science.gov (United States)

    Deandrea, Maurilio; Limone, Paolo; Basso, Edoardo; Mormile, Alberto; Ragazzoni, Federico; Gamarra, Elena; Spiezia, Stefano; Faggiano, Antongiulio; Colao, Annamaria; Molinari, Filippo; Garberoglio, Roberto

    2008-05-01

    The aim of the study was to define the effectiveness and safety of ultrasound-guided percutaneous radiofrequency (RF) thermal ablation in the treatment of compressive solid benign thyroid nodules. Thirty-one patients not eligible for surgery or radioiodine (131I) treatment underwent RF ablation for benign nodules; a total of 33 nodules were treated (2 patients had 2 nodules treated in the same session): 10 cold nodules and 23 hyperfunctioning. Fourteen patients complained of compressive symptoms. Nodule volume, thyroid function and compressive symptoms were evaluated before treatment and at 1, 3 and 6 mo. Ultrasound-guided RF ablation was performed using a Starbust RITA needle, with nine expandable prongs; total exposure time was 6 to 10 min at 95 degrees C in one area or more of the nodule. Baseline volume (measured at the time of RF ablation) was 27.7 +/- 21.5 mL (mean +/- SD), but significantly decreased during follow-up: 19.2 +/- 16.2 at 1 mo (-32.7%; p nodules remained euthyroid: five patients with hot nodules normalized thyroid function, and the remaining sixteen showed a partial remission of hyperthyroidism. Besides a sensation of heat and mild swelling of the neck, no major complications were observed. Improvement in compressive symptoms was reported by 13 patients, with a reduction on severity scale from 6.1 +/- 1.4 to 2.2 +/- 1.9 (p nodules. Hyperfunction was fully controlled in 24% of patients and partially reduced in the others.

  2. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  3. A Split-and-Merge-Based Uterine Fibroid Ultrasound Image Segmentation Method in HIFU Therapy.

    Directory of Open Access Journals (Sweden)

    Menglong Xu

    Full Text Available High-intensity focused ultrasound (HIFU therapy has been used to treat uterine fibroids widely and successfully. Uterine fibroid segmentation plays an important role in positioning the target region for HIFU therapy. Presently, it is completed by physicians manually, reducing the efficiency of therapy. Thus, computer-aided segmentation of uterine fibroids benefits the improvement of therapy efficiency. Recently, most computer-aided ultrasound segmentation methods have been based on the framework of contour evolution, such as snakes and level sets. These methods can achieve good performance, although they need an initial contour that influences segmentation results. It is difficult to obtain the initial contour automatically; thus, the initial contour is always obtained manually in many segmentation methods. A split-and-merge-based uterine fibroid segmentation method, which needs no initial contour to ensure less manual intervention, is proposed in this paper. The method first splits the image into many small homogeneous regions called superpixels. A new feature representation method based on texture histogram is employed to characterize each superpixel. Next, the superpixels are merged according to their similarities, which are measured by integrating their Quadratic-Chi texture histogram distances with their space adjacency. Multi-way Ncut is used as the merging criterion, and an adaptive scheme is incorporated to decrease manual intervention further. The method is implemented using Matlab on a personal computer (PC platform with Intel Pentium Dual-Core CPU E5700. The method is validated on forty-two ultrasound images acquired from HIFU therapy. The average running time is 9.54 s. Statistical results showed that SI reaches a value as high as 87.58%, and normHD is 5.18% on average. It has been demonstrated that the proposed method is appropriate for segmentation of uterine fibroids in HIFU pre-treatment imaging and planning.

  4. Saphenous Venous Ablation with Hot Contrast in a Canine Model

    International Nuclear Information System (INIS)

    Prasad, Amit; Qian Zhong; Kirsch, David; Eissa, Marna; Narra, Pavan; Lopera, Jorge; Espinoza, Carmen G.; Castaneda, Wifrido

    2008-01-01

    Purpose. To determine the feasibility, efficacy, and safety of thermal ablation of the saphenous vein with hot contrast medium. Methods. Twelve saphenous veins of 6 dogs were percutaneously ablated with hot contrast medium. In all animals, ablation was performed in the vein of one leg, followed by ablation in the contralateral side 1 month later. An occlusion balloon catheter was placed in the infragenicular segment of the saphenous vein via a jugular access to prevent unwanted thermal effects on the non-target segment of the saphenous vein. After inflation of the balloon, 10 ml of hot contrast medium was injected under fluoroscopic control through a sheath placed in the saphenous vein above the ankle. A second 10 ml injection of hot contrast medium was made after 5 min in each vessel. Venographic follow-up of the ablated veins was performed at 1 month (n = 12) and 2 months (n = 6). Results. Follow-up venograms showed that all ablated venous segments were occluded at 1 month. In 6 veins which were followed up to 2 months, 4 (66%) remained occluded, 1 (16%) was partially patent, and the remaining vein (16%) was completely patent. In these latter 2 cases, an inadequate amount of hot contrast was delivered to the lumen due to a closed balloon catheter downstream which did not allow contrast to displace blood within the vessel. Discussion. Hot contrast medium thermal ablation of the saphenous vein appears feasible, safe, and effective in the canine model, provided an adequate amount of embolization agent is used

  5. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  6. Magnetic Thermal Ablation Using Ferrofluids: Influence of Administration Mode on Biological Effect in Different Porcine Tissues

    International Nuclear Information System (INIS)

    Bruners, Philipp; Hodenius, Michael; Baumann, Martin; Oversohl, Jessica; Guenther, Rolf W.; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2008-01-01

    The purpose of this study was to compare the effects of magnetic thermal ablation in different porcine tissues using either a singular injection or a continuous infusion of superparamagnetic iron oxide nanoparticles. In the first setting samples of three ferrofluids containing different amounts of iron (1:171, 2:192, and 3:214 mg/ml) were singularly interstitially injected into specimens of porcine liver, kidney, and muscle (n = 5). Then the specimens were exposed to an alternating magnetic field (2.86 kA/m, 190 kHz) generated by a circular coil for 5 min. In the second experimental setup ferrofluid samples were continuously interstitially infused into the tissue specimens during the exposure to the magnetic field. To measure the temperature increase two fiber-optic temperature probes with a fixed distance of 0.5 cm were inserted into the specimens along the puncture tract of the injection needle and the temperature was measured every 15 s. Finally, the specimens were dissected, the diameters of the created thermal lesions were measured, and the volumes were calculated and compared. Compared to continuous infusion, a single injection of ferrofluids resulted in smaller coagulation volumes in all tissues. Significant differences regarding coagulation volume were found in kidney and muscle specimens. The continuous infusion technique led to more elliptically shaped coagulation volumes due to larger diameters along the puncture tract. Our data show the feasibility of magnetic thermal ablation using either a single interstitial injection or continuous infusion for therapy of lesions in muscle, kidney, and liver. Continuous infusion of ferrofluids results in larger zones of necrosis compared to a single injection technique.

  7. A study of photothermal laser ablation of various polymers on microsecond time scales.

    Science.gov (United States)

    Kappes, Ralf S; Schönfeld, Friedhelm; Li, Chen; Golriz, Ali A; Nagel, Matthias; Lippert, Thomas; Butt, Hans-Jürgen; Gutmann, Jochen S

    2014-01-01

    To analyze the photothermal ablation of polymers, we designed a temperature measurement setup based on spectral pyrometry. The setup allows to acquire 2D temperature distributions with 1 μm size and 1 μs time resolution and therefore the determination of the center temperature of a laser heating process. Finite element simulations were used to verify and understand the heat conversion and heat flow in the process. With this setup, the photothermal ablation of polystyrene, poly(α-methylstyrene), a polyimide and a triazene polymer was investigated. The thermal stability, the glass transition temperature Tg and the viscosity above Tg were governing the ablation process. Thermal decomposition for the applied laser pulse of about 10 μs started at temperatures similar to the start of decomposition in thermogravimetry. Furthermore, for polystyrene and poly(α-methylstyrene), both with a Tg in the range between room and decomposition temperature, ablation already occurred at temperatures well below the decomposition temperature, only at 30-40 K above Tg. The mechanism was photomechanical, i.e. a stress due to the thermal expansion of the polymer was responsible for ablation. Low molecular weight polymers showed differences in photomechanical ablation, corresponding to their lower Tg and lower viscosity above the glass transition. However, the difference in ablated volume was only significant at higher temperatures in the temperature regime for thermal decomposition at quasi-equilibrium time scales.

  8. Percutaneous radiofrequency thermal ablation of lung VX2 tumors in a rabbit model: evaluation with helical CT findings for the complete and partal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Gong Yong; Han, Young Min; Lim, Yeong Su; Jang, Kyu Yun; Lee, Sang Yong; Chung, Gyung Ho [School of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2004-05-01

    To evaluate the radiologic findings for complete and partial ablation after percutaneous CT-guided transthoracic radiofrequency ablation (RFA) of lung VX2 tumor implanted in rabbits. Thirteen rabbits with successfully implanted lung VX2 were used. Three rabbits as controls did not receive RFA while the other ten rabbits underwent RFA; 5 complete and 5 partial. RFA was performed using an internally cooled, 17-gauge electrode (Radionics, Burlington, MA) with a 1-cm active tip under CT guidance. Postprocedural CT was performed within 3 days, and we analyzed the ablated size, enhancement pattern, shape, margin, and complications of the complete and partial ablation groups. Rabbits were sacrificed after postprocedural CT with an overdose of ketamine, and pathologic findings of the ablated groups were compared with those of the control group. The size of the ablated lesions and the enhancement pattern differed between the completely and partially ablated groups on chest CT. The size of the ablated lesions was increased by 47.1% in the completely ablated group and by 2.1% in the partially ablated group. In the completely ablated group, VX2 tumor showed absolutely no enhancement, whereas only ablated pulmonary parenchyma outside VX2 showed mild enhancement on enhanced CT. In the partial ablated group, a part of VX2 became strongly enhanced on enhanced CT. On microscopic examination, the completely ablated group demonstrated that a viable tumor cell was not visible. In the partially ablated group, however, a viable tumor cell within the surrounding fibrous capsule on the peripheral area of the VX2 was observed. The important CT findings for evaluation of complete and partial RFA are the ablated size and enhancement pattern of the ablated lesion.

  9. Electroporation ablation: A new energy modality for ablation of arrhythmogenic cardiac substrate

    NARCIS (Netherlands)

    van Driel, VJHM

    2016-01-01

    At the very end of the Direct Current (DC) era, low-energy DC ablation was demonstrated to cause myocardial lesions by non-thermal irreversible electroporation (IRE) (permanent formation of pores in the cell membrane, leading to cell death), without arcing and/or barotrauma. To eliminate rather

  10. Models of electron conductivity which lead to ablation stabilization of fluid instabilities in laser-driven implosions

    International Nuclear Information System (INIS)

    Lindl, J.D.; Mead, W.C.

    1975-01-01

    LASNEX calculations with a modified electron conductivity show the existence of a firepolishing stabilization effect. By modifying the thermal conductivity so that K α T/sup n//rho/sup m/, one is able to construct a situation in which the electrons deposit their energy in a thin layer at the ablation surface and closely match the zero order solutions assumed earlier. The firepolishing effect appears to require that a significant fraction of the total pressure be due to the ablation process itself rather than the thermal pressure in the corona gas. It also requires KL approximately 1 where L is the scale height for decay of thermal perturbations generated at the ablation surface. For classical electron conductivity, because the thermal flux depends linearly on the grams/cm 2 necessary to stop the electrons, (1/rho) nabla rho approximately (1/T) nabla T near the ablation surface so that the pressure is nearly constant across the ablation surface. Hence there is no ablation pressure as such and no firepolishing effect for electron-driven implosions

  11. Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators

    Science.gov (United States)

    Chen, Yih-Kanq; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  12. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal

  13. Tissue lesion created by HIFU in continuous scanning mode

    Science.gov (United States)

    Fan, Tingbo; Liu, Zhenbo; Zhang, Dong

    2012-09-01

    The lesion formation was numerically and experimentally investigated by the continuous scanning mode. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetov (KZK) equation and bio-heat equation. Measurements were performed on porcine liver tissues using a 1.01 MHz single-element focused transducer at various acoustic powers, confirmed the predicted results. Controlling of the peak temperature and lesion by the scanning speed may be exploited for improvement of efficiency in HIFU therapy.

  14. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs

    Science.gov (United States)

    Gélat, Pierre; ter Haar, Gail; Saffari, Nader

    2011-09-01

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  15. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs

    Energy Technology Data Exchange (ETDEWEB)

    Gelat, Pierre [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Ter Haar, Gail [Therapeutic Ultrasound Group, Physics Department, Institute of Cancer Research, Sutton SM2 5NG (United Kingdom); Saffari, Nader, E-mail: Pierre.Gelat@npl.co.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2011-09-07

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  16. Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting

    Science.gov (United States)

    Ali, Muddassir; Henda, Redhouane

    2017-12-01

    Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.

  17. Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang Lifeng; Ye Wenhua; Li Yingjun

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)

  18. TU-EF-210-03: Real-Time Ablation Monitoring and Lesion Quantification Using Harmonic Motion Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Konofagou, E. [Columbia University (United States)

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  19. TU-EF-210-03: Real-Time Ablation Monitoring and Lesion Quantification Using Harmonic Motion Imaging

    International Nuclear Information System (INIS)

    Konofagou, E.

    2015-01-01

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare

  20. Prediction of HIFU Propagation in a Dispersive Medium via Khokhlov–Zabolotskaya–Kuznetsov Model Combined with a Fractional Order Derivative

    OpenAIRE

    Shilei Liu; Yanye Yang; Chenghai Li; Xiasheng Guo; Juan Tu; Dong Zhang

    2018-01-01

    High intensity focused ultrasound (HIFU) has been proven to be promising in non-invasive therapies, in which precise prediction of the focused ultrasound field is crucial for its accurate and safe application. Although the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation has been widely used in the calculation of the nonlinear acoustic field of HIFU, some deviations still exist when it comes to dispersive medium. This problem also exists as an obstacle to the Westervelt model and the Spherical ...

  1. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  2. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  3. Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments

    Science.gov (United States)

    Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  4. Prediction of HIFU Propagation in a Dispersive Medium via Khokhlov–Zabolotskaya–Kuznetsov Model Combined with a Fractional Order Derivative

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2018-04-01

    Full Text Available High intensity focused ultrasound (HIFU has been proven to be promising in non-invasive therapies, in which precise prediction of the focused ultrasound field is crucial for its accurate and safe application. Although the Khokhlov–Zabolotskaya–Kuznetsov (KZK equation has been widely used in the calculation of the nonlinear acoustic field of HIFU, some deviations still exist when it comes to dispersive medium. This problem also exists as an obstacle to the Westervelt model and the Spherical Beam Equation. Considering that the KZK equation is the most prevalent model in HIFU applications due to its accurate and simple simulation algorithms, there is an urgent need to improve its performance in dispersive medium. In this work, a modified KZK (mKZK equation derived from a fractional order derivative is proposed to calculate the nonlinear acoustic field in a dispersive medium. By correcting the power index in the attenuation term, this model is capable of providing improved prediction accuracy, especially in the axial position of the focal area. Simulation results using the obtained model were further compared with the experimental results from a gel phantom. Good agreements were found, indicating the applicability of the proposed model. The findings of this work will be helpful in making more accurate treatment plans for HIFU therapies, as well as facilitating the application of ultrasound in acoustic hyperthermia therapy.

  5. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    International Nuclear Information System (INIS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-01-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate ( 2 , since T 2 increases linearly in fat during heating. T 2 -mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T 2 . Calibration of T 2 -based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T 2 and temperature with a thermocouple. A positive T 2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T 2 -mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  6. Pulsed Tm:YAG laser ablation of knee joint tissues

    Science.gov (United States)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  7. Theoretical prediction of thermal conductivity for thermal protection systems

    International Nuclear Information System (INIS)

    Gori, F.; Corasaniti, S.; Worek, W.M.; Minkowycz, W.J.

    2012-01-01

    The present work is aimed to evaluate the effective thermal conductivity of an ablative composite material in the state of virgin material and in three paths of degradation. The composite material is undergoing ablation with formation of void pores or char and void pores. The one dimensional effective thermal conductivity is evaluated theoretically by the solution of heat conduction under two assumptions, i.e. parallel isotherms and parallel heat fluxes. The paper presents the theoretical model applied to an elementary cubic cell of the composite material which is made of two crossed fibres and a matrix. A numerical simulation is carried out to compare the numerical results with the theoretical ones for different values of the filler volume fraction. - Highlights: ► Theoretical models of the thermal conductivity of an ablative composite. ► Composite material is made of two crossed fibres and a matrix. ► Three mechanisms of degradation are investigated. ► One dimensional thermal conductivity is evaluated by the heat conduction equation. ► Numerical simulations to be compared with the theoretical models.

  8. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh–Taylor Instability

    International Nuclear Information System (INIS)

    Li-Feng, Wang; Wen-Hua, Ye; Ying-Jun, Li

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh–Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T) = κ SH [1 + f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse [Phys. Rev. Lett. 98 (2007) 245001]. (physics of gases, plasmas, and electric discharges)

  9. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  10. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    Science.gov (United States)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  11. Percutaneous treatment of bone tumors by radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Ruiz Santiago, Fernando; Mar Castellano Garcia, Maria del; Guzman Alvarez, Luis; Martinez Montes, Jose Luis; Ruiz Garcia, Manuel; Tristan Fernandez, Juan MIguel

    2011-01-01

    We present our experience of the treatment of bone tumors with radiofrequency thermal ablation (RFTA). Over the past 4 years, we have treated 26 cases (22 benign and 4 malignant) using CT-guided RFTA. RFTA was the sole treatment in 19 cases and was combined with percutaneous cementation during the same session in the remaining seven cases. Our approach to the tumors was simplified, using a single point of entrance for both RFTA and percutaneous osteoplasty. In the benign cases, clinical success was defined as resolution of pain within 1 month of the procedure and no recurrence during the follow-up period. It was achieved in 19 out of the 21 patients in which curative treatment was attempted. The two non-resolved cases were a patient with osteoid osteoma who developed a symptomatic bone infarct after a symptom-free period of 2 months and another with femoral diaphysis osteoblastoma who suffered a pathological fracture after 8 months without symptoms. The procedure was considered clinically successful in the five cases (4 malign and 1 benign) in which palliative treatment was attempted, because there was a mean (±SD) reduction in visual analogue scale (VAS) pain score from 9.0 ± 0.4 before the procedure to <4 during the follow-up period.

  12. Percutaneous treatment of bone tumors by radiofrequency thermal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Santiago, Fernando, E-mail: ferusan@ono.com [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Mar Castellano Garcia, Maria del; Guzman Alvarez, Luis [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Martinez Montes, Jose Luis [Department of Traumatology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Ruiz Garcia, Manuel; Tristan Fernandez, Juan MIguel [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain)

    2011-01-15

    We present our experience of the treatment of bone tumors with radiofrequency thermal ablation (RFTA). Over the past 4 years, we have treated 26 cases (22 benign and 4 malignant) using CT-guided RFTA. RFTA was the sole treatment in 19 cases and was combined with percutaneous cementation during the same session in the remaining seven cases. Our approach to the tumors was simplified, using a single point of entrance for both RFTA and percutaneous osteoplasty. In the benign cases, clinical success was defined as resolution of pain within 1 month of the procedure and no recurrence during the follow-up period. It was achieved in 19 out of the 21 patients in which curative treatment was attempted. The two non-resolved cases were a patient with osteoid osteoma who developed a symptomatic bone infarct after a symptom-free period of 2 months and another with femoral diaphysis osteoblastoma who suffered a pathological fracture after 8 months without symptoms. The procedure was considered clinically successful in the five cases (4 malign and 1 benign) in which palliative treatment was attempted, because there was a mean ({+-}SD) reduction in visual analogue scale (VAS) pain score from 9.0 {+-} 0.4 before the procedure to <4 during the follow-up period.

  13. Image-guided radiofrequency ablation of renal cell carcinoma

    International Nuclear Information System (INIS)

    Boss, Andreas; Clasen, Stephan; Pereira, Philippe L.; Kuczyk, Markus; Schick, Fritz

    2007-01-01

    The incidence of renal cell carcinoma is rising with the increased number of incidental detection of small tumours. During the past few years, percutaneous imaging-guided radiofrequency ablation has evolved as a minimally invasive treatment of small unresectable renal tumours offering reduced patient morbidity and overall health care costs. In radiofrequency ablation, thermal energy is deposited into a targeted tumour by means of a radiofrequency applicator. In recent studies, radiofrequency ablation was shown to be an effective and safe modality for local destruction of renal cell carcinoma. Radiofrequency applicator navigation can be performed via ultrasound, computed tomography or magnetic resonance guidance; however, ultrasound seems less favourable because of the absence of monitoring capabilities during ablation. On-line monitoring of treatment outcome can only be performed with magnetic resonance imaging giving the possibility of eventual applicator repositioning to ablate visible residual tumour tissue. Long-term follow-up is crucial to assess completeness of tumour ablation. New developments in ablation technology and radiological equipment will further increase the indication field for radiofrequency ablation of renal cell carcinoma. Altogether, radiofrequency ablation seems to be a promising new modality for the minimally invasive treatment of renal cell carcinoma, which was demonstrated to exhibit high short-term effectiveness. (orig.)

  14. Decomposition of dioxin analogues and ablation study for carbon nanotube

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko

    2002-01-01

    Two application studies associated with the free electron laser are presented separately, which are the titles of 'Decomposition of Dioxin Analogues' and 'Ablation Study for Carbon Nanotube'. The decomposition of dioxin analogues by infrared (IR) laser irradiation includes the thermal destruction and multiple-photon dissociation. It is important for us to choose the highly absorbable laser wavelength for the decomposition. The thermal decomposition takes place by the irradiation of the low IR laser power. Considering the model of thermal decomposition, it is proposed that adjacent water molecules assist the decomposition of dioxin analogues in addition to the thermal decomposition by the direct laser absorption. The laser ablation study is performed for the aim of a carbon nanotube synthesis. The vapor by the ablation is weakly ionized in the power of several-hundred megawatts. The plasma internal energy is kept over an 8.5 times longer than the vacuum. The cluster was produced from the weakly ionized gas in the enclosed gas, which is composed of the rough particles in the low power laser more than the high power which is composed of the fine particles. (J.P.N.)

  15. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    Science.gov (United States)

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  16. Hard tissue ablation with a spray-assisted mid-IR laser

    International Nuclear Information System (INIS)

    Kang, H W; Rizoiu, I; Welch, A J

    2007-01-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  17. Hard tissue ablation with a spray-assisted mid-IR laser

    Science.gov (United States)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  18. Noninvasive MR-Guided HIFU Therapy of TSC-Associated Renal Angiomyolipomas

    Science.gov (United States)

    2014-09-01

    sufficient for this application because coil array configuration is limited by small mouse anatomy. In our third year’s effort, the research plan was...therapy and a new Ingenia 1.5 Tesla MRI scanner from Philips HealthCare. Using the new instrumentation, we established a large animal MR-guided HIFU...anatomy limitation in mice MRI coil development, mouse cancer model was not used eventually. In the third year, we developed a large animal MR

  19. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  20. High speed observation of HIFU-induced cavitation cloud near curved rigid boundaries

    International Nuclear Information System (INIS)

    Zuo, Z G; Wang, F B; Liu, S H; Wu, S J

    2015-01-01

    This paper focuses on the experimental study of the influence of surface curvature to the behaviour of HIFU-induced cavitation cloud. A Q-switched ruby pulse laser is used to induce cavitation nuclei in deionized water. A piezoelectric ultrasonic transducer (1.7 MHz) provides a focused ultrasound field to inspire the nucleus to cavitation cloud. A PZT probe type hydrophone is applied for measuring the HIFU sound field. It was observed that the motion of cavitation cloud located near the boundary is significantly influenced by the distance between cloud and boundary, as well as the curvature of the boundary. The curvature was defined by parameters λ and ξ. Convex boundary, concave boundary, and flat boundary correspond to ξ <1, ξ >1 and ξ = 1, respectively. Different behaviours of the cloud, including the migration of the cloud, the characteristics of oscillation, etc., were observed under different boundary curvatures by high-speed photography. Sonoluminescence of the acoustic cavitation bubble clouds were also studied to illustrate the characteristics of acoustic streaming

  1. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    Science.gov (United States)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  2. Combination of high-intensity focused ultrasound irradiation and hydroxyapatite nanoparticle injection to injure normal goat liver tissue in vivo without costal bone incision.

    Science.gov (United States)

    Liu, L; Xiao, Z; Xiao, Y; Wang, Z; Li, F; Li, M; Peng, X

    2014-10-20

    The aims of this study were to evaluate the in vivo safety of intravenous nano-hydroxyapatite (nano-HA), to explore how nano-HA might influence the effects of high-intensity focused ultrasound (HIFU) on normal liver tissue, and to investigate whether intravenous nano-HA could enhance HIFU for hepatocellular carcinoma ablation in a goat model. The present study, for the first time, indicated that the delivery of abundant nano-HA into the body over short periods of time could be assembled by the hepatic reticuloendothelial system, subsequently leading to a rapid rise of ultrasound-induced overheating, and ultimately resulting in enlargement of the coagulation necrotic area for ablated hepatocellular carcinoma in goats both in vivo and ex vivo. On the other hand, therapeutic doses of nano-HA were much lower than the lethal dose, and consequently presented transient and mild abnormalities of hepatic enzymes and renal function during the first 24 h after nano-HA injection. These results suggested that the combined application of nano-HA and HIFU is potentially a more effective alternative option compared to surgery for hepatocellular carcinoma local ablation in a safe and feasible manner.

  3. Neutral and plasma shielding model for pellet ablation

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.

    1987-10-01

    The neutral gas shielding model for ablation of frozen hydrogenic pellets is extended to include the effects of an initial Maxwelliam distribution of incident electron energies; a cold plasma shield outside the neutral shield and extended along the magnetic field; energetic neutral beam ions and alpha particles; and self-limiting electron ablation in the collisionless plasma limit. Including the full electron distribution increases ablation, but adding the cold ionized shield reduces ablation; the net effect is a modest reduction in pellet penetration compared with the monoenergetic electron neutral shielding model with no plasma shield. Unlike electrons, fast ions can enter the neutral shield directly without passing through the cold ionized shield because their gyro-orbits are typically larger than the diameter of the cold plasma tube. Fast alpha particles should not enhance the ablation rate unless their population exceeds that expected from local classical thermalization. Fast beam ions, however, may enhance ablation in the plasma periphery if their population is high enough. Self-limiting ablation in the collisionless limit leads to a temporary distortion of the original plasma electron Maxwellian distribution function through preferential depopulation of the higher-energy electrons. 23 refs., 9 figs

  4. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.

    2010-01-01

    The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model κ(T)=κ SH [1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where κ SH is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

  5. Landau-Darrieus instability in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A.R.; Portugues, R.F.

    2003-01-01

    An analytical model that shows the conditions for the existence of the Landau-Darrieus instability of an ablation front is presented. The model seems to agree with recently claimed simulation results [L. Masse et al., Proceedings of the 1st International Conference on Inertial Fusion Sciences and Applications (Elsevier, Paris, 2000), p. 220]. The model shows that the ablation front can be unstable in absence of gravity when the thermal flux is inhibited within the supercritical region of the corona

  6. [Application of TB type thermal balloon endometrial ablation for the treatment of abnormal uterine bleeding].

    Science.gov (United States)

    Wang, W; Zhai, Y; Zhang, Z H; Li, Y; Zhang, Z Y

    2016-11-08

    Objective: To investigate the clinical efficacy, safety and promotion value of TB type thermal balloon endometrial ablation in the treatment of abnormal uterine bleeding. Methods: Fourty three patients who had received TB type endometrial ablation system for treatment of abnormal uterine bleeding from January, 2015 to January, 2016 in theDepartment of gynecology, Beijing Chaoyang Hospital were enrolled in this study. The intra-operative and post-operative complications and improvement of abnormal uterine bleeding and dysmenorrhea were observed. Results: There were nointra-operative complication occurred, such as uterine perforation, massive hemorrhage or surrounding organ damage. At 6 months after operation, 32 patients developed amenorrhea, 6 developed menstrual spotting, 3 developed menstruation with a small volume and 1 had a normal menstruation. No menstruation with an increased volume occurred. The occurrence of amenorrhea was 76.19% and the response rate was 97.62%.At 6 months after operation, 1 case had no response, 2 cases had partial response and 11 cases had complete response among the 14 cases of pre-operative dysmenorrhea; only 3 cases still had anemia among the 23 cases of pre-operative anemia. Compared with before treatment, patients with dysmenorrhea and anemia both significantly reduced with a statistically significant difference( P abnormal uterine bleeding, which could have clinical promotion practice.

  7. Standard Test Method for Oxyacetylene Ablation Testing of Thermal Insulation Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the screening of ablative materials to determine the relative thermal insulation effectiveness when tested as a flat panel in an environment of a steady flow of hot gas provided by an oxyacetylene burner. 1.2 This test method should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard of materials, products, or assemblies under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limi...

  8. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2 for tissue ablation

    Directory of Open Access Journals (Sweden)

    Nina Klein

    2017-04-01

    Full Text Available Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2. Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

  9. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  10. Effect of high-intensity focused ultrasound (HIFU combined with radiotherapy on tumor malignancy in patients with advanced pancreatic cancer and evaluation of side effects

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-02-01

    Full Text Available Objective: To study the effect of high-intensity focused ultrasound (HIFU combined with radiotherapy on tumor malignancy in patients with advanced pancreatic cancer and the corresponding side effects. Methods: A total of 84 patients with advanced pancreatic cancer treated in our hospital between May 2013 and March 2016 were selected and randomly divided into HIFU group and IGRT group, HIFU group accepted high-intensity focused ultrasound combined with radiotherapy and IGRT group received radiotherapy alone. 4 weeks after treatment, the levels of tumor markers, liver and kidney function indexes, perineural invasionrelated molecules and cytokines in serum as well as the levels of immune cells in peripheral blood were determined. Results: 4 weeks after treatment, serum CA199, CA242, OPN, NGAL, RBP4, NGF, TrkA, p75, BDNF and TrkB levels of HIFU group were significantly lower than those of IGRT group, serum IL-2, TNF-毩, IFN-γ and IL-13 levels as well as peripheral blood NKT cell and CD4+T cell levels were significantly higher than those of IGRT group, and serum ALT, AST, Cr and BUN levels were not significantly different from those of IGRT group. Conclusion: HIFU combined with radiotherapy treatment of advanced pancreatic cancer can more effectively kill cancer cells, inhibit pancreatic cancer cell invasion to the peripheral nerve and enhance the antitumor immune response mediated by NKT cells and CD4+T cells.

  11. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    Science.gov (United States)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  12. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  13. Thermal and Ablative Properties of Ipns and Composites of High Ortho Resole Resin and Difurfurylidene Acetone

    Directory of Open Access Journals (Sweden)

    Tariq S. NAJIM

    2008-12-01

    Full Text Available High ortho resole resin was prepared by condensation of phenol with excess of formaldehyde in the presence of magnesium oxide as catalyst. Reaction of furfuraldehyde with acetone in basic medium led to difurfurylidene acetone (DFA. Their interpenetrating polymer network (IPNS were obtained by the reaction of predetermined quantities of difurfurylidene acetone and high ortho resole using p-toluene sulphonic acid (PTSA as curing agent. The thermal behavior of the resins was studied using thermogravimetry (TG under ambient and nitrogen atmospheres over a temperature range of (25-1000 Cº. It was observed that the IPN of 20% DFA – 80% resole has higher thermal stability than that of resole alone and the decomposition temperature was higher by 80 Cº. This behavior was attributed to highly cross linked structure and thermally stable backbone of ploy difurfurylidene acetone due to formation of ladder structure.Impregnation of chopped fiber glass type (E with the polymeric solutions was used to prepare their composites, and the ablative properties were investigated according to ASTM E-285 –80. It was observed that the IPN of (DFA- resol perform better than the resole composite alone.

  14. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    Science.gov (United States)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    interest. The entry environment is not always guaranteed with a direct entry, and improving the entry systems robustness to a variety of environmental conditions could aid in reaching more varied landing sites. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: 1) Mass to Surface, 2) Surface Access, 3) Precision Landing, 4) Surface Hazard Detection and Avoidance, 5) Safety and Mission Assurance, and 6) Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems is manufactured using techniques that require filling of each (3/8 cell) by hand and within a limited amount of time once the ablative compound is mixed, all of the cells have to be filled and the entire heat-shield has to be cured. The tile systems such as PICA pose a different challenge as the mechanical strength characteristic and the manufacturing limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS> A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials.

  15. Feasibility of MRI-guided high intensity focused ultrasound treatment for adenomyosis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Tien-Ying [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Zhang, Lian; Chen, Wenzhi [Clinical Center of Tumor Therapy of 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400010 (China); Liu, Yinjiang; He, Min; Huang, Xiu [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Orsi, Franco [Interventional Radiology Unit, European Institute of Oncology, 435 Via Ripamonti, 20141 Milan (Italy); Wang, Zhibiao, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Clinical Center of Tumor Therapy of 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400010 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We tested the feasibility of MRIgHIFU ablation for adenomyosis. Black-Right-Pointing-Pointer Patients were treated with MRIgHIFU under conscious sedation. Black-Right-Pointing-Pointer Patient symptoms were assessed using SSS and UFS-QOL. Black-Right-Pointing-Pointer The mean SSS and UFS-QOL showed significant improvements at follow up. Black-Right-Pointing-Pointer No serious complications were observed 62.5 {+-} 21.6. -- Abstract: Purpose: To test the feasibility of MRI-guided high intensity focused ultrasound ablation for adenomyosis. Materials and methods: Patients with symptomatic adenomyosis were treated with MRI-guided high intensity focused ultrasound (MRIgHIFU). Under conscious sedation, MRIgHIFU was performed by a clinical MRI-compatible focused ultrasound tumour therapeutic system (JM15100, Haifu{sup Registered-Sign} Technology Co. Ltd., Chongqing, China) which is combined with a 1.5 T MRI system (Magnetom Symphony, Siemens Healthcare, Erlangen, Germany). MRI was used to calculate the volume of the uterus and lesion. Non-perfused volume of the targeted lesions was evaluated immediately after MRIgHIFU. Patient symptoms were assessed using symptom severity score (SSS) and uterine fibroids symptoms and quality of life questionnaire (UFS-QOL). Results: Ten patients with mean age of 40.3 {+-} 4 years with an average lesion size of 56.9 {+-} 12.7 mm in diameter were treated. Non-perfused volume and the percentage of non-perfused volume obtained from contrast-enhanced T1 Magnetic resonance images immediately post-treatment were 66.6 {+-} 49.4 cm{sup 3} and 62.5 {+-} 21.6%, respectively. The mean SSS and UFS-QOL showed significant improvements of 25%, 16% and 25% at 3, 6 and 12 months follow up, respectively, to pre-treatment scores. No serious complications were observed. Conclusion: Based on the results from this study, MRIgHIFU treatment appears to be a safe and feasible modality to ablate adenomyosis lesion and

  16. Efficacy and safety of Hybrid-APC for the ablation of Barrett's esophagus.

    Science.gov (United States)

    Manner, Hendrik; May, Andrea; Kouti, Ioanna; Pech, Oliver; Vieth, Michael; Ell, Christian

    2016-04-01

    After thermal ablation of Barrett's esophagus (BE), stricture formation is reported in 5 to over 10% of patients. The question arises whether submucosal fluid injection prior to ablation may lower the risk of stricture formation. The aim of the present study was to evaluate the efficacy and safety of the new technique of Hybrid-APC which combines submucosal injection with APC. Patients who had a residual BE segment of at least 1 cm after endoscopic resection of early Barrett's neoplasia underwent thermal ablation of BE by Hybrid-APC. Prior to thermal ablation, submucosal injection of sodium chloride 0.9% was carried out using a flexible water-jet probe (Erbejet 2; Erbe Elektromedizin, Tuebingen, Germany). Check-up upper GI endoscopy was carried out 3 months after macroscopically complete ablation including biopsies from the neo-Z-line and the former BE segment, and recording of stricture formation. From May 2011 to November 2012, a total of 60 patients (pt) were included in the study [55 pt male (92%); mean age 62 ± 9 years, range 42-79]. Ten patients were excluded from the study. In the remaining 50 pt, Hybrid-APC ablation and check-up endoscopy at 3 months were carried out. Forty-eight out of 50 pt (96%; ITT: 49/60, 82%) achieved macroscopically complete remission after a median of 3.5 APC sessions [SD 2.4; range 1-10]. Freedom from BE was histopathologically observed in 39/50 patients (78%). There was one treatment-related stricture (2%). Minor adverse events of Hybrid-APC were observed in 11 patients (22%). According to this pilot series, Hybrid-APC was effective and safe for BE ablation in a tertiary referral center. The rate of stricture formation was only 2%. Further studies are required to confirm the present results. DRKS00003369.

  17. Thermal modelling using discrete vasculature for thermal therapy: a review

    Science.gov (United States)

    Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.

    2013-01-01

    Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700

  18. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    International Nuclear Information System (INIS)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W.; Laumonier, Herve; Trillaud, Herve; Seror, Olivier; Sesay, Musa-Bahazid; Grenier, Nicolas

    2010-01-01

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  19. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W. [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Laumonier, Herve; Trillaud, Herve [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Saint-Andre, CHU Bordeaux, Bordeaux (France); Seror, Olivier [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Jean Verdier, Bondy (France); Sesay, Musa-Bahazid [Service d' Anesthesie Reanimation III, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France); Grenier, Nicolas [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service d' Imagerie Diagnostique et Therapeutique de l' Adulte, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France)

    2010-01-15

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  20. A cooled water-irrigated intraesophageal balloon to prevent thermal injury during cardiac ablation: experimental study based on an agar phantom

    International Nuclear Information System (INIS)

    Lequerica, Juan L; Berjano, Enrique J; Herrero, Maria; Melecio, Lemuel; Hornero, Fernando

    2008-01-01

    A great deal of current research is directed to finding a way to minimize thermal injury in the esophagus during radiofrequency catheter ablation of the atrium. A recent clinical study employing a cooling intraesophageal balloon reported a reduction of the temperature in the esophageal lumen. However, it could not be determined whether the deeper muscular layer of the esophagus was cooled enough to prevent injury. We built a model based on an agar phantom in order to experimentally study the thermal behavior of this balloon by measuring the temperature not only on the balloon, but also at a hypothetical point between the esophageal lumen and myocardium (2 mm distant). Controlled temperature (55 0 C) ablations were conducted for 120 s. The results showed that (1) the cooling balloon provides a reduction in the final temperature reached, both on the balloon surface and at a distance of 2 mm; (2) coolant temperature has a significant effect on the temperature measured at 2 mm from the esophageal lumen (it has a less effect on the temperature measured on the balloon surface) and (3) the pre-cooling period has a significant effect on the temperature measured on the balloon surface (the effect on the temperature measured 2 mm away is small). The results were in good agreement with those obtained in a previous clinical study. The study suggests that the cooling balloon gives thermal protection to the esophagus when a minimum pre-cooling period of 2 min is programmed at a coolant temperature of 5 deg. C or less. (note)

  1. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    International Nuclear Information System (INIS)

    Sakawa, Youichi; Watanabe, Daisuke; Shibahara, Takahiro; Sugiyama, Kazuyoshi; Tanabe, Tetsuo

    2007-01-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H 2 and C 2 H 2 , with minor contribution of other hydrocarbons, while production of H 2 O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons

  2. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, Youichi [Institute of Laser Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan)]. E-mail: sakawa-y@ile.osaka-u.ac.jp; Watanabe, Daisuke [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Shibahara, Takahiro [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Sugiyama, Kazuyoshi [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan); Tanabe, Tetsuo [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan)

    2007-08-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H{sub 2} and C{sub 2}H{sub 2}, with minor contribution of other hydrocarbons, while production of H{sub 2}O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons.

  3. A History of the Sonocare CST-100: The First FDA-approved HIFU Device

    Science.gov (United States)

    Muratore, Robert

    2006-05-01

    The Sonocare CST-100 Therapeutic Ultrasound System, designed for the treatment of glaucoma, was developed in the 1980s and became the first high intensity focused ultrasound (HIFU) device to receive Food and Drug Administration approval. The system arose from studies done by F.L. Lizzi, Eng.Sc.D., of Riverside Research Institute and D.J. Coleman, M.D., of Cornell Medical Center/New York Hospital on the safety of ultrasound diagnosis of the eye. As safety limits were probed, therapeutic regimes were discovered. Optimization of operational parameters, clinical experience, and engineering design came together through a spin-off company, Sonocare, Inc., formed to produce and market the ophthalmic device. Various precedents were set during the approval process, including the acceptance by the FDA of radiation momentum imparted to an absorber as a measure of acoustic power. Many devices were sold, but the laser industry, grandfathered into the therapeutic field, eventually out-marketed Sonocare. The CST-100 remains as a model of elegant industrial design, and existing units are used daily in HIFU laboratory experiments.

  4. Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE

    Directory of Open Access Journals (Sweden)

    Kos Bor

    2015-09-01

    Full Text Available Background. Irreversible electroporation (IRE is a tissue ablation method, which relies on the phenomenon of electroporation. When cells are exposed to a sufficiently electric field, the plasma membrane is disrupted and cells undergo an apoptotic or necrotic cell death. Although heating effects are known IRE is considered as non-thermal ablation technique and is currently applied to treat tumors in locations where thermal ablation techniques are contraindicated.

  5. Percutaneous laser ablation of benign and malignant thyroid nodules.

    Science.gov (United States)

    Papini, Enrico; Bizzarri, Giancarlo; Pacella, Claudio M

    2008-10-01

    Percutaneous image-guided procedures, largely based on thermal ablation, are at present under investigation for achieving a nonsurgical targeted cytoreduction in benign and malignant thyroid lesions. In several uncontrolled clinical trials and in two randomized clinical trials, laser ablation has demonstrated a good efficacy and safety for the shrinkage of benign cold thyroid nodules. In hyperfunctioning nodules, laser ablation induced a nearly 50% volume reduction with a variable frequency of normalization of thyroid-stimulating hormone levels. Laser ablation has been tested for the palliative treatment of poorly differentiated thyroid carcinomas, local recurrences or distant metastases. Laser ablation therapy is indicated for the shrinkage of benign cold nodules in patients with local pressure symptoms who are at high surgical risk. The treatment should be performed only by well trained operators and after a careful cytological evaluation. Laser ablation does not seem to be consistently effective in the long-term control of hyperfunctioning thyroid nodules and is not an alternative treatment to 131I therapy. Laser ablation may be considered for the cytoreduction of tumor tissue prior to external radiation therapy or chemotherapy of local or distant recurrences of thyroid malignancy that are not amenable to surgical or radioiodine treatment.

  6. Radiofrequency ablation of liver tumors (II): clinical application and outcomes.

    Science.gov (United States)

    Vanagas, Tomas; Gulbinas, Antanas; Pundzius, Juozas; Barauskas, Giedrius

    2010-01-01

    Radiofrequency ablation is one of the alternatives in the management of liver tumors, especially in patients who are not candidates for surgery. The aim of this article is to review applicability of radiofrequency ablation achieving complete tumor destruction, utility of imaging techniques for patients' follow-up, indications for local ablative procedures, procedure-associated morbidity and mortality, and long-term results in patients with different tumors. The success of local thermal ablation consists in creating adequate volumes of tissue destruction with adequate "clear margin," depending on improved delivery of radiofrequency energy and modulated tissue biophysiology. Different volumes of coagulation necrosis are achieved applying different types of electrodes, pulsing energy sources, utilizing sophisticated ablation schemes. Some additional methods are used to increase the overall deposition of energy through alterations in tissue electrical conductivity, to improve heat retention within the tissue, and to modulate tolerance of tumor tissue to hyperthermia. Contrast-enhanced computed tomography, magnetic resonance imaging, ultrasound or positron emission tomography are applied to control the effectiveness of radiofrequency ablation. The long-term results of radiofrequency ablation are controversial.

  7. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates

    OpenAIRE

    Wong, KP; Lang, HHB

    2013-01-01

    Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA) has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid...

  8. Experimental and clinical studies with radiofrequency-induced thermal endometrial ablation for functional menorrhagia

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, J.H.; Lewis, B.V.; Prior, M.V.; Roberts, T. (Watford General Hospital, Herts (England))

    1990-11-01

    A method of ablating the endometrium has been introduced into clinical practice that uses radiofrequency electromagnetic energy to heat the endometrium, using a probe inserted through the cervix. Preliminary studies suggest that over 80% of patients treated will develop either amenorrhea or a significant reduction in flow. The advantages of radiofrequency endometrial ablation over laser ablation or resection are the avoidance of intravascular fluid absorption, simplicity (no special operative hysteroscopic skills are required), speed of operation, and reduced cost compared with the Nd:YAG laser. In this paper, we describe the experimental studies performed during development of this new technique.

  9. Effects of Non-Equilibrium Chemistry and Darcy-Forchheimer Flow of Pyrolysis Gas for a Charring Ablator

    Science.gov (United States)

    Chen, Yih-Kanq; Milos, Frank S.

    2011-01-01

    The Fully Implicit Ablation and Thermal Response code, FIAT, simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid. This work describes new modeling capabilities that are added to a special version of FIAT. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite-rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Parametric studies are performed using this enhanced version of FIAT. Two groups of analyses of Phenolic Impregnated Carbon Ablator (PICA) are presented. In the first group, an Orion flight environment for a proposed Lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on PICA material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results are presented, discussed, and compared with those predicted by the baseline PICA/FIAT ablation and thermal response model developed by the Orion Thermal Protection System Advanced Development Project.

  10. Imaging of prostate cancer local recurrences: why and how?

    International Nuclear Information System (INIS)

    Rouviere, Olivier; Lyonnet, Denis; Vitry, Thierry

    2010-01-01

    Because prostate cancer local recurrences can be efficiently treated by salvage therapies, it becomes critical to detect them early. The first alert is the rise of the prostate specific antigen (PSA) level after the post-treatment nadir, which can correspond to a distant recurrence, a local recurrence or both. This so-called biochemical failure (BF) is defined as PSA level >0.2 ng/ml after radical prostatectomy (RP) and PSA level > nadir+2 ng/ml after radiotherapy. There is no consensual definition of BF after cryotherapy, high-intensity focused ultrasound (HIFU) ablation or brachytherapy. Local recurrences after RP are treated by radiotherapy, those after radiotherapy by RP, cryotherapy, brachytherapy or HIFU ablation. Recurrences after cryotherapy or HIFU ablation can be treated by a second session or radiotherapy. Recurrences after brachytherapy are difficult to treat. In patients with BF, MRI can detect local recurrences, whatever the initial treatment was. Dynamic contrast-enhanced MRI seems particularly accurate. The role of spectroscopy remains controversial. Ultrasound-based techniques are less accurate, but this may change with the advent of ultrasonic contrast media. These recent advances in imaging may improve the outcome of salvage therapies (by improving patient selection and treatment targeting) and should open the way to focal salvage treatments in the near future. (orig.)

  11. Imaging of prostate cancer local recurrences: why and how?

    Energy Technology Data Exchange (ETDEWEB)

    Rouviere, Olivier; Lyonnet, Denis [Universite de Lyon, Lyon (France); Universite Lyon 1, Faculte de Medecine Lyon Nord (France); Service d' Imagerie Urinaire et Vasculaire, Hospices Civils de Lyon, Hopital Edouard Herriot, Lyon (France); INSERM U 556, Lyon (France); Vitry, Thierry [Service d' Imagerie Urinaire et Vasculaire, Hospices Civils de Lyon, Hopital Edouard Herriot, Lyon (France)

    2010-05-15

    Because prostate cancer local recurrences can be efficiently treated by salvage therapies, it becomes critical to detect them early. The first alert is the rise of the prostate specific antigen (PSA) level after the post-treatment nadir, which can correspond to a distant recurrence, a local recurrence or both. This so-called biochemical failure (BF) is defined as PSA level >0.2 ng/ml after radical prostatectomy (RP) and PSA level > nadir+2 ng/ml after radiotherapy. There is no consensual definition of BF after cryotherapy, high-intensity focused ultrasound (HIFU) ablation or brachytherapy. Local recurrences after RP are treated by radiotherapy, those after radiotherapy by RP, cryotherapy, brachytherapy or HIFU ablation. Recurrences after cryotherapy or HIFU ablation can be treated by a second session or radiotherapy. Recurrences after brachytherapy are difficult to treat. In patients with BF, MRI can detect local recurrences, whatever the initial treatment was. Dynamic contrast-enhanced MRI seems particularly accurate. The role of spectroscopy remains controversial. Ultrasound-based techniques are less accurate, but this may change with the advent of ultrasonic contrast media. These recent advances in imaging may improve the outcome of salvage therapies (by improving patient selection and treatment targeting) and should open the way to focal salvage treatments in the near future. (orig.)

  12. Pulsed Dose Radiofrequency Before Ablation of Medial Branch of the Lumbar Dorsal Ramus for Zygapophyseal Joint Pain Reduces Post-procedural Pain.

    Science.gov (United States)

    Arsanious, David; Gage, Emmanuel; Koning, Jonathon; Sarhan, Mazin; Chaiban, Gassan; Almualim, Mohammed; Atallah, Joseph

    2016-01-01

    One of the potential side effects with radiofrequency ablation (RFA) includes painful cutaneous dysesthesias and increased pain due to neuritis or neurogenic inflammation. This pain may require the prescription of opioids or non-opioid analgesics to control post-procedural pain and discomfort. The goal of this study is to compare post-procedural pain scores and post-procedural oral analgesic use in patients receiving continuous thermal radiofrequency ablation versus patients receiving pulsed dose radiofrequency immediately followed by continuous thermal radiofrequency ablation for zygopophaseal joint disease. This is a prospective, double-blinded, randomized, controlled trial. Patients who met all the inclusion criteria and were not subject to any of the exclusion criteria were required to have two positive diagnostic medial branch blocks prior to undergoing randomization, intervention, and analysis. University hospital. Eligible patients were randomized in a 1:1 ratio to either receive thermal radiofrequency ablation alone (standard group) or pulsed dose radiofrequency (PDRF) immediately followed by thermal radiofrequency ablation (investigational group), all of which were performed by a single Board Certified Pain Medicine physician. Post-procedural pain levels between the two groups were assessed using the numerical pain Scale (NPS), and patients were contacted by phone on post-procedural days 1 and 2 in the morning and afternoon regarding the amount of oral analgesic medications used in the first 48 hours following the procedure. Patients who received pulsed dose radiofrequency followed by continuous radiofrequency neurotomy reported statistically significantly lower post-procedural pain scores in the first 24 hours compared to patients who received thermal radiofrequency neurotomy alone. These patients also used less oral analgesic medication in the post-procedural period. These interventions were carried out by one board accredited pain physician at one

  13. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation.

    Directory of Open Access Journals (Sweden)

    Yi-Da Liu

    Full Text Available Radiofrequency ablation (RFA has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15 were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.

  14. Pellet ablation and ablation model development

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs

  15. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  16. The relative effects of cavitation and nonlinear ultrasound propagation on HIFU lesion dynamics in a tissue phantom

    Science.gov (United States)

    Khokhlova, Vera A.; Bailey, Michael R.; Reed, Justin; Kaczkowski, Peter J.

    2004-05-01

    The relative importance of the effects of acoustic nonlinearity and cavitation in HIFU lesion production is studied experimentally and theoretically in a polyacrylamide gel. A 2-MHz transducer of 40-mm diameter and 45-mm focal length was operated at different regimes of power, and in cw or duty-cycle regimes with equal mean intensity. Elevated static pressure was applied to suppress bubbles, increase boiling temperature, and thus to isolate the effect of acoustic nonlinearity in the enhancement of lesion production. Experimental data were compared with the results of simulations performed using a KZK acoustic model combined with the bioheat equation and thermal dose formulation. Boiling and the typical tadpole-shaped lesion shifting towards the transducer were observed under standard atmospheric pressure. No boiling was detected and a symmetric thermal lesion formed in the case of overpressure. A delay in lesion inception time was registered with overpressure, which was hypothesized to be due to suppressed microbubble dynamics. The effect of acoustic nonlinearity was revealed as a substantial decrease in the lesion inception time and an increase in the lesion size for high-amplitude waves under both standard and overpressure conditions. [Work supported by ONRIFO, NASA/NSBRI, NIH Fogarty, and CRDF grants.

  17. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel

    Science.gov (United States)

    Darling, Cynthia L.; Fried, Daniel

    2007-02-01

    We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.

  18. Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method.

    Science.gov (United States)

    Diakite, Mahamadou; Odéen, Henrik; Todd, Nick; Payne, Allison; Parker, Dennis L

    2014-07-01

    To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation. The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects. The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Copyright © 2013 Wiley Periodicals, Inc.

  19. Radiofrequency ablation with epinephrine injection: in vivo study in normal pig livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Jung; Lee, Dong Hoo; Lim, Joo Won; Ko, Young Tae; Kim, Youn Wha; Choi, Bong Keun [Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2007-07-15

    We wanted to evaluate whether epinephrine injection prior to radiofrequency (RF) ablation can increase the extent of thermally mediated coagulation in vivo normal pig liver tissue. Eighteen RF ablation zones were created in six pigs using a 17-gauge internally cooled electrode under ultrasound guidance. Three RF ablation zones were created in each pig under three conditions: RF ablation alone, RF ablation after the injection of 3 mL of normal saline, and RF ablation after the injection of 3 mL of epinephrine (1:10,000 solution). After the RF ablation, we measured the short and long diameters of the white zones in the gross specimens. Three of the RF ablations were technically unsuccessful; therefore, measurement of white zone was finally done in 15 RF ablation zones. The mean short and long diameters of the white zone of the RF ablation after epinephrine injection (17.2 mm {+-} 1.8 and 20.8 mm {+-} 3.7, respectively) were larger than those of RF ablation only (10 mm {+-} 1.2 and 12.2 mm {+-} 1.1, respectively) and RF ablation after normal saline injection (12.8 mm {+-} 1.5 and 15.6 mm {+-} 2.5, respectively) ({rho} < .05). RF ablation with epinephrine injection can increase the diameter of the RF ablation zone in normal pig liver tissue.

  20. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen; Liao, Wei [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yuan, Xiao-dong, E-mail: yxd66my@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-15

    Ablation rates of fused silica were studied as a function of femtosecond laser pulse fluences (0.7–41 J/cm{sup 2}) in air and vacuum. The experiment was conducted by using a Ti:sapphire laser that emits radiation at 800 nm with a pulse width of 35 fs and a repetition rate of 10 Hz. The morphology and ablation depth of laser-induced damage crater were evaluated by using optical microscopy and scanning electron microscopy (SEM). Ablation rates were calculated from the depth of craters induced by multiple laser pulses. Results showed that two ablation regimes, i.e. non-thermal and thermal ablation co-existed in air and vacuum at low and moderate fluences. A drop of ablation rate was observed at high fluence (higher than 9.5 J/cm{sup 2}) in air. While in vacuum, the ablation rate increased continuously with the increasing of laser fluence and much higher than that in air. The drop of ablation rate observed at high fluence in air was due to the strong defocusing effects associated with the non-equilibrium ionization of air. Furthermore, the laser-induced damage threshold (LIDT), which was determined from the relationship between crater area and the logarithm of laser energy, was found to depend on the number of incident pulses on the same spot, and similar phenomenon was observed in air and vacuum.

  1. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Muddassir, E-mail: mx1_ali@laurentian.ca; Henda, Redhouane

    2017-02-28

    Highlights: • Modeling of ablation stage induced during pulsed electron beam ablation (PEBA). • Thermal model to describe heating, melting and vaporization of a graphite target. • Model results show good accordance with reported data in the literature. - Abstract: A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm{sup 2}, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  2. In-vitro ablation of fibrocartilage by XeCl excimer laser

    Science.gov (United States)

    Buchelt, Martin; Papaioannou, Thanassis; Fishbein, Michael C.; Peters, Werner; Beeder, Clain; Grundfest, Warren S.

    1991-07-01

    A 308 nm excimer laser was employed for ablation of human fibrocartilage. Experiments were conducted in vitro. The tissue response was investigated with respect to dosimetry (ablation rate versus radiant exposure) and thermal effect (thermographic analysis). Irradiation was performed via a 600 um fiber, with radiant exposures ranging between 20mj/mm2 and 80mj/mm2, at 20Hz. The ablation rates were found to range from 3um/pulse to 80um/pulse depending on the radiant exposure and/or the applied pressure on the delivery system. Thermographic analysis, during ablation, revealed maximum average temperatures of about 65 degree(s)C. Similar measurements performed, for the purpose of comparison, with a CW Nd:YAG and a CW CO2 laser showed higher values, of the order of 200 degree(s)C.

  3. Radiofrequency ablation of rabbit liver in vivo: effect of the Pringle maneuver on pathologic changes in liver surrounding the ablation zone

    International Nuclear Information System (INIS)

    Kim, Seung Kwon; Lim, Hyo K; Ryu, Jeong Ah

    2004-01-01

    ablation without the Pringle maneuver. Therefore, we suggest that RF ablation with the Pringle maneuver should be performed with great caution in order to avoid unwanted thermal injury

  4. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    Science.gov (United States)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  5. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    International Nuclear Information System (INIS)

    Wang, Z.B.; Hong, M.H.; Lu, Y.F.; Wu, D.J.; Lan, B.; Chong, T.C.

    2003-01-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences

  6. Stress assisted selective ablation of ITO thin film by picosecond laser

    Science.gov (United States)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  7. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effect of Nanoclay on Mechanical Properties and Ablation Behavior of a Nitrile-Based Heat Insulator

    Directory of Open Access Journals (Sweden)

    Fatemeh Arabgol

    2013-02-01

    Full Text Available Thermal insulation of rocket motor chamber is one of the most important functions of elastomeric ablative material. Combustion of solid rocket motor propellant produces turbulent media containing gases with a velocity more than 1000 m/s, temperature and pressure more than 3000°C and 10 MPa, respectively,which destroys all metallic alloys. Elastomeric nanocomposite heat insulators are more attractive subjects in comparison to their non-elastomeric counterparts, due to their excellent thermal stresses and larger deformation bearing capacity. Nitrile rubber with high thermal properties is a proper candidate in such applications. Development in ablation performance of these heat shields is considered as an important challenge nowadays. A few works have been recently carried out using organoclay to enhancethe ablation and mechanical properties of heat insulators. In this work, an elastomeric heat insulator with superior ablative and mechanical properties was presented using nanotechnology. The results showed that an elastomeric nanocomposite heat insulator containing 15 wt% organoclay exhibits superior characteristics compared to its composite counterpart such as: 46% more tensile strength, 60% more elongationat-break, 1.7 times higher modulus (at 100% strain, 62% higher “insulating index number” and 36% lower mass ablation and erosion rates under a standard test with a heat flux of 2500 kW/m2 for 15 s.

  9. Thyroid tissue: US-guided percutaneous laser thermal ablation.

    Science.gov (United States)

    Pacella, Claudio Maurizio; Bizzarri, Giancarlo; Spiezia, Stefano; Bianchini, Antonio; Guglielmi, Rinaldo; Crescenzi, Anna; Pacella, Sara; Toscano, Vincenzo; Papini, Enrico

    2004-07-01

    To evaluate in vivo the safety and effectiveness of percutaneous laser thermal ablation (LTA) in the debulking of thyroid lesions. Twenty-five adult patients at poor surgical risk with cold nodules (n = 8), autonomously hyperfunctioning thyroid nodules (n = 16), or anaplastic carcinoma (n = 1) underwent LTA. One to four 21-gauge spinal needles were inserted with ultrasonographic (US) guidance into the thyroid lesions. A 300-microm-diameter quartz optical fiber was advanced through the sheath of the needle. Nd:YAG laser was used with output power of 3-5 W. Side effects, complications, and clinical and hormonal changes were evaluated at the end of LTA and during follow-up. Linear regression analysis was used to investigate the correlation between energy delivered and reduction in nodule volume. Volume of induced necrosis and reduction in nodule volume were assessed with US or computed tomography. LTA was performed without difficulties in 76 LTA sessions. After treatment with 5 W, two patients experienced mild dysphonia, which resolved after 48 hours and 2 months. Improvement of local compression symptoms was experienced by 12 of 14 (86%) patients. Thyroid-stimulating hormone (TSH) was detectable in five of 16 (31%) patients with hyperfunctioning nodules at 6 months after LTA. Volume of induced necrosis ranged from 0.8 to 3.9 mL per session. Anaplastic carcinoma treated with four fibers yielded 32.0 mL of necrosis. Echo structure and baseline volume did not influence response. Energy load and reduction in nodule volume were significantly correlated (r(2) =.75, P nodule volume reduction at 6 months in hyperfunctioning nodules was 3.3 mL +/- 2.8 (62% +/- 21.4 [SD]) and in cold nodules was 7.7 mL +/- 7.5 (63% +/- 13.8). LTA may be a therapeutic tool for highly selected problems in the treatment of thyroid lesions. Copyright RSNA, 2004

  10. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies : Proof of concept

    NARCIS (Netherlands)

    Zachiu, Cornel; de Senneville, Baudouin Denis; Moonen, Chrit; Ries, Mario

    Purpose: While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During

  11. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  12. Radiofrequency ablation of neuroendocrine liver metastases: the Middlesex experience.

    Science.gov (United States)

    Gillams, A; Cassoni, A; Conway, G; Lees, W

    2005-01-01

    Current treatment options for neuroendocrine liver metastases are not widely applicable or not that effective. Image-guided thermal ablation offers the possibility of a minimally invasive, albeit palliative, treatment that decreases tumor volume, preserves most of the normal liver, and can be repeated several times. We report our experience with image-guided thermal ablation in 25 patients with unresectable liver metastases. Since 1990 we have treated 189 tumors at 66 treatment sessions in 25 patients (12 female, 13 male; median age, 56 years; age range, 26--78 years). Thirty treatments were performed with a solid-state laser, and 36 treatments were performed with radiofrequency ablation. All but one treatment was performed percutaneously under image guidance. Sixteen patients had metastases from carcinoid primaries, three from gastrinoma, two from insulinoma, and four from miscellaneous causes. Fourteen of 25 had symptoms from hormone secretion. Imaging follow-up was available in 19 patients at a median of 21 months (range, 4--75 months). There was a complete response in six patients, a partial response in seven, and stable disease in one; hence, tumor load was controlled in 14 of 19 patients (74%). Relief of hormone-related symptoms was achieved in nine of 14 patients (69%). The median survival period from the diagnosis of liver metastases was 53 months. One patient with end-stage cardiac disease died after a carcinoid crisis. There were eight (12%) complications: five local and three distant, four major and four minor. As a minimally invasive, readily repeatable procedure that can be used to ablate small tumors, preferably before patients become severely symptomatic, radiofrequency ablation can provide effective control of liver tumor volume in most patients over many years.

  13. Use of radiofrequency ablation in benign thyroid nodules: a literature review and updates.

    Science.gov (United States)

    Wong, Kai-Pun; Lang, Brian Hung-Hin

    2013-01-01

    Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA) has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid nodules, RFA is indicated for whom surgery or radioiodine are not indicated or ineffective or for those who refuse surgery or radio-iodine. Improvement of thyroid function with decreased need for antithyroid medications has been reported. Complication rate is relatively low. By reviewing the current literature, we reported its efficacy and complications and compared the efficacy of RFA relative to other ablative options such as ethanol ablation and laser ablation.

  14. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates

    Directory of Open Access Journals (Sweden)

    Kai-Pun Wong

    2013-01-01

    Full Text Available Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid nodules, RFA is indicated for whom surgery or radioiodine are not indicated or ineffective or for those who refuse surgery or radio-iodine. Improvement of thyroid function with decreased need for antithyroid medications has been reported. Complication rate is relatively low. By reviewing the current literature, we reported its efficacy and complications and compared the efficacy of RFA relative to other ablative options such as ethanol ablation and laser ablation.

  15. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Mocan L

    2017-03-01

    Full Text Available Lucian Mocan,1,2 Flaviu A Tabaran,3 Teodora Mocan,2,4 Teodora Pop,5 Ofelia Mosteanu,5 Lucia Agoston-Coldea,6 Cristian T Matea,2 Diana Gonciar,2 Claudiu Zdrehus,1,2 Cornel Iancu1 13rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2Department of Nanomedicine, “Octavian Fodor” Gastroenterology Institute, 3Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, 4Department of Physiology, 53rd Gastroenterology Department, 6Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania Abstract: The issue of multidrug resistance (MDR has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. Keywords: bacteria, photo-thermal ablation, gold nanoparticles, antibiotic resistance

  16. No-touch radiofrequency ablation: A comparison of switching bipolar and switching monopolar ablation in Ex Vivo bovine liver

    International Nuclear Information System (INIS)

    Chang, Won; Lee, Jeong Min; Lee, Sang Min; Hank, Joon Koo

    2017-01-01

    To evaluate the feasibility, efficiency, and safety of no-touch switching bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) using ex vivo bovine livers. A pork loin cube was inserted as a tumor mimicker in the bovine liver block; RFA was performed using the no-touch technique in the SM (group A1; 10 minutes, n = 10, group A2; 15 minutes, n = 10) and SB (group B; 10 minutes, n = 10) modes. The groups were compared based on the creation of confluent necrosis with sufficient safety margins, the dimensions, and distance between the electrode and ablation zone margin (DEM). To evaluate safety, small bowel loops were placed above the liver surface and 30 additional ablations were performed in the same groups. Confluent necroses with sufficient safety margins were created in all specimens. SM RFA created significantly larger volumes of ablation compared to SB RFA (all p < 0.001). The DEM of group B was significantly lower than those of groups A1 and A2 (all p < 0.001). Although thermal injury to the small bowel was noted in 90%, 100%, and 30% of the cases in groups A1, A2, and B, respectively, full depth injury was noted only in 60% of group A2 cases. The no-touch RFA technique is feasible in both the SB and SM modes; however, SB RFA appears to be more advantageous compared to SM RFA in the creation of an ablation zone while avoiding the unnecessary creation of an adjacent parenchymal ablation zone or adjacent small bowel injuries

  17. No-touch radiofrequency ablation: A comparison of switching bipolar and switching monopolar ablation in Ex Vivo bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won; Lee, Jeong Min; Lee, Sang Min; Hank, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-04-15

    To evaluate the feasibility, efficiency, and safety of no-touch switching bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) using ex vivo bovine livers. A pork loin cube was inserted as a tumor mimicker in the bovine liver block; RFA was performed using the no-touch technique in the SM (group A1; 10 minutes, n = 10, group A2; 15 minutes, n = 10) and SB (group B; 10 minutes, n = 10) modes. The groups were compared based on the creation of confluent necrosis with sufficient safety margins, the dimensions, and distance between the electrode and ablation zone margin (DEM). To evaluate safety, small bowel loops were placed above the liver surface and 30 additional ablations were performed in the same groups. Confluent necroses with sufficient safety margins were created in all specimens. SM RFA created significantly larger volumes of ablation compared to SB RFA (all p < 0.001). The DEM of group B was significantly lower than those of groups A1 and A2 (all p < 0.001). Although thermal injury to the small bowel was noted in 90%, 100%, and 30% of the cases in groups A1, A2, and B, respectively, full depth injury was noted only in 60% of group A2 cases. The no-touch RFA technique is feasible in both the SB and SM modes; however, SB RFA appears to be more advantageous compared to SM RFA in the creation of an ablation zone while avoiding the unnecessary creation of an adjacent parenchymal ablation zone or adjacent small bowel injuries.

  18. Radiofrequency ablation of pancreas and optimal cooling of peripancreatic tissue in an ex-vivo porcine model

    Directory of Open Access Journals (Sweden)

    Michal Crha

    2011-01-01

    Full Text Available Radiofrequency ablation is a possible palliative treatment for patients suffering from pancreatic neoplasia. However, radiofrequency-induced damage to the peripancreatic tissues during pancreatic ablation might cause fatal complications. The aim of this experimental ex vivo study on pigs was to verify ablation protocols and evaluate whether or not the cooling of peripancereatic tissues during pancreatic ablation has any benefit for their protection against thermal injury. Radiofrequency ablation was performed on 52 pancreatic specimens obtained from pigs. During each pancreatic ablation, continuous measurements of the temperature in the portal vein and duodenal lumen were performed. Peripancreatic tissues were either not cooled or were cooled by being submerged in 14 °C water, or by a perfusion of the portal vein and duodenum with 14 °C saline. The effects of variation in target temperature of the ablated area (90 °C and 100 °C, duration of ablation (5 and 10 min and the effect of peripancreatic tissues cooling were studied. We proved that optimal radiofrequency ablation of the porcine pancreas can be reached with the temperature of 90  °C for 5 min in the ablated area. The perfusion of the duodenal and portal vein by 14 °C saline was found to be the most effective cooling method for minimizing damage to the walls. Continuous measurement of temperatures in peripancreatic tissues will provide useful feedback to assist in their protection against thermal injury. This therapy could be used in the treatment of pancreatic tumours.

  19. Research of electrosurgical unit with novel antiadhesion composite thin film for tumor ablation: Microstructural characteristics, thermal conduction properties, and biological behaviors.

    Science.gov (United States)

    Shen, Yun-Dun; Lin, Li-Hsiang; Chiang, Hsi-Jen; Ou, Keng-Liang; Cheng, Han-Yi

    2016-01-01

    The objective of this study was to use surface functionalization to evaluate the antiadhesion property and thermal injury effects on the liver when using a novel electrosurgical unit with nanostructured-doped diamond-like carbon (DLC-Cu) thin films for tumor ablations. The physical and chemical properties of DLC-Cu thin films were characterized by contact angle goniometer, scanning electron microscope, and transmission electron microscope. Three-dimensional (3D) hepatic models were reconstructed using magnetic resonance imaging to simulate a clinical electrosurgical operation. The results indicated a significant increase of the contact angle on the nanostructured DLC-Cu thin films, and the antiadhesion properties were also observed in an animal model. Furthermore, the surgical temperature in the DLC-Cu electrosurgical unit was found to be significantly lower than the untreated unit when analyzed using 3D models and thermal images. In addition, DLC-Cu electrodes caused a relatively small injury area and lateral thermal effect. The results indicated that the nanostructured DLC-Cu thin film coating reduced excessive thermal injury and tissue adherence effect in the liver. © 2015 Wiley Periodicals, Inc.

  20. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  1. Temporal dependence of the mass ablation rate in uv irradiated spherical targets

    International Nuclear Information System (INIS)

    Delettrez, J.; Jaanimagi, P.A.; Henke, B.L.; Richardson, M.C.

    1985-01-01

    In this talk, measurements of thermal transport in spherical geometry using time-resolved x-ray spectroscopy are presented. The time dependence of the mass ablation rate (m) is determined by following the progress of the ablation surface through thin layers of material embedded at various depths below the surface of the target. These measurements made with 6, 12 and 24 uv (351 nm) beams from OMEGA are compared to previous thermal transport data and are in qualitative agreement with detailed LILAC hydrodynamic code simulations which predict a sharp decrease in m after the peak of the laser pulse. Viewgraphs of the talk comprise the report

  2. High-Fidelity Modeling of Ablation and Coupled CFD-Material Response

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposal seeks to improve the state of the art in the modeling and simulation of ablating thermal protection systems (TPS). It will accomplish the...

  3. Interstitial ultrasound ablation of tumors within or adjacent to bone: Contributions of preferential heating at the bone surface

    Science.gov (United States)

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2013-02-01

    Preferential heating of bone due to high ultrasound attenuation may enhance thermal ablation performed with cathetercooled interstitial ultrasound applicators in or near bone. At the same time, thermally and acoustically insulating cortical bone may protect sensitive structures nearby. 3D acoustic and biothermal transient finite element models were developed to simulate temperature and thermal dose distributions during catheter-cooled interstitial ultrasound ablation near bone. Experiments in ex vivo tissues and tissue-mimicking phantoms were performed to validate the models and to quantify the temperature profiles and ablated volumes for various distances between the interstitial applicator and the bone surface. 3D patient-specific models selected to bracket the range of clinical usage were developed to investigate what types of tumors could be treated, applicator configurations, insertion paths, safety margins, and other parameters. Experiments show that preferential heating at the bone surface decreases treatment times compared to when bone is absent and that all tissue between an applicator and bone can be ablated when they are up to 2 cm apart. Simulations indicate that a 5-7 mm safety margin of normal bone is needed to protect (thermal dose tumors 1.0-3.8 cm (L) and 1.3-3.0 cm (D) near or within bone were ablated (thermal dose > 240 CEM43°C) within 10 min without damaging the nearby spinal cord, lungs, esophagus, trachea, or major vasculature. Preferential absorption of ultrasound by bone may provide improved localization, faster treatment times, and larger treatment zones in tumors in and near bone compared to other heating modalities.

  4. Modelling the temperature evolution of bone under high intensity focused ultrasound

    Science.gov (United States)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR-HIFU

  5. Ultraviolet-laser ablation of skin

    Energy Technology Data Exchange (ETDEWEB)

    Lane, R.J.; Linsker, R.; Wynne, J.J.; Torres, A.; Geronemus, R.G.

    1985-05-01

    The authors report on the use of pulsed ultraviolet-laser irradiation at 193 nm from an argon-fluoride laser and at 248 nm from a krypton-fluoride laser to ablate skin. In vitro, both wavelengths performed comparably, removing tissue precisely and cleanly, and leaving minimal thermal damage to the surrounding tissue. In vivo, the 193-nm laser radiation failed to remove tissue after bleeding began. The 248-nm radiation, however, continued to remove tissue despite bleeding and left a clean incision with only minimal thermal damage. The krypton-fluoride excimer laser beam at 248 nm, which should be deliverable through a quartz optical fiber, has great potential as a surgical instrument.

  6. HIFU Transducer Characterization Using a Robust Needle Hydrophone

    Science.gov (United States)

    Howard, Samuel M.; Zanelli, Claudio I.

    2007-05-01

    A robust needle hydrophone has been developed for HIFU transducer characterization and reported on earlier. After a brief review of the hydrophone design and performance, we demonstrate its use to characterize a 1.5 MHz, 10 cm diameter, F-number 1.5 spherically focused source driven to exceed an intensity of 1400 W/cm2at its focus. Quantitative characterization of this source at high powers is assisted by deconvolving the hydrophone's calibrated frequency response in order to accurately reflect the contribution of harmonics generated by nonlinear propagation in the water testing environment. Results are compared to measurements with a membrane hydrophone at 0.3% duty cycle and to theoretical calculations, using measurements of the field at the source's radiating surface as input to a numerical solution of the KZK equation.

  7. Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Garnier, J.; Masse, L.

    2005-01-01

    A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1λ for long wavelengths, but higher for short instable wavelengths in the ablative regime

  8. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  9. Catheter-based high-intensity ultrasound for epicardial ablation of the left ventricle: device design and in vivo feasiblity

    Science.gov (United States)

    Salgaonkar, Vasant A.; Nazer, Babak; Jones, Peter D.; Tanaka, Yasuaki; Martin, Alastair; Ng, Bennett; Duggirala, Srikant; Diederich, Chris J.; Gerstenfeld, Edward P.

    2015-03-01

    The development and in vivo testing of a high-intensity ultrasound thermal ablation catheter for epicardial ablation of the left ventricle (LV) is presented. Scar tissue can occur in the mid-myocardial and epicardial space in patients with nonischemic cardiomyopathy and lead to ventricular tachycardia. Current ablation technology uses radiofrequency energy, which is limited epicardially by the presence of coronary vessels, phrenic nerves, and fat. Ultrasound energy can be precisely directed to deliver targeted deep epicardial ablation while sparing intervening epicardial nerve and vessels. The proof-of-concept ultrasound applicators were designed for sub-xyphoid access to the pericardial space through a steerable 14-Fr sheath. The catheter consists of two rectangular planar transducers, for therapy (6.4 MHz) and imaging (5 MHz), mounted at the tip of a 3.5-mm flexible nylon catheter coupled and encapsulated within a custom-shaped balloon for cooling. Thermal lesions were created in the LV in a swine (n = 10) model in vivo. The ultrasound applicator was positioned fluoroscopically. Its orientation and contact with the LV were verified using A-mode imaging and a radio-opaque marker. Ablations employed 60-s exposures at 15 - 30 W (electrical power). Histology indicated thermal coagulation and ablative lesions penetrating 8 - 12 mm into the left ventricle on lateral and anterior walls and along the left anterior descending artery. The transducer design enabled successful sparing from the epicardial surface to 2 - 4 mm of intervening ventricle tissue and epicardial fat. The feasibility of targeted epicardial ablation with catheter-based ultrasound was demonstrated.

  10. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Dou, Hong-qiang [Department of Material Science and Engineering, Sichuan Engineering Technical College, Deyang 618000 (China); Liao, Wei, E-mail: liaowei@caep.cn [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Xiao-yang; Ding, Ren-jie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-06-01

    Highlights: • The fs laser ablation of borosilicate glass (K9) were investigated under 35 and 500 fs pulses. • At high fluence regime, the ablation rate at 35 fs in air increased to a plateau, and 500 fs in air and vacuum decreased. • The mechanisms of multiple-photon ionization and impact ionization were included. • The ablation morphologies of smooth zone and laser-induced periodic surface structures were presented and illustrated. • The ablation mechanisms of non-thermal and thermal ablation were included. - Abstract: Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm{sup 2} and 2.1 J/cm{sup 2} were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  11. Theoretical and experimental analysis of amplitude control ablation and bipolar ablation in creating linear lesion and discrete lesions for treating atrial fibrillation.

    Science.gov (United States)

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2017-09-01

    Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.

  12. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  13. Femtosecond laser ablation and cutting technology on PMP foam

    International Nuclear Information System (INIS)

    Song Chengwei; Li Guo; Huang Yanhua; Du Kai; Yang Liang

    2013-01-01

    The femtosecond laser ablation results of PMP foam (density of 90 mg/cm 3 ) were analyzed. The laser pulses used for the study were 800 nm in wavelength, 50 fs in pulse duration and the repetition rate was 1000 Hz. The ablation threshold of the foam was 0.91 J/cm 2 when it was shot by 100 laser pulses. The impacts of laser power, the pulse number and the numerical aperture of the focusing objective on the crater diameter were obtained. In the same femtosecond laser machining system, comparing with the ablation shape into copper foil, the important factor causing the irregular shape of the ablation region was verified that there were many different sizes and randomly distributed pores inside PMP foam. The carbonation phenomenon was observed on the edge of the ablated areas when the sample was ablated using high laser power or/and more laser pulses. Thermal effect was considered to be the causes of the carbonation. A new method based on coupling laser beam to cut thickness greater than 1 mm film-foam with femtosecond laser was proposed. Using this method, the femtosecond laser cutting thickness was greater than 1.5 mm, the angle between the cutting side wall and the laser beam optical axis might be less than 5°, and the cutting surface was clean. (authors)

  14. Development of Low Density, Flexible Carbon Phenolic Ablators

    Science.gov (United States)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  15. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    Full Text Available Irreversible electroporation (IRE produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs to create a large electroporated area and long low-voltage pulses (LVPs to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  16. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Science.gov (United States)

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  17. Nonlinear acoustic properties of ex vivo bovine liver and the effects of temperature and denaturation

    International Nuclear Information System (INIS)

    Jackson, E J; Coussios, C-C; Cleveland, R O

    2014-01-01

    Thermal ablation by high intensity focused ultrasound (HIFU) has a great potential for the non-invasive treatment of solid tumours. Due to the high pressure amplitudes involved, nonlinear acoustic effects must be understood and the relevant medium property is the parameter of nonlinearity B/A. Here, B/A was measured in ex vivo bovine liver, over a heating/cooling cycle replicating temperatures reached during HIFU ablation, adapting a finite amplitude insertion technique, which also allowed for measurement of sound-speed and attenuation. The method measures the nonlinear progression of a plane wave through liver and B/A was chosen so that numerical simulations matched the measured waveforms. To create plane-wave conditions, sinusoidal bursts were transmitted by a 100 mm diameter 1.125 MHz unfocused transducer and measured using a 15 mm diameter 2.25 MHz broadband transducer in the near field. Attenuation and sound-speed were calculated using a reflected pulse from the smaller transducer using the larger transducer as the reflecting interface. Results showed that attenuation initially decreased with heating then increased after denaturation, the sound-speed initially increased with temperature and then decreased, and B/A showed an increase with temperature but no significant post-heating change. The B/A data disagree with other reports that show a significant change and we suggest that any nonlinear enhancement in the received ultrasound signal post-treatment is likely due to acoustic cavitation rather than changes in tissue nonlinearity. (paper)

  18. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Peixuan, E-mail: oypx12@mails.tsinghua.edu.cn [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); Li, Peijie [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Leksina, E.G.; Michurin, S.V. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); He, Liangju [School of Aerospace, Tsinghua University, Beijing 100084 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous surfaces are formed in Al alloy after wet ablation due to phase explosion. • A higher ablation rate is produced in glycerin than that in water and isopropanol. • Effect of liquid properties on mass-removal mechanisms was discussed. • Phase explosion and plasma-induced pressure contribute greatly to mass removal. • Density, heat conductivity and shock impendence of liquid affect ablation rates. - Abstract: In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  19. Lesion size in relation to ablation site during radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A

    1998-01-01

    This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation was perfor......This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation...... was performed during two different flow-velocities in a tissue bath, while electrode contact pressure and position were unchanged. Target temperature was 80 degrees C. Obtained tip temperature, power consumption and lesion dimensions were measured. In vivo lesion volume, depth and width were found significantly.......61 in vitro). We conclude that during temperature controlled radiofrequency ablation lesion size differs for septal and apical left ventricular applications. Differences in convective cooling might play an important role in this respect. This is supported by our in vitro experiments, where increased...

  20. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  1. Percutaneous Thermal Ablation of Breast Cancer Metastases in Oligometastatic Patients

    Energy Technology Data Exchange (ETDEWEB)

    Barral, M., E-mail: matthias-barral@yahoo.fr [Institut Gustave Roussy, Interventional Radiology Department (France); Auperin, A., E-mail: anne.auperin@gustaveroussy.fr [Institut Gustave Roussy, Biostatistics and Epidemiology Unit (France); Hakime, A., E-mail: thakime@yahoo.com; Cartier, V., E-mail: victoirecartier@hotmail.com; Tacher, V., E-mail: vaniatacher@gmail.com [Institut Gustave Roussy, Interventional Radiology Department (France); Otmezguine, Yves, E-mail: yotmezguine@ccps.com [Centre Clinique de la Porte de Saint-Cloud, Radiotherapy (France); Tselikas, L., E-mail: lambros.tselikas@gmail.com; Baere, T. de, E-mail: thierry.debaere@gustaveroussy.fr; Deschamps, F., E-mail: frederic.deschamps@gustaveroussy.fr [Institut Gustave Roussy, Interventional Radiology Department (France)

    2016-06-15

    ObjectiveTo evaluate prognostic factors associated with local control and disease-free-survival (DFS) of oligometastatic breast cancer patients treated by percutaneous thermal ablation (PTA).Materials and MethodsSeventy-nine consecutive patients (54.5 ± 11.2 years old) with 114 breast cancer metastases (28.9 ± 16.1 mm in diameter), involving the lungs, the liver, and/or the bone, were treated using PTA with a curative intent. The goal was to achieve a complete remission in association with systemic chemotherapy and hormonal therapy. We retrospectively evaluated the prognostic factors associated with 1- and 2-year local control and the 1- and 2-year DFS rates.ResultsThe 1- and 2-year local control rates were 83.0 and 76.1 %, respectively. Tumor burden was associated with a poorer outcome for local control after PTA (HR 1.027 by additional millimeter, p = 0.026; >4 cm HR 3.90). The 1- and 2-year DFS rates were 54.2 and 30.4 %, respectively. In multivariate analysis, triple-negative histological subtype and increased size of treated metastases were associated with a poorer DFS (HR 2.22; 95 % CI [1.13–4.36]; p = 0.02 and HR 2.43; 95 % CI [1.22–4.82]; p = 0.011, respectively).ConclusionPTA is effective for local control of breast cancer oligometastases. Tumor burden >4 cm and triple-negative histological subtype are associated with a poorer outcome.

  2. X-ray Micro-Tomography of Ablative Heat Shield Materials

    Science.gov (United States)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  3. Influence of transcatheter hepatic artery embolization using iodized oil on radiofrequency ablation of hepatic neoplasms

    International Nuclear Information System (INIS)

    Du Xilin; Ma Qingjiu; Wang Yiqing; Wang Zhimin; Zhang Hongxin

    2004-01-01

    Objective: To observe the effect of iodized oil on radiofrequency thermal ablation (RFA) of hepatic neoplasms by using a cluster array of ten separate electrodes. Methods: The patients were divided into 2 groups, group A with transcatheter hepatic artery embolization, group B without transcatheter hepatic artery embolization. All patients were undergone radiofrequency ablation of hepatic neoplasms. Results: The time of RFA for group A was (9 ± 2.1) minutes, showing the diameter of necrosis of (5.3 ± 1.4) cm. The time of RFA for group B was (16 ± 4. 6) minutes demonstrating the diameter of necrosis of (3.5 ± 1.8) cm (P<0.01). Conclusions: These findings suggest that radiofrequency thermal ablation of hepatic neoplasms with transcatheter hepatic artery embolization using iodized oil might improve the safety and synergic effect

  4. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    Science.gov (United States)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  5. Therapeutic efficacy of percutaneous radiofrequency ablation versus microwave ablation for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available The aim of this study was to investigate the therapeutic efficacy of percutaneous radiofrequency (RF ablation versus microwave (MW ablation for hepatocellular carcinoma (HCC measuring ≤ 5 cm in greatest diameter. From January 2006 to December 2006, 78 patients had undergone RF ablation whereas 77 had undergone MW ablation. Complete ablation (CA, local tumour progression (LTP and distant recurrence (DR were compared. The overall survival curves were calculated with the Kaplan-Meier technique and compared with the log-rank test. The CA rate was 83.4% (78/93 for RF ablation and 86.7%(91/105 for MW ablation. The LTP rate was 11.8% (11/93 for RF ablation and 10.5% (11/105 for MW ablation. DR was found in 51 (65.4% in the RF ablation and 62 (80.5% in the MW ablation. There was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.780 and the 1-, 3-, and 5-year disease-free survival rates (P = 0.123 between RF and MW ablation. At subgroup analyses, for patients with tumors ≤ 3.0 cm, there was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.067 and the corresponding disease-free survival rates(P = 0.849. For patients with tumor diameters of 3.1-5.0 cm, the 1-, 3-, and 5-year overall survival rates were 87.1%, 61.3%, and 40.1% for RF ablation and 85.4%, 36.6%, and 22% for MW ablation, with no significant difference (P = 0.068. The corresponding disease-free survival rates were 74.2%, 54.8%, and 45.2% for the RF ablation group and 53.3%, 26.8%, and 17.1% for the MW ablation group. The disease-free survival curve for the RF ablation group was significantly better than that for the MW ablation group (P = 0.018. RF ablation and MW ablation are both effective methods in treating hepatocellular carcinomas, with no significant differences in CA, LTP, DR, and overall survival.

  6. GCD TechPort Data Sheets Thermal Protection System Materials (TPSM) Project

    Science.gov (United States)

    Chinnapongse, Ronald L.

    2014-01-01

    The Thermal Protection System Materials (TPSM) Project consists of three distinct project elements: the 3-Dimensional Multifunctional Ablative Thermal Protection System (3D MAT) project element; the Conformal Ablative Thermal Protection System (CA-TPS) project element; and the Heatshield for Extreme Entry Environment Technology (HEEET) project element. 3D MAT seeks to design, develop and deliver a game changing material solution based on 3-dimensional weaving and resin infusion approach for manufacturing a material that can function as a robust structure as well as a thermal protection system. CA-TPS seeks to develop and deliver a conformal ablative material designed to be efficient and capable of withstanding peak heat flux up to 500 W/ sq cm, peak pressure up to 0.4 atm, and shear up to 500 Pa. HEEET is developing a new ablative TPS that takes advantage of state-of-the-art 3D weaving technologies and traditional manufacturing processes to infuse woven preforms with a resin, machine them to shape, and assemble them as a tiled solution on the entry vehicle substructure or heatshield.

  7. Radiofrequency Thermal Ablation Heat Energy Transfer in an Ex-Vivo Model.

    Science.gov (United States)

    Thakur, Shivani; Lavito, Sandi; Grobner, Elizabeth; Grobner, Mark

    2017-12-01

    Little work has been done to consider the temperature changes and energy transfer that occur in the tissue outside the vein with ultrasound-guided vein ablation therapy. In this experiment, a Ex-Vivo model of the human calf was used to analyze heat transfer and energy degradation in tissue surrounding the vein during endovascular radiofrequency ablation (RFA). A clinical vein ablation protocol was used to determine the tissue temperature distribution in 10 per cent agar gel. Heat energy from the radiofrequency catheter was measured for 140 seconds at fixed points by four thermometer probes placed equidistant radially at 0.0025, 0.005, and 0.01 m away from the RFA catheter. The temperature rose 1.5°C at 0.0025 m, 0.6°C at 0.005 m, and 0.0°C at 0.01 m from the RFA catheter. There was a clinically insignificant heat transfer at the distances evaluated, 1.4 ± 0.2 J/s at 0.0025 m, 0.7 ± 0.3 J/s at 0.0050 m, and 0.3 ± 0.0 J/s at 0.01 m. Heat degradation occurred rapidly: 4.5 ± 0.5 J (at 0.0025 m), 4.0 ± 1.6 J (at 0.0050 m), and 3.9 ± 3.6 J (at 0.01 m). Tumescent anesthesia injected one centimeter around the vein would act as a heat sink to absorb the energy transferred outside the vein to minimize tissue and nerve damage and will help phlebologists strategize options for minimizing damage.

  8. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    Science.gov (United States)

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  9. Patient satisfaction and amenorrhea rate after endometrial ablation by ThermaChoice III or NovaSure: a retrospective cohort study

    NARCIS (Netherlands)

    Muller, I.; van der Palen, Jacobus Adrianus Maria; Massop-Helmink, D.; Vos-de Bruin, R.; Sikkema, J.M.

    2015-01-01

    Heavy menstrual bleeding poses an important health problem, which can be managed, besides other treatments, with endometrial ablation. Nowadays, the bipolar radio frequency device (NovaSure) is the most commonly used device for endometrial ablation, followed by the thermal balloon device

  10. Growth rates of the ablative Rayleigh endash Taylor instability in inertial confinement fusion

    International Nuclear Information System (INIS)

    Betti, R.; Goncharov, V.N.; McCrory, R.L.; Verdon, C.P.

    1998-01-01

    A simple procedure is developed to determine the Froude number Fr, the effective power index for thermal conduction ν, the ablation-front thickness L 0 , the ablation velocity V a , and the acceleration g of laser-accelerated ablation fronts. These parameters are determined by fitting the density and pressure profiles obtained from one-dimensional numerical simulations with the analytic isobaric profiles of Kull and Anisimov [Phys. Fluids 29, 2067 (1986)]. These quantities are then used to calculate the growth rate of the ablative Rayleigh endash Taylor instability using the theory developed by Goncharov et al. [Phys. Plasmas 3, 4665 (1996)]. The complicated expression of the growth rate (valid for arbitrary Froude numbers) derived by Goncharov et al. is simplified by using reasonably accurate fitting formulas. copyright 1998 American Institute of Physics

  11. Conformal Ablative Thermal Protection System for Small and Large Scale Missions: Approaching TRL 6 for Planetary and Human Exploration Missions and TRL 9 for Small Probe Missions

    Science.gov (United States)

    Beck, R. A. S.; Gasch, M. J.; Milos, F. S.; Stackpoole, M. M.; Smith, B. P.; Switzer, M. R.; Venkatapathy, E.; Wilder, M. C.; Boghhozian, T.; Chavez-Garcia, J. F.

    2015-01-01

    In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the

  12. Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue

    Science.gov (United States)

    Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel

    1994-08-01

    Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.

  13. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip

    Science.gov (United States)

    Chen, Y. K.; Henline, W. D.

    1993-01-01

    The general boundary conditions including mass and energy balances of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver for predictions of the flow field, surface temperature, and surface ablation rates over re-entry space vehicles with ablating Thermal Protection Systems (TPS). The Navier-Stokes solver with general surface thermochemistry boundary conditions can predict more realistic solutions and provide useful information for the design of TPS. A test case with a proposed hypersonic test vehicle configuration and associated free stream conditions was developed. Solutions with various surface boundary conditions were obtained, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. The solutions of the GASP code with complete ablating surface conditions were compared with those of the ASC code. The direction of future work is also discussed.

  14. Design and characterization of a laterally mounted phased-array transducer breast-specific MRgHIFU device with integrated 11-channel receiver array.

    Science.gov (United States)

    Payne, A; Merrill, R; Minalga, E; Vyas, U; de Bever, J; Todd, N; Hadley, R; Dumont, E; Neumayer, L; Christensen, D; Roemer, R; Parker, D

    2012-03-01

    location. The execution of a continuously sonicated, predefined 48-point, 8-min trajectory path resulted in an ablation volume of 8.17 cm(3), with one standard deviation of 0.35 cm(3) between inhomogeneous ex vivo tissue samples. Comfort testing resulted in negligible side effects for all volunteers. The initial results suggest that this new device will potentially be suitable for MRgHIFU treatment in a wide range of breast sizes and tumor locations.

  15. Evaluation of great saphenous vein occlusion rate and clinical outcome in patients undergoing laser thermal ablation with a 1470-nm bare fiber laser with low linear endovenous energy density

    Directory of Open Access Journals (Sweden)

    Walter Junior Boim Araujo

    2015-12-01

    Full Text Available Abstract Background Water-specific 1470-nm lasers enable vein ablation at lower energy densities and with fewer side effects because they target interstitial water in the vessel wall. Objectives To determine great saphenous vein (GSV occlusion rate after thermal ablation with 1470-nm laser using 7W power and to evaluate clinical outcomes and complications. Method Nineteen patients (31 GSVs underwent thermal ablation. Follow-up duplex scanning, clinical evaluation using the Venous Clinical Severity Score (VCSS, and evaluation of procedure-related complications were performed at 3-5 days after the procedure and at 30 and 180 days. Results Mean patient age was 46 years and 17 of the patients were female (89.47%. Of 31 limbs treated, 2 limbs were clinical class C2, 19 were C3, 9 were C4, and 1 limb was C5 according to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP classification. Mean linear endovenous energy density was 33.53 J/cm. The GSV occlusion rate was 93.5% immediately after treatment, 100% at 3-5 days and 100% at 30 days after treatment and 87.1% 180 days after treatment. There was a significant reduction in VCSS at all time points. Conclusions The data from this study support the possibility that the incidence of complications can be reduced without significantly affecting the clinical outcomes, by using lower energy density. However, this appears to be at the cost of reduced efficacy in terms of GSV occlusion rates.

  16. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions:An Overview of the Technology Maturation Effort

    Science.gov (United States)

    Beck, Robin A S.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Prabhu, Dinesh K.; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2013-01-01

    The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket

  17. Ultrasound-guided radiofrequency thermal ablation of normal kidney in a rabbit model: correlation with CT and histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won; Lee, Jeong Min; Kin, Chong Soo; Lee, Sang Hun [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2002-01-01

    To assess the feasibility and safety of using a cooled-tip electrode to perform percutaneous radiofrequency ablation of kidney tissue in rabbits, and to evaluate the ability of CT to reveal the appearance and extent of tissue necrosis during follow-up after ablation. Using ultrasound guidance, a 17-G cooled-tip electrode was inserted into the right lower portion of the kidney in 26 New Zealand White rabbits. Radiofrequency was applied for 2 mins, and biphasic helical CT scanning was used to assess tissue destruction and the presence or absence of complications immediately after the procedure and at 24 hrs, 2 and 3 days, and 1,2,3,4,5,6 and 7 weeks. The study had three phases: acute (immediately killed : N=10); subacute (killed at 24 hrs (n=3), 2 days (n=3), 3 days (n=1) : N=7); chronic (killed at 1 week (n=4), 2 weeks (n=2), 4 weeks (n=1), 7 weeks (n=1): N=8). After the animals were killed, their kidneys were histopathologically examined and the radiologic and pathologic findings of lesion size and configuration were correlated. In each instance, ultrasound-guided radiofrequency ablations of the lower pole of the kidney were technically successful. Contrast-enhanced biphasic helical CT revealed regions of hypoattenuation devoid of parenchymal enhancement, and these correlated closely with true pathologic lesion size (r=0.884; p>0.05). In subacute and chronic models, CT scanning revealed gradual spontaneous resorption of the ablated lesion and the presence of perilesional calcification. Histopathologically, in the acute phase the ablated lesion showed coagulative necrosis and infiltration of inflammatory cells, and in the chronic phase there was clear cut necrosis of glomeruli, tubules and renal interstitium, with diminishing inflammatory response and peripheral fibrotic tissue formation. Ultrasound-guided renal radiofrequency ablation is technically feasible and safe. In addition, the avascular lesion measured at contrast-enhanced helical CT closely correlated with

  18. Ultrasound-guided radiofrequency thermal ablation of normal kidney in a rabbit model: correlation with CT and histopathology

    International Nuclear Information System (INIS)

    Kim, Sang Won; Lee, Jeong Min; Kin, Chong Soo; Lee, Sang Hun

    2002-01-01

    To assess the feasibility and safety of using a cooled-tip electrode to perform percutaneous radiofrequency ablation of kidney tissue in rabbits, and to evaluate the ability of CT to reveal the appearance and extent of tissue necrosis during follow-up after ablation. Using ultrasound guidance, a 17-G cooled-tip electrode was inserted into the right lower portion of the kidney in 26 New Zealand White rabbits. Radiofrequency was applied for 2 mins, and biphasic helical CT scanning was used to assess tissue destruction and the presence or absence of complications immediately after the procedure and at 24 hrs, 2 and 3 days, and 1,2,3,4,5,6 and 7 weeks. The study had three phases: acute (immediately killed : N=10); subacute (killed at 24 hrs (n=3), 2 days (n=3), 3 days (n=1) : N=7); chronic (killed at 1 week (n=4), 2 weeks (n=2), 4 weeks (n=1), 7 weeks (n=1): N=8). After the animals were killed, their kidneys were histopathologically examined and the radiologic and pathologic findings of lesion size and configuration were correlated. In each instance, ultrasound-guided radiofrequency ablations of the lower pole of the kidney were technically successful. Contrast-enhanced biphasic helical CT revealed regions of hypoattenuation devoid of parenchymal enhancement, and these correlated closely with true pathologic lesion size (r=0.884; p>0.05). In subacute and chronic models, CT scanning revealed gradual spontaneous resorption of the ablated lesion and the presence of perilesional calcification. Histopathologically, in the acute phase the ablated lesion showed coagulative necrosis and infiltration of inflammatory cells, and in the chronic phase there was clear cut necrosis of glomeruli, tubules and renal interstitium, with diminishing inflammatory response and peripheral fibrotic tissue formation. Ultrasound-guided renal radiofrequency ablation is technically feasible and safe. In addition, the avascular lesion measured at contrast-enhanced helical CT closely correlated with

  19. Volumetric MR-Guided High-Intensity Focused Ultrasound with Direct Skin Cooling for the Treatment of Symptomatic Uterine Fibroids : Proof-of-Concept Study

    NARCIS (Netherlands)

    Ikink, Marlijne E; van Breugel, Johanna M M; Schubert, Gerald; Nijenhuis, Robbert J; Bartels, LW; Moonen, Chrit T W; van den Bosch, Maurice A A J

    2015-01-01

    Objective. To prospectively assess the safety and technical feasibility of volumetric magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation with direct skin cooling (DISC) during treatment of uterine fibroids. Methods. In this proof-of-concept study, eight patients were

  20. Porcine pilot study of MRI-guided HIFU treatment for neonatal intraventricular hemorrhage (IVH)

    Science.gov (United States)

    Looi, Thomas; Waspe, Adam; Mougenot, Charles; Amaral, Joao; Temple, Michael; Hynynen, Kullervo; Drake, James

    2012-11-01

    Intraventricular hemorrhage (IVH) occurs in 15% of premature babies and 50% of IVH cases progress to posthemorrhagic ventricular dilation due to large blood clots forming in the ventricles. Existing treatments such as tissue plasminogen activator (tPA) and surgical intervention have severe side effects in paediatric patients that include excessive bleeding and complications. This study investigates the feasibility of MR-HIFU for sonothrombolysis of blood clots from IVH using natural acoustic windows, known as fontanelles, in the skulls of newborns. The study involved 2 elements: a phantom study to examine beam limitations and acoustic properties, and an in-vivo porcine study. A phantom skull was created from sample patient data and was used to analyze reachability of the Philips Sonavelle system. Acoustic measurements of the phantom (attenuation of 5-14 dB and speed of sound of 1722-2965 m/s) indicated the phantom effectively mimics neonatal skull bone. For the ex-vivo studies, a porcine clot was created and sonicated for 5 mins at 500W with a 0.5% duty cycle. For the in-vivo experiment, a vertex craniotomy was performed and porcine blood was injected into the lateral ventricle under ultrasound guidance. Sonication using the prior parameters induced cavitation and post-sonication T1 and T2 images verified clot lysis. Further H&E analysis showed no presence of blood in the ventricles. These positive results show that MR-HIFU has potential as a noninvasive tool for sonothrombolysis of neonatal IVH clots.

  1. Modelling the temperature evolution of bone under high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Ten Eikelder, H M M; Bošnački, D; Breuer, B J T; Van Wijk, J H; Van Dijk, E V M; Modena, D; Yeo, S Y; Grüll, H; Elevelt, A; Donato, K; Di Tullio, A

    2016-01-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR-HIFU

  2. Effect of ablation geometry on the dynamics, composition, and geometrical shape of thin film plasma

    Science.gov (United States)

    Mondal, Alamgir; Singh, R. K.; Kumar, Ajai

    2018-01-01

    The characteristics of plasma plume produced by front and back ablation of thin films have been investigated using fast imaging and optical emission spectroscopy. Ablation geometry dependence of the plume dynamics, its geometrical aspect and composition is emphasized. Also, the effect of an ambient environment and the beam diameter of an ablating laser on the front and back ablations is briefly discussed. Analysis of time resolved images and plasma parameters indicates that the energetic and spherical plasma formed by front ablation is strikingly different in comparison to the slow and nearly cylindrical plasma plume observed in the case of back ablation. Further shock formation, plume confinement, thermalization and validity of different expansion models in these two ablation geometries are also presented. The present study demonstrates the manipulation of kinetic energy, shape, ion/neutral compositions and directionality of the expanding plume by adjusting the experimental configuration, which is highly relevant to its utilization in various applications e.g., generation of energetic particles, tokamak edge plasma diagnostics, thin film deposition, etc.

  3. Differences in Nanosecond Laser Ablation and Deposition of Tungsten, Boron, and WB2/B Composite due to Optical Properties

    Directory of Open Access Journals (Sweden)

    Tomasz Moscicki

    2016-01-01

    Full Text Available The first attempt to the deposition of WB3 films using nanosecond Nd:YAG laser demonstrated that deposited coatings are superhard. However, they have very high roughness. The deposited films consisted mainly of droplets. Therefore, in the present work, the explanation of this phenomenon is conducted. The interaction of Nd:YAG nanosecond laser pulse with tungsten, boron, and WB2/B target during ablation is investigated. The studies show the fundamental differences in ablation of those materials. The ablation of tungsten is thermal and occurs due to only evaporation. In the same conditions, during ablation of boron, the phase explosion and/or fragmentation due to recoil pressure is observed. The deposited films have a significant contribution of big debris with irregular shape. In the case of WB2/B composite, ablation is significantly different. The ablation seems to be the detonation in the liquid phase. The deposition mechanism is related mainly to the mechanical transport of the target material in the form of droplets, while the gaseous phase plays marginal role. The main origin of differences is optical properties of studied materials. A method estimating phase explosion occurrence based on material data such as critical temperature, thermal diffusivity, and optical properties is shown. Moreover, the effect of laser wavelength on the ablation process and the quality of the deposited films is discussed.

  4. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  5. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2016-07-01

    Full Text Available During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C, sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings, and frequency response (hundreds of kHz, are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  6. Insight into electronic mechanisms of nanosecond-laser ablation of silicon

    International Nuclear Information System (INIS)

    Marine, Wladimir; Patrone, Lionel; Ozerov, Igor; Bulgakova, Nadezhda M.

    2008-01-01

    We present experimental and theoretical studies of nanosecond ArF excimer laser desorption and ablation of silicon with insight into material removal mechanisms. The experimental studies involve a comprehensive analysis of the laser-induced plume dynamics and measurements of the charge gained by the target during irradiation time. At low laser fluences, well below the melting threshold, high-energy ions with a narrow energy distribution are observed. When the fluence is increased, a thermal component of the plume is formed superimposing on the nonthermal ions, which are still abundant. The origin of these ions is discussed on the basis of two modeling approaches, thermal and electronic, and we analyze the dynamics of silicon target excitation, heating, melting, and ablation. An electronic model is developed that provides insight into the charge-carrier transport in the target. We demonstrate that, contrary to a commonly accepted opinion, a complete thermalization between the electron and lattice subsystems is not reached during the nanosecond-laser pulse action. Moreover, the charging effects can retard the melting process and have an effect on the overall target behavior and laser-induced plume dynamics

  7. Improving the ablation efficiency of excimer laser systems with higher repetition rates through enhanced debris removal and optimized spot pattern.

    Science.gov (United States)

    Arba-Mosquera, Samuel; Klinner, Thomas

    2014-03-01

    To evaluate the reasons for the required increased radiant exposure for higher-repetition-rate excimer lasers and determine experimentally possible compensations to achieve equivalent ablation profiles maintaining the same single-pulse energies and radiant exposures for laser repetition rates ranging from 430 to 1000 Hz. Schwind eye-tech-solutions GmbH and Co. KG, Kleinostheim, Germany. Experimental study. Poly(methyl methacrylate) (PMMA) plates were photoablated. The pulse laser energy was maintained during all experiments; the effects of the flow of the debris removal, the shot pattern for the correction, and precooling the PMMA plates were evaluated in terms of achieved ablation versus repetition rate. The mean ablation performance ranged from 88% to 100%; the variability between the profile measurements ranged from 1.4% to 6.2%. Increasing the laser repetition rate from 430 Hz to 1000 Hz reduced the mean ablation performance from 98% to 91% and worsened the variability from 1.9% to 4.3%. Increasing the flow of the debris removal, precooling the PMMA plates to -18°C, and adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the variability. Only adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the mean ablation performance. The ablation performance of higher-repetition-rate excimer lasers on PMMA improved with improvements in the debris removal systems and shot pattern. More powerful debris removal systems and smart shot patterns in terms of thermal response improved the performance of these excimer lasers. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn; Shin, Kyung Sook

    2004-01-01

    We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (ρ 3 in group A; 12.4 ± 3.8 cm 3 in group B; 80.9 ± 9.9 cm 3 in group C; 45.3 ± 11.3 cm 3 in group D and 81.6 ± 8.6 cm 3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (ρ < 0.05): 53 ± 12 .deg. C in group A, 42 ± 2 .deg. C in group B, 93 ± 8 .deg. C in group C; 79 ± 12 .deg. C in group D and 83 ± 8 .deg.C in group E. Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with

  9. Thermal modelling using discrete vasculature for thermal therapy: A review

    NARCIS (Netherlands)

    Kok, H. Petra; Gellermann, Johanna; van den Berg, Cornelis A. T.; Stauffer, Paul R.; Hand, Jeffrey W.; Crezee, Johannes

    2013-01-01

    Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality, and substantial

  10. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Han-Yi; Lu, Li-An; Kang, Chiao-Wen; Wu, Ming-Fang; Lin, Chun-Yen

    2012-11-11

    High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  11. Identification of photoacoustic transients during pulsed laser ablation of the human temporal bone: an experimental model.

    Science.gov (United States)

    Wong, B J; Dickinson, M R; Berns, M W; Neev, J

    1996-12-01

    Laser ablation of hard tissues during neurotologic operations has been accomplished with continuous-wave (CW) lasers in the visible and midinfrared spectrum. The mechanism of ablation at these wavelengths is secondary to photothermal-induced tissue destruction. As a result, significant thermal damage to surrounding tissue may occur. Pulsed ultraviolet (UV) lasers have been suggested as an alternative to the argon, KTP-532, and CO2 lasers currently used in clinical practice. The pulse length of Excimer lasers are considerably shorter than the thermal diffusion time of bone tissue, and as a consequence thermal injury is minimal. This makes pulsed lasers an attractive tool for tissue ablation in the ear: in essence a "cold knife." However, the short pulse width of Excimer lasers (typically 10-150 ns) can create large thermoelastic stresses in the ablation specimen. This study identifies the presence of these photoacoustic waves during the Excimer laser treatment of the cadaveric human temporal bone. A XeCl (lambda = 308 nm, tau p = 12 ns) excimer laser was used to ablate hard tissue surrounding the oval window and facial ridge with energies of 75, 45, 25, and 12 mJ/pulse. Spot size was estimated to be 0.5 mm2. Custom high-frequency polyvinyldifluoride (PVDF) piezoelectric film transducers were fabricated and attached to the promontory, round window niche, and facial ridges. The signals were amplified using a low-noise preamplifier and recorded on a digitizing oscilloscope. Photoacoustic waves were clearly identified. Notably, large acoustic waves were measured on the promontory and on both sides of the facial ridge. The implications and clinical relevance of these findings is discussed and compared to findings obtained from a model system.

  12. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-08-15

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs.

  13. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    International Nuclear Information System (INIS)

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak

    2008-01-01

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs

  14. In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology

    NARCIS (Netherlands)

    Hoogenboom, M.; Eikelenboom, D.C.; Brok, M.H. den; Veltien, A.A.; Wassink, M.; Wesseling, P.; Dumont, E.; Futterer, J.J.; Adema, G.J.; Heerschap, A.

    2016-01-01

    Boiling histotripsy (BH) is a new high intensity focused ultrasound (HIFU) ablation technique to mechanically fragmentize soft tissue into submicrometer fragments. So far, ultrasound has been used for BH treatment guidance and evaluation. The in vivo histopathological effects of this treatment are

  15. MR-Guided Laser Ablation of Osteoid Osteoma in an Open High-Field System (1.0 T)

    International Nuclear Information System (INIS)

    Streitparth, F.; Gebauer, B.; Melcher, I.; Schaser, K.; Philipp, C.; Rump, J.; Hamm, B.; Teichgraeber, U.

    2009-01-01

    Computed tomography is the standard imaging modality to minimize the extent of surgical or ablative treatment in osteoid osteomas. In the last 15 years, since a description of thermal ablation of osteoid osteomas was first published, this technique has become a treatment of choice for this tumor. We report the case of a 20-year-old man with an osteoid osteoma treated with laser ablation in an open high-field magnetic resonance imaging scanner (1.0 T). The tumor, located in the right fibula, was safely and effectively ablated under online monitoring. We describe the steps of this interventional procedure and discuss related innovative guidance and monitoring features and potential benefits compared with computed tomographic guidance.

  16. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  17. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  18. Potassium titanyl phosphate laser tissue ablation: development and experimental validation of a new numerical model.

    Science.gov (United States)

    Elkhalil, Hossam; Akkin, Taner; Pearce, John; Bischof, John

    2012-10-01

    The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., "ablation" in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation E(ab)). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm(3)/s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.

  19. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing.

    Science.gov (United States)

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2008-05-01

    The drive to attain cosmetic facial enhancement with minimal risk and rapid recovery has inspired the field of nonsurgical skin rejuvenation. Laser resurfacing was introduced in the 1980s with continuous wave carbon dioxide (CO(2)) lasers; however, because of a high rate of side effects, including scarring, short-pulse, high-peak power, and rapidly scanned, focused-beam CO(2) lasers and normal-mode erbium-doped yttrium aluminium garnet lasers were developed, which remove skin in a precisely controlled manner. The prolonged 2-week recovery time and small but significant complication risk prompted the development of non-ablative and, more recently, fractional resurfacing in order to minimize risk and shorten recovery times. Nonablative resurfacing produces dermal thermal injury to improve rhytides and photodamage while preserving the epidermis. Fractional resurfacing thermally ablates microscopic columns of epidermal and dermal tissue in regularly spaced arrays over a fraction of the skin surface. This intermediate approach increases efficacy as compared to nonablative resurfacing, but with faster recovery as compared to ablative resurfacing. Neither nonablative nor fractional resurfacing produces results comparable to ablative laser skin resurfacing, but both have become much more popular than the latter because the risks of treatment are limited in the face of acceptable improvement. At the completion of this learning activity, participants should be familiar with the spectrum of lasers and light technologies available for skin resurfacing, published studies of safety and efficacy, indications, methodologies, side effects, complications, and management.

  20. Synthesis and characterization of a novel laser ablation sensitive triazene incorporated epoxy resin

    KAUST Repository

    Patole, Archana S.; Hyeon, Jeong min; Hyun, Jung Mn; Kim, Tae Ho; Patole, Shashikant P.; Hong, Dae Jo; Lee, Chang Bo; Choi, Cheol Ho

    2014-01-01

    . Thermogravimetrical investigations indicate the loss of nitrogen being the initial thermal decomposition step and exhibit sufficient stabilities for the requirements for laser ablation application. Fourier transform infra-red, nuclear magnetic resonance, and gas

  1. Ablation Behavior of Plasma-Sprayed La1-xSrxTiO3+δ Coating Irradiated by High-Intensity Continuous Laser.

    Science.gov (United States)

    Zhu, Jinpeng; Ma, Zhuang; Gao, Yinjun; Gao, Lihong; Pervak, Vladimir; Wang, Lijun; Wei, Chenghua; Wang, Fuchi

    2017-10-11

    Laser protection for optical components, particularly those in high-power laser systems, has been a major concern. La 1-x Sr x TiO 3+δ with its good optical and thermal properties can be potentially applied as a high-temperature optical protective coating or high-reflectivity material for optical components. However, the high-power laser ablation behavior of plasma-sprayed La 1-x Sr x TiO 3+δ (x = 0.1) coatings has rarely been investigated. Thus, in this study, laser irradiation experiments were performed to study the effect of high-intensity continuous laser on the ablation behavior of the La 1-x Sr x TiO 3+δ coating. The results show that the La 1-x Sr x TiO 3+δ coating undergoes three ablation stages during laser irradiation: coating oxidation, formation and growth of new structures (columnar and dendritic crystals), and mechanical failure. A finite-element simulation was also conducted to explore the mechanism of the ablation damage to the La 1-x Sr x TiO 3+δ coating and provided a good understanding of the ablation behavior. The apparent ablation characteristics are attributed to the different temperature gradients determined by the reflectivity and thermal diffusivity of the La 1-x Sr x TiO 3+δ coating material, which are critical factors for improving the antilaser ablation property. Now, the stainless steel substrate deposited by it can effectively work as a protective shield layer against ablation by laser irradiation.

  2. Risk Factors for Bile Duct Injury After Percutaneous Thermal Ablation of Malignant Liver Tumors: A Retrospective Case-Control Study.

    Science.gov (United States)

    Lin, Man-Xia; Ye, Jie-Yi; Tian, Wen-Shuo; Xu, Ming; Zhuang, Bo-Wen; Lu, Ming-De; Xie, Xiao-Yan; Kuang, Ming

    2017-04-01

    Bile duct injury after ablation of malignant liver tumors (MLTs) was not unusual and should be avoided. However, few studies have focused on evaluating the risk factors for intrahepatic bile duct injury. To evaluate the risk factors for intrahepatic bile duct injury after ablation of MLTs and to evaluate the minimum safe distance for ablating tumors abutting bile ducts. Sixty-five patients with intrahepatic bile duct injury after ablation of MLTs, and 65 controls were recruited. Risk factors for intrahepatic bile duct injury were analyzed. Tumor location was recorded as ≤5 mm (group A), 5-10 mm (group B), and >10 mm (group C) from the right/left main duct or segmental bile duct. Ascites history (P bile duct dilatation before ablation (P bile duct injury. Significant differences in the risk of intrahepatic bile duct injury were found between groups B and C (P = 0.000), but not between groups A and B (P = 0.751). Ascites history (P = 0.002) and tumor location (P Bile duct injury after ablation of MLTs was the result of local treatment-related factors combined with the patients' general condition. The minimum safe distance for ablation of tumor abutting a bile duct was 10 mm.

  3. Synthesis and characterization of a novel laser ablation sensitive triazene incorporated epoxy resin

    KAUST Repository

    Patole, Archana S.

    2014-01-01

    New triazene monomer was synthesized and further employed as a crosslinking agent partner with epoxy matrix using ethyl methyl imidazole as a curing agent in order to investigate the effect of triazene moieties on polymeric properties for laser ablation application. The synthesized triazene monomer was characterized by analytical and spectroscopic methods, while the surface morphology of resist after laser ablation was visualized by optical laser scanning images and scanning electron microscopy. Thermogravimetrical investigations indicate the loss of nitrogen being the initial thermal decomposition step and exhibit sufficient stabilities for the requirements for laser ablation application. Fourier transform infra-red, nuclear magnetic resonance, and gas chromatography analyses showed the successful synthesis of triazene. The ablation results from the optical laser scanning images revealed that the etching depth could be controlled by varying the concentration of triazene monomer in the formulation of epoxy. The shear strength analysis revealed that that the shear strength increased with increasing the amount of triazene in the formulation of direct ablation sensitive resist. © 2014 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht.

  4. Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin.

    Science.gov (United States)

    Iancu, Cornel; Mocan, Lucian; Bele, Constantin; Orza, Anamaria Ioana; Tabaran, Flaviu A; Catoi, Cornel; Stiufiuc, Rares; Stir, Ariana; Matea, Cristian; Iancu, Dana; Agoston-Coldea, Lucia; Zaharie, Florin; Mocan, Teodora

    2011-01-17

    The main goal of this investigation was to develop and test a new method of treatment for human hepatocellular carcinoma (HCC). We present a method of carbon nanotube-enhanced laser thermal ablation of HepG2 cells (human hepatocellular liver carcinoma cell line) based on a simple multiwalled carbon nanotube (MWCNT) carrier system, such as human serum albumin (HSA), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. Both HepG2 cells and hepatocytes were treated with HSA-MWCNTs at various concentrations and at various incubation times and further irradiated using a 2 W, 808 nm laser beam. Transmission electron, phase contrast, and confocal microscopy combined with immunochemical staining were used to demonstrate the selective internalization of HSA-MWCNTs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. The postirradiation apoptotic rate of HepG2 cells treated with HSA-MWCNTs ranged from 88.24% (for 50 mg/L) at 60 sec to 92.34% (for 50 mg/L) at 30 min. Significantly lower necrotic rates were obtained when human hepatocytes were treated with HSA-MWCNTs in a similar manner. Our results clearly show that HSA-MWCNTs selectively attach on the albondin (aka Gp60) receptor located on the HepG2 membrane, followed by an uptake through a caveolin-dependent endocytosis process. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.

  5. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    Science.gov (United States)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  6. Dynamics of tissue shrinkage during ablative temperature exposures

    International Nuclear Information System (INIS)

    Rossmann, Christian; Haemmerich, Dieter; Garrett-Mayer, Elizabeth; Rattay, Frank

    2014-01-01

    There is a lack of studies that examine the dynamics of heat-induced shrinkage of organ tissues. Clinical procedures such as radiofrequency ablation, microwave ablation or high-intensity focused ultrasound, use heat to treat diseases such as cancer and cardiac arrhythmia. When heat is applied to tissues, shrinkage occurs due to protein denaturation, dehydration and contraction of collagen at temperatures greater 50 °C. This is particularly relevant for image-guided procedures such as tumor ablation, where pre- and post-treatment images are compared and any changes in dimensions must be considered to avoid misinterpretations of the treatment outcome. We present data from ex vivo, isothermal shrinkage tests in porcine liver tissue, where axial changes in tissue length were recorded during 15 min of heating to temperatures between 60 and 95 °C. A mathematical model was developed to accurately describe the time and temperature-dependent shrinkage behavior. The shrinkage dynamics had the same characteristics independent of temperature; the estimated relative shrinkage, adjusted for time since death, after 15 min heating to temperatures of 60, 65, 75, 85 and 95 °C, was 12.3, 13.8, 16.6, 19.2 and 21.7%, respectively. Our results demonstrate the shrinkage dynamics of organ tissues, and suggest the importance of considering tissue shrinkage for thermal ablative treatments. (paper)

  7. Pathological effects of lung radiofrequency ablation that contribute to pneumothorax, using a porcine model.

    Science.gov (United States)

    Izaaryene, Jean; Cohen, Frederic; Souteyrand, Philippe; Rolland, Pierre-Henri; Vidal, Vincent; Bartoli, Jean-Michel; Secq, Veronique; Gaubert, Jean-Yves

    2017-11-01

    The incidence of pneumothorax is 7 times higher after lung radiofrequency ablation (RFA) than after lung biopsy. The reasons for such a difference have never been objectified. The histopathologic changes in lung tissue are well-studied and established for RF in the ablation zone. However, it has not been previously described what the nature of thermal injury might be along the shaft of the RF electrode as it traverses through normal lung tissue to reach the ablation zone. The purpose of this study was to determine the changes occurring around the RF needle along the pathway between the ablated zone and the pleura. In 3 anaesthetised and ventilated swine, 6 RFA procedures (right and left lungs) were performed using a 14-gauge unipolar multi-tined retractable 3 cm radiofrequency LeVeen probe with a coaxial introducer positioned under CT fluoroscopic guidance. In compliance with literature guidelines, we implemented a gradually increasing thermo-ablation protocol using a RF generator. Helical CT images were acquired pre- and post-RFA procedure to detect and evaluate pneumothorax. Four percutaneous 19-gauge lung biopsies were also performed on the fourth swine under CT guidance. Swine were sacrificed for lung ex vivo examinations, scanning electron microscopy (SEM) and pathological analysis. Three severe (over 50 ml) pneumothorax were detected after RFA. In each one of them, pathological examination revealed a fistulous tract between ablation zone and pleura. No fistulous tract was observed after biopsies. In the 3 cases of severe pneumothorax, the tract was wide open and clearly visible on post procedure CT images and SEM examinations. The RFA tract differed from the needle biopsy tract. The histological changes that are usually found in the ablated zone were observed in the RFA tract's wall and were related to thermal lesions. These modifications caused the creation of a coagulated pulmonary parenchyma rim between the thermo-ablation zone and the pleural space

  8. Percutaneous Irreversible Electroporation Lung Ablation: Preliminary Results in a Porcine Model

    International Nuclear Information System (INIS)

    Deodhar, Ajita; Monette, Sébastien; Single, Gordon W.; Hamilton, William C.; Thornton, Raymond H.; Sofocleous, Constantinos T.; Maybody, Majid; Solomon, Stephen B.

    2011-01-01

    Objective: Irreversible electroporation (IRE) uses direct electrical pulses to create permanent “pores” in cell membranes to cause cell death. In contrast to conventional modalities, IRE has a nonthermal mechanism of action. Our objective was to study the histopathological and imaging features of IRE in normal swine lung. Materials and Methods: Eleven female swine were studied for hyperacute (8 h), acute (24 h), subacute (96 h), and chronic (3 week) effects of IRE ablation in lung. Paired unipolar IRE applicators were placed under computed tomography (CT) guidance. Some applicators were deliberately positioned near bronchovascular structures. IRE pulse delivery was synchronized with the cardiac rhythm only when ablation was performed within 2 cm of the heart. Contrast-enhanced CT scan was performed immediately before and after IRE and at 1 and 3 weeks after IRE ablation. Representative tissue was stained with hematoxylin and eosin for histopathology. Results: Twenty-five ablations were created: ten hyperacute, four acute, and three subacute ablations showed alveolar edema and necrosis with necrosis of bronchial, bronchiolar, and vascular epithelium. Bronchovascular architecture was maintained. Chronic ablations showed bronchiolitis obliterans and alveolar interstitial fibrosis. Immediate post-procedure CT images showed linear or patchy density along the applicator tract. At 1 week, there was consolidation that resolved partially or completely by 3 weeks. Pneumothorax requiring chest tube developed in two animals; no significant cardiac arrhythmias were noted. Conclusion: Our preliminary porcine study demonstrates the nonthermal and extracellular matrix sparing mechanism of action of IRE. IRE is a potential alternative to thermal ablative modalities.

  9. MR thermometry for monitoring tumor ablation

    International Nuclear Information System (INIS)

    Senneville, Baudouin D. de; Quesson, Bruno; Dragonu, Iulius; Moonen, Chrit T.W.; Mougenot, Charles; Grenier, Nicolas

    2007-01-01

    Local thermal therapies are increasingly used in the clinic for tissue ablation. During energy deposition, the actual tissue temperature is difficult to estimate since physiological processes may modify local heat conduction and energy absorption. Blood flow may increase during temperature increase and thus change heat conduction. In order to improve the therapeutic efficiency and the safety of the intervention, mapping of temperature and thermal dose appear to offer the best strategy to optimize such interventions and to provide therapy endpoints. MRI can be used to monitor local temperature changes during thermal therapies. On-line availability of dynamic temperature mapping allows prediction of tissue death during the intervention based on semi-empirical thermal dose calculations. Much progress has been made recently in MR thermometry research, and some applications are appearing in the clinic. In this paper, the principles of MRI temperature mapping are described with special emphasis on methods employing the temperature dependency of the water proton resonance frequency. Then, the prospects and requirements for widespread applications of MR thermometry in the clinic are evaluated. (orig.)

  10. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    International Nuclear Information System (INIS)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-01-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  11. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon [Manufacturing Processes Department, Fundacion TEKNIKER, Av. Otaola 20, 20600, Eibar, Guipuzcoa (Spain); Lejardi, Ainhoa; Sarasua, Jose-Ramon [Department of Mining and Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  12. A cooled intraesophageal balloon to prevent thermal injury during endocardial surgical radiofrequency ablation of the left atrium: a finite element study

    Energy Technology Data Exchange (ETDEWEB)

    Berjano, Enrique J [Center for Research and Innovation on Bioengineering, Valencia Polytechnic University, Camino de Vera s/n, 46022 Valencia (Spain); Hornero, Fernando [Cardiac Surgery Department, Valencia University General Hospital, Avd Tres Cruces s/n, 46014, Valencia (Spain)

    2005-10-21

    Recent clinical studies on intraoperative monopolar radiofrequency ablation of atrial fibrillation have reported some cases of injury to the esophagus. The aim of this study was to perform computer simulations using three-dimensional finite element models in order to investigate the feasibility of a cooled intraesophageal balloon appropriately placed to prevent injury. The models included atrial tissue and a fragment of esophagus and lung linked by connective tissue. The lesion depth in the esophagus was assessed using a 50 deg. C isotherm and expressed as a percentage of thickness of the esophageal wall. The results are as follows: (1) chilling the esophagus by means of a cooled balloon placed in the lumen minimizes the lesion in the esophageal wall compared to the cases in which no balloon is used (a collapsed esophagus) and with a non-cooled balloon; (2) the temperature of the cooling fluid has a more significant effect on the minimization of the lesion than the rate of cooling (the thermal transfer coefficient for forced convection); and (3) pre-cooling periods previous to RF ablation do not represent a significant improvement. Finally, the results also suggest that the use of a cooled balloon could affect the transmurality of the atrial lesion, especially in the cases where the atrium is of considerable thickness. (note)

  13. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    International Nuclear Information System (INIS)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-01-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes

  14. Non-Fourier heat conduction and phase transition in laser ablation of polytetrafluoroethylene (PTFE)

    Science.gov (United States)

    Zhang, Yu; Zhang, Daixian; Wu, Jianjun; Li, Jian; He, Zhaofu

    2017-11-01

    The phase transition in heat conduction of polytetrafluoroethylene-like polymers was investigated and applied in many fields of science and engineering. Considering more details including internal absorption of laser radiation, reflectivity of material and non-Fourier effect etc., the combined heat conduction and phase transition in laser ablation of polytetrafluoroethylene were modeled and investigated numerically. The thermal and mechanic issues in laser ablation were illustrated and analyzed. Especially, the phenomenon of temperature discontinuity formed in the combined phase transition and non-Fourier heat conduction was discussed. Comparisons of target temperature profiles between Fourier and non-Fourier heat conduction in melting process were implemented. It was indicated that the effect of non-Fourier plays an important role in the temperature evolvement. The effect of laser fluence was proven to be significant and the thermal wave propagation was independent on the laser intensity for the non-Fourier heat conduction. Besides, the effect of absorption coefficients on temperature evolvements was studied. For different ranges of absorption coefficients, different temperature evolvements can be achieved. The above numerical simulation provided insight into physical processes of combined non-Fourier heat conduction and phase transition in laser ablation.

  15. Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Freitas, A Z; Samad, R E; Zezell, D M; Vieira Jr, N D; Freschi, L R; Gouw-Soares, S C

    2010-01-01

    The use of laser for caries removal and cavity preparation is already a reality in the dental clinic. The objective of the present study was to consider the viability of ultrashort laser pulses for restorative material selective removal, by determining the ablation threshold fluence for composite resins and amalgam irradiated with femtosecond laser pulses. Lasers pulses centered at 830 nm with 50 fs of duration and 1 kHz of repetition rate, with energies in the range of 300 to 770 μJ were used to irradiate the samples. The samples were irradiated using two different geometrical methods for ablation threshold fluence determinations and the volume ablation was measured by optical coherence tomography. The shape of the ablated surfaces were analyzed by optical microscopy and scanning electron microscopy. The determined ablation threshold fluence is 0.35 J/cm 2 for the composite resins Z-100 and Z-350, and 0.25 J/cm 2 for the amalgam. These values are half of the value for enamel in this temporal regime. Thermal damages were not observed in the samples. Using the OCT technique (optical coherence tomography) was possible to determine the ablated volume and the total mass removed

  16. Radiofrequency Ablation of Lung Tumors

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  17. Non-coaxial-based microwave ablation antennas for creating symmetric and asymmetric coagulation zones

    Science.gov (United States)

    Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad, Nader

    2018-06-01

    We present an investigation of a new class of microwave ablation (MWA) antennas capable of producing axially symmetric or asymmetric heating patterns. The antenna design is based on a dipole fed by a balanced parallel-wire transmission line. The angle and direction of the deployed dipole arms are used to control the heating pattern. We analyzed the specific absorption rate and temperature profiles using electromagnetic and thermal simulations. Two prototypes were fabricated and tested in ex vivo ablation experiments: one was designed to produce symmetric heating patterns and the other was designed to generate asymmetric heating patterns. Both fabricated prototypes exhibited good impedance matching and produced localized coagulation zones as predicted by the simulations. The prototype operating in porcine muscle created an ˜10 cm3 symmetric ablation zone after 10 min of ablation with a power level of 18 W. The prototype operating in egg white created an ˜4 cm3 asymmetric ablation zone with a directionality ratio of 40% after 5 min of ablation with a power level of 25 W. The proposed MWA antenna design shows promise for minimally invasive treatment of tumors in various clinical scenarios where, depending on the situation, a symmetric or an asymmetric heating pattern may be needed.

  18. Feasibility of saline infusion on the liver surface during radiofrequency ablation of subcapsuIar hepatic tumor: an experimentaI study

    International Nuclear Information System (INIS)

    Lee, Young Rang; Kim, Young Sun; Rhim, Hyun Chul; Seo, Heung Suk; Cho, On Koo; Koh, Byung Hee; Kim, Yong Soo; Kim, Sung Kyu; Paik, Seung Sam

    2004-01-01

    The purpose of the study was to evaluate the feasibility of infusion of normal saline onto the surface of the liver capsule for minimizing thermal injury of the adjacent organs during radiofrequency ablation of subcapsular hepatic tumor in an ex-vivo porcine model. We used porcine small bowel with it's serosal surface spread onto the porcine liver as an experiment model. The puncturing electrode was inserted into a 6 Fr introducer sheath, and the introducer sheath was connected to the infusion pump for creating a saline flow over the liver surface. A total of 15 ablations were divided into the control group (n=5), intermittent saline infusion group (n=5) and continuous saline infusion (n=5) group. The ablations were done during 3 minutes, and the infusion was set at 2 ml/min and stopped every 30 seconds in the intermittent saline infusion group. After the ablation, we measured the size of the ablated lesion on the surface of bowel and liver, and we also measured the depth of hepatic lesion. Ablated areas of bowel and liver surface in the control group, intermittent saline infusion group and continuous infusion group were 210.7±89.1 mm 2 , 74.6±27.2 mm 2 and 35.8±43.4 mm 2 , respectively, and 312.6±73.6 mm 2 , 228.4±110.5 mm 2 , and 80.9±55.1 mm 2 , respectively. In contrast to the broad base of the ablated area on the surface of the liver in the control group, the shapes of the lesions became narrower approaching to the liver surface in all cases of the continuous saline infusion group, and the shapes of the lesions were broad based in 3 cases and narrow based in 2 cases of the intermittent saline infusion group. Continuous infusion of normaI saline onto the surface of the liver during radiofrequency ablation of subcapsular hepatic tumor is a feasible method for minimizing thermal injury of the adjacent organs. Further exploration of the optimal parameters or techniques to maximize the hepatic ablation and simultaneously to minimize the thermal injury of

  19. An inverse method for non linear ablative thermics with experimentation of automatic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Alestra, S [Simulation Information Technology and Systems Engineering, EADS IW Toulouse (France); Collinet, J [Re-entry Systems and Technologies, EADS ASTRIUM ST, Les Mureaux (France); Dubois, F [Professor of Applied Mathematics, Conservatoire National des Arts et Metiers Paris (France)], E-mail: stephane.alestra@eads.net, E-mail: jean.collinet@astrium.eads.net, E-mail: fdubois@cnam.fr

    2008-11-01

    Thermal Protection System is a key element for atmospheric re-entry missions of aerospace vehicles. The high level of heat fluxes encountered in such missions has a direct effect on mass balance of the heat shield. Consequently, the identification of heat fluxes is of great industrial interest but is in flight only available by indirect methods based on temperature measurements. This paper is concerned with inverse analyses of highly evolutive heat fluxes. An inverse problem is used to estimate transient surface heat fluxes (convection coefficient), for degradable thermal material (ablation and pyrolysis), by using time domain temperature measurements on thermal protection. The inverse problem is formulated as a minimization problem involving an objective functional, through an optimization loop. An optimal control formulation (Lagrangian, adjoint and gradient steepest descent method combined with quasi-Newton method computations) is then developed and applied, using Monopyro, a transient one-dimensional thermal model with one moving boundary (ablative surface) that has been developed since many years by ASTRIUM-ST. To compute numerically the adjoint and gradient quantities, for the inverse problem in heat convection coefficient, we have used both an analytical manual differentiation and an Automatic Differentiation (AD) engine tool, Tapenade, developed at INRIA Sophia-Antipolis by the TROPICS team. Several validation test cases, using synthetic temperature measurements are carried out, by applying the results of the inverse method with minimization algorithm. Accurate results of identification on high fluxes test cases, and good agreement for temperatures restitutions, are obtained, without and with ablation and pyrolysis, using bad fluxes initial guesses. First encouraging results with an automatic differentiation procedure are also presented in this paper.

  20. Influence of water content on the ablation of skin with a 532 nm nanosecond Nd:YAG laser

    Science.gov (United States)

    Kim, Soogeun; Eom, Tae Joong; Jeong, Sungho

    2015-01-01

    This work reports that the ablation volume and rate of porcine skin changed significantly with the change of skin water content. Under the same laser irradiation conditions (532 nm Nd:YAG laser, pulse width=11.5 ns, pulse energy=1.54 J, beam radius=0.54 mm), the ablation volume dropped by a factor of 4 as the skin water content decreased from 40 wt. % (native) to 19 wt. % with a change in the ablation rate below and above around 25 wt. %. Based on the ablation characteristics observed by in situ shadowgraph images and the calculated tissue temperatures, it is considered that an explosive rupture by rapid volumetric vaporization of water is responsible for the ablation of the high water content of skin, whereas thermal disintegration of directly irradiated surface layer is responsible for the low water content of skin.

  1. Thermal Protection System Mass Estimating Relationships For Blunt-Body, Earth Entry Spacecraft

    Science.gov (United States)

    Sepka, Steven A.; Samareh, Jamshid A.

    2015-01-01

    Mass estimating relationships (MERs) are developed to predict the amount of thermal protection system (TPS) necessary for safe Earth entry for blunt-body spacecraft using simple correlations that are non-ITAR and closely match estimates from NASA's highfidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA- 561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER can under predict FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.

  2. Temperature changes in the pulp chamber during dentin ablation with Er:YAG laser

    Science.gov (United States)

    Zhang, Xianzeng; Zhao, Haibin; Zhan, Zhenlin; Guo, Wenqing; Xie, Shusen

    2012-12-01

    To examine the temperature changes in the pulp chamber during cavity preparation in dentin with the Er:YAG laser (2940 nm), a total 20 intact premolars teeth were divided into 4 groups for dentin ablation with different radiant exposures at 4Hz and 8Hz with and without water spray. A K-type thermocouple was used to monitor the temperature changes in pulp chamber during laser treatment. The total time of irradiation was 70 sec. the water spray rate was 3 mL/min. It showed that maximum temperature rise increases with the increasing of radiant exposure and pulse repetition rate and the additional water cooling during laser ablation can significantly reduce the temperature rise in pulp chamber which will benefit to avoid or reduce thermal damage to tooth structure and dental pulp. The highest rise of temperature in the pulp was achieved with 20 J/cm2 and 8 Hz (19.83°C ). For all sample without water spray, the rise of temperature was exceed 5 °C . In contrast, with water spray, the temperature rise in the pulp can be firmly controlled under 1°C. The results also indicated that ablation rate and efficiency can be enhanced by increasing the incident radiant exposure and pulse repetition rate, which simultaneously producing more heat accumulation in dental tissue and causing thermal damage to dental tissue. By applying an additional water spray, thermal damage can be significantly reduced in clinical application.

  3. Interference-free ultrasound imaging during HIFU therapy, using software tools

    Science.gov (United States)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  4. Plasma-mediated ablation for the management of obstructive sleep apnea

    Science.gov (United States)

    Puchalski, Robert; Shah, Udayan K.

    2000-05-01

    Plasma-mediated ablation (PMA) removes tissue by developing an electrically induced plasma layer between the instrument and target tissue. Charged particles within the plasma field then accelerate toward the tissue, breaking the molecular bonds within the top layer of tissue. Thermal damage to collateral tissue is minimal, resulting in the moniker, 'cold' ablation, for this method. Recently, instrumentation has been developed to permit application for soft tissue resection in Otolaryngology. Presentation of the theory, as well as the benefits and disadvantages associated with CoblationTM technology will be followed by examples of its use. A brief videotape will demonstrate the application of PMA for UPPP, tonsillectomy and nasal turbinate reduction. Preliminary experience from our institution, including eighteen children treated with tonsillectomy and followed for at least one month post-operatively, has provided an initial cohort for comparing the risks and benefits of the approach. The advantage of CoblationTM technology identified thus far, that of less thermal damage, is balanced against a decreased level of hemostasis (compared to MES) and an increased cost.

  5. Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen

    International Nuclear Information System (INIS)

    Gélat, P; Ter Haar, G; Saffari, N

    2013-01-01

    The efficacy of high intensity focused ultrasound (HIFU) for the non-invasive treatment of cancer has been demonstrated for a range of different cancers including those of the liver, kidney, prostate and breast. As a non-invasive focused therapy, HIFU offers considerable advantages over other techniques such as chemotherapy and surgical resection, in terms of its non-invasiveness and low risk of harmful side effects. There is, however, a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to induce tissue necrosis at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. As such, a common side effect of focusing ultrasound in regions located behind the rib cage is the overheating of bone and surrounding tissue, which can lead to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy are deposited. This is likely to rely on a treatment planning procedure in which optimal source velocity distributions are obtained so as to maximise a dose quantity at the treatment sites, whilst ensuring that this quantity does not exceed a specified threshold at other field locations, particularly on the surface of the ribs. Previously, a boundary element approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. This work describes the reformulation of the boundary element equations as a least-squares minimisation problem with non-linear constraints. The methodology was subsequently tested at an excitation frequency of 100 kHz on a spherical multi-element array in the presence

  6. Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen

    Science.gov (United States)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2013-08-01

    The efficacy of high intensity focused ultrasound (HIFU) for the non-invasive treatment of cancer has been demonstrated for a range of different cancers including those of the liver, kidney, prostate and breast. As a non-invasive focused therapy, HIFU offers considerable advantages over other techniques such as chemotherapy and surgical resection, in terms of its non-invasiveness and low risk of harmful side effects. There is, however, a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to induce tissue necrosis at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. As such, a common side effect of focusing ultrasound in regions located behind the rib cage is the overheating of bone and surrounding tissue, which can lead to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy are deposited. This is likely to rely on a treatment planning procedure in which optimal source velocity distributions are obtained so as to maximise a dose quantity at the treatment sites, whilst ensuring that this quantity does not exceed a specified threshold at other field locations, particularly on the surface of the ribs. Previously, a boundary element approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. This work describes the reformulation of the boundary element equations as a least-squares minimisation problem with non-linear constraints. The methodology was subsequently tested at an excitation frequency of 100 kHz on a spherical multi-element array in the presence

  7. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    Science.gov (United States)

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  8. Effect of ablatant composition on the ablation of a fuelling pellet

    International Nuclear Information System (INIS)

    Chang, C.T.; Thomsen, K.; Piret, S.

    1988-01-01

    The single species neutral-shielding model for the ablation of a hydrogenic pellet is extended by considering the ablatant as a mixture of four species: molecular and atomic hydrogen, protons and electrons. Compared with the results of the frozen flow, (i.e. the single species molecular hydrogen gas model), results of the analysis showed that the presence of dissociation and ionization effects caused a marked difference of the ablatant state. The attenuations of the incoming electron energy and energy flux, however, are very much similar irrespective of whether the ablated flow is in a frozen or an equilibrium state. The scaling law of the pellet ablation rate with respect to the plasma state of Te, ne and the pellet radius remains the same; the ablation rate is reduced by approximately 15%. To examine the possible existence of a spherical shell around the pellet where most of the incoming electron energy is absorbed, acodmparison is made between the local electron collisional mean free path and the electron Larmor radius. A critical field at the ionization radius is evaluated. An effective spherical energyabsorbing region exists when the local field strength is below the critical value. For a plasma state of low Te and ne, (where the ablatant is hardly ionized), and for one near the thermonuclear condition (where a highly dense ablatant exists near the pellet), the effective energy absorption region is nearly spherical. 20 refs. (author)

  9. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-08-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes.

  10. Processing of Dielectric Optical Coatings by Nanosecond and Femtosecond UV Laser Ablation

    International Nuclear Information System (INIS)

    Ihlemann, J.; Bekesi, J.; Klein-Wiele, J.H.; Simon, P.

    2008-01-01

    Micro processing of dielectric optical coatings by UV laser ablation is demonstrated. Excimer laser ablation at deep UV wavelengths (248 nm, 193 nm) is used for the patterning of thin oxide films or layer stacks. The layer removal over extended areas as well as sub-μm-structuring is possible. The ablation of SiO2, Al2O3, HfO2, and Ta2O5 layers and layer systems has been investigated. Due to their optical, chemical, and thermal stability, these inorganic film materials are well suited for optical applications, even if UV-transparency is required. Transparent patterned films of SiO2 are produced by patterning a UV-absorbing precursor SiOx suboxide layer and oxidizing it afterwards to SiO2. In contrast to laser ablation of bulk material, in the case of thin films, the layer-layer or layer-substrate boundaries act as predetermined end points, so that precise depth control and a very smooth surface can be achieved. For large area ablation, nanosecond lasers are well suited; for patterning with submicron resolution, femtosecond excimer lasers are applied. Thus the fabrication of optical elements like dielectric masks, pixelated diffractive elements, and gratings can be accomplished.

  11. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    Science.gov (United States)

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  12. Thermal Analysis of the Fastrac Chamber/Nozzle

    Science.gov (United States)

    Davis, Darrell

    2001-01-01

    This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the Fastrac 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.

  13. Ultrasound-guided percutaneous radiofrequency ablation of liver tumors: How we do it safety and completely

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woong; Shin, Sang Soo; Heo, Suk Hee; Hong, Jun Hyung; Lim, Hyo Soon; Seon, Hyun Ju; Hur, Young Hoe; Park, Chang Hwan; Jeong, Yong Yeon; Kang, Heoung Keun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2015-12-15

    Ultrasound-guided percutaneous radiofrequency (RF) ablation has become one of the most promising local cancer therapies for both resectable and nonresectable hepatic tumors. Although RF ablation is a safe and effective technique for the treatment of liver tumors, the outcome of treatment can be closely related to the location and shape of the tumors. There may be difficulties with RF ablation of tumors that are adjacent to large vessels or extrahepatic heat-vulnerable organs and tumors in the caudate lobe, possibly resulting in major complications or treatment failure. Thus, a number of strategies have been developed to overcome these challenges, which include artificial ascites, needle track ablation, fusion imaging guidance, parallel targeting, bypass targeting, etc. Operators need to use the right strategy in the right situation to avoid the possibility of complications and incomplete thermal tissue destruction; with the right strategy, RF ablation can be performed successfully, even for hepatic tumors in high-risk locations. This article offers technical strategies that can be used to effectively perform RF ablation as well as to minimize possible complications related to the procedure with representative cases and schematic illustrations.

  14. Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    Combined diagnostic measurements of deposition rates and ion time-of-flight signals have been employed to study the expansion of a laser ablation plume into a background gas. With increasing gas pressure the angular distribution of the collected ablated atoms becomes broader, while the total...

  15. Heat Sink Effect on Tumor Ablation Characteristics as Observed in Monopolar Radiofrequency, Bipolar Radiofrequency, and Microwave, Using Ex Vivo Calf Liver Model

    Science.gov (United States)

    Pillai, Krishna; Akhter, Javid; Chua, Terence C.; Shehata, Mena; Alzahrani, Nayef; Al-Alem, Issan; Morris, David L.

    2015-01-01

    Abstract Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices. With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored. With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres. Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected. Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5. MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink. PMID:25738477

  16. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  17. REAL-TIME ASSESSMENT OF MICROWAVE ABLATION EFFICACY BY NIR SPECTROSCOPIC TECHNIQUE

    Directory of Open Access Journals (Sweden)

    JINZHE ZHAO

    2014-01-01

    Full Text Available Microwave ablation (MWA status monitoring in real time plays a key role in assessment of therapeutic effectiveness. As a novel real-time assessment method, near infrared spectroscopy (NIRs was used to evaluate the ablation efficacy. MWA experiments were carried out on in vitro porcine livers. An optical measurement system for biological tissue is developed by our lab to monitor reduced scattering coefficient $(\\mu_{s}^{'}$ at 690 nm of the coagulation zones. It is noted that $\\mu_{s}^{'}$ of liver tissue, which increases as the liver tissue being ablated, is clearly related with the coagulation status. $\\mu_{s}^{'}$ of normal tissue and coagulated tissue is 3–5 and 17–19 cm-1, respectively. Continuous changes of $\\mu_{s}^{'}$ demonstrate that optical parameter can be used as an efficacy evaluation factor because it essentially indicates the degree of thermal damage. Compared with temperature, optical parameter is more sensitive and accurate, which is promising for real-time therapeutic efficacy assessment in MWA.

  18. Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters

    International Nuclear Information System (INIS)

    Pan, A.F.; Wang, W.J.; Mei, X.S.; Wang, K.D.; Zhao, W.Q.; Li, T.Q.

    2016-01-01

    Highlights: • A two-dimensional thermo-chemical reaction model is creatively built. • Thermal conductivity and heat capacity of β-Si_3N_4 are computed accurately. • The appropriate thermo-chemical reaction rate is fitted and reaction element length is set to assure the constringency. • The deepest ablated position was not the center of the ablated area due to plasma absorption. • The simulation results demonstrate the thermo-chemical process cant be simplified to be physical phase transition. - Abstract: In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si_3N_4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of β-Si_3N_4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si_3N_4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si_3N_4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si_3N_4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si_3N_4 was performed at different powers using a TEM_0_0 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the

  19. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2012-01-01

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 ± 0.14, 1.45 ± 0.13, and 1.74 ± 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 ± 0.09 and 1.26 ± 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 ± 0.65, 2.85 ± 0.72, and 4.45 ± 0.47 cm 3 for MW ablation at outputs of 25W, 35W, and 45W and 1.18 ± 0.30 and 2.29 ± 0.55 cm 3 got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  20. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation

    International Nuclear Information System (INIS)

    Subramanian, Swetha; Mast, T Douglas

    2015-01-01

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature. (note)

  1. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.

    Science.gov (United States)

    Subramanian, Swetha; Mast, T Douglas

    2015-10-07

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.

  2. Increase in Volume of Ablation Zones during Follow-up Is Highly Suggestive of Ablation Site Recurrence in Colorectal Liver Metastases Treated with Radiofrequency Ablation

    NARCIS (Netherlands)

    Kele, Petra G.; de Jong, Koert P.; van der Jagt, Eric J.

    Purpose: To test the hypothesis that volume changes of ablation zones (AZs) on successive computed tomography (CT) scans could predict ablation site recurrences (ASRs) in patients with colorectal liver metastases treated by radiofrequency (RF) ablation. Materials and Methods: RF ablation was

  3. Effect of liquid environment on the titanium surface modification by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Nisar, E-mail: chnisarali@gmail.com [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad (Pakistan); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Bashir, Shazia [Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Umm-i-Kalsoom [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Kala Shah Kaku Campus, Lahore (Pakistan); Begum, Narjis [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology Lahore (Pakistan); Husinsky, Wolfgang [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria)

    2017-05-31

    Highlights: • Liquid assisted ablation effects on the titanium under varying number of laser pulses is investigated. • SEM analysis reveals the growth of various features like ripples, dendritic structures, pores, grains and craters. • Raman and XRD analyses shows the presence of TiO{sub 2} & TiH in both media whereas, TiC, TiCxOy are only identified in propanol. • Hardness of ablated Ti explored by Nano indentation is found to decrease with increasing number of pulses in both media. • Relationship between surface, structural and mechanical modifications is established. - Abstract: The effect of liquid environment (de-ionized water and propanol) on surface, structural and mechanical properties of femtosecond laser ablated titanium has been investigated. For this purpose, Ti: sapphire laser (800 nm, 30 fs, 1 kHz) has been employed, at a fluence of 3.6 J/cm{sup 2} in ambient environments of de-ionized water, and propanol for various number of laser pulses i.e. 500, 1000, 1500 and 2000. The surface features, chemical composition, structural analysis and mechanical properties of irradiated targets have been evaluated by using Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X -ray Diffraction (XRD), Raman Spectroscopy and Nano-hardness tester. Various features like dendritic structures, globules, porous granular morphology, cones, crater, circular ripples and thermal stress cracking are observed at the ablated area after irradiation. These features are instigated by various thermal and chemical phenomena induced by laser heating at the solid–liquid interface. Decrease in nano-hardness observed in both ambient environments is attributable to the formation of hydrides after irradiation in both media.

  4. Ablation resistance and mechanical/conductive properties of ZrB{sub 2} reinforced carbon based composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.T.; Shi, J.L.; Zhang, H.; Zhang, G.B.; Guo, Q.G.; Liu, L. [Chinese Academy of Sciences, Taiyuan (China)

    2007-02-15

    Zirconium diboride reinforced carbon (ZrB{sub 2}/C) particulate composites are prepared from petroleum coke, coal tar pitch, and ZrB{sub 2} powder by hot-pressing. The ablation, mechanical, thermal, and electrical properties of the composites are studied. Results show that the composites have excellent flexural strength and thermal conductivity, with highest values reaching 131 MPa and 161 W/mK for a 10% ZrB{sub 2} addition in raw materials. The electrical resistivity reduces rapidly with increasing amount of ZrB{sub 2}. The values of mass and linear ablation rates are lower in the composites than those measured for pure carbon, decreasing with increasing ZrB{sub 2} content, confirming that these materials are promising for ultrahigh temperature materials. Correlations between properties and microstructure of the composites are also discussed.

  5. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    Science.gov (United States)

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  6. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vietze, Andrea, E-mail: anvie@gmx.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Koch, Franziska, E-mail: franzi_koch@hotmail.com [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Laskowski, Ulrich, E-mail: ulrich.laskowski@klinikum-luedenscheid.de [Department of Vascular and Thoracic Surgery, Klinikum Luedenscheid, Paulmannshoeher Strasse 14, 58515 Luedenscheid (Germany); Linder, Albert, E-mail: albert.linder@klinikum-bremen-ost.de [Department of Thoracic Surgery, Klinikum Bremen-Ost, Zuericher Strasse 40, 28325 Bremen (Germany); Hosten, Norbert, E-mail: hosten@uni-greifswald.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany)

    2011-11-15

    Purpose: Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. Materials and methods: An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 deg. C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. Results: The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 deg. C (mean value, P < 0.05); without ventilation it increased about 7.0 deg. C (mean value, P < 0.05). Conclusion: Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation.

  7. Ultrasound-guided laser thermal ablation in the treatment of autonomous hyperfunctioning thyroid nodules and compressive nontoxic nodular goiter.

    Science.gov (United States)

    Spiezia, Stefano; Vitale, Giovanni; Di Somma, Carolina; Pio Assanti, Angelo; Ciccarelli, Antonio; Lombardi, Gaetano; Colao, Annamaria

    2003-10-01

    Percutaneous laser thermal ablation (LTA) has been applied in several tumors. In this study we evaluated the safety and long-term efficacy of LTA in the treatment of benign thyroid nodules. Seven patients with autonomous hyperfunctioning thyroid nodule (group A) and five patients with compressive nodular goiter (group B) were treated with LTA. Up to three needles were positioned centrally in the thyroid nodule and laser fiber was placed in the lumen of the needle. Laser illumination was performed reaching a maximal energy deposition of 1800 J per fiber. Thyroid nodule volume, endocrinologic, and clinical evaluation were performed at baseline, 3, and 12 months after the treatment. Scintigraphy was performed at diagnosis and 12 months after the first session in group A. In group A, mean thyroid volume decreased from 3.15 +/- 1.26 mL to 0.83 +/- 0.49 mL (p thyroid volume decreased from 11.14 +/- 4.99 mL to 3.73 +/- 1.47 mL (p thyroid nodules.

  8. Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria—A 10-Year Update

    Science.gov (United States)

    Solbiati, Luigi; Brace, Christopher L.; Breen, David J.; Callstrom, Matthew R.; Charboneau, J. William; Chen, Min-Hua; Choi, Byung Ihn; de Baère, Thierry; Dodd, Gerald D.; Dupuy, Damian E.; Gervais, Debra A.; Gianfelice, David; Gillams, Alice R.; Lee, Fred T.; Leen, Edward; Lencioni, Riccardo; Littrup, Peter J.; Livraghi, Tito; Lu, David S.; McGahan, John P.; Meloni, Maria Franca; Nikolic, Boris; Pereira, Philippe L.; Liang, Ping; Rhim, Hyunchul; Rose, Steven C.; Salem, Riad; Sofocleous, Constantinos T.; Solomon, Stephen B.; Soulen, Michael C.; Tanaka, Masatoshi; Vogl, Thomas J.; Wood, Bradford J.; Goldberg, S. Nahum

    2014-01-01

    Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The breadth of options available in this growing field increases the need for standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison among treatments that use different technologies, such as chemical (eg, ethanol or acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated consensus document provides a framework that will facilitate the clearest communication among investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the various aspects of image-guided ablation therapy including classification of therapies, procedure terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. Methods are addressed for standardizing reporting of technique, follow-up, complications, and clinical results. As noted in the original document from 2003, adherence to the recommendations will improve the precision of communications in this field, leading to more accurate comparison of technologies and results, and ultimately to improved patient outcomes. © RSNA, 2014 Online supplemental material is available for this article. PMID:24927329

  9. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    Science.gov (United States)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  10. Saline-enhanced radiofrequency thermal ablation of the lung: a feasibility study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Min; Kim, Sang Won; Li, Chun Ai; Youk, Ji Hyun; Kim, Young Kon; Jin, Zhewu; Chung, Myoung Ja [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Mi Suk [Yangi Hospital, Seoul (Korea, Republic of)

    2002-12-01

    To assess the feasibility and safety of CT-guided percutaneous transthoracic radiofrequency ablation (RFA) with saline infusion of pulmonary tissue in rabbits. Twenty-eight New Zealand White rabbits were divided into two groups: an RFA group (n=10) and a saline-enhanced RFA (SRFA) group (n=18). In the RFA group, percutaneous RFA of the lung was performed under CT guidance and using a 17-gauge internally cooled electrode. In the SRFA group, 1.5 ml of 0.9% saline was infused slowly through a 21-gauge, polyteflon-coated Chiba needle prior to and during RFA. Lesion size and the healing process were studied in rabbits sacrificed at times from the day following treatment to three weeks after, and any complications were noted. In the SRFA group, the mean diameter (12.5{+-}1.6 mm) of acute RF lesions was greater than that of RFA lesions (8.5{+-}1.4 mm) (p < .05). The complications arising in 12 cases were pneumothorax (n=8), thermal injury to the chest wall (n=2), hemothorax (n=1), and lung abscess (n=1). Although procedure-related complications tended to occur more frequently in the SRFA group (55.6%) than in the RFA group (20%), the difference was not statistically significant (p .11). Saline-enhanced RFA of pulmonary tissue in rabbits produces more extensive coagulation necrosis than conventional RFA procedures, without adding substantial risk of serious complications.

  11. Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions

    International Nuclear Information System (INIS)

    Oraevsky, A.A.; Jacques, S.L.; Tittel, F.K.

    1995-01-01

    Pulsed laser ablation of aqueous medium irradiated under conditions of temporal confinement of thermal stress is described. Time-resolved measurements of laser-induced transient stress waves with simultaneous imaging of ablation process by laser-flash photography were performed. Stress transients induced in aqueous solution of K 2 CrO 4 by ablative nanosecond laser pulses at 355 nm were studied by a broad-band lithium niobate acoustic transducer. Recoil momentum upon material ejection was measured from the temporal profiles of the acoustic transducer signal as a function of incident laser fluence. Cavitation bubbles produced in the irradiated volume during the tensile phase of thermoelastic stress were shown to drive material ejection at temperatures substantially below 100 degree C. Experimental data are evident that nanosecond-pulse laser ablation of aqueous media (when temporal stress-confinement conditions are satisfied) include the following two main stages of material ejection: (1) ejection of water microdroplets due to expansion and rupture of subsurface cavitation bubbles; (2) ejection of liquid streams with substantial volume upon collapse of initial crater and large cavitation bubbles in the depth of irradiated volume (after coalescence of smaller bubbles). copyright 1995 American Institute of Physics

  12. Thermal Behavior of the Reactor Vessel Penetration Under External Vessel Cooling During a Severe Accident

    International Nuclear Information System (INIS)

    Kang, Kyoung-Ho; Park, Rae-Joon; Kim, Jong-Tae; Min, Byung-Tae; Lee, Ki-Young; Kim, Sang-Baik

    2004-01-01

    Experimental and analytical studies on the thermal behavior of reactor vessel penetration have been performed under external vessel cooling during a severe accident in the Korean next-generation reactor APR1400. Two types of tests, SUS-EXT and SUS-DRY with and without external vessel cooling, respectively, have been performed using sustained heating by an induction heater. Three tests have been carried out varying the cooling conditions at the vessel outer surface in the SUS-EXT tests. The experimental results have been thermally estimated using the LILAC computer code. The experimental results indicate that the inner surface of the vessel was ablated by the 45-mm thickness in the SUS-DRY test. Despite the total ablation of the welding material, the penetration was not ejected outside the vessel, which could be attributed to the thermal expansion of the penetration. Unlike the SUS-DRY test, the thickness of the ablation was ∼15 to 20 mm at most, so the welding was preserved in the SUS-EXT tests. It is concluded from the experimental results that the external vessel cooling highly affected the ablation configuration and the thermal behaviors of the vessel and the penetration. An increase in coolant mass flow rate from 0.047 to 0.152 kg/s had effects on the thermal behavior of the lower head vessel and penetration in the SUS-EXT tests. The LILAC analytical results on temperature distribution and ablation depth in the lower head vessel and penetration were very similar to the experimental results

  13. Thermal Analysis of the MC-1 Chamber/Nozzle

    Science.gov (United States)

    Davis, Darrell W.; Phelps, Lisa H. (Technical Monitor)

    2001-01-01

    This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the MC-1 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.

  14. Endoluminal ultrasound applicators for MR-guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model

    International Nuclear Information System (INIS)

    Adams, Matthew S.; Diederich, Chris J.; Salgaonkar, Vasant A.; Jones, Peter D.; Plata-Camargo, Juan; Sommer, Graham; Pauly, Kim Butts; Pascal-Tenorio, Aurea; Bouley, Donna M.; Chen, Hsin-Yu

    2016-01-01

    Purpose: Endoluminal ultrasound may serve as a minimally invasive option for delivering thermal ablation to pancreatic tumors adjacent to the stomach or duodenum. The objective of this study was to explore the basic feasibility of this treatment strategy through the design, characterization, and evaluation of proof-of-concept endoluminal ultrasound applicators capable of placement in the gastrointestinal (GI) lumen for volumetric pancreas ablation under MR guidance. Methods: Two variants of the endoluminal applicator, each containing a distinct array of two independently powered transducers (10 × 10 mm 3.2 MHz planar; or 8 × 10 × 20 mm radius of curvature 3.3 MHz curvilinear geometries) at the distal end of a meter long flexible catheter assembly, were designed and fabricated. Transducers and circulatory water flow for acoustic coupling and luminal cooling were contained by a low-profile polyester balloon covering the transducer assembly fixture. Each applicator incorporated miniature spiral MR coils and mechanical features (guiding tips and hinges) to facilitate tracking and insertion through the GI tract under MRI guidance. Acoustic characterization of each device was performed using radiation force balance and hydrophone measurements. Device delivery into the upper GI tract, adjacent to the pancreas, and heating characteristics for treatment of pancreatic tissue were evaluated in MR-guided ex vivo and in vivo porcine experiments. MR guidance was utilized for anatomical target identification, tracking/positioning of the applicator, and MR temperature imaging (MRTI) for PRF-based multislice thermometry, implemented in the real-time RTHawk software environment. Results: Force balance and hydrophone measurements indicated efficiencies of 48.8% and 47.8% and −3 dB intensity beam-widths of 3.2 and 1.2 mm for the planar and curvilinear transducers, respectively. Ex vivo studies on whole-porcine carcasses revealed capabilities of producing ablative temperature rise

  15. Endoluminal ultrasound applicators for MR-guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Matthew S., E-mail: matt.adams@ucsf.edu; Diederich, Chris J. [Thermal Therapy Research Group, University of California, San Francisco, 2340 Sutter Street, S341, San Francisco, California 94115 and The UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, California 94115 (United States); Salgaonkar, Vasant A.; Jones, Peter D. [Thermal Therapy Research Group, University of California, San Francisco, 2340 Sutter Street, S341, San Francisco, California 94115 (United States); Plata-Camargo, Juan; Sommer, Graham; Pauly, Kim Butts [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Pascal-Tenorio, Aurea; Bouley, Donna M. [Department of Comparative Medicine, Stanford University, Stanford, California 94305 (United States); Chen, Hsin-Yu [The UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, California 94115 (United States)

    2016-07-15

    Purpose: Endoluminal ultrasound may serve as a minimally invasive option for delivering thermal ablation to pancreatic tumors adjacent to the stomach or duodenum. The objective of this study was to explore the basic feasibility of this treatment strategy through the design, characterization, and evaluation of proof-of-concept endoluminal ultrasound applicators capable of placement in the gastrointestinal (GI) lumen for volumetric pancreas ablation under MR guidance. Methods: Two variants of the endoluminal applicator, each containing a distinct array of two independently powered transducers (10 × 10 mm 3.2 MHz planar; or 8 × 10 × 20 mm radius of curvature 3.3 MHz curvilinear geometries) at the distal end of a meter long flexible catheter assembly, were designed and fabricated. Transducers and circulatory water flow for acoustic coupling and luminal cooling were contained by a low-profile polyester balloon covering the transducer assembly fixture. Each applicator incorporated miniature spiral MR coils and mechanical features (guiding tips and hinges) to facilitate tracking and insertion through the GI tract under MRI guidance. Acoustic characterization of each device was performed using radiation force balance and hydrophone measurements. Device delivery into the upper GI tract, adjacent to the pancreas, and heating characteristics for treatment of pancreatic tissue were evaluated in MR-guided ex vivo and in vivo porcine experiments. MR guidance was utilized for anatomical target identification, tracking/positioning of the applicator, and MR temperature imaging (MRTI) for PRF-based multislice thermometry, implemented in the real-time RTHawk software environment. Results: Force balance and hydrophone measurements indicated efficiencies of 48.8% and 47.8% and −3 dB intensity beam-widths of 3.2 and 1.2 mm for the planar and curvilinear transducers, respectively. Ex vivo studies on whole-porcine carcasses revealed capabilities of producing ablative temperature rise

  16. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    Science.gov (United States)

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  17. Formation of polymer nanoparticles by UV pulsed laser ablation of poly (bisphenol A carbonate) in liquid environment

    Science.gov (United States)

    Martínez-Tong, Daniel E.; Sanz, Mikel; Ezquerra, Tiberio A.; Nogales, Aurora; Marco, José F.; Castillejo, Marta; Rebollar, Esther

    2017-10-01

    Suspensions of poly(bisphenol A carbonate) (PBAC) nanoparticles of varying size and shape have been produced by ablation of a PBAC target in liquid media with the fourth harmonic of a Q-switched Nd:YAG laser (wavelength 266 nm, full width at half maximum 4 ns, repetition rate 10 Hz). The polymer target was placed at the bottom of a rotating glass vessel filled with around a 10 mm column of liquid. Laser ablation in water leads to spherical nanoparticles with diameters of several tens of nanometers for fluences close to 1 J/cm2. Ablation at lower fluences, around 0.1 J/cm2, results in the production of nanoparticles of smaller diameters and also of non-spherical nanoparticles. Additional irradiations at the fluence of 0.1 J/cm2 were performed in several liquid media with different properties, in terms of density, viscosity, thermal conductivity, boiling temperature, isothermal compressibility and polarity. The different size distributions observed were related to the thermal conductivity of the systems, while their viscosity seems to be responsible for the development of nanostructures with different morphologies.

  18. Ablation in teeth with the free-electron laser around the absorption peak of hydroxyapatite (9.5 μm) and between 6.0 and 7.5 μm

    Science.gov (United States)

    Ostertag, Manfred; Walker, Rudolf; Weber, Heiner; van der Meer, Lex; McKinley, Jim T.; Tolk, Norman H.; Jean, Benedikt J.

    1996-04-01

    Pulsed IR laser ablation on dental hard substances was studied in the wavelength range between 9.5 and 11.5 micrometers with the Free-Electron Laser (FEL) in Nieuwegein/NL and between 6.0 and 7.5 micrometers with the FEL at Vanderbilt University in Nashville/TN. Depth, diameter and volume of the ablation crater were determined with a special silicon replica method and subsequent confocal laser topometry. The irradiated surfaces and the ejected debris were examined with an SEM 9.5 - 11.5 micrometers : depth, diameter and volume of the ablation crater are greater and the ablation threshold is lower for ablation with a wavelength corresponding to the absorption max. of hydroxyapatite (9.5 micrometers ), compared to ablation at wavelengths with lower absorption (10.5 - 11.5 micrometers ). For all wavelengths, no thermal cracking can be observed after ablation in dentine, however a small amount of thermal cracking can be observed after ablation in enamel. After ablation at 9.5 micrometers , a few droplets of solidified melt were seen on the irradiated areas, whereas the debris consisted only of solidified melt. In contrast, the surface and the debris obtained from ablation using the other wavelengths showed the natural structure of dentine 6.0 - 7.5 micrometers : the depth of the ablation crater increases and the ablation threshold decreases for an increasing absorption coefficient of the target material. Different tissue components absorbed the laser radiation of different wavelengths (around 6.0 micrometers water and collagen, 6.5 micrometers collagen and water, 7.0 micrometers carbonated hydroxyapatite). Nevertheless the results have shown no major influence on the primary tissue absorber.

  19. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    Science.gov (United States)

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  20. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    Science.gov (United States)

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.