WorldWideScience

Sample records for hierarchical task network

  1. Replanning Using Hierarchical Task Network and Operator-Based Planning

    Science.gov (United States)

    Wang, X.; Chien, S.

    1997-01-01

    In order to scale-up to real-world problems, planning systems must be able to replan in order to deal with changes in problem context. In this paper we describe hierarchical task network and operatorbased re-planning techniques which allow adaptation of a previous plan to account for problems associated with executing plans in real-world domains with uncertainty, concurrency, changing objectives.

  2. Hierarchical organization of brain functional network during visual task

    CERN Document Server

    Zhuo, Zhao; Fu, Zhong-Qian; Zhang, Jie

    2011-01-01

    In this paper, the brain functional networks derived from high-resolution synchronous EEG time series during visual task are generated by calculating the phase synchronization among the time series. The hierarchical modular organizations of these networks are systematically investigated by the fast Girvan-Newman algorithm. At the same time, the spatially adjacent electrodes (corresponding to EEG channels) are clustered into functional groups based on anatomical parcellation of brain cortex, and this clustering information are compared to that of the functional network. The results show that the modular architectures of brain functional network are in coincidence with that from the anatomical structures over different levels of hierarchy, which suggests that population of neurons performing the same function excite and inhibit in identical rhythms. The structure-function relationship further reveals that the correlations among EEG time series in the same functional group are much stronger than those in differe...

  3. Learning Probabilistic Hierarchical Task Networks to Capture User Preferences

    CERN Document Server

    Li, Nan; Kambhampati, Subbarao; Yoon, Sungwook

    2010-01-01

    We propose automatically learning probabilistic Hierarchical Task Networks (pHTNs) in order to capture a user's preferences on plans, by observing only the user's behavior. HTNs are a common choice of representation for a variety of purposes in planning, including work on learning in planning. Our contributions are (a) learning structure and (b) representing preferences. In contrast, prior work employing HTNs considers learning method preconditions (instead of structure) and representing domain physics or search control knowledge (rather than preferences). Initially we will assume that the observed distribution of plans is an accurate representation of user preference, and then generalize to the situation where feasibility constraints frequently prevent the execution of preferred plans. In order to learn a distribution on plans we adapt an Expectation-Maximization (EM) technique from the discipline of (probabilistic) grammar induction, taking the perspective of task reductions as productions in a context-free...

  4. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...

  5. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...

  6. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  7. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  8. APHiD: Hierarchical Task Placement to Enable a Tapered Fat Tree Topology for Lower Power and Cost in HPC Networks

    Energy Technology Data Exchange (ETDEWEB)

    Michelogiannakis, George; Ibrahim, Khaled Z.; Shalf, John; Wilke, Jeremiah J.; Knight, Samuel; Kenny, Joseph P.

    2017-05-14

    The power and procurement cost of bandwidth in system-wide networks has forced a steady drop in the byte/flop ratio. This trend of computation becoming faster relative to the network is expected to hold. In this paper, we explore how cost-oriented task placement enables reducing the cost of system-wide networks by enabling high performance even on tapered topologies where more bandwidth is provisioned at lower levels. We describe APHiD, an efficient hierarchical placement algorithm that uses new techniques to improve the quality of heuristic solutions and reduces the demand on high-level, expensive bandwidth in hierarchical topologies. We apply APHiD to a tapered fat-tree, demonstrating that APHiD maintains application scalability even for severely tapered network configurations. Using simulation, we show that for tapered networks APHiD improves performance by more than 50% over random placement and even 15% in some cases over costlier, state-of-the-art placement algorithms.

  9. Onboard hierarchical network

    Science.gov (United States)

    Tunesi, Luca; Armbruster, Philippe

    2004-02-01

    The objective of this paper is to demonstrate a suitable hierarchical networking solution to improve capabilities and performances of space systems, with significant recurrent costs saving and more efficient design & manufacturing flows. Classically, a satellite can be split in two functional sub-systems: the platform and the payload complement. The platform is in charge of providing power, attitude & orbit control and up/down-link services, whereas the payload represents the scientific and/or operational instruments/transponders and embodies the objectives of the mission. One major possibility to improve the performance of payloads, by limiting the data return to pertinent information, is to process data on board thanks to a proper implementation of the payload data system. In this way, it is possible to share non-recurring development costs by exploiting a system that can be adopted by the majority of space missions. It is believed that the Modular and Scalable Payload Data System, under development by ESA, provides a suitable solution to fulfil a large range of future mission requirements. The backbone of the system is the standardised high data rate SpaceWire network http://www.ecss.nl/. As complement, a lower speed command and control bus connecting peripherals is required. For instance, at instrument level, there is a need for a "local" low complexity bus, which gives the possibility to command and control sensors and actuators. Moreover, most of the connections at sub-system level are related to discrete signals management or simple telemetry acquisitions, which can easily and efficiently be handled by a local bus. An on-board hierarchical network can therefore be defined by interconnecting high-speed links and local buses. Additionally, it is worth stressing another important aspect of the design process: Agencies and ESA in particular are frequently confronted with a big consortium of geographically spread companies located in different countries, each one

  10. Hierarchical Task Planning for Multiarm Robot with Multiconstraint

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2016-01-01

    Full Text Available Multiarm systems become the trends of space robots, for the on-orbit servicing missions are becoming more complex and various. A hierarchical task planning method with multiconstraint for multiarm space robot is presented in this paper. The process of task planning is separated into two hierarchies: mission profile analysis and task node planning. In mission profile analysis, several kinds of primitive tasks and operators are defined. Then, a complex task can be decomposed into a sequence of primitive tasks by using hierarchical task network (HTN with those primitive tasks and operators. In task node planning, A⁎ algorithm is improved to adapt the continuous motion of manipulator. Then, some of the primitive tasks which cannot be executed directly because of constraints are further decomposed into several task nodes by using improved A⁎ algorithm. Finally, manipulators execute the task by moving from one node to another with a simple path plan algorithm. The feasibility and effectiveness of the proposed task planning method are verified by simulation.

  11. Hierarchical Neural Network Structures for Phoneme Recognition

    CERN Document Server

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  12. Hierarchical community structure in complex (social) networks

    CERN Document Server

    Massaro, Emanuele

    2014-01-01

    The investigation of community structure in networks is a task of great importance in many disciplines, namely physics, sociology, biology and computer science where systems are often represented as graphs. One of the challenges is to find local communities from a local viewpoint in a graph without global information in order to reproduce the subjective hierarchical vision for each vertex. In this paper we present the improvement of an information dynamics algorithm in which the label propagation of nodes is based on the Markovian flow of information in the network under cognitive-inspired constraints \\cite{Massaro2012}. In this framework we have introduced two more complex heuristics that allow the algorithm to detect the multi-resolution hierarchical community structure of networks from a source vertex or communities adopting fixed values of model's parameters. Experimental results show that the proposed methods are efficient and well-behaved in both real-world and synthetic networks.

  13. Memory Stacking in Hierarchical Networks.

    Science.gov (United States)

    Westö, Johan; May, Patrick J C; Tiitinen, Hannu

    2016-02-01

    Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns.

  14. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    Science.gov (United States)

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  15. Hierarchical networks of scientific journals

    CERN Document Server

    Palla, Gergely; Mones, Enys; Pollner, Péter; Vicsek, Tamás

    2015-01-01

    Scientific journals are the repositories of the gradually accumulating knowledge of mankind about the world surrounding us. Just as our knowledge is organised into classes ranging from major disciplines, subjects and fields to increasingly specific topics, journals can also be categorised into groups using various metrics. In addition to the set of topics characteristic for a journal, they can also be ranked regarding their relevance from the point of overall influence. One widespread measure is impact factor, but in the present paper we intend to reconstruct a much more detailed description by studying the hierarchical relations between the journals based on citation data. We use a measure related to the notion of m-reaching centrality and find a network which shows the level of influence of a journal from the point of the direction and efficiency with which information spreads through the network. We can also obtain an alternative network using a suitably modified nested hierarchy extraction method applied ...

  16. The hierarchical brain network for face recognition.

    Science.gov (United States)

    Zhen, Zonglei; Fang, Huizhen; Liu, Jia

    2013-01-01

    Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level.

  17. Modeling Network Interdiction Tasks

    Science.gov (United States)

    2015-09-17

    minimize the operating costs for manufacturing 50 the item. This simple example illustrates the hierarchical structure that can be modeled using...fixed. The resulting model is linearized and the product of the dual variable and the (1−γij) term replaced with βij. This allows certain...the standard network interdiction model based on its tight linear programming relaxation. 2.3.3 Network Disruption. In practice, whenever an object is

  18. Hierarchical Network Design Using Simulated Annealing

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Clausen, Jens

    2002-01-01

    The hierarchical network problem is the problem of finding the least cost network, with nodes divided into groups, edges connecting nodes in each groups and groups ordered in a hierarchy. The idea of hierarchical networks comes from telecommunication networks where hierarchies exist. Hierarchical...... networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub......-algorithm uses a construction algorithm to determine edges and route the demand. Performance for different versions of the algorithm are reported in terms of runtime and quality of the solutions. The algorithm is able to find solutions of reasonable quality in approximately 1 hour for networks with 100 nodes....

  19. Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network.

    Science.gov (United States)

    Balaguer, Jan; Spiers, Hugo; Hassabis, Demis; Summerfield, Christopher

    2016-05-18

    Planning allows actions to be structured in pursuit of a future goal. However, in natural environments, planning over multiple possible future states incurs prohibitive computational costs. To represent plans efficiently, states can be clustered hierarchically into "contexts". For example, representing a journey through a subway network as a succession of individual states (stations) is more costly than encoding a sequence of contexts (lines) and context switches (line changes). Here, using functional brain imaging, we asked humans to perform a planning task in a virtual subway network. Behavioral analyses revealed that humans executed a hierarchically organized plan. Brain activity in the dorsomedial prefrontal cortex and premotor cortex scaled with the cost of hierarchical plan representation and unique neural signals in these regions signaled contexts and context switches. These results suggest that humans represent hierarchical plans using a network of caudal prefrontal structures. VIDEO ABSTRACT.

  20. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  1. Information Sharing During Crisis Management in Hierarchical vs. Network Teams

    NARCIS (Netherlands)

    Schraagen, J.M.C.; Veld, M.H.I.T.; Koning, L. de

    2010-01-01

    This study examines the differences between hierarchical and network teams in emergency management. A controlled experimental environment was created in which we could study teams that differed in decision rights, availability of information, information sharing, and task division. Thirty-two teams

  2. Modular, Hierarchical Learning By Artificial Neural Networks

    Science.gov (United States)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  3. Universal hierarchical behavior of citation networks

    CERN Document Server

    Mones, Enys; Vicsek, Tamás

    2014-01-01

    Many of the essential features of the evolution of scientific research are imprinted in the structure of citation networks. Connections in these networks imply information about the transfer of knowledge among papers, or in other words, edges describe the impact of papers on other publications. This inherent meaning of the edges infers that citation networks can exhibit hierarchical features, that is typical of networks based on decision-making. In this paper, we investigate the hierarchical structure of citation networks consisting of papers in the same field. We find that the majority of the networks follow a universal trend towards a highly hierarchical state, and i) the various fields display differences only concerning their phase in life (distance from the "birth" of a field) or ii) the characteristic time according to which they are approaching the stationary state. We also show by a simple argument that the alterations in the behavior are related to and can be understood by the degree of specializatio...

  4. Genetic Algorithm for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2007-09-01

    Full Text Available Large scale wireless sensor networks (WSNs can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.

  5. Hierarchical social networks and information flow

    Science.gov (United States)

    López, Luis; F. F. Mendes, Jose; Sanjuán, Miguel A. F.

    2002-12-01

    Using a simple model for the information flow on social networks, we show that the traditional hierarchical topologies frequently used by companies and organizations, are poorly designed in terms of efficiency. Moreover, we prove that this type of structures are the result of the individual aim of monopolizing as much information as possible within the network. As the information is an appropriate measurement of centrality, we conclude that this kind of topology is so attractive for leaders, because the global influence each actor has within the network is completely determined by the hierarchical level occupied.

  6. Strategic games on a hierarchical network model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Among complex network models, the hierarchical network model is the one most close to such real networks as world trade web, metabolic network, WWW, actor network, and so on. It has not only the property of power-law degree distribution, but growth based on growth and preferential attachment, showing the scale-free degree distribution property. In this paper, we study the evolution of cooperation on a hierarchical network model, adopting the prisoner's dilemma (PD) game and snowdrift game (SG) as metaphors of the interplay between connected nodes. BA model provides a unifying framework for the emergence of cooperation. But interestingly, we found that on hierarchical model, there is no sign of cooperation for PD game, while the frequency of cooperation decreases as the common benefit decreases for SG. By comparing the scaling clustering coefficient properties of the hierarchical network model with that of BA model, we found that the former amplifies the effect of hubs. Considering different performances of PD game and SG on complex network, we also found that common benefit leads to cooperation in the evolution. Thus our study may shed light on the emergence of cooperation in both natural and social environments.

  7. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  8. Noise enhances information transfer in hierarchical networks.

    Science.gov (United States)

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  9. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    Meifeng Dai; Jie Liu; Feng Zhu

    2014-10-01

    In this paper, we present trapping issues of weight-dependent walks on weighted hierarchical networks which are based on the classic scale-free hierarchical networks. Assuming that edge’s weight is used as local information by a random walker, we introduce a biased walk. The biased walk is that a walker, at each step, chooses one of its neighbours with a probability proportional to the weight of the edge. We focus on a particular case with the immobile trap positioned at the hub node which has the largest degree in the weighted hierarchical networks. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping issue. Let parameter (0 < < 1) be the weight factor. We show that the efficiency of the trapping process depends on the parameter a; the smaller the value of a, the more efficient is the trapping process.

  10. Non-homogeneous fractal hierarchical weighted networks.

    Science.gov (United States)

    Dong, Yujuan; Dai, Meifeng; Ye, Dandan

    2015-01-01

    A model of fractal hierarchical structures that share the property of non-homogeneous weighted networks is introduced. These networks can be completely and analytically characterized in terms of the involved parameters, i.e., the size of the original graph Nk and the non-homogeneous weight scaling factors r1, r2, · · · rM. We also study the average weighted shortest path (AWSP), the average degree and the average node strength, taking place on the non-homogeneous hierarchical weighted networks. Moreover the AWSP is scrupulously calculated. We show that the AWSP depends on the number of copies and the sum of all non-homogeneous weight scaling factors in the infinite network order limit.

  11. Hierarchical method of task assignment for multiple cooperating UAV teams

    Institute of Scientific and Technical Information of China (English)

    Xiaoxuan Hu; Huawei Ma; Qingsong Ye; He Luo

    2015-01-01

    The problem of task assignment for multiple cooperat-ing unmanned aerial vehicle (UAV) teams is considered. Multiple UAVs forming several smal teams are needed to perform attack tasks on a set of predetermined ground targets. A hierarchical task assignment method is presented to address the problem. It breaks the original problem down to three levels of sub-problems: tar-get clustering, cluster al ocation and target assignment. The first two sub-problems are central y solved by using clustering algo-rithms and integer linear programming, respectively, and the third sub-problem is solved in a distributed and paral el manner, using a mixed integer linear programming model and an improved ant colony algorithm. The proposed hierarchical method can reduce the computational complexity of the task assignment problem con-siderably, especial y when the number of tasks or the number of UAVs is large. Experimental results show that this method is feasi-ble and more efficient than non-hierarchical methods.

  12. Object recognition with hierarchical discriminant saliency networks.

    Science.gov (United States)

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and

  13. The Hourglass Effect in Hierarchical Dependency Networks

    CERN Document Server

    Sabrin, Kaeser M

    2016-01-01

    Many hierarchically modular systems are structured in a way that resembles a bow-tie or hourglass. This "hourglass effect" means that the system generates many outputs from many inputs through a relatively small number of intermediate modules that are critical for the operation of the entire system (the waist of the hourglass). We investigate the hourglass effect in general (not necessarily layered) hierarchical dependency networks. Our analysis focuses on the number of source-to-target dependency paths that traverse each vertex, and it identifies the core of a dependency network as the smallest set of vertices that collectively cover almost all dependency paths. We then examine if a given network exhibits the hourglass property or not, comparing its core size with a "flat" (i.e., non-hierarchical) network that preserves the source dependencies of each target in the original network. As a possible explanation for the hourglass effect, we propose the Reuse Preference (RP) model that captures the bias of new mo...

  14. Synchronization patterns: from network motifs to hierarchical networks

    Science.gov (United States)

    Krishnagopal, Sanjukta; Lehnert, Judith; Poel, Winnie; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    We investigate complex synchronization patterns such as cluster synchronization and partial amplitude death in networks of coupled Stuart-Landau oscillators with fractal connectivities. The study of fractal or self-similar topology is motivated by the network of neurons in the brain. This fractal property is well represented in hierarchical networks, for which we present three different models. In addition, we introduce an analytical eigensolution method and provide a comprehensive picture of the interplay of network topology and the corresponding network dynamics, thus allowing us to predict the dynamics of arbitrarily large hierarchical networks simply by analysing small network motifs. We also show that oscillation death can be induced in these networks, even if the coupling is symmetric, contrary to previous understanding of oscillation death. Our results show that there is a direct correlation between topology and dynamics: hierarchical networks exhibit the corresponding hierarchical dynamics. This helps bridge the gap between mesoscale motifs and macroscopic networks. This article is part of the themed issue 'Horizons of cybernetical physics'.

  15. First-passage phenomena in hierarchical networks

    CERN Document Server

    Tavani, Flavia

    2016-01-01

    In this paper we study Markov processes and related first passage problems on a class of weighted, modular graphs which generalize the Dyson hierarchical model. In these networks, the coupling strength between two nodes depends on their distance and is modulated by a parameter $\\sigma$. We find that, in the thermodynamic limit, ergodicity is lost and the "distant" nodes can not be reached. Moreover, for finite-sized systems, there exists a threshold value for $\\sigma$ such that, when $\\sigma$ is relatively large, the inhomogeneity of the coupling pattern prevails and "distant" nodes are hardly reached. The same analysis is carried on also for generic hierarchical graphs, where interactions are meant to involve $p$-plets ($p>2$) of nodes, finding that ergodicity is still broken in the thermodynamic limit, but no threshold value for $\\sigma$ is evidenced, ultimately due to a slow growth of the network diameter with the size.

  16. Energy Constrained Hierarchical Task Scheduling Algorithm for Mobile Grids

    Directory of Open Access Journals (Sweden)

    Arjun Singh

    2014-05-01

    Full Text Available In mobile grids, scheduling the computation tasks and the communication transactions onto the target architecture is the important problem when a mobile grid environment and a pre-selected architecture are given. Even though the scheduling problem is a traditional topic, almost all previous work focuses on maximizing the performance through the scheduling process. The algorithms developed this way are not suitable for real-time embedded applications, in which the main objective is to minimize the energy consumption of the system under tight performance constraints. This paper entails an energy constrained hierarchical task scheduling algorithm for Mobile Grids to minimize the power consumption of the mobile nodes. The task is rescheduled when the mobile node moves beyond the transmission range. The performance is estimated based on the average delay and packet delivery ratio based on nodes and flows. The performance metrics are analysed using NS-2 simulator.

  17. HIDEN: Hierarchical decomposition of regulatory networks

    Directory of Open Access Journals (Sweden)

    Gülsoy Günhan

    2012-09-01

    Full Text Available Abstract Background Transcription factors regulate numerous cellular processes by controlling the rate of production of each gene. The regulatory relations are modeled using transcriptional regulatory networks. Recent studies have shown that such networks have an underlying hierarchical organization. We consider the problem of discovering the underlying hierarchy in transcriptional regulatory networks. Results We first transform this problem to a mixed integer programming problem. We then use existing tools to solve the resulting problem. For larger networks this strategy does not work due to rapid increase in running time and space usage. We use divide and conquer strategy for such networks. We use our method to analyze the transcriptional regulatory networks of E. coli, H. sapiens and S. cerevisiae. Conclusions Our experiments demonstrate that: (i Our method gives statistically better results than three existing state of the art methods; (ii Our method is robust against errors in the data and (iii Our method’s performance is not affected by the different topologies in the data.

  18. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    CERN Document Server

    Perotti, Juan Ignacio; Caldarelli, Guido

    2015-01-01

    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the {\\it hierarchical mutual information}, which is a generalization of the traditional mutual information, and allows to compare hierarchical partitions and hierarchical community structures. The {\\it normalized} version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here, the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies, and on the hierarchical ...

  19. Antiferromagnetic Ising Model in Hierarchical Networks

    Science.gov (United States)

    Cheng, Xiang; Boettcher, Stefan

    2015-03-01

    The Ising antiferromagnet is a convenient model of glassy dynamics. It can introduce geometric frustrations and may give rise to a spin glass phase and glassy relaxation at low temperatures [ 1 ] . We apply the antiferromagnetic Ising model to 3 hierarchical networks which share features of both small world networks and regular lattices. Their recursive and fixed structures make them suitable for exact renormalization group analysis as well as numerical simulations. We first explore the dynamical behaviors using simulated annealing and discover an extremely slow relaxation at low temperatures. Then we employ the Wang-Landau algorithm to investigate the energy landscape and the corresponding equilibrium behaviors for different system sizes. Besides the Monte Carlo methods, renormalization group [ 2 ] is used to study the equilibrium properties in the thermodynamic limit and to compare with the results from simulated annealing and Wang-Landau sampling. Supported through NSF Grant DMR-1207431.

  20. Field experiment on a robust hierarchical metropolitan quantum cryptography network

    Institute of Scientific and Technical Information of China (English)

    XU FangXing; CHEN Wei; WANG Shuang; YIN ZhenQiang; ZHANG Yang; LIU Yun; ZHOU Zheng; ZHAO YiBo; LI HongWei; LIU Dong; HAN ZhengFu; GUO GuangCan

    2009-01-01

    these bureaus.The whole implementation including the hierarchical quantum cryptographic communication network links and the corresponding application software shows a big step toward the practical user-oriented network with a high security level.

  1. A Hierarchical Sensor Network Based on Voronoi Diagram

    Institute of Scientific and Technical Information of China (English)

    SHANG Rui-qiang; ZHAO Jian-li; SUN Qiu-xia; WANG Guang-xing

    2006-01-01

    A hierarchical sensor network is proposed which places the sensing and routing capacity at different layer nodes.It thus simplifies the hardware design and reduces cost. Adopting Voronoi diagram in the partition of backbone network,a mathematical model of data aggregation based on hierarchical architecture is given. Simulation shows that the number of transmission data packages is sharply cut down in the network, thus reducing the needs in the bandwidth and energy resources and is thus well adapted to sensor networks.

  2. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    Science.gov (United States)

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  3. Automatic Construction of Hierarchical Road Networks

    Science.gov (United States)

    Yang, Weiping

    2016-06-01

    This paper describes an automated method of constructing a hierarchical road network given a single dataset, without the presence of thematic attributes. The method is based on a pattern graph which maintains nodes and paths as junctions and through-traffic roads. The hierarchy is formed incrementally in a top-down fashion for highways, ramps, and major roads directly connected to ramps; and bottom-up for the rest of major and minor roads. Through reasoning and analysis, ramps are identified as unique characteristics for recognizing and assembling high speed roads. The method makes distinctions on the types of ramps by articulating their connection patterns with highways. Major and minor roads will be identified by both quantitative and qualitative analysis of spatial properties and by discovering neighbourhood patterns revealed in the data. The result of the method would enrich data description and support comprehensive queries on sorted exit or entry points on highways and their related roads. The enrichment on road network data is important to a high successful rate of feature matching for road networks and to geospatial data integration.

  4. Category theoretic analysis of hierarchical protein materials and social networks.

    Directory of Open Access Journals (Sweden)

    David I Spivak

    Full Text Available Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a "concept web" or "semantic network" except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine.

  5. Reliable Point to Multipoint Hierarchical Routing in Scatternet Sensor Network

    Directory of Open Access Journals (Sweden)

    R.Dhaya

    2011-01-01

    Full Text Available In the recent development of communication, Bluetooth Scatternet wireless is a technology developed for wideband local accesses. Bluetooth technology is very popular because of its low cost and easy deployment which is based on IEEE 802.11standards. On the other hand Wireless Sensor Network (WSN consists of large number of sensor nodes distributed to monitor an environment and each node in a WSN consists of a small CPU, a sensing device and battery. Mostly, the sensor networks are distributed in an inconvenient location and it is difficult to recharge often. So routing in WSN is an important issue to consume energy and as well as to increase the life of the network, since a routing protocol finds the path between sources and sink. Moreover it is a challenging task to schedule the data between nodes in a scatternet in a congestive environment. Here this paper presents a new scheduling method for point to multi- point routing in Scatternet sensor network and the new dynamic routing method designed is cluster-based with hierarchical routing. The efficiency of this method is also compared in terms of energy consumption and the results show that the proposed routing is an energy efficient one which simultaneously increases the lifetime of the network.

  6. Hierarchical Network Models for Education Research: Hierarchical Latent Space Models

    Science.gov (United States)

    Sweet, Tracy M.; Thomas, Andrew C.; Junker, Brian W.

    2013-01-01

    Intervention studies in school systems are sometimes aimed not at changing curriculum or classroom technique, but rather at changing the way that teachers, teaching coaches, and administrators in schools work with one another--in short, changing the professional social networks of educators. Current methods of social network analysis are…

  7. Big Data Processing in Complex Hierarchical Network Systems

    CERN Document Server

    Polishchuk, Olexandr; Tyutyunnyk, Maria; Yadzhak, Mykhailo

    2016-01-01

    This article covers the problem of processing of Big Data that describe process of complex networks and network systems operation. It also introduces the notion of hierarchical network systems combination into associations and conglomerates alongside with complex networks combination into multiplexes. The analysis is provided for methods of global network structures study depending on the purpose of the research. Also the main types of information flows in complex hierarchical network systems being the basic components of associations and conglomerates are covered. Approaches are proposed for creation of efficient computing environments, distributed computations organization and information processing methods parallelization at different levels of system hierarchy.

  8. Object recognition with hierarchical discriminant saliency networks

    Directory of Open Access Journals (Sweden)

    Sunhyoung eHan

    2014-09-01

    Full Text Available The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognitionmodel, the hierarchical discriminant saliency network (HDSN, whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. The HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a neuralnetwork implementation, all layers are convolutional and implement acombination of filtering, rectification, and pooling. The rectificationis performed with a parametric extension of the now popular rectified linearunits (ReLUs, whose parameters can be tuned for the detection of targetobject classes. This enables a number of functional enhancementsover neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation ofsaliency responses by the discriminant power of the underlying features,and the ability to detect both feature presence and absence.In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity totarget object classes and invariance. The resulting performance demonstrates benefits for all the functional enhancements of the HDSN.

  9. Multiple Computing Task Scheduling Method Based on Dynamic Data Replication and Hierarchical Strategy

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2014-02-01

    Full Text Available As for the problem of how to carry out task scheduling and data replication effectively in the grid and to reduce task’s execution time, this thesis proposes the task scheduling algorithm and the optimum dynamic data replication algorithm and builds a scheme to effectively combine these two algorithms. First of all, the scheme adopts the ISS algorithm considering the number of tasks waiting queue, the location of task demand data and calculation capacity of site by adopting the method of network structure’s hierarchical scheduling to calculate the cost of comprehensive task with the proper weight efficiency and search out the best compute node area. And then the algorithm of ODHRA is adopted to analyze the data transmission time, memory access latency, waiting copy requests in the queue and the distance between nodes, choose out the best replications location in many copies combined with copy placement and copy management to reduce the file access time. The simulation results show that the proposed scheme compared with other algorithm has better performance in terms of average task execution time. 

  10. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.

  11. Road Network Selection Based on Road Hierarchical Structure Control

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2015-04-01

    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  12. Hierarchical structure of moral stages assessed by a sorting task

    NARCIS (Netherlands)

    Boom, J.; Brugman, D.; Van der Heijden, P.G.M.

    2001-01-01

    Following criticism of Kohlberg’s theory of moral judgment, an empirical re-examination of hierarchical stage structure was desirable. Utilizing Piaget’s concept of reflective abstraction as a basis, the hierarchical stage structure was investigated using a new method. Study participants (553 Dutch

  13. Hierarchical structure of moral stages assessed by a sorting task

    OpenAIRE

    Van Boom, J; Brugman, D.; Heijden, P.G.M. van der

    2001-01-01

    Following criticism of Kohlberg’s theory of moral judgment, an empirical re-examination of hierarchical stage structure was desirable. Utilizing Piaget’s concept of reflective abstraction as a basis, the hierarchical stage structure was investigated using a new method. Study participants (553 Dutch university students and 196 Russian high school students) sorted statements in terms of moral sophistication. These statements were typical for the different stages of moral development as defined ...

  14. Category theoretic analysis of hierarchical protein materials and social networks

    CERN Document Server

    Spivak, David I; Buehler, Markus J

    2011-01-01

    Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we review an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a "concept web" or "semantic network" except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other ologs. We consider a simple example of an alpha-helical and an amyloid-like protein filament subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog f...

  15. Field Experiment on a Robust Hierarchical Metropolitan Quantum Cryptography Network

    CERN Document Server

    Xu, Fangxing; Wang, Shuang; Yin, Zhenqiang; Zhang, Yang; Liu, Yun; Zhou, Zheng; Zhao, Yibo; Li, Hongwei; Liu, Dong; Han, Zhengfu; Guo, Guangcan

    2009-01-01

    A hierarchical metropolitan quantum cryptography network upon the inner-city commercial telecom fiber cables is reported in this paper. The seven-user network contains a four-node backbone net with one node acting as the subnet gateway, a two-user subnet and a single-fiber access link, which is realized by the Faraday-Michelson Interferometer set-ups. The techniques of the quantum router, optical switch and trusted relay are assembled here to guarantee the feasibility and expandability of the quantum cryptography network. Five nodes of the network are located in the government departments and the secure keys generated by the quantum key distribution network are utilized to encrypt the instant video, sound, text messages and confidential files transmitting between these bureaus. The whole implementation including the hierarchical quantum cryptographic communication network links and corresponding application software shows a big step toward the practical user-oriented network with high security level.

  16. Complex Evaluation of Hierarchically-Network Systems

    CERN Document Server

    Polishchuk, Dmytro; Yadzhak, Mykhailo

    2016-01-01

    Methods of complex evaluation based on local, forecasting, aggregated, and interactive evaluation of the state, function quality, and interaction of complex system's objects on the all hierarchical levels is proposed. Examples of analysis of the structural elements of railway transport system are used for illustration of efficiency of proposed approach.

  17. Modelling hierarchical and modular complex networks: division and independence

    Science.gov (United States)

    Kim, D.-H.; Rodgers, G. J.; Kahng, B.; Kim, D.

    2005-06-01

    We introduce a growing network model which generates both modular and hierarchical structure in a self-organized way. To this end, we modify the Barabási-Albert model into the one evolving under the principles of division and independence as well as growth and preferential attachment (PA). A newly added vertex chooses one of the modules composed of existing vertices, and attaches edges to vertices belonging to that module following the PA rule. When the module size reaches a proper size, the module is divided into two, and a new module is created. The karate club network studied by Zachary is a simple version of the current model. We find that the model can reproduce both modular and hierarchical properties, characterized by the hierarchical clustering function of a vertex with degree k, C(k), being in good agreement with empirical measurements for real-world networks.

  18. Hierarchical Overlapping Clustering of Network Data Using Cut Metrics

    CERN Document Server

    Gama, Fernando; Ribeiro, Alejandro

    2016-01-01

    A novel method to obtain hierarchical and overlapping clusters from network data -i.e., a set of nodes endowed with pairwise dissimilarities- is presented. The introduced method is hierarchical in the sense that it outputs a nested collection of groupings of the node set depending on the resolution or degree of similarity desired, and it is overlapping since it allows nodes to belong to more than one group. Our construction is rooted on the facts that a hierarchical (non-overlapping) clustering of a network can be equivalently represented by a finite ultrametric space and that a convex combination of ultrametrics results in a cut metric. By applying a hierarchical (non-overlapping) clustering method to multiple dithered versions of a given network and then convexly combining the resulting ultrametrics, we obtain a cut metric associated to the network of interest. We then show how to extract a hierarchical overlapping clustering structure from the aforementioned cut metric. Furthermore, the so-called overlappi...

  19. Learning Multiple Tasks with Deep Relationship Networks

    OpenAIRE

    Long, Mingsheng; Wang, Jianmin

    2015-01-01

    Deep neural networks trained on large-scale dataset can learn transferable features that promote learning multiple tasks for inductive transfer and labeling mitigation. As deep features eventually transition from general to specific along the network, a fundamental problem is how to exploit the relationship structure across different tasks while accounting for the feature transferability in the task-specific layers. In this work, we propose a novel Deep Relationship Network (DRN) architecture...

  20. Detect overlapping and hierarchical community structure in networks

    CERN Document Server

    Shen, Huawei; Cai, Kai; Hu, Mao-Bin

    2008-01-01

    Clustering and community structure is crucial for many network systems and the related dynamic processes. It has been shown that communities are usually overlapping and hierarchical. However, previous methods investigate these two properties of community structure separately. This paper propose an algorithm (EAGLE) to detect both the overlapping and hierarchical properties of complex community structure together. This algorithm deals with the set of maximal cliques and adopts an agglomerative framework. The quality function of modularity is extended to evaluate the goodness of a cover. The examples of application to real world networks give excellent results.

  1. Hierarchical Routing over Dynamic Wireless Networks

    CERN Document Server

    Tschopp, Dominique; Grossglauser, Matthias

    2009-01-01

    Wireless network topologies change over time and maintaining routes requires frequent updates. Updates are costly in terms of consuming throughput available for data transmission, which is precious in wireless networks. In this paper, we ask whether there exist low-overhead schemes that produce low-stretch routes. This is studied by using the underlying geometric properties of the connectivity graph in wireless networks.

  2. Tiresias: Online Anomaly Detection for Hierarchical Operational Network Data

    CERN Document Server

    Hong, Chi-Yao; Duffield, Nick; Wang, Jia

    2012-01-01

    Operational network data, management data such as customer care call logs and equipment system logs, is a very important source of information for network operators to detect problems in their networks. Unfortunately, there is lack of efficient tools to automatically track and detect anomalous events on operational data, causing ISP operators to rely on manual inspection of this data. While anomaly detection has been widely studied in the context of network data, operational data presents several new challenges, including the volatility and sparseness of data, and the need to perform fast detection (complicating application of schemes that require offline processing or large/stable data sets to converge). To address these challenges, we propose Tiresias, an automated approach to locating anomalous events on hierarchical operational data. Tiresias leverages the hierarchical structure of operational data to identify high-impact aggregates (e.g., locations in the network, failure modes) likely to be associated w...

  3. Hierarchical structure of moral stages assessed by a sorting task.

    Science.gov (United States)

    Boom, J; Brugman, D; van der Heijden, P G

    2001-01-01

    Following criticism of Kohlberg's theory of moral judgment, an empirical re-examination of hierarchical stage structure was desirable. Utilizing Piaget's concept of reflective abstraction as a basis, the hierarchical stage structure was investigated using a new method. Study participants (553 Dutch university students and 196 Russian high school students) sorted statements in terms of moral sophistication. These statements were typical for the different stages of moral development as defined in Colby and Kohlberg. The rank ordering performed by participants confirmed the hypotheses. First, despite large individual variation, the ordering of the statements that gave the best fit revealed that each consecutive Kohlbergian stage was perceived to be more morally sophisticated. Second, the lower the stage as represented by the items, the higher the agreement among the participants in their ranking; and the higher the stage as represented by the items, the lower the agreement among the participants in the rankings. Moreover, the pivotal point depended on the developmental characteristics of the sample, which demonstrated a developmental effect: The ordering of statements representative of moral stages below one's own current stage was straightforward, whereas the ordering of statements above one's own stage was difficult. It was concluded that the Piagetian idea of reflective abstraction can be used successfully to operationalize and measure the hierarchical nature of moral development.

  4. Hierarchicality of trade flow networks reveals complexity of products.

    Science.gov (United States)

    Shi, Peiteng; Zhang, Jiang; Yang, Bo; Luo, Jingfei

    2014-01-01

    With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  5. Hierarchicality of trade flow networks reveals complexity of products.

    Directory of Open Access Journals (Sweden)

    Peiteng Shi

    Full Text Available With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  6. Hierarchical document categorization using associative networks

    NARCIS (Netherlands)

    Bloom, Niels; Theune, Mariet; de Jong, Franciska M.G.; Klement, E.P.; Borutzky, W.; Fahringer, T.; Hamza, M.H.; Uskov, V.

    Associative networks are a connectionist language model with the ability to handle dynamic data. We used two associative networks to categorize random sets of related Wikipedia articles with only their raw text as input. We then compared the resulting categorization to a gold standard: the manual

  7. Changes of hierarchical network in local and world stock market

    Science.gov (United States)

    Patwary, Enayet Ullah; Lee, Jong Youl; Nobi, Ashadun; Kim, Doo Hwan; Lee, Jae Woo

    2017-10-01

    We consider the cross-correlation coefficients of the daily returns in the local and global stock markets. We generate the minimal spanning tree (MST) using the correlation matrix. We observe that the MSTs change their structure from chain-like networks to star-like networks during periods of market uncertainty. We quantify the measure of the hierarchical network utilizing the value of the hierarchy measured by the hierarchical path. The hierarchy and betweenness centrality characterize the state of the market regarding the impact of crises. During crises, the non-financial company is established as the central node of the MST. However, before the crisis and during stable periods, the financial company is occupying the central node of the MST in the Korean and the U.S. stock markets. The changes in the network structure and the central node are good indicators of an upcoming crisis.

  8. Evaluation of Social Network Sites Information Architecture Using Hierarchical Task Analysis——Taking Huaban Website as an Example%基于层次任务分析的社交网站信息构建评估——以花瓣网为例

    Institute of Scientific and Technical Information of China (English)

    董玮; 詹庆东

    2012-01-01

    Based on the study of huaban website, this paper analyses and evaluates social network sites information architecture through the methods of hierarchical task analysis and user testing. It introduces three methods of evaluation on information architecture, then proposes the website hierarchical diagram and specific plan. Using the data from the user testing of designed tasks, the paper standardizes the tested data with four indicators, and calculates a score of website information architecture to recognise information architecture problems.%在综合比较三种网站信息构建评估方法的基础上,采用层次任务分析与用户测试相结合的方法对社交网站的信息构建进行系统分析与评估,以社交分享类网站——花瓣网为例:首先构建花瓣网层次任务图与行动计划,然后进行用户任务测试,使用4种度量指标对测试数据进行标准化处理,最后得出网站信息构建评估分数,发现该网站信息构建中存在的问题。

  9. Multiagent task allocation in social networks

    NARCIS (Netherlands)

    De Weerdt, M.M.; Zhang, Y.; Klos, T.

    2011-01-01

    This paper proposes a new variant of the task allocation problem, where the agents are connected in a social network and tasks arrive at the agents distributed over the network. We show that the complexity of this problem remains NP-complete. Moreover, it is not approximable within some factor. In c

  10. Distributed Task Allocation in Social Networks

    NARCIS (Netherlands)

    De Weerdt, M.M.; Zhang, Y.; Klos, T.

    2007-01-01

    This paper proposes a new variant of the task allocation problem, where the agents are connected in a social network and tasks arrive at the agents distributed over the network. We show that the complexity of this problem remains NPhard. Moreover, it is not approximable within some factor. We develo

  11. Multiagent task allocation in social networks

    NARCIS (Netherlands)

    M.M. de Weerdt (Mathijs); Y. Zhang (Yingqian); T.B. Klos (Tomas)

    2011-01-01

    textabstractThis paper proposes a new variant of the task allocation problem, where the agents are connected in a social network and tasks arrive at the agents distributed over the network. We show that the complexity of this problem remains NP-complete. Moreover, it is not approximable within some

  12. Self-organized Criticality in Hierarchical Brain Network

    Institute of Scientific and Technical Information of China (English)

    YANG Qiu-Ying; ZHANG Ying-Yue; CHEN Tian-Lun

    2008-01-01

    It is shown that the cortical brain network of the macaque displays a hierarchically clustered organization and the neuron network shows small-world properties. Now the two factors will be considered in our model and the dynamical behavior of the model will be studied. We study the characters of the model and find that the distribution of avalanche size of the model follows power-law behavior.

  13. An Extended Hierarchical Trusted Model for Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    DU Ruiying; XU Mingdi; ZHANG Huanguo

    2006-01-01

    Cryptography and authentication are traditional approach for providing network security. However, they are not sufficient for solving the problems which malicious nodes compromise whole wireless sensor network leading to invalid data transmission and wasting resource by using vicious behaviors. This paper puts forward an extended hierarchical trusted architecture for wireless sensor network, and establishes trusted congregations by three-tier framework. The method combines statistics, economics with encrypt mechanism for developing two trusted models which evaluate cluster head nodes and common sensor nodes respectively. The models form logical trusted-link from command node to common sensor nodes and guarantees the network can run in secure and reliable circumstance.

  14. Hierarchical Ring Network Design Using Branch-and-Price

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Stidsen, Thomas K.

    2005-01-01

    We consider the problem of designing hierarchical two layer ring networks. The top layer consists of a federal-ring which establishes connection between a number of node disjoint metro-rings in a bottom layer. The objective is to minimize the costs of links in the network, taking both the fixed l...... for jointly solving the clustering problem, the metro ring design problem and the routing problem. Computational results are given for networks with up to 36 nodes.......We consider the problem of designing hierarchical two layer ring networks. The top layer consists of a federal-ring which establishes connection between a number of node disjoint metro-rings in a bottom layer. The objective is to minimize the costs of links in the network, taking both the fixed...... link establishment costs and the link capacity costs into account. Hierarchical ring network design problems combines the following optimization problems: Clustering, hub selection, metro ring design, federal ring design and routing problems. In this paper a branch-and-price algorithm is presented...

  15. Learning Contextual Dependence With Convolutional Hierarchical Recurrent Neural Networks

    Science.gov (United States)

    Zuo, Zhen; Shuai, Bing; Wang, Gang; Liu, Xiao; Wang, Xingxing; Wang, Bing; Chen, Yushi

    2016-07-01

    Existing deep convolutional neural networks (CNNs) have shown their great success on image classification. CNNs mainly consist of convolutional and pooling layers, both of which are performed on local image areas without considering the dependencies among different image regions. However, such dependencies are very important for generating explicit image representation. In contrast, recurrent neural networks (RNNs) are well known for their ability of encoding contextual information among sequential data, and they only require a limited number of network parameters. General RNNs can hardly be directly applied on non-sequential data. Thus, we proposed the hierarchical RNNs (HRNNs). In HRNNs, each RNN layer focuses on modeling spatial dependencies among image regions from the same scale but different locations. While the cross RNN scale connections target on modeling scale dependencies among regions from the same location but different scales. Specifically, we propose two recurrent neural network models: 1) hierarchical simple recurrent network (HSRN), which is fast and has low computational cost; and 2) hierarchical long-short term memory recurrent network (HLSTM), which performs better than HSRN with the price of more computational cost. In this manuscript, we integrate CNNs with HRNNs, and develop end-to-end convolutional hierarchical recurrent neural networks (C-HRNNs). C-HRNNs not only make use of the representation power of CNNs, but also efficiently encodes spatial and scale dependencies among different image regions. On four of the most challenging object/scene image classification benchmarks, our C-HRNNs achieve state-of-the-art results on Places 205, SUN 397, MIT indoor, and competitive results on ILSVRC 2012.

  16. Brain rhythms reveal a hierarchical network organization.

    Directory of Open Access Journals (Sweden)

    G Karl Steinke

    2011-10-01

    Full Text Available Recordings of ongoing neural activity with EEG and MEG exhibit oscillations of specific frequencies over a non-oscillatory background. The oscillations appear in the power spectrum as a collection of frequency bands that are evenly spaced on a logarithmic scale, thereby preventing mutual entrainment and cross-talk. Over the last few years, experimental, computational and theoretical studies have made substantial progress on our understanding of the biophysical mechanisms underlying the generation of network oscillations and their interactions, with emphasis on the role of neuronal synchronization. In this paper we ask a very different question. Rather than investigating how brain rhythms emerge, or whether they are necessary for neural function, we focus on what they tell us about functional brain connectivity. We hypothesized that if we were able to construct abstract networks, or "virtual brains", whose dynamics were similar to EEG/MEG recordings, those networks would share structural features among themselves, and also with real brains. Applying mathematical techniques for inverse problems, we have reverse-engineered network architectures that generate characteristic dynamics of actual brains, including spindles and sharp waves, which appear in the power spectrum as frequency bands superimposed on a non-oscillatory background dominated by low frequencies. We show that all reconstructed networks display similar topological features (e.g. structural motifs and dynamics. We have also reverse-engineered putative diseased brains (epileptic and schizophrenic, in which the oscillatory activity is altered in different ways, as reported in clinical studies. These reconstructed networks show consistent alterations of functional connectivity and dynamics. In particular, we show that the complexity of the network, quantified as proposed by Tononi, Sporns and Edelman, is a good indicator of brain fitness, since virtual brains modeling diseased states

  17. Design of Hierarchical Ring Networks Using Branch-and-Price

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Stidsen, Thomas K.

    2004-01-01

    We consider the problem of designing hierarchical two layer ring networks. The top layer consists of a federal-ring which establishes connection between a number of node disjoint metro-rings in a bottom layer. The objective is to minimize the costs of links in the network, taking both the fixed...... link establishment costs and the link capacity costs into account. The hierarchical two layer ring network design problem is solved in two stages: First the bottom layer, i.e. the metro-rings are designed, implicitly taking into account the capacity cost of the federal-ring. Then the federal......-ring is designed connecting the metro-rings, minimizing fixed link establishment costs of the federal-ring. A branch-and-price algorithm is presented for the design of the bottom layer and it is suggested that existing methods are used for the design of the federal-ring. Computational results are given...

  18. Strongly Resilient Non-Interactive Key Predistribution For Hierarchical Networks

    CERN Document Server

    Chen, Hao

    2010-01-01

    Key establishment is the basic necessary tool in the network security, by which pairs in the network can establish shared keys for protecting their pairwise communications. There have been some key agreement or predistribution schemes with the property that the key can be established without the interaction (\\cite{Blom84,BSHKY92,S97}). Recently the hierarchical cryptography and the key management for hierarchical networks have been active topics(see \\cite{BBG05,GHKRRW08,GS02,HNZI02,HL02,Matt04}. ). Key agreement schemes for hierarchical networks were presented in \\cite{Matt04,GHKRRW08} which is based on the Blom key predistribution scheme(Blom KPS, [1]) and pairing. In this paper we introduce generalized Blom-Blundo et al key predistribution schemes. These generalized Blom-Blundo et al key predistribution schemes have the same security functionality as the Blom-Blundo et al KPS. However different and random these KPSs can be used for various parts of the networks for enhancing the resilience. We also presentk...

  19. Hierarchical Compressed Sensing for Cluster Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Vishal Krishna Singh

    2016-02-01

    Full Text Available Data transmission consumes significant amount of energy in large scale wireless sensor networks (WSNs. In such an environment, reducing the in-network communication and distributing the load evenly over the network can reduce the overall energy consumption and maximize the network lifetime significantly. In this work, the aforementioned problem of network lifetime and uneven energy consumption in large scale wireless sensor networks is addressed. This work proposes a hierarchical compressed sensing (HCS scheme to reduce the in-network communication during the data gathering process. Co-related sensor readings are collected via a hierarchical clustering scheme. A compressed sensing (CS based data processing scheme is devised to transmit the data from the source to the sink. The proposed HCS is able to identify the optimal position for the application of CS to achieve reduced and similar number of transmissions on all the nodes in the network. An activity map is generated to validate the reduced and uniformly distributed communication load of the WSN. Based on the number of transmissions per data gathering round, the bit-hop metric model is used to analyse the overall energy consumption. Simulation results validate the efficiency of the proposed method over the existing CS based approaches.

  20. Time Synchronization in Hierarchical TESLA Wireless Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Jason L. Wright; Milos Manic

    2009-08-01

    Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

  1. SOFM Neural Network Based Hierarchical Topology Control for Wireless Sensor Networks

    OpenAIRE

    2014-01-01

    Well-designed network topology provides vital support for routing, data fusion, and target tracking in wireless sensor networks (WSNs). Self-organization feature map (SOFM) neural network is a major branch of artificial neural networks, which has self-organizing and self-learning features. In this paper, we propose a cluster-based topology control algorithm for WSNs, named SOFMHTC, which uses SOFM neural network to form a hierarchical network structure, completes cluster head selection by the...

  2. Extending stability through hierarchical clusters in Echo State Networks

    Directory of Open Access Journals (Sweden)

    Sarah Jarvis

    2010-07-01

    Full Text Available Echo State Networks (ESN are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analysed the impact of reservoir substructures on stability in hierarchically clustered ESNs (HESN, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius.

  3. Hierarchical Resource Allocation in Femtocell Networks using Graph Algorithms

    CERN Document Server

    Sadr, Sanam

    2012-01-01

    This paper presents a hierarchical approach to resource allocation in open-access femtocell networks. The major challenge in femtocell networks is interference management which in our system, based on the Long Term Evolution (LTE) standard, translates to which user should be allocated which physical resource block (or fraction thereof) from which femtocell access point (FAP). The globally optimal solution requires integer programming and is mathematically intractable. We propose a hierarchical three-stage solution: first, the load of each FAP is estimated considering the number of users connected to the FAP, their average channel gain and required data rates. Second, based on each FAP's load, the physical resource blocks (PRBs) are allocated to FAPs in a manner that minimizes the interference by coloring the modified interference graph. Finally, the resource allocation is performed at each FAP considering users' instantaneous channel gain. The two major advantages of this suboptimal approach are the significa...

  4. A Bayesian hierarchical diffusion model decomposition of performance in Approach-Avoidance Tasks.

    Science.gov (United States)

    Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan

    2015-01-01

    Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach-Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest.

  5. Multi-mode clustering model for hierarchical wireless sensor networks

    Science.gov (United States)

    Hu, Xiangdong; Li, Yongfu; Xu, Huifen

    2017-03-01

    The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.

  6. Implementation of Hierarchical Task Analysis for User Interface Design in Drawing Application for Early Childhood Education

    National Research Council Canada - National Science Library

    Mira Kania Sabariah; Veronikha Effendy; Muhamad Fachmi Ichsan

    2016-01-01

    ... of learning and characteristics of early childhood (4-6 years). Based on the results, Hierarchical Task Analysis method generated a list of tasks that must be done in designing an user interface that represents the user experience in draw learning. Then by using the Heuristic Evaluation method the usability of the model has fulfilled a very good level of understanding and also it can be enhanced and produce a better model.

  7. Hierarchical Communication Network Architectures for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2014-05-01

    Full Text Available Nowadays, large-scale wind power farms (WPFs bring new challenges for both electric systems and communication networks. Communication networks are an essential part of WPFs because they provide real-time control and monitoring of wind turbines from a remote location (local control center. However, different wind turbine applications have different requirements in terms of data volume, latency, bandwidth, QoS, etc. This paper proposes a hierarchical communication network architecture that consist of a turbine area network (TAN, farm area network (FAN, and control area network (CAN for offshore WPFs. The two types of offshore WPFs studied are small-scale WPFs close to the grid and medium-scale WPFs far from the grid. The wind turbines are modelled based on the logical nodes (LN concepts of the IEC 61400-25 standard. To keep pace with current developments in wind turbine technology, the network design takes into account the extension of the LNs for both the wind turbine foundation and meteorological measurements. The proposed hierarchical communication network is based on Switched Ethernet. Servers at the control center are used to store and process the data received from the WPF. The network architecture is modelled and evaluated via OPNET. We investigated the end-to-end (ETE delay for different WPF applications. The results are validated by comparing the amount of generated sensing data with that of received traffic at servers. The network performance is evaluated, analyzed and discussed in view of end-to-end (ETE delay for different link bandwidths.

  8. Routing and wavelength assignment in hierarchical WDM networks

    Institute of Scientific and Technical Information of China (English)

    Yiyi LU; Ruxiang JIN; Chen HE

    2008-01-01

    A new routing and wavelength assignment method applied in hierarchical wavelength division multiplexing(WDM)networks is proposed.The algorithm is called offiine band priority algorithm(offiine BPA).The offline BPA targets to maximize the number of waveband paths under the condition of minimum number of wavelengths,and solve the routing and wavelength assignment(RWA)problem with waveband grooming to reduce cost.Based on the circle construction algorithm,waveband priority function is introduced to calculate the RWA problem.Simulation results demonstrate that the proposed algorithm achieves significant cost reduction in WDM network construction.

  9. Hierarchical control based on Hopfield network for nonseparable optimization problems

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The nonseparable optimization control problem is considered, where the overall objective function is not of an additive form with respect to subsystems. Since there exists the problem that computation is very slow when using iterative algorithms in multiobjective optimization, Hopfield optimization hierarchical network based on IPM is presented to overcome such slow computation difficulty. Asymptotic stability of this Hopfield network is proved and its equilibrium point is the optimal point of the original problem. The simulation shows that the net is effective to deal with the optimization control problem for large-scale nonseparable steady state systems.

  10. Hierarchical Location Service with Prediction in Mobile Ad-Hoc Networks

    CERN Document Server

    Amar, Ebtisam; Renault, Éric; 10.5121/ijcnc.2010.2204

    2010-01-01

    Position-based routing protocols take advantage of location information to perform a stateless and efficient routing. To enable position-based routing, a node must be able to discover the location of the messages' destination node. This task is typically accomplished by a location service. Recently, several location service protocols have been developed for ad hoc networks. In this paper we propose a novel location service called PHLS: Predictive Hierarchical Location Service. In PHLS, the entire network is partitioned into a hierarchy of smaller and smaller regions. For each node, one node in each-level region of the hierarchy is chosen as its local location server. When the network initializes or when a node attaches the network, nodes contact their local location server with their current location information (ie. position and velocity). Then, they only need to update their location server when they move away from their current region. Finally, nodes query their location servers and get the exact or predic...

  11. Complex networks with scale-free nature and hierarchical modularity

    Science.gov (United States)

    Shekatkar, Snehal M.; Ambika, G.

    2015-09-01

    Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

  12. TWO-LEVEL HIERARCHICAL COORDINATION QUEUING METHOD FOR TELECOMMUNICATION NETWORK NODES

    Directory of Open Access Journals (Sweden)

    M. V. Semenyaka

    2014-07-01

    Full Text Available The paper presents hierarchical coordination queuing method. Within the proposed method a queuing problem has been reduced to optimization problem solving that was presented as two-level hierarchical structure. The required distribution of flows and bandwidth allocation was calculated at the first level independently for each macro-queue; at the second level solutions obtained on lower level for each queue were coordinated in order to prevent probable network link overload. The method of goal coordination has been determined for multilevel structure managing, which makes it possible to define the order for consideration of queue cooperation restrictions and calculation tasks distribution between levels of hierarchy. Decisions coordination was performed by the method of Lagrange multipliers. The study of method convergence has been carried out by analytical modeling.

  13. A new Hierarchical Group Key Management based on Clustering Scheme for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Ayman EL-SAYED

    2014-05-01

    Full Text Available The migration from wired network to wireless network has been a global trend in the past few decades because they provide anytime-anywhere networking services. The wireless networks are rapidly deployed in the future, secure wireless environment will be mandatory. As well, The mobility and scalability brought by wireless network made it possible in many applications. Among all the contemporary wireless networks,Mobile Ad hoc Networks (MANET is one of the most important and unique applications. MANET is a collection of autonomous nodes or terminals which communicate with each other by forming a multihop radio network and maintaining connectivity in a decentralized manner. Due to the nature of unreliable wireless medium data transfer is a major problem in MANET and it lacks security and reliability of data. The most suitable solution to provide the expected level of security to these services is the provision of a key management protocol. A Key management is vital part of security. This issue is even bigger in wireless network compared to wired network. The distribution of keys in an authenticated manner is a difficult task in MANET. When a member leaves or joins the group, it needs to generate a new key to maintain forward and backward secrecy. In this paper, we propose a new group key management schemes namely a Hierarchical, Simple, Efficient and Scalable Group Key (HSESGK based on clustering management scheme for MANETs and different other schemes are classified. Group members deduce the group key in a distributed manner.

  14. Doubly Optimal Secure Multicasting: Hierarchical Hybrid Communication Network : Disaster Relief

    CERN Document Server

    Garimella, Rama Murthy; Singhal, Deepti

    2011-01-01

    Recently, the world has witnessed the increasing occurrence of disasters, some of natural origin and others caused by man. The intensity of the phenomenon that cause such disasters, the frequency in which they occur, the number of people affected and the material damage caused by them have been growing substantially. Disasters are defined as natural, technological, and human-initiated events that disrupt the normal functioning of the economy and society on a large scale. Areas where disasters have occurred bring many dangers to rescue teams and the communication network infrastructure is usually destroyed. To manage these hazards, different wireless technologies can be launched in the area of disaster. This paper discusses the innovative wireless technologies for Disaster Management. Specifically, issues related to the design of Hierarchical Hybrid Communication Network (arising in the communication network for disaster relief) are discussed.

  15. Hierarchical modular granular neural networks with fuzzy aggregation

    CERN Document Server

    Sanchez, Daniela

    2016-01-01

    In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.

  16. Retrieval capabilities of hierarchical networks: from Dyson to Hopfield.

    Science.gov (United States)

    Agliari, Elena; Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Tantari, Daniele; Tavani, Flavia

    2015-01-16

    We consider statistical-mechanics models for spin systems built on hierarchical structures, which provide a simple example of non-mean-field framework. We show that the coupling decay with spin distance can give rise to peculiar features and phase diagrams much richer than their mean-field counterpart. In particular, we consider the Dyson model, mimicking ferromagnetism in lattices, and we prove the existence of a number of metastabilities, beyond the ordered state, which become stable in the thermodynamic limit. Such a feature is retained when the hierarchical structure is coupled with the Hebb rule for learning, hence mimicking the modular architecture of neurons, and gives rise to an associative network able to perform single pattern retrieval as well as multiple-pattern retrieval, depending crucially on the external stimuli and on the rate of interaction decay with distance; however, those emergent multitasking features reduce the network capacity with respect to the mean-field counterpart. The analysis is accomplished through statistical mechanics, Markov chain theory, signal-to-noise ratio technique, and numerical simulations in full consistency. Our results shed light on the biological complexity shown by real networks, and suggest future directions for understanding more realistic models.

  17. A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions

    Directory of Open Access Journals (Sweden)

    Nabil Sabor

    2017-01-01

    Full Text Available Introducing mobility to Wireless Sensor Networks (WSNs puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs. Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

  18. A Hierarchical Approach to Real-time Activity Recognition in Body Sensor Networks

    DEFF Research Database (Denmark)

    Wang, Liang; Gu, Tao; Tao, Xianping

    2012-01-01

    algorithm to detect gestures at the sensor node level, and then propose a pattern based real-time algorithm to recognize complex, high-level activities at the portable device level. We evaluate our algorithms over a real-world dataset. The results show that the proposed system not only achieves good......Real-time activity recognition in body sensor networks is an important and challenging task. In this paper, we propose a real-time, hierarchical model to recognize both simple gestures and complex activities using a wireless body sensor network. In this model, we rst use a fast and lightweight...... performance (an average utility of 0.81, an average accuracy of 82.87%, and an average real-time delay of 5.7 seconds), but also signicantly reduces the network communication cost by 60.2%....

  19. Decentralized Cooperative TOA/AOA Target Tracking for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2012-11-01

    Full Text Available This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processingis conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for thelocalization task. The proposed energy-efficient tracking algorithm allows each sub-clustermember to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for objectposition estimation. 

  20. Decentralized cooperative TOA/AOA target tracking for hierarchical wireless sensor networks.

    Science.gov (United States)

    Chen, Ying-Chih; Wen, Chih-Yu

    2012-11-08

    This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processing is conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for the localization task. The proposed energy-efficient tracking algorithm allows each sub-cluster member to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for object position estimation.

  1. Genomic analysis of the hierarchical structure of regulatory networks

    Science.gov (United States)

    Yu, Haiyuan; Gerstein, Mark

    2006-01-01

    A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135

  2. A HIERARCHICAL INTRUSION DETECTION ARCHITECTURE FOR WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Hossein Jadidoleslamy

    2011-10-01

    Full Text Available Networks protection against different types of attacks is one of most important posed issue into the network andinformation security application domains. This problem on Wireless Sensor Networks (WSNs, in attention to theirspecial properties, has more importance. Now, there are some of proposed architectures and guide lines to protectWireless Sensor Networks (WSNs against different types of intrusions; but any one of them do not has acomprehensive view to this problem and they are usually designed and implemented in single-purpose; but, theproposed design in this paper tries to has been a comprehensive view to this issue by presenting a complete andcomprehensive Intrusion Detection Architecture (IDA. The main contribution of this architecture is its hierarchicalstructure; i.e., it is designed and applicable, in one or two levels, consistent to the application domain and itsrequired security level. Focus of this paper is on the clustering WSNs, designing and deploying Cluster-basedIntrusion Detection System (CIDS on cluster-heads and Wireless Sensor Network wide level Intrusion DetectionSystem (WSNIDS on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA are:static and heterogeneous network, hierarchical and clustering structure, clusters' overlapping and using hierarchicalrouting protocol such as LEACH, but along with minor changes. Finally, the proposed idea has been verified bydesigning a questionnaire, representing it to some (about 50 people experts and then, analyzing and evaluating itsacquired results.

  3. NARX neural networks for sequence processing tasks

    OpenAIRE

    Hristev, Eugen

    2012-01-01

    This project aims at researching and implementing a neural network architecture system for the NARX (Nonlinear AutoRegressive with eXogenous inputs) model, used in sequence processing tasks and particularly in time series prediction. The model can fallback to different types of architectures including time-delay neural networks and multi layer perceptron. The NARX simulator tests and compares the different architectures for both synthetic and real data, including the time series o...

  4. Internal representation of hierarchical sequences involves the default network

    Directory of Open Access Journals (Sweden)

    Rogers Baxter P

    2010-04-01

    Full Text Available Abstract Background The default network is a set of brain regions that exhibit a reduction in BOLD response during attention-demanding cognitive tasks, and distinctive patterns of functional connectivity that typically include anti-correlations with a fronto-parietal network involved in attention, working memory, and executive control. The function of the default network regions has been attributed to introspection, self-awareness, and theory of mind judgments, and some of its regions are involved in episodic memory processes. Results Using the method of psycho-physiological interactions, we studied the functional connectivity of several regions in a fronto-parietal network involved in a paired image discrimination task involving transitive inference. Some image pairs were derived from an implicit underlying sequence A>B>C>D>E, and some were independent (F>G, H>J, etc. Functional connectivity between the fronto-parietal regions and the default network regions depended on the presence of the underlying sequence relating the images. When subjects viewed learned and novel pairs from the sequence, connectivity between these two networks was higher than when subjects viewed learned and novel pairs from the independent sets. Conclusions These results suggest that default network regions were involved in maintaining the internal model that subserved discrimination of image pairs derived from the implicit sequence, and contributed to introspective access of an internal sequence model built during training. The default network may not be a unified entity with a specific function, but rather may interact with other functional networks in task-dependent ways.

  5. [A medical image semantic modeling based on hierarchical Bayesian networks].

    Science.gov (United States)

    Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu

    2009-04-01

    A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.

  6. Spatially Resolved Monitoring of Drying of Hierarchical Porous Organic Networks.

    Science.gov (United States)

    Velasco, Manuel Isaac; Silletta, Emilia V; Gomez, Cesar G; Strumia, Miriam C; Stapf, Siegfried; Monti, Gustavo Alberto; Mattea, Carlos; Acosta, Rodolfo H

    2016-03-01

    Evaporation kinetics of water confined in hierarchal polymeric porous media is studied by low field nuclear magnetic resonance (NMR). Systems synthesized with various degrees of cross-linker density render networks with similar pore sizes but different response when soaked with water. Polymeric networks with low percentage of cross-linker can undergo swelling, which affects the porosity as well as the drying kinetics. The drying process is monitored macroscopically by single-sided NMR, with spatial resolution of 100 μm, while microscopic information is obtained by measurements of spin-spin relaxation times (T2). Transition from a funicular to a pendular regime, where hydraulic connectivity is lost and the capillary flow cannot compensate for the surface evaporation, can be observed from inspection of the water content in different sample layers. Relaxation measurements indicate that even when the larger pore structures are depleted of water, capillary flow occurs through smaller voids.

  7. Architecture of the parallel hierarchical network for fast image recognition

    Science.gov (United States)

    Timchenko, Leonid; Wójcik, Waldemar; Kokriatskaia, Natalia; Kutaev, Yuriy; Ivasyuk, Igor; Kotyra, Andrzej; Smailova, Saule

    2016-09-01

    Multistage integration of visual information in the brain allows humans to respond quickly to most significant stimuli while maintaining their ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing includes main types of cortical multistage convergence. The input images are mapped into a flexible hierarchy that reflects complexity of image data. Procedures of the temporal image decomposition and hierarchy formation are described in mathematical expressions. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image that encapsulates a structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a quick response of the system. The result is presented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match. With regard to the forecasting method, its idea lies in the following. In the results synchronization block, network-processed data arrive to the database where a sample of most correlated data is drawn using service parameters of the parallel-hierarchical network.

  8. GSMNet: A Hierarchical Graph Model for Moving Objects in Networks

    Directory of Open Access Journals (Sweden)

    Hengcai Zhang

    2017-03-01

    Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.

  9. Integration of relational and hierarchical network information for protein function prediction

    Directory of Open Access Journals (Sweden)

    Jiang Xiaoyu

    2008-08-01

    Full Text Available Abstract Background In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions. Results We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing. Conclusion A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased

  10. A hierarchical network modeling method for railway tunnels safety assessment

    Science.gov (United States)

    Zhou, Jin; Xu, Weixiang; Guo, Xin; Liu, Xumin

    2017-02-01

    Using network theory to model risk-related knowledge on accidents is regarded as potential very helpful in risk management. A large amount of defects detection data for railway tunnels is collected in autumn every year in China. It is extremely important to discover the regularities knowledge in database. In this paper, based on network theories and by using data mining techniques, a new method is proposed for mining risk-related regularities to support risk management in railway tunnel projects. A hierarchical network (HN) model which takes into account the tunnel structures, tunnel defects, potential failures and accidents is established. An improved Apriori algorithm is designed to rapidly and effectively mine correlations between tunnel structures and tunnel defects. Then an algorithm is presented in order to mine the risk-related regularities table (RRT) from the frequent patterns. At last, a safety assessment method is proposed by consideration of actual defects and possible risks of defects gained from the RRT. This method cannot only generate the quantitative risk results but also reveal the key defects and critical risks of defects. This paper is further development on accident causation network modeling methods which can provide guidance for specific maintenance measure.

  11. Recurrent Spiking Networks Solve Planning Tasks

    Science.gov (United States)

    Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan

    2016-02-01

    A recurrent spiking neural network is proposed that implements planning as probabilistic inference for finite and infinite horizon tasks. The architecture splits this problem into two parts: The stochastic transient firing of the network embodies the dynamics of the planning task. With appropriate injected input this dynamics is shaped to generate high-reward state trajectories. A general class of reward-modulated plasticity rules for these afferent synapses is presented. The updates optimize the likelihood of getting a reward through a variant of an Expectation Maximization algorithm and learning is guaranteed to convergence to a local maximum. We find that the network dynamics are qualitatively similar to transient firing patterns during planning and foraging in the hippocampus of awake behaving rats. The model extends classical attractor models and provides a testable prediction on identifying modulating contextual information. In a real robot arm reaching and obstacle avoidance task the ability to represent multiple task solutions is investigated. The neural planning method with its local update rules provides the basis for future neuromorphic hardware implementations with promising potentials like large data processing abilities and early initiation of strategies to avoid dangerous situations in robot co-worker scenarios.

  12. Brain network adaptability across task states.

    Directory of Open Access Journals (Sweden)

    Elizabeth N Davison

    2015-01-01

    Full Text Available Activity in the human brain moves between diverse functional states to meet the demands of our dynamic environment, but fundamental principles guiding these transitions remain poorly understood. Here, we capitalize on recent advances in network science to analyze patterns of functional interactions between brain regions. We use dynamic network representations to probe the landscape of brain reconfigurations that accompany task performance both within and between four cognitive states: a task-free resting state, an attention-demanding state, and two memory-demanding states. Using the formalism of hypergraphs, we identify the presence of groups of functional interactions that fluctuate coherently in strength over time both within (task-specific and across (task-general brain states. In contrast to prior emphases on the complexity of many dyadic (region-to-region relationships, these results demonstrate that brain adaptability can be described by common processes that drive the dynamic integration of cognitive systems. Moreover, our results establish the hypergraph as an effective measure for understanding functional brain dynamics, which may also prove useful in examining cross-task, cross-age, and cross-cohort functional change.

  13. A Hybrid System of Hierarchical Planning of Behaviour Selection Networks for Mobile Robot Control

    Directory of Open Access Journals (Sweden)

    Young-Seol Lee

    2014-04-01

    Full Text Available An office delivery robot receives a large amount of sensory data and there is uncertainty in its action outcomes. The robot should not only accomplish its goals using environmental information, but also consider various exceptions simultaneously. In this paper, we propose a hybrid system using hierarchical planning of modular behaviour selection networks to generate autonomous behaviour in the office delivery robot. Behaviour selection networks, one of the well-known behaviour-based methods suitable for goal-oriented tasks, are made up of several smaller behaviour modules. Planning is attached to the construct and adjust sequences of the modules by considering the sub-goals, the priority in each task and the user feedback. This helps the robot to quickly react in dynamic situations as well as achieve global goals efficiently. The proposed system is verified with both the Webot simulator and a Khepera II robot that runs in a real office environment carrying out delivery tasks. Experimental results have shown that a robot can achieve goals and generate module sequences successfully even in unpredictable situations. Additionally, the proposed planning method reduced the elapsed time during tasks by 17.5% since it adjusts the behaviour module sequences more effectively.

  14. A special hierarchical fuzzy neural-networks based reinforcement learning for multi-variables system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-zhi; LU Tian-sheng

    2005-01-01

    Proposes a reinforcement learning scheme based on a special Hierarchical Fuzzy Neural-Networks (HFNN) for solving complicated learning tasks in a continuous multi-variables environment. The output of the previous layer in the HFNN is no longer used as if-part of the next layer, but used only in then-part. Thus it can deal with the difficulty when the output of the previous layer is meaningless or its meaning is uncertain. The proposed HFNN has a minimal number of fuzzy rules and can successfully solve the problem of rules combination explosion and decrease the quantity of computation and memory requirement. In the learning process, two HFNN with the same structure perform fuzzy action composition and evaluation function approximation simultaneously where the parameters of neural-networks are tuned and updated on line by using gradient descent algorithm. The reinforcement learning method is proved to be correct and feasible by simulation of a double inverted pendulum system.

  15. Hierarchical Interference Mitigation for Massive MIMO Cellular Networks

    Science.gov (United States)

    Liu, An; Lau, Vincent

    2014-09-01

    We propose a hierarchical interference mitigation scheme for massive MIMO cellular networks. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and an outer precoder. The inner precoder controls the intra-cell interference and is adaptive to local channel state information (CSI) at each BS (CSIT). The outer precoder controls the inter-cell interference and is adaptive to channel statistics. Such hierarchical precoding structure reduces the number of pilot symbols required for CSI estimation in massive MIMO downlink and is robust to the backhaul latency. We study joint optimization of the outer precoders, the user selection, and the power allocation to maximize a general concave utility which has no closed-form expression. We first apply random matrix theory to obtain an approximated problem with closed-form objective. We show that the solution of the approximated problem is asymptotically optimal with respect to the original problem as the number of antennas per BS grows large. Then using the hidden convexity of the problem, we propose an iterative algorithm to find the optimal solution for the approximated problem. We also obtain a low complexity algorithm with provable convergence. Simulations show that the proposed design has significant gain over various state-of-the-art baselines.

  16. Extending hierarchical task analysis to identify cognitive demands and information design requirements.

    Science.gov (United States)

    Phipps, Denham L; Meakin, George H; Beatty, Paul C W

    2011-07-01

    While hierarchical task analysis (HTA) is well established as a general task analysis method, there appears a need to make more explicit both the cognitive elements of a task and design requirements that arise from an analysis. One way of achieving this is to make use of extensions to the standard HTA. The aim of the current study is to evaluate the use of two such extensions--the sub-goal template (SGT) and the skills-rules-knowledge (SRK) framework--to analyse the cognitive activity that takes place during the planning and delivery of anaesthesia. In quantitative terms, the two methods were found to have relatively poor inter-rater reliability; however, qualitative evidence suggests that the two methods were nevertheless of value in generating insights about anaesthetists' information handling and cognitive performance. Implications for the use of an extended HTA to analyse work systems are discussed.

  17. Distributed Plume Source Localization Using Hierarchical Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    KUANG Xing-hong; LIU Yu-qing; WU Yan-xiang; SHAO Hui-he

    2009-01-01

    A hierarchical wireless sensor networks (WSN) was proposed to estimate the plume source location. Such WSN can be of tremendous help to emergency personnel trying to protect people from terrorist attacks or responding to an accident. The entire surveillant field is divided into several small sub-regions. In each sub-region, the localization algorithm based on the improved particle filter (IPF) was performed to estimate the location. Some improved methods such as weighted centroid, residual resampling were introduced to the IPF algorithm to increase the localization performance. This distributed estimation method elirninates many drawbacks inherent with the traditional centralized optimization method. Simulation results show that localization algorithm is efficient far estimating the plume source location.

  18. Hierarchical self-organization of cytoskeletal active networks

    CERN Document Server

    Gordon, Daniel; Keasar, Chen; Farago, Oded

    2012-01-01

    The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system behaves in a very noisy manner, on larger scales it evolves into several well distinct patterns such as bundles, asters, and networks. These patterns are characterized by junctions with high connectivity, whose formation is possible due to the organization of the motors in "oligoclusters" (intermediate-size aggregates). The simulations reveal that the self-organization process proceeds through a series of hierarchical steps, starting from local microscopic moves and ranging up to the macroscopic large scales where the steady-state structures are formed. Our results shed light into the mechanisms involved in processes li...

  19. Hierarchical Place Trees: A Portable Abstraction for Task Parallelism and Data Movement

    Science.gov (United States)

    Yan, Yonghong; Zhao, Jisheng; Guo, Yi; Sarkar, Vivek

    Modern computer systems feature multiple homogeneous or heterogeneous computing units with deep memory hierarchies, and expect a high degree of thread-level parallelism from the software. Exploitation of data locality is critical to achieving scalable parallelism, but adds a significant dimension of complexity to performance optimization of parallel programs. This is especially true for programming models where locality is implicit and opaque to programmers. In this paper, we introduce the hierarchical place tree (HPT) model as a portable abstraction for task parallelism and data movement. The HPT model supports co-allocation of data and computation at multiple levels of a memory hierarchy. It can be viewed as a generalization of concepts from the Sequoia and X10 programming models, resulting in capabilities that are not supported by either. Compared to Sequoia, HPT supports three kinds of data movement in a memory hierarchy rather than just explicit data transfer between adjacent levels, as well as dynamic task scheduling rather than static task assignment. Compared to X10, HPT provides a hierarchical notion of places for both computation and data mapping. We describe our work-in-progress on implementing the HPT model in the Habanero-Java (HJ) compiler and runtime system. Preliminary results on general-purpose multicore processors and GPU accelerators indicate that the HPT model can be a promising portable abstraction for future multicore processors.

  20. Markov Task Network: A Framework for Service Composition under Uncertainty in Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Abdul-Wahid Mohammed

    2016-09-01

    Full Text Available In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.

  1. Markov Task Network: A Framework for Service Composition under Uncertainty in Cyber-Physical Systems.

    Science.gov (United States)

    Mohammed, Abdul-Wahid; Xu, Yang; Hu, Haixiao; Agyemang, Brighter

    2016-09-21

    In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.

  2. Markov Task Network: A Framework for Service Composition under Uncertainty in Cyber-Physical Systems

    Science.gov (United States)

    Mohammed, Abdul-Wahid; Xu, Yang; Hu, Haixiao; Agyemang, Brighter

    2016-01-01

    In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach. PMID:27657084

  3. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  4. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  5. Registration Cost Performance Analysis of a Hierarchical Mobile Internet Protocol Network

    Institute of Scientific and Technical Information of China (English)

    XU Kai; JI Hong; YUE Guang-xin

    2004-01-01

    On the basis of introducing principles for hierarchical mobile Internet protocol networks, the registration cost performance in this network model is analyzed in detail. Furthermore, the functional relationship is also established in the paper among registration cost, hierarchical level number and the maximum handover time for gateway foreign agent regional registration. At last, the registration cost of the hierarchical mobile Internet protocol network is compared with that of the traditional mobile Internet protocol. Theoretic analysis and computer simulation results show that the hierarchical level number and the maximum handover times can both affect the registration cost importantly, when suitable values of which are chosen, the hierarchical network can significantly improve the registration performance compared with the traditional mobile IP.

  6. Hierarchical Real-time Network Traffic Classification Based on ECOC

    Directory of Open Access Journals (Sweden)

    Yaou Zhao

    2013-09-01

    Full Text Available Classification of network traffic is basic and essential for manynetwork researches and managements. With the rapid development ofpeer-to-peer (P2P application using dynamic port disguisingtechniques and encryption to avoid detection, port-based and simplepayload-based network traffic classification methods were diminished.An alternative method based on statistics and machine learning hadattracted researchers' attention in recent years. However, most ofthe proposed algorithms were off-line and usually used a single classifier.In this paper a new hierarchical real-time model was proposed which comprised of a three tuple (source ip, destination ip and destination portlook up table(TT-LUT part and layered milestone part. TT-LUT was used to quickly classify short flows whichneed not to pass the layered milestone part, and milestones in layered milestone partcould classify the other flows in real-time with the real-time feature selection and statistics.Every milestone was a ECOC(Error-Correcting Output Codes based model which was usedto improve classification performance. Experiments showed that the proposedmodel can improve the efficiency of real-time to 80%, and themulti-class classification accuracy encouragingly to 91.4% on the datasets which had been captured from the backbone router in our campus through a week.

  7. Implementation of Hierarchical Task Analysis for User Interface Design in Drawing Application for Early Childhood Education

    Directory of Open Access Journals (Sweden)

    Mira Kania Sabariah

    2016-05-01

    Full Text Available Draw learning in early childhood is an important lesson and full of stimulation of the process of growth and development of children which could help to train the fine motor skills. We have had a lot of applications that can be used to perform learning, including interactive learning applications. Referring to the observations that have been conducted showed that the experiences given by the applications that exist today are very diverse and have not been able to represent the model of learning and characteristics of early childhood (4-6 years. Based on the results, Hierarchical Task Analysis method generated a list of tasks that must be done in designing an user interface that represents the user experience in draw learning. Then by using the Heuristic Evaluation method the usability of the model has fulfilled a very good level of understanding and also it can be enhanced and produce a better model.

  8. Coordinated Workload Scheduling in Hierarchical Sensor Networks for Data Fusion Applications

    Institute of Scientific and Technical Information of China (English)

    Xiao-Lin Li; Jian-Nong Cao

    2008-01-01

    To minimize the execution time of a sensing task over a multi-hop hierarchical sensor network, we present acoordinated scheduling method following the divisible load scheduling paradigm. The proposed scheduling strategy builds on eliminating transmission collisions and idle gaps between two successive data transmissions. We consider a sensor network consisting of several clusters. In a cluster, after related raw data measured by source nodes are collected at the fusion node,in-network data aggregation is further considered. The scheduling strategies consist of two phases: intra-cluster scheduling and inter-cluster scheduling. Intra-cluster scheduling deals with assigning different fractions of a sensing workload among source nodes in each cluster; inter-cluster scheduling involves the distribution of fused data among all fusion nodes. Closed-form solutions to the problem of task scheduling are derived. Finally, numerical examples are presented to demonstrate the impacts of different system parameters such as the number of sensor nodes, measurement, communication, and processing speed, on the finish time and energy consumption.

  9. Sensor Networks Hierarchical Optimization Model for Security Monitoring in High-Speed Railway Transport Hub

    Directory of Open Access Journals (Sweden)

    Zhengyu Xie

    2015-01-01

    Full Text Available We consider the sensor networks hierarchical optimization problem in high-speed railway transport hub (HRTH. The sensor networks are optimized from three hierarchies which are key area sensors optimization, passenger line sensors optimization, and whole area sensors optimization. Case study on a specific HRTH in China showed that the hierarchical optimization method is effective to optimize the sensor networks for security monitoring in HRTH.

  10. Spectral characterization of hierarchical network modularity and limits of modularity detection.

    Directory of Open Access Journals (Sweden)

    Somwrita Sarkar

    Full Text Available Many real world networks are reported to have hierarchically modular organization. However, there exists no algorithm-independent metric to characterize hierarchical modularity in a complex system. The main results of the paper are a set of methods to address this problem. First, classical results from random matrix theory are used to derive the spectrum of a typical stochastic block model hierarchical modular network form. Second, it is shown that hierarchical modularity can be fingerprinted using the spectrum of its largest eigenvalues and gaps between clusters of closely spaced eigenvalues that are well separated from the bulk distribution of eigenvalues around the origin. Third, some well-known results on fingerprinting non-hierarchical modularity in networks automatically follow as special cases, threreby unifying these previously fragmented results. Finally, using these spectral results, it is found that the limits of detection of modularity can be empirically established by studying the mean values of the largest eigenvalues and the limits of the bulk distribution of eigenvalues for an ensemble of networks. It is shown that even when modularity and hierarchical modularity are present in a weak form in the network, they are impossible to detect, because some of the leading eigenvalues fall within the bulk distribution. This provides a threshold for the detection of modularity. Eigenvalue distributions of some technological, social, and biological networks are studied, and the implications of detecting hierarchical modularity in real world networks are discussed.

  11. Hierarchical Structure, Disassortativity and Information Measures of the US Flight Network

    Institute of Scientific and Technical Information of China (English)

    WANG Ru; CAI Xu

    2005-01-01

    @@ We investigate the mixing structure of directed and evolutionary US flight network. It is shown that such a network is a hierarchical network, with average assortativity coefficient -0.37. Application of the informationbased method that can give the same result provides a way to explore the structure of complex networks.

  12. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    Science.gov (United States)

    Nitta, Tohru

    2016-06-30

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  13. Agent-Based Hierarchical Approach For Executing Bag-Of-Tasks In Clouds

    Directory of Open Access Journals (Sweden)

    Włodzimierz Funika

    2014-01-01

    Full Text Available Numerous unrelated, independent (no inter-task communication tasks called “bag-oftasks”(BoTs compared with message passing applications can be highly parallelised andexecuted in any acceptable order. A common practice when executing bag-of-tasks applications(BoT is to exploit the master-slave topology. Cloud environments offer some featuresthat facilitate executing BoT applications. One of the approaches to control cloud resourcesis to use agents that can flexibly act in a dynamic environment. Given these assumptions wedesigned a combination of these approaches, which can be classified as: a distributed, hierarchicalsolution to the issue of scalable executing of bag-of-tasks. The concept of our systemrelates to a project that is focused on processing huge quantities of data incoming from anetwork of sensors by the Internet. Our aim is to create a mechanism for processing such dataas a system which executes jobs while exploiting load balancing for cloud resources using,e.g., Eucalyptus. The idea is to create a hybrid architecture which takes advantage of somecentralized parts of the system and full distributedness in other parts. On the other handwe balance dependencies between the system components using a hierarchic master-slavestructure.

  14. A Tool for Fast Development of Modular and Hierarchic Neural Network-based Systems

    Directory of Open Access Journals (Sweden)

    Francisco Reinaldo

    2006-08-01

    Full Text Available This paper presents PyramidNet tool as a fast and easy way to develop Modular and Hierarchic Neural Network-based Systems. This tool facilitates the fast emergence of autonomous behaviors in agents because it uses a hierarchic and modular control methodology of heterogeneous learning modules: the pyramid. Using the graphical resources of PyramidNet the user is able to specify a behavior system even having little understanding of artificial neural networks. Experimental tests have shown that a very significant speedup is attained in the development of modular and hierarchic neural network-based systems by using this tool.

  15. Modeling Dynamic Tactical Behaviors in Combatxxi using Hierarchical Task Networks

    Science.gov (United States)

    2014-06-01

    develop the situation and to establish or regain contact” [42, p. 245]. The purpose of this offensive operation is to further develop a commander’s...sheets have been produced for the TTECG exercise controllers. These assessment sheets organize the numerous aspects of R400 into a sensible manner and

  16. Hierarchical Task Network Prototyping In Unity3d

    Science.gov (United States)

    2016-06-01

    in a video game application. Each application has an agent which can be programmed using one of several major pro - gramming languages. The user can...visually debug. Here we present a solution for prototyping HTNs by extending an existing commercial implementation of Behavior Trees within the Unity3D game ...HTN, dynamic behaviors, behavior prototyping, agent-based simulation, entity-level combat model, game engine, discrete event simulation, virtual

  17. SO2 Emissions in China - Their Network and Hierarchical Structures

    Science.gov (United States)

    Yan, Shaomin; Wu, Guang

    2017-04-01

    SO2 emissions lead to various harmful effects on environment and human health. The SO2 emission in China has significant contribution to the global SO2 emission, so it is necessary to employ various methods to study SO2 emissions in China with great details in order to lay the foundation for policymaking to improve environmental conditions in China. Network analysis is used to analyze the SO2 emissions from power generation, industrial, residential and transportation sectors in China for 2008 and 2010, which are recently available from 1744 ground surface monitoring stations. The results show that the SO2 emissions from power generation sector were highly individualized as small-sized clusters, the SO2 emissions from industrial sector underwent an integration process with a large cluster contained 1674 places covering all industrial areas in China, the SO2 emissions from residential sector was not impacted by time, and the SO2 emissions from transportation sector underwent significant integration. Hierarchical structure is obtained by further combining SO2 emissions from all four sectors and is potentially useful to find out similar patterns of SO2 emissions, which can provide information on understanding the mechanisms of SO2 pollution and on designing different environmental measure to combat SO2 emissions.

  18. Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  19. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems

    CERN Document Server

    Rosvall, M

    2010-01-01

    To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation that reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network, the optimal number of levels and modular partition at each level, with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines:...

  20. Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks.

    Science.gov (United States)

    Selver, M Alper; Güzeliş, Cüneyt

    2009-01-01

    As being a tool that assigns optical parameters used in interactive visualization, Transfer Functions (TF) have important effects on the quality of volume rendered medical images. Unfortunately, finding accurate TFs is a tedious and time consuming task because of the trade off between using extensive search spaces and fulfilling the physician's expectations with interactive data exploration tools and interfaces. By addressing this problem, we introduce a semi-automatic method for initial generation of TFs. The proposed method uses a Self Generating Hierarchical Radial Basis Function Network to determine the lobes of a Volume Histogram Stack (VHS) which is introduced as a new domain by aligning the histograms of slices of a image series. The new self generating hierarchical design strategy allows the recognition of suppressed lobes corresponding to suppressed tissues and representation of the overlapping regions which are parts of the lobes but can not be represented by the Gaussian bases in VHS. Moreover, approximation with a minimum set of basis functions provides the possibility of selecting and adjusting suitable units to optimize the TF. Applications on different CT and MR data sets show enhanced rendering quality and reduced optimization time in abdominal studies.

  1. Multiple dynamical time-scales in networks with hierarchically nested modular organization

    Indian Academy of Sciences (India)

    Sitabhra Sinha; Swarup Poria

    2011-11-01

    Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intramodular and slow intermodular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.

  2. Loss Performance Modeling for Hierarchical Heterogeneous Wireless Networks With Speed-Sensitive Call Admission Control

    DEFF Research Database (Denmark)

    Huang, Qian; Huang, Yue-Cai; Ko, King-Tim;

    2011-01-01

    dimensioning and planning. This paper investigates the computationally efficient loss performance modeling for multiservice in hierarchical heterogeneous wireless networks. A speed-sensitive call admission control (CAC) scheme is considered in our model to assign overflowed calls to appropriate tiers...

  3. Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition.

    Science.gov (United States)

    Liu, An-An; Su, Yu-Ting; Nie, Wei-Zhi; Kankanhalli, Mohan

    2017-01-01

    This paper proposes a hierarchical clustering multi-task learning (HC-MTL) method for joint human action grouping and recognition. Specifically, we formulate the objective function into the group-wise least square loss regularized by low rank and sparsity with respect to two latent variables, model parameters and grouping information, for joint optimization. To handle this non-convex optimization, we decompose it into two sub-tasks, multi-task learning and task relatedness discovery. First, we convert this non-convex objective function into the convex formulation by fixing the latent grouping information. This new objective function focuses on multi-task learning by strengthening the shared-action relationship and action-specific feature learning. Second, we leverage the learned model parameters for the task relatedness measure and clustering. In this way, HC-MTL can attain both optimal action models and group discovery by alternating iteratively. The proposed method is validated on three kinds of challenging datasets, including six realistic action datasets (Hollywood2, YouTube, UCF Sports, UCF50, HMDB51 & UCF101), two constrained datasets (KTH & TJU), and two multi-view datasets (MV-TJU & IXMAS). The extensive experimental results show that: 1) HC-MTL can produce competing performances to the state of the arts for action recognition and grouping; 2) HC-MTL can overcome the difficulty in heuristic action grouping simply based on human knowledge; 3) HC-MTL can avoid the possible inconsistency between the subjective action grouping depending on human knowledge and objective action grouping based on the feature subspace distributions of multiple actions. Comparison with the popular clustered multi-task learning further reveals that the discovered latent relatedness by HC-MTL aids inducing the group-wise multi-task learning and boosts the performance. To the best of our knowledge, ours is the first work that breaks the assumption that all actions are either

  4. A Distributed Network Mobility Management Scheme for Hierarchical Mobile IPv6 Networks

    Science.gov (United States)

    Kawano, Keita; Kinoshita, Kazuhiko; Yamai, Nariyoshi

    Route optimization for network mobility is a key technique for providing a node in a mobile network (Mobile Network Node or MNN) with high quality broadband communications. Many schemes adding route optimization function to Network Mobility (NEMO) Basic Support protocol, the standardized network mobility management protocol from the IETF nemo working group, have already been proposed in recent years. One such scheme, a scheme using Hierarchical Mobile IPv6 (HMIPv6) aims to overcome micromobility management issues as well by applying a mechanism based on HMIPv6. The traditional scheme, however, suffers from a significant number of signaling messages as the number of MNNs and/or the number of their Correspondent Nodes (CNs) increase, because many messages notifying the MNNs' Home Agents (HAMNNs) and the CNs of the mobile network's movement are generated simultaneously each time the mobile network moves to the domain of another micromobility management router (Mobility Anchor Point or MAP). This paper proposes a scheme to overcome this problem. Our scheme reduces the number of signaling messages generated at the same time by managing the mobility of MNNs using multiple MAPs distributed within a network for load sharing. The results of simulation experiments show that our scheme works efficiently compared to the traditional scheme when a mobile network has many MNNs and/or these MNNs communicate with many CNs.

  5. IPTV traffic management using topology-based hierarchical scheduling in Carrier Ethernet transport networks

    DEFF Research Database (Denmark)

    Yu, Hao; Yan, Ying; Berger, Michael Stubert

    2009-01-01

    of Service (QoS) provisioning abilities, which guarantee end-to-end performances of voice, video and data traffic delivered over networks. This paper introduces a topology-based hierarchical scheduler scheme, which controls the incoming traffic at the edge of the network based on the network topology...

  6. A Network Simulation Tool for Task Scheduling

    Directory of Open Access Journals (Sweden)

    Ondřej Votava

    2012-01-01

    Full Text Available Distributed computing may be looked at from many points of view. Task scheduling is the viewpoint, where a distributed application can be described as a Directed Acyclic Graph and every node of the graph is executed independently. There are, however, data dependencies and the nodes have to be executed in a specified order. Hence the parallelism of the execution is limited. The scheduling problem is difficult and therefore heuristics are used. However, many inaccuracies are caused by the model used for the system, in which the heuristics are being tested. In this paper we present a tool for simulating the execution of the distributed application on a “real” computer network, and try to tell how the executionis influenced compared to the model.

  7. Hierarchical Route Optimization By Using Memetic Algorithm In A Mobile Networks

    Directory of Open Access Journals (Sweden)

    K .K. Gautam

    2011-02-01

    Full Text Available The networks Mobility (NEMO Protocol is a way of managing the mobility of an entire network, and mobile internet protocol is the basic solution for networks Mobility. A hierarchical route optimization system for mobile network is proposed to solve management of hierarchical route optimization problems. In present paper we study hierarchical Route Optimization scheme using memetic algorithm(HROSMA The concept of optimization- finding the extreme of a function that maps candidate ‘solution’ to scalar values of ‘quality’ – is an extremely general and useful idea. For solving this problem, we use a few salient adaptations, and we also extend HROSMA perform routing between the mobile networks.

  8. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  9. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  10. Coevolution of Information Processing and Topology in Hierarchical Adaptive Random Boolean Networks

    CERN Document Server

    Gorski, Piotr J; Holyst, Janusz A

    2015-01-01

    Random Boolean networks (RBNs) are frequently employed for modelling complex systems driven by information processing, e.g. for gene regulatory networks (GRNs). Here we propose a hierarchical adaptive RBN (HARBN) as a system consisting of distinct adaptive RBNs - subnetworks - connected by a set of permanent interlinks. Information measures and internal subnetworks topology of HARBN coevolve and reach steady-states that are specific for a given network structure. We investigate mean node information, mean edge information as well as a mean node degree as functions of model parameters and demonstrate HARBN's ability to describe complex hierarchical systems.

  11. Sustained Activity in Hierarchical Modular Neural Networks: Self-Organized Criticality and Oscillations

    Science.gov (United States)

    Wang, Sheng-Jun; Hilgetag, Claus C.; Zhou, Changsong

    2010-01-01

    Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information

  12. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wang

    2011-06-01

    Full Text Available Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. They are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality. We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. It was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We find that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and self-organized criticality, which are not present in the respective random networks. The underlying mechanism is that each dense module cannot sustain activity on its own, but displays self-organized criticality in the presence of weak perturbations. The hierarchical modular networks provide the coupling among subsystems with self-organized criticality. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivityof critical state and predictability and timing of oscillations for efficient

  13. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations.

    Science.gov (United States)

    Wang, Sheng-Jun; Hilgetag, Claus C; Zhou, Changsong

    2011-01-01

    Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information

  14. Prolonging the Lifetime of Wireless Sensor Networks Interconnected to Fixed Network Using Hierarchical Energy Tree Based Routing Algorithm

    Directory of Open Access Journals (Sweden)

    M. Kalpana

    2014-01-01

    Full Text Available This research work proposes a mathematical model for the lifetime of wireless sensor networks (WSN. It also proposes an energy efficient routing algorithm for WSN called hierarchical energy tree based routing algorithm (HETRA based on hierarchical energy tree constructed using the available energy in each node. The energy efficiency is further augmented by reducing the packet drops using exponential congestion control algorithm (TCP/EXP. The algorithms are evaluated in WSNs interconnected to fixed network with seven distribution patterns, simulated in ns2 and compared with the existing algorithms based on the parameters such as number of data packets, throughput, network lifetime, and data packets average network lifetime product. Evaluation and simulation results show that the combination of HETRA and TCP/EXP maximizes longer network lifetime in all the patterns. The lifetime of the network with HETRA algorithm has increased approximately 3.2 times that of the network implemented with AODV.

  15. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2009-05-01

    Full Text Available This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  16. An Isolation Intrusion Detection System for Hierarchical Wireless Sensor Networks

    OpenAIRE

    Rung-Ching Chen; Chia-Fen Hsieh; Yung-Fa Huang

    2010-01-01

    A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor environmental conditions, such as battlefield data and personal health information, and some environment limited resources. To avoid malicious damage is important while information is transmitted in wireless network. Thus, Wireless Intrusion Detection Systems are crucial to safe operation in wireless sensor networks. Wireless networks are subject ...

  17. Exact and Approximate Inference in Associative Hierarchical Networks using Graph Cuts

    CERN Document Server

    Russell, Chris; Kohli, Pushmeet; Torr, Philip H S

    2012-01-01

    Markov Networks are widely used through out computer vision and machine learning. An important subclass are the Associative Markov Networks which are used in a wide variety of applications. For these networks a good approximate minimum cost solution can be found efficiently using graph cut based move making algorithms such as alpha- expansion. Recently a related model has been proposed, the associative hierarchical net- work, which provides a natural generalisation of the Associative Markov Network for higher order cliques (i.e. clique size greater than two). This method provides a good model for object class segmentation problem in com- puter vision. Within this paper we briefly describe the associative hierarchical network and provide a computationally efficient method for ap- proximate inference based on graph cuts. Our method performs well for networks con- taining hundreds of thousand of variables, and higher order potentials are defined over cliques containing tens of thousands of vari- ables. Due to th...

  18. The Griffiths Phase on Hierarchical Modular Networks with Small-world Edges

    CERN Document Server

    Li, Shanshan

    2016-01-01

    The Griffiths phase has been proposed to induce a stretched critical regime that facilitates self organizing of brain networks for optimal function. This phase stems from the intrinsic structural heterogeneity of brain networks, such as the hierarchical modular structure. In this work, we extend this concept to modified hierarchical networks with small-world connections based on Hanoi networks [1]. Through extensive simulations, we identify the essential role played by the exponential distribution of the inter-moduli connectivity probability across hierarchies on the emergence of the Griffiths phase in this network. Additionally, the spectral analysis on the adjacency matrix of the relevant networks [2] shows that a localized principle eigenvector is not necessarily the fingerprint of the Griffiths phase.

  19. NEW METHOD TO ESTIMATE SCALING OF POWER-LAW DEGREE DISTRIBUTION AND HIERARCHICAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    YANG Bo; DUAN Wen-qi; CHEN Zhong

    2006-01-01

    A new method and corresponding numerical procedure are introduced to estimate scaling exponents of power-law degree distribution and hierarchical clustering func tion for complex networks. This method can overcome the biased and inaccurate faults of graphical linear fitting methods commonly used in current network research. Furthermore, it is verified to have higher goodness-of-fit than graphical methods by comparing the KS (Kolmogorov-Smirnov) test statistics for 10 CNN (Connecting Nearest-Neighbor)networks.

  20. Modular networks with hierarchical organization: The dynamical implications of complex structure

    Indian Academy of Sciences (India)

    Raj Kumar Pan; Sitabhra Sinha

    2008-08-01

    Several networks occurring in real life have modular structures that are arranged in a hierarchical fashion. In this paper, we have proposed a model for such networks, using a stochastic generation method. Using this model we show that, the scaling relation between the clustering and degree of the nodes is not a necessary property of hierarchical modular networks, as had previously been suggested on the basis of a deterministically constructed model. We also look at dynamics on such networks, in particular, the stability of equilibria of network dynamics and of synchronized activity in the network. For both of these, we find that, increasing modularity or the number of hierarchical levels tends to increase the probability of instability. As both hierarchy and modularity are seen in natural systems, which necessarily have to be robust against environmental fluctuations, we conclude that additional constraints are necessary for the emergence of hierarchical structure, similar to the occurrence of modularity through multi-constraint optimization as shown by us previously.

  1. Hierarchical effects of task engagement on amplitude modulation encoding in auditory cortex.

    Science.gov (United States)

    Niwa, Mamiko; O'Connor, Kevin N; Engall, Elizabeth; Johnson, Jeffrey S; Sutter, M L

    2015-01-01

    We recorded from middle lateral belt (ML) and primary (A1) auditory cortical neurons while animals discriminated amplitude-modulated (AM) sounds and also while they sat passively. Engagement in AM discrimination improved ML and A1 neurons' ability to discriminate AM with both firing rate and phase-locking; however, task engagement affected neural AM discrimination differently in the two fields. The results suggest that these two areas utilize different AM coding schemes: a "single mode" in A1 that relies on increased activity for AM relative to unmodulated sounds and a "dual-polar mode" in ML that uses both increases and decreases in neural activity to encode modulation. In the dual-polar ML code, nonsynchronized responses might play a special role. The results are consistent with findings in the primary and secondary somatosensory cortices during discrimination of vibrotactile modulation frequency, implicating a common scheme in the hierarchical processing of temporal information among different modalities. The time course of activity differences between behaving and passive conditions was also distinct in A1 and ML and may have implications for auditory attention. At modulation depths ≥ 16% (approximately behavioral threshold), A1 neurons' improvement in distinguishing AM from unmodulated noise is relatively constant or improves slightly with increasing modulation depth. In ML, improvement during engagement is most pronounced near threshold and disappears at highly suprathreshold depths. This ML effect is evident later in the stimulus, and mainly in nonsynchronized responses. This suggests that attention-related increases in activity are stronger or longer-lasting for more difficult stimuli in ML.

  2. Learning invariant object recognition from temporal correlation in a hierarchical network.

    Science.gov (United States)

    Lessmann, Markus; Würtz, Rolf P

    2014-06-01

    Invariant object recognition, which means the recognition of object categories independent of conditions like viewing angle, scale and illumination, is a task of great interest that humans can fulfill much better than artificial systems. During the last years several basic principles were derived from neurophysiological observations and careful consideration: (1) Developing invariance to possible transformations of the object by learning temporal sequences of visual features that occur during the respective alterations. (2) Learning in a hierarchical structure, so basic level (visual) knowledge can be reused for different kinds of objects. (3) Using feedback to compare predicted input with the current one for choosing an interpretation in the case of ambiguous signals. In this paper we propose a network which implements all of these concepts in a computationally efficient manner which gives very good results on standard object datasets. By dynamically switching off weakly active neurons and pruning weights computation is sped up and thus handling of large databases with several thousands of images and a number of categories in a similar order becomes possible. The involved parameters allow flexible adaptation to the information content of training data and allow tuning to different databases relatively easily. Precondition for successful learning is that training images are presented in an order assuring that images of the same object under similar viewing conditions follow each other. Through an implementation with sparse data structures the system has moderate memory demands and still yields very good recognition rates.

  3. Application of growing hierarchical SOM for visualisation of network forensics traffic data.

    Science.gov (United States)

    Palomo, E J; North, J; Elizondo, D; Luque, R M; Watson, T

    2012-08-01

    Digital investigation methods are becoming more and more important due to the proliferation of digital crimes and crimes involving digital evidence. Network forensics is a research area that gathers evidence by collecting and analysing network traffic data logs. This analysis can be a difficult process, especially because of the high variability of these attacks and large amount of data. Therefore, software tools that can help with these digital investigations are in great demand. In this paper, a novel approach to analysing and visualising network traffic data based on growing hierarchical self-organising maps (GHSOM) is presented. The self-organising map (SOM) has been shown to be successful for the analysis of highly-dimensional input data in data mining applications as well as for data visualisation in a more intuitive and understandable manner. However, the SOM has some problems related to its static topology and its inability to represent hierarchical relationships in the input data. The GHSOM tries to overcome these limitations by generating a hierarchical architecture that is automatically determined according to the input data and reflects the inherent hierarchical relationships among them. Moreover, the proposed GHSOM has been modified to correctly treat the qualitative features that are present in the traffic data in addition to the quantitative features. Experimental results show that this approach can be very useful for a better understanding of network traffic data, making it easier to search for evidence of attacks or anomalous behaviour in a network environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A Hierarchical Approach to Persistent Scatterer Network Construction and Deformation Time Series Estimation

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2014-12-01

    Full Text Available This paper presents a hierarchical approach to network construction and time series estimation in persistent scatterer interferometry (PSI for deformation analysis using the time series of high-resolution satellite SAR images. To balance between computational efficiency and solution accuracy, a dividing and conquering algorithm (i.e., two levels of PS networking and solution is proposed for extracting deformation rates of a study area. The algorithm has been tested using 40 high-resolution TerraSAR-X images collected between 2009 and 2010 over Tianjin in China for subsidence analysis, and validated by using the ground-based leveling measurements. The experimental results indicate that the hierarchical approach can remarkably reduce computing time and memory requirements, and the subsidence measurements derived from the hierarchical solution are in good agreement with the leveling data.

  5. Detecting Hidden Hierarchy of Non Hierarchical Terrorist Networks

    DEFF Research Database (Denmark)

    Memon, Nasrullah

    to analyze terrorist networks and prioritize their targets. Applying recently introduced mathematical methods for constructing the hidden hierarchy of "nonhierarchical" terrorist networks; we present case studies of the terrorist attacks occurred / planned in the past, in order to identify hidden hierarchy...

  6. A Hierarchical Multiobjective Routing Model for MPLS Networks with Two Service Classes

    Science.gov (United States)

    Craveirinha, José; Girão-Silva, Rita; Clímaco, João; Martins, Lúcia

    This work presents a model for multiobjective routing in MPLS networks formulated within a hierarchical network-wide optimization framework, with two classes of services, namely QoS and Best Effort (BE) services. The routing model uses alternative routing and hierarchical optimization with two optimization levels, including fairness objectives. Another feature of the model is the use of an approximate stochastic representation of the traffic flows in the network, based on the concept of effective bandwidth. The theoretical foundations of a heuristic strategy for finding “good” compromise solutions to the very complex bi-level routing optimization problem, based on a conjecture concerning the definition of marginal implied costs for QoS flows and BE flows, will be described. The main features of a first version of this heuristic based on a bi-objective shortest path model and some preliminary results for a benchmark network will also be revealed.

  7. An Advanced Survey on Secure Energy-Efficient Hierarchical Routing Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abdoulaye Diop

    2013-01-01

    Full Text Available Wireless Sensor Networks (WSNs are often deployed in hostile environments, which make such networks highly vulnerable and increase the risk of attacks against this type of network. WSN comprise of large number of sensor nodes with different hardware abilities and functions. Due to the limited memory resources and energy constraints, complex security algorithms cannot be used in sensor networks. Therefore, it is necessary to balance between the security level and the associated energy consumption overhead to mitigate the security risks. Hierarchical routing protocol is more energy-efficient than other routing protocols in WSNs. Many secure cluster-based routing protocols have been proposed in the literature to overcome these constraints. In this paper, we discuss Secure Energy-Efficient Hierarchical Routing Protocols in WSNs and compare them in terms of security, performance and efficiency. Security issues for WSNs and their solutions are also discussed.

  8. Effective Hierarchical Routing Algorithm for Large-scale Wireless Mobile Networks

    Directory of Open Access Journals (Sweden)

    Guofeng Yan

    2014-02-01

    Full Text Available The growing interest in wireless mobile network techniques has resulted in many routing protocol proposals. The unpredictable motion and the unreliable behavior of mobile nodes is one of the key issues in wireless mobile network. Virtual mobile node (VMN consists of robust virtual nodes that are both predictable and reliable. Based on VMN, in this paper, we present a hierarchical routing algorithm, i.e., EHRA-WAVE, for large-scale wireless mobile networks. By using mobile WAVE technology, a routing path can be found rapidly between VMNs without accurate topology information. We introduce the routing algorithm and the implementation issues of the proposed EHRA-WAVE routing algorithm. Finally, we evaluate the performance of EHRA-WAVE through experiments, and compare the performance on VMN failure and message delivery ratio using hierarchical and non-hierarchical routing methods. However, due to the large amounts WAVE flooding, EHRAWAVE results in too large load which would impede the application of the EHRA-WAVE algorithm. Therefore, the further routing protocol focuses on minimizing the number of WAVE using hierarchical structures in large-scale wireless mobile networks

  9. Bottom-up GGM algorithm for constructing multiple layered hierarchical gene regulatory networks

    Science.gov (United States)

    Multilayered hierarchical gene regulatory networks (ML-hGRNs) are very important for understanding genetics regulation of biological pathways. However, there are currently no computational algorithms available for directly building ML-hGRNs that regulate biological pathways. A bottom-up graphic Gaus...

  10. A Novel Hierarchical Semi-centralized Telemedicine Network Architecture Proposition for Bangladesh

    DEFF Research Database (Denmark)

    Choudhury, Samiul; Peterson, Carrie Beth; Kyriazakos, Sofoklis

    2011-01-01

    where there are extreme paucities of efficient healthcare professionals and equipments, specifically in the rural areas. In this paper a novel, hierarchical and semi-centralized telemedicine network architecture has been proposed holisti-cally focusing on the rural underdeveloped areas of Bangladesh...... of Bangladesh. Finally, some features and services associated with the model have also been proposed which are pragmatic and easily implementable....

  11. Analytic Networks in Music Task Definition.

    Science.gov (United States)

    Piper, Richard M.

    For a student to acquire the conceptual systems of a discipline, the designer must reflect that structure or analytic network in his curriculum. The four networks identified for music and used in the development of the Southwest Regional Laboratory (SWRL) Music Program are the variable-value, the whole-part, the process-stage, and the class-member…

  12. The exact Laplacian spectrum for the Dyson hierarchical network

    CERN Document Server

    Agliari, Elena

    2016-01-01

    We consider the Dyson hierarchical graph $\\mathcal{G}$, that is a weighted fully-connected graph, where the pattern of weights is ruled by the parameter $\\sigma \\in (1/2, 1]$. Exploiting the deterministic recursivity through which $\\mathcal{G}$ is built, we are able to derive explicitly the whole set of the eigenvalues and the eigenvectors for its Laplacian matrix. Given that the Laplacian operator is intrinsically implied in the analysis of dynamic processes (e.g., random walks) occurring on the graph, as well as in the investigation of the dynamical properties of connected structures themselves (e.g., vibrational structures and the relaxation modes), this result allows addressing analytically a large class of problems. In particular, as examples of applications, we study the random walk and the continuous-time quantum walk embedded in $\\mathcal{G}$, and the relaxation times of a polymer whose structure is described by $\\mathcal{G}$.

  13. The exact Laplacian spectrum for the Dyson hierarchical network

    Science.gov (United States)

    Agliari, Elena; Tavani, Flavia

    2017-01-01

    We consider the Dyson hierarchical graph , that is a weighted fully-connected graph, where the pattern of weights is ruled by the parameter σ ∈ (1/2, 1]. Exploiting the deterministic recursivity through which is built, we are able to derive explicitly the whole set of the eigenvalues and the eigenvectors for its Laplacian matrix. Given that the Laplacian operator is intrinsically implied in the analysis of dynamic processes (e.g., random walks) occurring on the graph, as well as in the investigation of the dynamical properties of connected structures themselves (e.g., vibrational structures and relaxation modes), this result allows addressing analytically a large class of problems. In particular, as examples of applications, we study the random walk and the continuous-time quantum walk embedded in , the relaxation times of a polymer whose structure is described by , and the community structure of in terms of modularity measures.

  14. Cluster based hierarchical resource searching model in P2P network

    Institute of Scientific and Technical Information of China (English)

    Yang Ruijuan; Liu Jian; Tian Jingwen

    2007-01-01

    For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P network,auto-organizes logical layers, and applies a hybrid mechanism of directional searching and flooding. The performance analysis and simulation results show that the proposed hierarchical searching model has availably reduced the generated message load and that its searching-response time performance is as fairly good as that of the Gnutella model.

  15. Avalanche transmission and critical behaviour in load-bearing hierarchical networks

    Indian Academy of Sciences (India)

    Ajay Deep Kachhvah; Neelima Gupte

    2011-11-01

    The strength and stability properties of hierarchical load-bearing networks and their strengthened variants have been discussed in a recent work. Here, we study the avalanche time distributions on these load-bearing networks. The avalanche time distributions of the V-lattice, a unique realization of the networks, show power-law behaviour when tested with certain fractions of its trunk weights. All other avalanche distributions show Gaussian peaked behaviour. Thus the V-lattice is the critical case of the network. We discuss the implications of this result.

  16. Multilevel hierarchical kernel spectral clustering for real-life large scale complex networks.

    Directory of Open Access Journals (Sweden)

    Raghvendra Mall

    Full Text Available Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks.

  17. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    Science.gov (United States)

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  18. Carbon nanotube-based polymer nanocomposites: Fractal network to hierarchical morphology

    Science.gov (United States)

    Chatterjee, Tirtha

    The dispersion of anisotropic nanoparticles such as single-walled carbon nanotubes in polymeric matrices promises the ability to develop advanced materials with controlled and tailored combinations of properties. However, dispersion of such nanotubes in a polymer matrix is an extremely challenging task due to strong attractive interactions between the nanotubes. The successful dispersion of single-walled carbon nanotubes in poly(ethylene oxide) using an anionic surfactant (lithium dodecyl sulfate) as compatibilizer is reported here. The geometrical percolation threshold (pc, in vol %) of nanotubes, as revealed by melt-state rheological measurements, is found to be at ˜ 0.09 vol % loading, which corresponds to an effective tube anisotropy of ˜ 650. The system shows an even earlier development of the electrical percolation at 0.03 vol % SWNT loading as obtained by electrical conductivity measurements. In their quiescent state, the nanotubes show hierarchical fractal network (mass fractal dimension ˜ 2.3 +/- 0.2) made of aggregated flocs. Inside the floc, individual or small bundles of nanotubes overlap each other to form a dense mesh. The interfloc interactions provides the stress bearing capacity for these nano composites and are responsible for the unique modulus scaling of these systems (˜(p-pc)delta, 3.0 ≤ delta ≤ 4.5). The interaction is inversely related to the particle dispersion state, which influences the absolute values of the viscoelastic parameters. As a direct consequence of the self-similar fractal network, the linear flow properties display 'time-temperature-composition' superposition. This superposability can be extended for non-linear deformations when the non-linear properties are scaled by the local strain experienced by the elements of the network. More interestingly, under steady shear, these nanocomposites show network-independent behavior. The absolute stress value is a function of the nanotube loading, but the characteristic time

  19. Network Routing Using the Network Tasking Order, a Chron Approach

    Science.gov (United States)

    2015-03-26

    Mobile Ad hoc Networks ( MANET ). The network topology created by airborne platforms is determined ahead of time and network transitions are calculated...scheduling and splitting network traffic over an emulated MANET compared to Open Shortest Path First (OSPF) which only achieved around a 71% success rate...13  2.4  MANET Prediction Routing .............................................................................14  2.4.1

  20. Hierarchical Synchrony of Phase Oscillators in Modular Networks

    CERN Document Server

    Skardal, Per Sebastian

    2011-01-01

    We study synchronization of sinusoidally coupled phase oscillators on networks with modular structure and a large number of oscillators in each community. Of particular interest is the hierarchy of local and global synchrony, i.e., synchrony within and between communities, respectively. Using the recent ansatz of Ott and Antonsen, we find that the degree of local synchrony can be determined from a set of coupled low-dimensional equations. If the number of communities in the network is large, a low-dimensional description of global synchrony can be also found. Using these results, we study bifurcations between different types of synchrony. We find that, depending on the relative strength of local and global coupling, the transition to synchrony in the network can be mediated by local or global effects.

  1. Integration of Hierarchical Goal Network Planning and Autonomous Path Planning

    Science.gov (United States)

    2016-03-01

    4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply...become an increasingly influential area of research in the realm of artificial intelligence . Task-based planning algorithms provide a number of...ABSTRACT UU 18. NUMBER OF PAGES 16 19a. NAME OF RESPONSIBLE PERSON Nicholas C Fung a. REPORT Unclassified b. ABSTRACT

  2. Identifying overlapping and hierarchical thematic structures in networks of scholarly papers: a comparison of three approaches.

    Science.gov (United States)

    Havemann, Frank; Gläser, Jochen; Heinz, Michael; Struck, Alexander

    2012-01-01

    The aim of this paper is to introduce and assess three algorithms for the identification of overlapping thematic structures in networks of papers. We implemented three recently proposed approaches to the identification of overlapping and hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of titles, abstracts, and keywords. We defined sets of papers dealing with three topics located on different levels of aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with the three predefined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper networks in research fields.

  3. Identifying overlapping and hierarchical thematic structures in networks of scholarly papers: a comparison of three approaches.

    Directory of Open Access Journals (Sweden)

    Frank Havemann

    Full Text Available The aim of this paper is to introduce and assess three algorithms for the identification of overlapping thematic structures in networks of papers. We implemented three recently proposed approaches to the identification of overlapping and hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of titles, abstracts, and keywords. We defined sets of papers dealing with three topics located on different levels of aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with the three predefined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper networks in research fields.

  4. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors.

    Science.gov (United States)

    Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin

    2012-01-11

    We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling.

  5. A CDMA Based Scalable Hierarchical Architecture for Network-On-Chip

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abd El Ghany

    2012-09-01

    Full Text Available A Scalable hierarchical architecture based Code-Division Multiple Access (CDMA is proposed for high performance Network-on-Chip (NoC. This hierarchical architecture provides the integration of a large number of IPs in a single on-chip system. The network encoding and decoding schemes for CDMA transmission are provided. The proposed CDMA NoC architecture is compared to the conventional architecture in terms of latency, area and power dissipation. The overall area required to implement the proposed CDMA NoC design is reduced by 24.2%. The design decreases the latency of the network by 40%. The total power consumption required to achieve the proposed design is also decreased by 25%.

  6. Scaling of the Average Receiving Time on a Family of Weighted Hierarchical Networks

    Science.gov (United States)

    Sun, Yu; Dai, Meifeng; Sun, Yanqiu; Shao, Shuxiang

    2016-08-01

    In this paper, based on the un-weight hierarchical networks, a family of weighted hierarchical networks are introduced, the weight factor is denoted by r. The weighted hierarchical networks depend on the number of nodes in complete bipartite graph, denoted by n1, n2 and n = n1 + n2. Assume that the walker, at each step, starting from its current node, moves to any of its neighbors with probability proportional to the weight of edge linking them. We deduce the analytical expression of the average receiving time (ART). The obtained remarkable results display two conditions. In the large network, when nr > n1n2, the ART grows as a power-law function of the network size |V (Gk)| with the exponent, represented by θ =logn( nr n1n2 ), 0 < θ < 1. This means that the smaller the value of θ, the more efficient the process of receiving information. When nr ≤ n1n2, the ART grows with increasing order |V (Gk)| as logn|V (Gk)| or (logn|V (Gk)|)2.

  7. Object-based task-level control: A hierarchical control architecture for remote operation of space robots

    Science.gov (United States)

    Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.

    1994-01-01

    Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.

  8. Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture

    Science.gov (United States)

    Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.

    2016-07-01

    We study synchronization in heterogeneous FitzHugh-Nagumo networks. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. Here we develop a controller to counteract the impact of these heterogeneities. We first analyze the stability of the equilibrium point in a ring network of heterogeneous nodes. We then derive a sufficient condition for synchronization in the absence of control. Based on these results we derive the controller providing synchronization for parameter values where synchronization without control is absent. We demonstrate our results in networks with different topologies. Particular attention is given to hierarchical (fractal) topologies, which are relevant for the architecture of the brain.

  9. Hierarchical micro-mobility management in high-speed multihop access networks

    Institute of Scientific and Technical Information of China (English)

    TANG Bi-hua; MA Xiao-lei; LIU Yuan-an; GAO Jin-chun

    2006-01-01

    This article integrates the hierarchical micro-mobility management and the high-speed multihop access networks (HMAN), to accomplish the smooth handover between different access routers. The proposed soft handover scheme in the high-speed HMAN can solve the micro-mobility management problem in the access network. This article also proposes the hybrid access router (AR) advertisement scheme and AR selection algorithm, which uses the time delay and stable route to the AR as the gateway selection parameters. By simulation, the proposed micro-mobility management scheme can achieve high packet delivery fraction and improve the lifetime of network.

  10. Topology of the correlation networks among major currencies using hierarchical structure methods

    Science.gov (United States)

    Keskin, Mustafa; Deviren, Bayram; Kocakaplan, Yusuf

    2011-02-01

    We studied the topology of correlation networks among 34 major currencies using the concept of a minimal spanning tree and hierarchical tree for the full years of 2007-2008 when major economic turbulence occurred. We used the USD (US Dollar) and the TL (Turkish Lira) as numeraires in which the USD was the major currency and the TL was the minor currency. We derived a hierarchical organization and constructed minimal spanning trees (MSTs) and hierarchical trees (HTs) for the full years of 2007, 2008 and for the 2007-2008 period. We performed a technique to associate a value of reliability to the links of MSTs and HTs by using bootstrap replicas of data. We also used the average linkage cluster analysis for obtaining the hierarchical trees in the case of the TL as the numeraire. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial data. We illustrated how the minimal spanning trees and their related hierarchical trees developed over a period of time. From these trees we identified different clusters of currencies according to their proximity and economic ties. The clustered structure of the currencies and the key currency in each cluster were obtained and we found that the clusters matched nicely with the geographical regions of corresponding countries in the world such as Asia or Europe. As expected the key currencies were generally those showing major economic activity.

  11. Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex.

    Science.gov (United States)

    Goulas, Alexandros; Uylings, Harry B M; Stiers, Peter

    2014-05-01

    A consensus on the prefrontal cortex (PFC) holds that it is pivotal for flexible behavior and the integration of the cognitive, affective, and motivational domains. Certain models have been put forth and a dominant model postulates a hierarchical anterior-posterior gradient. The structural connectivity principles of this model dictate that increasingly anterior PFC regions exhibit more efferent connections toward posterior ones than vice versa. Such hierarchical asymmetry principles are thought to pertain to the macaque PFC. Additionally, the laminar patterns of the connectivity of PFC regions can be used for defining hierarchies. In the current study, we formally tested the asymmetry-based hierarchical principles of the anterior-posterior model by employing an exhaustive dataset on macaque PFC connectivity and tools from network science. On the one hand, the asymmetry-based principles and predictions of the hierarchical anterior-posterior model were not confirmed. The wiring of the macaque PFC does not fully correspond to the principles of the model, and its asymmetry-based hierarchical layout does not follow a strict anterior-posterior gradient. On the other hand, our results suggest that the laminar-based hierarchy seems a more tenable working hypothesis for models advocating an anterior-posterior gradient. Our results can inform models of the human PFC.

  12. Sleeping of a Complex Brain Networks with Hierarchical Organization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-Yue; YANG Qiu-Ying; CHEN Tian-Lun

    2009-01-01

    The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.

  13. Hierarchical brain networks active in approach and avoidance goal pursuit

    Directory of Open Access Journals (Sweden)

    Jeffrey Martin Spielberg

    2013-06-01

    Full Text Available Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal pursuit processes (e.g., motivation has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity vital to goal pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.

  14. Frontoparietal Connectivity and Hierarchical Structure of the Brain’s Functional Network during Sleep

    Directory of Open Access Journals (Sweden)

    Victor I Spoormaker

    2012-05-01

    Full Text Available Frontal and parietal regions are associated with some of the most complex cognitive functions, and several frontoparietal resting-state networks can be observed in wakefulness. We used functional magnetic resonance imaging (fMRI data acquired in polysomnographically validated wakefulness, light sleep and slow-wave sleep to examine the hierarchical structure of a low-frequency functional brain network, and to examine whether frontoparietal connectivity would disintegrate in sleep. Whole-brain analyses with hierarchical cluster analysis on predefined atlases were performed, as well as regression of inferior parietal lobules seeds against all voxels in the brain, and an evaluation of the integrity of voxel time-courses in subcortical regions-of-interest. We observed that frontoparietal functional connectivity disintegrated in sleep stage 1 and was absent in deeper sleep stages. Slow-wave sleep was characterized by strong hierarchical clustering of local submodules. Frontoparietal connectivity between inferior parietal lobules and superior medial and right frontal gyrus was lower in sleep stages than in wakefulness. Moreover, thalamus voxels showed maintained integrity in sleep stage 1, making intrathalamic desynchronization an unlikely source of reduced thalamocortical connectivity in this sleep stage. Our data suggest a transition from a globally integrated functional brain network in wakefulness to a disintegrated network consisting of local submodules in slow-wave sleep, in which frontoparietal inter-modular nodes may play a crucial role, possibly in combination with the thalamus.

  15. HIERARCHICAL DESIGN BASED INTRUSION DETECTION SYSTEM FOR WIRELESS AD HOC SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Mohammad Saiful Islam Mamun

    2010-07-01

    Full Text Available In recent years, wireless ad hoc sensor network becomes popular both in civil and military jobs.However, security is one of the significant challenges for sensor network because of their deploymentin open and unprotected environment. As cryptographic mechanism is not enough to protect sensornetwork from external attacks, intrusion detection system needs to be introduced. Though intrusionprevention mechanism is one of the major and efficient methods against attacks, but there might besome attacks for which prevention method is not known. Besides preventing the system from someknown attacks, intrusion detection system gather necessary information related to attack technique andhelp in the development of intrusion prevention system. In addition to reviewing the present attacksavailable in wireless sensor network this paper examines the current efforts to intrusion detectionsystem against wireless sensor network. In this paper we propose a hierarchical architectural designbased intrusion detection system that fits the current demands and restrictions of wireless ad hocsensor network. In this proposed intrusion detection system architecture we followed clusteringmechanism to build a four level hierarchical network which enhances network scalability to largegeographical area and use both anomaly and misuse detection techniques for intrusion detection. Weintroduce policy based detection mechanism as well as intrusion response together with GSM cellconcept for intrusion detection architecture.

  16. Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques.

    Directory of Open Access Journals (Sweden)

    Takahiro Osada

    2015-06-01

    Full Text Available Neuroimaging and neurophysiology have revealed that multiple areas in the prefrontal cortex (PFC are activated in a specific memory task, but severity of impairment after PFC lesions is largely different depending on which activated area is damaged. The critical relationship between lesion sites and impairments has not yet been given a clear mechanistic explanation. Although recent works proposed that a whole-brain network contains hubs that play integrative roles in cortical information processing, this framework relying on an anatomy-based structural network cannot account for the vulnerable locus for a specific task, lesioning of which would bring impairment. Here, we hypothesized that (i activated PFC areas dynamically form an ordered network centered at a task-specific "functional hub" and (ii the lesion-effective site corresponds to the "functional hub," but not to a task-invariant "structural hub." To test these hypotheses, we conducted functional magnetic resonance imaging experiments in macaques performing a temporal contextual memory task. We found that the activated areas formed a hierarchical hub-centric network based on task-evoked directed connectivity, differently from the anatomical network reflecting axonal projection patterns. Using a novel simulated-lesion method based on support vector machine, we estimated severity of impairment after lesioning of each area, which accorded well with a known dissociation in contextual memory impairment in macaques (impairment after lesioning in area 9/46d, but not in area 8Ad. The predicted severity of impairment was proportional to the network "hubness" of the virtually lesioned area in the task-evoked directed connectivity network, rather than in the anatomical network known from tracer studies. Our results suggest that PFC areas dynamically and cooperatively shape a functional hub-centric network to reallocate the lesion-effective site depending on the cognitive processes, apart from

  17. Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques.

    Science.gov (United States)

    Osada, Takahiro; Adachi, Yusuke; Miyamoto, Kentaro; Jimura, Koji; Setsuie, Rieko; Miyashita, Yasushi

    2015-06-01

    Neuroimaging and neurophysiology have revealed that multiple areas in the prefrontal cortex (PFC) are activated in a specific memory task, but severity of impairment after PFC lesions is largely different depending on which activated area is damaged. The critical relationship between lesion sites and impairments has not yet been given a clear mechanistic explanation. Although recent works proposed that a whole-brain network contains hubs that play integrative roles in cortical information processing, this framework relying on an anatomy-based structural network cannot account for the vulnerable locus for a specific task, lesioning of which would bring impairment. Here, we hypothesized that (i) activated PFC areas dynamically form an ordered network centered at a task-specific "functional hub" and (ii) the lesion-effective site corresponds to the "functional hub," but not to a task-invariant "structural hub." To test these hypotheses, we conducted functional magnetic resonance imaging experiments in macaques performing a temporal contextual memory task. We found that the activated areas formed a hierarchical hub-centric network based on task-evoked directed connectivity, differently from the anatomical network reflecting axonal projection patterns. Using a novel simulated-lesion method based on support vector machine, we estimated severity of impairment after lesioning of each area, which accorded well with a known dissociation in contextual memory impairment in macaques (impairment after lesioning in area 9/46d, but not in area 8Ad). The predicted severity of impairment was proportional to the network "hubness" of the virtually lesioned area in the task-evoked directed connectivity network, rather than in the anatomical network known from tracer studies. Our results suggest that PFC areas dynamically and cooperatively shape a functional hub-centric network to reallocate the lesion-effective site depending on the cognitive processes, apart from static anatomical

  18. Predicting Hierarchical Structure in Small World Social Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2009-01-01

    Typisk analytisk foranstaltninger i grafteori gerne grad centralitet, betweenness og nærhed centralities er meget almindelige og har lang tradition for deres vellykkede brug. Men modellering af skjult, terrorister eller kriminelle netværk gennem sociale grafer ikke rigtig give den hierarkiske str...... udnyttet til at forudsige den kommandostruktur af nettet. Nøgleord: Social Networks Analyse, Bayes Teorem, entropi, hierarkisk struktur.......Typisk analytisk foranstaltninger i grafteori gerne grad centralitet, betweenness og nærhed centralities er meget almindelige og har lang tradition for deres vellykkede brug. Men modellering af skjult, terrorister eller kriminelle netværk gennem sociale grafer ikke rigtig give den hierarkiske...

  19. Natural forest conservation hierarchical program with neural network

    Institute of Scientific and Technical Information of China (English)

    LUO Chuanwen; LI Jihong

    2006-01-01

    In this paper,the implementing steps of a natural forest protection program grading (NFPPG) with neural network (NN) were summarized and the concepts of program illustration,patch sign unification and regression,and inclining factor were set forth.Employing Arc/Info GIS,the tree species diversity and rarity,disturbance degree,protection of channel system,and classification management in the Maoershan National Forest Park were described,and used as the input factors of NN.The relationships between NFPPG and above factors were also analyzed.By artificially determining training samples,the NFPPG of Moershan National Forest Park was created.Tested with all patches in the park,the generalization of NFPPG was satisfied.NFPPG took both the classification management and the protection of forest community types into account,as well as the ecological environment.The excitation function of NFPPG was not seriously saturated,indicating the leading effect of the inclining factor on the network optimization.

  20. NHRPA: a novel hierarchical routing protocol algorithm for wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    CHENG Hong-bing; YANG Geng; HU Su-jun

    2008-01-01

    Considering severe resources constraints and security threat of wireless sensor networks (WSN), the article proposed a novel hierarchical routing protocol algorithm. The proposed routing protocol algorithm can adopt suitable routing technology for the nodes according to the distance of nodes to the base station, density of nodes distribution, and residual energy of nodes. Comparing the proposed routing protocol algorithm with simple direction diffusion routing technology, cluster-based routing mechanisms, and simple hierarchical routing protocol algorithm through comprehensive analysis and simulation in terms of the energy usage, packet latency, and security in the presence of node compromise attacks, the results show that the proposed routing protocol algorithm is more efficient for wireless sensor networks.

  1. Identifying Overlapping and Hierarchical Thematic Structures in Networks of Scholarly Papers: A Comparison of Three Approaches

    CERN Document Server

    Havemann, Frank; Heinz, Michael; Struck, Alexander

    2011-01-01

    We implemented three recently proposed approaches to the identification of overlapping and hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of titles and keywords. We defined sets of papers dealing with three topics located on different levels of aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with the three pre-defined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper networks in research fields.

  2. Systemic risk and hierarchical transitions of financial networks

    Science.gov (United States)

    Nobi, Ashadun; Lee, Jae Woo

    2017-06-01

    In this paper, the change in topological hierarchy, which is measured by the minimum spanning tree constructed from the cross-correlations between the stock indices from the S & P 500 for 1998-2012 in a one year moving time window, was used to analyze a financial crisis. The hierarchy increased in all minor crises in the observation time window except for the sharp crisis of 2007-2008 when the global financial crisis occurred. The sudden increase in hierarchy just before the global financial crisis can be used for the early detection of an upcoming crisis. Clearly, the higher the hierarchy, the higher the threats to financial stability. The scaling relations were developed to observe the changes in hierarchy with the network topology. These scaling relations can also identify and quantify the financial crisis periods, and appear to contain the predictive power of an upcoming crisis.

  3. Communication Theories and Protocols for Smart Grid Hierarchical Network

    Directory of Open Access Journals (Sweden)

    CHHAYA Lipi

    2017-05-01

    Full Text Available Smart grid technology is a revolutionary approach for improvisation in existing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid infrastructure is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Different levels of smart grid deployment require diverse set of communication protocols. Application of information theory and optimization of various communication technologies is essential for layered architecture of smart grid technology. This paper is anticipated to serve as a comprehensive survey and analysis of communication theories and wireless communication protocols for optimization and design of energy efficient smart grid communication infrastructure.

  4. Sensor Network Data Fault Detection using Hierarchical Bayesian Space-Time Modeling

    OpenAIRE

    Ni, Kevin; Pottie, G J

    2009-01-01

    We present a new application of hierarchical Bayesian space-time (HBST) modeling: data fault detection in sensor networks primarily used in environmental monitoring situations. To show the effectiveness of HBST modeling, we develop a rudimentary tagging system to mark data that does not fit with given models. Using this, we compare HBST modeling against first order linear autoregressive (AR) modeling, which is a commonly used alternative due to its simplicity. We show that while HBST is mo...

  5. An energy efficient cooperative hierarchical MIMO clustering scheme for wireless sensor networks.

    Science.gov (United States)

    Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung

    2012-01-01

    In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes.

  6. A hierarchical P2P overlay network for interest-based media contents lookup

    Science.gov (United States)

    Lee, HyunRyong; Kim, JongWon

    2006-10-01

    We propose a P2P (peer-to-peer) overlay architecture, called IGN (interest grouping network), for contents lookup in the DHC (digital home community), which aims to provide a formalized home-network-extended construction of current P2P file sharing community. The IGN utilizes the Chord and de Bruijn graph for its hierarchical overlay network construction. By combining two schemes and by inheriting its features, the IGN efficiently supports contents lookup. More specifically, by introducing metadata-based lookup keyword, the IGN offers detailed contents lookup that can reflect the user interests. Moreover, the IGN tries to reflect home network environments of DHC by utilizing HG (home gateway) of each home network as a participating node of the IGN. Through experimental and analysis results, we show that the IGN is more efficient than Chord, a well-known DHT (distributed hash table)-based lookup protocol.

  7. Constrained Task Assignment and Scheduling On Networks of Arbitrary Topology

    Science.gov (United States)

    Jackson, Justin Patrick

    This dissertation develops a framework to address centralized and distributed constrained task assignment and task scheduling problems. This framework is used to prove properties of these problems that can be exploited, develop effective solution algorithms, and to prove important properties such as correctness, completeness and optimality. The centralized task assignment and task scheduling problem treated here is expressed as a vehicle routing problem with the goal of optimizing mission time subject to mission constraints on task precedence and agent capability. The algorithm developed to solve this problem is able to coordinate vehicle (agent) timing for task completion. This class of problems is NP-hard and analytical guarantees on solution quality are often unavailable. This dissertation develops a technique for determining solution quality that can be used on a large class of problems and does not rely on traditional analytical guarantees. For distributed problems several agents must communicate to collectively solve a distributed task assignment and task scheduling problem. The distributed task assignment and task scheduling algorithms developed here allow for the optimization of constrained military missions in situations where the communication network may be incomplete and only locally known. Two problems are developed. The distributed task assignment problem incorporates communication constraints that must be satisfied; this is the Communication-Constrained Distributed Assignment Problem. A novel distributed assignment algorithm, the Stochastic Bidding Algorithm, solves this problem. The algorithm is correct, probabilistically complete, and has linear average-case time complexity. The distributed task scheduling problem addressed here is to minimize mission time subject to arbitrary predicate mission constraints; this is the Minimum-time Arbitrarily-constrained Distributed Scheduling Problem. The Optimal Distributed Non-sequential Backtracking Algorithm

  8. A hierarchical task analysis of shoulder arthroscopy for a virtual arthroscopic tear diagnosis and evaluation platform (VATDEP).

    Science.gov (United States)

    Demirel, Doga; Yu, Alexander; Cooper-Baer, Seth; Dendukuri, Aditya; Halic, Tansel; Kockara, Sinan; Kockara, Nizamettin; Ahmadi, Shahryar

    2017-09-01

    Shoulder arthroscopy is a minimally invasive surgical procedure for diagnosis and treatment of a shoulder pathology. The procedure is performed with a fiber optic camera, called arthroscope, and instruments inserted through very tiny incisions made around the shoulder. The confined shoulder space, unintuitive camera orientation and constrained instrument motions complicates the procedure. Therefore, surgical competence in arthroscopy entails extensive training especially for psychomotor skills development. Conventional arthroscopy training methods such as mannequins, cadavers or apprenticeship model have limited use attributed to their low-fidelity in realism, cost inefficiency or incurring high risk. However, virtual reality (VR) based surgical simulators offer a realistic, low cost, risk-free training and assessment platform where the trainees can repeatedly perform arthroscopy and receive quantitative feedback on their performances. Therefore, we are developing a VR based shoulder arthroscopy simulation specifically for the rotator cuff ailments that can quantify the surgery performance. Development of such a VR simulation requires a through task analysis that describes the steps and goals of the procedure, comprehensive metrics for quantitative and objective skills and surgical technique assessment. We analyzed shoulder arthroscopic rotator cuff surgeries and created a hierarchical task tree. We introduced a novel surgery metrics to reduce the subjectivity of the existing grading metrics and performed video analysis of 14 surgery recordings in the operating room (OR). We also analyzed our video analysis results with respect to the existing proposed metrics in the literature. We used Pearson's correlation tests to find any correlations among the task times, scores and surgery specific information. We determined strong positive correlation between cleaning time vs difficulty in tying suture, cleaning time vs difficulty in passing suture, cleaning time vs scar

  9. Impact of informal networks on opinion dynamics in hierarchically formal organization

    Science.gov (United States)

    Song, Xiao; Shi, Wen; Ma, Yaofei; Yang, Chen

    2015-10-01

    Traditional opinion dynamics model focused mainly on the conditions under which a group of agents would reach a consensus. Conclusion has been gained that continuous opinion dynamics are subject to the constraint that convergent opinion adjustment only proceeds when opinion difference is below a given tolerance. This conclusion is useful but neglected the fact that an organization often consists of overlapped networks including formally hierarchical network and small-world/scale-free informal networks. To study the impact of different types of informal networks on converging speed or the number of opinion clusters, four typical types of informal networks (small-world, scale-free, tree and fully connected) are modeled and proposed as complements to formal communications. Experiments to compare formal network and hybrid networks are then carried out. It is observed that opinion dynamics with supplemented communications of informal networks can benefit convergence speed and reduce opinion clusters. More importantly, it is revealed that three key factors of informal networks affect their impact on formal network. These factors of informal network in descending orders are: agents' tolerances, scale and number of links.

  10. Community-aware task allocation for social networked multiagent systems.

    Science.gov (United States)

    Wang, Wanyuan; Jiang, Yichuan

    2014-09-01

    In this paper, we propose a novel community-aware task allocation model for social networked multiagent systems (SN-MASs), where the agent' cooperation domain is constrained in community and each agent can negotiate only with its intracommunity member agents. Under such community-aware scenarios, we prove that it remains NP-hard to maximize system overall profit. To solve this problem effectively, we present a heuristic algorithm that is composed of three phases: 1) task selection: select the desirable task to be allocated preferentially; 2) allocation to community: allocate the selected task to communities based on a significant task-first heuristics; and 3) allocation to agent: negotiate resources for the selected task based on a nonoverlap agent-first and breadth-first resource negotiation mechanism. Through the theoretical analyses and experiments, the advantages of our presented heuristic algorithm and community-aware task allocation model are validated. 1) Our presented heuristic algorithm performs very closely to the benchmark exponential brute-force optimal algorithm and the network flow-based greedy algorithm in terms of system overall profit in small-scale applications. Moreover, in the large-scale applications, the presented heuristic algorithm achieves approximately the same overall system profit, but significantly reduces the computational load compared with the greedy algorithm. 2) Our presented community-aware task allocation model reduces the system communication cost compared with the previous global-aware task allocation model and improves the system overall profit greatly compared with the previous local neighbor-aware task allocation model.

  11. Hierarchically Coordinated Power Management for Target Tracking in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Feng Juan

    2013-10-01

    Full Text Available Energy efficiency is very important for wireless sensor networks (WSNs since sensor nodes have a limited energy supply from a battery. So far, a lot research has focused on this issue, while less emphasis has been placed on the adaptive sleep time for each node with a consideration for the application constraints. In this paper, we propose a hierarchically coordinated power management (HCPM approach, which both addresses the energy conservation problem and reduces the packet forwarding delay for target tracking WSNs based on a virtual‐grid‐based network structure. We extend the network lifetime by adopting an adaptive sleep scheduling scheme that combines the local power management (PM and the adaptive coordinate PM strategies to schedule the activities of the sensor nodes at the surveillance stage. Furthermore, we propose a hierarchical structure for the tracking stage. Experimental results show that the proposed approach has a greater capability of extending the network lifetime while maintaining a short transmission delay when compared with the protocol which does not consider the application constraints in target tracking sensor networks.

  12. Identifying beneficial task relations for multi-task learning in deep neural networks

    DEFF Research Database (Denmark)

    Bingel, Joachim; Søgaard, Anders

    2017-01-01

    Multi-task learning (MTL) in deep neural networks for NLP has recently received increasing interest due to some compelling benefits, including its potential to efficiently regularize models and to reduce the need for labeled data. While it has brought significant improvements in a number of NLP...

  13. Task modulates functional connectivity networks in free viewing behavior.

    Science.gov (United States)

    Seidkhani, Hossein; Nikolaev, Andrey R; Meghanathan, Radha Nila; Pezeshk, Hamid; Masoudi-Nejad, Ali; van Leeuwen, Cees

    2017-08-03

    In free visual exploration, eye-movement is immediately followed by dynamic reconfiguration of brain functional connectivity. We studied the task-dependency of this process in a combined visual search-change detection experiment. Participants viewed two (nearly) same displays in succession. First time they had to find and remember multiple targets among distractors, so the ongoing task involved memory encoding. Second time they had to determine if a target had changed in orientation, so the ongoing task involved memory retrieval. From multichannel EEG recorded during 200 ms intervals time-locked to fixation onsets, we estimated the functional connectivity using a weighted phase lag index at the frequencies of theta, alpha, and beta bands, and derived global and local measures of the functional connectivity graphs. We found differences between both memory task conditions for several network measures, such as mean path length, radius, diameter, closeness and eccentricity, mainly in the alpha band. Both the local and the global measures indicated that encoding involved a more segregated mode of operation than retrieval. These differences arose immediately after fixation onset and persisted for the entire duration of the lambda complex, an evoked potential commonly associated with early visual perception. We concluded that encoding and retrieval differentially shape network configurations involved in early visual perception, affecting the way the visual input is processed at each fixation. These findings demonstrate that task requirements dynamically control the functional connectivity networks involved in early visual perception. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Deep Convolutional Neural Networks for large-scale speech tasks.

    Science.gov (United States)

    Sainath, Tara N; Kingsbury, Brian; Saon, George; Soltau, Hagen; Mohamed, Abdel-rahman; Dahl, George; Ramabhadran, Bhuvana

    2015-04-01

    Convolutional Neural Networks (CNNs) are an alternative type of neural network that can be used to reduce spectral variations and model spectral correlations which exist in signals. Since speech signals exhibit both of these properties, we hypothesize that CNNs are a more effective model for speech compared to Deep Neural Networks (DNNs). In this paper, we explore applying CNNs to large vocabulary continuous speech recognition (LVCSR) tasks. First, we determine the appropriate architecture to make CNNs effective compared to DNNs for LVCSR tasks. Specifically, we focus on how many convolutional layers are needed, what is an appropriate number of hidden units, what is the best pooling strategy. Second, investigate how to incorporate speaker-adapted features, which cannot directly be modeled by CNNs as they do not obey locality in frequency, into the CNN framework. Third, given the importance of sequence training for speech tasks, we introduce a strategy to use ReLU+dropout during Hessian-free sequence training of CNNs. Experiments on 3 LVCSR tasks indicate that a CNN with the proposed speaker-adapted and ReLU+dropout ideas allow for a 12%-14% relative improvement in WER over a strong DNN system, achieving state-of-the art results in these 3 tasks.

  15. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network.

    Science.gov (United States)

    Krumsiek, Jan; Marr, Carsten; Schroeder, Timm; Theis, Fabian J

    2011-01-01

    Hematopoiesis is an ideal model system for stem cell biology with advanced experimental access. A systems view on the interactions of core transcription factors is important for understanding differentiation mechanisms and dynamics. In this manuscript, we construct a Boolean network to model myeloid differentiation, specifically from common myeloid progenitors to megakaryocytes, erythrocytes, granulocytes and monocytes. By interpreting the hematopoietic literature and translating experimental evidence into Boolean rules, we implement binary dynamics on the resulting 11-factor regulatory network. Our network contains interesting functional modules and a concatenation of mutual antagonistic pairs. The state space of our model is a hierarchical, acyclic graph, typifying the principles of myeloid differentiation. We observe excellent agreement between the steady states of our model and microarray expression profiles of two different studies. Moreover, perturbations of the network topology correctly reproduce reported knockout phenotypes in silico. We predict previously uncharacterized regulatory interactions and alterations of the differentiation process, and line out reprogramming strategies.

  16. Spectral dimensions of hierarchical scale-free networks with weighted shortcuts

    Science.gov (United States)

    Hwang, S.; Yun, C.-K.; Lee, D.-S.; Kahng, B.; Kim, D.

    2010-11-01

    Spectral dimensions have been widely used to understand transport properties on regular and fractal lattices. However, they have received little attention with regard to complex networks such as scale-free and small-world networks. Here, we study the spectral dimension and the return-to-origin probability of random walks on hierarchical scale-free networks, which can be either fractal or nonfractal depending on the weight of the shortcuts. Applying the renormalization-group (RG) approach to a Gaussian model, we obtain the exact spectral dimension. While the spectral dimension varies between 1 and 2 for the fractal case, it remains at 2, independent of the variation in the network structure, for the nonfractal case. The crossover behavior between the two cases is studied by carrying out the RG flow analysis. The analytical results are confirmed by simulation results and their implications for the architecture of complex systems are discussed.

  17. Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network

    OpenAIRE

    Liu, Haihong; Kaneko, Yoshio; Ouyang, Xuan; Li, Li; Hao, Yihui; Chen, Eric Y. H.; Jiang, Tianzi; Zhou, Yuan; Liu, Zhening

    2010-01-01

    Background: Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls. Methods: ...

  18. Age-related changes in task related functional network connectivity.

    Directory of Open Access Journals (Sweden)

    Jason Steffener

    Full Text Available Aging has a multi-faceted impact on brain structure, brain function and cognitive task performance, but the interaction of these different age-related changes is largely unexplored. We hypothesize that age-related structural changes alter the functional connectivity within the brain, resulting in altered task performance during cognitive challenges. In this neuroimaging study, we used independent components analysis to identify spatial patterns of coordinated functional activity involved in the performance of a verbal delayed item recognition task from 75 healthy young and 37 healthy old adults. Strength of functional connectivity between spatial components was assessed for age group differences and related to speeded task performance. We then assessed whether age-related differences in global brain volume were associated with age-related differences in functional network connectivity. Both age groups used a series of spatial components during the verbal working memory task and the strength and distribution of functional network connectivity between these components differed across the age groups. Poorer task performance, i.e. slower speed with increasing memory load, in the old adults was associated with decreases in functional network connectivity between components comprised of the supplementary motor area and the middle cingulate and between the precuneus and the middle/superior frontal cortex. Advancing age also led to decreased brain volume; however, there was no evidence to support the hypothesis that age-related alterations in functional network connectivity were the result of global brain volume changes. These results suggest that age-related differences in the coordination of neural activity between brain regions partially underlie differences in cognitive performance.

  19. Task Assignment Problem Solved by Continuous Hopfield Network

    Directory of Open Access Journals (Sweden)

    Ettaouil Mohamed

    2012-03-01

    Full Text Available The task assignment problem with non uniform communication costs (TAP consists in finding an assignment of the tasks to the processors such that the total execution and communication costs is minimized. This problem is naturally formulated as 0-1 quadratic programming subject to linear constraints (QP. In this paper, we propose a new approach to solve the task assignment problem with non uniform communication costs using the continuous Hopfield network (CHN. This approach is based on some energy or Lyapunov function, which diminishes as the system develops until a local minimum value is obtained. We show that this approach is able to determine a good solution for this problem. Finally, some computational experiments solving the task assignment problem with non-uniform communication costs are shown.

  20. Secure Session Mobility using Hierarchical Authentication Key Management in Next Generation Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair

    2014-05-01

    Full Text Available In this paper we propose a novel authentication mechanism for session mobility in Next Generation Networks named as Hierarchical Authentication Key Management (HAKM. The design objectives of HAKM are twofold: i to minimize the authentication latency in NGNs; ii to provide protection against an assortment of attacks such as denial-of-service attacks, man-in-the-middle attacks, guessing attacks, and capturing node attacks. In order to achieve these objectives, we combine Session Initiation Protocol (SIP with Hierarchical Mobile IPv6 (HMIPv6 to perform local authentication for session mobility. The concept of group keys and pairwise keys with one way hash function is employed to make HAKM vigorous against the aforesaid attacks. The performance analysis and numerical results demonstrate that HAKM outperforms the existing approaches in terms of latency and protection against the abovementioned attacks

  1. A Hybrid P2P Overlay Network for Non-strictly Hierarchically Categorized Content

    Science.gov (United States)

    Wan, Yi; Asaka, Takuya; Takahashi, Tatsuro

    In P2P content distribution systems, there are many cases in which the content can be classified into hierarchically organized categories. In this paper, we propose a hybrid overlay network design suitable for such content called Pastry/NSHCC (Pastry for Non-Strictly Hierarchically Categorized Content). The semantic information of classification hierarchies of the content can be utilized regardless of whether they are in a strict tree structure or not. By doing so, the search scope can be restrained to any granularity, and the number of query messages also decreases while maintaining keyword searching availability. Through simulation, we showed that the proposed method provides better performance and lower overhead than unstructured overlays exploiting the same semantic information.

  2. Coevolution of information processing and topology in hierarchical adaptive random Boolean networks

    Science.gov (United States)

    Górski, Piotr J.; Czaplicka, Agnieszka; Hołyst, Janusz A.

    2016-02-01

    Random Boolean Networks (RBNs) are frequently used for modeling complex systems driven by information processing, e.g. for gene regulatory networks (GRNs). Here we propose a hierarchical adaptive random Boolean Network (HARBN) as a system consisting of distinct adaptive RBNs (ARBNs) - subnetworks - connected by a set of permanent interlinks. We investigate mean node information, mean edge information as well as mean node degree. Information measures and internal subnetworks topology of HARBN coevolve and reach steady-states that are specific for a given network structure. The main natural feature of ARBNs, i.e. their adaptability, is preserved in HARBNs and they evolve towards critical configurations which is documented by power law distributions of network attractor lengths. The mean information processed by a single node or a single link increases with the number of interlinks added to the system. The mean length of network attractors and the mean steady-state connectivity possess minima for certain specific values of the quotient between the density of interlinks and the density of all links in networks. It means that the modular network displays extremal values of its observables when subnetworks are connected with a density a few times lower than a mean density of all links.

  3. A Hierarchical Energy Efficient Reliable Transport Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Prabhudutta Mohanty

    2014-12-01

    Full Text Available The two important requirements for many Wireless Senor Networks (WSNs are prolonged network lifetime and end-to-end reliability. The sensor nodes consume more energy during data transmission than the data sensing. In WSN, the redundant data increase the energy consumption, latency and reduce reliability during data transmission. Therefore, it is important to support energy efficient reliable data transport in WSNs. In this paper, we present a Hierarchical Energy Efficient Reliable Transport Protocol (HEERTP for the data transmission within the WSN. This protocol maximises the network lifetime by controlling the redundant data transmission with the co-ordination of Base Station (BS. The proposed protocol also achieves end-to-end reliability using a hop-by-hop acknowledgement scheme. We evaluate the performance of the proposed protocol through simulation. The simulation results reveal that our proposed protocol achieves better performance in terms of energy efficiency, latency and reliability than the existing protocols.

  4. Toughening mystery of natural rubber deciphered by double network incorporating hierarchical structures.

    Science.gov (United States)

    Zhou, Weiming; Li, Xiangyang; Lu, Jie; Huang, Ningdong; Chen, Liang; Qi, Zeming; Li, Liangbin; Liang, Haiyi

    2014-12-16

    As an indispensible material for modern society, natural rubber possesses peerless mechanical properties such as strength and toughness over its artificial analogues, which remains a mystery. Intensive experimental and theoretical investigations have revealed the self-enhancement of natural rubber due to strain-induced crystallization. However a rigorous model on the self-enhancement, elucidating natural rubber's extraordinary mechanical properties, is obscured by deficient understanding of the local hierarchical structure under strain. With spatially resolved synchrotron radiation micro-beam scanning X-ray diffraction we discover weak oscillation in distributions of strain-induced crystallinity around crack tip for stretched natural rubber film, demonstrating a soft-hard double network structure. The fracture energy enhancement factor obtained by utilizing the double network model indicates an enhancement of toughness by 3 orders. It's proposed that upon stretching spontaneously developed double network structures integrating hierarchy at multi length-scale in natural rubber play an essential role in its remarkable mechanical performance.

  5. A Bayesian hierarchical diffusion model decomposition of performance in Approach-Avoidance Tasks

    NARCIS (Netherlands)

    Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan

    2015-01-01

    Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated

  6. Structure function relationship in complex brain networks expressed by hierarchical synchronization

    Science.gov (United States)

    Zhou, Changsong; Zemanová, Lucia; Zamora-López, Gorka; Hilgetag, Claus C.; Kurths, Jürgen

    2007-06-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  7. A method for identifying hierarchical sub-networks / modules and weighting network links based on their similarity in sub-network / module affiliation

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2016-06-01

    Full Text Available Some networks, including biological networks, consist of hierarchical sub-networks / modules. Based on my previous study, in present study a method for both identifying hierarchical sub-networks / modules and weighting network links is proposed. It is based on the cluster analysis in which between-node similarity in sets of adjacency nodes is used. Two matrices, linkWeightMat and linkClusterIDs, are achieved by using the algorithm. Two links with both the same weight in linkWeightMat and the same cluster ID in linkClusterIDs belong to the same sub-network / module. Two links with the same weight in linkWeightMat but different cluster IDs in linkClusterIDs belong to two sub-networks / modules at the same hirarchical level. However, a link with an unique cluster ID in linkClusterIDs does not belong to any sub-networks / modules. A sub-network / module of the greater weight is the more connected sub-network / modules. Matlab codes of the algorithm are presented.

  8. Hierarchical neural network model of the visual system determining figure/ground relation

    Science.gov (United States)

    Kikuchi, Masayuki

    2017-07-01

    One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.

  9. Overlapping brain activity between episodic memory encoding and retrieval: Roles of the task-positive and task-negative networks

    Science.gov (United States)

    Kim, Hongkeun; Daselaar, Sander M; Cabeza, Roberto

    2009-01-01

    The notion that the brain is organized into two complementary networks, one that is task-positive and supports externally-oriented processing, and the other that is task-negative and supports internally-oriented processing, has recently attracted increasing attention. The goal of the present study was to investigate involvement of the task-positive and task-negative networks in overlapping activity between episodic memory encoding and retrieval. To this end, we performed a functional MRI study that included both encoding and retrieval tasks. We hypothesized that during the study phase, encoding success activity (remembered > forgotten) involves mainly the task-positive network, whereas encoding failure activity (forgotten > remembered) involves mainly the task-negative network. We also hypothesized that during the test phase, retrieval success activity (old > new) involves mainly the task-negative network, whereas novelty detection activity (new > old) involves mainly the task-positive network. Based on these hypotheses, we made 3 predictions regarding study-test overlap. First, there would be relatively high level of overlap between encoding success and novelty detection activity involving the task-positive network. Second, there would be relatively high level of overlap between encoding failure and retrieval success activity involving the task-negative network. Third, there would be relatively low level of overlap between encoding success and retrieval success activity as well as between encoding failure and novelty detection activity. The results fully confirmed our 3 predictions. Taken together, the present findings clarify roles of the task-positive and task-negative networks in encoding and retrieval and the function of overlapping brain activity between encoding and retrieval. PMID:19647800

  10. Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks

    DEFF Research Database (Denmark)

    Kirkensgaard, Jacob Judas Kain; Evans, Myfanwy; de Campo, Lilliana;

    2014-01-01

    the gyroid film are densely packed and contain either graphitic hcb nets (chicken wire) or srs nets, forming convoluted intergrowths of multiple nets. Furthermore, each net is ideally a single chiral enantiomer, induced by the gyroid architecture. However, the numerical simulations result in defect......Numerical simulations reveal a family of hierarchical and chiral multicontinuous network structures self-assembled from a melt blend of Y-shaped ABC and ABD three-miktoarm star terpolymers, constrained to have equal-sized A/B and C/D chains, respectively. The C and D majority domains within...

  11. A hierarchical virtual backbone construction protocol for mobile ad hoc networks

    Directory of Open Access Journals (Sweden)

    Bharti Sharma

    2016-07-01

    Full Text Available We propose a hierarchical backbone construction protocol for mobile ad hoc networks. Our protocol is based on the idea of using an efficient extrema finding method to create clusters comprising the nodes that are within certain prespecified wireless hop distance. Afterward, we apply our ‘diameter’ algorithm among clusters to identify the dominating nodes that are, finally, connected via multi-hop virtual links to construct the backbone. We present the analytic as well as simulation study of our algorithm and also a method for the dynamic maintenance of constructed backbone. In the end, we illustrate the use of the virtual backbone with the help of an interesting application.

  12. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    It is studied how the introduction of ordered hierarchies in 4-regular grid network structures decreses distances remarkably, while at the same time allowing for simple topological routing schemes. Both meshes and tori are considered; in both cases non-hierarchical structures have power law......, and it is shown that while they allow for more flexibility in design and construction of structures supporting topological routing, their performances are comparable to the performance of the perfect square mesh. Finally suggestions for further research within the field are given....

  13. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    2004-01-01

    It is studied how the introduction of ordered hierarchies in 4-regular grid network structures decreases distances remarkably, while at the same time allowing for simple topological routing schemes. Both meshes and tori are considered; in both cases non-hierarchical structures have power law......, and it is shown that while they allow for more flexibility in design and construction of structures supporting topological routing, their performances are comparable to the performance of the perfect square mesh. Finally suggestions for further research within the field are given....

  14. Hierarchical Self-healing Key Distribution for Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    Yang, Yanjiang; Zhou, Jianying; Deng, Robert H.; Bao, Feng

    Self-healing group key distribution aims to achieve robust key distribution over lossy channels in wireless sensor networks (WSNs). However, all existing self-healing group key distribution schemes in the literature consider homogenous WSNs which are known to be unscalable. Heterogeneous WSNs have better scalability and performance than homogenous ones. We are thus motivated to study hierarchial self-healing group key distribution, tailored to the heterogeneous WSN architecture. In particular, we revisit and adapt Dutta et al.’s model to the setting of hierarchical self-healing group key distribution, and propose a concrete scheme that achieves computational security and high efficiency.

  15. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    Science.gov (United States)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  16. Evaluating the Performance of Fast Handover for Hierarchical MIPv6 in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Li Jun Zhang

    2008-06-01

    Full Text Available Next-Generation Wireless Networks (NGWNs present an all-IP-based architecture integrating existing cellular networks with Wireless Local Area Networks (WLANs, Wireless Metropolitan Area Networks (WMANs, ad hoc networks, Bluetooth, etc. This makes mobility management an important issue for users roaming among these networks/systems. On one hand, intelligent schemes need to be devised to empower mobile users to benefit from the IP-based technology. On the other hand, new solutions are required to take into account global roaming among various radio access technologies and support of real-time multimedia services. This paper presents a comprehensive performance analysis of Fast handover for Hierarchical Mobile IPv6 (F-HMIPv6 using the fluid-flow and randomwalk mobility models. Location update cost, packet delivery cost and total cost functions are formulated based on the proposed analytical models. We investigate the impact of several wireless system factors such as user velocity, user density, mobility domain size, session-to-mobility ratio on these costs, and present some numerical results.

  17. Mobile Agent Based Hierarchical Intrusion Detection System in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Surraya Khanum

    2012-01-01

    Full Text Available Security mechanism is a fundamental requirement of wireless networks in general and Wireless Sensor Networks (WSN in particular. Therefore, it is necessary that this security concern must be articulate right from the beginning of the network design and deployment. WSN needs strong security mechanism as it is usually deployed in a critical, hostile and sensitive environment where human labour is usually not involved. However, due to inbuilt resource and computing restriction, security in WSN needs a special consideration. Traditional security techniques such as encryption, VPN, authentication and firewalls cannot be directly applied to WSN as it provides defence only against external threats. The existing literature shows that there seems an inverse relationship between strong security mechanism and efficient network resource utilization. In this research article, we have proposed a Mobile Agent Based Hierarchical Intrusion Detection System (MABHIDS for WSN. The Proposed scheme performs two levels of intrusion detection by utilizing minimum possible network resources. Our proposed idea enhance network lifetime by reducing the work load on Cluster Head (CH and it also provide enhanced level of security in WSN.

  18. Hierarchical Supervisor and Agent Routing Algorithm in LEO/MEO Double-layered Optical Satellite Network

    Science.gov (United States)

    Li, Yongjun; Zhao, Shanghong

    2016-09-01

    A novel routing algorithm (Hierarchical Supervisor and Agent Routing Algorithm, HSARA) for LEO/MEO (low earth orbit/medium earth orbit) double-layered optical satellite network is brought forward. The so-called supervisor (MEO satellite) is designed for failure recovery and network management. LEO satellites are grouped according to the virtual managed field of MEO which is different from coverage area of MEO satellite in RF satellite network. In each LEO group, one LEO satellite which has maximal persistent link with its supervisor is called the agent. A LEO group is updated when this optical inter-orbit links between agent LEO satellite and the corresponding MEO satellite supervisor cuts off. In this way, computations of topology changes and LEO group updating can be decreased. Expense of routing is integration of delay and wavelength utilization. HSARA algorithm simulations are implemented and the results are as follows: average network delay of HSARA can reduce 21 ms and 31.2 ms compared with traditional multilayered satellite routing and single-layer LEO satellite respectively; LEO/MEO double-layered optical satellite network can cover polar region which cannot be covered by single-layered LEO satellite and throughput is 1% more than that of single-layered LEO satellite averagely. Therefore, exact global coverage can be achieved with this double-layered optical satellite network.

  19. Hierarchical alteration of brain structural and functional networks in female migraine sufferers.

    Directory of Open Access Journals (Sweden)

    Jixin Liu

    Full Text Available BACKGROUND: Little is known about the changes of brain structural and functional connectivity networks underlying the pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent cortical overstimulation associated with migraine. METHODOLOGY/PRINCIPAL FINDINGS: Gray matter volumes and resting-state functional magnetic resonance imaging signal correlations were employed to construct structural and functional networks between brain regions in 43 female patients with migraine (PM and 43 gender-matched healthy controls (HC by using graph theory-based approaches. Compared with the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with abnormal centrality. Furthermore, the dysfunctional connections in patients' cortical networks formed into a connected component and three dysregulated modules were identified involving pain-related information processing and motion-processing visual networks. CONCLUSIONS: Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure progressively.

  20. Decision-making Task Hierarchical Decomposition of Blowing Time Sensitive Target%打击时敏目标的决策任务层次分解磁

    Institute of Scientific and Technical Information of China (English)

    黄培荣; 宋剑; 李楠

    2014-01-01

    针对打击时敏目标的决策任务层次分解,以任务求解为驱动,综合考虑任务的结构特征,提出决策任务层次分解的基本思想,进而重点研究了基于人件服务的复杂决策任务层次分解算法,为打击时敏目标决策任务流程规划与设计提供理论支撑。%Aiming at hierarchical decomposition for decision-making tasks of combat time sensitive target ,the goal is to solve the task .Considering the structural characteristics of the task ,the basic idea of decision-making tasks hierarchical de-composition is proposed .And then the hierarchical decomposition algorithm of the complex decision-making task based on personnel services is focused on to provide theoretical support for the process planning and design of decision-making tasks of blowing time sensitive target .

  1. Analysis of Hierarchical Diff-EDF Schedulability over Heterogeneous Real-Time Packet Networks

    Directory of Open Access Journals (Sweden)

    M. Saleh

    2007-01-01

    Full Text Available Packet networks are currently enabling the integration of traffic with a wide range of characteristics that extend from video traffic with stringent QoS requirements to the best-effort traffic requiring no guarantees. QoS guarantees can be provided in conventional packet networks by the use of proper packet scheduling algorithms. As a computer revolution, many scheduling algorithms have been proposed to provide different schemes of QoS guarantees with Earliest Deadline First (EDF as the most popular one. With EDF scheduling, all flows receive the same miss rate regardless of their traffic characteristics and deadlines. This makes the standard EDF algorithm unsuitable for situations in which the different flows have different miss rate requirements since in order to meet all miss rate requirements it is necessary to limit admissions so as to satisfy the flow with the most stringent miss rate requirements. In this paper, we propose a new priority assignment scheduling algorithm, Hierarchal Diff-EDF (Differentiate Earliest Deadline First, which can meet the real-time needs of these applications while continuing to provide best effort service to non-real time traffic. The Hierarchal Diff-EDF features a feedback control mechanism that detects overload conditions and modifies packet priority assignments accordingly. To examine our proposed scheduler model, we introduced our attempt to provide an exact analytical solution. The attempt showed that the solution was apparently very complicated due to the high interdependence between the system queues' service. Hence, the use of simulation techniques seems inevitable. The simulation results showed that the Hierarchical Diff-EDF achieved the minimum packet average delay when compared with both EDF and Diff-EDF schedulers.

  2. Hierarchical structures of correlations networks among Turkey’s exports and imports by currencies

    Science.gov (United States)

    Kocakaplan, Yusuf; Deviren, Bayram; Keskin, Mustafa

    2012-12-01

    We have examined the hierarchical structures of correlations networks among Turkey’s exports and imports by currencies for the 1996-2010 periods, using the concept of a minimal spanning tree (MST) and hierarchical tree (HT) which depend on the concept of ultrametricity. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial markets. We derived a hierarchical organization and build the MSTs and HTs during the 1996-2001 and 2002-2010 periods. The reason for studying two different sub-periods, namely 1996-2001 and 2002-2010, is that the Euro (EUR) came into use in 2001, and some countries have made their exports and imports with Turkey via the EUR since 2002, and in order to test various time-windows and observe temporal evolution. We have carried out bootstrap analysis to associate a value of the statistical reliability to the links of the MSTs and HTs. We have also used the average linkage cluster analysis (ALCA) to observe the cluster structure more clearly. Moreover, we have obtained the bidimensional minimal spanning tree (BMST) due to economic trade being a bidimensional problem. From the structural topologies of these trees, we have identified different clusters of currencies according to their proximity and economic ties. Our results show that some currencies are more important within the network, due to a tighter connection with other currencies. We have also found that the obtained currencies play a key role for Turkey’s exports and imports and have important implications for the design of portfolio and investment strategies.

  3. Pigeons' (Columba livia) hierarchical organization of local and global cues in touch screen tasks.

    Science.gov (United States)

    Legge, Eric L G; Spetch, Marcia L; Batty, Emily R

    2009-02-01

    Redundant encoding of local and global spatial cues is a common occurrence in many species. However, preferential use of the each type of cue seems to vary across species and tasks. In the current study, pigeons (Columba livia) were trained in three experiments on a touch screen task which included redundant local positional cues and global spatial cues. Specifically, pigeons were required to choose the middle out of three choice squares, such that the position within the array provided local information and the location on the screen provided global information. In Experiment 1, pigeons were trained and tested on vertically aligned arrays. In Experiment 2, pigeons were trained and tested on horizontally aligned arrays, and in Experiment 3, pigeons were trained and tested with vertical, horizontal and diagonally aligned arrays. The results indicate that preference for cue type depends upon the type of spatial information being encoded. Specifically, on vertical and diagonally aligned arrays, pigeons preferred global cues, whereas on horizontally aligned arrays, pigeons preferred local cues.

  4. Gel-based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoliang; Cai Qiang [Department of Materials Science and Engineering, and State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China); Fan Lizhen [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Hua Tao; Lin Yuanhua [Department of Materials Science and Engineering, and State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China); Nan Cewen [Department of Materials Science and Engineering, and State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)], E-mail: cwnan@tsinghua.edu.cn

    2008-11-15

    In the present work, novel gel-based composite polymer electrolytes for lithium batteries were prepared by introducing a hierarchical mesoporous silica network to the poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-based gel electrolytes. As compared with the PVDF-HFP-based gel electrolytes with/without conventional nano-sized silica fillers, the novel electrolytes have shown more homogeneous microstructure, higher ionic conductivity and better mechanical stability, which could be caused by the strong silica network and the effective interactions among the polymer, the liquid electrolytes and the silica. Moreover, the cell with this kind of electrolytes could achieve a discharge capacity as much as 150 mAh g{sup -1} at room temperature (LiCoO{sub 2} as the cathode active material), with high Coulomb efficiency.

  5. Gel-based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-Liang; Cai, Qiang; Hua, Tao; Lin, Yuan-Hua; Nan, Ce-Wen [Department of Materials Science and Engineering, and State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China); Fan, Li-Zhen [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2008-11-15

    In the present work, novel gel-based composite polymer electrolytes for lithium batteries were prepared by introducing a hierarchical mesoporous silica network to the poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-based gel electrolytes. As compared with the PVDF-HFP-based gel electrolytes with/without conventional nano-sized silica fillers, the novel electrolytes have shown more homogeneous microstructure, higher ionic conductivity and better mechanical stability, which could be caused by the strong silica network and the effective interactions among the polymer, the liquid electrolytes and the silica. Moreover, the cell with this kind of electrolytes could achieve a discharge capacity as much as 150 mAh g{sup -1} at room temperature (LiCoO{sub 2} as the cathode active material), with high Coulomb efficiency. (author)

  6. A New Enhanced Fast Handover Algorithm in Hierarchical Mobile IPv6 Network

    Institute of Scientific and Technical Information of China (English)

    XU Kai; JI Hong; YUE Guang-xin

    2004-01-01

    Hierarchical Mobile IPv6 (HMIPv6) can reduce the delay and the amount of signaling during handover compared with the basic mobile IPv6. However, the protocol still cannot meet the requirement for traffic that is delay sensitive, such as voice, especially in macro mobility handover. Duplicate address detection and the transmission time for the handover operation could cause high handover delay. This paper proposes a new mechanism to improve the fast handover algorithms efficiency in HMIPv6 network. And we present and analyze the performance testing for our proposal by comparing it with the traditional HMIPv6 fast handover algorithm. The results of simulation show that our scheme can reduce the handover delay much more than the traditional fast handover method for HMIPv6 network.

  7. Hierarchical Neural Networks Method for Fault Diagnosis of Large-Scale Analog Circuits

    Institute of Scientific and Technical Information of China (English)

    TAN Yanghong; HE Yigang; FANG Gefeng

    2007-01-01

    A novel hierarchical neural networks (HNNs) method for fault diagnosis of large-scale circuits is proposed. The presented techniques using neural networks(NNs) approaches require a large amount of computation for simulating various faulty component possibilities. For large scale circuits, the number of possible faults, and hence the simulations, grow rapidly and become tedious and sometimes even impractical. Some NNs are distributed to the torn sub-blocks according to the proposed torn principles of large scale circuits. And the NNs are trained in batches by different patterns in the light of the presented rules of various patterns when the DC, AC and transient responses of the circuit are available. The method is characterized by decreasing the over-lapped feasible domains of responses of circuits with tolerance and leads to better performance and higher correct classification. The methodology is illustrated by means of diagnosis examples.

  8. Robustness Results for Hierarchical Diff-EDF Scheduling upon Heterogeneous Real-Time Packet Networks

    Directory of Open Access Journals (Sweden)

    Moutaz Saleh

    2007-01-01

    Full Text Available Packet networks are currently enabling the integration of traffic with a wide range of characteristics that extend from video traffic with stringent QoS requirements to the best-effort traffic requiring no guarantees. QoS guarantees can be provided in conventional packet networks by the use of proper packet scheduling algorithms. As a computer revolution, many scheduling algorithms have been proposed to provide different schemes of QoS guarantees with Earliest Deadline First (EDF as the most popular one. With EDF scheduling, all flows receive the same miss rate regardless of their traffic characteristics and deadlines. This makes the standard EDF algorithm unsuitable for situations in which the different flows have different miss rate requirements since in order to meet all miss rate requirements it is necessary to limit admissions so as to satisfy the flow with the most stringent miss rate requirements. In this study, we propose a new priority assignment scheduling algorithm, Hierarchal Diff-EDF (Differentiate Earliest Deadline First, which can meet the real-time needs of these applications while continuing to provide best effort service to non-real time traffic. The Hierarchal Diff-EDF features a feedback control mechanism that detects overload conditions and modifies packet priority assignments accordingly.

  9. SMR-Based Adaptive Mobility Management Scheme in Hierarchical SIP Networks

    Directory of Open Access Journals (Sweden)

    KwangHee Choi

    2014-10-01

    Full Text Available In hierarchical SIP networks, paging is performed to reduce location update signaling cost for mobility management. However, the cost efficiency largely depends on each mobile node’s session-to-mobility-ratio (SMR, which is defined as a ratio of the session arrival rate to the movement rate. In this paper, we propose the adaptive mobility management scheme that can determine the policy regarding to each mobile node’s SMR. Each mobile node determines whether the paging is applied or not after comparing its SMR with the threshold. In other words, the paging is applied to a mobile node when a mobile node’s SMR is less than the threshold. Therefore, the proposed scheme provides a way to minimize signaling costs according to each mobile node’s SMR. We find out the optimal threshold through performance analysis, and show that the proposed scheme can reduce signaling cost than the existing SIP and paging schemes in hierarchical SIP networks.

  10. Hierarchical modularity in ERα transcriptional network is associated with distinct functions and implicates clinical outcomes.

    Science.gov (United States)

    Tang, Binhua; Hsu, Hang-Kai; Hsu, Pei-Yin; Bonneville, Russell; Chen, Su-Shing; Huang, Tim H-M; Jin, Victor X

    2012-01-01

    Recent genome-wide profiling reveals highly complex regulation networks among ERα and its targets. We integrated estrogen (E2)-stimulated time-series ERα ChIP-seq and gene expression data to identify the ERα-centered transcription factor (TF) hubs and their target genes, and inferred the time-variant hierarchical network structures using a Bayesian multivariate modeling approach. With its recurrent motif patterns, we determined three embedded regulatory modules from the ERα core transcriptional network. The GO analyses revealed the distinct biological function associated with each of three embedded modules. The survival analysis showed the genes in each module were able to render a significant survival correlation in breast cancer patient cohorts. In summary, our Bayesian statistical modeling and modularity analysis not only reveals the dynamic properties of the ERα-centered regulatory network and associated distinct biological functions, but also provides a reliable and effective genomic analytical approach for the analysis of dynamic regulatory network for any given TF.

  11. Canonical correlation between LFP network and spike network during working memory task in rat.

    Science.gov (United States)

    Yi, Hu; Zhang, Xiaofan; Bai, Wenwen; Liu, Tiaotiao; Tian, Xin

    2015-08-01

    Working memory refers to a system to temporary holding and manipulation of information. Previous studies suggested that local field potentials (LFPs) and spikes as well as their coordination provide potential mechanism of working memory. Popular methods for LFP-spike coordination only focus on the two modality signals, isolating each channel from multi-channel data, ignoring the entirety of the networked brain. Therefore, we investigated the coordination between the LFP network and spike network to achieve a better understanding of working memory. Multi-channel LFPs and spikes were simultaneously recorded in rat prefrontal cortex via microelectrode array during a Y-maze working memory task. Functional connectivity in the LFP network and spike network was respectively estimated by the directed transfer function (DTF) and maximum likelihood estimation (MLE). Then the coordination between the two networks was quantified via canonical correlation analysis (CCA). The results show that the canonical correlation (CC) varied during the working memory task. The CC-curve peaked before the choice point, describing the coordination between LFP network and spike network enhanced greatly. The CC value in working memory showed a significant higher level than inter-trial interval. Our results indicate that the enhanced canonical correlation between the LFP network and spike network may provide a potential network integration mechanism for working memory.

  12. Scalable Hierarchical Network Management System for Displaying Network Information in Three Dimensions

    Science.gov (United States)

    George, Jude (Inventor); Schlecht, Leslie (Inventor); McCabe, James D. (Inventor); LeKashman, John Jr. (Inventor)

    1998-01-01

    A network management system has SNMP agents distributed at one or more sites, an input output module at each site, and a server module located at a selected site for communicating with input output modules, each of which is configured for both SNMP and HNMP communications. The server module is configured exclusively for HNMP communications, and it communicates with each input output module according to the HNMP. Non-iconified, informationally complete views are provided of network elements to aid in network management.

  13. AN OPTIMUM VEHICULAR PATH ALGORITHM FOR TRAFFIC NETWORK BASED ON HIERARCHICAL SPATIAL REASONING

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Human beings' intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers' choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large-scale traffic networks.

  14. Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks.

    Science.gov (United States)

    Taamneh, Madhar; Taamneh, Salah; Alkheder, Sharaf

    2017-09-01

    Artificial neural networks (ANNs) have been widely used in predicting the severity of road traffic crashes. All available information about previously occurred accidents is typically used for building a single prediction model (i.e., classifier). Too little attention has been paid to the differences between these accidents, leading, in most cases, to build less accurate predictors. Hierarchical clustering is a well-known clustering method that seeks to group data by creating a hierarchy of clusters. Using hierarchical clustering and ANNs, a clustering-based classification approach for predicting the injury severity of road traffic accidents was proposed. About 6000 road accidents occurred over a six-year period from 2008 to 2013 in Abu Dhabi were used throughout this study. In order to reduce the amount of variation in data, hierarchical clustering was applied on the data set to organize it into six different forms, each with different number of clusters (i.e., clusters from 1 to 6). Two ANN models were subsequently built for each cluster of accidents in each generated form. The first model was built and validated using all accidents (training set), whereas only 66% of the accidents were used to build the second model, and the remaining 34% were used to test it (percentage split). Finally, the weighted average accuracy was computed for each type of models in each from of data. The results show that when testing the models using the training set, clustering prior to classification achieves (11%-16%) more accuracy than without using clustering, while the percentage split achieves (2%-5%) more accuracy. The results also suggest that partitioning the accidents into six clusters achieves the best accuracy if both types of models are taken into account.

  15. Adaptive Task-Space Cooperative Tracking Control of Networked Robotic Manipulators Without Task-Space Velocity Measurements.

    Science.gov (United States)

    Liang, Xinwu; Wang, Hesheng; Liu, Yun-Hui; Chen, Weidong; Hu, Guoqiang; Zhao, Jie

    2016-10-01

    In this paper, the task-space cooperative tracking control problem of networked robotic manipulators without task-space velocity measurements is addressed. To overcome the problem without task-space velocity measurements, a novel task-space position observer is designed to update the estimated task-space position and to simultaneously provide the estimated task-space velocity, based on which an adaptive cooperative tracking controller without task-space velocity measurements is presented by introducing new estimated task-space reference velocity and acceleration. Furthermore, adaptive laws are provided to cope with uncertain kinematics and dynamics and rigorous stability analysis is given to show asymptotical convergence of the task-space tracking and synchronization errors in the presence of communication delays under strongly connected directed graphs. Simulation results are given to demonstrate the performance of the proposed approach.

  16. Hierarchical transport networks optimizing dynamic response of permeable energy-storage materials.

    Science.gov (United States)

    Nilson, Robert H; Griffiths, Stewart K

    2009-07-01

    Channel widths and spacing in latticelike hierarchical transport networks are optimized to achieve maximum extraction of gas or electrical charge from nanoporous energy-storage materials during charge and discharge cycles of specified duration. To address a range of physics, the effective transport diffusivity is taken to vary as a power, m , of channel width. Optimal channel widths and spacing in all levels of the hierarchy are found to increase in a power-law manner with normalized system size, facilitating the derivation of closed-form approximations for the optimal dimensions. Characteristic response times and ratios of channel width to spacing are both shown to vary by the factor 2/m between successive levels of any optimal hierarchy. This leads to fractal-like self-similar geometry, but only for m=2 . For this case of quadratic dependence of diffusivity on channel width, the introduction of transport channels permits increases in system size on the order of 10;{4} , 10;{8} , and 10;{10} , without any reduction in extraction efficiency, for hierarchies having 1, 2 and, 8 levels, respectively. However, we also find that for a given system size there is an optimum number of hierarchical levels that maximizes extraction efficiency.

  17. Emergence of hierarchical structure mirroring linguistic composition in a recurrent neural network.

    Science.gov (United States)

    Hinoshita, Wataru; Arie, Hiroaki; Tani, Jun; Okuno, Hiroshi G; Ogata, Tetsuya

    2011-05-01

    We show that a Multiple Timescale Recurrent Neural Network (MTRNN) can acquire the capabilities to recognize, generate, and correct sentences by self-organizing in a way that mirrors the hierarchical structure of sentences: characters grouped into words, and words into sentences. The model can control which sentence to generate depending on its initial states (generation phase) and the initial states can be calculated from the target sentence (recognition phase). In an experiment, we trained our model over a set of unannotated sentences from an artificial language, represented as sequences of characters. Once trained, the model could recognize and generate grammatical sentences, even if they were not learned. Moreover, we found that our model could correct a few substitution errors in a sentence, and the correction performance was improved by adding the errors to the training sentences in each training iteration with a certain probability. An analysis of the neural activations in our model revealed that the MTRNN had self-organized, reflecting the hierarchical linguistic structure by taking advantage of the differences in timescale among its neurons: in particular, neurons that change the fastest represented "characters", those that change more slowly, "words", and those that change the slowest, "sentences".

  18. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    Science.gov (United States)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  19. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    Science.gov (United States)

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  20. Bayesian methods for estimating the reliability in complex hierarchical networks (interim report).

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M.; Zurn, Rena M.; Boggs, Paul T.; Diegert, Kathleen V. (Sandia National Laboratories, Albuquerque, NM); Red-Horse, John Robert (Sandia National Laboratories, Albuquerque, NM); Pebay, Philippe Pierre

    2007-05-01

    Current work on the Integrated Stockpile Evaluation (ISE) project is evidence of Sandia's commitment to maintaining the integrity of the nuclear weapons stockpile. In this report, we undertake a key element in that process: development of an analytical framework for determining the reliability of the stockpile in a realistic environment of time-variance, inherent uncertainty, and sparse available information. This framework is probabilistic in nature and is founded on a novel combination of classical and computational Bayesian analysis, Bayesian networks, and polynomial chaos expansions. We note that, while the focus of the effort is stockpile-related, it is applicable to any reasonably-structured hierarchical system, including systems with feedback.

  1. Virtual and Dynamic Hierarchical Architecture: an overlay network topology for discovering grid services with high performance

    Institute of Scientific and Technical Information of China (English)

    黄理灿; 吴朝晖; 潘云鹤

    2004-01-01

    This paper presents an overlay network topology called Virtual and Dynamic Hierarchical Architecture (VDHA) for discovering Grid services with high performance. Service discovery based on VDHA has scalable, autonomous, efficient, reliable and quick responsive. We propose two service discovery algorithms. Full Search Query and Discovery Protocol (FSQDP) discovers the nodes that match the request message from all N nodes, which has time complexity O(logN), space complexity O(nvg) (nvg being node numbers of each virtual group), and message-cost O(N), and Domain-Specific Query and Discovery Protocol (DSQDP) searches nodes in only specific domains with time complexity O(nvg), space complexity O(nvg), and message-cost O(nvg). In this paper, we also describe VDHA, its formal definition, and Grid Group Management Protocol.

  2. AH-MAC: Adaptive Hierarchical MAC Protocol for Low-Rate Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Adnan Ismail Al-Sulaifanie

    2017-01-01

    Full Text Available This paper proposes an adaptive hierarchical MAC protocol (AH-MAC with cross-layer optimization for low-rate and large-scale wireless sensor networks. The main goal of the proposed protocol is to combine the strengths of LEACH and IEEE 802.15.4 while offsetting their weaknesses. The predetermined cluster heads are supported with an energy harvesting circuit, while the normal nodes are battery-operated. To prolong the network’s operational lifetime, the proposed protocol transfers most of the network’s activities to the cluster heads while minimizing the node’s activity. Some of the main features of this protocol include energy efficiency, self-configurability, scalability, and self-healing. The simulation results showed great improvement of the AH-MAC over LEACH protocol in terms of energy consumption and throughput. AH-MAC consumes eight times less energy while improving throughput via acknowledgment support.

  3. Evidence for two independent factors that modify brain networks to meet task goals

    OpenAIRE

    Caterina Gratton; Timothy O. Laumann; Evan M. Gordon; Babatunde Adeyemo; Steven E. Petersen

    2016-01-01

    Humans easily and flexibly complete a wide variety of tasks. To accomplish this feat, the brain appears to subtly adjust stable brain networks. Here, we investigate what regional factors underlie these modifications, asking whether networks are either altered at (1) regions activated by a given task or (2) hubs that interconnect different networks. We used fMRI “functional connectivity” (FC) to compare networks during rest and three distinct tasks requiring semantic judgments, mental rotation...

  4. Electropolymerized Star-Shaped Benzotrithiophenes Yield π-Conjugated Hierarchical Networks with High Areal Capacitance

    KAUST Repository

    Ringk, Andreas

    2016-03-30

    High-surface-area π-conjugated polymeric networks have the potential to lend outstanding capacitance to supercapacitors because of the pronounced faradaic processes that take place across the dense intimate interface between active material and electrolytes. In this report, we describe how benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (BTT) and tris-EDOT-benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (TEBTT) can serve as 2D (trivalent) building blocks in the development of electropolymerized hierarchical π-conjugated frameworks with particularly high areal capacitance. In comparing electropolymerized networks of BTT, TEBTT, and their copolymers with EDOT, we show that P(TEBTT/EDOT)-based frameworks can achieve higher areal capacitance (e.g., as high as 443.8 mF cm-2 at 1 mA cm-2) than those achieved by their respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm-2 (at 1 mA cm-2) and PEDOT: 12.1 mF cm-2 (at 1 mA cm-2)). For example, P(TEBTT/EDOT)-based frameworks synthesized in a 1:1 monomer-to-comonomer ratio show a ca. 35x capacitance improvement over PEDOT. The high areal capacitance measured for P(TEBTT/EDOT) copolymers can be explained by the open, highly porous hierarchical morphologies formed during the electropolymerization step. With >70% capacitance retention over 1,000 cycles (up to 89% achieved), both PTEBTT- and P(TEBTT/EDOT)-based frameworks are resilient to repeated electrochemical cycling and can be considered promising systems for high life cycle capacitive electrode applications.

  5. A Dynamic Key Management Scheme Based on Secret Sharing for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Enjian Bai

    2013-01-01

    Full Text Available Since wireless sensor networks (WSN for short are often deployed in hostile environments in many applications, security becomes one of the critical issues in WSN. Moreover, due to the limitation of the sensor nodes, traditional key management schemes are not suitable for it. Thereby,a feasible and efficient key management scheme is an important guarantee for WSN to communicate securely. For the moment, many protocols have been proposed and each has its own advantages. However, these protocols cannot provide sufficient security in many cases, such as node capture attack, which makes WSN more vulnerable than traditional wireless networks. Key protection and revocation issues must be considered with special attention in WSN. To address these two issues, we propose a dynamically clustering key management scheme based on secret sharing for WSN. The scheme combined the hierarchical structure of wireless sensor networks with dynamic key management scheme. The analysis results show that the scheme has strong security and resistance of captured attack, as well as low communicational overhead, and it well meets the requirement of scalability.

  6. Hierarchical network model for the analysis of human spatio-temporal information processing

    Science.gov (United States)

    Schill, Kerstin; Baier, Volker; Roehrbein, Florian; Brauer, Wilfried

    2001-06-01

    The perception of spatio-temporal pattern is a fundamental part of visual cognition. In order to understand more about the principles behind these biological processes, we are analyzing and modeling the presentation of spatio-temporal structures on different levels of abstraction. For the low- level processing of motion information we have argued for the existence of a spatio-temporal memory in early vision. The basic properties of this structure are reflected in a neural network model which is currently developed. Here we discuss major architectural features of this network which is base don Kohonens SOMs. In order to enable the representation, processing and prediction of spatio-temporal pattern on different levels of granularity and abstraction the SOMs are organized in a hierarchical manner. The model has the advantage of a 'self-teaching' learning algorithm and stored temporal information try local feedback in each computational layer. The constraints for the neural modeling and data set for training the neural network are obtained by psychophysical experiments where human subjects' abilities for dealing with spatio-temporal information is investigated.

  7. Hierarchical surface code for network quantum computing with modules of arbitrary size

    Science.gov (United States)

    Li, Ying; Benjamin, Simon C.

    2016-10-01

    The network paradigm for quantum computing involves interconnecting many modules to form a scalable machine. Typically it is assumed that the links between modules are prone to noise while operations within modules have a significantly higher fidelity. To optimize fault tolerance in such architectures we introduce a hierarchical generalization of the surface code: a small "patch" of the code exists within each module and constitutes a single effective qubit of the logic-level surface code. Errors primarily occur in a two-dimensional subspace, i.e., patch perimeters extruded over time, and the resulting noise threshold for intermodule links can exceed ˜10 % even in the absence of purification. Increasing the number of qubits within each module decreases the number of qubits necessary for encoding a logical qubit. But this advantage is relatively modest, and broadly speaking, a "fine-grained" network of small modules containing only about eight qubits is competitive in total qubit count versus a "course" network with modules containing many hundreds of qubits.

  8. APPLICATION OF NEURAL NETWORK WITH MULTI-HIERARCHIC STRUCTURE TO EVALUATE SUSTAINABLE DEVELOPMENT OF THE COAL MINES

    Institute of Scientific and Technical Information of China (English)

    李新春; 陶学禹

    2000-01-01

    The neural network with multi-hierarchic structure is provided in this paper to evaluate sustainable development of the coal mines based on analyzing its effect factors. The whole evaluating system is composed of 5 neural networks.The feasibility of this method has been proved by case study. This study will provide a scientfic and theoretic foundation for evaluating the sustainable development of coal mines.

  9. Method of Parallel-Hierarchical Network Self-Training and its Application for Pattern Classification and Recognition

    Directory of Open Access Journals (Sweden)

    TIMCHENKO, L.

    2012-11-01

    Full Text Available Propositions necessary for development of parallel-hierarchical (PH network training methods are discussed in this article. Unlike already known structures of the artificial neural network, where non-normalized (absolute similarity criteria are used for comparison, the suggested structure uses a normalized criterion. Based on the analysis of training rules, a conclusion is made that application of two training methods with a teacher is optimal for PH network training: error correction-based training and memory-based training. Mathematical models of training and a combined method of PH network training for recognition of static and dynamic patterns are developed.

  10. Cooperative network clustering and task allocation for heterogeneous small satellite network

    Science.gov (United States)

    Qin, Jing

    The research of small satellite has emerged as a hot topic in recent years because of its economical prospects and convenience in launching and design. Due to the size and energy constraints of small satellites, forming a small satellite network(SSN) in which all the satellites cooperate with each other to finish tasks is an efficient and effective way to utilize them. In this dissertation, I designed and evaluated a weight based dominating set clustering algorithm, which efficiently organizes the satellites into stable clusters. The traditional clustering algorithms of large monolithic satellite networks, such as formation flying and satellite swarm, are often limited on automatic formation of clusters. Therefore, a novel Distributed Weight based Dominating Set(DWDS) clustering algorithm is designed to address the clustering problems in the stochastically deployed SSNs. Considering the unique features of small satellites, this algorithm is able to form the clusters efficiently and stably. In this algorithm, satellites are separated into different groups according to their spatial characteristics. A minimum dominating set is chosen as the candidate cluster head set based on their weights, which is a weighted combination of residual energy and connection degree. Then the cluster heads admit new neighbors that accept their invitations into the cluster, until the maximum cluster size is reached. Evaluated by the simulation results, in a SSN with 200 to 800 nodes, the algorithm is able to efficiently cluster more than 90% of nodes in 3 seconds. The Deadline Based Resource Balancing (DBRB) task allocation algorithm is designed for efficient task allocations in heterogeneous LEO small satellite networks. In the task allocation process, the dispatcher needs to consider the deadlines of the tasks as well as the residue energy of different resources for best energy utilization. We assume the tasks adopt a Map-Reduce framework, in which a task can consist of multiple

  11. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach

    Directory of Open Access Journals (Sweden)

    Buer Jan

    2004-12-01

    Full Text Available Abstract Background Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. Results In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. Conclusion The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E

  12. An Efficient Admission Control Algorithm for Load Balancing In Hierarchical Mobile IPv6 Networks

    CERN Document Server

    Harini, Prof P

    2009-01-01

    In hierarchical Mobile IPv6 networks, Mobility Anchor Point (MAP) may become a single point of bottleneck as it handles more and more mobile nodes (MNs). A number of schemes have been proposed to achieve load balancing among different MAPs. However, signaling reduction is still imperfect because these schemes also avoid the effect of the number of CNs. Also only the balancing of MN is performed, but not the balancing of the actual traffic load, since CN of each MN may be different. This paper proposes an efficient admission control algorithm along with a replacement mechanism for HMIPv6 networks. The admission control algorithm is based on the number of serving CNs and achieves actual load balancing among MAPs. Moreover, a replacement mechanism is introduced to decrease the new MN blocking probability and the handoff MN dropping probability. By simulation results, we show that, the handoff delay and packet loss are reduced in our scheme, when compared with the standard HMIPv6 based handoff.

  13. Hierarchical Agglomerative Clustering Schemes for Energy-Efficiency in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Taleb Tariq

    2017-06-01

    Full Text Available Extending the lifetime of wireless sensor networks (WSNs while delivering the expected level of service remains a hot research topic. Clustering has been identified in the literature as one of the primary means to save communication energy. In this paper, we argue that hierarchical agglomerative clustering (HAC provides a suitable foundation for designing highly energy efficient communication protocols for WSNs. To this end, we study a new mechanism for selecting cluster heads (CHs based both on the physical location of the sensors and their residual energy. Furthermore, we study different patterns of communications between the CHs and the base station depending on the possible transmission ranges and the ability of the sensors to act as traffic relays. Simulation results show that our proposed clustering and communication schemes outperform well-knows existing approaches by comfortable margins. In particular, networks lifetime is increased by more than 60% compared to LEACH and HEED, and by more than 30% compared to K-means clustering.

  14. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks

    Science.gov (United States)

    González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina

    2017-01-01

    Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage. PMID:28075364

  15. Scheduling for Emergency Tasks in Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Xia, Changqing; Jin, Xi; Kong, Linghe; Zeng, Peng

    2017-07-20

    Wireless sensor networks (WSNs) are widely applied in industrial manufacturing systems. By means of centralized control, the real-time requirement and reliability can be provided by WSNs in industrial production. Furthermore, many approaches reserve resources for situations in which the controller cannot perform centralized resource allocation. The controller assigns these resources as it becomes aware of when and where accidents have occurred. However, the reserved resources are limited, and such incidents are low-probability events. In addition, resource reservation may not be effective since the controller does not know when and where accidents will actually occur. To address this issue, we improve the reliability of scheduling for emergency tasks by proposing a method based on a stealing mechanism. In our method, an emergency task is transmitted by stealing resources allocated to regular flows. The challenges addressed in our work are as follows: (1) emergencies occur only occasionally, but the industrial system must deliver the corresponding flows within their deadlines when they occur; (2) we wish to minimize the impact of emergency flows by reducing the number of stolen flows. The contributions of this work are two-fold: (1) we first define intersections and blocking as new characteristics of flows; and (2) we propose a series of distributed routing algorithms to improve the schedulability and to reduce the impact of emergency flows. We demonstrate that our scheduling algorithm and analysis approach are better than the existing ones by extensive simulations.

  16. Hierarchical Multiagent Reinforcement Learning

    Science.gov (United States)

    2004-01-25

    In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In

  17. Analytical reasoning task reveals limits of social learning in networks.

    Science.gov (United States)

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-04-06

    Social learning-by observing and copying others-is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias', which limits their social learning to the output, rather than the process, of their peers' reasoning-even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.

  18. Hierarchical mechanisms of spatially contagious seed dispersal in complex seed-disperser networks.

    Science.gov (United States)

    Fedriani, José M; Wiegand, Thorsten

    2014-02-01

    Intra- and interspecific spatially contagious seed dispersal has far-reaching implications for plant recruitment, distribution, and community assemblage. However, logistical and analytical limitations have curtailed our understanding concerning the mechanisms and resulting spatial patterns of contagious seed dispersal in most systems and, especially, in complex seed-disperser networks. We investigated mechanisms of seed aggregation using techniques of spatial point pattern analysis and extensive data sets on mutispecific endozoochorous seed rain generated by five frugivorous mammals in three Mediterranean shrublands over two seasons. Our novel analytical approach revealed three hierarchical and complementary mechanisms of seed aggregation acting at different levels (fecal samples, seeds, pairs of seed species) and spatial scales. First, the three local guilds of frugivores tended to deliver their feces highly aggregated at small and intermediate spatial scales, and the overall pattern of fecal delivery could be described well by a nested double-cluster Thomas process. Second, once the strong observed fecal aggregation was accounted for, the distribution of mammal feces containing seeds was clustered within the pattern of all feces (i.e., with and without seeds), and the density of fecal samples containing seeds was higher than expected around other feces containing seeds in two out of the three studied seed-disperser networks. Finally, at a finer level, mark correlation analyses revealed that for some plant species pairs, the number of dispersed seeds was positively associated either at small or large spatial scales. Despite the relatively invariant patterning of nested double-clustering, some attributes of endozoochorous seed rain (e.g., intensity, scales of aggregation) were variable among study sites due to changes in the ecological context in which seeds and their dispersers interact. Our investigation disentangles for the first time the hierarchy of synergic

  19. Hierarchical hybrid control network design based on LON and master-slave RS-422/485 protocol

    Institute of Scientific and Technical Information of China (English)

    彭可; 陈际达; 陈岚

    2002-01-01

    Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu-ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master-slave RS-422/485 protocol. This design adopts LON as the trunk, master-slave RS-422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real-time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance-cost ratio.

  20. Delays and user performance in human-computer-network interaction tasks.

    Science.gov (United States)

    Caldwell, Barrett S; Wang, Enlie

    2009-12-01

    This article describes a series of studies conducted to examine factors affecting user perceptions, responses, and tolerance for network-based computer delays affecting distributed human-computer-network interaction (HCNI) tasks. HCNI tasks, even with increasing computing and network bandwidth capabilities, are still affected by human perceptions of delay and appropriate waiting times for information flow latencies. Conducted were 6 laboratory studies with university participants in China (Preliminary Experiments 1 through 3) and the United States (Experiments 4 through 6) to examine users' perceptions of elapsed time, effect of perceived network task performance partners on delay tolerance, and expectations of appropriate delays based on task, situation, and network conditions. Results across the six experiments indicate that users' delay tolerance and estimated delay were affected by multiple task and expectation factors, including task complexity and importance, situation urgency and time availability, file size, and network bandwidth capacity. Results also suggest a range of user strategies for incorporating delay tolerance in task planning and performance. HCNI user experience is influenced by combinations of task requirements, constraints, and understandings of system performance; tolerance is a nonlinear function of time constraint ratios or decay. Appropriate user interface tools providing delay feedback information can help modify user expectations and delay tolerance. These tools are especially valuable when delay conditions exceed a few seconds or when task constraints and system demands are high. Interface designs for HCNI tasks should consider assistant-style presentations of delay feedback, information freshness, and network characteristics. Assistants should also gather awareness of user time constraints.

  1. Intrinsic and task-evoked network architectures of the human brain

    Science.gov (United States)

    Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.

    2014-01-01

    Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964

  2. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    Science.gov (United States)

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  3. Studying modulation on simultaneously activated SSVEP neural networks by a cognitive task.

    Science.gov (United States)

    Wu, Zhenghua

    2014-01-01

    Since the discovery of steady-state visually evoked potential (SSVEP), it has been used in many fields. Numerous studies suggest that there exist three SSVEP neural networks in different frequency bands. An obvious phenomenon has been observed, that the amplitude and phase of SSVEP can be modulated by a cognitive task. Previous works have studied this modulation on separately activated SSVEP neural networks by a cognitive task. If two or more SSVEP neural networks are activated simultaneously in the process of a cognitive task, is the modulation on different SSVEP neural networks the same? In this study, two different SSVEP neural networks were activated simultaneously by two different frequency flickers, with a working memory task irrelevant to the flickers being conducted at the same time. The modulated SSVEP waves were compared with each other and to those only under one flicker in previous studies. The comparison results show that the cognitive task can modulate different SSVEP neural networks with a similar style.

  4. SO2 Emissions in China – Their Network and Hierarchical Structures

    Science.gov (United States)

    Yan, Shaomin; Wu, Guang

    2017-01-01

    SO2 emissions lead to various harmful effects on environment and human health. The SO2 emission in China has significant contribution to the global SO2 emission, so it is necessary to employ various methods to study SO2 emissions in China with great details in order to lay the foundation for policymaking to improve environmental conditions in China. Network analysis is used to analyze the SO2 emissions from power generation, industrial, residential and transportation sectors in China for 2008 and 2010, which are recently available from 1744 ground surface monitoring stations. The results show that the SO2 emissions from power generation sector were highly individualized as small-sized clusters, the SO2 emissions from industrial sector underwent an integration process with a large cluster contained 1674 places covering all industrial areas in China, the SO2 emissions from residential sector was not impacted by time, and the SO2 emissions from transportation sector underwent significant integration. Hierarchical structure is obtained by further combining SO2 emissions from all four sectors and is potentially useful to find out similar patterns of SO2 emissions, which can provide information on understanding the mechanisms of SO2 pollution and on designing different environmental measure to combat SO2 emissions. PMID:28387301

  5. A Hierarchical of Security Situation Element Acquisition Mechanism in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Li Fangwei

    2015-08-01

    Full Text Available In wireless sensor network, the processing ability of the sensor nodes is poor. And the security situational element acquisition is also a serious problem. Thus, this paper proposes a hierarchical framework of security situational elements acquisition mechanism. In this framework, support vector machine hyper sphere multi class algorithm is introduced as basic classifier. The method of attribute reduction uses non negative matrix factorization algorithm. The fuzzy classification algorithm used to initialize non negative matrix factorization, in order to avoid the local optimal which is caused by non negative matrix factorization random initialization. In the sink node classification rules and attribute reduction rules are formed by learning. The classification analyses respectively focus on the cluster head and sink node, which can reduce the requirement of the sensor node properties. Attribute reduction before the data transmission, which reduces communication consumption data transmission, improves the performance of classifiers. By simulation analysis, the scheme has preferably accuracy in the situation elements acquisiton, and smaller communication overhead in the process of information transmission.

  6. Interference mitigation for broadcast in hierarchical cell structure networks: Transmission strategy and area spectral efficiency

    KAUST Repository

    Yang, Yuli

    2014-10-01

    In this paper, a hierarchical cell structure (HCS) is considered, where an access point (AP) broadcasts to local nodes (LNs) over orthogonal frequency subbands within a local cell located in a macrocell. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered with by the macrocell user (MU)\\'s transmissions over the same subband. To improve the performance of the AP\\'s broadcast service, a novel transmission strategy is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the purpose of performance evaluation, the ergodic capacity of the proposed scheme is quantified, and the corresponding closed-form expression is obtained. By comparing with the traditional transmission scheme, which suffers from MU\\'s interference, illustrative numerical results substantiate that the proposed scheme achieves better performance than the traditional scheme as the MU-LN mean channel power gain is larger than half of the AP-LN mean channel power gain. Subsequently, we develop an optimized network design by maximizing the area spectral efficiency (ASE) of the AP\\'s broadcast in the local cell.

  7. A comparative performance evaluation of intrusion detection techniques for hierarchical wireless sensor networks

    Directory of Open Access Journals (Sweden)

    H.H. Soliman

    2012-11-01

    Full Text Available An explosive growth in the field of wireless sensor networks (WSNs has been achieved in the past few years. Due to its important wide range of applications especially military applications, environments monitoring, health care application, home automation, etc., they are exposed to security threats. Intrusion detection system (IDS is one of the major and efficient defensive methods against attacks in WSN. Therefore, developing IDS for WSN have attracted much attention recently and thus, there are many publications proposing new IDS techniques or enhancement to the existing ones. This paper evaluates and compares the most prominent anomaly-based IDS systems for hierarchical WSNs and identifying their strengths and weaknesses. For each IDS, the architecture and the related functionality are briefly introduced, discussed, and compared, focusing on both the operational strengths and weakness. In addition, a comparison of the studied IDSs is carried out using a set of critical evaluation metrics that are divided into two groups; the first one related to performance and the second related to security. Finally based on the carried evaluation and comparison, a set of design principles are concluded, which have to be addressed and satisfied in future research of designing and implementing IDS for WSNs.

  8. A Secure Hierarchical Identify Authentication Scheme Combining Trust Mechanism in Mobile IPv6 Networks

    Directory of Open Access Journals (Sweden)

    Zhi Zhang

    2009-07-01

    Full Text Available During the last few years, it has become more and more conpeling in mobile applications, mobile IPv6 technology is convenient, but also produces a series of security compromise. Identify authentication is an important part of the network security. In this paper, we proposed a secure identify authentication scheme combining reputation mechanism, which considers inters domain trust relationship between mobile node home domain and the access domain in the pre-handoff procedure and realizes effective mutual authentication between mobile node(MN and the access domain. A dynamic reputation maintenance mechanism for inter domain relationship is also designed. Based SMC signature, a hierarchical signature and verification scheme is designed in one round mutual authentication. Theoretical analysis and numerical results show that proposed scheme is more effective in reducing total authentication and handoff delay and the signaling overhead than relative schemes. Security analysis shows, basing on the security of SMC-IBS, the proposed scheme is sufficient for private key privacy, signature unforgeability. Moreover, our scheme first provide public key revocation and key escrow problem in mobile IPv6 networks’ access authentication.

  9. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  10. 3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries.

    Science.gov (United States)

    Hu, Guangjian; Xu, Chuan; Sun, Zhenhua; Wang, Shaogang; Cheng, Hui-Ming; Li, Feng; Ren, Wencai

    2016-02-24

    A 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical network is synthesized to achieve high sulfur loading and content simultaneously, which solves the "double low" issues of Li-S batteries. The obtained Li-S cathodes show a high areal capacity two times larger than that of commercial lithium-ion batteries, and a good cycling performance comparable to those at low sulfur loading.

  11. RedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations.

    Science.gov (United States)

    Castro, Mauro A A; Wang, Xin; Fletcher, Michael N C; Meyer, Kerstin B; Markowetz, Florian

    2012-04-24

    Visualization and analysis of molecular networks are both central to systems biology. However, there still exists a large technological gap between them, especially when assessing multiple network levels or hierarchies. Here we present RedeR, an R/Bioconductor package combined with a Java core engine for representing modular networks. The functionality of RedeR is demonstrated in two different scenarios: hierarchical and modular organization in gene co-expression networks and nested structures in time-course gene expression subnetworks. Our results demonstrate RedeR as a new framework to deal with the multiple network levels that are inherent to complex biological systems. RedeR is available from http://bioconductor.org/packages/release/bioc/html/RedeR.html.

  12. Combined multi-nozzle deposition and freeze casting process to superimpose two porous networks for hierarchical three-dimensional microenvironment.

    Science.gov (United States)

    Snyder, Jessica E; Hunger, Philipp M; Wang, Chengyang; Hamid, Qudus; Wegst, Ulrike G K; Sun, Wei

    2014-03-01

    An engineered three-dimensional scaffold with hierarchical porosity and multiple niche microenvironments is produced using a combined multi-nozzle deposition-freeze casting technique. In this paper we present a process to fabricate a scaffold with improved interconnectivity and hierarchical porosity. The scaffold is produced using a two-stage manufacturing process which superimposes a printed porous alginate (Alg) network and a directionally frozen ceramic-polymer matrix. The combination of two processes, multi-nozzle deposition and freeze casting, provides engineering control of the microenvironment of the scaffolds over several length scales; including the addition of lateral porosity and the ratio of polymer to ceramic microstructures. The printed polymer scaffold is submerged in a ceramic-polymer slurry and subsequently, both structures are directionally frozen (freeze cast), superimposing and patterning both microenvironments into a single hierarchical architecture. An optional additional sintering step removes the organic material and densifies the ceramic phase to produce a well-defined network of open pores and a homogenous cell wall material composition. The techniques presented in this contribution address processing challenges, such as structure definition, reproducibility and fine adjustments of unique length scales, which one typically encounters when fabricating topological channels between longitudinal and transverse porous networks.

  13. Recursive random forest algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways

    Science.gov (United States)

    Zhang, Kui; Busov, Victor; Wei, Hairong

    2017-01-01

    Background Present knowledge indicates a multilayered hierarchical gene regulatory network (ML-hGRN) often operates above a biological pathway. Although the ML-hGRN is very important for understanding how a pathway is regulated, there is almost no computational algorithm for directly constructing ML-hGRNs. Results A backward elimination random forest (BWERF) algorithm was developed for constructing the ML-hGRN operating above a biological pathway. For each pathway gene, the BWERF used a random forest model to calculate the importance values of all transcription factors (TFs) to this pathway gene recursively with a portion (e.g. 1/10) of least important TFs being excluded in each round of modeling, during which, the importance values of all TFs to the pathway gene were updated and ranked until only one TF was remained in the list. The above procedure, termed BWERF. After that, the importance values of a TF to all pathway genes were aggregated and fitted to a Gaussian mixture model to determine the TF retention for the regulatory layer immediately above the pathway layer. The acquired TFs at the secondary layer were then set to be the new bottom layer to infer the next upper layer, and this process was repeated until a ML-hGRN with the expected layers was obtained. Conclusions BWERF improved the accuracy for constructing ML-hGRNs because it used backward elimination to exclude the noise genes, and aggregated the individual importance values for determining the TFs retention. We validated the BWERF by using it for constructing ML-hGRNs operating above mouse pluripotency maintenance pathway and Arabidopsis lignocellulosic pathway. Compared to GENIE3, BWERF showed an improvement in recognizing authentic TFs regulating a pathway. Compared to the bottom-up Gaussian graphical model algorithm we developed for constructing ML-hGRNs, the BWERF can construct ML-hGRNs with significantly reduced edges that enable biologists to choose the implicit edges for experimental

  14. Fluctuation relations between hierarchical kinetically equivalent networks with Arrhenius-type transitions and their roles in systems and structural biology

    Science.gov (United States)

    Deng, De-Ming; Lu, Yi-Ta; Chang, Cheng-Hung

    2017-06-01

    The legality of using simple kinetic schemes to determine the stochastic properties of a complex system depends on whether the fluctuations generated from hierarchical equivalent schemes are consistent with one another. To analyze this consistency, we perform lumping processes on the stochastic differential equations and the generalized fluctuation-dissipation theorem and apply them to networks with the frequently encountered Arrhenius-type transition rates. The explicit Langevin force derived from those networks enables us to calculate the state fluctuations caused by the intrinsic and extrinsic noises on the free energy surface and deduce their relations between kinetically equivalent networks. In addition to its applicability to wide classes of network related systems, such as those in structural and systems biology, the result sheds light on the fluctuation relations for general physical variables in Keizer's canonical theory.

  15. Reconfiguration of the Brain Functional Network Associated with Visual Task Demands.

    Science.gov (United States)

    Wen, Xue; Zhang, Delong; Liang, Bishan; Zhang, Ruibin; Wang, Zengjian; Wang, Junjing; Liu, Ming; Huang, Ruiwang

    2015-01-01

    Neuroimaging studies have demonstrated that the topological properties of resting-state brain functional networks are modulated through task performances. However, the reconfiguration of functional networks associated with distinct degrees of task demands is not well understood. In the present study, we acquired fMRI data from 18 healthy adult volunteers during resting-state (RS) and two visual tasks (i.e., visual stimulus watching, VSW; and visual stimulus decision, VSD). Subsequently, we constructed the functional brain networks associated with these three conditions and analyzed the changes in the topological properties (e.g., network efficiency, wiring-cost, modularity, and robustness) among them. Although the small-world attributes were preserved qualitatively across the functional networks of the three conditions, changes in the topological properties were also observed. Compared with the resting-state, the functional networks associated with the visual tasks exhibited significantly increased network efficiency and wiring-cost, but decreased modularity and network robustness. The changes in the task-related topological properties were modulated according to the task complexity (i.e., from RS to VSW and VSD). Moreover, at the regional level, we observed that the increased nodal efficiencies in the visual and working memory regions were positively associated with the increase in task complexity. Together, these results suggest that the increased efficiency of the functional brain network and higher wiring-cost were observed to afford the demands of visual tasks. These observations provide further insights into the mechanisms underlying the reconfiguration of the brain network during task performance.

  16. A Bayesian Network Approach to Modeling Learning Progressions and Task Performance. CRESST Report 776

    Science.gov (United States)

    West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.

    2010-01-01

    A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…

  17. On the existence of a generalized non-specific task-dependent network

    Directory of Open Access Journals (Sweden)

    Kenneth eHugdahl

    2015-08-01

    Full Text Available In this paper we suggest the existence of a generalized task-related cortical network that is up-regulated whenever the task to be performed requires the allocation of generalized non-specific cognitive resources, independent of the specifics of the task to be performed. We have labelled this general purpose network, the extrinsic mode network (EMN as complementary to the default mode network (DMN, such that the EMN is down-regulated during periods of task-absence, when the DMN is up-regulated, and vice versa. We conceptualize the EMN as a cortical network for extrinsic neuronal activity, similar to the DMN as being a cortical network for intrinsic neuronal activity. The EMN has essentially a fronto-temporo-parietal spatial distribution, including the inferior and middle frontal gyri, inferior parietal lobule, supplementary motor area, inferior temporal gyrus, We further hypothesize that this network is always active regardless of the cognitive task being performed. We suggest that failure of network up- and down-regulation dynamics may provide neuronal underpinnings for cognitive impairments seen in many mental disorders, such as e.g. schizophrenia. We start by describing a common observation in functional imaging, the close overlap in fronto-parietal activations in healthy individuals to tasks that denote very different cognitive processes. We now suggest that this is because the brain utilizes the EMN network as a generalized response to tasks that exceeds a cognitive demand threshold and/or requires the processing of novel information. We further discuss how the EMN is related to the DMN, and how a network for extrinsic activity is related to a network for intrinsic activity. Finally we discuss whether the EMN and DMN networks interact in a common single brain system, rather than being two separate and independent brain systems.

  18. An Improved Particle Swarm Optimization Based on Deluge Approach for Enhanced Hierarchical Cache Optimization in IPTV Networks

    Directory of Open Access Journals (Sweden)

    M. Somu

    2014-05-01

    Full Text Available In recent years, IP network has been considered as a new delivery network for TV services. A majority of the telecommunication industries have used IP network to offer on-demand services and linear TV services as it can offer a two-way and high-speed communication. In order to effectively and economically utilize the IP network, caching is the technique which is usually preferred. In IPTV system, a managed network is utilized to bring out TV services, the requests of Video on Demand (VOD objects are usually combined in a limited period intensively and user preferences are fluctuated dynamically. Furthermore, the VOD content updates often under the control of IPTV providers. In order to minimize this traffic and overall network cost, a segment of the video content is stored in caches closer to subscribers, for example, Digital Subscriber Line Access Multiplexer (DSLAM, a Central Office (CO and Intermediate Office (IO. The major problem focused in this approach is to determine the optimal cache memory that should be assigned in order to attain maximum cost effectiveness. This approach uses an effective Grate Deluge algorithm based Particle Swarm Optimization (GDPSO approach for attaining the optimal cache memory size which in turn minimizes the overall network cost. The analysis shows that hierarchical distributed caching can save significant network cost through the utilization of the GDPSO algorithm.

  19. Differential synchronization in default and task-specific networks of the human brain

    Directory of Open Access Journals (Sweden)

    Aaron eKirschner

    2012-05-01

    Full Text Available On a regional scale the brain is organized into dynamic functional networks. The activity within one of these, the default network, can be dissociated from that in other task-specific networks. All brain networks are connected structurally, but evidently are only transiently connected functionally. One hypothesis as to how such transient functional coupling occurs is that network formation and dissolution is mediated, or at least accompanied, by increases and decreases in oscillatory synchronization between constituent brain regions. If so, then we should be able to find transient differences in intra-network synchronization between the default network and a task-specific network. In order to investigate this hypothesis we conducted two experiments in which subjects engaged in a Sustained Attention to Response Task (SART while having brain activity recorded via high-density electroencephalography (EEG. We found that during periods when attention was focused internally (mind-wandering there was significantly more neural phase synchronization between brain regions associated with the default network, whereas during periods when subjects were focused on performing the visual task there was significantly more neural phase synchrony within a task-specific brain network that shared some of the same brain regions. These differences in network synchrony occurred in each of theta, alpha, and gamma frequency bands. A similar pattern of differential oscillatory power changes, indicating modulation of local synchronization by attention state, was also found. These results provide further evidence that the human brain is intrinsically organized into default and task-specific brain networks, and confirm that oscillatory synchronization is a potential mechanism for functional coupling within these networks.

  20. Large-Scale Brain Networks in Board Game Experts: Insights from a Domain-Related Task and Task-Free Resting State

    Science.gov (United States)

    Duan, Xujun; Liao, Wei; Liang, Dongmei; Qiu, Lihua; Gao, Qing; Liu, Chengyi; Gong, Qiyong; Chen, Huafu

    2012-01-01

    Cognitive performance relies on the coordination of large-scale networks of brain regions that are not only temporally correlated during different tasks, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual differences in cognitive performance. Therefore, we aimed to examine the influence of cognitive expertise on four networks associated with cognitive task performance: the default mode network (DMN) and three other cognitive networks (central-executive network, dorsal attention network, and salience network). During fMRI scanning, fifteen grandmaster and master level Chinese chess players (GM/M) and fifteen novice players carried out a Chinese chess task and a task-free resting state. Modulations of network activity during task were assessed, as well as resting-state functional connectivity of those networks. Relative to novices, GM/Ms showed a broader task-induced deactivation of DMN in the chess problem-solving task, and intrinsic functional connectivity of DMN was increased with a connectivity pattern associated with the caudate nucleus in GM/Ms. The three other cognitive networks did not exhibit any difference in task-evoked activation or intrinsic functional connectivity between the two groups. These findings demonstrate the effect of long-term learning and practice in cognitive expertise on large-scale brain networks, suggesting the important role of DMN deactivation in expert performance and enhanced functional integration of spontaneous activity within widely distributed DMN-caudate circuitry, which might better support high-level cognitive control of behavior. PMID:22427852

  1. On Energy Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks

    CERN Document Server

    Comaniciu, Cristina

    2007-01-01

    In this paper, a hierarchical cross-layer design approach is proposed to increase energy efficiency in ad hoc networks through joint adaptation of nodes' transmitting powers and route selection. The design maintains the advantages of the classic OSI model, while accounting for the cross-coupling between layers, through information sharing. The proposed joint power control and routing algorithm is shown to increase significantly the overall energy efficiency of the network, at the expense of a moderate increase in complexity. Performance enhancement of the joint design using multiuser detection is also investigated, and it is shown that the use of multiuser detection can increase the capacity of the ad hoc network significantly for a given level of energy consumption.

  2. Synchronization of chaotic systems and identification of nonlinear systems by using recurrent hierarchical type-2 fuzzy neural networks.

    Science.gov (United States)

    Mohammadzadeh, Ardashir; Ghaemi, Sehraneh

    2015-09-01

    This paper proposes a novel approach for training of proposed recurrent hierarchical interval type-2 fuzzy neural networks (RHT2FNN) based on the square-root cubature Kalman filters (SCKF). The SCKF algorithm is used to adjust the premise part of the type-2 FNN and the weights of defuzzification and the feedback weights. The recurrence property in the proposed network is the output feeding of each membership function to itself. The proposed RHT2FNN is employed in the sliding mode control scheme for the synchronization of chaotic systems. Unknown functions in the sliding mode control approach are estimated by RHT2FNN. Another application of the proposed RHT2FNN is the identification of dynamic nonlinear systems. The effectiveness of the proposed network and its learning algorithm is verified by several simulation examples. Furthermore, the universal approximation of RHT2FNNs is also shown.

  3. On Energy-Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Poor HVincent

    2007-01-01

    Full Text Available A hierarchical cross-layer design approach is proposed to increase energy efficiency in ad hoc networks through joint adaptation of nodes' transmitting powers and route selection. The design maintains the advantages of the classic OSI model, while accounting for the cross-coupling between layers, through information sharing. The proposed joint power control and routing algorithm is shown to increase significantly the overall energy efficiency of the network, at the expense of a moderate increase in complexity. Performance enhancement of the joint design using multiuser detection is also investigated, and it is shown that the use of multiuser detection can increase the capacity of the ad hoc network significantly for a given level of energy consumption.

  4. Facile solid-state synthesis of Ni@C nanosheet-assembled hierarchical network for high-performance lithium storage

    Science.gov (United States)

    Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming

    2017-08-01

    Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.

  5. Time-resolved detection of stimulus/task-related networks, via clustering of transient intersubject synchronization.

    Science.gov (United States)

    Bordier, Cécile; Macaluso, Emiliano

    2015-09-01

    Several methods are available for the identification of functional networks of brain areas using functional magnetic resonance imaging (fMRI) time-series. These typically assume a fixed relationship between the signal of the areas belonging to the same network during the entire time-series (e.g., positive correlation between the areas belonging to the same network), or require a priori information about when this relationship may change (task-dependent changes of connectivity). We present a fully data-driven method that identifies transient network configurations that are triggered by the external input and that, therefore, include only regions involved in stimulus/task processing. Intersubject synchronization with short sliding time-windows was used to identify if/when any area showed stimulus/task-related responses. Next, a first clustering step grouped together areas that became engaged concurrently and repetitively during the time-series (stimulus/task-related networks). Finally, for each network, a second clustering step grouped together all the time-windows with the same BOLD signal. The final output consists of a set of network configurations that show stimulus/task-related activity at specific time-points during the fMRI time-series. We label these configurations: "brain modes" (bModes). The method was validated using simulated datasets and a real fMRI experiment with multiple tasks and conditions. Future applications include the investigation of brain functions using complex and naturalistic stimuli.

  6. Persistency and flexibility of complex brain networks underlie dual-task interference.

    Science.gov (United States)

    Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten

    2015-09-01

    Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley

  7. Bistability of mixed states in a neural network storing hierarchical patterns

    Science.gov (United States)

    Toya, Kaname; Fukushima, Kunihiko; Kabashima, Yoshiyuki; Okada, Masato

    2000-04-01

    We discuss the properties of equilibrium states in an autoassociative memory model storing hierarchically correlated patterns (hereafter, hierarchical patterns). We will show that symmetric mixed states (hereafter, mixed states) are bistable on the associative memory model storing the hierarchical patterns in a region of the ferromagnetic phase. This means that the first-order transition occurs in this ferromagnetic phase. We treat these contents with a statistical mechanical method (SCSNA) and by computer simulation. Finally, we discuss a physiological implication of this model. Sugase et al (1999 Nature 400 869) analysed the time-course of the information carried by the firing of face-responsive neurons in the inferior temporal cortex. We also discuss the relation between the theoretical results and the physiological experiments of Sugase et al .

  8. A Novel Connectionist Network for Solving Long Time-Lag Prediction Tasks

    Science.gov (United States)

    Johnson, Keith; MacNish, Cara

    Traditional Recurrent Neural Networks (RNNs) perform poorly on learning tasks involving long time-lag dependencies. More recent approaches such as LSTM and its variants significantly improve on RNNs ability to learn this type of problem. We present an alternative approach to encoding temporal dependencies that associates temporal features with nodes rather than state values, where the nodes explicitly encode dependencies over variable time delays. We show promising results comparing the network's performance to LSTM variants on an extended Reber grammar task.

  9. Mobile Sensor Networks for Inspection Tasks in Harsh Industrial Environments

    NARCIS (Netherlands)

    Mulder, Jacob; Wang, Xinyu; Ferwerda, Franke; Cao, Ming

    2010-01-01

    Recent advances in sensor technology have enabled the fast development of mobile sensor networks operating in various unknown and sometimes hazardous environments. In this paper, we introduce one integrative approach to design, analyze and test distributed control algorithms to coordinate a network

  10. H-P2PSIP: Interconnection of P2PSIP domains for Global Multimedia Services based on a Hierarchical DHT Overlay Network

    OpenAIRE

    Martínez-Yelmo, Isaías; Bikfalvi, Alex; Cuevas, Rubén; Guerrero, Carmen; García-Reinoso, Jaime

    2009-01-01

    The IETF P2PSIP WG is currently standardising a protocol for distributed mul- timedia services combining the media session functionality of SIP and the decentralised distribution and localisation of resources in peer-to-peer networks. The current P2PSIP scenarios only consider the infrastructure for the connectivity inside a single domain. This paper proposes an extension of the current work to a hierarchical multi-domain scenario: a two level hierarchical peer-to-peer overlay architecture...

  11. Task-related changes in functional properties of the human brain network underlying attentional control.

    Directory of Open Access Journals (Sweden)

    Tetsuo Kida

    Full Text Available Previous studies have demonstrated task-related changes in brain activation and inter-regional connectivity but the temporal dynamics of functional properties of the brain during task execution is still unclear. In the present study, we investigated task-related changes in functional properties of the human brain network by applying graph-theoretical analysis to magnetoencephalography (MEG. Subjects performed a cue-target attention task in which a visual cue informed them of the direction of focus for incoming auditory or tactile target stimuli, but not the sensory modality. We analyzed the MEG signal in the cue-target interval to examine network properties during attentional control. Cluster-based non-parametric permutation tests with the Monte-Carlo method showed that in the cue-target interval, beta activity was desynchronized in the sensori-motor region including premotor and posterior parietal regions in the hemisphere contralateral to the attended side. Graph-theoretical analysis revealed that, in beta frequency, global hubs were found around the sensori-motor and prefrontal regions, and functional segregation over the entire network was decreased during attentional control compared to the baseline. Thus, network measures revealed task-related temporal changes in functional properties of the human brain network, leading to the understanding of how the brain dynamically responds to task execution as a network.

  12. Task-related changes in functional properties of the human brain network underlying attentional control.

    Science.gov (United States)

    Kida, Tetsuo; Kakigi, Ryusuke

    2013-01-01

    Previous studies have demonstrated task-related changes in brain activation and inter-regional connectivity but the temporal dynamics of functional properties of the brain during task execution is still unclear. In the present study, we investigated task-related changes in functional properties of the human brain network by applying graph-theoretical analysis to magnetoencephalography (MEG). Subjects performed a cue-target attention task in which a visual cue informed them of the direction of focus for incoming auditory or tactile target stimuli, but not the sensory modality. We analyzed the MEG signal in the cue-target interval to examine network properties during attentional control. Cluster-based non-parametric permutation tests with the Monte-Carlo method showed that in the cue-target interval, beta activity was desynchronized in the sensori-motor region including premotor and posterior parietal regions in the hemisphere contralateral to the attended side. Graph-theoretical analysis revealed that, in beta frequency, global hubs were found around the sensori-motor and prefrontal regions, and functional segregation over the entire network was decreased during attentional control compared to the baseline. Thus, network measures revealed task-related temporal changes in functional properties of the human brain network, leading to the understanding of how the brain dynamically responds to task execution as a network.

  13. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Silvia Tommasin

    2017-07-01

    Full Text Available Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN, are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task.

  14. A Hierarchical Collaborative Optimization Method for Transmission Network Restoration%输电网架恢复的分层协同优化方法

    Institute of Scientific and Technical Information of China (English)

    曹曦; 王洪涛; 刘玉田

    2015-01-01

    实际大规模输电网架恢复时间与空间跨度大,涉及操作众多,需要各级调度共同参与,因此提出一种网架恢复的分层协同优化方法.引入"受电点"的概念,将输电网架拆分,构建基于受电点指标约定的恢复协作机制,继而建立网架恢复的分层协同优化模型.该模型将主网架重构完成度与各地区新增发电量作为优化目标,采用分层次独立优化与受电点指标值整体寻优相结合的方法,可有效降低问题求解规模,并能够兼顾求解全局性与各层级的恢复偏好.通过受电点指标约定,明确任务分工与各地区的操作边界,能够实现有功、无功的协调控制与分层分区独立并行恢复,可显著提高恢复效率.山东电网实际算例验证了所提方法的有效性和实用性.%Network restoration after a widespread blackout involves complicated multi-process operations with a large spatial and temporal span, which needs the cooperation of multi-level dispatching centers. So a hierarchical collaborative optimization method for network restoration was proposed. The concept of feed point (FP) was introduced and the network restoration was divided into two layers. An FP based restoration cooperation mechanism was built. And then the collaborative optimization model was established. The objectives of this model are defined as network reconfiguration degree and total power production. The method combined hierarchical optimization with overall searching of the FP index value which makes the solving scale of the whole problem reduced dramatically. Global optimization and preference of each region can be obtained at the same time. The cooperation mechanism makes the task assignment clear. The coordination control of active/reactive power and multi-process parallel restoration operations can be achieved. The cases of Shandong power grid verify the effectiveness and practicability of this method.

  15. Hierarchical spatial segregation of two Mediterranean vole species: the role of patch-network structure and matrix composition.

    Science.gov (United States)

    Pita, Ricardo; Lambin, Xavier; Mira, António; Beja, Pedro

    2016-09-01

    According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e., many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from within-patches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.

  16. Electroencephalography of response inhibition tasks : functional networks and cognitive contributions

    NARCIS (Netherlands)

    Huster, René J; Enriquez-Geppert, Stefanie; Lavallee, Christina F; Falkenstein, Michael; Herrmann, Christoph S

    2013-01-01

    Response inhibition paradigms, as for example stop signal and go/no-go tasks, are often used to study cognitive control processes. Because of the apparent demand to stop a motor reaction, the electrophysiological responses evoked by stop and no-go trials have sometimes likewise been interpreted as i

  17. Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.

    Science.gov (United States)

    Chan, Micaela Y; Alhazmi, Fahd H; Park, Denise C; Savalia, Neil K; Wig, Gagan S

    2017-03-08

    Brain network connectivity differs across individuals. For example, older adults exhibit less segregated resting-state subnetworks relative to younger adults (Chan et al., 2014). It has been hypothesized that individual differences in network connectivity impact the recruitment of brain areas during task execution. While recent studies have described the spatial overlap between resting-state functional correlation (RSFC) subnetworks and task-evoked activity, it is unclear whether individual variations in the connectivity pattern of a brain area (topology) relates to its activity during task execution. We report data from 238 cognitively normal participants (humans), sampled across the adult life span (20-89 years), to reveal that RSFC-based network organization systematically relates to the recruitment of brain areas across two functionally distinct tasks (visual and semantic). The functional activity of brain areas (network nodes) were characterized according to their patterns of RSFC: nodes with relatively greater connections to nodes in their own functional system ("non-connector" nodes) exhibited greater activity than nodes with relatively greater connections to nodes in other systems ("connector" nodes). This "activation selectivity" was specific to those brain systems that were central to each of the tasks. Increasing age was accompanied by less differentiated network topology and a corresponding reduction in activation selectivity (or differentiation) across relevant network nodes. The results provide evidence that connectional topology of brain areas quantified at rest relates to the functional activity of those areas during task. Based on these findings, we propose a novel network-based theory for previous reports of the "dedifferentiation" in brain activity observed in aging.SIGNIFICANCE STATEMENT Similar to other real-world networks, the organization of brain networks impacts their function. As brain network connectivity patterns differ across

  18. Mobile sensor networks for inspection tasks in harsh industrial environments.

    Science.gov (United States)

    Mulder, Jacob; Wang, Xinyu; Ferwerda, Franke; Cao, Ming

    2010-01-01

    Recent advances in sensor technology have enabled the fast development of mobile sensor networks operating in various unknown and sometimes hazardous environments. In this paper, we introduce one integrative approach to design, analyze and test distributed control algorithms to coordinate a network of autonomous mobile sensors by utilizing both simulation tools and a robotic testbed. The research has been carried out in the context of the mobile sensing project, PicoSmart, in the northern provinces of the Netherlands for the inspection of natural gas pipelines.

  19. A neural network multi-task learning approach to biomedical named entity recognition.

    Science.gov (United States)

    Crichton, Gamal; Pyysalo, Sampo; Chiu, Billy; Korhonen, Anna

    2017-08-15

    Named Entity Recognition (NER) is a key task in biomedical text mining. Accurate NER systems require task-specific, manually-annotated datasets, which are expensive to develop and thus limited in size. Since such datasets contain related but different information, an interesting question is whether it might be possible to use them together to improve NER performance. To investigate this, we develop supervised, multi-task, convolutional neural network models and apply them to a large number of varied existing biomedical named entity datasets. Additionally, we investigated the effect of dataset size on performance in both single- and multi-task settings. We present a single-task model for NER, a Multi-output multi-task model and a Dependent multi-task model. We apply the three models to 15 biomedical datasets containing multiple named entities including Anatomy, Chemical, Disease, Gene/Protein and Species. Each dataset represent a task. The results from the single-task model and the multi-task models are then compared for evidence of benefits from Multi-task Learning. With the Multi-output multi-task model we observed an average F-score improvement of 0.8% when compared to the single-task model from an average baseline of 78.4%. Although there was a significant drop in performance on one dataset, performance improves significantly for five datasets by up to 6.3%. For the Dependent multi-task model we observed an average improvement of 0.4% when compared to the single-task model. There were no significant drops in performance on any dataset, and performance improves significantly for six datasets by up to 1.1%. The dataset size experiments found that as dataset size decreased, the multi-output model's performance increased compared to the single-task model's. Using 50, 25 and 10% of the training data resulted in an average drop of approximately 3.4, 8 and 16.7% respectively for the single-task model but approximately 0.2, 3.0 and 9.8% for the multi-task model. Our

  20. A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sukanta; Dayanga, Thilina; Ghosh, Shaon; Talukder, Dipongkar, E-mail: sukanta@wsu.edu, E-mail: wdayanga@wsu.edu, E-mail: shaonghosh@mail.wsu.edu, E-mail: talukder_d@wsu.edu [Department of Physics and Astronomy, Washington State University, 1245 Webster, Pullman, WA 99164-2814 (United States)

    2011-07-07

    We describe a hierarchical data analysis pipeline for coherently searching for gravitational-wave signals from non-spinning compact binary coalescences (CBCs) in the data of multiple earth-based detectors. This search assumes no prior information on the sky position of the source or the time of occurrence of its transient signals and, hence, is termed 'blind'. The pipeline computes the coherent network search statistic that is optimal in stationary, Gaussian noise. More importantly, it allows for the computation of a suite of alternative multi-detector coherent search statistics and signal-based discriminators that can improve the performance of CBC searches in real data, which can be both non-stationary and non-Gaussian. Also, unlike the coincident multi-detector search statistics that have been employed so far, the coherent statistics are different in the sense that they check for the consistency of the signal amplitudes and phases in the different detectors with their different orientations and with the signal arrival times in them. Since the computation of coherent statistics entails searching in the sky, it is more expensive than that of the coincident statistics that do not require it. To reduce computational costs, the first stage of the hierarchical pipeline constructs coincidences of triggers from the multiple interferometers, by requiring their proximity in time and component masses. The second stage follows up on these coincident triggers by computing the coherent statistics. Here, we compare the performances of this hierarchical pipeline with and without the second (or coherent) stage in Gaussian noise. Although introducing hierarchy can be expected to cause some degradation in the detection efficiency compared to that of a single-stage coherent pipeline, nevertheless it improves the computational speed of the search considerably. The two main results of this work are as follows: (1) the performance of the hierarchical coherent pipeline on

  1. Analysis on Refinery System as a Complex Task-resource Network

    Institute of Scientific and Technical Information of China (English)

    LIU Suyu; RONG Gang

    2013-01-01

    Refinery system,a typical example of process systems,is presented as complex network in this paper.The topology of this system is described by task-resource network and modeled as directed and weighted graph,in which nodes represent various tasks and edges denote the resources exchanged among tasks.Using the properties of node degree distribution,strength distribution and other weighted quantities,we demonstrate the heterogeneity of the network and point out the relation between structural characters of vertices and the functionality of corresponding tasks.The above phenomena indicate that the design requirements and principles of production process contribute to the heterogeneous features of the network.Besides,betweenness centrality of nodes can be used as an importance indicator to provide additional information for decision making.The correlations between structure and weighted properties are investigated to further address the influence brought by production schemes in system connectivity patterns.Cascading failures model is employed to analyze the robustness of the network when targeted attack happens.Two capacity assignment strategies are compared in order to improve the robustness of the network at certain cost.The refinery system displays more reliable behavior when the protecting strategy considers heterogeneous properties.This phenomenon further implies the structure-activity relationship of the refinery system and provides insightful suggestions for process system design.The results also indicate that robustness analysis is a promising application of methodologies from complex networks to process system engineering.

  2. Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach.

    Science.gov (United States)

    Pham, Lisa M; Carvalho, Luis; Schaus, Scott; Kolaczyk, Eric D

    Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases.

  3. Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Yueyue Deng

    2013-01-01

    Full Text Available Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.

  4. Meditation leads to reduced default mode network activity beyond an active task.

    Science.gov (United States)

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  5. CLASSIFICATIONS OF EEG SIGNALS FOR MENTAL TASKS USING ADAPTIVE RBF NETWORK

    Institute of Scientific and Technical Information of China (English)

    薛建中; 郑崇勋; 闫相国

    2004-01-01

    Objective This paper presents classifications of mental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) network with optimal centers and widths for the Brain-Computer Interface (BCI) schemes. Methods Initial centers and widths of the network are selected by a cluster estimation method based on the distribution of the training set. Using a conjugate gradient descent method, they are optimized during training phase according to a regularized error function considering the influence of their changes to output values. Results The optimizing process improves the performance of RBF network, and its best cognition rate of three task pairs over four subjects achieves 87.0%. Moreover, this network runs fast due to the fewer hidden layer neurons. Conclusion The adaptive RBF network with optimal centers and widths has high recognition rate and runs fast. It may be a promising classifier for on-line BCI scheme.

  6. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.

  7. Leveraging Large-Scale Semantic Networks for Adaptive Robot Task Learning and Execution.

    Science.gov (United States)

    Boteanu, Adrian; St Clair, Aaron; Mohseni-Kabir, Anahita; Saldanha, Carl; Chernova, Sonia

    2016-12-01

    This work seeks to leverage semantic networks containing millions of entries encoding assertions of commonsense knowledge to enable improvements in robot task execution and learning. The specific application we explore in this project is object substitution in the context of task adaptation. Humans easily adapt their plans to compensate for missing items in day-to-day tasks, substituting a wrap for bread when making a sandwich, or stirring pasta with a fork when out of spoons. Robot plan execution, however, is far less robust, with missing objects typically leading to failure if the robot is not aware of alternatives. In this article, we contribute a context-aware algorithm that leverages the linguistic information embedded in the task description to identify candidate substitution objects without reliance on explicit object affordance information. Specifically, we show that the task context provided by the task labels within the action structure of a task plan can be leveraged to disambiguate information within a noisy large-scale semantic network containing hundreds of potential object candidates to identify successful object substitutions with high accuracy. We present two extensive evaluations of our work on both abstract and real-world robot tasks, showing that the substitutions made by our system are valid, accepted by users, and lead to a statistically significant reduction in robot learning time. In addition, we report the outcomes of testing our approach with a large number of crowd workers interacting with a robot in real time.

  8. Energy Efficient Backoff Hierarchical Clustering Algorithms for Multi-Hop Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Yong-Tao Cao; Jun-Yuan Xie; Shi-Fu Chen

    2011-01-01

    Compared with flat routing protocols, clustering is a fundamental performance improvement technique in wireless sensor networks, which can increase network scalability and lifetime. In this paper, we integrate the multi-hop technique with a backoff-based clustering algorithm to organize sensors. By using an adaptive backoff strategy, the algorithm not only realizes load balance among sensor node, but also achieves fairly uniform cluster head distribution across the network. Simulation results also demonstrate our algorithm is more energy-efficient than classical ones. Our algorithm is also easily extended to generate a hierarchy of cluster heads to obtain better network management and energy-efficiency.

  9. Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.

    Science.gov (United States)

    Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis

    2016-08-01

    Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.

  10. Inference of hierarchical regulatory network of estrogen-dependent breast cancer through ChIP-based data

    Directory of Open Access Journals (Sweden)

    Parvin Jeffrey

    2010-12-01

    Full Text Available Abstract Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2 were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM. A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes and targeted TFs (25% of common TFs. The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to

  11. Inference of hierarchical regulatory network of estrogen-dependent breast cancer through ChIP-based data

    Science.gov (United States)

    2010-01-01

    Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF) partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2) were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM). A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study) and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes) and targeted TFs (25% of common TFs). The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to further study the

  12. Cross-linked carbon network with hierarchical porous structure for high performance solid-state electrochemical capacitor

    Science.gov (United States)

    Cheng, Yongliang; Huang, Liang; Xiao, Xu; Yao, Bin; Hu, Zhimi; Li, Tianqi; Liu, Kang; Zhou, Jun

    2016-09-01

    The development of portable electronics strongly requires flexible, lightweight, and inexpensive energy-storage devices with high power density, long cycling stability, and high reliability. In this work, we prepare a flexible solid-state electrochemical capacitor using cross-linked hierarchical porous carbon network as electrode material via electrospinning and carbonization process. This device can reversibly deliver a maximum energy density of 10.18 W h/kg with excellent cycling stability which achieves 95% capacitance retention after 20000 charge/discharge cycles. Moreover, it also demonstrates outstanding mechanical flexibility and excellent capacitance retention even when the device is repeatedly bended 10000 cycles under 90°. All of these results suggest its promising perspective in flexible energy storage device.

  13. Virtual and Dynamic Hierarchical Architecture:an overlay network topology for discovering grid services with high performance

    Institute of Scientific and Technical Information of China (English)

    黄理灿; 吴朝晖; 潘云鹤

    2004-01-01

    This paper presents an overlay network topology called Virtual and Dynamic Hierarchical Architecture (VDHA) for discovering Grid services with high performance. Service discovery based on VDHA has scalable, autonomous, efficient, reliable and quick responsive. We propose two service discovery algorithms. Full Search Query and Discovery Protocol (FSQDP) discovers the nodes that match the request message from all N nodes, which has time complexity O(logN), space complexity O(nvg) (nvg being node numbers of each virtual group), and message-cost O(N), and Domain-Specific Query and Discovery Protocol (DSQDP) searches nodes in only specific domains with time complexity O(nvg), space complexity O(nvg), and message-cost O(nvg). In this paper, we also describe VDHA, its formal definition, and Grid Group Management Protocol.

  14. Criticality governed by the stable renormalization fixed point of the Ising model in the hierarchical small-world network.

    Science.gov (United States)

    Nogawa, Tomoaki; Hasegawa, Takehisa; Nemoto, Koji

    2012-09-01

    We study the Ising model in a hierarchical small-world network by renormalization group analysis and find a phase transition between an ordered phase and a critical phase, which is driven by the coupling strength of the shortcut edges. Unlike ordinary phase transitions, which are related to unstable renormalization fixed points (FPs), the singularity in the ordered phase of the present model is governed by the FP that coincides with the stable FP of the ordered phase. The weak stability of the FP yields peculiar criticalities, including logarithmic behavior. On the other hand, the critical phase is related to a nontrivial FP, which depends on the coupling strength and is continuously connected to the ordered FP at the transition point. We show that this continuity indicates the existence of a finite correlation-length-like quantity inside the critical phase, which diverges upon approaching the transition point.

  15. A Task Allocation Algorithm Based on Score Incentive Mechanism for Wireless Sensor Networks

    OpenAIRE

    Feng Wang; Guangjie Han; Jinfang Jiang; Wei Li; Lei Shu

    2015-01-01

    A wireless sensor network (WSN) consists of many resource constraint sensor nodes, which are always deployed in unattended environment. Therefore, the sensor nodes are vulnerable to failure and malicious attacks. The failed nodes have a heavily negative impact on WSNs’ real-time services. Therefore, we propose a task allocation algorithm based on score incentive mechanism (TASIM) for WSNs. In TASIM, the score is proposed to reward or punish sensor nodes’ task execution in cluster-based WSNs, ...

  16. Hierarchical Group Based Mutual Authentication and Key Agreement for Machine Type Communication in LTE and Future 5G Networks

    Directory of Open Access Journals (Sweden)

    Probidita Roychoudhury

    2017-01-01

    Full Text Available In view of the exponential growth in the volume of wireless data communication among heterogeneous devices ranging from smart phones to tiny sensors across a wide range of applications, 3GPP LTE-A has standardized Machine Type Communication (MTC which allows communication between entities without any human intervention. The future 5G cellular networks also envisage massive deployment of MTC Devices (MTCDs which will increase the total number of connected devices hundredfold. This poses a huge challenge to the traditional cellular system processes, especially the traditional Mutual Authentication and Key Agreement (AKA mechanism currently used in LTE systems, as the signaling load caused by the increasingly large number of devices may have an adverse effect on the regular Human to Human (H2H traffic. A solution in the literature has been the use of group based architecture which, while addressing the authentication traffic, has their share of issues. This paper introduces Hierarchical Group based Mutual Authentication and Key Agreement (HGMAKA protocol to address those issues and also enables the small cell heterogeneous architecture in line with 5G networks to support MTC services. The aggregate Message Authentication Code based approach has been shown to be lightweight and significantly efficient in terms of resource usage compared to the existing protocols, while being robust to authentication message failures, and scalable to heterogeneous network architectures.

  17. RAHIM: Robust Adaptive Approach Based on Hierarchical Monitoring Providing Trust Aggregation for Wireless Sensor Networks

    NARCIS (Netherlands)

    Labraoui, Nabila; Gueroui, Mourad; Aliouat, Makhlouf; Petit, Jonathan

    2011-01-01

    In-network data aggregation has a great impact on the energy consumption in large-scale wireless sensor networks. However, the resource constraints and vulnerable deployment environments challenge the application of this technique in terms of security and efficiency. A compromised node may forge

  18. RAHIM: Robust Adaptive Approach Based on Hierarchical Monitoring Providing Trust Aggregation for Wireless Sensor Networks

    NARCIS (Netherlands)

    Labraoui, Nabila; Gueroui, Mourad; Aliouat, Makhlouf; Petit, Jonathan

    2011-01-01

    In-network data aggregation has a great impact on the energy consumption in large-scale wireless sensor networks. However, the resource constraints and vulnerable deployment environments challenge the application of this technique in terms of security and efficiency. A compromised node may forge arb

  19. Self-organized Critical Model Based on Complex Brain Networks with Hierarchical Organization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-Yue; ZHANG Gui-Qing; YANG Qiu-Ying; CHEN Tian-Lun

    2008-01-01

    The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical area with a subnetwork of interacting excitable neurons.We find that the avalanche of our model on different levels exhibits power-law.Furthermore the power-law exponent of the distribution and the average avalanche Size are affected by the topology of the network.

  20. On the use of topological features and hierarchical characterization for disambiguating names in collaborative networks

    CERN Document Server

    Amancio, Diego R; Costa, Luciano da F; 10.1209/0295-5075/99/48002

    2013-01-01

    Many features of complex systems can now be unveiled by applying statistical physics methods to treat them as social networks. The power of the analysis may be limited, however, by the presence of ambiguity in names, e.g., caused by homonymy in collaborative networks. In this paper we show that the ability to distinguish between homonymous authors is enhanced when longer-distance connections are considered, rather than looking at only the immediate neighbors of a node in the collaborative network. Optimized results were obtained upon using the 3rd hierarchy in connections. Furthermore, reasonable distinction among authors could also be achieved upon using pattern recognition strategies for the data generated from the topology of the collaborative network. These results were obtained with a network from papers in the arXiv repository, into which homonymy was deliberately introduced to test the methods with a controlled, reliable dataset. In all cases, several methods of supervised and unsupervised machine lear...

  1. Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility

    Directory of Open Access Journals (Sweden)

    Klaus Moessner

    2013-10-01

    Full Text Available This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines.

  2. Dynamic task allocation in multi-hop multimedia wireless sensor networks with low mobility.

    Science.gov (United States)

    Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus

    2013-10-16

    This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines.

  3. Boolean Networks-Based Auction Algorithm for Task Assignment of Multiple UAVs

    Directory of Open Access Journals (Sweden)

    Xiaolei Sun

    2015-01-01

    Full Text Available This paper presents an application of Boolean networks-based auction algorithm (BNAA for task assignment in unmanned aerial vehicles (UAVs systems. Under reasonable assumptions, the assignment framework consists of mission control system, communication network, and ground control station. As the improved algorithm of consensus-based bundle algorithm (CBBA, the BNAA utilizes a cluster-based combinatorial auction policy to handle multiple tasks. Instead of empirical method based on look-up table about conditional variables, Boolean network is introduced into consensus routine of BNAA for solving the conflict of assignment across the fleet of UAVs. As a new mathematic theory, semitensor product provides the implementation and theoretical proof of Boolean networks. Numerical results demonstrate the effectiveness and efficiency of proposed BNAA method.

  4. Optimizing the Number of Cooperating Terminals for Energy Aware Task Computing in Wireless Networks

    DEFF Research Database (Denmark)

    Olsen, Anders Brødløs; Fitzek, Frank H. P.; Koch, Peter

    2005-01-01

    is previously proposed (D2VS), where the overall idea of selective distribution of tasks among terminals is made. In this paper the optimal number of terminals for cooperative task computing in a wireless network will be investigated. The paper presents an energy model for the proposed scheme. Energy......It is generally accepted that energy consumption is a significant design constraint for mobile handheld systems, therefore motivations for methods optimizing the energy consumption making better use of the restricted battery resources are evident. A novel concept of distributed task computing...

  5. A data management proposal to connect in a hierarchical way nodes of the Spanish Long Term Ecological Research (LTER) network

    Science.gov (United States)

    Fuentes, Daniel; Pérez-Luque, Antonio J.; Bonet García, Francisco J.; Moreno-LLorca, Ricardo A.; Sánchez-Cano, Francisco M.; Suárez-Muñoz, María

    2017-04-01

    The Long Term Ecological Research (LTER) network aims to provide the scientific community, policy makers, and society with the knowledge and predictive understanding necessary to conserve, protect, and manage the ecosystems. LTER is organized into networks ranging from the global to national scale. In the top of network, the International Long Term Ecological Research (ILTER) Network coordinates among ecological researchers and LTER research networks at local, regional and global scales. In Spain, the Spanish Long Term Ecological Research (LTER-Spain) network was built to foster the collaboration and coordination between longest-lived ecological researchers and networks on a local scale. Currently composed by nine nodes, this network facilitates the data exchange, documentation and preservation encouraging the development of cross-disciplinary works. However, most nodes have no specific information systems, tools or qualified personnel to manage their data for continued conservation and there are no harmonized methodologies for long-term monitoring protocols. Hence, the main challenge is to place the nodes in its correct position in the network, providing the best tools that allow them to manage their data autonomously and make it easier for them to access information and knowledge in the network. This work proposes a connected structure composed by four LTER nodes located in southern Spain. The structure is built considering hierarchical approach: nodes that create information which is documented using metadata standards (such as Ecological Metadata Language, EML); and others nodes that gather metadata and information. We also take into account the capacity of each node to manage their own data and the premise that the data and metadata must be maintained where it is generated. The current state of the nodes is a follows: two of them have their own information management system (Sierra Nevada-Granada and Doñana Long-Term Socio-ecological Research Platform) and

  6. Brain networks for confidence weighting and hierarchical inference during probabilistic learning.

    Science.gov (United States)

    Meyniel, Florent; Dehaene, Stanislas

    2017-05-09

    Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This "confidence weighting" implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain's learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences.

  7. Two-user opportunistic scheduling using hierarchical modulations in wireless networks with heterogenous average link gains

    KAUST Repository

    Hossain, Md Jahangir

    2010-03-01

    Our contribution, in this paper, is two-fold. First, we analyze the performance of a hierarchical modulation-assisted two-best user opportunistic scheduling (TBS) scheme, which was proposed by the authors, in a fading environment where different users have different average link gains. Specifically, we present a new expression for the spectral efficiency (SE) of the users and using this expression, we compare the degrees of fairness (DOF) of the TBS scheme with that of classical single user opportunistic scheduling schemes, namely, absolute carrier-to-noise ratio (CNR) based single-best user scheduling (SBS) and normalized CNR based proportional fair scheduling (PFS) schemes. The second contribution is that we propose a new hybrid two-user opportunistic scheduling (HTS) scheme based on our earlier proposed TBS scheme. This HTS scheme selects the first user based on the largest absolute CNR value among all the users while the second user is selected based on the ratios of the absolute CNRs to the corresponding average CNRs of the remaining users. The total transmission rate i.e., the constellation size is selected according to the absolute CNR of the first best user. The total transmission rate is then allocated among these selected users by joint consideration of their absolute CNRs and allocated number of information bit(s) are transmitted to them using hierarchical modulations. Numerical results are presented for a fading environment where different users experience independent but non-identical (i.n.d.) channel fading. These selected numerical results show that the proposed HTS scheme can considerably increase the system\\'s fairness without any degradation of the link spectral efficiency (LSE) i.e., the multiuser diversity gain compared to the classical SBS scheme. These results also show that the proposed HTS scheme has a lower fairness in comparison to the PFS scheme which suffers from a considerable degradation in LSE. © 2010 IEEE.

  8. Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.

    Science.gov (United States)

    Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L

    2017-02-01

    Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.

  9. Hierarchical block structures and high-resolution model selection in large networks

    CERN Document Server

    Peixoto, Tiago P

    2013-01-01

    Discovering the large-scale topological features in empirical networks is a crucial tool in understanding how complex systems function. However most existing methods used to obtain the modular structure of networks suffer from serious problems, such as the resolution limit on the size of communities, where smaller but well-defined clusters are not detectable when the network becomes large. This phenomenon occurs for the very popular approach of modularity optimization, but also for more principled ones based on statistical inference and model selection. Here we construct a nested generative model which, through a complete description of the entire network hierarchy at multiple scales, is capable of avoiding this limitation, and enables the detection of modular structure at levels far beyond those possible by current approaches. Even with this increased resolution, the method is based on the principle of parsimony, and is capable of separating signal from noise, and thus will not lead to the identification of ...

  10. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  11. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  12. Multipath Routing for Self-Organizing Hierarchical Mobile Ad-Hoc Networks – A Review

    OpenAIRE

    Udayachandran Ramasamy; Sankaranarayanan, K.

    2010-01-01

    Security has become a primary concern for providing protected communication between mobile nodes in a hostile environment. The characteristics of Ad-hoc networks (dynamic topology, infrastructure less, variable capacity links, etc) are origin of many issues. Limited bandwidth, energy constraints, high cost security are the encountered problems. This type of networks pose particular challenges in terms of Quality of Service (QoS) and performance. In this paper, the issues of multipath routing ...

  13. Inter-Cluster Routing Authentication for Ad Hoc Networks by a Hierarchical Key Scheme

    Institute of Scientific and Technical Information of China (English)

    Yueh-Min Huang; Hua-Yi Lin; Tzone-I Wang

    2006-01-01

    Dissimilar to traditional networks, the features of mobile wireless devices that can actively form a network without any infrastructure mean that mobile ad hoc networks frequently display partition due to node mobility or link failures. These indicate that an ad hoc network is difficult to provide on-line access to a trusted authority server. Therefore,applying traditional Public Key Infrastructure (PKI) security framework to mobile ad hoc networks will cause insecurities.This study proposes a scalable and elastic key management scheme integrated into Cluster Based Secure Routing Protocol (CBSRP) to enhance security and non-repudiation of routing authentication, and introduces an ID-Based internal routing authentication scheme to enhance the routing performance in an internal cluster. Additionally, a method of performing routing authentication between internal and external clusters, as well as inter-cluster routing authentication, is developed.The proposed cluster-based key management scheme distributes trust to an aggregation of cluster heads using a threshold scheme faculty, provides Certificate Authority (CA) with a fault tolerance mechanism to prevent a single point of compromise or failure, and saves CA large repositories from maintaining member certificates, making ad hoc networks robust to malicious behaviors and suitable for numerous mobile devices.

  14. Florida Model Task Force on Diabetic Retinopathy: Development of an Interagency Network.

    Science.gov (United States)

    Groff, G.; And Others

    1990-01-01

    This article describes the development of a mechanism to organize a network in Florida for individuals who are at risk for diabetic retinopathy. The task force comprised representatives from governmental, academic, professional, and voluntary organizations. It worked to educate professionals, patients, and the public through brochures, resource…

  15. Solidarity through networks : The effects of task and informal interdependence on cooperation within teams

    NARCIS (Netherlands)

    Koster, F.; Stokman, F.N.; Hodson, R.; Sanders, K.

    2007-01-01

    PURPOSE – The aim of this paper is to investigate the effects of task and informal networks and their interaction on cooperative types of employee behaviour. DESIGN/METHODOLOGY/APPROACH – Two studies are used to examine the research question. The first dataset consists of book-length ethnographies

  16. Socio-contextual Network Mining for User Assistance in Web-based Knowledge Gathering Tasks

    Science.gov (United States)

    Rajendran, Balaji; Kombiah, Iyakutti

    Web-based Knowledge Gathering (WKG) is a specialized and complex information seeking task carried out by many users on the web, for their various learning, and decision-making requirements. We construct a contextual semantic structure by observing the actions of the users involved in WKG task, in order to gain an understanding of their task and requirement. We also build a knowledge warehouse in the form of a master Semantic Link Network (SLX) that accommodates and assimilates all the contextual semantic structures. This master SLX, which is a socio-contextual network, is then mined to provide contextual inputs to the current users through their agents. We validated our approach through experiments and analyzed the benefits to the users in terms of resource explorations and the time saved. The results are positive enough to motivate us to implement in a larger scale.

  17. Soft sensor of chemical processes with large numbers of input parameters using auto-associative hierarchical neural network

    Institute of Scientific and Technical Information of China (English)

    Yanlin He; Yuan Xu; Zhiqiang Geng; Qunxiong Zhu

    2015-01-01

    To explore the problems of monitoring chemical processes with large numbers of input parameters, a method based on Auto-associative Hierarchical Neural Network (AHNN) is proposed. AHNN focuses on dealing with datasets in high-dimension. AHNNs consist of two parts:groups of subnets based on well trained Auto-associative Neural Networks (AANNs) and a main net. The subnets play an important role on the performance of AHNN. A simple but effective method of designing the subnets is developed in this paper. In this method, the subnets are designed according to the classification of the data attributes. For getting the classification, an effective method called Extension Data Attributes Classification (EDAC) is adopted. Soft sensor using AHNN based on EDAC (EDAC-AHNN) is introduced. As a case study, the production data of Purified Terephthalic Acid (PTA) solvent system are selected to examine the proposed model. The results of the EDAC-AHNN model are compared with the experimental data extracted from the literature, which shows the efficiency of the proposed model.

  18. Same task, different strategies: how brain networks can be influenced by memory strategy.

    Science.gov (United States)

    Sanfratello, Lori; Caprihan, Arvind; Stephen, Julia M; Knoefel, Janice E; Adair, John C; Qualls, Clifford; Lundy, S Laura; Aine, Cheryl J

    2014-10-01

    Previous functional neuroimaging studies demonstrated that different neural networks underlie different types of cognitive processing by engaging participants in particular tasks, such as verbal or spatial working memory (WM) tasks. However, we report here that even when a WM task is defined as verbal or spatial, different types of memory strategies may be used to complete it, with concomitant variations in brain activity. We developed a questionnaire to characterize the type of strategy used by individual members in a group of 28 young healthy participants (18-25 years) during a spatial WM task. A cluster analysis was performed to differentiate groups. We acquired functional magnetoencephalography and structural diffusion tensor imaging measures to characterize the brain networks associated with the use of different strategies. We found two types of strategies were used during the spatial WM task, a visuospatial and a verbal strategy, and brain regions and time courses of activation differed between participants who used each. Task performance also varied by type of strategy used with verbal strategies showing an advantage. In addition, performance on neuropsychological tests (indices from Wechsler Adult Intelligence Scale-IV, Rey Complex Figure Test) correlated significantly with fractional anisotropy measures for the visuospatial strategy group in white matter tracts implicated in other WM and attention studies. We conclude that differences in memory strategy can have a pronounced effect on the locations and timing of brain activation and that these differences need further investigation as a possible confounding factor for studies using group averaging as a means for summarizing results.

  19. Efficient hierarchical analysis of the stability of a network through dimensional reduction of its influence topology

    CERN Document Server

    Kinkhabwala, Ali

    2013-01-01

    The connection between network topology and stability remains unclear. General approaches that clarify this relationship and allow for more efficient stability analysis would be desirable. In this manuscript, I examine the mathematical notion of influence topology, which is fundamentally based on the network reaction stoichiometries and the first derivatives of the reactions with respect to each species at the steady state solution(s). The influence topology is naturally represented as a signed directed bipartite graph with arrows or blunt arrows connecting a species node to a reaction node (positive/negative derivative) or a reaction node to a species node (positive/negative stoichiometry). The set of all such graphs is denumerable. A significant reduction in dimensionality is possible through stoichiometric scaling, cycle compaction, and temporal scaling. All cycles in a network can be read directly from the graph of its influence topology, enabling efficient and intuitive computation of the principal minor...

  20. An algorithm for generating modular hierarchical neural network classifiers: a step toward larger scale applications

    Science.gov (United States)

    Roverso, Davide

    2003-08-01

    Many-class learning is the problem of training a classifier to discriminate among a large number of target classes. Together with the problem of dealing with high-dimensional patterns (i.e. a high-dimensional input space), the many class problem (i.e. a high-dimensional output space) is a major obstacle to be faced when scaling-up classifier systems and algorithms from small pilot applications to large full-scale applications. The Autonomous Recursive Task Decomposition (ARTD) algorithm is here proposed as a solution to the problem of many-class learning. Example applications of ARTD to neural classifier training are also presented. In these examples, improvements in training time are shown to range from 4-fold to more than 30-fold in pattern classification tasks of both static and dynamic character.

  1. Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness.

    Science.gov (United States)

    Zhang, Jing; Chu, Haitao; Hong, Hwanhee; Virnig, Beth A; Carlin, Bradley P

    2015-07-28

    Network meta-analysis expands the scope of a conventional pairwise meta-analysis to simultaneously compare multiple treatments, synthesizing both direct and indirect information and thus strengthening inference. Since most of trials only compare two treatments, a typical data set in a network meta-analysis managed as a trial-by-treatment matrix is extremely sparse, like an incomplete block structure with significant missing data. Zhang et al. proposed an arm-based method accounting for correlations among different treatments within the same trial and assuming that absent arms are missing at random. However, in randomized controlled trials, nonignorable missingness or missingness not at random may occur due to deliberate choices of treatments at the design stage. In addition, those undertaking a network meta-analysis may selectively choose treatments to include in the analysis, which may also lead to missingness not at random. In this paper, we extend our previous work to incorporate missingness not at random using selection models. The proposed method is then applied to two network meta-analyses and evaluated through extensive simulation studies. We also provide comprehensive comparisons of a commonly used contrast-based method and the arm-based method via simulations in a technical appendix under missing completely at random and missing at random.

  2. AtPID: the overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis.

    Science.gov (United States)

    Li, Peng; Zang, Weidong; Li, Yuhua; Xu, Feng; Wang, Jigang; Shi, Tieliu

    2011-01-01

    Protein interactions are involved in important cellular functions and biological processes that are the fundamentals of all life activities. With improvements in experimental techniques and progress in research, the overall protein interaction network frameworks of several model organisms have been created through data collection and integration. However, most of the networks processed only show simple relationships without boundary, weight or direction, which do not truly reflect the biological reality. In vivo, different types of protein interactions, such as the assembly of protein complexes or phosphorylation, often have their specific functions and qualifications. Ignorance of these features will bring much bias to the network analysis and application. Therefore, we annotate the Arabidopsis proteins in the AtPID database with further information (e.g. functional annotation, subcellular localization, tissue-specific expression, phosphorylation information, SNP phenotype and mutant phenotype, etc.) and interaction qualifications (e.g. transcriptional regulation, complex assembly, functional collaboration, etc.) via further literature text mining and integration of other resources. Meanwhile, the related information is vividly displayed to users through a comprehensive and newly developed display and analytical tools. The system allows the construction of tissue-specific interaction networks with display of canonical pathways. The latest updated AtPID database is available at http://www.megabionet.org/atpid/.

  3. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Science.gov (United States)

    Born, Jannis; Galeazzi, Juan M; Stringer, Simon M

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  4. Hierarchal Variable Switching Sets of Interacting Multiple Model for Tracking Maneuvering Targets in Sensor Network

    Directory of Open Access Journals (Sweden)

    Seham Moawoud Ay Ebrahim

    2013-01-01

    Full Text Available Tracking maneuvering targets introduce two major directions to improve the Multiple Model (MM approach: Develop a better MM algorithm and design a better model set. The Interacting Multiple Model (IMM estimator is a suboptimal hybrid filter that has been shown to be one of the most cost-effective hybrid state estimation schemes. The main feature of this algorithm is the ability to estimate the state of a dynamic system with several behavior modes which can "switch" from one to another. In particular, the use of too many models is performance-wise as bad as that of too few models. In this paper we show that the use of too many models is performance-wise as bad as that of too few models. To overcome this we divide the models into a small number of sets, tuning these sets during operation at the right operating set. We proposed Hierarchal Switching sets of IMM (HSIMM. The state space of the nonlinear variable is divided into sets each set has its own IMM. The connection between them is the switching algorithm which manages the activation and termination of sets. Also the re-initialization process overcomes the error accumulation due to the targets changes from one model to another. This switching can introduce a number of different models while no restriction on their number. The activation of sets depends on the threshold value of set likely hood. As the likely hood of the set is higher than threshold it is active otherwise it is minimized. The result is the weighted sum of the output of active sets. The computational time is minimum than introduced by IMM and VIMM. HSIMM introduces less error as the noise increase and there is no need for re adjustment to the Covariance as the noise increase so it is more robust against noise and introduces minimum computational time.

  5. Learning of invariant object recognition in hierarchical neural networks using temporal continuity

    OpenAIRE

    Lessmann, Markus

    2014-01-01

    Advisor: Rolf P. Würtz, Institute for Neural Computation, Ruhr-University Bochum, Germany. Date and location of PhD thesis defense: 3 November 2014, Ruhr-University Bochum, Germany There has been a lot of progress in the field of invariant object recognition/categorization in the last decade with several methods trying to mimic functioning of the human visual system (e.g. Neocognitron, HMAX, VisNet). Examining those brain regions is a very difficult task with myriads of details to be consi...

  6. Optimizing data access for wind farm control over hierarchical communication networks

    DEFF Research Database (Denmark)

    Madsen, Jacob Theilgaard; Findrik, Mislav; Madsen, Tatiana Kozlova

    2016-01-01

    and communication networks on the controller performance. We start by investigating the effects of a communication network that introduces delays in the information access for the central controller. The control performance as measured by accumulated fatigue is shown to be significantly impacted by communication....... This information quality metric is called mismatch probability, mmPr, and is used to express quantitatively the information accuracy in a given scenario. Lastly measurements of different communication technologies have been performed in order to carry out the analysis in a practically relevant scenario......In this paper we investigate a centralized wind farm controller which runs periodically. The controller attempts to reduce the damage a wind turbine sustains during operation by estimating fatigue based on the wind turbine state. The investigation focuses on the impact of information access...

  7. A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America.

    Directory of Open Access Journals (Sweden)

    Ling Xue

    Full Text Available Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle. A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread.

  8. A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America.

    Science.gov (United States)

    Xue, Ling; Cohnstaedt, Lee W; Scott, H Morgan; Scoglio, Caterina

    2013-01-01

    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread.

  9. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  10. Admission Control for Multiservices Traffic in Hierarchical Mobile IPv6 Networks by Using Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Jung-Shyr Wu

    2012-01-01

    Full Text Available CAC (Call Admission Control plays a significant role in providing QoS (Quality of Service in mobile wireless networks. In addition to much research that focuses on modified Mobile IP to get better efficient handover performance, CAC should be introduced to Mobile IP-based network to guarantee the QoS for users. In this paper, we propose a CAC scheme which incorporates multiple traffic types and adjusts the admission threshold dynamically using fuzzy control logic to achieve better usage of resources. The method can provide QoS in Mobile IPv6 networks with few modifications on MAP (Mobility Anchor Point functionality and slight change in BU (Binding Update message formats. According to the simulation results, the proposed scheme presents good performance of voice and video traffic at the expenses of poor performance on data traffic. It is evident that these CAC schemes can reduce the probability of the handoff dropping and the cell overload and limit the probability of the new call blocking.

  11. Energy Efficient Zone Division Multihop Hierarchical Clustering Algorithm for Load Balancing in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Ashim Kumar Ghosh

    2011-12-01

    Full Text Available Wireless sensor nodes are use most embedded computing application. Multihop cluster hierarchy has been presented for large wireless sensor networks (WSNs that can provide scalable routing, data aggregation, and querying. The energy consumption rate for sensors in a WSN varies greatly based on the protocols the sensors use for communications. In this paper we present a cluster based routing algorithm. One of our main goals is to design the energy efficient routing protocol. Here we try to solve the usual problems of WSNs. We know the efficiency of WSNs depend upon the distance between node to base station and the amount of data to be transferred and the performance of clustering is greatly influenced by the selection of cluster-heads, which are in charge of creating clusters and controlling member nodes. This algorithm makes the best use of node with low number of cluster head know as super node. Here we divided the full region in four equal zones and the centre area of the region is used to select for super node. Each zone is considered separately and the zone may be or not divided further that’s depending upon the density of nodes in that zone and capability of the super node. This algorithm forms multilayer communication. The no of layer depends on the network current load and statistics. Our algorithm is easily extended to generate a hierarchy of cluster heads to obtain better network management and energy efficiency.

  12. Design and analysis of self-adapted task scheduling strategies in wireless sensor networks.

    Science.gov (United States)

    Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong

    2011-01-01

    In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm's ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms.

  13. Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2011-06-01

    Full Text Available In a wireless sensor network (WSN, the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and  scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO algorithm for the dynamic alliance (DPSO-DA with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms.

  14. Shared "core" areas between the pain and other task-related networks.

    Directory of Open Access Journals (Sweden)

    Franco Cauda

    Full Text Available The idea of a 'pain matrix' specifically devoted to the processing of nociceptive inputs has been challenged. Alternative views now propose that the activity of the primary and secondary somatosensory cortices (SI, SII, the insula and cingulate cortex may be related to a basic defensive system through which significant potentially dangerous events for the body's integrity are detected. By reviewing the role of the SI, SII, the cingulate and the insular cortices in the perception of nociceptive and tactile stimuli, in attentional, emotional and reward tasks, and in interoception and memory, we found that all these task-related networks overlap in the dorsal anterior cingulate cortex, the anterior insula and the dorsal medial thalamus. A thorough analysis revealed that the 'pain-related' network shares important functional similarities with both somatomotor-somatosensory networks and emotional-interoceptive ones. We suggest that these shared areas constitute the central part of an adaptive control system involved in the processing and integration of salient information coming both from external and internal sources. These areas are activated in almost all fMRI tasks and have been indicated to play a pivotal role in switching between externally directed and internally directed brain networks.

  15. Enhanced Deployment Strategy for Role-based Hierarchical Application Agents in Wireless Sensor Networks with Established Clusterheads

    Science.gov (United States)

    Gendreau, Audrey

    Efficient self-organizing virtual clusterheads that supervise data collection based on their wireless connectivity, risk, and overhead costs, are an important element of Wireless Sensor Networks (WSNs). This function is especially critical during deployment when system resources are allocated to a subsequent application. In the presented research, a model used to deploy intrusion detection capability on a Local Area Network (LAN), in the literature, was extended to develop a role-based hierarchical agent deployment algorithm for a WSN. The resulting model took into consideration the monitoring capability, risk, deployment distribution cost, and monitoring cost associated with each node. Changing the original LAN methodology approach to model a cluster-based sensor network depended on the ability to duplicate a specific parameter that represented the monitoring capability. Furthermore, other parameters derived from a LAN can elevate costs and risk of deployment, as well as jeopardize the success of an application on a WSN. A key component of the approach presented in this research was to reduce the costs when established clusterheads in the network were found to be capable of hosting additional detection agents. In addition, another cost savings component of the study addressed the reduction of vulnerabilities associated with deployment of agents to high volume nodes. The effectiveness of the presented method was validated by comparing it against a type of a power-based scheme that used each node's remaining energy as the deployment value. While available energy is directly related to the model used in the presented method, the study deliberately sought out nodes that were identified with having superior monitoring capability, cost less to create and sustain, and are at low-risk of an attack. This work investigated improving the efficiency of an intrusion detection system (IDS) by using the proposed model to deploy monitoring agents after a temperature sensing

  16. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    DeKosky, Brandon J; Dormer, Nathan H; Ingavle, Ganesh C; Roatch, Christopher H; Lomakin, Joseph; Detamore, Michael S; Gehrke, Stevin H

    2010-12-01

    A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials-agarose and poly(ethylene glycol) (PEG) diacrylate-were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance.

  17. A Hierarchical Network of Provably Optimal Learning Control Systems: Extensions of the Associative Control Process (ACP) Network

    Science.gov (United States)

    1993-01-01

    either behavior or learning, The modified ACP network does not have a negative reinforcement center yet is able to reproduce the simulation results of...Assuming N = 0 at all times, there is only one reinforcement center that is active, the positive reinforcement ccnter (PC). The negative ... reinforcement center (NC) is never active, and the weights associated with NC never change. The state is sensed through the sensors, and the actions are

  18. Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode

    Science.gov (United States)

    Li, Zhaodong; Yao, Chunhua; Wang, Fei; Cai, Zhiyong; Wang, Xudong

    2014-12-01

    Three dimensional (3D) nanostructures with extremely large porosity possess a great promise for the development of high-performance energy harvesting and storage devices. In this paper, we developed a high-density 3D TiO2 fiber-nanorod (NR) heterostructure for efficient photoelectrochemical (PEC) water splitting. The hierarchical structure was synthesized on a ZnO-coated cellulose nanofiber (CNF) template using atomic layer deposition (ALD)-based thin film and NR growth procedures. The tubular structure evolution was in good agreement with the recently discovered vapor-phase Kirkendall effect in high-temperature ALD processes. The NR morphology was formed via the surface-reaction-limited pulsed chemical vapor deposition (SPCVD) mechanism. Under Xenon lamp illumination without and with an AM 1.5G filter or a UV cut off filter, the PEC efficiencies of a 3D TiO2 fiber-NR heterostructure were found to be 22-249% higher than those of the TiO2-ZnO bilayer tubular nanofibers and TiO2 nanotube networks that were synthesized as reference samples. Such a 3D TiO2 fiber-NR heterostructure offers a new route for a cellulose-based nanomanufacturing technique, which can be used for large-area, low-cost, and green fabrication of nanomaterials as well as their utilizations for efficient solar energy harvesting and conversion.

  19. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks

    Directory of Open Access Journals (Sweden)

    Heyuan Shi

    2016-11-01

    Full Text Available The vehicular participatory sensing network (VPSN is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.

  20. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks

    Science.gov (United States)

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-01-01

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807

  1. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.

    Science.gov (United States)

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-11-28

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.

  2. A CAD System for Identification and Classification of Breast Cancer Tumors in DCE-MR Images Based on Hierarchical Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Rastiboroujeni

    2015-06-01

    Full Text Available In this paper, we propose a computer aided diagnosis (CAD system based on hierarchical convolutional neural networks (HCNNs to discriminate between malignant and benign tumors in breast DCE-MRIs. A HCNN is a hierarchical neural network that operates on two-dimensional images. A HCNN integrates feature extraction and classification processes into one single and fully adaptive structure. It can extract two-dimensional key features automatically, and it is relatively tolerant to geometric and local distortions in input images. We evaluate CNN implementation learning and testing processes based on gradient descent (GD and resilient back-propagation (RPROP approaches. We show that, proposed HCNN with RPROP learning approach provide an effective and robust neural structure to design a CAD base system for breast MRI, and has potential as a mechanism for the evaluation of different types of abnormalities in medical images.

  3. Path-finding through flexible hierarchical road networks: An experiential approach using taxi trajectory data

    Science.gov (United States)

    Li, Qingquan; Zeng, Zhe; Zhang, Tong; Li, Jonathan; Wu, Zhongheng

    2011-02-01

    Optimal paths computed by conventional path-planning algorithms are usually not "optimal" since realistic traffic information and local road network characteristics are not considered. We present a new experiential approach that computes optimal paths based on the experience of taxi drivers by mining a huge number of floating car trajectories. The approach consists of three steps. First, routes are recovered from original taxi trajectories. Second, an experiential road hierarchy is constructed using travel frequency and speed information for road segments. Third, experiential optimal paths are planned based on the experiential road hierarchy. Compared with conventional path-planning methods, the proposed method provides better experiential optimal path identification. Experiments demonstrate that the travel time is less for these experiential paths than for paths planned by conventional methods. Results obtained for a case study in the city of Wuhan, China, demonstrate that experiential optimal paths can be flexibly obtained in different time intervals, particularly during peak hours.

  4. Hierarchical tree-structured control network for the Antares laser facility

    Energy Technology Data Exchange (ETDEWEB)

    McGirt, F.

    1979-01-01

    The design and implementation of a distributed, computer-based control system for the Antares 100-kJ gas laser fusion facility is presented. Control system requirements and their operational interrelationships that consider both integrated system control and individual subsystem control are described. Several configurations of minicomputers are established to provide direct control of sets of microcomputers and to provide points of operator-laser interaction. Over 100 microcomputers are located very close to the laser device control points or sources of data and perform the real-time functions of the control system, such as data and control signal multiplexing, stepping motor control, and vacuum and gas system control. These microcomputers are designed to be supported as an integral part of the control network and to be software compatible with the larger minicomputers.

  5. Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation.

    Directory of Open Access Journals (Sweden)

    Salvador Dura-Bernal

    Full Text Available Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance. Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom

  6. The Benefits of a Network Tasking Order in Combat Search and Rescue Missions

    Science.gov (United States)

    2009-03-01

    Force Institute of Technology [1]. Follow-on work to the initial GRP has been performed by Matthew Compton and has appeared in a published article ...Matthew Compton and has appeared in a published article in the Military Communications Conference in 2008 [1]. A Network Tasking Order can be built by...nearest wadi and waited for the recovery he hoped would come soon. Because the PRC-112 is equipped with an Emergency Locator Transmitter ( ELT ), both the

  7. Defense Science Board Task Force on Military Satellite Communication and Tactical Networking. Executive Summary

    Science.gov (United States)

    2017-03-01

    product of the Defense Science Board (DSB). The DSB is a Federal Advisory Committee established to provide independent advice to the Secretary of Defense...December 2014, the Under Secretary of Defense for Acquisition, Technology, and Logistics (USD(AT&L)) signed the “Terms of Reference – Defense Science ...Board Task Force on Military Satellite Communication and Tactical Networking.” As a result, the Chairman of the Defense Science Board established a

  8. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    Science.gov (United States)

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process.

  9. Same task, different strategies: How brain networks can be influenced by memory strategy

    Science.gov (United States)

    Sanfratello, Lori; Caprihan, Arvind; Stephen, Julia M.; Knoefel, Janice E.; Adair, John C.; Qualls, Clifford; Lundy, S. Laura; Aine, Cheryl J.

    2015-01-01

    Previous functional neuroimaging studies demonstrated that different neural networks underlie different types of cognitive processing by engaging participants in particular tasks, such as verbal or spatial working memory (WM) tasks. However, we report here that even when a working memory task is defined as verbal or spatial, different types of memory strategies may be employed to complete it, with concomitant variations in brain activity. We developed a questionnaire to characterize the type of strategy used by individual members in a group of 28 young healthy participants (18–25 years) during a spatial WM task. A cluster analysis was performed to differentiate groups. We acquired functional magnetoencephalography (MEG) and structural diffusion tensor imaging (DTI) measures to characterize the brain networks associated with the use of different strategies. We found two types of strategies were utilized during the spatial WM task, a visuospatial and a verbal strategy, and brain regions and timecourses of activation differed between participants who used each. Task performance also varied by type of strategy used, with verbal strategies showing an advantage. In addition, performance on neuropsychological tests (indices from WAIS-IV, REY-D Complex Figure) correlated significantly with fractional anisotropy (FA) measures for the visuospatial strategy group in white matter tracts implicated in other WM/attention studies. We conclude that differences in memory strategy can have a pronounced effect on the locations and timing of brain activation, and that these differences need further investigation as a possible confounding factor for studies using group averaging as a means for summarizing results. PMID:24931401

  10. Hierarchical Wireless Multimedia Sensor Networks for Collaborative Hybrid Semi-Supervised Classifier Learning

    Directory of Open Access Journals (Sweden)

    Liang Ding

    2007-11-01

    Full Text Available Wireless multimedia sensor networks (WMSN have recently emerged as one ofthe most important technologies, driven by the powerful multimedia signal acquisition andprocessing abilities. Target classification is an important research issue addressed in WMSN,which has strict requirement in robustness, quickness and accuracy. This paper proposes acollaborative semi-supervised classifier learning algorithm to achieve durative onlinelearning for support vector machine (SVM based robust target classification. The proposedalgorithm incrementally carries out the semi-supervised classifier learning process inhierarchical WMSN, with the collaboration of multiple sensor nodes in a hybrid computingparadigm. For decreasing the energy consumption and improving the performance, somemetrics are introduced to evaluate the effectiveness of the samples in specific sensor nodes,and a sensor node selection strategy is also proposed to reduce the impact of inevitablemissing detection and false detection. With the ant optimization routing, the learningprocess is implemented with the selected sensor nodes, which can decrease the energyconsumption. Experimental results demonstrate that the collaborative hybrid semi-supervised classifier learning algorithm can effectively implement target classification inhierarchical WMSN. It has outstanding performance in terms of energy efficiency and timecost, which verifies the effectiveness of the sensor nodes selection and ant optimizationrouting.

  11. An Optimal Hierarchical Decision Model for a Regional Logistics Network with Environmental Impact Consideration

    Directory of Open Access Journals (Sweden)

    Dezhi Zhang

    2014-01-01

    Full Text Available This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users’ demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators’ service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.

  12. An optimal hierarchical decision model for a regional logistics network with environmental impact consideration.

    Science.gov (United States)

    Zhang, Dezhi; Li, Shuangyan; Qin, Jin

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.

  13. An Optimal Hierarchical Decision Model for a Regional Logistics Network with Environmental Impact Consideration

    Science.gov (United States)

    Zhang, Dezhi; Li, Shuangyan

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209

  14. Hierarchical Policy Model for Managing Heterogeneous Security Systems

    Science.gov (United States)

    Lee, Dong-Young; Kim, Minsoo

    2007-12-01

    The integrated security management becomes increasingly complex as security manager must take heterogeneous security systems, different networking technologies, and distributed applications into consideration. The task of managing these security systems and applications depends on various systems and vender specific issues. In this paper, we present a hierarchical policy model which are derived from the conceptual policy, and specify means to enforce this behavior. The hierarchical policy model consist of five levels which are conceptual policy level, goal-oriented policy level, target policy level, process policy level and low-level policy.

  15. Multilevel hierarchical production planning architecture for engineer-to-order enterprises

    Institute of Scientific and Technical Information of China (English)

    李小平; 徐晓飞; 战德臣

    2002-01-01

    The critical materials and critical parts are keys to the production at Engineer-to-Order (ETO) enter-prises implies that the control of plans for critical materials and critical parts is essential to the control of allplans at ETO enterprises. A mixed mode of hierarchical network planning/MRP (NP/MRP) is proposed to gen-erate network plans for critical materials or critical parts from project networks and the plans for non-criticalparts produced by MRP are constrained by the related project networks. The multilevel hierarchical networkplanning/MRP mixed planning (MHNM) architecture proposed is the extension of the hierarchical NP/MRP tothe supply chain based on the temporal constraints of multilevel project networks for critical materials or criticalparts. A general model is formulated for scheduling tasks on machines at work centers as well.

  16. Auditing Complex Concepts of SNOMED using a Refined Hierarchical Abstraction Network

    Science.gov (United States)

    Wang, Yue; Halper, Michael; Wei, Duo; Gu, Huanying; Perl, Yehoshua; Xu, Junchuan; Elhanan, Gai; Chen, Yan; Spackman, Kent A.; Case, James T.; Hripcsak, George

    2012-01-01

    Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid them in their efforts, it is essential to devise techniques that can automatically identify concepts warranting special attention. “Complex” concepts, which by their very nature are more difficult to model, fall neatly into this category. A special kind of grouping, called a partial-area, is utilized in the characterization of complex concepts. In particular, the complex concepts that are the focus of this work are those appearing in intersections of multiple partial-areas and are thus referred to as overlapping concepts. In a companion paper, an automatic methodology for identifying and partitioning the entire collection of overlapping concepts into disjoint, singly-rooted groups, that are more manageable to work with and comprehend, has been presented. The partitioning methodology formed the foundation for the development of an abstraction network for the overlapping concepts called a disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a collection of semantically uniform partial-areas and is exploited herein as the basis for a novel auditing methodology. The review of the overlapping concepts is done in a top-down order within semantically uniform groups. These groups are themselves reviewed in a top-down order, which proceeds from the less complex to the more complex overlapping concepts. The results of applying the methodology to SNOMED’s Specimen hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and between different kinds of overlapping concepts are formulated. Two phases of auditing the Specimen hierarchy for two releases of SNOMED are reported on. With the use of the double bootstrap and Fisher’s exact test (two-tailed), the auditing of concepts and especially roots of overlapping partial-areas is shown to yield a statistically significant higher proportion of errors. PMID:21907827

  17. OPTIMIZATION OF NEURAL NETWORK ARCHITECTURE FOR BIOMECHANIC CLASSIFICATION TASKS WITH ELECTROMYOGRAM INPUTS

    Directory of Open Access Journals (Sweden)

    Alayna Kennedy

    2016-09-01

    Full Text Available Electromyogram signals (EMGs contain valuable information that can be used in man-machine interfacing between human users and myoelectric prosthetic devices. However, EMG signals are complicated and prove difficult to analyze due to physiological noise and other issues. Computational intelligence and machine learning techniques, such as artificial neural networks (ANNs, serve as powerful tools for analyzing EMG signals and creating optimal myoelectric control schemes for prostheses. This research examines the performance of four different neural network architectures (feedforward, recurrent, counter propagation, and self organizing map that were tasked with classifying walking speed when given EMG inputs from 14 different leg muscles. Experiments conducted on the data set suggest that self organizing map neural networks are capable of classifying walking speed with greater than 99% accuracy.

  18. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    Science.gov (United States)

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.

  19. Reward-based training of recurrent neural networks for cognitive and value-based tasks

    Science.gov (United States)

    Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing

    2017-01-01

    Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly used to train networks through supervised learning, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when optimal behavior depends on an animal’s internal judgment of confidence or subjective preferences. Here, we implement reward-based training of recurrent neural networks in which a value network guides learning by using the activity of the decision network to predict future reward. We show that such models capture behavioral and electrophysiological findings from well-known experimental paradigms. Our work provides a unified framework for investigating diverse cognitive and value-based computations, and predicts a role for value representation that is essential for learning, but not executing, a task. DOI: http://dx.doi.org/10.7554/eLife.21492.001 PMID:28084991

  20. Anticipatory processes in brain state switching - evidence from a novel cued-switching task implicating default mode and salience networks.

    Science.gov (United States)

    Sidlauskaite, Justina; Wiersema, Jan R; Roeyers, Herbert; Krebs, Ruth M; Vassena, Eliana; Fias, Wim; Brass, Marcel; Achten, Eric; Sonuga-Barke, Edmund

    2014-09-01

    The default mode network (DMN) is the core brain system supporting internally oriented cognition. The ability to attenuate the DMN when switching to externally oriented processing is a prerequisite for effective performance and adaptive self-regulation. Right anterior insula (rAI), a core hub of the salience network (SN), has been proposed to control the switching from DMN to task-relevant brain networks. Little is currently known about the extent of anticipatory processes subserved by DMN and SN during switching. We investigated anticipatory DMN and SN modulation using a novel cued-switching task of between-state (rest-to-task/task-to-rest) and within-state (task-to-task) transitions. Twenty healthy adults performed the task implemented in an event-related functional magnetic resonance imaging (fMRI) design. Increases in activity were observed in the DMN regions in response to cues signalling upcoming rest. DMN attenuation was observed for rest-to-task switch cues. Obversely, DMN was up-regulated by task-to-rest cues. The strongest rAI response was observed to rest-to-task switch cues. Task-to-task switch cues elicited smaller rAI activation, whereas no significant rAI activation occurred for task-to-rest switches. Our data provide the first evidence that DMN modulation occurs rapidly and can be elicited by short duration cues signalling rest- and task-related state switches. The role of rAI appears to be limited to certain switch types - those implicating transition from a resting state and to tasks involving active cognitive engagement.

  1. Discussion on the Hierarchical Cell Structure of LTE under the Network Simulation%从网络仿真看LTE网络分层结构部署

    Institute of Scientific and Technical Information of China (English)

    刘彦婷; 南作用

    2015-01-01

    “网络分层”并不是一个新的概念或组网模式,其在2008年WCDMA网络建设之初即被明确提出,但至今仍未贯彻至网络规划建设中。从LTE网络规划中遇到的问题入手,基于某运营商多地网络现状,分析问题产生的根源,并加以详细的理论分析,重新提出网络分层理念及未来网络规划建设的布局及趋势建议。并通过网络仿真分析其对LTE网络性能的影响,提出若干问题的解决方法。为后期LTE网络规划与建设提供参考。%Hierarchical cel structure is not a new concept or mode,it has been put forward in the beginning of WCDMA network con-struction in 2008,but has not been carried out in network planning and construction. Beginning with the problems on LTE net-work planning,based on the current network conditions of some operator,it analyzes the origin of the problems and explores them theoretical y,presents the hierarchical cel structure again and the layout of future network planning and the trend sug-gestion. It analyzes the impact on LTE network performance through network simulation,presents the resolutions on some problems,to provide reference for LTE network planning and construction in later stage.

  2. Time-perception network and default mode network are associated with temporal prediction in a periodic motion task

    Directory of Open Access Journals (Sweden)

    Fabiana Mesquita Carvalho

    2016-06-01

    Full Text Available The updating of prospective internal models is necessary to accurately predict future observations. Uncertainty-driven internal model updating has been studied using a variety of perceptual paradigms, and have revealed engagement of frontal and parietal areas. In a distinct literature, studies on temporal expectations have also characterized a time-perception network, which relies on temporal orienting of attention. However, the updating of prospective internal models is highly dependent on temporal attention, since temporal attention must be reoriented according to the current environmental demands. In this study we used fMRI to evaluate to what extend the continuous manipulation of temporal prediction would recruit update-related areas and the time-perception network areas. We developed an exogenous temporal task that combines rhythm cueing and time-to-contact principles to generate implicit temporal expectation. Two patterns of motion were created: periodic (simple harmonic oscillation and non-periodic (harmonic oscillation with variable acceleration. We found that non-periodic motion engaged the exogenous temporal orienting network, which includes the ventral premotor and inferior parietal cortices, and the cerebellum, as well as the presupplementary motor area, which has previously been implicated in internal model updating, and the motion-sensitive area MT+. Interestingly, we found a right-hemisphere preponderance suggesting the engagement of explicit timing mechanisms. We also show that the periodic motion condition, when compared to the non-periodic motion, activated a particular subset of the default-mode network (DMN midline areas, including the left dorsomedial prefrontal cortex, anterior cingulate cortex, and bilateral posterior cingulate cortex/precuneus. It suggests that the DMN plays a role in processing contextually expected information and supports recent evidence that the DMN may reflect the validation of prospective internal

  3. Tinnitus- and Task-Related Differences in Resting-State Networks.

    Science.gov (United States)

    Lanting, Cris; Woźniak, Aron; van Dijk, Pim; Langers, Dave R M

    2016-01-01

    We investigated tinnitus-related differences in functional networks in adults with tinnitus by means of a functional connectivity study. Previously it was found that various networks show differences in connectivity in patients with tinnitus compared to controls. How this relates to patients' ongoing tinnitus and whether the ecological sensory environment modulates connectivity remains unknown.Twenty healthy controls and twenty patients suffering from chronic tinnitus were enrolled in this study. Except for the presence of tinnitus in the patient group, all subjects were selected to have normal or near-normal hearing. fMRI data were obtained in two different functional states. In one set of runs, subjects freely viewed emotionally salient movie fragments ("fixed-state") while in the other they were not performing any task ("resting-state"). After data pre-processing, Principal Component Analysis was performed to obtain 25 components for all datasets. These were fed into an Independent Component Analysis (ICA), concatenating the data across both groups and both datasets, to obtain group-level networks of neural origin, each consisting of spatial maps with their respective time-courses. Subject-specific maps and their time-course were obtained by back-projection (Dual Regression). For each of the components a mixed-effects linear model was composed with factors group (tinnitus vs. controls), task (fixed-state vs. resting state) and their interaction. The neural components comprised the visual, sensorimotor, auditory, and limbic systems, the default mode, dorsal attention, executive-control, and frontoparietal networks, and the cerebellum. Most notably, the default mode network (DMN) was less extensive and shows significantly less connectivity in tinnitus patients than in controls. This group difference existed in both paradigms. At the same time, the DMN was stronger during resting-state than during fixed-state in the controls but not the patients. We attribute this

  4. Improving prediction of neural networks: a study of tow financial prediction tasks

    Directory of Open Access Journals (Sweden)

    Tarun K. Sen

    2004-01-01

    Full Text Available Neural networks are excellent mapping tools for complex financial data. Their mapping capabilities however do not always result in good generalizability for financial prediction models. Increasing the number of nodes and hidden layers in a neural network model produces better mapping of the data since the number of parameters available to the model increases. This is determinal to generalizabilitiy of the model since the model memorizes idiosyncratic patterns in the data. A neural network model can be expected to be more generalizable if the model architecture is made less complex by using fewer input nodes. In this study we simplify the neural network by eliminating input nodes that have the least contribution to the prediction of a desired outcome. We also provide a theoretical relationship of the sensitivity of output variables to the input variables under certain conditions. This research initiates an effort in identifying methods that would improve the generalizability of neural networks in financial prediction tasks by using mergers and bankruptcy models. The result indicates that incorporating more variables that appear relevant in a model does not necessarily improve prediction performance.

  5. Motor imagery cognitive network after left ischemic stroke: study of the patients during mental rotation task.

    Directory of Open Access Journals (Sweden)

    Jing Yan

    Full Text Available Although motor imagery could improve motor rehabilitation, the detailed neural mechanisms of motor imagery cognitive process of stroke patients, particularly from functional network perspective, remain unclear. This study investigated functional brain network properties in each cognitive sub-stage of motor imagery of stroke patients with ischemic lesion in left hemisphere to reveal the impact of stroke on the cognition of motor imagery. Both stroke patients and control subjects participated in mental rotation task, which includes three cognitive sub-stages: visual stimulus perception, mental rotation and response cognitive process. Event-related electroencephalograph was recorded and interdependence between two different cortical areas was assessed by phase synchronization. Both global and nodal properties of functional networks in three sub-stages were statistically analyzed. Phase synchronization of stroke patients significantly reduced in mental rotation sub-stage. Longer characteristic path length and smaller global clustering coefficient of functional network were observed in patients in mental rotation sub-stage which implied the impaired segregation and integration. Larger nodal clustering coefficient and betweenness in contralesional occipitoparietal and frontal area respectively were observed in patients in all sub-stages. In addition, patients also showed smaller betweenness in ipsilesional central-parietal area in response sub-stage. The compensatory effects on local connectedness and centrality indicated the neuroplasticity in contralesional hemisphere. The functional brain networks of stroke patients demonstrated significant alterations and compensatory effects during motor imagery.

  6. Functional connectivity in task-negative network of the Deaf: effects of sign language experience.

    Science.gov (United States)

    Malaia, Evie; Talavage, Thomas M; Wilbur, Ronnie B

    2014-01-01

    Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain's anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia). We report the first investigation of the task-negative network in Deaf signers and its functional connectivity-the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG), but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.

  7. Complexity Analysis of New Task Allocation Problem Using Network Flow Method on Multicore Clusters

    Directory of Open Access Journals (Sweden)

    Jixiang Yang

    2014-01-01

    Full Text Available The task allocation problem (TAP generally aims to minimize total execution cost and internode communication cost in traditional parallel computing systems. New TAP (NTAP considering additive intranode communication cost in emerging multicore cluster systems is investigated in this paper. We analyze the complexity of NTAP with network flow method and conclude that the intranode communication cost is a key to the complexity of NTAP, and prove that (1 the NTAP can be cast as a generalized linear network minimum cost flow problem and can be solved in O(m2n4 time if the intranode communication cost equals the internode communication cost, and (2 the NTAP can be cast as a generalized convex cost network minimum cost flow problem and can be solved in polynomial time if the intranode communication cost is more than the internode communication cost. More in particular, the uniform cost NTAP can be cast as a convex cost flow problem and can be solved in O(m2n2log(m+n time. Furthermore, solutions to the NTAP are also discussed. Our work extends currently known theoretical results and the theorems and conclusions presented in this paper can provide theoretical basis for task allocating strategies on multicore clusters.

  8. gTBS: A green Task-Based Sensing for energy efficient Wireless Sensor Networks

    KAUST Repository

    Alhalafi, Abdullah

    2016-09-08

    Wireless sensor networks (WSN) are widely used to sense and measure physical conditions for different purposes and within different regions. However due to the limited lifetime of the sensor\\'s energy source, many efforts are made to design energy efficient WSN. As a result, many techniques were presented in the literature such as power adaptation, sleep and wake-up, and scheduling in order to enhance WSN lifetime. These techniques where presented separately and shown to achieve some gain in terms of energy efficiency. In this paper, we present an energy efficient cross layer design for WSN that we named \\'green Task-Based Sensing\\' (gTBS) scheme. The gTBS design is a task based sensing scheme that not only prevents wasting power in unnecessary signaling, but also utilizes several techniques for achieving reliable and energy efficient WSN. The proposed gTBS combines the power adaptation with a sleep and wake-up technique that allows inactive nodes to sleep. Also, it adopts a gradient-oriented unicast approach to overcome the synchronization problem, minimize network traffic hurdles, and significantly reduce the overall power consumption of the network. We implement the gTBS on a testbed and we show that it reduces the power consumption by a factor of 20%-55% compared to traditional TBS. It also reduces the delay by 54%-145% and improves the delivery ratio by 24%-73%. © 2016 IEEE.

  9. Functional connectivity in task-negative network of the Deaf: effects of sign language experience

    Directory of Open Access Journals (Sweden)

    Evie Malaia

    2014-06-01

    Full Text Available Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia. We report the first investigation of the task-negative network in Deaf signers and its functional connectivity—the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG, but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.

  10. Taxonomy of collaborative networks forms: FInES Task Force on Collaborative Networks and SOCOLNET - Society of Collaborative Networks

    NARCIS (Netherlands)

    L.M. Camarinha-Matos; H. Afsarmanesh

    2012-01-01

    This chapter is intended as a contribution to the consolidation of base terminology in collaborative networks and thus facilitate the dialogue and collaboration among the Factories of the Future projects included in the FInES cluster. The main current forms of collaborative networks, both in industr

  11. 水声通信网层次路由算法%Research on hierarchical routing algorithm for underwater acoustic communication networks

    Institute of Scientific and Technical Information of China (English)

    卞金洪; 徐新洲; 魏昕; 赵力

    2013-01-01

    针对水声通信网中由于节点能耗不均衡而影响网络生命周期的问题,基于无线传感网络的层次路由算法,提出了一种适用于水下环境的水声通信网层次路由算法.该算法采用分轮的思想,使用改进的复杂网络社团结构检测谱方法的相关算法.通过网络初始化等措施构建水声通信网的图结构,并利用Laplacian阵与聚类算法得到簇结构,进而实现网络中数据的正常传输.仿真实验表明,在水声通信网的特殊条件下,该算法相对于传统的LEACH协议能取得较好的效果,在网络稳定传输数据的情况下,网络各轮的存活节点数均优于LEACH.%In order to overcome the existing problem facing underwater acoustic communication networks, the researchers propose to examine a novel hierarchical routing algorithm for underwater acoustic communication networks. This study will be conducted in accordance to the hierarchical routing algorithms in wireless sensor network. While focusing on the problems of the network life cycle affected by the unbalanced node' s energy consumption. The improved detection spectral algorithm of complex network is introduced based on the ideal of sub-wheel. First, the graph structure of acoustic communication networks is constructed by means of network initialization. Next, the Laplacian matrix and cluster algorithm will be used to generate the cluster structure thus realizing normal data transmission successfully. The simulation results shows, under the special condition of underwater acoustic communication networks, the hierarchical routing algorithm can achieve better results compared to the traditional LEACH protocol. The number of surviving nodes for each round in our algorithm exceeds that in LEACH, and in the condition of stable network data transmission.

  12. Credit networks and systemic risk of Chinese local financing platforms: Too central or too big to fail?. -based on different credit correlations using hierarchical methods

    Science.gov (United States)

    He, Fang; Chen, Xi

    2016-11-01

    The accelerating accumulation and risk concentration of Chinese local financing platforms debts have attracted wide attention throughout the world. Due to the network of financial exposures among institutions, the failure of several platforms or regions of systemic importance will probably trigger systemic risk and destabilize the financial system. However, the complex network of credit relationships in Chinese local financing platforms at the state level remains unknown. To fill this gap, we presented the first complex networks and hierarchical cluster analysis of the credit market of Chinese local financing platforms using the ;bottom up; method from firm-level data. Based on balance-sheet channel, we analyzed the topology and taxonomy by applying the analysis paradigm of subdominant ultra-metric space to an empirical data in 2013. It is remarked that we chose to extract the network of co-financed financing platforms in order to evaluate the effect of risk contagion from platforms to bank system. We used the new credit similarity measure by combining the factor of connectivity and size, to extract minimal spanning trees (MSTs) and hierarchical trees (HTs). We found that: (1) the degree distributions of credit correlation backbone structure of Chinese local financing platforms are fat tailed, and the structure is unstable with respect to targeted failures; (2) the backbone is highly hierarchical, and largely explained by the geographic region; (3) the credit correlation backbone structure based on connectivity and size is significantly heterogeneous; (4) key platforms and regions of systemic importance, and contagion path of systemic risk are obtained, which are contributed to preventing systemic risk and regional risk of Chinese local financing platforms and preserving financial stability under the framework of macro prudential supervision. Our approach of credit similarity measure provides a means of recognizing ;systemically important; institutions and regions

  13. Hierarchical Spatial Reasoning and Case of Way-Finding%层次空间推理机制及其在路径寻找方面的应用

    Institute of Scientific and Technical Information of China (English)

    翁敏; 蒋珊珊; 瞿荣

    2008-01-01

    Human beings use hierarchies to simplify their conceptual models of reality and to perform reasoning more efficiently.Hierarchical structures are conceptually imposed on space and allow performance of complex tasks in very large con-texts easily.Hierarchical spatial reasoning is an important method for solving spatial problems.This paper briefly discusses the definition and frame of hierarchical spatial reasoning and its application to way-finding of road networks.

  14. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    Science.gov (United States)

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  15. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  16. An Electroencephalography Network and Connectivity Analysis for Deception in Instructed Lying Tasks

    Science.gov (United States)

    Wang, Yue; Ng, Wu Chun; Ng, Khoon Siong; Yu, Ke; Wu, Tiecheng; Li, Xiaoping

    2015-01-01

    Deception is an impactful social event that has been the focus of an abundance of researches over recent decades. In this paper, an electroencephalography (EEG) study is presented regarding the cognitive processes of an instructed liar/truth-teller during the time window of stimulus (question) delivery period (SDP) prior to their deceptive/truthful responses towards questions related to authentic (WE: with prior experience) and fictional experience (NE: no prior experience). To investigate deception in non-experienced events, the subjects were given stimuli in a mock interview scenario that induced them to fabricate lies. To analyze the data, frequency domain network and connectivity analysis was performed in the source space in order to provide a more systematic level understanding of deception during SDP. This study reveals several groups of neuronal generators underlying both the instructed lying (IL) and the instructed truth-telling (IT) conditions for both tasks during the SDP. Despite the similarities existed in these group components, significant differences were found in the intra- and inter-group connectivity between the IL and IT conditions in either task. Additionally, the response time was found to be positively correlated with the clustering coefficient of the inferior frontal gyrus (44R) in the WE-IL condition and positively correlated with the clustering coefficient of the precuneus (7L) and the angular gyrus (39R) in the WE-IT condition. However, the response time was found to be marginally negatively correlated with the clustering coefficient of the secondary auditory cortex (42L) in the NE-IL condition and negatively correlated with the clustering coefficient of the somatosensory association cortex (5L, R) in the NE-IT condition. Therefore, these results provide complementary and intuitive evidence for the differences between the IL and IT conditions in SDP for two types of deception tasks, thus elucidating the electrophysiological mechanisms

  17. Multi-Task Learning for Food Identification and Analysis with Deep Convolutional Neural Networks

    Institute of Scientific and Technical Information of China (English)

    Xi-Jin Zhang; Yi-Fan Lu; Song-Hai Zhang

    2016-01-01

    In this paper, we proposed a multi-task system that can identify dish types, food ingredients, and cooking methods from food images with deep convolutional neural networks. We built up a dataset of 360 classes of different foods with at least 500 images for each class. To reduce the noises of the data, which was collected from the Internet, outlier images were detected and eliminated through a one-class SVM trained with deep convolutional features. We simultaneously trained a dish identifier, a cooking method recognizer, and a multi-label ingredient detector. They share a few low-level layers in the deep network architecture. The proposed framework shows higher accuracy than traditional method with handcrafted features, and the cooking method recognizer and ingredient detector can be applied to dishes which are not included in the training dataset to provide reference information for users.

  18. MX Hierarchical Networking System.

    Science.gov (United States)

    1982-02-01

    Information needed to analyze the deployment masterplan . This is the facili- ties level of detail. The third level (level 3) reflects the quantities of...Summary) 100 Level 1 SUBTOTAL 1 100 Level 2 (Deployment Masterplan ) DAA 350 OBTS 200 OPBASE 600 DDA/DTN 1,200 AUX OPBASE 550 LIFE SUPPORT 300...CEMXPA Program Summary -- 1 -- 100 Deployment Masterplan -- 2 -- 260 360 CEMXCO Deployment !asterplan 0 3 -- 900 900 AFRCE Deployment Masterplan 1 0

  19. Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes.

    Science.gov (United States)

    Hosseini, Zhaleh; Marashi, Sayed-Amir

    2015-05-01

    Flux coupling analysis is a method for investigating the connections between reactions of metabolic networks. Here, we construct the hierarchical flux coupling graph for the reactions of the Escherichia coli metabolic network model to determine the level of each reaction in the graph. This graph is constructed based on flux coupling analysis of metabolic network: if zero flux through reaction a results in zero flux through reaction b (and not vice versa), then reaction a is located at the top of reaction b in the flux coupling graph. We show that in general, more important, older and essential reactions are located at the top of the graph. Strikingly, genes corresponding to these reactions are found to be the genes which are most regulated.

  20. Short-term antidepressant administration reduces default mode and task-positive network connectivity in healthy individuals during rest

    NARCIS (Netherlands)

    van Wingen, Guido A; Tendolkar, Indira; Urner, Maren; van Marle, Hein J; Denys, D.; Verkes, Robbert-Jan; Fernández, Guillén

    2014-01-01

    Resting-state studies in depressed patients have revealed increased connectivity within the default mode network (DMN) and task-positive network (TPN). This has been associated with heightened rumination, which is the tendency to repetitively think about symptoms of distress. Here, we performed a ph

  1. Short-term antidepressant administration reduces default mode and task-positive network connectivity in healthy individuals during rest

    NARCIS (Netherlands)

    Wingen, G.A. van; Tendolkar, I.; Urner, M.; Marle, H.J.F. van; Denys, D.; Verkes, R.J.; Fernandez, G.S.E.

    2013-01-01

    Resting-state studies in depressed patients have revealed increased connectivity within the default mode network (DMN) and task-positive network (TPN). This has been associated with heightened rumination, which is the tendency to repetitively think about symptoms of distress. Here, we performed a ph

  2. Person re-identification over camera networks using multi-task distance metric learning.

    Science.gov (United States)

    Ma, Lianyang; Yang, Xiaokang; Tao, Dacheng

    2014-08-01

    Person reidentification in a camera network is a valuable yet challenging problem to solve. Existing methods learn a common Mahalanobis distance metric by using the data collected from different cameras and then exploit the learned metric for identifying people in the images. However, the cameras in a camera network have different settings and the recorded images are seriously affected by variability in illumination conditions, camera viewing angles, and background clutter. Using a common metric to conduct person reidentification tasks on different camera pairs overlooks the differences in camera settings; however, it is very time-consuming to label people manually in images from surveillance videos. For example, in most existing person reidentification data sets, only one image of a person is collected from each of only two cameras; therefore, directly learning a unique Mahalanobis distance metric for each camera pair is susceptible to over-fitting by using insufficiently labeled data. In this paper, we reformulate person reidentification in a camera network as a multitask distance metric learning problem. The proposed method designs multiple Mahalanobis distance metrics to cope with the complicated conditions that exist in typical camera networks. We address the fact that these Mahalanobis distance metrics are different but related, and learned by adding joint regularization to alleviate over-fitting. Furthermore, by extending, we present a novel multitask maximally collapsing metric learning (MtMCML) model for person reidentification in a camera network. Experimental results demonstrate that formulating person reidentification over camera networks as multitask distance metric learning problem can improve performance, and our proposed MtMCML works substantially better than other current state-of-the-art person reidentification methods.

  3. Analysis of Cloud Network Management Using Resource Allocation and Task Scheduling Services

    Directory of Open Access Journals (Sweden)

    K.C. Okafor

    2016-01-01

    Full Text Available Network failure in cloud datacenter could result from inefficient resource allocation; scheduling and logical segmentation of physical machines (network constraints. This is highly undesirable in Distributed Cloud Computing Networks (DCCNs running mission critical services. Such failure has been identified in the University of Nigeria datacenter network situated in the south eastern part of Nigeria. In this paper, the architectural decomposition of a proposed DCCN was carried out while exploring its functionalities for grid performance. Virtualization services such as resource allocation and task scheduling were employed in heterogeneous server clusters. The validation of the DCCN performance was carried out using trace files from Riverbed Modeller 17.5 in order to ascertain the influence of virtualization on server resource pool. The QoS metrics considered in the analysis are: the service delay time, resource availability, throughput and utilization. From the validation analysis of the DCCN, the following results were obtained: average throughput (bytes/Sec for DCCN = 40.00%, DCell = 33.33% and BCube = 26.67%. Average resource availability response for DCCN = 38.46%, DCell = 33.33%, and BCube = 28.21%. DCCN density on resource utilization = 40% (when logically isolated and 60% (when not logically isolated. From the results, it was concluded that using virtualization in a cloud DataCenter servers will result in enhanced server performance offering lower average wait time even with a higher request rate and longer duration of resource use (service availability. By evaluating these recursive architectural designs for network operations, enterprises ready for Spine and leaf model could further develop their network resource management schemes for optimal performance.

  4. Optimization of Hierarchical System for Data Acquisition

    Directory of Open Access Journals (Sweden)

    V. Novotny

    2011-04-01

    Full Text Available Television broadcasting over IP networks (IPTV is one of a number of network applications that are except of media distribution also interested in data acquisition from group of information resources of variable size. IP-TV uses Real-time Transport Protocol (RTP protocol for media streaming and RTP Control Protocol (RTCP protocol for session quality feedback. Other applications, for example sensor networks, have data acquisition as the main task. Current solutions have mostly problem with scalability - how to collect and process information from large amount of end nodes quickly and effectively? The article deals with optimization of hierarchical system of data acquisition. Problem is mathematically described, delay minima are searched and results are proved by simulations.

  5. Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification.

    Science.gov (United States)

    Baldwin, Carryl L; Penaranda, B N

    2012-01-02

    Adaptive training using neurophysiological measures requires efficient classification of mental workload in real time as a learner encounters new and increasingly difficult levels of tasks. Previous investigations have shown that artificial neural networks (ANNs) can accurately classify workload, but only when trained on neurophysiological exemplars from experienced operators on specific tasks. The present study examined classification accuracies for ANNs trained on electroencephalographic (EEG) activity recorded while participants performed the same (within task) and different (cross) tasks for short periods of time with little or no prior exposure to the tasks. Participants performed three working memory tasks at two difficulty levels with order of task and difficulty level counterbalanced. Within-task classification accuracies were high when ANNs were trained on exemplars from the same task or a set containing the to-be-classified task, (M=87.1% and 85.3%, respectively). Cross-task classification accuracies were significantly lower (average 44.8%) indicating consistent systematic misclassification for certain tasks in some individuals. Results are discussed in terms of their implications for developing neurophysiologically driven adaptive training platforms.

  6. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  7. QoS Algorithms in Hierarchical IPv4 Network%层次型IPv4网络QoS算法

    Institute of Scientific and Technical Information of China (English)

    蒋建峰

    2014-01-01

    Hierarchical IPv4 networks put forward higher requirements for the quality of service. This paper analyzes the advantages, disadvantages and the application environment of the traditional QoS architecture based on business according to the second layer and the third layer of the OSI reference model. Then a QoS algorithm integrated differentiated service model with integrated service model is designed to enhance the QoS of a hierarchical network. The simulation results prove that the model can improve the network’s QoS in many aspects such as packet loss rate, transmission delay, delay jitter and network throughput.%网络服务质量 QoS 在层次型网络中要求更高.从 OSI 参考模型的第二层与第三层出发,分析了传统的QoS体系结构和三种QoS模型的工作原理、优缺点以及网络应用环境.设计了将IntServ与DiffServ模型相结合的互补算法来保证层次型网络的服务质量.仿真结果表明,此模型能够从传输延迟、丢包率、延时抖动和网络吞吐量等多个方面提升网络的QoS.

  8. DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection.

    Science.gov (United States)

    Li, Xi; Zhao, Liming; Wei, Lina; Yang, Ming-Hsuan; Wu, Fei; Zhuang, Yueting; Ling, Haibin; Wang, Jingdong

    2016-08-01

    A key problem in salient object detection is how to effectively model the semantic properties of salient objects in a data-driven manner. In this paper, we propose a multi-task deep saliency model based on a fully convolutional neural network with global input (whole raw images) and global output (whole saliency maps). In principle, the proposed saliency model takes a data-driven strategy for encoding the underlying saliency prior information, and then sets up a multi-task learning scheme for exploring the intrinsic correlations between saliency detection and semantic image segmentation. Through collaborative feature learning from such two correlated tasks, the shared fully convolutional layers produce effective features for object perception. Moreover, it is capable of capturing the semantic information on salient objects across different levels using the fully convolutional layers, which investigate the feature-sharing properties of salient object detection with a great reduction of feature redundancy. Finally, we present a graph Laplacian regularized nonlinear regression model for saliency refinement. Experimental results demonstrate the effectiveness of our approach in comparison with the state-of-the-art approaches.

  9. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions.

    Science.gov (United States)

    Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E

    2016-08-24

    Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.

  10. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions

    Science.gov (United States)

    Barnes, Jessica J.; Nobre, Anna Christina; Woolrich, Mark W.; Baker, Kate

    2016-01-01

    Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. SIGNIFICANCE STATEMENT Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called “phase amplitude coupling.” PMID:27559180

  11. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    Directory of Open Access Journals (Sweden)

    Belinda ePletzer

    2015-04-01

    Full Text Available Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret.Here we compared the BOLD-response of 18 participants with high (HMAs and 18 participants with low mathematics anxiety (LMAs matched for their mathematical performance to two numerical tasks (number comparison, number bisection. During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  12. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    Science.gov (United States)

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  13. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state.

    Science.gov (United States)

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states.

  14. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.

    Directory of Open Access Journals (Sweden)

    H Francis Song

    2016-02-01

    Full Text Available The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, "trained" networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale's principle, which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural

  15. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.

    Science.gov (United States)

    Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing

    2016-02-01

    The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs) that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, "trained" networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale's principle), which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural activity patterns

  16. Lung nodule malignancy prediction using multi-task convolutional neural network

    Science.gov (United States)

    Li, Xiuli; Kao, Yueying; Shen, Wei; Li, Xiang; Xie, Guotong

    2017-03-01

    In this paper, we investigated the problem of diagnostic lung nodule malignancy prediction using thoracic Computed Tomography (CT) screening. Unlike most existing studies classify the nodules into two types benign and malignancy, we interpreted the nodule malignancy prediction as a regression problem to predict continuous malignancy level. We proposed a joint multi-task learning algorithm using Convolutional Neural Network (CNN) to capture nodule heterogeneity by extracting discriminative features from alternatingly stacked layers. We trained a CNN regression model to predict the nodule malignancy, and designed a multi-task learning mechanism to simultaneously share knowledge among 9 different nodule characteristics (Subtlety, Calcification, Sphericity, Margin, Lobulation, Spiculation, Texture, Diameter and Malignancy), and improved the final prediction result. Each CNN would generate characteristic-specific feature representations, and then we applied multi-task learning on the features to predict the corresponding likelihood for that characteristic. We evaluated the proposed method on 2620 nodules CT scans from LIDC-IDRI dataset with the 5-fold cross validation strategy. The multitask CNN regression result for regression RMSE and mapped classification ACC were 0.830 and 83.03%, while the results for single task regression RMSE 0.894 and mapped classification ACC 74.9%. Experiments show that the proposed method could predict the lung nodule malignancy likelihood effectively and outperforms the state-of-the-art methods. The learning framework could easily be applied in other anomaly likelihood prediction problem, such as skin cancer and breast cancer. It demonstrated the possibility of our method facilitating the radiologists for nodule staging assessment and individual therapeutic planning.

  17. Cyber-physical approach to the network-centric robotics control task

    Science.gov (United States)

    Muliukha, Vladimir; Ilyashenko, Alexander; Zaborovsky, Vladimir; Lukashin, Alexey

    2016-10-01

    Complex engineering tasks concerning control for groups of mobile robots are developed poorly. In our work for their formalization we use cyber-physical approach, which extends the range of engineering and physical methods for a design of complex technical objects by researching the informational aspects of communication and interaction between objects and with an external environment [1]. The paper analyzes network-centric methods for control of cyber-physical objects. Robots or cyber-physical objects interact with each other by transmitting information via computer networks using preemptive queueing system and randomized push-out mechanism [2],[3]. The main field of application for the results of our work is space robotics. The selection of cyber-physical systems as a special class of designed objects is due to the necessity of integrating various components responsible for computing, communications and control processes. Network-centric solutions allow using universal means for the organization of information exchange to integrate different technologies for the control system.

  18. Working memory activation of neural networks in the elderly as a function of information processing phase and task complexity.

    Science.gov (United States)

    Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N

    2015-11-01

    Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load.

  19. 网络结构化多Agent系统的任务分配%Task Allocation in Networked Multiagent Systems

    Institute of Scientific and Technical Information of China (English)

    蒋嶷川

    2012-01-01

    Large scale multiagent systems are always organized in networked structures where each agent interacts only with its immediate neighbors. Moreover, the networked multiagent systems always run on certain underlying physical networks. Obviously, the traditional task allocation methods based on agent self-owned resources are not fit for the networked multiagent systems. Aiming at this problem, three task allocation methods are reviewed for networked multiagent systems; the task allocation method based on underlying networks and agent resources, the task allocation method based on multiagent interaction networks and agent resources and the task allocation method based on contextual resource distribution. It considers both the underlying networks and multiagent interaction networks. Besides, the related works on centralized and distributed task allocations are reviewed, and the related works are compared to the proposed task allocation methods. Finally, the difficulties and the further work on the task allocation of networked multiagent systems are discussed.%网络结构化多Agent系统既包括系统运行的底层物理网络,还包括Agent之间的交互网络.传统的任务分配方式并没有深入考虑到网络结构化的特点.文中首先论述网络结构化多Agent系统中任务分配的特点,介绍和分析基于底层网络拓扑与资源分布的任务分配方式、基于Agent交互网络与资源分布的任务分配方式和基于综合网络情境资源的任务分配方式.然后对相关工作进行综述,并与网络结构化多Agent系统任务分配模型进行比较分析.最后论述该方向的难点和未来要解决的问题.

  20. Dynamic real-time hierarchical heuristic search for pathfinding.

    OpenAIRE

    Naveed, Munir; Kitchin, Diane E.; Crampton, Andrew

    2009-01-01

    Movement of Units in Real-Time Strategy (RTS) Games is a non-trivial and challenging task mainly due to three factors which are constraints on CPU and memory usage, dynamicity of the game world, and concurrency. In this paper, we are focusing on finding a novel solution for solving the pathfinding problem in RTS Games for the units which are controlled by the computer. The novel solution combines two AI Planning approaches: Hierarchical Task Network (HTN) and Real-Time Heuristic Search (RHS)....

  1. Extended hierarchical temporal memory for visual object tracking

    Science.gov (United States)

    Kryś, Sebastian; Jankowski, Stanisław

    2011-10-01

    A system for simultaneous multi-obstacle recognition and tracking is proposed. Based on the novel Hierarchical Temporal Memory algorithm, it is design for application in vision problems but generally not constrained to it. Thanks to its modular and mostly parallel architecture it can be easily implemented in distributed environment attaining significant computation speed and thus it is suited for real-time processing tasks like visual data processing in mobile robotics. Derived from standard neural network paradigm the system can extract information concerning position, relative speed and type of an obstacle in a dynamically changing environment. It can be easily enhanced for basic prediction tasks.

  2. Scalable Virtual Network Mapping Algorithm for Internet-Scale Networks

    Science.gov (United States)

    Yang, Qiang; Wu, Chunming; Zhang, Min

    The proper allocation of network resources from a common physical substrate to a set of virtual networks (VNs) is one of the key technical challenges of network virtualization. While a variety of state-of-the-art algorithms have been proposed in an attempt to address this issue from different facets, the challenge still remains in the context of large-scale networks as the existing solutions mainly perform in a centralized manner which requires maintaining the overall and up-to-date information of the underlying substrate network. This implies the restricted scalability and computational efficiency when the network scale becomes large. This paper tackles the virtual network mapping problem and proposes a novel hierarchical algorithm in conjunction with a substrate network decomposition approach. By appropriately transforming the underlying substrate network into a collection of sub-networks, the hierarchical virtual network mapping algorithm can be carried out through a global virtual network mapping algorithm (GVNMA) and a local virtual network mapping algorithm (LVNMA) operated in the network central server and within individual sub-networks respectively with their cooperation and coordination as necessary. The proposed algorithm is assessed against the centralized approaches through a set of numerical simulation experiments for a range of network scenarios. The results show that the proposed hierarchical approach can be about 5-20 times faster for VN mapping tasks than conventional centralized approaches with acceptable communication overhead between GVNCA and LVNCA for all examined networks, whilst performs almost as well as the centralized solutions.

  3. Does the process map influence the outcome of quality improvement work? A comparison of a sequential flow diagram and a hierarchical task analysis diagram

    Directory of Open Access Journals (Sweden)

    Potts Henry WW

    2010-01-01

    Full Text Available Abstract Background Many quality and safety improvement methods in healthcare rely on a complete and accurate map of the process. Process mapping in healthcare is often achieved using a sequential flow diagram, but there is little guidance available in the literature about the most effective type of process map to use. Moreover there is evidence that the organisation of information in an external representation affects reasoning and decision making. This exploratory study examined whether the type of process map - sequential or hierarchical - affects healthcare practitioners' judgments. Methods A sequential and a hierarchical process map of a community-based anti coagulation clinic were produced based on data obtained from interviews, talk-throughs, attendance at a training session and examination of protocols and policies. Clinic practitioners were asked to specify the parts of the process that they judged to contain quality and safety concerns. The process maps were then shown to them in counter-balanced order and they were asked to circle on the diagrams the parts of the process where they had the greatest quality and safety concerns. A structured interview was then conducted, in which they were asked about various aspects of the diagrams. Results Quality and safety concerns cited by practitioners differed depending on whether they were or were not looking at a process map, and whether they were looking at a sequential diagram or a hierarchical diagram. More concerns were identified using the hierarchical diagram compared with the sequential diagram and more concerns were identified in relation to clinical work than administrative work. Participants' preference for the sequential or hierarchical diagram depended on the context in which they would be using it. The difficulties of determining the boundaries for the analysis and the granularity required were highlighted. Conclusions The results indicated that the layout of a process map does

  4. Does the process map influence the outcome of quality improvement work? A comparison of a sequential flow diagram and a hierarchical task analysis diagram.

    Science.gov (United States)

    Colligan, Lacey; Anderson, Janet E; Potts, Henry W W; Berman, Jonathan

    2010-01-07

    Many quality and safety improvement methods in healthcare rely on a complete and accurate map of the process. Process mapping in healthcare is often achieved using a sequential flow diagram, but there is little guidance available in the literature about the most effective type of process map to use. Moreover there is evidence that the organisation of information in an external representation affects reasoning and decision making. This exploratory study examined whether the type of process map - sequential or hierarchical - affects healthcare practitioners' judgments. A sequential and a hierarchical process map of a community-based anti coagulation clinic were produced based on data obtained from interviews, talk-throughs, attendance at a training session and examination of protocols and policies. Clinic practitioners were asked to specify the parts of the process that they judged to contain quality and safety concerns. The process maps were then shown to them in counter-balanced order and they were asked to circle on the diagrams the parts of the process where they had the greatest quality and safety concerns. A structured interview was then conducted, in which they were asked about various aspects of the diagrams. Quality and safety concerns cited by practitioners differed depending on whether they were or were not looking at a process map, and whether they were looking at a sequential diagram or a hierarchical diagram. More concerns were identified using the hierarchical diagram compared with the sequential diagram and more concerns were identified in relation to clinical work than administrative work. Participants' preference for the sequential or hierarchical diagram depended on the context in which they would be using it. The difficulties of determining the boundaries for the analysis and the granularity required were highlighted. The results indicated that the layout of a process map does influence perceptions of quality and safety problems in a process. In

  5. Functional mapping of language networks in the normal brain using a word-association task

    Directory of Open Access Journals (Sweden)

    Ghosh Shantanu

    2010-01-01

    Full Text Available Background: Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. Aim: The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI in normal human subjects. Materials and Methods: Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2FNx01-weighted gradient-echo echo-planar imaging (GE-EPI sequence (TR 4523 ms, TE 64 ms, flip angle 90º with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2 with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Results: Single subject analysis of the functional data (FWE-corrected, P≤0.001 revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG, superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG, anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001 revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Conclusions: Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these

  6. Transient and linearly graded deactivation of the human default-mode network by a visual detection task.

    Science.gov (United States)

    Singh, K D; Fawcett, I P

    2008-05-15

    In this fMRI study, we show that an extended network of brain areas, previously described as the default-mode network, is suppressed during the performance of a global visual motion discrimination task. For the first time, we demonstrate that this network is transiently suppressed in an event-related fashion, reflecting a true negative activation compared to baseline, and that this deactivation occurs in a strongly graded fashion depending on the strength of the global motion signal. Deactivation across the network varied in an inverse linear relationship with motion coherency, demonstrating that the strongest suppression occurs for the most error-prone tasks. Deactivations were absent for the easiest of the tasks (100% coherence). We also show that the magnitude of task-related activation of the individual sub-components of the default-mode network are strongly correlated, indicating a highly integrated system. The results offer a striking indication of a rapid, highly reactive and tunable system within the brain for active suppression of this network of brain areas.

  7. 3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries.

    Science.gov (United States)

    Xie, Xiuqiang; Chen, Shuangqiang; Sun, Bing; Wang, Chengyin; Wang, Guoxiu

    2015-09-07

    Low-cost and sustainable sodium-ion batteries are regarded as a promising technology for large-scale energy storage and conversion. The development of high-rate anode materials is highly desirable for sodium-ion batteries. The optimization of mass transport and electron transfer is crucial in the discovery of electrode materials with good high-rate performances. Herein, we report the synthesis of 3 D interconnected SnO2 /graphene aerogels with a hierarchically porous structure as anode materials for sodium-ion batteries. The unique 3 D architecture was prepared by a facile in situ process, during which cross-linked 3 D conductive graphene networks with macro-/meso-sized hierarchical pores were formed and SnO2 nanoparticles were dispersed uniformly on the graphene surface simultaneously. Such a 3 D functional architecture not only facilitates the electrode-electrolyte interaction but also provides an efficient electron pathway within the graphene networks. When applied as anode materials in sodium-ion batteries, the as-prepared SnO2 /graphene aerogel exhibited high reversible capacity, improved cycling performance compared to SnO2 , and promising high-rate capability.

  8. Structural changes in the minimal spanning tree and the hierarchical network in the Korean stock market around the global financial crisis

    Science.gov (United States)

    Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo

    2015-04-01

    This paper considers stock prices in the Korean stock market during the 2008 global financial crisis by focusing on three time periods: before, during, and after the crisis. Complex networks are extracted from cross-correlation coefficients between the normalized logarithmic return of the stock price time series of firms. The minimal spanning trees (MSTs) and the hierarchical network (HN) are generated from cross-correlation coefficients. Before and after the crisis, securities firms are located at the center of the MST. During the crisis, however, the center of the MST changes to a firm in heavy industry and construction. During the crisis, the MST shrinks in comparison to that before and that after the crisis. This topological change in the MST during the crisis reflects a distinct effect of the global financial crisis. The cophenetic correlation coefficient increases during the crisis, indicating an increase in the hierarchical structure during in this period. When crisis hits the market, firms behave synchronously, and their correlations are higher than those during a normal period.

  9. PLANT - An experimental task for the study of human problem solving in process control. [Production Levels and Network Troubleshooting

    Science.gov (United States)

    Morris, N. M.; Rouse, W. B.; Fath, J. L.

    1985-01-01

    An experimental tool for the investigation of human problem-solving behavior is introduced. Production Levels and Network Troubleshooting (PLANT) is a computer-based process-control task which may be used to provide opportunities for subjects to control a dynamic system and diagnose, repair, and compensate for system failures. The task is described in detail, and experiments which have been conducted using PLANT are briefly discussed.

  10. Face-name association task reveals memory networks in patients with left and right hippocampal sclerosis.

    Science.gov (United States)

    Klamer, Silke; Milian, Monika; Erb, Michael; Rona, Sabine; Lerche, Holger; Ethofer, Thomas

    2017-01-01

    We aimed to identify reorganization processes of episodic memory networks in patients with left and right temporal lobe epilepsy (TLE) due to hippocampal sclerosis as well as their relations to neuropsychological memory performance. We investigated 28 healthy subjects, 12 patients with left TLE (LTLE) and 9 patients with right TLE (RTLE) with hippocampal sclerosis by means of functional magnetic resonance imaging (fMRI) using a face-name association task, which combines verbal and non-verbal memory functions. Regions-of-interest (ROIs) were defined based on the group results of the healthy subjects. In each ROI, fMRI activations were compared across groups and correlated with verbal and non-verbal memory scores. The face-name association task yielded activations in bilateral hippocampus (HC), left inferior frontal gyrus (IFG), left superior frontal gyrus (SFG), left superior temporal gyrus, bilateral angular gyrus (AG), bilateral medial prefrontal cortex and right anterior temporal lobe (ATL). LTLE patients demonstrated significantly less activation in the left HC and left SFG, whereas RTLE patients showed significantly less activation in the HC bilaterally, the left SFG and right AG. Verbal memory scores correlated with activations in the left and right HC, left SFG and right ATL and non-verbal memory scores with fMRI activations in the left and right HC and left SFG. The face-name association task can be employed to examine functional alterations of hippocampal activation during encoding of both verbal and non-verbal material in one fMRI paradigm. Further, the left SFG seems to be a convergence region for encoding of verbal and non-verbal material.

  11. Phase-Controlled Iron Oxide Nanobox Deposited on Hierarchically Structured Graphene Networks for Lithium Ion Storage and Photocatalysis

    Science.gov (United States)

    Yun, Sol; Lee, Young-Chul; Park, Ho Seok

    2016-01-01

    The phase control, hierarchical architecturing and hybridization of iron oxide is important for achieving multifunctional capability for many practical applications. Herein, hierarchically structured reduced graphene oxide (hrGO)/α-Fe2O3 and γ-Fe3O4 nanobox hybrids (hrGO/α-Fe and hrGO/γ-Fe NBhs) are synthesized via a one-pot, hydrothermal process and their functionality controlled by the crystalline phases is adapted for energy storage and photocatalysis. The three-dimensionally (3D) macroporous structure of hrGO/α-Fe NBhs is constructed, while α-Fe2O3 nanoboxes (NBs) in a proximate contact with the hrGO surface are simultaneously grown during a hydrothermal treatment. The discrete α-Fe2O3 NBs are uniformly distributed on the surface of the hrGO/α-Fe and confined in the 3D architecture, thereby inhibiting the restacking of rGO. After the subsequent phase transition into γ-Fe3O4, the hierarchical structure and the uniform distribution of NBs are preserved. Despite lower initial capacity, the hrGO/α-Fe NBhs show better rate and cyclic performances than those of commercial rGO/α-Fe due to the uniform distribution of discrete α-Fe2O3 NBs and electronic conductivity, macroporosity, and buffering effect of the hrGO for lithium ion battery anodes. Moreover, the catalytic activity and kinetics of hrGO/γ-Fe NBhs are enhanced for photo-Fenton reaction because of the uniform distribution of discrete γ-Fe3O4 NBs on the 3D hierarchical architecture.

  12. ‘Do I like this person?’ A network analysis of midline cortex during a social preference task

    Science.gov (United States)

    Chen, Ashley C.; Welsh, Robert C.; Liberzon, Israel; Taylor, Stephan F.

    2010-01-01

    Human communication and survival depend on effective social information processing. Abundant behavioral evidence has shown that humans efficiently judge preferences for other individuals, a critical task in social interaction, yet the neural mechanism of this basic social evaluation, remains less than clear. Using a social-emotional preference task and connectivity analyses (psycho-physiological interaction) of fMRI data, we first demonstrated that cortical midline structures (medial prefrontal and posterior cingulate cortices) and the task-positive network typically implicated in carrying out goal-directed tasks (pre-supplementary motor area, dorsal anterior cingulate and bilateral frontoparietal cortices) were both recruited when subjects made a preference judgment, relative to gender identification, to human faces. Connectivity analyses further showed network interactions among these cortical midline structures, and with the task-positive network, both of which vary as a function of social preference. Overall, the data demonstrate the involvement of cortical midline structures in forming social preference, and provide evidence of network interactions which might reflect a mechanism by which an individual regularly forms and expresses this fundamental decision. PMID:20188190

  13. Hierarchical photocatalysts.

    Science.gov (United States)

    Li, Xin; Yu, Jiaguo; Jaroniec, Mietek

    2016-05-01

    As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.

  14. Method of multi-UAV hierarchical task allocation%一种多无人机层次化任务分配方法

    Institute of Scientific and Technical Information of China (English)

    谭何顺; 曹雷; 彭辉; 潘明聪

    2014-01-01

    Multi-UAV ( unmanned aerial vehicle) task assignment is a key issue in the field of unmanned combat command and control. To improve the efficiency and rationality of algorithm for large-scale task assignment, a grouping method was first presented based on combination of task constraints and ISODATA( iterative self-organizing data analysis technique) algorithm. On the basis of the task grouping, a coarse-grained task assignment method was proposed based on UAV group resource welfare from the perspective of load balance. Combined with PSO( particle swarm optimization) a fine-grained task assignment algorithm was given. The simulation proves better effective per-formance and more flexibility than the ordinary task allocation algorithm.%针对大规模任务分配问题,为了提高任务分配的效率和合理性,提出了基于任务依赖关系和ISODA-TA算法相结合的任务分组方法。在任务分组基础上,从无人机负载均衡的角度出发,提出了基于资源福利的任务组级粗粒度任务分配方法,结合粒子群算法提出了任务组内的细粒度任务分配算法。通过实验仿真验证所提方法有效,且性能和灵活性较普通任务分配算法有较大的优势。

  15. A decaying factor accounts for contained activity in neuronal networks with no need of hierarchical or modular organization

    CERN Document Server

    Amancio, Diego R; Costa, Luciano da F

    2012-01-01

    The mechanisms responsible for contention of activity in systems represented by networks are crucial in various phenomena, as in diseases such as epilepsy that affects the neuronal networks, and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided in modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory through which activity contention is reached by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, viz. random, Barabasi-Albert and geographical networks. The generality of this ...

  16. Feynman Clocks, Causal Networks, and The Origin of Hierarchical "Arrows of Time" in Complex Systems; 1, "Conjectures"

    CERN Document Server

    Hitchcock, S M

    2000-01-01

    A theory of time as 'information' is outlined using new tools such as Feynman Clocks (FCs), Collective Excitation Networks (CENs), Sequential Excitation Networks (SENs), and Plateaus of Complexity (POCs). Applications of this approach range from the Big Bang to the emergence of 'consciousness'. Keywords: the 'problem of time', the 'direction' and 'dimension' of time, causal networks, entangled states, decoherence, excitons, kaons, time reversal, time travel, photosynthesis, the double slit experiment, quantum computers, unification of the fundamental interactions of matter, neural networks, quantum gravity, CMB radiation, quintessence, the anthropic principle, and quantum cosmology.

  17. A neural network approach to fMRI binocular visual rivalry task analysis.

    Directory of Open Access Journals (Sweden)

    Nicola Bertolino

    Full Text Available The purpose of this study was to investigate whether artificial neural networks (ANN are able to decode participants' conscious experience perception from brain activity alone, using complex and ecological stimuli. To reach the aim we conducted pattern recognition data analysis on fMRI data acquired during the execution of a binocular visual rivalry paradigm (BR. Twelve healthy participants were submitted to fMRI during the execution of a binocular non-rivalry (BNR and a BR paradigm in which two classes of stimuli (faces and houses were presented. During the binocular rivalry paradigm, behavioral responses related to the switching between consciously perceived stimuli were also collected. First, we used the BNR paradigm as a functional localizer to identify the brain areas involved the processing of the stimuli. Second, we trained the ANN on the BNR fMRI data restricted to these regions of interest. Third, we applied the trained ANN to the BR data as a 'brain reading' tool to discriminate the pattern of neural activity between the two stimuli. Fourth, we verified the consistency of the ANN outputs with the collected behavioral indicators of which stimulus was consciously perceived by the participants. Our main results showed that the trained ANN was able to generalize across the two different tasks (i.e. BNR and BR and to identify with high accuracy the cognitive state of the participants (i.e. which stimulus was consciously perceived during the BR condition. The behavioral response, employed as control parameter, was compared with the network output and a statistically significant percentage of correspondences (p-value <0.05 were obtained for all subjects. In conclusion the present study provides a method based on multivariate pattern analysis to investigate the neural basis of visual consciousness during the BR phenomenon when behavioral indicators lack or are inconsistent, like in disorders of consciousness or sedated patients.

  18. Hierarchical task allocation for heterogeneous multi-UAV in an urban terrain%城市环境下的异构多无人机层次化任务分配

    Institute of Scientific and Technical Information of China (English)

    丁臻极; 王从庆; 丛楚滢; 李志宇

    2015-01-01

    A hierarchical task allocation of MUAV and SUAV was proposed to solve the problem of multi-UAV application in an urban terrain.The influence factor on task success rate of SUAV was an-alysed,which was also added to the objective function to build the task allocation model inside the de-tection range.The particle swarm optimization (PSO)algorithm for solving the problem was presen-ted,based on the strategy that the inertia weight declined with the concave function.Search operator of artificial bee colony was also introduced into the algorithm to solve the problems of premature con-vergence frequently appeared in standard PSO algorithm and its poor convergence.The simulation re-sults show that the model and the algorithm can effectively solve the hierarchical task allocation for heterogeneous multi-UAV in an urban terrain.%针对多无人机应用于城市环境问题,设计了一种 MUAV 与 SUAV 层次化任务分配方案,并分析了MUAV 对 SUAV 执行目标任务成功率的影响,将影响因子加入目标函数,提出了一种无人机探测范围内的层次化任务分配模型。采用连续粒子群(PSO)算法对问题进行求解,通过加入惯性权重的凹函数递减策略与将人工蜂群(ABC)算法引入到粒子群迭代环节,较好地解决粒子群算法易陷入局部最优的问题,同时提高算法收敛速度。仿真结果表明所提出的模型可以较好地解决城市环境下的多无人机层次化任务分配问题。

  19. A neural signature of hierarchical reinforcement learning.

    Science.gov (United States)

    Ribas-Fernandes, José J F; Solway, Alec; Diuk, Carlos; McGuire, Joseph T; Barto, Andrew G; Niv, Yael; Botvinick, Matthew M

    2011-07-28

    Human behavior displays hierarchical structure: simple actions cohere into subtask sequences, which work together to accomplish overall task goals. Although the neural substrates of such hierarchy have been the target of increasing research, they remain poorly understood. We propose that the computations supporting hierarchical behavior may relate to those in hierarchical reinforcement learning (HRL), a machine-learning framework that extends reinforcement-learning mechanisms into hierarchical domains. To test this, we leveraged a distinctive prediction arising from HRL. In ordinary reinforcement learning, reward prediction errors are computed when there is an unanticipated change in the prospects for accomplishing overall task goals. HRL entails that prediction errors should also occur in relation to task subgoals. In three neuroimaging studies we observed neural responses consistent with such subgoal-related reward prediction errors, within structures previously implicated in reinforcement learning. The results reported support the relevance of HRL to the neural processes underlying hierarchical behavior.

  20. The Physics of Neural Networks

    Science.gov (United States)

    Gutfreund, Hanoch; Toulouse, Gerard

    The following sections are included: * Introduction * Historical Perspective * Why Statistical Physics? * Purpose and Outline of the Paper * Basic Elements of Neural Network Models * The Biological Neuron * From the Biological to the Formal Neuron * The Formal Neuron * Network Architecture * Network Dynamics * Basic Functions of Neural Network Models * Associative Memory * Learning * Categorization * Generalization * Optimization * The Hopfield Model * Solution of the Model * The Merit of the Hopfield Model * Beyond the Standard Model * The Gardner Approach * A Microcanonical Formulation * The Case of Biased Patterns * A Canonical Formulation * Constraints on the Synaptic Weights * Learning with Errors * Learning with Noise * Hierarchically Correlated Data and Categorization * Hierarchical Data Structures * Storage of Hierarchical Data Structures * Categorization * Generalization * Learning a Classification Task * The Reference Perceptron Problem * The Contiguity Problem * Discussion - Issues of Relevance * The Notion of Attractors and Modes of Computation * The Nature of Attractors * Temporal versus Spatial Coding * Acknowledgements * References

  1. Beta and gamma oscillatory activities associated with olfactory memory tasks: Different rhythms for different functional networks?

    Directory of Open Access Journals (Sweden)

    Claire eMartin

    2014-06-01

    Full Text Available Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform and entorhinal cortices and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to ‘bind’ distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz and gamma (60-100 Hz. While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  2. Performance Analysis of Hierarchical Group Key Management Integrated with Adaptive Intrusion Detection in Mobile ad hoc Networks

    Science.gov (United States)

    2016-04-05

    applications in wireless networks such as military battlefields, emergency response, mobile commerce , online gaming, and collaborative work are based on the...represents that important data are compromised. The second condition represents that the mobile group is unable to function correctly and is compromised as a...include mobile computing, wireless systems, dependable and secure computing, multimedia, sensor networks, data and service management, trust management

  3. Assessing the effect of quantitative and qualitative predictors on gastric cancer individuals survival using hierarchical artificial neural network models.

    Science.gov (United States)

    Amiri, Zohreh; Mohammad, Kazem; Mahmoudi, Mahmood; Parsaeian, Mahbubeh; Zeraati, Hojjat

    2013-01-01

    There are numerous unanswered questions in the application of artificial neural network models for analysis of survival data. In most studies, independent variables have been studied as qualitative dichotomous variables, and results of using discrete and continuous quantitative, ordinal, or multinomial categorical predictive variables in these models are not well understood in comparison to conventional models. This study was designed and conducted to examine the application of these models in order to determine the survival of gastric cancer patients, in comparison to the Cox proportional hazards model. We studied the postoperative survival of 330 gastric cancer patients who suffered surgery at a surgical unit of the Iran Cancer Institute over a five-year period. Covariates of age, gender, history of substance abuse, cancer site, type of pathology, presence of metastasis, stage, and number of complementary treatments were entered in the models, and survival probabilities were calculated at 6, 12, 18, 24, 36, 48, and 60 months using the Cox proportional hazards and neural network models. We estimated coefficients of the Cox model and the weights in the neural network (with 3, 5, and 7 nodes in the hidden layer) in the training group, and used them to derive predictions in the study group. Predictions with these two methods were compared with those of the Kaplan-Meier product limit estimator as the gold standard. Comparisons were performed with the Friedman and Kruskal-Wallis tests. Survival probabilities at different times were determined using the Cox proportional hazards and a neural network with three nodes in the hidden layer; the ratios of standard errors with these two methods to the Kaplan-Meier method were 1.1593 and 1.0071, respectively, revealed a significant difference between Cox and Kaplan-Meier (P neural network, and the neural network and the standard (Kaplan-Meier), as well as better accuracy for the neural network (with 3 nodes in the hidden layer

  4. The Reference Ability Neural Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults.

    Science.gov (United States)

    Habeck, C; Gazes, Y; Razlighi, Q; Steffener, J; Brickman, A; Barulli, D; Salthouse, T; Stern, Y

    2016-01-15

    Analyses of large test batteries administered to individuals ranging from young to old have consistently yielded a set of latent variables representing reference abilities (RAs) that capture the majority of the variance in age-related cognitive change: Episodic Memory, Fluid Reasoning, Perceptual Processing Speed, and Vocabulary. In a previous paper (Stern et al., 2014), we introduced the Reference Ability Neural Network Study, which administers 12 cognitive neuroimaging tasks (3 for each RA) to healthy adults age 20-80 in order to derive unique neural networks underlying these 4 RAs and investigate how these networks may be affected by aging. We used a multivariate approach, linear indicator regression, to derive a unique covariance pattern or Reference Ability Neural Network (RANN) for each of the 4 RAs. The RANNs were derived from the neural task data of 64 younger adults of age 30 and below. We then prospectively applied the RANNs to fMRI data from the remaining sample of 227 adults of age 31 and above in order to classify each subject-task map into one of the 4 possible reference domains. Overall classification accuracy across subjects in the sample age 31 and above was 0.80±0.18. Classification accuracy by RA domain was also good, but variable; memory: 0.72±0.32; reasoning: 0.75±0.35; speed: 0.79±0.31; vocabulary: 0.94±0.16. Classification accuracy was not associated with cross-sectional age, suggesting that these networks, and their specificity to the respective reference domain, might remain intact throughout the age range. Higher mean brain volume was correlated with increased overall classification accuracy; better overall performance on the tasks in the scanner was also associated with classification accuracy. For the RANN network scores, we observed for each RANN that a higher score was associated with a higher corresponding classification accuracy for that reference ability. Despite the absence of behavioral performance information in the

  5. Neural-network-based two-loop control of robotic manipulators including actuator dynamics in task space

    Institute of Scientific and Technical Information of China (English)

    Liangyong WANG; Tianyou CHAI; Zheng FANG

    2009-01-01

    A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies.

  6. Regularization of non-homogeneous dynamic Bayesian networks with global information-coupling based on hierarchical Bayesian models

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2013-01-01

    To relax the homogeneity assumption of classical dynamic Bayesian networks (DBNs), various recent studies have combined DBNs with multiple changepoint processes. The underlying assumption is that the parameters associated with time series segments delimited by multiple changepoints are a priori inde

  7. Enhanced Deployment Strategy for Role-Based Hierarchical Application Agents in Wireless Sensor Networks with Established Clusterheads

    Science.gov (United States)

    Gendreau, Audrey

    2014-01-01

    Efficient self-organizing virtual clusterheads that supervise data collection based on their wireless connectivity, risk, and overhead costs, are an important element of Wireless Sensor Networks (WSNs). This function is especially critical during deployment when system resources are allocated to a subsequent application. In the presented research,…

  8. Hierarchical state space partitioning with a network self-organising map for the recognition of ST-T segment changes.

    Science.gov (United States)

    Bezerianos, A; Vladutu, L; Papadimitriou, S

    2000-07-01

    The problem of maximising the performance of ST-T segment automatic recognition for ischaemia detection is a difficult pattern classification problem. The paper proposes the network self-organising map (NetSOM) model as an enhancement to the Kohonen self-organised map (SOM) model. This model is capable of effectively decomposing complex large-scale pattern classification problems into a number of partitions, each of which is more manageable with a local classification device. The NetSOM attempts to generalize the regularization and ordering potential of the basic SOM from the space of vectors to the space of approximating functions. It becomes a device for the ordering of local experts (i.e. independent neural networks) over its lattice of neurons and for their selection and co-ordination. Each local expert is an independent neural network that is trained and activated under the control of the NetSOM. This method is evaluated with examples from the European ST-T database. The first results obtained after the application of NetSOM to ST-T segment change recognition show a significant improvement in the performance compared with that obtained with monolithic approaches, i.e. with single network types. The basic SOM model has attained an average ischaemic beat sensitivity of 73.6% and an average ischaemic beat predictivity of 68.3%. The work reports and discusses the improvements that have been obtained from the implementation of a NetSOM classification system with both multilayer perceptrons and radial basis function (RBF) networks as local experts for the ST-T segment change problem. Specifically, the NetSOM with multilayer perceptrons (radial basis functions) as local experts has improved the results over the basic SOM to an average ischaemic beat sensitivity of 75.9% (77.7%) and an average ischaemic beat predictivity of 72.5% (74.1%).

  9. Task-dependent changes in cross-level coupling between single neurons and oscillatory activity in multiscale networks.

    Directory of Open Access Journals (Sweden)

    Ryan T Canolty

    Full Text Available Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC or under direct neural control through a brain-machine interface (Brain Control, BC. In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10-45 Hz during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to

  10. Augmented Teams -- Assembling Smart Sensors, Intelligent Networks and Humans into Agile Task Groups

    NARCIS (Netherlands)

    Neef, R.M.; Rijn, M. van; Marck, J.W.; Keus, D.

    2009-01-01

    Safety and security environments are full of networked devices. Despite ample research on sensor networks and network technology, there is little practical comprehensive work on how to incorporate such technologies effectively into human-centered teams. This paper discusses the challenge of assembli

  11. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage

    Science.gov (United States)

    Lee, Byeongyong; Lee, Chongmin; Liu, Tianyuan; Eom, Kwangsup; Chen, Zhongming; Noda, Suguru; Fuller, Thomas F.; Jang, Hee Dong; Lee, Seung Woo

    2016-06-01

    Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNTs. These results highlight the importance of microstructure design coupled with oxygen chemistry control, to maximize the surface redox reactions on functionalized graphene based electrodes.Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes

  12. A Predictive Task Network Model for Estimating the Effectiveness of Decision Aids for Sonar Operators

    Science.gov (United States)

    2006-01-01

    METHOD 2.1 Building the model Using existing task analyses of navy sonar systems (Matthews, Greenley and Webb, 1991) and with the assistance of...Critical Operator Tasks. DRDC Toronto Report # CR-2003-131 Matthews, M.L., Greenley , M. and Webb, R.D.G (1991). Presentation of Information from Towed

  13. Clustering of resting state networks.

    Directory of Open Access Journals (Sweden)

    Megan H Lee

    Full Text Available BACKGROUND: The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm. METHODOLOGY/PRINCIPAL FINDINGS: The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization. CONCLUSIONS/SIGNIFICANCE: The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized.

  14. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  15. 网格计算中基于信任机制的层次任务调度模型%Hierarchical task scheduling model based on trust mechanism in grid computing.

    Institute of Scientific and Technical Information of China (English)

    胡艳华; 王志斌; 李健军

    2012-01-01

    提出了一种分布式层次任务调度模型,该模型将任务调度分两层进行,并且将信任机制引入其中以提高网格的服务质量及运行效率.提出了适应该模型的调度算法,算法同时考虑了网格实体间的信任关系、预测执行时间、QoS需求和价格因素,并动态调整它们在交易中所占的比重,从而较好地适应不同用户的需求.分析和仿真表明,该调度模型增强了网格环境的安全性和适用性,提高了执行效率,并降低了交易失败率.%This paper proposes a hierarchical task scheduling model that divides the task scheduling into two parts, the choice of the resource site and local scheduling within the resource site, and in the first part, it introduces trust mechanism. Then it presents the appropriate algorithm, which not only takes the trust relationship between girding entities, the requirements of QoS and price factors into account, but also adjusts their weights dynamically in the exchange. The final simulization and anlysis show the model can effectively increase the security and efficiency of the Grid system.

  16. Hierarchical architecture of active knits

    Science.gov (United States)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-12-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm.

  17. Reduced load-dependent default mode network deactivation across executive tasks in schizophrenia spectrum disorders

    Directory of Open Access Journals (Sweden)

    Beathe Haatveit

    2016-01-01

    Conclusion: These results support a general load-dependent DMN dysfunction in schizophrenia spectrum disorder across two demanding executive tasks that is not merely an epiphenomenon of cognitive dysfunction.

  18. Mission-Centered Network Models: Defending Mission-Critical Tasks From Deception

    Science.gov (United States)

    2015-09-29

    be dynamically changed in terms of what tasks should be reformulated or added in order to make the mission possible given the ongoing threat. • We...workflow specifications at the domain layer: 1. A language must be developed to express domain tasks with sufficient generality to encompass...provenance records. In addition, we use two extensions of these languages that are more specific to workflows and enable us to represent workflow

  19. Hierarchical Heteroclinics in Dynamical Model of Cognitive Processes: Chunking

    Science.gov (United States)

    Afraimovich, Valentin S.; Young, Todd R.; Rabinovich, Mikhail I.

    Combining the results of brain imaging and nonlinear dynamics provides a new hierarchical vision of brain network functionality that is helpful in understanding the relationship of the network to different mental tasks. Using these ideas it is possible to build adequate models for the description and prediction of different cognitive activities in which the number of variables is usually small enough for analysis. The dynamical images of different mental processes depend on their temporal organization and, as a rule, cannot be just simple attractors since cognition is characterized by transient dynamics. The mathematical image for a robust transient is a stable heteroclinic channel consisting of a chain of saddles connected by unstable separatrices. We focus here on hierarchical chunking dynamics that can represent several cognitive activities. Chunking is the dynamical phenomenon that means dividing a long information chain into shorter items. Chunking is known to be important in many processes of perception, learning, memory and cognition. We prove that in the phase space of the model that describes chunking there exists a new mathematical object — heteroclinic sequence of heteroclinic cycles — using the technique of slow-fast approximations. This new object serves as a skeleton of motions reflecting sequential features of hierarchical chunking dynamics and is an adequate image of the chunking processing.

  20. Robust central pattern generators for embodied hierarchical reinforcement learning

    NARCIS (Netherlands)

    Snel, M.; Whiteson, S.; Kuniyoshi, Y.

    2011-01-01

    Hierarchical organization of behavior and learning is widespread in animals and robots, among others to facilitate dealing with multiple tasks. In hierarchical reinforcement learning, agents usually have to learn to recombine or modulate low-level behaviors when facing a new task, which costs time t

  1. The environmental factors effect on the task vectors of holistic marketing of retail-networks on the food market

    Directory of Open Access Journals (Sweden)

    O.O. Shubin

    2013-12-01

    Full Text Available The aim of the article. The purpose of the article is to develop evaluation criteria and testing their determination in the interaction of sellers and consumers. It is shown that formation of a single market space forcing the participants to consider the requirements and environmental factors in the formation of significant competitive advantage. Such factors as general environment and factors of entourage are taken into consideration. The results of the analysis. The paper deals with the study of marketing environment factors and their impact on marketing task vectors of trading networks. The authors propose to use holistic marketing principles for strategy building on the basis of identifying and benchmarking assessments through the interaction of all components of the network elements. It is highlighted that the largest value in the system interact of domestic partnerships is their perception and commitment to specific factors interact. Conducted testing, for example retail network «glutton», gives opportunity to develop vectors` objectives. The hypothesis of the need to study the specific results of business and interpersonal communication internal and external partners is proposed. The mentioned results of diagnostics through perception model interact of participants in marketing business system can be useful in the sphere of retail network in the food market. Conclusions and directions of further researches. The designated development strategy forms the basis metavalue by establishing and maintaining of sustainable business interactions. The authors proposed the basic differentiators: customer satisfaction, convenience, value of use, commitment, feedback. The main results of the development and the use of differentiators should increase the efficiency of firm contacts with the client, seller or buyer through attracting of customers to the business of commercial enterprises. The key advantages of system vectors tasks were marked. In order

  2. Stability and Change in the Informal Task Support Network of Frail Older Persons.

    Science.gov (United States)

    Miller, Baila; McFall, Stephanie

    1991-01-01

    Examined predictors of stability and change in informal support networks of frail elders and primary caregivers. Data from 1982 and 1984 National Long Term Care Surveys and 1982 Informal Caregivers Survey revealed that changes in network size and intensity of help occurred in response to changes in health and functional status of frail elder, not…

  3. Tinnitus- and Task-Related Differences in Resting-State Networks

    NARCIS (Netherlands)

    Lanting, Cris; Wozniak, Aron; van Dijk, Pim; Langers, Dave R. M.; VanDijk, P; Baskent, D; Gaudrain, E; DeKleine, E; Wagner, A; Lanting, C

    2016-01-01

    We investigated tinnitus-related differences in functional networks in adults with tinnitus by means of a functional connectivity study. Previously it was found that various networks show differences in connectivity in patients with tinnitus compared to controls. How this relates to patients' ongoin

  4. Energy Efficient Hierarchical Collaboration Coverage Model in Wireless Sensor Network%WSN中能量有效的分层协作覆盖模型

    Institute of Scientific and Technical Information of China (English)

    杨勇; 夏士雄; 周勇

    2012-01-01

    针对传统网络覆盖模型仅以区域覆盖率作为评价标准,而未考察不同覆盖模型下节点能量有效性问题,在协作覆盖模型的基础上,提出了能量有效的分层协作覆盖模型EEHCCM(energy efficient hierarchical collaboration coverage model),并应用蚁群优化算法进行求解.该模型通过对目标区域进行分层,并优化各个层内的节点数目来实现节点能量的能耗均衡.提出了基于分层协作覆盖模型的启发式因子和全覆盖条件下节点数量的上下限的计算方法.通过Matlab仿真实验,其结果表明,应用EEHCCM模型实现目标区域节点的部署,在同等覆盖能力下,网络的生存时间可以得到较大的提升,与传统的覆盖算法相比,更适用于实际的节点部署.%Since the node's energy dissipation model is not taken in to account in the traditional coverage models, based on the collaboration coverage model, the energy efficient hierarchical collaboration coverage model is proposed, which can evenly balance the energy dissipation among different layers in the target monitor area. This paper solves two specific problems in the ant colony solution. They are a formula of heuristic factor calculating for the model and the upper and lower bounds of node numbers. Simulations in Matlab show that the proposed model is more suitable for practical deployment which can evidently prolong the network lifetime.

  5. Communication Network Community Detection Algorithm Orienting Hierarchical Structure Analysis%面向层次结构分析的通信网络社区检测算法

    Institute of Scientific and Technical Information of China (English)

    陈鸿昶; 李印海; 刘力雄

    2011-01-01

    In order to detect communication community and analyze its hierarchical structure of a communication network, this paper presents a community detection algorithm based on reachable communication distance ordering. By building multi-resolution embedded tree of communication density, it can display the hierarchical structure and key members of a community. Via pruning the embedded tree, computation complexity can be reduced in the process of community detection and hierarchical structure analysis. Experimental results on artificially synthesized network data and real network data approve that the algorithm is effective.%针对通信网络社区发现及其层次结构分析问题,提出一种基于可达通信距离排序的通信社区检测算法,通过建立通信密度的多分辨率嵌套树,展示社区的层次关系和核心成员,并对嵌套树进行修剪,从而在实现社区发现与层次结构分析的同时降低计算复杂度.对人工合成网络和真实网络数据进行测试,结果表明该算法有效.

  6. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    edu, Janet. twomey@wichita. [Wichita State Univ., KS (United States)

    2010-04-30

    This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  7. Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks.

    Science.gov (United States)

    Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Solaro, Roberto; Starita, Antonina; Tiné, Maria Rosaria

    2009-04-01

    This paper reports some recent results from the empirical evaluation of different types of structured molecular representations used in QSPR analysis through a recursive neural network (RNN) model, which allows for their direct use without the need for measuring or computing molecular descriptors. This RNN methodology has been applied to the prediction of the properties of small molecules and polymers. In particular, three different descriptions of cyclic moieties, namely group, template and cyclebreak have been proposed. The effectiveness of the proposed method in dealing with different representations of chemical structures, either specifically designed or of more general use, has been demonstrated by its application to data sets encompassing various types of cyclic structures. For each class of experiments a test set with data that were not used for the development of the model was used for validation, and the comparisons have been based on the test results. The reported results highlight the flexibility of the RNN in directly treating different classes of structured input data without using input descriptors.

  8. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Mathilde de Taffin

    Full Text Available Collier, the single Drosophila COE (Collier/EBF/Olf-1 transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.

  9. An Exploratory Investigation of Functional Network Connectivity of Empathy and Default Mode Networks in a Free-Viewing Task.

    Science.gov (United States)

    Vemuri, Kavita; Surampudi, Bapi Raju

    2015-08-01

    This study reports dynamic functional network connectivity (dFNC) analysis on time courses of putative empathy networks-cognitive, emotional, and motor-and the default mode network (DMN) identified from independent components (ICs) derived by the group independent component analysis (ICA) method. The functional magnetic resonance imaging (fMRI) data were collected from 15 subjects watching movies of three genres, an animation (S1), Indian Hindi (S2), and a Hollywood English (S3) movie. The hypothesis of the study is that empathic engagement in a movie narrative would modulate the activation with the DMN. The clippings were individually rated for emotional expressions, context, and empathy self-response by the fMRI subjects post scanning and by 40 participants in an independent survey who rated at four time intervals in each clipping. The analysis illustrates the following: (a) the ICA method separated ICs with areas reported for empathy response and anterior/posterior DMNs. An IC indicating insula region activation reported to be crucial for the emotional empathy network was separated for S2 and S3 movies only, but not for S1, (b) the dFNC between DMN and ICs corresponding to cognitive empathy network showed higher positive periodical fluctuating correlations for all three movies, while ICs with areas crucial to motor or emotional empathy display lower positive or negative correlation values with no distinct periodicity. A possible explanation for the lower values and anticorrelation between the DMN and emotional empathy networks could possibly be inhibition due to internal self-reflections, attributed to DMN, while processing and preparing a response to external emotional content. The positive higher correlation values for cognitive empathy networks may reflect a functional overlap with DMN for enhanced internal self-reflections, inferring beliefs and intentions about the 'other', all triggered by the external stimuli. The findings are useful in the study of

  10. Routing Algorithm of Hierarchical Wireless Sensor Network%一种基于分层无线传感器网络的路由算法

    Institute of Scientific and Technical Information of China (English)

    邹瑜; 彭舰; 黎红友

    2012-01-01

    在多跳无线传感器网络中,靠近sink的节点由于需要转发来自外部的数据,其能量消耗速度快于离sink较远的节点,从而导致“能量空洞”的出现.采用分层的网络结构能够有效延迟能量空洞的出现.在分析现有路由算法 的基础上,结合分层的思想,对现有算法的路由算法进行了改进,提出了分层网络中各层环内最佳簇头和成簇概率的计算方法.在路由发现阶段引入了簇头路由指标,用于控制路由簇头接纳的路由数量,从而平衡了环内各个路由簇头的能量消耗.仿真实验结果表明,新的路由算法在网络生存时间、能耗均匀程度方面均优于现有算法.%Cluster-heads closer to the sink are burdened with heavy relay traffic and incline to die early, because the clustesr-heads transmit their data to sink via multi-hop communication. And this phenomenon is known as "energy hole". It wasproved that the architecture of hierarchical network can effectively delay the energy hole problem. Based on the method of the main routing algorithms, the existing routing algorithms was improved in computing the number of optimal cluster-head and the probability of each node being cluster-head, in every annular network. Considering the thought of hierarchy,cluster-head routing quota (CRQ) algorithm was proposed,which can be used to control the accepting numbers of each router,in phrase of routing detecting. Thus,it meets the demand of evenly consuming the ener-gy of each cluster-head located in the same ring. Simulation results demonstrate that the new algorithm is better than existing routing algorithm in the network lifetime and energy consumption.

  11. Optimizing the Number of Cooperating Terminals for Energy Aware Task Computing in Wireless Networks

    DEFF Research Database (Denmark)

    Olsen, Anders Brødløs; Fitzek, Frank H. P.; Koch, Peter

    2005-01-01

    It is generally accepted that energy consumption is a significant design constraint for mobile handheld systems, therefore motivations for methods optimizing the energy consumption making better use of the restricted battery resources are evident. A novel concept of distributed task computing...... consumption of the terminals with respect to their workload and the overhead of distributing tasks among terminals are taken into account. The paper shows, that the number of cooperating terminals is in general limited to a few, though alternating with respect to the various system parameters....

  12. Merging clinical neuropsychology and functional neuroimaging to evaluate the construct validity and neural network engagement of the n-back task.

    Science.gov (United States)

    Kearney-Ramos, Tonisha E; Fausett, Jennifer S; Gess, Jennifer L; Reno, Ashley; Peraza, Jennifer; Kilts, Clint D; James, G Andrew

    2014-08-01

    The n-back task is a widely used neuroimaging paradigm for studying the neural basis of working memory (WM); however, its neuropsychometric properties have received little empirical investigation. The present study merged clinical neuropsychology and functional magnetic resonance imaging (fMRI) to explore the construct validity of the letter variant of the n-back task (LNB) and to further identify the task-evoked networks involved in WM. Construct validity of the LNB task was investigated using a bootstrapping approach to correlate LNB task performance across clinically validated neuropsychological measures of WM to establish convergent validity, as well as measures of related but distinct cognitive constructs (i.e., attention and short-term memory) to establish discriminant validity. Independent component analysis (ICA) identified brain networks active during the LNB task in 34 healthy control participants, and general linear modeling determined task-relatedness of these networks. Bootstrap correlation analyses revealed moderate to high correlations among measures expected to converge with LNB (|ρ|≥ 0.37) and weak correlations among measures expected to discriminate (|ρ|≤ 0.29), controlling for age and education. ICA identified 35 independent networks, 17 of which demonstrated engagement significantly related to task condition, controlling for reaction time variability. Of these, the bilateral frontoparietal networks, bilateral dorsolateral prefrontal cortices, bilateral superior parietal lobules including precuneus, and frontoinsular network were preferentially recruited by the 2-back condition compared to 0-back control condition, indicating WM involvement. These results support the use of the LNB as a measure of WM and confirm its use in probing the network-level neural correlates of WM processing.

  13. Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task

    Science.gov (United States)

    Bakkum, Douglas J.; Chao, Zenas C.; Potter, Steve M.

    2008-09-01

    We developed an adaptive training algorithm, whereby an in vitro neocortical network learned to modulate its dynamics and achieve pre-determined activity states within tens of minutes through the application of patterned training stimuli using a multi-electrode array. A priori knowledge of functional connectivity was not necessary. Instead, effective training sequences were continuously discovered and refined based on real-time feedback of performance. The short-term neural dynamics in response to training became engraved in the network, requiring progressively fewer training stimuli to achieve successful behavior in a movement task. After 2 h of training, plasticity remained significantly greater than the baseline for 80 min (p-value disorders by gradually shaping functional connectivity. Corrections were made to this article on 27 August 2008. Changes were made to affiliation 3, and to figure 2. The corrected electronic version is identical to the print version.

  14. A Task-Based Evaluation of Combined Set and Network Visualization

    OpenAIRE

    Rodgers, Peter; Stapleton, Gem; Alsallakh, Bilal; Micallef, Luana; Baker, Robert; Thompson, Simon

    2016-01-01

    This paper addresses the problem of how best to visualize network data grouped into overlapping sets. We address it by evaluating various existing techniques alongside a new technique. Such data arise in many areas, including social network analysis, gene expression data, and crime analysis. We begin by investigating the strengths and weakness of four existing techniques, namely Bubble Sets, EulerView, KelpFusion, and LineSets, using principles from psychology and known layout guides. Using i...

  15. Hierarchical radial basis function networks and local polynomial un-warping for X-ray image intensifier distortion correction: a comparison with global techniques.

    Science.gov (United States)

    Cerveri, P; Forlani, C; Pedotti, A; Ferrigno, G

    2003-03-01

    Global polynomial (GP) methods have been widely used to correct geometric image distortion of small-size (up to 30 cm) X-ray image intensifiers (XRIIs). This work confirms that this kind of approach is suitable for 40 cm XRIIs (now increasingly used). Nonetheless, two local methods, namely 3rd-order local un-warping polynomials (LUPs) and hierarchical radial basis function (HRBF) networks are proposed as alternative solutions. Extensive experimental tests were carried out to compare these methods with classical low-order local polynomial and GP techniques, in terms of residual error (RMSE) measured at points not used for parameter estimation. Simulations showed that the LUP and HRBF methods had accuracies comparable with that attained using GP methods. In detail, the LUP method (0.353 microm) performed worse than HRBF (0.348 microm) only for small grid spacing (15 x 15 control points); the accuracy of both HRBF (0.157 microm) and LUP (0.160 microm) methods was little affected by local distortions (30 x 30 control points); weak local distortions made the GP method poorer (0.320 microm). Tests on real data showed that LUP and HRBF had accuracies comparable with that of GP for both 30 cm (GP: 0.238 microm; LUP: 0.240 microm; HRBF: 0.238 microm) and 40 cm (GP: 0.164 microm; LUP: 0.164 microm; HRBF: 0.164 microm) XRIIs. The LUP-based distortion correction was implemented in real time for image correction in digital tomography applications.

  16. Fractal image perception provides novel insights into hierarchical cognition.

    Science.gov (United States)

    Martins, M J; Fischmeister, F P; Puig-Waldmüller, E; Oh, J; Geissler, A; Robinson, S; Fitch, W T; Beisteiner, R

    2014-08-01

    Hierarchical structures play a central role in many aspects of human cognition, prominently including both language and music. In this study we addressed hierarchy in the visual domain, using a novel paradigm based on fractal images. Fractals are self-similar patterns generated by repeating the same simple rule at multiple hierarchical levels. Our hypothesis was that the brain uses different resources for processing hierarchies depending on whether it applies a "fractal" or a "non-fractal" cognitive strategy. We analyzed the neural circuits activated by these complex hierarchical patterns in an event-related fMRI study of 40 healthy subjects. Brain activation was compared across three different tasks: a similarity task, and two hierarchical tasks in which subjects were asked to recognize the repetition of a rule operating transformations either within an existing hierarchical level, or generating new hierarchical levels. Similar hierarchical images were generated by both rules and target images were identical. We found that when processing visual hierarchies, engagement in both hierarchical tasks activated the visual dorsal stream (occipito-parietal cortex, intraparietal sulcus and dorsolateral prefrontal cortex). In addition, the level-generating task specifically activated circuits related to the integration of spatial and categorical information, and with the integration of items in contexts (posterior cingulate cortex, retrosplenial cortex, and medial, ventral and anterior regions of temporal cortex). These findings provide interesting new clues about the cognitive mechanisms involved in the generation of new hierarchical levels as required for fractals.

  17. Summary report on the Solar Consumer Assurance Network (SOLCAN) Program Planning Task in the southern region

    Energy Technology Data Exchange (ETDEWEB)

    Browne, M. B. [comp.

    1981-03-15

    The goal of the SOLCAN Program Planning Task is to assist in the development, at the state and local levels, of consumer assurance approaches that will support the accelerated adoption and effective use of new products promoted by government incentives to consumers to meet our nation's energy needs. The task includes state-conducted evaluations and state SOLCAN meetings to identify consumer assurance mechanisms, assess their effectiveness, and identify and describe alternative means for strengthening consumer and industry assurance in each state. Results of the SOLCAN process are presented, including: a Solar Consumer Protection State Assessment Guide; State Solar Consumer Assurance Resources for Selected States; State Solar Consumer Protection Assessment Interviews for Florida; and state SOLCAN meeting summaries and participants. (LEW)

  18. Using a million cell simulation of the cerebellum: network scaling and task generality.

    Science.gov (United States)

    Li, Wen-Ke; Hausknecht, Matthew J; Stone, Peter; Mauk, Michael D

    2013-11-01

    Several factors combine to make it feasible to build computer simulations of the cerebellum and to test them in biologically realistic ways. These simulations can be used to help understand the computational contributions of various cerebellar components, including the relevance of the enormous number of neurons in the granule cell layer. In previous work we have used a simulation containing 12000 granule cells to develop new predictions and to account for various aspects of eyelid conditioning, a form of motor learning mediated by the cerebellum. Here we demonstrate the feasibility of scaling up this simulation to over one million granule cells using parallel graphics processing unit (GPU) technology. We observe that this increase in number of granule cells requires only twice the execution time of the smaller simulation on the GPU. We demonstrate that this simulation, like its smaller predecessor, can emulate certain basic features of conditioned eyelid responses, with a slight improvement in performance in one measure. We also use this simulation to examine the generality of the computation properties that we have derived from studying eyelid conditioning. We demonstrate that this scaled up simulation can learn a high level of performance in a classic machine learning task, the cart-pole balancing task. These results suggest that this parallel GPU technology can be used to build very large-scale simulations whose connectivity ratios match those of the real cerebellum and that these simulations can be used guide future studies on cerebellar mediated tasks and on machine learning problems.

  19. White matter microstructure contributes to age-related declines in task-induced deactivation of the default mode network

    Directory of Open Access Journals (Sweden)

    Christopher A Brown

    2015-10-01

    Full Text Available Task-induced deactivations within the brain’s default mode network (DMN are thought to reflect suppression of endogenous thought processes to support exogenous goal-directed task processes. Older adults are known to show reductions in deactivation of the DMN compared to younger adults. However, little is understood about the mechanisms contributing to functional dysregulation of the DMN in aging. Here, we explored the relationships between functional modulation of the DMN and age, task performance and white matter (WM microstructure. Participants were 117 adults ranging from 25 to 83 years old who completed an fMRI task switching paradigm, including easy (single and difficult (mixed conditions, and underwent diffusion tensor imaging (DTI. The fMRI results revealed an age by condition interaction (β = -.13, t = 3.16, p = .002 such that increasing age affected deactivation magnitude during the mixed condition (β = -.29, t = -3.24 p = .002 but not the single condition (p = .58. Additionally, there was a white matter by condition interaction (β = .10, t = 2.33, p = .02 such that decreasing white matter microstructure affected deactivation magnitude during the mixed condition (β = .30, t = 3.42 p = .001 but not the single condition (p = .17. Critically, mediation analyses indicated that age-related reductions in WM microstructure accounted for the relationship between age and DMN deactivation in the more difficult mixed condition. These findings suggest that age-related declines in anatomical connectivity between DMN regions contribute to functional dysregulation within the DMN in older adults.

  20. Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia.

    Directory of Open Access Journals (Sweden)

    Swathi eKiran

    2015-06-01

    Full Text Available In this study, we examined regions in the left and right hemisphere language network that were altered in terms of the underlying neural activation and effective connectivity subsequent to language rehabilitation. Eight persons with chronic post-stroke aphasia and eight normal controls participated in the current study. Patients received a 10 week semantic feature-based rehabilitation program to improve their skills. Therapy was provided on atypical examples of one trained category while two control categories were monitored; the categories were counterbalanced across patients. In each fMRI session, two experimental tasks were conducted: (a picture naming and (b semantic feature verification of trained and untrained categories. Analysis of treatment effect sizes revealed that all patients showed greater improvements on the trained category relative to untrained categories. Results from this study show remarkable patterns of consistency despite the inherent variability in lesion size and activation patterns across patients. Across patients, activation that emerged as a function of rehabilitation on the trained category included bilateral IFG, bilateral SFG, LMFG, and LPCG for picture naming; and bilateral IFG, bilateral MFG, left SFG, and bilateral MTG for semantic feature verification. Analysis of effective connectivity using Dynamic Causal Modeling (DCM indicated that LIFG was the consistently significantly modulated region after rehabilitation across participants. These results indicate that language networks in patients with aphasia resemble normal language control networks and this similarity is accentuated by rehabilitation.