WorldWideScience

Sample records for hierarchical sparse modeling

  1. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function

  2. Sparse Estimation Using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Badiu, Mihai Alin

    2015-01-01

    In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued m......In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex...... error, and robustness in low and medium signal-to-noise ratio regimes....

  3. Hierarchical Bayesian sparse image reconstruction with application to MRFM.

    Science.gov (United States)

    Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves

    2009-09-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

  4. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-08-01

    Full Text Available Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.

  5. Assimilating irregularly spaced sparsely observed turbulent signals with hierarchical Bayesian reduced stochastic filters

    International Nuclear Information System (INIS)

    Brown, Kristen A.; Harlim, John

    2013-01-01

    In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the deterministic piecewise linear interpolation scheme and the ordinary kriging scheme in interpolating irregularly spaced raw data to regularly spaced processed data and the importance of dynamical constraint (through MSM) in filtering the processed data on a numerically stiff state estimation problem. In particular, we test this approach on a two-layer quasi-geostrophic model in a two-dimensional domain with a small radius of deformation to mimic ocean turbulence. Our numerical results suggest that the dynamical constraint becomes important when the observation noise variance is large. Second, we find that the filtered estimates with ordinary kriging are superior to those with linear interpolation when observation networks are not too sparse; such robust results are found from numerical simulations with many randomly simulated irregularly spaced observation networks, various observation time intervals, and observation error variances. Third, when the observation network is very sparse, we find that both the kriging and linear interpolations are comparable

  6. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.

    Science.gov (United States)

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi

    2015-12-01

    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  7. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...

  8. Sparsey^TM: Spatiotemporal Event Recognition via Deep Hierarchical Sparse Distributed Codes

    Directory of Open Access Journals (Sweden)

    Gerard J Rinkus

    2014-12-01

    Full Text Available The visual cortex’s hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes in each representational field (which we equate with the cortical macrocolumn, mac, at each level. In localism, each represented feature/concept/event (hereinafter item is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac’s units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model’s core algorithm, which does both storage and retrieval (inference, makes a single pass over all macs on each time step, the overall model’s storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge (Big Data problems. A 2010 paper described a non-hierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level, describing novel model principles like progressive critical periods, dynamic modulation of principal cells’ activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of

  9. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  10. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  11. A distributed-memory hierarchical solver for general sparse linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering; Pouransari, Hadi [Stanford Univ., CA (United States). Dept. of Mechanical Engineering; Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Boman, Erik G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Darve, Eric [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering and Dept. of Mechanical Engineering

    2017-12-20

    We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.

  12. Learning sparse generative models of audiovisual signals

    OpenAIRE

    Monaci, Gianluca; Sommer, Friedrich T.; Vandergheynst, Pierre

    2008-01-01

    This paper presents a novel framework to learn sparse represen- tations for audiovisual signals. An audiovisual signal is modeled as a sparse sum of audiovisual kernels. The kernels are bimodal functions made of synchronous audio and video components that can be positioned independently and arbitrarily in space and time. We design an algorithm capable of learning sets of such audiovi- sual, synchronous, shift-invariant functions by alternatingly solving a coding and a learning pr...

  13. Comparison of sparse point distribution models

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Vester-Christensen, Martin; Larsen, Rasmus

    2010-01-01

    This paper compares several methods for obtaining sparse and compact point distribution models suited for data sets containing many variables. These are evaluated on a database consisting of 3D surfaces of a section of the pelvic bone obtained from CT scans of 33 porcine carcasses. The superior m...

  14. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study

    NARCIS (Netherlands)

    Rijsdijk, F.V.; Vernon, P.A.; Boomsma, D.I.

    2002-01-01

    Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard

  15. Hierarchical Bass model

    International Nuclear Information System (INIS)

    Tashiro, Tohru

    2014-01-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model

  16. Hierarchical Bass model

    Science.gov (United States)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  17. Hierarchical Semantic Model of Geovideo

    Directory of Open Access Journals (Sweden)

    XIE Xiao

    2015-05-01

    Full Text Available The public security incidents were getting increasingly challenging with regard to their new features, including multi-scale mobility, multistage dynamic evolution, as well as spatiotemporal concurrency and uncertainty in the complex urban environment. However, the existing video models, which were used/designed for independent archive or local analysis of surveillance video, have seriously inhibited emergency response to the urgent requirements.Aiming at the explicit representation of change mechanism in video, the paper proposed a novel hierarchical geovideo semantic model using UML. This model was characterized by the hierarchical representation of both data structure and semantics based on the change-oriented three domains (feature domain, process domain and event domain instead of overall semantic description of video streaming; combining both geographical semantics and video content semantics, in support of global semantic association between multiple geovideo data. The public security incidents by video surveillance are inspected as an example to illustrate the validity of this model.

  18. Atmospheric inverse modeling via sparse reconstruction

    Science.gov (United States)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  19. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Hierarchical modeling of active materials

    International Nuclear Information System (INIS)

    Taya, Minoru

    2003-01-01

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  1. Confidence of model based shape reconstruction from sparse data

    DEFF Research Database (Denmark)

    Baka, N.; de Bruijne, Marleen; Reiber, J. H. C.

    2010-01-01

    Statistical shape models (SSM) are commonly applied for plausible interpolation of missing data in medical imaging. However, when fitting a shape model to sparse information, many solutions may fit the available data. In this paper we derive a constrained SSM to fit noisy sparse input landmarks...

  2. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  3. Implementation of hierarchical clustering using k-mer sparse matrix to analyze MERS-CoV genetic relationship

    Science.gov (United States)

    Bustamam, A.; Ulul, E. D.; Hura, H. F. A.; Siswantining, T.

    2017-07-01

    Hierarchical clustering is one of effective methods in creating a phylogenetic tree based on the distance matrix between DNA (deoxyribonucleic acid) sequences. One of the well-known methods to calculate the distance matrix is k-mer method. Generally, k-mer is more efficient than some distance matrix calculation techniques. The steps of k-mer method are started from creating k-mer sparse matrix, and followed by creating k-mer singular value vectors. The last step is computing the distance amongst vectors. In this paper, we analyze the sequences of MERS-CoV (Middle East Respiratory Syndrome - Coronavirus) DNA by implementing hierarchical clustering using k-mer sparse matrix in order to perform the phylogenetic analysis. Our results show that the ancestor of our MERS-CoV is coming from Egypt. Moreover, we found that the MERS-CoV infection that occurs in one country may not necessarily come from the same country of origin. This suggests that the process of MERS-CoV mutation might not only be influenced by geographical factor.

  4. Application of adaptive hierarchical sparse grid collocation to the uncertainty quantification of nuclear reactor simulators

    Energy Technology Data Exchange (ETDEWEB)

    Yankov, A.; Downar, T. [University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States)

    2013-07-01

    Recent efforts in the application of uncertainty quantification to nuclear systems have utilized methods based on generalized perturbation theory and stochastic sampling. While these methods have proven to be effective they both have major drawbacks that may impede further progress. A relatively new approach based on spectral elements for uncertainty quantification is applied in this paper to several problems in reactor simulation. Spectral methods based on collocation attempt to couple the approximation free nature of stochastic sampling methods with the determinism of generalized perturbation theory. The specific spectral method used in this paper employs both the Smolyak algorithm and adaptivity by using Newton-Cotes collocation points along with linear hat basis functions. Using this approach, a surrogate model for the outputs of a computer code is constructed hierarchically by adaptively refining the collocation grid until the interpolant is converged to a user-defined threshold. The method inherently fits into the framework of parallel computing and allows for the extraction of meaningful statistics and data that are not within reach of stochastic sampling and generalized perturbation theory. This paper aims to demonstrate the advantages of spectral methods-especially when compared to current methods used in reactor physics for uncertainty quantification-and to illustrate their full potential. (authors)

  5. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  6. Sparse Principal Component Analysis in Medical Shape Modeling

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus

    2006-01-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...... analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of sufficiently small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA...

  7. MULTISCALE SPARSE APPEARANCE MODELING AND SIMULATION OF PATHOLOGICAL DEFORMATIONS

    Directory of Open Access Journals (Sweden)

    Rami Zewail

    2017-08-01

    Full Text Available Machine learning and statistical modeling techniques has drawn much interest within the medical imaging research community. However, clinically-relevant modeling of anatomical structures continues to be a challenging task. This paper presents a novel method for multiscale sparse appearance modeling in medical images with application to simulation of pathological deformations in X-ray images of human spine. The proposed appearance model benefits from the non-linear approximation power of Contourlets and its ability to capture higher order singularities to achieve a sparse representation while preserving the accuracy of the statistical model. Independent Component Analysis is used to extract statistical independent modes of variations from the sparse Contourlet-based domain. The new model is then used to simulate clinically-relevant pathological deformations in radiographic images.

  8. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    Science.gov (United States)

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.

    2015-07-28

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.

  9. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    Energy Technology Data Exchange (ETDEWEB)

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.

    2016-10-25

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.

  10. Sparse modeling of spatial environmental variables associated with asthma.

    Science.gov (United States)

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Directory of Open Access Journals (Sweden)

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  12. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  13. Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration

    Science.gov (United States)

    Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim

    2015-04-01

    In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.

  14. Learning with hierarchical-deep models.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio

    2013-08-01

    We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

  15. Universal Regularizers For Robust Sparse Coding and Modeling

    OpenAIRE

    Ramirez, Ignacio; Sapiro, Guillermo

    2010-01-01

    Sparse data models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and their use has led to state-of-the-art results in many signal and image processing tasks. It is now well understood that the choice of the sparsity regularization term is critical in the success of such models. Based on a codelength minimization interpretation of sparse coding, and using tools from universal coding...

  16. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    Science.gov (United States)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  17. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  18. Low-rank and sparse modeling for visual analysis

    CERN Document Server

    Fu, Yun

    2014-01-01

    This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applic

  19. Sparse Multivariate Modeling: Priors and Applications

    DEFF Research Database (Denmark)

    Henao, Ricardo

    This thesis presents a collection of statistical models that attempt to take advantage of every piece of prior knowledge available to provide the models with as much structure as possible. The main motivation for introducing these models is interpretability since in practice we want to be able...... a general yet self-contained description of every model in terms of generative assumptions, interpretability goals, probabilistic formulation and target applications. Case studies, benchmark results and practical details are also provided as appendices published elsewhere, containing reprints of peer...

  20. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  1. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  2. Hierarchical models in the brain.

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2008-11-01

    Full Text Available This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.

  3. Sparse estimation of polynomial dynamical models

    NARCIS (Netherlands)

    Toth, R.; Hjalmarsson, H.; Rojas, C.R.; Kinnaert, M.

    2012-01-01

    In many practical situations, it is highly desirable to estimate an accurate mathematical model of a real system using as few parameters as possible. This can be motivated either from appealing to a parsimony principle (Occam's razor) or from the view point of the utilization complexity in terms of

  4. Sparse-Based Modeling of Hyperspectral Data

    DEFF Research Database (Denmark)

    Calvini, Rosalba; Ulrici, Alessandro; Amigo Rubio, Jose Manuel

    2016-01-01

    One of the main issues of hyperspectral imaging data is to unravel the relevant, yet overlapped, huge amount of information contained in the spatial and spectral dimensions. When dealing with the application of multivariate models in such high-dimensional data, sparsity can improve...

  5. Sparse linear models: Variational approximate inference and Bayesian experimental design

    International Nuclear Information System (INIS)

    Seeger, Matthias W

    2009-01-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  6. Sparse linear models: Variational approximate inference and Bayesian experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Matthias W [Saarland University and Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbruecken (Germany)

    2009-12-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  7. Sparse principal component analysis in medical shape modeling

    Science.gov (United States)

    Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus

    2006-03-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.

  8. A Sparse Auto Encoder Deep Process Neural Network Model and its Application

    Directory of Open Access Journals (Sweden)

    Xu Shaohua

    2017-01-01

    Full Text Available Aiming at the problem of time-varying signal pattern classification, a sparse auto-encoder deep process neural network (SAE-DPNN is proposed. The input of SAE-DPNN is time-varying process signal and the output is pattern category. It combines the time-varying signal classification method of process neural network (PNN and the data feature extraction and hierarchical sparse representation mechanism of sparse automatic encoder (SAE. Based on the feedforward PNN model, SAE-DPNN is constructed by stacking the process neurons, SAE network and softmax classifier. It can maintain the time-sequence and structure of the input signal, express and synthesize the process distribution characteristics of multidimensional time-varying signals and their combinations. SAE-DPNN improves the identification of complex features and distinguishes between different types of signals, realizes the direct classification of time-varying signals. In this paper, the feature extraction and representation mechanism of time-varying signal in SAE-DPNN are analyzed, and a specific learning algorithm is given. The experimental results verify the effectiveness of the model and algorithm.

  9. Topic Modeling of Hierarchical Corpora /

    OpenAIRE

    Kim, Do-kyum

    2014-01-01

    The sizes of modern digital libraries have grown beyond our capacity to comprehend manually. Thus we need new tools to help us in organizing and browsing large corpora of text that do not require manually examining each document. To this end, machine learning researchers have developed topic models, statistical learning algorithms for automatic comprehension of large collections of text. Topic models provide both global and local views of a corpus; they discover topics that run through the co...

  10. AN INTEGER PROGRAMMING MODEL FOR HIERARCHICAL WORKFORCE

    Directory of Open Access Journals (Sweden)

    BANU SUNGUR

    2013-06-01

    Full Text Available The model presented in this paper is based on the model developed by Billionnet for the hierarchical workforce problem. In Billionnet’s Model, while determining the workers’ weekly costs, weekly working hours of workers are not taken into consideration. In our model, the weekly costs per worker are reduced in proportion to the working hours per week. Our model is illustrated on the Billionnet’s Example. The models in question are compared and evaluated on the basis of the results obtained from the example problem. A reduction is achieved in the total cost by the proposed model.

  11. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.

    Science.gov (United States)

    Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M

    2018-05-07

    A Bayesian model for sparse, hierarchical inverse covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fmri, meg and eeg data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in meg beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.

  12. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    Science.gov (United States)

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  13. Sparse optimization for inverse problems in atmospheric modelling

    Czech Academy of Sciences Publication Activity Database

    Adam, Lukáš; Branda, Martin

    2016-01-01

    Roč. 79, č. 3 (2016), s. 256-266 ISSN 1364-8152 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Inverse modelling * Sparse optimization * Integer optimization * Least squares * European tracer experiment * Free Matlab codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.404, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf

  14. Shape prior modeling using sparse representation and online dictionary learning.

    Science.gov (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N

    2012-01-01

    The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.

  15. Internet advertising effectiveness by using hierarchical model

    OpenAIRE

    RAHMANI, Samaneh

    2015-01-01

    Abstract. Present paper has been developed with the title of internet advertising effectiveness by using hierarchical model. Presenting the question: Today Internet is an important channel in marketing and advertising. The reason for this could be the ability of the Internet to reduce costs and people’s access to online services[1]. Also advertisers can easily access a multitude of users and communicate with them at low cost [9]. On the other hand, compared to traditional advertising, interne...

  16. A Hierarchical Agency Model of Deposit Insurance

    OpenAIRE

    Jonathan Carroll; Shino Takayama

    2010-01-01

    This paper develops a hierarchical agency model of deposit insurance. The main purpose is to undertake a game theoretic analysis of the consequences of deposit insurance schemes and their effects on monitoring incentives for banks. Using this simple framework, we analyze both risk- independent and risk-dependent premium schemes along with reserve requirement constraints. The results provide policymakers with not only a better understanding of the effects of deposit insurance on welfare and th...

  17. Superresolving Black Hole Images with Full-Closure Sparse Modeling

    Science.gov (United States)

    Crowley, Chelsea; Akiyama, Kazunori; Fish, Vincent

    2018-01-01

    It is believed that almost all galaxies have black holes at their centers. Imaging a black hole is a primary objective to answer scientific questions relating to relativistic accretion and jet formation. The Event Horizon Telescope (EHT) is set to capture images of two nearby black holes, Sagittarius A* at the center of the Milky Way galaxy roughly 26,000 light years away and the other M87 which is in Virgo A, a large elliptical galaxy that is 50 million light years away. Sparse imaging techniques have shown great promise for reconstructing high-fidelity superresolved images of black holes from simulated data. Previous work has included the effects of atmospheric phase errors and thermal noise, but not systematic amplitude errors that arise due to miscalibration. We explore a full-closure imaging technique with sparse modeling that uses closure amplitudes and closure phases to improve the imaging process. This new technique can successfully handle data with systematic amplitude errors. Applying our technique to synthetic EHT data of M87, we find that full-closure sparse modeling can reconstruct images better than traditional methods and recover key structural information on the source, such as the shape and size of the predicted photon ring. These results suggest that our new approach will provide superior imaging performance for data from the EHT and other interferometric arrays.

  18. Sparse representation, modeling and learning in visual recognition theory, algorithms and applications

    CERN Document Server

    Cheng, Hong

    2015-01-01

    This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition; describes sparse recovery approaches, robust and efficient sparse represen

  19. Hierarchic modeling of heat exchanger thermal hydraulics

    International Nuclear Information System (INIS)

    Horvat, A.; Koncar, B.

    2002-01-01

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  20. Anisotropic Third-Order Regularization for Sparse Digital Elevation Models

    KAUST Repository

    Lellmann, Jan

    2013-01-01

    We consider the problem of interpolating a surface based on sparse data such as individual points or level lines. We derive interpolators satisfying a list of desirable properties with an emphasis on preserving the geometry and characteristic features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE and higher-order total variation methods qualitatively and quantitatively on real-world digital elevation data. © 2013 Springer-Verlag.

  1. Sparse representation based image interpolation with nonlocal autoregressive modeling.

    Science.gov (United States)

    Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming

    2013-04-01

    Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.

  2. Sparse Representation Based Binary Hypothesis Model for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Yidong Tang

    2016-01-01

    Full Text Available The sparse representation based classifier (SRC and its kernel version (KSRC have been employed for hyperspectral image (HSI classification. However, the state-of-the-art SRC often aims at extended surface objects with linear mixture in smooth scene and assumes that the number of classes is given. Considering the small target with complex background, a sparse representation based binary hypothesis (SRBBH model is established in this paper. In this model, a query pixel is represented in two ways, which are, respectively, by background dictionary and by union dictionary. The background dictionary is composed of samples selected from the local dual concentric window centered at the query pixel. Thus, for each pixel the classification issue becomes an adaptive multiclass classification problem, where only the number of desired classes is required. Furthermore, the kernel method is employed to improve the interclass separability. In kernel space, the coding vector is obtained by using kernel-based orthogonal matching pursuit (KOMP algorithm. Then the query pixel can be labeled by the characteristics of the coding vectors. Instead of directly using the reconstruction residuals, the different impacts the background dictionary and union dictionary have on reconstruction are used for validation and classification. It enhances the discrimination and hence improves the performance.

  3. Statistical mechanics of sparse generalization and graphical model selection

    International Nuclear Information System (INIS)

    Lage-Castellanos, Alejandro; Pagnani, Andrea; Weigt, Martin

    2009-01-01

    One of the crucial tasks in many inference problems is the extraction of an underlying sparse graphical model from a given number of high-dimensional measurements. In machine learning, this is frequently achieved using, as a penalty term, the L p norm of the model parameters, with p≤1 for efficient dilution. Here we propose a statistical mechanics analysis of the problem in the setting of perceptron memorization and generalization. Using a replica approach, we are able to evaluate the relative performance of naive dilution (obtained by learning without dilution, following by applying a threshold to the model parameters), L 1 dilution (which is frequently used in convex optimization) and L 0 dilution (which is optimal but computationally hard to implement). Whereas both L p diluted approaches clearly outperform the naive approach, we find a small region where L 0 works almost perfectly and strongly outperforms the simpler to implement L 1 dilution

  4. Sparse Decomposition and Modeling of Anatomical Shape Variation

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Rostrup, Egill; Ryberg, Charlotte

    2007-01-01

    counterparts if constructed carefully. In most medical applications, models are required to have both good statistical performance and a relevant clinical interpretation to be of value. Morphometry of the corpus callosum is one illustrative example. This paper presents a method for relating spatial features...... to clinical outcome data. A set of parsimonious variables is extracted using sparse principal component analysis, producing simple yet characteristic features. The relation of these variables with clinical data is then established using a regression model. The result may be visualized as patterns...... two alternative techniques, one where features are derived using a model-based wavelet approach, and one where the original variables are regressed directly on the outcome....

  5. Galactic chemical evolution in hierarchical formation models

    Science.gov (United States)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  6. Sparse estimation of model-based diffuse thermal dust emission

    Science.gov (United States)

    Irfan, Melis O.; Bobin, Jérôme

    2018-03-01

    Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.

  7. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  8. Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach

    Science.gov (United States)

    Klauer, Karl Christoph

    2010-01-01

    Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…

  9. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study.

    Science.gov (United States)

    Rijsdijk, Frühling V; Vernon, P A; Boomsma, Dorret I

    2002-05-01

    Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard Progressive test score, collected in 194 18-year-old Dutch twin pairs. We investigated whether first-order group factors possess genetic and environmental variance independent of the higher-order general factor and whether the hierarchical structure is significant for all sources of variance. A hierarchical model with the 3 Cohen group-factors (verbal comprehension, perceptual organisation and freedom-from-distractibility) and a higher-order g factor showed the best fit to the phenotypic data and to additive genetic influences (A), whereas the unique environmental source of variance (E) could be modeled by a single general factor and specifics. There was no evidence for common environmental influences. The covariation among the WAIS group factors and the covariation between the group factors and the Raven is predominantly influenced by a second-order genetic factor and strongly support the notion of a biological basis of g.

  10. A hierarchical stochastic model for bistable perception.

    Directory of Open Access Journals (Sweden)

    Stefan Albert

    2017-11-01

    Full Text Available Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM, which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group

  11. A hierarchical stochastic model for bistable perception.

    Science.gov (United States)

    Albert, Stefan; Schmack, Katharina; Sterzer, Philipp; Schneider, Gaby

    2017-11-01

    Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM) for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM), which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group differences to

  12. Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method

    Science.gov (United States)

    Tsai, F. T. C.; Elshall, A. S.

    2014-12-01

    Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.

  13. Bayesian hierarchical modelling of North Atlantic windiness

    Science.gov (United States)

    Vanem, E.; Breivik, O. N.

    2013-03-01

    Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  14. Bayesian hierarchical modelling of North Atlantic windiness

    Directory of Open Access Journals (Sweden)

    E. Vanem

    2013-03-01

    Full Text Available Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  15. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, Motoki, E-mail: shiga_m@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1, Yanagido, Gifu 501-1193 (Japan); Tatsumi, Kazuyoshi; Muto, Shunsuke [Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Tsuda, Koji [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561 (Japan); Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi Koto-ku, Tokyo 135-0064 (Japan); Yamamoto, Yuta [High-Voltage Electron Microscope Laboratory, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Mori, Toshiyuki [Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Tanji, Takayoshi [Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-11-15

    Advances in scanning transmission electron microscopy (STEM) techniques have enabled us to automatically obtain electron energy-loss (EELS)/energy-dispersive X-ray (EDX) spectral datasets from a specified region of interest (ROI) at an arbitrary step width, called spectral imaging (SI). Instead of manually identifying the potential constituent chemical components from the ROI and determining the chemical state of each spectral component from the SI data stored in a huge three-dimensional matrix, it is more effective and efficient to use a statistical approach for the automatic resolution and extraction of the underlying chemical components. Among many different statistical approaches, we adopt a non-negative matrix factorization (NMF) technique, mainly because of the natural assumption of non-negative values in the spectra and cardinalities of chemical components, which are always positive in actual data. This paper proposes a new NMF model with two penalty terms: (i) an automatic relevance determination (ARD) prior, which optimizes the number of components, and (ii) a soft orthogonal constraint, which clearly resolves each spectrum component. For the factorization, we further propose a fast optimization algorithm based on hierarchical alternating least-squares. Numerical experiments using both phantom and real STEM-EDX/EELS SI datasets demonstrate that the ARD prior successfully identifies the correct number of physically meaningful components. The soft orthogonal constraint is also shown to be effective, particularly for STEM-EELS SI data, where neither the spatial nor spectral entries in the matrices are sparse. - Highlights: • Automatic resolution of chemical components from spectral imaging is considered. • We propose a new non-negative matrix factorization with two new penalties. • The first penalty is sparseness to choose the number of components from data. • Experimental results with real data demonstrate effectiveness of our method.

  16. Source term identification in atmospheric modelling via sparse optimization

    Science.gov (United States)

    Adam, Lukas; Branda, Martin; Hamburger, Thomas

    2015-04-01

    Inverse modelling plays an important role in identifying the amount of harmful substances released into atmosphere during major incidents such as power plant accidents or volcano eruptions. Another possible application of inverse modelling lies in the monitoring the CO2 emission limits where only observations at certain places are available and the task is to estimate the total releases at given locations. This gives rise to minimizing the discrepancy between the observations and the model predictions. There are two standard ways of solving such problems. In the first one, this discrepancy is regularized by adding additional terms. Such terms may include Tikhonov regularization, distance from a priori information or a smoothing term. The resulting, usually quadratic, problem is then solved via standard optimization solvers. The second approach assumes that the error term has a (normal) distribution and makes use of Bayesian modelling to identify the source term. Instead of following the above-mentioned approaches, we utilize techniques from the field of compressive sensing. Such techniques look for a sparsest solution (solution with the smallest number of nonzeros) of a linear system, where a maximal allowed error term may be added to this system. Even though this field is a developed one with many possible solution techniques, most of them do not consider even the simplest constraints which are naturally present in atmospheric modelling. One of such examples is the nonnegativity of release amounts. We believe that the concept of a sparse solution is natural in both problems of identification of the source location and of the time process of the source release. In the first case, it is usually assumed that there are only few release points and the task is to find them. In the second case, the time window is usually much longer than the duration of the actual release. In both cases, the optimal solution should contain a large amount of zeros, giving rise to the

  17. What are hierarchical models and how do we analyze them?

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)

  18. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  19. The Revised Hierarchical Model: A critical review and assessment

    OpenAIRE

    Kroll, Judith F.; van Hell, Janet G.; Tokowicz, Natasha; Green, David W.

    2010-01-01

    Brysbaert and Duyck (2009) suggest that it is time to abandon the Revised Hierarchical Model (Kroll and Stewart, 1994) in favor of connectionist models such as BIA+ (Dijkstra and Van Heuven, 2002) that more accurately account for the recent evidence on nonselective access in bilingual word recognition. In this brief response, we first review the history of the Revised Hierarchical Model (RHM), consider the set of issues that it was proposed to address, and then evaluate the evidence that supp...

  20. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  1. Diagnosis and prognosis of Ostheoarthritis by texture analysis using sparse linear models

    DEFF Research Database (Denmark)

    Marques, Joselene; Clemmensen, Line Katrine Harder; Dam, Erik

    We present a texture analysis methodology that combines uncommitted machine-learning techniques and sparse feature transformation methods in a fully automatic framework. We compare the performances of a partial least squares (PLS) forward feature selection strategy to a hard threshold sparse PLS...... algorithm and a sparse linear discriminant model. The texture analysis framework was applied to diagnosis of knee osteoarthritis (OA) and prognosis of cartilage loss. For this investigation, a generic texture feature bank was extracted from magnetic resonance images of tibial knee bone. The features were...... used as input to the sparse algorithms, which dened the best features to retain in the model. To cope with the limited number of samples, the data was evaluated using 10 fold cross validation (CV). The diagnosis evaluation using sparse PLS reached a generalization area-under-the-ROC curve (AUC) of 0...

  2. Slow logarithmic relaxation in models with hierarchically constrained dynamics

    OpenAIRE

    Brey, J. J.; Prados, A.

    2000-01-01

    A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.

  3. Bayesian disease mapping: hierarchical modeling in spatial epidemiology

    National Research Council Canada - National Science Library

    Lawson, Andrew

    2013-01-01

    .... Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications...

  4. Quantum Ising model on hierarchical structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-11-01

    A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs

  5. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  7. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  8. Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis

    Science.gov (United States)

    Luo, Wen; Azen, Razia

    2013-01-01

    Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…

  9. A mixture of sparse coding models explaining properties of face neurons related to holistic and parts-based processing.

    Directory of Open Access Journals (Sweden)

    Haruo Hosoya

    2017-07-01

    Full Text Available Experimental studies have revealed evidence of both parts-based and holistic representations of objects and faces in the primate visual system. However, it is still a mystery how such seemingly contradictory types of processing can coexist within a single system. Here, we propose a novel theory called mixture of sparse coding models, inspired by the formation of category-specific subregions in the inferotemporal (IT cortex. We developed a hierarchical network that constructed a mixture of two sparse coding submodels on top of a simple Gabor analysis. The submodels were each trained with face or non-face object images, which resulted in separate representations of facial parts and object parts. Importantly, evoked neural activities were modeled by Bayesian inference, which had a top-down explaining-away effect that enabled recognition of an individual part to depend strongly on the category of the whole input. We show that this explaining-away effect was indeed crucial for the units in the face submodel to exhibit significant selectivity to face images over object images in a similar way to actual face-selective neurons in the macaque IT cortex. Furthermore, the model explained, qualitatively and quantitatively, several tuning properties to facial features found in the middle patch of face processing in IT as documented by Freiwald, Tsao, and Livingstone (2009. These included, in particular, tuning to only a small number of facial features that were often related to geometrically large parts like face outline and hair, preference and anti-preference of extreme facial features (e.g., very large/small inter-eye distance, and reduction of the gain of feature tuning for partial face stimuli compared to whole face stimuli. Thus, we hypothesize that the coding principle of facial features in the middle patch of face processing in the macaque IT cortex may be closely related to mixture of sparse coding models.

  10. Hierarchical model generation for architecture reconstruction using laser-scanned point clouds

    Science.gov (United States)

    Ning, Xiaojuan; Wang, Yinghui; Zhang, Xiaopeng

    2014-06-01

    Architecture reconstruction using terrestrial laser scanner is a prevalent and challenging research topic. We introduce an automatic, hierarchical architecture generation framework to produce full geometry of architecture based on a novel combination of facade structures detection, detailed windows propagation, and hierarchical model consolidation. Our method highlights the generation of geometric models automatically fitting the design information of the architecture from sparse, incomplete, and noisy point clouds. First, the planar regions detected in raw point clouds are interpreted as three-dimensional clusters. Then, the boundary of each region extracted by projecting the points into its corresponding two-dimensional plane is classified to obtain detailed shape structure elements (e.g., windows and doors). Finally, a polyhedron model is generated by calculating the proposed local structure model, consolidated structure model, and detailed window model. Experiments on modeling the scanned real-life buildings demonstrate the advantages of our method, in which the reconstructed models not only correspond to the information of architectural design accurately, but also satisfy the requirements for visualization and analysis.

  11. Hierarchical modeling of molecular energies using a deep neural network

    Science.gov (United States)

    Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton

    2018-06-01

    We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties, such as energy, as a sum over hierarchical terms. These terms are generated from a neural network—a composition of many nonlinear transformations—acting on a representation of the molecule. HIP-NN achieves the state-of-the-art performance on a dataset of 131k ground state organic molecules and predicts energies with 0.26 kcal/mol mean absolute error. With minimal tuning, our model is also competitive on a dataset of molecular dynamics trajectories. In addition to enabling accurate energy predictions, the hierarchical structure of HIP-NN helps to identify regions of model uncertainty.

  12. Applying Hierarchical Model Calibration to Automatically Generated Items.

    Science.gov (United States)

    Williamson, David M.; Johnson, Matthew S.; Sinharay, Sandip; Bejar, Isaac I.

    This study explored the application of hierarchical model calibration as a means of reducing, if not eliminating, the need for pretesting of automatically generated items from a common item model prior to operational use. Ultimately the successful development of automatic item generation (AIG) systems capable of producing items with highly similar…

  13. A HIERARCHICAL SET OF MODELS FOR SPECIES RESPONSE ANALYSIS

    NARCIS (Netherlands)

    HUISMAN, J; OLFF, H; FRESCO, LFM

    Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These

  14. A hierarchical set of models for species response analysis

    NARCIS (Netherlands)

    Huisman, J.; Olff, H.; Fresco, L.F.M.

    1993-01-01

    Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These

  15. The Revised Hierarchical Model: A critical review and assessment

    NARCIS (Netherlands)

    Kroll, J.F.; Hell, J.G. van; Tokowicz, N.; Green, D.W.

    2010-01-01

    Brysbaert and Duyck (this issue) suggest that it is time to abandon the Revised Hierarchical Model (Kroll and Stewart, 1994) in favor of connectionist models such as BIA+ (Dijkstra and Van Heuven, 2002) that more accurately account for the recent evidence on non-selective access in bilingual word

  16. A hierarchical model exhibiting the Kosterlitz-Thouless fixed point

    International Nuclear Information System (INIS)

    Marchetti, D.H.U.; Perez, J.F.

    1985-01-01

    A hierarchical model for 2-d Coulomb gases displaying a line stable of fixed points describing the Kosterlitz-Thouless phase transition is constructed. For Coulomb gases corresponding to Z sub(N)- models these fixed points are stable for an intermediate temperature interval. (Author) [pt

  17. Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation

    Czech Academy of Sciences Publication Activity Database

    Scarpa, G.; Gaetano, R.; Haindl, Michal; Zerubia, J.

    2009-01-01

    Roč. 18, č. 8 (2009), s. 1830-1843 ISSN 1057-7149 R&D Projects: GA ČR GA102/08/0593 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : Classification * texture analysis * segmentation * hierarchical image models * Markov process Subject RIV: BD - Theory of Information Impact factor: 2.848, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/haindl-hierarchical multiple markov chain model for unsupervised texture segmentation.pdf

  18. Hierarchical graphs for rule-based modeling of biochemical systems

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2011-02-01

    Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for

  19. A Hierarchal Risk Assessment Model Using the Evidential Reasoning Rule

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Ji

    2017-02-01

    Full Text Available This paper aims to develop a hierarchical risk assessment model using the newly-developed evidential reasoning (ER rule, which constitutes a generic conjunctive probabilistic reasoning process. In this paper, we first provide a brief introduction to the basics of the ER rule and emphasize the strengths for representing and aggregating uncertain information from multiple experts and sources. Further, we discuss the key steps of developing the hierarchical risk assessment framework systematically, including (1 formulation of risk assessment hierarchy; (2 representation of both qualitative and quantitative information; (3 elicitation of attribute weights and information reliabilities; (4 aggregation of assessment information using the ER rule and (5 quantification and ranking of risks using utility-based transformation. The proposed hierarchical risk assessment framework can potentially be implemented to various complex and uncertain systems. A case study on the fire/explosion risk assessment of marine vessels demonstrates the applicability of the proposed risk assessment model.

  20. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  1. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    Science.gov (United States)

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparing hierarchical models via the marginalized deviance information criterion.

    Science.gov (United States)

    Quintero, Adrian; Lesaffre, Emmanuel

    2018-07-20

    Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  4. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  5. Least 1-Norm Pole-Zero Modeling with Sparse Deconvolution for Speech Analysis

    DEFF Research Database (Denmark)

    Shi, Liming; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2017-01-01

    In this paper, we present a speech analysis method based on sparse pole-zero modeling of speech. Instead of using the all-pole model to approximate the speech production filter, a pole-zero model is used for the combined effect of the vocal tract; radiation at the lips and the glottal pulse shape...

  6. Efficient Model Selection for Sparse Least-Square SVMs

    Directory of Open Access Journals (Sweden)

    Xiao-Lei Xia

    2013-01-01

    Full Text Available The Forward Least-Squares Approximation (FLSA SVM is a newly-emerged Least-Square SVM (LS-SVM whose solution is extremely sparse. The algorithm uses the number of support vectors as the regularization parameter and ensures the linear independency of the support vectors which span the solution. This paper proposed a variant of the FLSA-SVM, namely, Reduced FLSA-SVM which is of reduced computational complexity and memory requirements. The strategy of “contexts inheritance” is introduced to improve the efficiency of tuning the regularization parameter for both the FLSA-SVM and the RFLSA-SVM algorithms. Experimental results on benchmark datasets showed that, compared to the SVM and a number of its variants, the RFLSA-SVM solutions contain a reduced number of support vectors, while maintaining competitive generalization abilities. With respect to the time cost for tuning of the regularize parameter, the RFLSA-SVM algorithm was empirically demonstrated fastest compared to FLSA-SVM, the LS-SVM, and the SVM algorithms.

  7. New aerial survey and hierarchical model to estimate manatee abundance

    Science.gov (United States)

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  8. Hierarchical modelling for the environmental sciences statistical methods and applications

    CERN Document Server

    Clark, James S

    2006-01-01

    New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.

  9. A variational EM method for pole-zero modeling of speech with mixed block sparse and Gaussian excitation

    DEFF Research Database (Denmark)

    Shi, Liming; Nielsen, Jesper Kjær; Jensen, Jesper Rindom

    2017-01-01

    The modeling of speech can be used for speech synthesis and speech recognition. We present a speech analysis method based on pole-zero modeling of speech with mixed block sparse and Gaussian excitation. By using a pole-zero model, instead of the all-pole model, a better spectral fitting can...... be expected. Moreover, motivated by the block sparse glottal flow excitation during voiced speech and the white noise excitation for unvoiced speech, we model the excitation sequence as a combination of block sparse signals and white noise. A variational EM (VEM) method is proposed for estimating...... in reconstructing of the block sparse excitation....

  10. Analysis of Error Propagation Within Hierarchical Air Combat Models

    Science.gov (United States)

    2016-06-01

    values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air...values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air engagement... PROPAGATION WITHIN HIERARCHICAL AIR COMBAT MODELS by Salih Ilaslan June 2016 Thesis Advisor: Thomas W. Lucas Second Reader: Jeffrey

  11. Metastable states in the hierarchical Dyson model drive parallel processing in the hierarchical Hopfield network

    International Nuclear Information System (INIS)

    Agliari, Elena; Barra, Adriano; Guerra, Francesco; Galluzzi, Andrea; Tantari, Daniele; Tavani, Flavia

    2015-01-01

    In this paper, we introduce and investigate the statistical mechanics of hierarchical neural networks. First, we approach these systems à la Mattis, by thinking of the Dyson model as a single-pattern hierarchical neural network. We also discuss the stability of different retrievable states as predicted by the related self-consistencies obtained both from a mean-field bound and from a bound that bypasses the mean-field limitation. The latter is worked out by properly reabsorbing the magnetization fluctuations related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably, mixing Amit's ansatz technique for selecting candidate-retrievable states with the interpolation procedure for solving for the free energy of these states, we prove that, due to gauge symmetry, the Dyson model accomplishes both serial and parallel processing. We extend this scenario to multiple stored patterns by implementing the Hebb prescription for learning within the couplings. This results in Hopfield-like networks constrained on a hierarchical topology, for which, by restricting to the low-storage regime where the number of patterns grows at its most logarithmical with the amount of neurons, we prove the existence of the thermodynamic limit for the free energy, and we give an explicit expression of its mean-field bound and of its related improved bound. We studied the resulting self-consistencies for the Mattis magnetizations, which act as order parameters, are studied and the stability of solutions is analyzed to get a picture of the overall retrieval capabilities of the system according to both mean-field and non-mean-field scenarios. Our main finding is that embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both serial and parallel processing. By tuning the level of fast noise affecting it or triggering the decay of the interactions with the distance among neurons, the system may switch from sequential retrieval to

  12. Hierarchical Models of the Nearshore Complex System

    National Research Council Canada - National Science Library

    Werner, Brad

    2004-01-01

    .... This grant was termination funding for the Werner group, specifically aimed at finishing up and publishing research related to synoptic imaging of near shore bathymetry, testing models for beach cusp...

  13. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  14. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Science.gov (United States)

    Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  15. Petascale Hierarchical Modeling VIA Parallel Execution

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, Andrew [Principal Investigator

    2014-04-14

    The research allows more effective model building. By allowing researchers to fit complex models to large datasets in a scalable manner, our algorithms and software enable more effective scientific research. In the new area of “big data,” it is often necessary to fit “big models” to adjust for systematic differences between sample and population. For this task, scalable and efficient model-fitting tools are needed, and these have been achieved with our new Hamiltonian Monte Carlo algorithm, the no-U-turn sampler, and our new C++ program, Stan. In layman’s terms, our research enables researchers to create improved mathematical modes for large and complex systems.

  16. Hierarchical Modelling of Flood Risk for Engineering Decision Analysis

    DEFF Research Database (Denmark)

    Custer, Rocco

    protection structures in the hierarchical flood protection system - is identified. To optimise the design of protection structures, fragility and vulnerability models must allow for consideration of decision alternatives. While such vulnerability models are available for large protection structures (e...... systems, as well as the implementation of the flood risk analysis methodology and the vulnerability modelling approach are illustrated with an example application. In summary, the present thesis provides a characterisation of hierarchical flood protection systems as well as several methodologies to model...... and robust. Traditional risk management solutions, e.g. dike construction, are not particularly flexible, as they are difficult to adapt to changing risk. Conversely, the recent concept of integrated flood risk management, entailing a combination of several structural and non-structural risk management...

  17. A Hierarchical Visualization Analysis Model of Power Big Data

    Science.gov (United States)

    Li, Yongjie; Wang, Zheng; Hao, Yang

    2018-01-01

    Based on the conception of integrating VR scene and power big data analysis, a hierarchical visualization analysis model of power big data is proposed, in which levels are designed, targeting at different abstract modules like transaction, engine, computation, control and store. The regularly departed modules of power data storing, data mining and analysis, data visualization are integrated into one platform by this model. It provides a visual analysis solution for the power big data.

  18. Fully probabilistic design of hierarchical Bayesian models

    Czech Academy of Sciences Publication Activity Database

    Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine

    2016-01-01

    Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf

  19. Hierarchical Model Predictive Control for Resource Distribution

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2010-01-01

    units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The approach presented is based on quadratic optimization and possess the properties of low algorithmic complexity and of scalability. In particular, the proposed design methodology...

  20. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    International Nuclear Information System (INIS)

    Gene Golub; Kwok Ko

    2009-01-01

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  1. Introduction to Hierarchical Bayesian Modeling for Ecological Data

    CERN Document Server

    Parent, Eric

    2012-01-01

    Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a

  2. A hierarchical spatiotemporal analog forecasting model for count data.

    Science.gov (United States)

    McDermott, Patrick L; Wikle, Christopher K; Millspaugh, Joshua

    2018-01-01

    Analog forecasting is a mechanism-free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological and physical processes, but it has typically been presented in an empirical or heuristic procedure, rather than as a formal statistical model. The methodology presented here extends the model-based analog method of McDermott and Wikle (Environmetrics, 27, 2016, 70) by placing analog forecasting within a fully hierarchical statistical framework that can accommodate count observations. Using a Bayesian approach, the hierarchical analog model is able to quantify rigorously the uncertainty associated with forecasts. Forecasting waterfowl settling patterns in the northwestern United States and Canada is conducted by applying the hierarchical analog model to a breeding population survey dataset. Sea surface temperature (SST) in the Pacific Ocean is used to help identify potential analogs for the waterfowl settling patterns.

  3. Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform

    NARCIS (Netherlands)

    Xu, S.; Xue, W.; Lin, H.X.

    2011-01-01

    In this article, we discuss the performance modeling and optimization of Sparse Matrix-Vector Multiplication (SpMV) on NVIDIA GPUs using CUDA. SpMV has a very low computation-data ratio and its performance is mainly bound by the memory bandwidth. We propose optimization of SpMV based on ELLPACK from

  4. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  5. Sparse modeling applied to patient identification for safety in medical physics applications

    Science.gov (United States)

    Lewkowitz, Stephanie

    Every scheduled treatment at a radiation therapy clinic involves a series of safety protocol to ensure the utmost patient care. Despite safety protocol, on a rare occasion an entirely preventable medical event, an accident, may occur. Delivering a treatment plan to the wrong patient is preventable, yet still is a clinically documented error. This research describes a computational method to identify patients with a novel machine learning technique to combat misadministration. The patient identification program stores face and fingerprint data for each patient. New, unlabeled data from those patients are categorized according to the library. The categorization of data by this face-fingerprint detector is accomplished with new machine learning algorithms based on Sparse Modeling that have already begun transforming the foundation of Computer Vision. Previous patient recognition software required special subroutines for faces and different tailored subroutines for fingerprints. In this research, the same exact model is used for both fingerprints and faces, without any additional subroutines and even without adjusting the two hyperparameters. Sparse modeling is a powerful tool, already shown utility in the areas of super-resolution, denoising, inpainting, demosaicing, and sub-nyquist sampling, i.e. compressed sensing. Sparse Modeling is possible because natural images are inherently sparse in some bases, due to their inherent structure. This research chooses datasets of face and fingerprint images to test the patient identification model. The model stores the images of each dataset as a basis (library). One image at a time is removed from the library, and is classified by a sparse code in terms of the remaining library. The Locally Competitive Algorithm, a truly neural inspired Artificial Neural Network, solves the computationally difficult task of finding the sparse code for the test image. The components of the sparse representation vector are summed by ℓ1 pooling

  6. Anisotropic Third-Order Regularization for Sparse Digital Elevation Models

    KAUST Repository

    Lellmann, Jan; Morel, Jean-Michel; Schö nlieb, Carola-Bibiane

    2013-01-01

    features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE

  7. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    Science.gov (United States)

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  8. The Little-Hopfield model on a sparse random graph

    International Nuclear Information System (INIS)

    Castillo, I Perez; Skantzos, N S

    2004-01-01

    We study the Hopfield model on a random graph in scaling regimes where the average number of connections per neuron is a finite number and the spin dynamics is governed by a synchronous execution of the microscopic update rule (Little-Hopfield model). We solve this model within replica symmetry, and by using bifurcation analysis we prove that the spin-glass/paramagnetic and the retrieval/paramagnetic transition lines of our phase diagram are identical to those of sequential dynamics. The first-order retrieval/spin-glass transition line follows by direct evaluation of our observables using population dynamics. Within the accuracy of numerical precision and for sufficiently small values of the connectivity parameter we find that this line coincides with the corresponding sequential one. Comparison with simulation experiments shows excellent agreement

  9. A Pansharpening Method Based on HCT and Joint Sparse Model

    Directory of Open Access Journals (Sweden)

    XU Ning

    2016-04-01

    Full Text Available A novel fusion method based on the hyperspherical color transformation (HCT and joint sparsity model is proposed for decreasing the spectral distortion of fused image further. In the method, an intensity component and angles of each band of the multispectral image is obtained by HCT firstly, and then the intensity component is fused with the panchromatic image through wavelet transform and joint sparsity model. In the joint sparsity model, the redundant and complement information of the different images can be efficiently extracted and employed to yield the high quality results. Finally, the fused multi spectral image is obtained by inverse transforms of wavelet and HCT on the new lower frequency image and the angle components, respectively. Experimental results on Pleiades-1 and WorldView-2 satellites indicate that the proposed method achieves remarkable results.

  10. Response of an eddy-permitting ocean model to the assimilation of sparse in situ data

    Science.gov (United States)

    Li, Jian-Guo; Killworth, Peter D.; Smeed, David A.

    2003-04-01

    The response of an eddy-permitting ocean model to changes introduced by data assimilation is studied when the available in situ data are sparse in both space and time (typical for the majority of the ocean). Temperature and salinity (T&S) profiles from the WOCE upper ocean thermal data set were assimilated into a primitive equation ocean model over the North Atlantic, using a simple nudging scheme with a time window of about 2 days and a horizontal spatial radius of about 1°. When data are sparse the model returns to its unassimilated behavior, locally "forgetting" or rejecting the assimilation, on timescales determined by the local advection and diffusion. Increasing the spatial weighting radius effectively reduces both processes and hence lengthens the model restoring time (and with it, the impact of assimilation). Increasing the nudging factor enhances the assimilation effect but has little effect on the model restoring time.

  11. Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data

    Directory of Open Access Journals (Sweden)

    Alexander P. Kartun-Giles

    2018-04-01

    Full Text Available A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does not depend on the order in which nodes are sampled. Despite a large variety of non-equilibrium (growing and equilibrium (static sparse complex network models that are widely used in network science, how to reconcile sparseness (constant average degree with the desired statistical properties of projectivity and exchangeability is currently an outstanding scientific problem. Here we propose a network process with hidden variables which is projective and can generate sparse power-law networks. Despite the model not being exchangeable, it can be closely related to exchangeable uncorrelated networks as indicated by its information theory characterization and its network entropy. The use of the proposed network process as a null model is here tested on real data, indicating that the model offers a promising avenue for statistical network modelling.

  12. Estimation of Model's Marginal likelihood Using Adaptive Sparse Grid Surrogates in Bayesian Model Averaging

    Science.gov (United States)

    Zeng, X.

    2015-12-01

    A large number of model executions are required to obtain alternative conceptual models' predictions and their posterior probabilities in Bayesian model averaging (BMA). The posterior model probability is estimated through models' marginal likelihood and prior probability. The heavy computation burden hinders the implementation of BMA prediction, especially for the elaborated marginal likelihood estimator. For overcoming the computation burden of BMA, an adaptive sparse grid (SG) stochastic collocation method is used to build surrogates for alternative conceptual models through the numerical experiment of a synthetical groundwater model. BMA predictions depend on model posterior weights (or marginal likelihoods), and this study also evaluated four marginal likelihood estimators, including arithmetic mean estimator (AME), harmonic mean estimator (HME), stabilized harmonic mean estimator (SHME), and thermodynamic integration estimator (TIE). The results demonstrate that TIE is accurate in estimating conceptual models' marginal likelihoods. The BMA-TIE has better predictive performance than other BMA predictions. TIE has high stability for estimating conceptual model's marginal likelihood. The repeated estimated conceptual model's marginal likelihoods by TIE have significant less variability than that estimated by other estimators. In addition, the SG surrogates are efficient to facilitate BMA predictions, especially for BMA-TIE. The number of model executions needed for building surrogates is 4.13%, 6.89%, 3.44%, and 0.43% of the required model executions of BMA-AME, BMA-HME, BMA-SHME, and BMA-TIE, respectively.

  13. Hierarchical composites: Analysis of damage evolution based on fiber bundle model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2011-01-01

    A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...

  14. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  15. A hierarchical community occurrence model for North Carolina stream fish

    Science.gov (United States)

    Midway, S.R.; Wagner, Tyler; Tracy, B.H.

    2016-01-01

    The southeastern USA is home to one of the richest—and most imperiled and threatened—freshwater fish assemblages in North America. For many of these rare and threatened species, conservation efforts are often limited by a lack of data. Drawing on a unique and extensive data set spanning over 20 years, we modeled occurrence probabilities of 126 stream fish species sampled throughout North Carolina, many of which occur more broadly in the southeastern USA. Specifically, we developed species-specific occurrence probabilities from hierarchical Bayesian multispecies models that were based on common land use and land cover covariates. We also used index of biotic integrity tolerance classifications as a second level in the model hierarchy; we identify this level as informative for our work, but it is flexible for future model applications. Based on the partial-pooling property of the models, we were able to generate occurrence probabilities for many imperiled and data-poor species in addition to highlighting a considerable amount of occurrence heterogeneity that supports species-specific investigations whenever possible. Our results provide critical species-level information on many threatened and imperiled species as well as information that may assist with re-evaluation of existing management strategies, such as the use of surrogate species. Finally, we highlight the use of a relatively simple hierarchical model that can easily be generalized for similar situations in which conventional models fail to provide reliable estimates for data-poor groups.

  16. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    Science.gov (United States)

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies

  17. Bayesian Dose-Response Modeling in Sparse Data

    Science.gov (United States)

    Kim, Steven B.

    This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a

  18. Linguistic steganography on Twitter: hierarchical language modeling with manual interaction

    Science.gov (United States)

    Wilson, Alex; Blunsom, Phil; Ker, Andrew D.

    2014-02-01

    This work proposes a natural language stegosystem for Twitter, modifying tweets as they are written to hide 4 bits of payload per tweet, which is a greater payload than previous systems have achieved. The system, CoverTweet, includes novel components, as well as some already developed in the literature. We believe that the task of transforming covers during embedding is equivalent to unilingual machine translation (paraphrasing), and we use this equivalence to de ne a distortion measure based on statistical machine translation methods. The system incorporates this measure of distortion to rank possible tweet paraphrases, using a hierarchical language model; we use human interaction as a second distortion measure to pick the best. The hierarchical language model is designed to model the speci c language of the covers, which in this setting is the language of the Twitter user who is embedding. This is a change from previous work, where general-purpose language models have been used. We evaluate our system by testing the output against human judges, and show that humans are unable to distinguish stego tweets from cover tweets any better than random guessing.

  19. Hierarchical Swarm Model: A New Approach to Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2010-01-01

    Full Text Available This paper presents a novel optimization model called hierarchical swarm optimization (HSO, which simulates the natural hierarchical complex system from where more complex intelligence can emerge for complex problems solving. This proposed model is intended to suggest ways that the performance of HSO-based algorithms on complex optimization problems can be significantly improved. This performance improvement is obtained by constructing the HSO hierarchies, which means that an agent in a higher level swarm can be composed of swarms of other agents from lower level and different swarms of different levels evolve on different spatiotemporal scale. A novel optimization algorithm (named PS2O, based on the HSO model, is instantiated and tested to illustrate the ideas of HSO model clearly. Experiments were conducted on a set of 17 benchmark optimization problems including both continuous and discrete cases. The results demonstrate remarkable performance of the PS2O algorithm on all chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms.

  20. A Data-Driven Sparse-Learning Approach to Model Reduction in Chemical Reaction Networks

    OpenAIRE

    Harirchi, Farshad; Khalil, Omar A.; Liu, Sijia; Elvati, Paolo; Violi, Angela; Hero, Alfred O.

    2017-01-01

    In this paper, we propose an optimization-based sparse learning approach to identify the set of most influential reactions in a chemical reaction network. This reduced set of reactions is then employed to construct a reduced chemical reaction mechanism, which is relevant to chemical interaction network modeling. The problem of identifying influential reactions is first formulated as a mixed-integer quadratic program, and then a relaxation method is leveraged to reduce the computational comple...

  1. SparseM: A Sparse Matrix Package for R *

    Directory of Open Access Journals (Sweden)

    Roger Koenker

    2003-02-01

    Full Text Available SparseM provides some basic R functionality for linear algebra with sparse matrices. Use of the package is illustrated by a family of linear model fitting functions that implement least squares methods for problems with sparse design matrices. Significant performance improvements in memory utilization and computational speed are possible for applications involving large sparse matrices.

  2. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    Science.gov (United States)

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  3. Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost

    Science.gov (United States)

    Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.

    2017-11-01

    A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.

  4. The Realized Hierarchical Archimedean Copula in Risk Modelling

    Directory of Open Access Journals (Sweden)

    Ostap Okhrin

    2017-06-01

    Full Text Available This paper introduces the concept of the realized hierarchical Archimedean copula (rHAC. The proposed approach inherits the ability of the copula to capture the dependencies among financial time series, and combines it with additional information contained in high-frequency data. The considered model does not suffer from the curse of dimensionality, and is able to accurately predict high-dimensional distributions. This flexibility is obtained by using a hierarchical structure in the copula. The time variability of the model is provided by daily forecasts of the realized correlation matrix, which is used to estimate the structure and the parameters of the rHAC. Extensive simulation studies show the validity of the estimator based on this realized correlation matrix, and its performance, in comparison to the benchmark models. The application of the estimator to one-day-ahead Value at Risk (VaR prediction using high-frequency data exhibits good forecasting properties for a multivariate portfolio.

  5. Predictive spatio-temporal model for spatially sparse global solar radiation data

    International Nuclear Information System (INIS)

    André, Maïna; Dabo-Niang, Sophie; Soubdhan, Ted; Ould-Baba, Hanany

    2016-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatially sparse spatio-temporal data. This model differs from classic linear models in using spatial and temporal parameters where the available predictors are the lagged values at each station. A spatial structure of stations is defined by the sequential introduction of predictors in the model. Moreover, an iterative strategy in the process of our model will select the necessary stations removing the uninteresting predictors and also selecting the optimal p-order. We studied the performance of this model. The metric error, the relative root mean squared error (rRMSE), is presented at different short time scales. Moreover, we compared the results of our model to simple and well known persistence model and those found in literature. - Highlights: • A spatio-temporal VAR forecast model is used for spatially sparse data solar. • Lags and locations are selected by an optimization strategy. • Definition of spatial ordering of predictors influences forecasting results. • The model shows a better performance predictive at 30 min ahead in our context. • Benchmarking study shows a more accurate forecast at 1 h ahead with spatio-temporal VAR.

  6. An ensemble based nonlinear orthogonal matching pursuit algorithm for sparse history matching of reservoir models

    KAUST Repository

    Fsheikh, Ahmed H.

    2013-01-01

    A nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of reservoir models is presented. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated components of the basis functions with the residual. The discovered basis (aka support) is augmented across the nonlinear iterations. Once the basis functions are selected from the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives to efficiently approximate gradients. In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm.

  7. PARAMETER ESTIMATION AND MODEL SELECTION FOR INDOOR ENVIRONMENTS BASED ON SPARSE OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    Y. Dehbi

    2017-09-01

    Full Text Available This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  8. Parameter Estimation and Model Selection for Indoor Environments Based on Sparse Observations

    Science.gov (United States)

    Dehbi, Y.; Loch-Dehbi, S.; Plümer, L.

    2017-09-01

    This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  9. Importance analysis for models with correlated variables and its sparse grid solution

    International Nuclear Information System (INIS)

    Li, Luyi; Lu, Zhenzhou

    2013-01-01

    For structural models involving correlated input variables, a novel interpretation for variance-based importance measures is proposed based on the contribution of the correlated input variables to the variance of the model output. After the novel interpretation of the variance-based importance measures is compared with the existing ones, two solutions of the variance-based importance measures of the correlated input variables are built on the sparse grid numerical integration (SGI): double-loop nested sparse grid integration (DSGI) method and single loop sparse grid integration (SSGI) method. The DSGI method solves the importance measure by decreasing the dimensionality of the input variables procedurally, while SSGI method performs importance analysis through extending the dimensionality of the inputs. Both of them can make full use of the advantages of the SGI, and are well tailored for different situations. By analyzing the results of several numerical and engineering examples, it is found that the novel proposed interpretation about the importance measures of the correlated input variables is reasonable, and the proposed methods for solving importance measures are efficient and accurate. -- Highlights: •The contribution of correlated variables to the variance of the output is analyzed. •A novel interpretation for variance-based indices of correlated variables is proposed. •Two solutions for variance-based importance measures of correlated variables are built

  10. Model's sparse representation based on reduced mixed GMsFE basis methods

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn [Institute of Mathematics, Hunan University, Changsha 410082 (China); Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn [College of Mathematics and Econometrics, Hunan University, Changsha 410082 (China)

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in

  11. Learning Hierarchical User Interest Models from Web Pages

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We propose an algorithm for learning hierarchical user interest models according to the Web pages users have browsed. In this algorithm, the interests of a user are represented into a tree which is called a user interest tree, the content and the structure of which can change simultaneously to adapt to the changes in a user's interests. This expression represents a user's specific and general interests as a continuum. In some sense, specific interests correspond to short-term interests, while general interests correspond to long-term interests. So this representation more really reflects the users' interests. The algorithm can automatically model a user's multiple interest domains, dynamically generate the interest models and prune a user interest tree when the number of the nodes in it exceeds given value. Finally, we show the experiment results in a Chinese Web Site.

  12. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors.

    Directory of Open Access Journals (Sweden)

    Andrea Sottoriva

    2011-05-01

    Full Text Available The cancer stem cell (CSC concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.

  13. Spectrum recovery method based on sparse representation for segmented multi-Gaussian model

    Science.gov (United States)

    Teng, Yidan; Zhang, Ye; Ti, Chunli; Su, Nan

    2016-09-01

    Hyperspectral images can realize crackajack features discriminability for supplying diagnostic characteristics with high spectral resolution. However, various degradations may generate negative influence on the spectral information, including water absorption, bands-continuous noise. On the other hand, the huge data volume and strong redundancy among spectrums produced intense demand on compressing HSIs in spectral dimension, which also leads to the loss of spectral information. The reconstruction of spectral diagnostic characteristics has irreplaceable significance for the subsequent application of HSIs. This paper introduces a spectrum restoration method for HSIs making use of segmented multi-Gaussian model (SMGM) and sparse representation. A SMGM is established to indicating the unsymmetrical spectral absorption and reflection characteristics, meanwhile, its rationality and sparse property are discussed. With the application of compressed sensing (CS) theory, we implement sparse representation to the SMGM. Then, the degraded and compressed HSIs can be reconstructed utilizing the uninjured or key bands. Finally, we take low rank matrix recovery (LRMR) algorithm for post processing to restore the spatial details. The proposed method was tested on the spectral data captured on the ground with artificial water absorption condition and an AVIRIS-HSI data set. The experimental results in terms of qualitative and quantitative assessments demonstrate that the effectiveness on recovering the spectral information from both degradations and loss compression. The spectral diagnostic characteristics and the spatial geometry feature are well preserved.

  14. Tractography segmentation using a hierarchical Dirichlet processes mixture model.

    Science.gov (United States)

    Wang, Xiaogang; Grimson, W Eric L; Westin, Carl-Fredrik

    2011-01-01

    In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Hierarchical decision modeling essays in honor of Dundar F. Kocaoglu

    CERN Document Server

    2016-01-01

    This volume, developed in honor of Dr. Dundar F. Kocaoglu, aims to demonstrate the applications of the Hierarchical Decision Model (HDM) in different sectors and its capacity in decision analysis. It is comprised of essays from noted scholars, academics and researchers of engineering and technology management around the world. This book is organized into four parts: Technology Assessment, Strategic Planning, National Technology Planning and Decision Making Tools. Dr. Dundar F. Kocaoglu is one of the pioneers of multiple decision models using hierarchies, and creator of the HDM in decision analysis. HDM is a mission-oriented method for evaluation and/or selection among alternatives. A wide range of alternatives can be considered, including but not limited to, different technologies, projects, markets, jobs, products, cities to live in, houses to buy, apartments to rent, and schools to attend. Dr. Kocaoglu’s approach has been adopted for decision problems in many industrial sectors, including electronics rese...

  16. Modeling the impacts of dryland agricultural reclamation on groundwater resources in Northern Egypt using sparse data

    Science.gov (United States)

    Switzman, Harris; Coulibaly, Paulin; Adeel, Zafar

    2015-01-01

    Demand for freshwater in many dryland environments is exerting negative impacts on the quality and availability of groundwater resources, particularly in areas where demand is high due to irrigation or industrial water requirements to support dryland agricultural reclamation. Often however, information available to diagnose the drivers of groundwater degradation and assess management options through modeling is sparse, particularly in low and middle-income countries. This study presents an approach for generating transient groundwater model inputs to assess the long-term impacts of dryland agricultural land reclamation on groundwater resources in a highly data-sparse context. The approach was applied to the area of Wadi El Natrun in Northern Egypt, where dryland reclamation and the associated water use has been aggressive since the 1960s. Statistical distributions of water use information were constructed from a variety of sparse field and literature estimates and then combined with remote sensing data in spatio-temporal infilling model to produce the groundwater model inputs of well-pumping and surface recharge. An ensemble of groundwater model inputs were generated and used in a 3D groundwater flow (MODFLOW) of Wadi El Natrun's multi-layer aquifer system to analyze trends in water levels and water budgets over time. Validation of results against monitoring records, and model performance statistics demonstrated that despite the extremely sparse data, the approach used in this study was capable of simulating the cumulative impacts of agricultural land reclamation reasonably well. The uncertainty associated with the groundwater model itself was greater than that associated with the ensemble of well-pumping and surface recharge estimates. Water budget analysis of the groundwater model output revealed that groundwater recharge has not changed significantly over time, while pumping has. As a result of these trends, groundwater was estimated to be in a deficit of

  17. Model methodology for estimating pesticide concentration extremes based on sparse monitoring data

    Science.gov (United States)

    Vecchia, Aldo V.

    2018-03-22

    This report describes a new methodology for using sparse (weekly or less frequent observations) and potentially highly censored pesticide monitoring data to simulate daily pesticide concentrations and associated quantities used for acute and chronic exposure assessments, such as the annual maximum daily concentration. The new methodology is based on a statistical model that expresses log-transformed daily pesticide concentration in terms of a seasonal wave, flow-related variability, long-term trend, and serially correlated errors. Methods are described for estimating the model parameters, generating conditional simulations of daily pesticide concentration given sparse (weekly or less frequent) and potentially highly censored observations, and estimating concentration extremes based on the conditional simulations. The model can be applied to datasets with as few as 3 years of record, as few as 30 total observations, and as few as 10 uncensored observations. The model was applied to atrazine, carbaryl, chlorpyrifos, and fipronil data for U.S. Geological Survey pesticide sampling sites with sufficient data for applying the model. A total of 112 sites were analyzed for atrazine, 38 for carbaryl, 34 for chlorpyrifos, and 33 for fipronil. The results are summarized in this report; and, R functions, described in this report and provided in an accompanying model archive, can be used to fit the model parameters and generate conditional simulations of daily concentrations for use in investigations involving pesticide exposure risk and uncertainty.

  18. Influence of soil moisture on the modelling of evapotranspiration in sparse vegetation

    International Nuclear Information System (INIS)

    Villagarcia, L.; Were, A.; Morillas, L.; Garcia, M.; Domingo, F.; Puigdefabregas, J.

    2009-01-01

    This work analyses the relevance of soil water content (θ) on the estimation of actual evapotranspiration (λE) in sparse vegetated areas. This importance is evaluated through the effect of the θ heterogeneity, both vertical and horizontal (differentiating between bare soil (bs) and soil under vegetation (s)), on λE estimates. A clumped evapotranspiration model (CM) that considers vegetation (p), bs and s as sources of evaporation, was used. This model estimates λE of the whole vegetated area, as well as the contribution of each source. (Author) 11 refs.

  19. Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper

    2007-01-01

    Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...... with discrete time processes in the setting of the present paper as well as other spatial-temporal situations....

  20. Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.

    Science.gov (United States)

    Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T

    2017-07-01

    Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.

  1. GSMNet: A Hierarchical Graph Model for Moving Objects in Networks

    Directory of Open Access Journals (Sweden)

    Hengcai Zhang

    2017-03-01

    Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.

  2. Comparison between sparsely distributed memory and Hopfield-type neural network models

    Science.gov (United States)

    Keeler, James D.

    1986-01-01

    The Sparsely Distributed Memory (SDM) model (Kanerva, 1984) is compared to Hopfield-type neural-network models. A mathematical framework for comparing the two is developed, and the capacity of each model is investigated. The capacity of the SDM can be increased independently of the dimension of the stored vectors, whereas the Hopfield capacity is limited to a fraction of this dimension. However, the total number of stored bits per matrix element is the same in the two models, as well as for extended models with higher order interactions. The models are also compared in their ability to store sequences of patterns. The SDM is extended to include time delays so that contextual information can be used to cover sequences. Finally, it is shown how a generalization of the SDM allows storage of correlated input pattern vectors.

  3. Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

    Science.gov (United States)

    Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua

    2014-04-02

    The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.

  4. Encrypted data stream identification using randomness sparse representation and fuzzy Gaussian mixture model

    Science.gov (United States)

    Zhang, Hong; Hou, Rui; Yi, Lei; Meng, Juan; Pan, Zhisong; Zhou, Yuhuan

    2016-07-01

    The accurate identification of encrypted data stream helps to regulate illegal data, detect network attacks and protect users' information. In this paper, a novel encrypted data stream identification algorithm is introduced. The proposed method is based on randomness characteristics of encrypted data stream. We use a l1-norm regularized logistic regression to improve sparse representation of randomness features and Fuzzy Gaussian Mixture Model (FGMM) to improve identification accuracy. Experimental results demonstrate that the method can be adopted as an effective technique for encrypted data stream identification.

  5. Real-Space Analysis of Scanning Tunneling Microscopy Topography Datasets Using Sparse Modeling Approach

    Science.gov (United States)

    Miyama, Masamichi J.; Hukushima, Koji

    2018-04-01

    A sparse modeling approach is proposed for analyzing scanning tunneling microscopy topography data, which contain numerous peaks originating from the electron density of surface atoms and/or impurities. The method, based on the relevance vector machine with L1 regularization and k-means clustering, enables separation of the peaks and peak center positioning with accuracy beyond the resolution of the measurement grid. The validity and efficiency of the proposed method are demonstrated using synthetic data in comparison with the conventional least-squares method. An application of the proposed method to experimental data of a metallic oxide thin-film clearly indicates the existence of defects and corresponding local lattice distortions.

  6. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    Science.gov (United States)

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  7. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    International Nuclear Information System (INIS)

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-01-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z ∼ 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z ∼ 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z ∼ 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  8. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    Directory of Open Access Journals (Sweden)

    Javier Macias-Guarasa

    2012-10-01

    Full Text Available This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.

  9. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  10. Bayesian Hierarchical Random Effects Models in Forensic Science

    Directory of Open Access Journals (Sweden)

    Colin G. G. Aitken

    2018-04-01

    Full Text Available Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.

  11. Bayesian Hierarchical Random Effects Models in Forensic Science.

    Science.gov (United States)

    Aitken, Colin G G

    2018-01-01

    Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios) was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.

  12. Renormalization group analysis of a simple hierarchical fermion model

    International Nuclear Information System (INIS)

    Dorlas, T.C.

    1991-01-01

    A simple hierarchical fermion model is constructed which gives rise to an exact renormalization transformation in a 2-dimensional parameter space. The behaviour of this transformation is studied. It has two hyperbolic fixed points for which the existence of a global critical line is proven. The asymptotic behaviour of the transformation is used to prove the existence of the thermodynamic limit in a certain domain in parameter space. Also the existence of a continuum limit for these theories is investigated using information about the asymptotic renormalization behaviour. It turns out that the 'trivial' fixed point gives rise to a two-parameter family of continuum limits corresponding to that part of parameter space where the renormalization trajectories originate at this fixed point. Although the model is not very realistic it serves as a simple example of the appliclation of the renormalization group to proving the existence of the thermodynamic limit and the continuum limit of lattice models. Moreover, it illustrates possible complications that can arise in global renormalization group behaviour, and that might also be present in other models where no global analysis of the renormalization transformation has yet been achieved. (orig.)

  13. Testing adaptive toolbox models: a Bayesian hierarchical approach.

    Science.gov (United States)

    Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan

    2013-01-01

    Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.

  14. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    Science.gov (United States)

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  15. A hierarchical network modeling method for railway tunnels safety assessment

    Science.gov (United States)

    Zhou, Jin; Xu, Weixiang; Guo, Xin; Liu, Xumin

    2017-02-01

    Using network theory to model risk-related knowledge on accidents is regarded as potential very helpful in risk management. A large amount of defects detection data for railway tunnels is collected in autumn every year in China. It is extremely important to discover the regularities knowledge in database. In this paper, based on network theories and by using data mining techniques, a new method is proposed for mining risk-related regularities to support risk management in railway tunnel projects. A hierarchical network (HN) model which takes into account the tunnel structures, tunnel defects, potential failures and accidents is established. An improved Apriori algorithm is designed to rapidly and effectively mine correlations between tunnel structures and tunnel defects. Then an algorithm is presented in order to mine the risk-related regularities table (RRT) from the frequent patterns. At last, a safety assessment method is proposed by consideration of actual defects and possible risks of defects gained from the RRT. This method cannot only generate the quantitative risk results but also reveal the key defects and critical risks of defects. This paper is further development on accident causation network modeling methods which can provide guidance for specific maintenance measure.

  16. Production optimisation in the petrochemical industry by hierarchical multivariate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Magnus; Furusjoe, Erik; Jansson, Aasa

    2004-06-01

    This project demonstrates the advantages of applying hierarchical multivariate modelling in the petrochemical industry in order to increase knowledge of the total process. The models indicate possible ways to optimise the process regarding the use of energy and raw material, which is directly linked to the environmental impact of the process. The refinery of Nynaes Refining AB (Goeteborg, Sweden) has acted as a demonstration site in this project. The models developed for the demonstration site resulted in: Detection of an unknown process disturbance and suggestions of possible causes; Indications on how to increase the yield in combination with energy savings; The possibility to predict product quality from on-line process measurements, making the results available at a higher frequency than customary laboratory analysis; Quantification of the gradually lowered efficiency of heat transfer in the furnace and increased fuel consumption as an effect of soot build-up on the furnace coils; Increased knowledge of the relation between production rate and the efficiency of the heat exchangers. This report is one of two reports from the project. It contains a technical discussion of the result with some degree of detail. A shorter and more easily accessible report is also available, see IVL report B1586-A.

  17. Improved statistical power with a sparse shape model in detecting an aging effect in the hippocampus and amygdala

    Science.gov (United States)

    Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.

    2014-03-01

    The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.

  18. A joint model for multivariate hierarchical semicontinuous data with replications.

    Science.gov (United States)

    Kassahun-Yimer, Wondwosen; Albert, Paul S; Lipsky, Leah M; Nansel, Tonja R; Liu, Aiyi

    2017-01-01

    Longitudinal data are often collected in biomedical applications in such a way that measurements on more than one response are taken from a given subject repeatedly overtime. For some problems, these multiple profiles need to be modeled jointly to get insight on the joint evolution and/or association of these responses over time. In practice, such longitudinal outcomes may have many zeros that need to be accounted for in the analysis. For example, in dietary intake studies, as we focus on in this paper, some food components are eaten daily by almost all subjects, while others are consumed episodically, where individuals have time periods where they do not eat these components followed by periods where they do. These episodically consumed foods need to be adequately modeled to account for the many zeros that are encountered. In this paper, we propose a joint model to analyze multivariate hierarchical semicontinuous data characterized by many zeros and more than one replicate observations at each measurement occasion. This approach allows for different probability mechanisms for describing the zero behavior as compared with the mean intake given that the individual consumes the food. To deal with the potentially large number of multivariate profiles, we use a pairwise model fitting approach that was developed in the context of multivariate Gaussian random effects models with large number of multivariate components. The novelty of the proposed approach is that it incorporates: (1) multivariate, possibly correlated, response variables; (2) within subject correlation resulting from repeated measurements taken from each subject; (3) many zero observations; (4) overdispersion; and (5) replicate measurements at each visit time.

  19. Proceedings of the third "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'16)

    DEFF Research Database (Denmark)

    2016-01-01

    The third edition of the "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) took place in Aalborg, the 4th largest city in Denmark situated beautifully in the northern part of the country, from the 24th to 26th of August 2016. The workshop venue...... learning; Optimization for sparse modelling; Information theory, geometry and randomness; Sparsity? What's next? (Discrete-valued signals; Union of low-dimensional spaces, Cosparsity, mixed/group norm, model-based, low-complexity models, ...); Matrix/manifold sensing/processing (graph, low...

  20. Synaptic learning rules and sparse coding in a model sensory system.

    Directory of Open Access Journals (Sweden)

    Luca A Finelli

    2008-04-01

    Full Text Available Neural circuits exploit numerous strategies for encoding information. Although the functional significance of individual coding mechanisms has been investigated, ways in which multiple mechanisms interact and integrate are not well understood. The locust olfactory system, in which dense, transiently synchronized spike trains across ensembles of antenna lobe (AL neurons are transformed into a sparse representation in the mushroom body (MB; a region associated with memory, provides a well-studied preparation for investigating the interaction of multiple coding mechanisms. Recordings made in vivo from the insect MB demonstrated highly specific responses to odors in Kenyon cells (KCs. Typically, only a few KCs from the recorded population of neurons responded reliably when a specific odor was presented. Different odors induced responses in different KCs. Here, we explored with a biologically plausible model the possibility that a form of plasticity may control and tune synaptic weights of inputs to the mushroom body to ensure the specificity of KCs' responses to familiar or meaningful odors. We found that plasticity at the synapses between the AL and the MB efficiently regulated the delicate tuning necessary to selectively filter the intense AL oscillatory output and condense it to a sparse representation in the MB. Activity-dependent plasticity drove the observed specificity, reliability, and expected persistence of odor representations, suggesting a role for plasticity in information processing and making a testable prediction about synaptic plasticity at AL-MB synapses.

  1. Adaptive hierarchical grid model of water-borne pollutant dispersion

    Science.gov (United States)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  2. Hierarchical statistical modeling of xylem vulnerability to cavitation.

    Science.gov (United States)

    Ogle, Kiona; Barber, Jarrett J; Willson, Cynthia; Thompson, Brenda

    2009-01-01

    Cavitation of xylem elements diminishes the water transport capacity of plants, and quantifying xylem vulnerability to cavitation is important to understanding plant function. Current approaches to analyzing hydraulic conductivity (K) data to infer vulnerability to cavitation suffer from problems such as the use of potentially unrealistic vulnerability curves, difficulty interpreting parameters in these curves, a statistical framework that ignores sampling design, and an overly simplistic view of uncertainty. This study illustrates how two common curves (exponential-sigmoid and Weibull) can be reparameterized in terms of meaningful parameters: maximum conductivity (k(sat)), water potential (-P) at which percentage loss of conductivity (PLC) =X% (P(X)), and the slope of the PLC curve at P(X) (S(X)), a 'sensitivity' index. We provide a hierarchical Bayesian method for fitting the reparameterized curves to K(H) data. We illustrate the method using data for roots and stems of two populations of Juniperus scopulorum and test for differences in k(sat), P(X), and S(X) between different groups. Two important results emerge from this study. First, the Weibull model is preferred because it produces biologically realistic estimates of PLC near P = 0 MPa. Second, stochastic embolisms contribute an important source of uncertainty that should be included in such analyses.

  3. Variational Assimilation of Sparse and Uncertain Satellite Data For 1D Saint-Venant River Models

    Science.gov (United States)

    Garambois, P. A.; Brisset, P.; Monnier, J.; Roux, H.

    2016-12-01

    Profusion of satellites are providing increasingly accurate measurements of continental water cyle, and water bodies variations while in situ observability is declining. The future Surface Water and Ocean Topography (SWOT) mission will provide maps of river surface elevations widths and slopes with an almost global coverage and temporal revisits. This will offer the possibility to address a larger variety of inverse problems in surface hydrology. Data assimilation techniques, that are broadly used in several scientific fields, aim to optimally combine models, system observations and prior information. Variational assimilation consists in iterative minimization of a discrepency measure between model outputs and observations, here for retrieving boundary conditions and parameters of a 1D Saint Venant model. Nevertheless, inferring river discharge and hydraulic parameters thanks to the observation of river surface is not straightforward. This is particularly true in the case of sparse and uncertain observations of flow state variables since they are governed by nonlinear physical processes. This paper investigates the identifiability of hydraulic controls given sparse and uncertain satellite observations of a river. The identifiability of river discharge alone and with roughness is tested for several spatio temporal patterns of river observations, including SWOT like observations. A new 1D Shallow water model with variational data assimilation, within the DassFlow chain is presented as well as postprocessing and observation operator dedicated to the future SWOT and SWOT simulator data. In view to decrease inverse problem dimensionality discharge is represented in a reduced basis. Moreover we introduce an original and reduced parametrization of the flow resistance that can account for various flow regimes along with a cross section design dedicated to remote sensing. We show which discharge temporal frequencies can be identified w.r.t observation ones and at which

  4. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  5. A novel Bayesian hierarchical model for road safety hotspot prediction.

    Science.gov (United States)

    Fawcett, Lee; Thorpe, Neil; Matthews, Joseph; Kremer, Karsten

    2017-02-01

    In this paper, we propose a Bayesian hierarchical model for predicting accident counts in future years at sites within a pool of potential road safety hotspots. The aim is to inform road safety practitioners of the location of likely future hotspots to enable a proactive, rather than reactive, approach to road safety scheme implementation. A feature of our model is the ability to rank sites according to their potential to exceed, in some future time period, a threshold accident count which may be used as a criterion for scheme implementation. Our model specification enables the classical empirical Bayes formulation - commonly used in before-and-after studies, wherein accident counts from a single before period are used to estimate counterfactual counts in the after period - to be extended to incorporate counts from multiple time periods. This allows site-specific variations in historical accident counts (e.g. locally-observed trends) to offset estimates of safety generated by a global accident prediction model (APM), which itself is used to help account for the effects of global trend and regression-to-mean (RTM). The Bayesian posterior predictive distribution is exploited to formulate predictions and to properly quantify our uncertainty in these predictions. The main contributions of our model include (i) the ability to allow accident counts from multiple time-points to inform predictions, with counts in more recent years lending more weight to predictions than counts from time-points further in the past; (ii) where appropriate, the ability to offset global estimates of trend by variations in accident counts observed locally, at a site-specific level; and (iii) the ability to account for unknown/unobserved site-specific factors which may affect accident counts. We illustrate our model with an application to accident counts at 734 potential hotspots in the German city of Halle; we also propose some simple diagnostics to validate the predictive capability of our

  6. On a sparse pressure-flow rate condensation of rigid circulation models

    Science.gov (United States)

    Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.

    2015-01-01

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  7. Metamodeling Techniques to Aid in the Aggregation Process of Large Hierarchical Simulation Models

    National Research Council Canada - National Science Library

    Rodriguez, June F

    2008-01-01

    .... More specifically, investigating how to accurately aggregate hierarchical lower-level (higher resolution) models into the next higher-level in order to reduce the complexity of the overall simulation model...

  8. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    Science.gov (United States)

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  9. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Huang, Can

    2018-01-01

    –slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....

  10. A Bayesian hierarchical model for demand curve analysis.

    Science.gov (United States)

    Ho, Yen-Yi; Nhu Vo, Tien; Chu, Haitao; Luo, Xianghua; Le, Chap T

    2018-07-01

    Drug self-administration experiments are a frequently used approach to assessing the abuse liability and reinforcing property of a compound. It has been used to assess the abuse liabilities of various substances such as psychomotor stimulants and hallucinogens, food, nicotine, and alcohol. The demand curve generated from a self-administration study describes how demand of a drug or non-drug reinforcer varies as a function of price. With the approval of the 2009 Family Smoking Prevention and Tobacco Control Act, demand curve analysis provides crucial evidence to inform the US Food and Drug Administration's policy on tobacco regulation, because it produces several important quantitative measurements to assess the reinforcing strength of nicotine. The conventional approach popularly used to analyze the demand curve data is individual-specific non-linear least square regression. The non-linear least square approach sets out to minimize the residual sum of squares for each subject in the dataset; however, this one-subject-at-a-time approach does not allow for the estimation of between- and within-subject variability in a unified model framework. In this paper, we review the existing approaches to analyze the demand curve data, non-linear least square regression, and the mixed effects regression and propose a new Bayesian hierarchical model. We conduct simulation analyses to compare the performance of these three approaches and illustrate the proposed approaches in a case study of nicotine self-administration in rats. We present simulation results and discuss the benefits of using the proposed approaches.

  11. Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models.

    Science.gov (United States)

    Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O

    2018-05-01

    Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.

    Directory of Open Access Journals (Sweden)

    Xiaodong Cai

    Full Text Available Integrating genetic perturbations with gene expression data not only improves accuracy of regulatory network topology inference, but also enables learning of causal regulatory relations between genes. Although a number of methods have been developed to integrate both types of data, the desiderata of efficient and powerful algorithms still remains. In this paper, sparse structural equation models (SEMs are employed to integrate both gene expression data and cis-expression quantitative trait loci (cis-eQTL, for modeling gene regulatory networks in accordance with biological evidence about genes regulating or being regulated by a small number of genes. A systematic inference method named sparsity-aware maximum likelihood (SML is developed for SEM estimation. Using simulated directed acyclic or cyclic networks, the SML performance is compared with that of two state-of-the-art algorithms: the adaptive Lasso (AL based scheme, and the QTL-directed dependency graph (QDG method. Computer simulations demonstrate that the novel SML algorithm offers significantly better performance than the AL-based and QDG algorithms across all sample sizes from 100 to 1,000, in terms of detection power and false discovery rate, in all the cases tested that include acyclic or cyclic networks of 10, 30 and 300 genes. The SML method is further applied to infer a network of 39 human genes that are related to the immune function and are chosen to have a reliable eQTL per gene. The resulting network consists of 9 genes and 13 edges. Most of the edges represent interactions reasonably expected from experimental evidence, while the remaining may just indicate the emergence of new interactions. The sparse SEM and efficient SML algorithm provide an effective means of exploiting both gene expression and perturbation data to infer gene regulatory networks. An open-source computer program implementing the SML algorithm is freely available upon request.

  13. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection.

    Directory of Open Access Journals (Sweden)

    Su Yang

    Full Text Available Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1 Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2 The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3 The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.

  14. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection.

    Science.gov (United States)

    Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie

    2015-01-01

    Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.

  15. Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models

    International Nuclear Information System (INIS)

    Andrade, A.R.; Teixeira, P.F.

    2015-01-01

    Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a Hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated components between consecutive track sections, namely for the deterioration rates and the initial qualities parameters. HBM are developed for both quality indicators, conducting an extensive comparison between candidate models and a sensitivity analysis on prior distributions. HBM is applied to provide an overall assessment of the degradation of railway track geometry, for the main Portuguese railway line Lisbon–Oporto. - Highlights: • Rail track geometry degradation is analysed using Hierarchical Bayesian models. • A Gibbs sampling strategy is put forward to estimate the HBM. • Model comparison and sensitivity analysis find the most suitable model. • We applied the most suitable model to all the segments of the main Portuguese line. • Tackling spatial correlations using CAR structures lead to a better model fit

  16. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    Science.gov (United States)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  17. Sparse calibration of subsurface flow models using nonlinear orthogonal matching pursuit and an iterative stochastic ensemble method

    KAUST Repository

    Elsheikh, Ahmed H.

    2013-06-01

    We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.

  18. A Unifying model of perfusion and motion applied to reconstruction of sparsely sampled free-breathing myocardial perfusion MRI

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Ólafsdóttir, Hildur; Larsen, Rasmus

    2010-01-01

    The clinical potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently limited by respiratory induced motion of the heart. This paper presents a unifying model of perfusion and motion in which respiratory motion becomes an integral part of myocardial perfusion...... quantification. Hence, the need for tedious manual motion correction prior to perfusion quantification is avoided. In addition, we demonstrate that the proposed framework facilitates the process of reconstructing DCEMRI from sparsely sampled data in the presence of respiratory motion. The paper focuses primarily...... on the underlying theory of the proposed framework, but shows in vivo results of respiratory motion correction and simulation results of reconstructing sparsely sampled data....

  19. Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum

    Science.gov (United States)

    Weitzel, Nils; Hense, Andreas; Ohlwein, Christian

    2017-04-01

    Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were

  20. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    Science.gov (United States)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  1. Comparison of Co-Temporal Modeling Algorithms on Sparse Experimental Time Series Data Sets.

    Science.gov (United States)

    Allen, Edward E; Norris, James L; John, David J; Thomas, Stan J; Turkett, William H; Fetrow, Jacquelyn S

    2010-01-01

    Multiple approaches for reverse-engineering biological networks from time-series data have been proposed in the computational biology literature. These approaches can be classified by their underlying mathematical algorithms, such as Bayesian or algebraic techniques, as well as by their time paradigm, which includes next-state and co-temporal modeling. The types of biological relationships, such as parent-child or siblings, discovered by these algorithms are quite varied. It is important to understand the strengths and weaknesses of the various algorithms and time paradigms on actual experimental data. We assess how well the co-temporal implementations of three algorithms, continuous Bayesian, discrete Bayesian, and computational algebraic, can 1) identify two types of entity relationships, parent and sibling, between biological entities, 2) deal with experimental sparse time course data, and 3) handle experimental noise seen in replicate data sets. These algorithms are evaluated, using the shuffle index metric, for how well the resulting models match literature models in terms of siblings and parent relationships. Results indicate that all three co-temporal algorithms perform well, at a statistically significant level, at finding sibling relationships, but perform relatively poorly in finding parent relationships.

  2. Hierarchical functional model for automobile development; Jidosha kaihatsu no tame no kaisogata kino model

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, S [U-shin Ltd., Tokyo (Japan); Nagamatsu, M; Maruyama, K [Hokkaido Institute of Technology, Sapporo (Japan); Hiramatsu, S [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    A new approach on modeling is put forward in order to compose the virtual prototype which is indispensable for fully computer integrated concurrent development of automobile product. A basic concept of the hierarchical functional model is proposed as the concrete form of this new modeling technology. This model is used mainly for explaining and simulating functions and efficiencies of both the parts and the total product of automobile. All engineers who engage themselves in design and development of automobile can collaborate with one another using this model. Some application examples are shown, and usefulness of this model is demonstrated. 5 refs., 5 figs.

  3. STOMP Sparse Vegetation Evapotranspiration Model for the Water-Air-Energy Operational Mode

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; White, Mark D.; Freeman, Eugene J.; Zhang, Z. F.

    2005-09-15

    The Water-Air-Energy (WAE) Operational Mode of the Subsurface Transport Over Multiple Phases (STOMP) numerical simulator solves the coupled conservation equations for water mass, air mass, and thermal energy in multiple dimensions. This addendum describes the theory, input file formatting, and application of a soil-vegetation-atmosphere transfer (SVAT) scheme for STOMP that is based on a sparse vegetation evapotranspiration model. The SVAT scheme is implemented as a boundary condition on the upper surface of the computational domain and has capabilities for simulating evaporation from bare surfaces as well as evapotranspiration from sparsely vegetated surfaces populated with single or multiple plant species in response to meteorological forcings. With this extension, the model calculates water mass, air mass and thermal energy across a boundary surface in addition to root-water transport between the subsurface and atmosphere. This mode represents the barrier extension of the WAE mode and is designated as STOMP-WAE-B. Input for STOMP-WAE-B is specified via three input cards and include: atmospheric conditions through the Atmospheric Conditions Card; time-invariant plant species data through the Plant Properties Card; and time varying plant species data through the Boundary Conditions Card. Two optional cards, the Observed Data and UCODE Control Cards allow use of STOMP-WAE with UCODE in an inverse mode to estimate model parameters. STOMP-WAE was validated by solving a number of test problems from the literature that included experimental observations as well as analytical or numerical solutions. Several of the UNSAT-H verification problems are included along with a benchmark simulation derived from a recently published intercode comparison for barrier design tools. Results show that STOMP is able to meet, and in most cases, exceed performance of other commonly used simulation codes without having to resort to may of their simplifying assumptions. Use of the fully

  4. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    Science.gov (United States)

    Bai, Hao; Zhang, Xi-wen

    2017-06-01

    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  5. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.

    Science.gov (United States)

    Schargott, M

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  6. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  7. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    International Nuclear Information System (INIS)

    Schargott, M

    2009-01-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface

  8. Vascular dynamics aid a coupled neurovascular network learn sparse independent features: A computational model

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Philips

    2016-02-01

    Full Text Available Cerebral vascular dynamics are generally thought to be controlled by neural activity in a unidirectional fashion. However, both computational modeling and experimental evidence point to the feedback effects of vascular dynamics on neural activity. Vascular feedback in the form of glucose and oxygen controls neuronal ATP, either directly or via the agency of astrocytes, which in turn modulates neural firing. Recently, a detailed model of the neuron-astrocyte-vessel system has shown how vasomotion can modulate neural firing. Similarly, arguing from known cerebrovascular physiology, an approach known as `hemoneural hypothesis' postulates functional modulation of neural activity by vascular feedback. To instantiate this perspective, we present a computational model in which a network of `vascular units' supplies energy to a neural network. The complex dynamics of the vascular network, modeled by a network of oscillators, turns neurons ON and OFF randomly. The informational consequence of such dynamics is explored in the context of an auto-encoder network. In the proposed model, each vascular unit supplies energy to a subset of hidden neurons of an autoencoder network, which constitutes its `projective field'. Neurons that receive adequate energy in a given trial have reduced threshold, and thus are prone to fire. Dynamics of the vascular network are governed by changes in the reconstruction error of the auto-encoder network, interpreted as the neuronal demand. Vascular feedback causes random inactivation of a subset of hidden neurons in every trial. We observe that, under conditions of desynchronized vascular dynamics, the output reconstruction error is low and the feature vectors learnt are sparse and independent. Our earlier modeling study highlighted the link between desynchronized vascular dynamics and efficient energy delivery in skeletal muscle. We now show that desynchronized vascular dynamics leads to efficient training in an auto

  9. Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model

    Science.gov (United States)

    Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna

    2017-06-01

    Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.

  10. Bottom-up learning of hierarchical models in a class of deterministic POMDP environments

    Directory of Open Access Journals (Sweden)

    Itoh Hideaki

    2015-09-01

    Full Text Available The theory of partially observable Markov decision processes (POMDPs is a useful tool for developing various intelligent agents, and learning hierarchical POMDP models is one of the key approaches for building such agents when the environments of the agents are unknown and large. To learn hierarchical models, bottom-up learning methods in which learning takes place in a layer-by-layer manner from the lowest to the highest layer are already extensively used in some research fields such as hidden Markov models and neural networks. However, little attention has been paid to bottom-up approaches for learning POMDP models. In this paper, we present a novel bottom-up learning algorithm for hierarchical POMDP models and prove that, by using this algorithm, a perfect model (i.e., a model that can perfectly predict future observations can be learned at least in a class of deterministic POMDP environments

  11. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Satoru Koda

    2017-11-01

    Full Text Available We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX model with a group smoothly clipped absolute deviation (SCAD method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon. To reveal the diurnal changes in the transcriptome in B. distachyon, we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon. On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon, aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  12. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    Science.gov (United States)

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  13. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    Science.gov (United States)

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  14. Robust Real-Time Music Transcription with a Compositional Hierarchical Model.

    Science.gov (United States)

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.

  15. A generalized linear factor model approach to the hierarchical framework for responses and response times.

    Science.gov (United States)

    Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

    2015-05-01

    We show how the hierarchical model for responses and response times as developed by van der Linden (2007), Fox, Klein Entink, and van der Linden (2007), Klein Entink, Fox, and van der Linden (2009), and Glas and van der Linden (2010) can be simplified to a generalized linear factor model with only the mild restriction that there is no hierarchical model at the item side. This result is valuable as it enables all well-developed modelling tools and extensions that come with these methods. We show that the restriction we impose on the hierarchical model does not influence parameter recovery under realistic circumstances. In addition, we present two illustrative real data analyses to demonstrate the practical benefits of our approach. © 2014 The British Psychological Society.

  16. Uncertainty Analysis Based on Sparse Grid Collocation and Quasi-Monte Carlo Sampling with Application in Groundwater Modeling

    Science.gov (United States)

    Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.

    2011-12-01

    Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently

  17. Predicting Longitudinal Change in Language Production and Comprehension in Individuals with Down Syndrome: Hierarchical Linear Modeling.

    Science.gov (United States)

    Chapman, Robin S.; Hesketh, Linda J.; Kistler, Doris J.

    2002-01-01

    Longitudinal change in syntax comprehension and production skill, measured over six years, was modeled in 31 individuals (ages 5-20) with Down syndrome. The best fitting Hierarchical Linear Modeling model of comprehension uses age and visual and auditory short-term memory as predictors of initial status, and age for growth trajectory. (Contains…

  18. Measuring Teacher Effectiveness through Hierarchical Linear Models: Exploring Predictors of Student Achievement and Truancy

    Science.gov (United States)

    Subedi, Bidya Raj; Reese, Nancy; Powell, Randy

    2015-01-01

    This study explored significant predictors of student's Grade Point Average (GPA) and truancy (days absent), and also determined teacher effectiveness based on proportion of variance explained at teacher level model. We employed a two-level hierarchical linear model (HLM) with student and teacher data at level-1 and level-2 models, respectively.…

  19. Heuristics for Hierarchical Partitioning with Application to Model Checking

    DEFF Research Database (Denmark)

    Möller, Michael Oliver; Alur, Rajeev

    2001-01-01

    Given a collection of connected components, it is often desired to cluster together parts of strong correspondence, yielding a hierarchical structure. We address the automation of this process and apply heuristics to battle the combinatorial and computational complexity. We define a cost function...... that captures the quality of a structure relative to the connections and favors shallow structures with a low degree of branching. Finding a structure with minimal cost is NP-complete. We present a greedy polynomial-time algorithm that approximates good solutions incrementally by local evaluation of a heuristic...... function. We argue for a heuristic function based on four criteria: the number of enclosed connections, the number of components, the number of touched connections and the depth of the structure. We report on an application in the context of formal verification, where our algorithm serves as a preprocessor...

  20. Sparse Probabilistic Parallel Factor Analysis for the Modeling of PET and Task-fMRI Data

    DEFF Research Database (Denmark)

    Beliveau, Vincent; Papoutsakis, Georgios; Hinrich, Jesper Løve

    2017-01-01

    Modern datasets are often multiway in nature and can contain patterns common to a mode of the data (e.g. space, time, and subjects). Multiway decomposition such as parallel factor analysis (PARAFAC) take into account the intrinsic structure of the data, and sparse versions of these methods improv...

  1. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed

    2018-04-08

    Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.

  2. The Hierarchical Trend Model for property valuation and local price indices

    NARCIS (Netherlands)

    Francke, M.K.; Vos, G.A.

    2002-01-01

    This paper presents a hierarchical trend model (HTM) for selling prices of houses, addressing three main problems: the spatial and temporal dependence of selling prices and the dependency of price index changes on housing quality. In this model the general price trend, cluster-level price trends,

  3. Measuring Service Quality in Higher Education: Development of a Hierarchical Model (HESQUAL)

    Science.gov (United States)

    Teeroovengadum, Viraiyan; Kamalanabhan, T. J.; Seebaluck, Ashley Keshwar

    2016-01-01

    Purpose: This paper aims to develop and empirically test a hierarchical model for measuring service quality in higher education. Design/methodology/approach: The first phase of the study consisted of qualitative research methods and a comprehensive literature review, which allowed the development of a conceptual model comprising 53 service quality…

  4. Avoiding Boundary Estimates in Hierarchical Linear Models through Weakly Informative Priors

    Science.gov (United States)

    Chung, Yeojin; Rabe-Hesketh, Sophia; Gelman, Andrew; Dorie, Vincent; Liu, Jinchen

    2012-01-01

    Hierarchical or multilevel linear models are widely used for longitudinal or cross-sectional data on students nested in classes and schools, and are particularly important for estimating treatment effects in cluster-randomized trials, multi-site trials, and meta-analyses. The models can allow for variation in treatment effects, as well as…

  5. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...

  6. A Hierarchical Linear Model for Estimating Gender-Based Earnings Differentials.

    Science.gov (United States)

    Haberfield, Yitchak; Semyonov, Moshe; Addi, Audrey

    1998-01-01

    Estimates of gender earnings inequality in data from 116,431 Jewish workers were compared using a hierarchical linear model (HLM) and ordinary least squares model. The HLM allows estimation of the extent to which earnings inequality depends on occupational characteristics. (SK)

  7. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  8. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  9. Hierarchical Bayesian modeling of the space - time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  10. A Hybrid PO - Higher-Order Hierarchical MoM Formulation using Curvilinear Geometry Modeling

    DEFF Research Database (Denmark)

    Jørgensen, E.; Meincke, Peter; Breinbjerg, Olav

    2003-01-01

    which implies a very modest memory requirement. Nevertheless, the hierarchical feature of the basis functions maintains the ability to treat small geometrical details efficiently. In addition, the scatterer is modelled with higher-order curved patches which allows accurate modelling of curved surfaces...

  11. Soft tissue deformation using a Hierarchical Finite Element Model.

    Science.gov (United States)

    Faraci, Alessandro; Bello, Fernando; Darzi, Ara

    2004-01-01

    Simulating soft tissue deformation in real-time has become increasingly important in order to provide a realistic virtual environment for training surgical skills. Several methods have been proposed with the aim of rendering in real-time the mechanical and physiological behaviour of human organs, one of the most popular being Finite Element Method (FEM). In this paper we present a new approach to the solution of the FEM problem introducing the concept of parent and child mesh within the development of a hierarchical FEM. The online selection of the child mesh is presented with the purpose to adapt the mesh hierarchy in real-time. This permits further refinement of the child mesh increasing the detail of the deformation without slowing down the simulation and giving the possibility of integrating force feedback. The results presented demonstrate the application of our proposed framework using a desktop virtual reality (VR) system that incorporates stereo vision with integrated haptics co-location via a desktop Phantom force feedback device.

  12. Transformation of renormalization groups in 2N-component fermion hierarchical model

    International Nuclear Information System (INIS)

    Stepanov, R.G.

    2006-01-01

    The 2N-component fermion model on the hierarchical lattice is studied. The explicit formulae for renormalization groups transformation in the space of coefficients setting the Grassmannian-significant density of the free measure are presented. The inverse transformation of the renormalization group is calculated. The definition of immovable points of renormalization groups is reduced to solving the set of algebraic equations. The interesting connection between renormalization group transformations in boson and fermion hierarchical models is found out. It is shown that one transformation is obtained from other one by the substitution of N on -N [ru

  13. Bayesian Inference Methods for Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand

    2013-01-01

    This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...

  14. Fuzzy hierarchical model for risk assessment principles, concepts, and practical applications

    CERN Document Server

    Chan, Hing Kai

    2013-01-01

    Risk management is often complicated by situational uncertainties and the subjective preferences of decision makers. Fuzzy Hierarchical Model for Risk Assessment introduces a fuzzy-based hierarchical approach to solve risk management problems considering both qualitative and quantitative criteria to tackle imprecise information.   This approach is illustrated through number of case studies using examples from the food, fashion and electronics sectors to cover a range of applications including supply chain management, green product design and green initiatives. These practical examples explore how this method can be adapted and fine tuned to fit other industries as well.   Supported by an extensive literature review, Fuzzy Hierarchical Model for Risk Assessment  comprehensively introduces a new method for project managers across all industries as well as researchers in risk management.

  15. Experiments in Error Propagation within Hierarchal Combat Models

    Science.gov (United States)

    2015-09-01

    stochastic Lanchester campaign model that contains 18 Blue and 25 Red submarines. The outputs of the campaign models are analyzed statistically. The...sampled in a variety of ways, including just the mean, and used to calculate the attrition coefficients for a stochastic Lanchester campaign model...9 2. Lanchester Models .............................................................................10 III. SCENARIO AND MODEL DEVELOPMENT

  16. INFOGRAPHIC MODELING OF THE HIERARCHICAL STRUCTURE OF THE MANAGEMENT SYSTEM EXPOSED TO AN INNOVATIVE CONFLICT

    Directory of Open Access Journals (Sweden)

    Chulkov Vitaliy Olegovich

    2012-12-01

    Full Text Available This article deals with the infographic modeling of hierarchical management systems exposed to innovative conflicts. The authors analyze the facts that serve as conflict drivers in the construction management environment. The reasons for innovative conflicts include changes in hierarchical structures of management systems, adjustment of workers to new management conditions, changes in the ideology, etc. Conflicts under consideration may involve contradictions between requests placed by customers and the legislation, any risks that may originate from the above contradiction, conflicts arising from any failure to comply with any accepted standards of conduct, etc. One of the main objectives of the theory of hierarchical structures is to develop a model capable of projecting potential innovative conflicts. Models described in the paper reflect dynamic changes in patterns of external impacts within the conflict area. The simplest model element is a monad, or an indivisible set of characteristics of participants at the pre-set level. Interaction between two monads forms a diad. Modeling of situations that involve a different number of monads, diads, resources and impacts can improve methods used to control and manage hierarchical structures in the construction industry. However, in the absence of any mathematical models employed to simulate conflict-related events, processes and situations, any research into, projection and management of interpersonal and group-to-group conflicts are to be performed in the legal environment

  17. A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China.

    Directory of Open Access Journals (Sweden)

    Xiongqing Zhang

    Full Text Available Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.Hook. plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF. Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc. on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.

  18. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions

    Energy Technology Data Exchange (ETDEWEB)

    Konakli, Katerina, E-mail: konakli@ibk.baug.ethz.ch; Sudret, Bruno

    2016-09-15

    The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input

  19. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions

    International Nuclear Information System (INIS)

    Konakli, Katerina; Sudret, Bruno

    2016-01-01

    The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input

  20. Time to failure of hierarchical load-transfer models of fracture

    DEFF Research Database (Denmark)

    Vázquez-Prada, M; Gómez, J B; Moreno, Y

    1999-01-01

    The time to failure, T, of dynamical models of fracture for a hierarchical load-transfer geometry is studied. Using a probabilistic strategy and juxtaposing hierarchical structures of height n, we devise an exact method to compute T, for structures of height n+1. Bounding T, for large n, we are a...... are able to deduce that the time to failure tends to a nonzero value when n tends to infinity. This numerical conclusion is deduced for both power law and exponential breakdown rules....

  1. From Playability to a Hierarchical Game Usability Model

    OpenAIRE

    Nacke, Lennart E.

    2010-01-01

    This paper presents a brief review of current game usability models. This leads to the conception of a high-level game development-centered usability model that integrates current usability approaches in game industry and game research.

  2. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  3. Predicting Examination Performance Using an Expanded Integrated Hierarchical Model of Test Emotions and Achievement Goals

    Science.gov (United States)

    Putwain, Dave; Deveney, Carolyn

    2009-01-01

    The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…

  4. Using Hierarchical Linear Modelling to Examine Factors Predicting English Language Students' Reading Achievement

    Science.gov (United States)

    Fung, Karen; ElAtia, Samira

    2015-01-01

    Using Hierarchical Linear Modelling (HLM), this study aimed to identify factors such as ESL/ELL/EAL status that would predict students' reading performance in an English language arts exam taken across Canada. Using data from the 2007 administration of the Pan-Canadian Assessment Program (PCAP) along with the accompanying surveys for students and…

  5. The Hierarchical Factor Model of ADHD: Invariant across Age and National Groupings?

    Science.gov (United States)

    Toplak, Maggie E.; Sorge, Geoff B.; Flora, David B.; Chen, Wai; Banaschewski, Tobias; Buitelaar, Jan; Ebstein, Richard; Eisenberg, Jacques; Franke, Barbara; Gill, Michael; Miranda, Ana; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Thompson, Margaret; Tannock, Rosemary; Asherson, Philip; Faraone, Stephen V.

    2012-01-01

    Objective: To examine the factor structure of attention-deficit/hyperactivity disorder (ADHD) in a clinical sample of 1,373 children and adolescents with ADHD and their 1,772 unselected siblings recruited from different countries across a large age range. Hierarchical and correlated factor analytic models were compared separately in the ADHD and…

  6. Symptom structure of PTSD: support for a hierarchical model separating core PTSD symptoms from dysphoria

    NARCIS (Netherlands)

    Rademaker, Arthur R.; van Minnen, Agnes; Ebberink, Freek; van Zuiden, Mirjam; Hagenaars, Muriel A.; Geuze, Elbert

    2012-01-01

    As of yet, no collective agreement has been reached regarding the precise factor structure of posttraumatic stress disorder (PTSD). Several alternative factor-models have been proposed in the last decades. The current study examined the fit of a hierarchical adaptation of the Simms et al. (2002)

  7. Hierarchical models for informing general biomass equations with felled tree data

    Science.gov (United States)

    Brian J. Clough; Matthew B. Russell; Christopher W. Woodall; Grant M. Domke; Philip J. Radtke

    2015-01-01

    We present a hierarchical framework that uses a large multispecies felled tree database to inform a set of general models for predicting tree foliage biomass, with accompanying uncertainty, within the FIA database. Results suggest significant prediction uncertainty for individual trees and reveal higher errors when predicting foliage biomass for larger trees and for...

  8. Perfect observables for the hierarchical non-linear O(N)-invariant σ-model

    International Nuclear Information System (INIS)

    Wieczerkowski, C.; Xylander, Y.

    1995-05-01

    We compute moving eigenvalues and the eigenvectors of the linear renormalization group transformation for observables along the renormalized trajectory of the hierarchical non-linear O(N)-invariant σ-model by means of perturbation theory in the running coupling constant. Moving eigenvectors are defined as solutions to a Callan-Symanzik type equation. (orig.)

  9. Intraclass Correlation Coefficients in Hierarchical Designs: Evaluation Using Latent Variable Modeling

    Science.gov (United States)

    Raykov, Tenko

    2011-01-01

    Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…

  10. A Non-static Data Layout Enhancing Parallelism and Vectorization in Sparse Grid Algorithms

    KAUST Repository

    Buse, Gerrit; Pfluger, Dirk; Murarasu, Alin; Jacob, Riko

    2012-01-01

    performance and facilitate the use of vector registers for our sparse grid benchmark problem hierarchization. Based on the compact data structure proposed for regular sparse grids in [2], we developed a new algorithm that outperforms existing implementations

  11. An Analysis of Turkey's PISA 2015 Results Using Two-Level Hierarchical Linear Modelling

    Science.gov (United States)

    Atas, Dogu; Karadag, Özge

    2017-01-01

    In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals,…

  12. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2015-03-01

    Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.

  13. A hierarchical causal modeling for large industrial plants supervision

    International Nuclear Information System (INIS)

    Dziopa, P.; Leyval, L.

    1994-01-01

    A supervision system has to analyse the process current state and the way it will evolve after a modification of the inputs or disturbance. It is proposed to base this analysis on a hierarchy of models, witch differ by the number of involved variables and the abstraction level used to describe their temporal evolution. In a first step, special attention is paid to causal models building, from the most abstract one. Once the hierarchy of models has been build, the most detailed model parameters are estimated. Several models of different abstraction levels can be used for on line prediction. These methods have been applied to a nuclear reprocessing plant. The abstraction level could be chosen on line by the operator. Moreover when an abnormal process behaviour is detected a more detailed model is automatically triggered in order to focus the operator attention on the suspected subsystem. (authors). 11 refs., 11 figs

  14. Hierarchical modelling of line commutated power systems used in particle accelerators using Saber

    International Nuclear Information System (INIS)

    Reimund, J.A.

    1993-01-01

    This paper discusses the use of hierarchical simulation models using the program Saber trademark for the prediction of magnet ripple currents generated by the power supply/output filter combination. Modeling of an entire power system connected to output filters and particle accelerator ring magnets will be presented. Special emphasis is made on the modeling of power source imbalances caused by transformer impedance imbalances and utility variances. The affect that these imbalances have on the harmonic content of ripple current is also investigated

  15. A test of the hierarchical model of litter decomposition

    DEFF Research Database (Denmark)

    Bradford, Mark A.; Veen, G. F.; Bonis, Anne

    2017-01-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls...... regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature...

  16. Simulating individual-based models of epidemics in hierarchical networks

    NARCIS (Netherlands)

    Quax, R.; Bader, D.A.; Sloot, P.M.A.

    2009-01-01

    Current mathematical modeling methods for the spreading of infectious diseases are too simplified and do not scale well. We present the Simulator of Epidemic Evolution in Complex Networks (SEECN), an efficient simulator of detailed individual-based models by parameterizing separate dynamics

  17. A three-component, hierarchical model of executive attention

    OpenAIRE

    Whittle, Sarah; Pantelis, Christos; Testa, Renee; Tiego, Jeggan; Bellgrove, Mark

    2017-01-01

    Executive attention refers to the goal-directed control of attention. Existing models of executive attention distinguish between three correlated, but empirically dissociable, factors related to selectively attending to task-relevant stimuli (Selective Attention), inhibiting task-irrelevant responses (Response Inhibition), and actively maintaining goal-relevant information (Working Memory Capacity). In these models, Selective Attention and Response Inhibition are moderately strongly correlate...

  18. An open-population hierarchical distance sampling model

    Science.gov (United States)

    Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,

    2015-01-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  19. An open-population hierarchical distance sampling model.

    Science.gov (United States)

    Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott

    2015-02-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  20. Hierarchical material models for fragmentation modeling in NIF-ALE-AMR

    International Nuclear Information System (INIS)

    Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R; Dixit, P; Benson, D J

    2008-01-01

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets

  1. Hierarchical material models for fragmentation modeling in NIF-ALE-AMR

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551 (United States); Dixit, P; Benson, D J [University of California San Diego, 9500 Gilman Dr., La Jolla. CA 92093 (United States)], E-mail: fisher47@llnl.gov

    2008-05-15

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.

  2. Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site

    Science.gov (United States)

    Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.

    2018-02-01

    The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.

  3. The application of a hierarchical Bayesian spatiotemporal model for ...

    Indian Academy of Sciences (India)

    Process (GP) model by using the Gibbs sampling method. The result for ... good indicator of the HBST method. The statistical ... summary and discussion of future works are given .... spatiotemporal package in R language (R core team. 2013).

  4. Bayesian disease mapping: hierarchical modeling in spatial epidemiology

    National Research Council Canada - National Science Library

    Lawson, Andrew

    2013-01-01

    Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas...

  5. Hierarchical models and iterative optimization of hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)

    2016-06-08

    A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.

  6. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    Science.gov (United States)

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  7. A hybrid deterministic-probabilistic approach to model the mechanical response of helically arranged hierarchical strands

    Science.gov (United States)

    Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.

    2017-09-01

    Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called "Equal Load Sharing (ELS)" hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a "Hierarchical Load Sharing" criterion.

  8. Tracking and recognition face in videos with incremental local sparse representation model

    Science.gov (United States)

    Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang

    2013-10-01

    This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.

  9. A hierarchical stress release model for synthetic seismicity

    Science.gov (United States)

    Bebbington, Mark

    1997-06-01

    We construct a stochastic dynamic model for synthetic seismicity involving stochastic stress input, release, and transfer in an environment of heterogeneous strength and interacting segments. The model is not fault-specific, having a number of adjustable parameters with physical interpretation, namely, stress relaxation, stress transfer, stress dissipation, segment structure, strength, and strength heterogeneity, which affect the seismicity in various ways. Local parameters are chosen to be consistent with large historical events, other parameters to reproduce bulk seismicity statistics for the fault as a whole. The one-dimensional fault is divided into a number of segments, each comprising a varying number of nodes. Stress input occurs at each node in a simple random process, representing the slow buildup due to tectonic plate movements. Events are initiated, subject to a stochastic hazard function, when the stress on a node exceeds the local strength. An event begins with the transfer of excess stress to neighboring nodes, which may in turn transfer their excess stress to the next neighbor. If the event grows to include the entire segment, then most of the stress on the segment is transferred to neighboring segments (or dissipated) in a characteristic event. These large events may themselves spread to other segments. We use the Middle America Trench to demonstrate that this model, using simple stochastic stress input and triggering mechanisms, can produce behavior consistent with the historical record over five units of magnitude. We also investigate the effects of perturbing various parameters in order to show how the model might be tailored to a specific fault structure. The strength of the model lies in this ability to reproduce the behavior of a general linear fault system through the choice of a relatively small number of parameters. It remains to develop a procedure for estimating the internal state of the model from the historical observations in order to

  10. Calibration of Automatically Generated Items Using Bayesian Hierarchical Modeling.

    Science.gov (United States)

    Johnson, Matthew S.; Sinharay, Sandip

    For complex educational assessments, there is an increasing use of "item families," which are groups of related items. However, calibration or scoring for such an assessment requires fitting models that take into account the dependence structure inherent among the items that belong to the same item family. C. Glas and W. van der Linden…

  11. A hierarchical modeling of information seeking behavior of school ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the information seeking behavior of school teachers in the public primary schools of rural areas of Nigeria and to draw up a model of their information-seeking behavior. A Cross-sectional survey design research was employed to carry out the research. Findings showed that the ...

  12. Generic Database Cost Models for Hierarchical Memory Systems

    NARCIS (Netherlands)

    S. Manegold (Stefan); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2002-01-01

    textabstractAccurate prediction of operator execution time is a prerequisite for database query optimization. Although extensively studied for conventional disk-based DBMSs, cost modeling in main-memory DBMSs is still an open issue. Recent database research has demonstrated that memory access is

  13. Generic database cost models for hierarchical memory systems

    NARCIS (Netherlands)

    S. Manegold (Stefan); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2002-01-01

    textabstractAccurate prediction of operator execution time is a prerequisite fordatabase query optimization. Although extensively studied for conventionaldisk-based DBMSs, cost modeling in main-memory DBMSs is still an openissue. Recent database research has demonstrated that memory access ismore

  14. Bayesian Hierarchical Distributed Lag Models for Summer Ozone Exposure and Cardio-Respiratory Mortality

    OpenAIRE

    Yi Huang; Francesca Dominici; Michelle Bell

    2004-01-01

    In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP ...

  15. A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E [ORNL; Wang, Weile [ORNL; Law, Beverly E. [Oregon State University; Nemani, Ramakrishna R [NASA Ames Research Center

    2009-01-01

    The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.

  16. Generic Database Cost Models for Hierarchical Memory Systems

    OpenAIRE

    Manegold, Stefan; Boncz, Peter; Kersten, Martin

    2002-01-01

    textabstractAccurate prediction of operator execution time is a prerequisite for database query optimization. Although extensively studied for conventional disk-based DBMSs, cost modeling in main-memory DBMSs is still an open issue. Recent database research has demonstrated that memory access is more and more becoming a significant---if not the major---cost component of database operations. If used properly, fast but small cache memories---usually organized in cascading hierarchy between CPU ...

  17. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  18. Statistical shear lag model - unraveling the size effect in hierarchical composites.

    Science.gov (United States)

    Wei, Xiaoding; Filleter, Tobin; Espinosa, Horacio D

    2015-05-01

    Numerous experimental and computational studies have established that the hierarchical structures encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural materials have a different size dependence compared to that of typical engineered materials. This study aimed to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical shear lag model is derived by extending the classical shear lag model to account for the statistics of the constituents' strength. A general solution emerges from rigorous mathematical derivations, unifying the various empirical formulations for the fundamental link length used in previous statistical models. The model shows that the staggered arrangement of constituents grants composites a unique size effect on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierarchical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly influence the yarn strength, in close agreement with experimental observations. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling.

    Science.gov (United States)

    Cressie, Noel; Calder, Catherine A; Clark, James S; Ver Hoef, Jay M; Wikle, Christopher K

    2009-04-01

    Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.

  20. Supervised Transfer Sparse Coding

    KAUST Repository

    Al-Shedivat, Maruan

    2014-07-27

    A combination of the sparse coding and transfer learn- ing techniques was shown to be accurate and robust in classification tasks where training and testing objects have a shared feature space but are sampled from differ- ent underlying distributions, i.e., belong to different do- mains. The key assumption in such case is that in spite of the domain disparity, samples from different domains share some common hidden factors. Previous methods often assumed that all the objects in the target domain are unlabeled, and thus the training set solely comprised objects from the source domain. However, in real world applications, the target domain often has some labeled objects, or one can always manually label a small num- ber of them. In this paper, we explore such possibil- ity and show how a small number of labeled data in the target domain can significantly leverage classifica- tion accuracy of the state-of-the-art transfer sparse cod- ing methods. We further propose a unified framework named supervised transfer sparse coding (STSC) which simultaneously optimizes sparse representation, domain transfer and classification. Experimental results on three applications demonstrate that a little manual labeling and then learning the model in a supervised fashion can significantly improve classification accuracy.

  1. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    Science.gov (United States)

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  2. Principal-subordinate hierarchical multi-objective programming model of initial water rights allocation

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2009-06-01

    Full Text Available The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.

  3. Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio

    Directory of Open Access Journals (Sweden)

    Fidel Ernesto Castro Morales

    2016-03-01

    Full Text Available Abstract Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.

  4. Hierarchic stochastic modelling applied to intracellular Ca(2+ signals.

    Directory of Open Access Journals (Sweden)

    Gregor Moenke

    Full Text Available Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011 which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca(2+ signalling. Ca(2+ is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular Ca(2+ release events (puffs. We derive analytical expressions for a mechanistic Ca(2+ model, based on recent data from live cell imaging, and calculate Ca(2+ spike statistics in dependence on cellular parameters like stimulus strength or number of Ca(2+ channels. The new approach substantiates a generic Ca(2+ model, which is a very convenient way to simulate Ca(2+ spike sequences with correct spiking statistics.

  5. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  6. Modeling when people quit: Bayesian censored geometric models with hierarchical and latent-mixture extensions.

    Science.gov (United States)

    Okada, Kensuke; Vandekerckhove, Joachim; Lee, Michael D

    2018-02-01

    People often interact with environments that can provide only a finite number of items as resources. Eventually a book contains no more chapters, there are no more albums available from a band, and every Pokémon has been caught. When interacting with these sorts of environments, people either actively choose to quit collecting new items, or they are forced to quit when the items are exhausted. Modeling the distribution of how many items people collect before they quit involves untangling these two possibilities, We propose that censored geometric models are a useful basic technique for modeling the quitting distribution, and, show how, by implementing these models in a hierarchical and latent-mixture framework through Bayesian methods, they can be extended to capture the additional features of specific situations. We demonstrate this approach by developing and testing a series of models in two case studies involving real-world data. One case study deals with people choosing jokes from a recommender system, and the other deals with people completing items in a personality survey.

  7. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    Science.gov (United States)

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  8. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-02-01

    Full Text Available In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT is adopted to extract the EEG power spectrum density (PSD. In this step, sparse representation classification combined with k-singular value decomposition (KSVD is firstly introduced in PSD to estimate the driver’s vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  9. Does mortality vary between Asian subgroups in New Zealand: an application of hierarchical Bayesian modelling.

    Directory of Open Access Journals (Sweden)

    Santosh Jatrana

    Full Text Available The aim of this paper was to see whether all-cause and cause-specific mortality rates vary between Asian ethnic subgroups, and whether overseas born Asian subgroup mortality rate ratios varied by nativity and duration of residence. We used hierarchical Bayesian methods to allow for sparse data in the analysis of linked census-mortality data for 25-75 year old New Zealanders. We found directly standardised posterior all-cause and cardiovascular mortality rates were highest for the Indian ethnic group, significantly so when compared with those of Chinese ethnicity. In contrast, cancer mortality rates were lowest for ethnic Indians. Asian overseas born subgroups have about 70% of the mortality rate of their New Zealand born Asian counterparts, a result that showed little variation by Asian subgroup or cause of death. Within the overseas born population, all-cause mortality rates for migrants living 0-9 years in New Zealand were about 60% of the mortality rate of those living more than 25 years in New Zealand regardless of ethnicity. The corresponding figure for cardiovascular mortality rates was 50%. However, while Chinese cancer mortality rates increased with duration of residence, Indian and Other Asian cancer mortality rates did not. Future research on the mechanisms of worsening of health with increased time spent in the host country is required to improve the understanding of the process, and would assist the policy-makers and health planners.

  10. The Case for A Hierarchal System Model for Linux Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Seager, M; Gorda, B

    2009-06-05

    The computer industry today is no longer driven, as it was in the 40s, 50s and 60s, by High-performance computing requirements. Rather, HPC systems, especially Leadership class systems, sit on top of a pyramid investment mode. Figure 1 shows a representative pyramid investment model for systems hardware. At the base of the pyramid is the huge investment (order 10s of Billions of US Dollars per year) in semiconductor fabrication and process technologies. These costs, which are approximately doubling with every generation, are funded from investments multiple markets: enterprise, desktops, games, embedded and specialized devices. Over and above these base technology investments are investments for critical technology elements such as microprocessor, chipsets and memory ASIC components. Investments for these components are spread across the same markets as the base semiconductor processes investments. These second tier investments are approximately half the size of the lower level of the pyramid. The next technology investment layer up, tier 3, is more focused on scalable computing systems such as those needed for HPC and other markets. These tier 3 technology elements include networking (SAN, WAN and LAN), interconnects and large scalable SMP designs. Above these is tier 4 are relatively small investments necessary to build very large, scalable systems high-end or Leadership class systems. Primary among these are the specialized network designs of vertically integrated systems, etc.

  11. Discrete Sparse Coding.

    Science.gov (United States)

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  12. Emotional intelligence is a second-stratum factor of intelligence: evidence from hierarchical and bifactor models.

    Science.gov (United States)

    MacCann, Carolyn; Joseph, Dana L; Newman, Daniel A; Roberts, Richard D

    2014-04-01

    This article examines the status of emotional intelligence (EI) within the structure of human cognitive abilities. To evaluate whether EI is a 2nd-stratum factor of intelligence, data were fit to a series of structural models involving 3 indicators each for fluid intelligence, crystallized intelligence, quantitative reasoning, visual processing, and broad retrieval ability, as well as 2 indicators each for emotion perception, emotion understanding, and emotion management. Unidimensional, multidimensional, hierarchical, and bifactor solutions were estimated in a sample of 688 college and community college students. Results suggest adequate fit for 2 models: (a) an oblique 8-factor model (with 5 traditional cognitive ability factors and 3 EI factors) and (b) a hierarchical solution (with cognitive g at the highest level and EI representing a 2nd-stratum factor that loads onto g at λ = .80). The acceptable relative fit of the hierarchical model confirms the notion that EI is a group factor of cognitive ability, marking the expression of intelligence in the emotion domain. The discussion proposes a possible expansion of Cattell-Horn-Carroll theory to include EI as a 2nd-stratum factor of similar standing to factors such as fluid intelligence and visual processing.

  13. Action detection by double hierarchical multi-structure space-time statistical matching model

    Science.gov (United States)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  14. Oscillatory Critical Amplitudes in Hierarchical Models and the Harris Function of Branching Processes

    Science.gov (United States)

    Costin, Ovidiu; Giacomin, Giambattista

    2013-02-01

    Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).

  15. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    Science.gov (United States)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  16. On hierarchical models for visual recognition and learning of objects, scenes, and activities

    CERN Document Server

    Spehr, Jens

    2015-01-01

    In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model...

  17. Pose Estimation using a Hierarchical 3D Representation of Contours and Surfaces

    DEFF Research Database (Denmark)

    Buch, Anders Glent; Kraft, Dirk; Kämäräinen, Joni-Kristian

    2013-01-01

    We present a system for detecting the pose of rigid objects using texture and contour information. From a stereo image view of a scene, a sparse hierarchical scene representation is reconstructed using an early cognitive vision system. We define an object model in terms of a simple context...

  18. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    Directory of Open Access Journals (Sweden)

    Lucas eBrely

    2015-07-01

    Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  19. Loss Performance Modeling for Hierarchical Heterogeneous Wireless Networks With Speed-Sensitive Call Admission Control

    DEFF Research Database (Denmark)

    Huang, Qian; Huang, Yue-Cai; Ko, King-Tim

    2011-01-01

    . This approach avoids unnecessary and frequent handoff between cells and reduces signaling overheads. An approximation model with guaranteed accuracy and low computational complexity is presented for the loss performance of multiservice traffic. The accuracy of numerical results is validated by comparing......A hierarchical overlay structure is an alternative solution that integrates existing and future heterogeneous wireless networks to provide subscribers with better mobile broadband services. Traffic loss performance in such integrated heterogeneous networks is necessary for an operator's network...

  20. Bayesian Poisson hierarchical models for crash data analysis: Investigating the impact of model choice on site-specific predictions.

    Science.gov (United States)

    Khazraee, S Hadi; Johnson, Valen; Lord, Dominique

    2018-08-01

    The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients

  1. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. II. Optimization model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    improvements. The biological model of the replacement model is described in a previous paper and in this paper the optimization model is described. The model is developed as a prototype for use under practical conditions. The application of the model is demonstrated using data from two commercial Danish sow......Recent methodological improvements in replacement models comprising multi-level hierarchical Markov processes and Bayesian updating have hardly been implemented in any replacement model and the aim of this study is to present a sow replacement model that really uses these methodological...... herds. It is concluded that the Bayesian updating technique and the hierarchical structure decrease the size of the state space dramatically. Since parameter estimates vary considerably among herds it is concluded that decision support concerning sow replacement only makes sense with parameters...

  2. Topics in Computational Bayesian Statistics With Applications to Hierarchical Models in Astronomy and Sociology

    Science.gov (United States)

    Sahai, Swupnil

    This thesis includes three parts. The overarching theme is how to analyze structured hierarchical data, with applications to astronomy and sociology. The first part discusses how expectation propagation can be used to parallelize the computation when fitting big hierarchical bayesian models. This methodology is then used to fit a novel, nonlinear mixture model to ultraviolet radiation from various regions of the observable universe. The second part discusses how the Stan probabilistic programming language can be used to numerically integrate terms in a hierarchical bayesian model. This technique is demonstrated on supernovae data to significantly speed up convergence to the posterior distribution compared to a previous study that used a Gibbs-type sampler. The third part builds a formal latent kernel representation for aggregate relational data as a way to more robustly estimate the mixing characteristics of agents in a network. In particular, the framework is applied to sociology surveys to estimate, as a function of ego age, the age and sex composition of the personal networks of individuals in the United States.

  3. Turbulent flows over sparse canopies

    Science.gov (United States)

    Sharma, Akshath; García-Mayoral, Ricardo

    2018-04-01

    Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.

  4. An application to pulmonary emphysema classification based on model of texton learning by sparse representation

    Science.gov (United States)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryojiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2012-03-01

    We aim at using a new texton based texture classification method in the classification of pulmonary emphysema in computed tomography (CT) images of the lungs. Different from conventional computer-aided diagnosis (CAD) pulmonary emphysema classification methods, in this paper, firstly, the dictionary of texton is learned via applying sparse representation(SR) to image patches in the training dataset. Then the SR coefficients of the test images over the dictionary are used to construct the histograms for texture presentations. Finally, classification is performed by using a nearest neighbor classifier with a histogram dissimilarity measure as distance. The proposed approach is tested on 3840 annotated regions of interest consisting of normal tissue and mild, moderate and severe pulmonary emphysema of three subtypes. The performance of the proposed system, with an accuracy of about 88%, is comparably higher than state of the art method based on the basic rotation invariant local binary pattern histograms and the texture classification method based on texton learning by k-means, which performs almost the best among other approaches in the literature.

  5. Pulmonary emphysema classification based on an improved texton learning model by sparse representation

    Science.gov (United States)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2013-03-01

    In this paper, we present a texture classification method based on texton learned via sparse representation (SR) with new feature histogram maps in the classification of emphysema. First, an overcomplete dictionary of textons is learned via KSVD learning on every class image patches in the training dataset. In this stage, high-pass filter is introduced to exclude patches in smooth area to speed up the dictionary learning process. Second, 3D joint-SR coefficients and intensity histograms of the test images are used for characterizing regions of interest (ROIs) instead of conventional feature histograms constructed from SR coefficients of the test images over the dictionary. Classification is then performed using a classifier with distance as a histogram dissimilarity measure. Four hundreds and seventy annotated ROIs extracted from 14 test subjects, including 6 paraseptal emphysema (PSE) subjects, 5 centrilobular emphysema (CLE) subjects and 3 panlobular emphysema (PLE) subjects, are used to evaluate the effectiveness and robustness of the proposed method. The proposed method is tested on 167 PSE, 240 CLE and 63 PLE ROIs consisting of mild, moderate and severe pulmonary emphysema. The accuracy of the proposed system is around 74%, 88% and 89% for PSE, CLE and PLE, respectively.

  6. Exploring Neural Network Models with Hierarchical Memories and Their Use in Modeling Biological Systems

    Science.gov (United States)

    Pusuluri, Sai Teja

    Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features

  7. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    International Nuclear Information System (INIS)

    Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi

    2016-01-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  8. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kunkun, E-mail: ktg@illinois.edu [The Center for Exascale Simulation of Plasma-Coupled Combustion (XPACC), University of Illinois at Urbana–Champaign, 1308 W Main St, Urbana, IL 61801 (United States); Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Congedo, Pietro M. [Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Abgrall, Rémi [Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2016-06-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  9. Hierarchical Model Predictive Control for Plug-and-Play Resource Distribution

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2012-01-01

    of autonomous units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid......This chapter deals with hierarchical model predictive control (MPC) of distributed systems. A three level hierarchical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level......, arising on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The proposed method can also be applied to supply chain management systems, where the challenge is to balance demand and supply, using a number of storages each with a maximal...

  10. Market Competitiveness Evaluation of Mechanical Equipment with a Pairwise Comparisons Hierarchical Model.

    Science.gov (United States)

    Hou, Fujun

    2016-01-01

    This paper provides a description of how market competitiveness evaluations concerning mechanical equipment can be made in the context of multi-criteria decision environments. It is assumed that, when we are evaluating the market competitiveness, there are limited number of candidates with some required qualifications, and the alternatives will be pairwise compared on a ratio scale. The qualifications are depicted as criteria in hierarchical structure. A hierarchical decision model called PCbHDM was used in this study based on an analysis of its desirable traits. Illustration and comparison shows that the PCbHDM provides a convenient and effective tool for evaluating the market competitiveness of mechanical equipment. The researchers and practitioners might use findings of this paper in application of PCbHDM.

  11. Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model

    Science.gov (United States)

    Cosme, Jayson G.

    2018-04-01

    We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.

  12. Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination.

    Science.gov (United States)

    Yau, Christopher; Holmes, Chris

    2011-07-01

    We propose a hierarchical Bayesian nonparametric mixture model for clustering when some of the covariates are assumed to be of varying relevance to the clustering problem. This can be thought of as an issue in variable selection for unsupervised learning. We demonstrate that by defining a hierarchical population based nonparametric prior on the cluster locations scaled by the inverse covariance matrices of the likelihood we arrive at a 'sparsity prior' representation which admits a conditionally conjugate prior. This allows us to perform full Gibbs sampling to obtain posterior distributions over parameters of interest including an explicit measure of each covariate's relevance and a distribution over the number of potential clusters present in the data. This also allows for individual cluster specific variable selection. We demonstrate improved inference on a number of canonical problems.

  13. Improving Hierarchical Models Using Historical Data with Applications in High-Throughput Genomics Data Analysis.

    Science.gov (United States)

    Li, Ben; Li, Yunxiao; Qin, Zhaohui S

    2017-06-01

    Modern high-throughput biotechnologies such as microarray and next generation sequencing produce a massive amount of information for each sample assayed. However, in a typical high-throughput experiment, only limited amount of data are observed for each individual feature, thus the classical 'large p , small n ' problem. Bayesian hierarchical model, capable of borrowing strength across features within the same dataset, has been recognized as an effective tool in analyzing such data. However, the shrinkage effect, the most prominent feature of hierarchical features, can lead to undesirable over-correction for some features. In this work, we discuss possible causes of the over-correction problem and propose several alternative solutions. Our strategy is rooted in the fact that in the Big Data era, large amount of historical data are available which should be taken advantage of. Our strategy presents a new framework to enhance the Bayesian hierarchical model. Through simulation and real data analysis, we demonstrated superior performance of the proposed strategy. Our new strategy also enables borrowing information across different platforms which could be extremely useful with emergence of new technologies and accumulation of data from different platforms in the Big Data era. Our method has been implemented in R package "adaptiveHM", which is freely available from https://github.com/benliemory/adaptiveHM.

  14. Hierarchical modelling of temperature and habitat size effects on population dynamics of North Atlantic cod

    DEFF Research Database (Denmark)

    Mantzouni, Irene; Sørensen, Helle; O'Hara, Robert B.

    2010-01-01

    and Beverton and Holt stock–recruitment (SR) models were extended by applying hierarchical methods, mixed-effects models, and Bayesian inference to incorporate the influence of these ecosystem factors on model parameters representing cod maximum reproductive rate and carrying capacity. We identified......Understanding how temperature affects cod (Gadus morhua) ecology is important for forecasting how populations will develop as climate changes in future. The effects of spawning-season temperature and habitat size on cod recruitment dynamics have been investigated across the North Atlantic. Ricker...

  15. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.X.; Wang, X.; Gao, Y.W., E-mail: ywgao@lzu.edu.cn; Zhou, Y.H.

    2013-11-15

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper.

  16. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    International Nuclear Information System (INIS)

    Li, Y.X.; Wang, X.; Gao, Y.W.; Zhou, Y.H.

    2013-01-01

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper

  17. Sparse inpainting and isotropy

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Stephen M.; McEwen, Jason D.; Peiris, Hiranya V. [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Marinucci, Domenico; Cammarota, Valentina [Department of Mathematics, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Roma, 00133 (Italy); Wandelt, Benjamin D., E-mail: s.feeney@imperial.ac.uk, E-mail: marinucc@axp.mat.uniroma2.it, E-mail: jason.mcewen@ucl.ac.uk, E-mail: h.peiris@ucl.ac.uk, E-mail: wandelt@iap.fr, E-mail: cammarot@axp.mat.uniroma2.it [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, 552 University Road, Santa Barbara, CA, 93106 (United States)

    2014-01-01

    Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.

  18. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. I. Biological model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    that really uses all these methodological improvements. In this paper, the biological model describing the performance and feed intake of sows is presented. In particular, estimation of herd specific parameters is emphasized. The optimization model is described in a subsequent paper......Several replacement models have been presented in literature. In other applicational areas like dairy cow replacement, various methodological improvements like hierarchical Markov processes and Bayesian updating have been implemented, but not in sow models. Furthermore, there are methodological...... improvements like multi-level hierarchical Markov processes with decisions on multiple time scales, efficient methods for parameter estimations at herd level and standard software that has been hardly implemented at all in any replacement model. The aim of this study is to present a sow replacement model...

  19. A hierarchical modeling methodology for the definition and selection of requirements

    Science.gov (United States)

    Dufresne, Stephane

    This dissertation describes the development of a requirements analysis methodology that takes into account the concept of operations and the hierarchical decomposition of aerospace systems. At the core of the methodology, the Analytic Network Process (ANP) is used to ensure the traceability between the qualitative and quantitative information present in the hierarchical model. The proposed methodology is implemented to the requirements definition of a hurricane tracker Unmanned Aerial Vehicle. Three research objectives are identified in this work; (1) improve the requirements mapping process by matching the stakeholder expectations with the concept of operations, systems and available resources; (2) reduce the epistemic uncertainty surrounding the requirements and requirements mapping; and (3) improve the requirements down-selection process by taking into account the level of importance of the criteria and the available resources. Several challenges are associated with the identification and definition of requirements. The complexity of the system implies that a large number of requirements are needed to define the systems. These requirements are defined early in the conceptual design, where the level of knowledge is relatively low and the level of uncertainty is large. The proposed methodology intends to increase the level of knowledge and reduce the level of uncertainty by guiding the design team through a structured process. To address these challenges, a new methodology is created to flow-down the requirements from the stakeholder expectations to the systems alternatives. A taxonomy of requirements is created to classify the information gathered during the problem definition. Subsequently, the operational and systems functions and measures of effectiveness are integrated to a hierarchical model to allow the traceability of the information. Monte Carlo methods are used to evaluate the variations of the hierarchical model elements and consequently reduce the

  20. Hierarchical Agent-Based Integrated Modelling Approach for Microgrids with Adoption of EVs and HRES

    Directory of Open Access Journals (Sweden)

    Peng Han

    2014-01-01

    Full Text Available The large adoption of electric vehicles (EVs, hybrid renewable energy systems (HRESs, and the increasing of the loads shall bring significant challenges to the microgrid. The methodology to model microgrid with high EVs and HRESs penetrations is the key to EVs adoption assessment and optimized HRESs deployment. However, considering the complex interactions of the microgrid containing massive EVs and HRESs, any previous single modelling approaches are insufficient. Therefore in this paper, the methodology named Hierarchical Agent-based Integrated Modelling Approach (HAIMA is proposed. With the effective integration of the agent-based modelling with other advanced modelling approaches, the proposed approach theoretically contributes to a new microgrid model hierarchically constituted by microgrid management layer, component layer, and event layer. Then the HAIMA further links the key parameters and interconnects them to achieve the interactions of the whole model. Furthermore, HAIMA practically contributes to a comprehensive microgrid operation system, through which the assessment of the proposed model and the impact of the EVs adoption are achieved. Simulations show that the proposed HAIMA methodology will be beneficial for the microgrid study and EV’s operation assessment and shall be further utilized for the energy management, electricity consumption prediction, the EV scheduling control, and HRES deployment optimization.

  1. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging

    Science.gov (United States)

    Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli

    2018-01-01

    Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.

  2. Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.

    Directory of Open Access Journals (Sweden)

    Kezi Yu

    Full Text Available In this paper, we propose an application of non-parametric Bayesian (NPB models for classification of fetal heart rate (FHR recordings. More specifically, we propose models that are used to differentiate between FHR recordings that are from fetuses with or without adverse outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP and the Chinese restaurant process with finite capacity (CRFC. Two mixture models were inferred from real recordings, one that represents healthy and another, non-healthy fetuses. The models were then used to classify new recordings and provide the probability of the fetus being healthy. First, we compared the classification performance of the HDP models with that of support vector machines on real data and concluded that the HDP models achieved better performance. Then we demonstrated the use of mixture models based on CRFC for dynamic classification of the performance of (FHR recordings in a real-time setting.

  3. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    Science.gov (United States)

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  4. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python

    Directory of Open Access Journals (Sweden)

    Thomas V Wiecki

    2013-08-01

    Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs

  5. A Comparison between Model Base Hardconstrain, Bandlimited, and Sparse-Spike Seismic Inversion: New Insights for CBM Reservoir Modelling on Muara Enim Formation, South Sumatra

    Science.gov (United States)

    Mohamad Noor, Faris; Adipta, Agra

    2018-03-01

    Coal Bed Methane (CBM) as a newly developed resource in Indonesia is one of the alternatives to relieve Indonesia’s dependencies on conventional energies. Coal resource of Muara Enim Formation is known as one of the prolific reservoirs in South Sumatra Basin. Seismic inversion and well analysis are done to determine the coal seam characteristics of Muara Enim Formation. This research uses three inversion methods, which are: model base hard- constrain, bandlimited, and sparse-spike inversion. Each type of seismic inversion has its own advantages to display the coal seam and its characteristic. Interpretation result from the analysis data shows that the Muara Enim coal seam has 20 (API) gamma ray value, 1 (gr/cc) – 1.4 (gr/cc) from density log, and low AI cutoff value range between 5000-6400 (m/s)*(g/cc). The distribution of coal seam is laterally thinning northwest to southeast. Coal seam is seen biasedly on model base hard constraint inversion and discontinued on band-limited inversion which isn’t similar to the geological model. The appropriate AI inversion is sparse spike inversion which has 0.884757 value from cross plot inversion as the best correlation value among the chosen inversion methods. Sparse Spike inversion its self-has high amplitude as a proper tool to identify coal seam continuity which commonly appears as a thin layer. Cross-sectional sparse spike inversion shows that there are possible new boreholes in CDP 3662-3722, CDP 3586-3622, and CDP 4004-4148 which is seen in seismic data as a thick coal seam.

  6. A class of vertex-edge-growth small-world network models having scale-free, self-similar and hierarchical characters

    Science.gov (United States)

    Ma, Fei; Su, Jing; Hao, Yongxing; Yao, Bing; Yan, Guanghui

    2018-02-01

    The problem of uncovering the internal operating function of network models is intriguing, demanded and attractive in researches of complex networks. Notice that, in the past two decades, a great number of artificial models are built to try to answer the above mentioned task. Based on the different growth ways, these previous models can be divided into two categories, one type, possessing the preferential attachment, follows a power-law P(k) ∼k-γ, 2 motivated from a new attachment way, vertex-edge-growth network-operation, more precisely, the couple of both them. We report that this model is sparse, small world and hierarchical. And then, not only is scale-free feature in our model, but also lies the degree parameter γ(≈ 3 . 242) out the typical range. Note that, we suggest that the coexistence of multiple vertex growth ways will have a prominent effect on the power-law parameter γ, and the preferential attachment plays a dominate role on the development of networks over time. At the end of this paper, we obtain an exact analytical expression for the total number of spanning trees of models and also capture spanning trees entropy which we have compared with those of their corresponding component elements.

  7. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.

    Directory of Open Access Journals (Sweden)

    Andrew Cron

    Full Text Available Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less. Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a

  8. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  9. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  10. Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning

    Science.gov (United States)

    Fu, QiMing

    2016-01-01

    To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ 2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704

  11. Hierarchical Self Assembly of Patterns from the Robinson Tilings: DNA Tile Design in an Enhanced Tile Assembly Model.

    Science.gov (United States)

    Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C

    2012-06-01

    We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.

  12. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.

    2011-01-01

    We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A V and the ratio of total-to-selective dust absorption R V . For SNe with low dust extinction, A V ∼ V ∼ 2.5-2.9, while at high extinctions, A V ∼> 1, low values of R V < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.

  13. Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes

    International Nuclear Information System (INIS)

    Makela, A.

    2003-01-01

    A generally accepted method has not emerged for managing the different temporal and spatial scales in a forest ecosystem. This paper reviews a hierarchical-modular modelling tradition, with the main focus on individual tree growth throughout the rotation. At this scale, model performance requires (i) realistic long-term dynamic properties, (ii) realistic responses of growth and mortality of competing individuals, and (iii) realistic responses to ecophysio-logical inputs. Model development and validation are illustrated through allocation patterns, height growth, and size-related feedbacks. Empirical work to test the approach is reviewed. In this approach, finer scale effects are embedded in parameters calculated using more detailed, interacting modules. This is exemplified by (i) the within-year effect of weather on annual photosynthesis, (ii) the effects of fast soil processes on carbon allocation and photosynthesis, and (iii) the utilization of detailed stem structure to predict wood quality. Prevailing management paradigms are reflected in growth modelling. A shift of emphasis has occurred from productivity in homogeneous canopies towards, e.g., wood quality versus total yield, spatially more explicit models, and growth decline in old-growth forests. The new problems emphasize the hierarchy of the system and interscale interactions, suggesting that the hierarchical-modular approach could prove constructive. (author)

  14. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    Science.gov (United States)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  15. A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2018-01-01

    Full Text Available Various studies have focused on feature extraction methods for automatic patent classification in recent years. However, most of these approaches are based on the knowledge from experts in related domains. Here we propose a hierarchical feature extraction model (HFEM for multi-label mechanical patent classification, which is able to capture both local features of phrases as well as global and temporal semantics. First, a n-gram feature extractor based on convolutional neural networks (CNNs is designed to extract salient local lexical-level features. Next, a long dependency feature extraction model based on the bidirectional long–short-term memory (BiLSTM neural network model is proposed to capture sequential correlations from higher-level sequence representations. Then the HFEM algorithm and its hierarchical feature extraction architecture are detailed. We establish the training, validation and test datasets, containing 72,532, 18,133, and 2679 mechanical patent documents, respectively, and then check the performance of HFEMs. Finally, we compared the results of the proposed HFEM and three other single neural network models, namely CNN, long–short-term memory (LSTM, and BiLSTM. The experimental results indicate that our proposed HFEM outperforms the other compared models in both precision and recall.

  16. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  17. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    Science.gov (United States)

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  18. Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor

    Science.gov (United States)

    Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.

    2017-12-01

    A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.

  19. A model of shape memory materials with hierarchical twinning: statics and dynamics

    International Nuclear Information System (INIS)

    Saxena, A.; Bishop, A.R.; Wu, Y.; Lookman, T.

    1995-01-01

    We consider a model of shape memory materials in which hierarchical twinning near the habit plane (austenite-martensite interface) is a new and crucial ingredient. The model includes (1) a triple-well potential (φ 6 model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation-induced strain gradient terms. The last term favors hierarchy which enables communication between macroscopic (cm) and microscopic (A) regions essential for shape memory. Hierarchy also stabilizes tweed formation (criss-cross patterns of twins). External stress or pressure modulates (''patterns'') the spacing of domain walls. Therefore the ''pattern'' is encoded in the modulated hierarchical variation of the depth and width of the twins. This hierarchy of length scales provides a related hierarchy of time scales and thus the possibility of non-exponential decay. The four processes of the complete shape memory cycle-write, record, erase and recall-are explained within this model. Preliminary results based on 2D molecular dynamics are shown for tweed and hierarchy formation. (orig.)

  20. Relating Memory To Functional Performance In Normal Aging to Dementia Using Hierarchical Bayesian Cognitive Processing Models

    Science.gov (United States)

    Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.

    2012-01-01

    Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225

  1. Hierarchical Bayesian Markov switching models with application to predicting spawning success of shovelnose sturgeon

    Science.gov (United States)

    Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.

    2009-01-01

    The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.

  2. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters.

    Science.gov (United States)

    Hensman, James; Lawrence, Neil D; Rattray, Magnus

    2013-08-20

    Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.

  3. Diagnostics for generalized linear hierarchical models in network meta-analysis.

    Science.gov (United States)

    Zhao, Hong; Hodges, James S; Carlin, Bradley P

    2017-09-01

    Network meta-analysis (NMA) combines direct and indirect evidence comparing more than 2 treatments. Inconsistency arises when these 2 information sources differ. Previous work focuses on inconsistency detection, but little has been done on how to proceed after identifying inconsistency. The key issue is whether inconsistency changes an NMA's substantive conclusions. In this paper, we examine such discrepancies from a diagnostic point of view. Our methods seek to detect influential and outlying observations in NMA at a trial-by-arm level. These observations may have a large effect on the parameter estimates in NMA, or they may deviate markedly from other observations. We develop formal diagnostics for a Bayesian hierarchical model to check the effect of deleting any observation. Diagnostics are specified for generalized linear hierarchical NMA models and investigated for both published and simulated datasets. Results from our example dataset using either contrast- or arm-based models and from the simulated datasets indicate that the sources of inconsistency in NMA tend not to be influential, though results from the example dataset suggest that they are likely to be outliers. This mimics a familiar result from linear model theory, in which outliers with low leverage are not influential. Future extensions include incorporating baseline covariates and individual-level patient data. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    Science.gov (United States)

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.

    2010-01-01

    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  5. Estimating effectiveness in HIV prevention trials with a Bayesian hierarchical compound Poisson frailty model

    Science.gov (United States)

    Coley, Rebecca Yates; Browna, Elizabeth R.

    2016-01-01

    Inconsistent results in recent HIV prevention trials of pre-exposure prophylactic interventions may be due to heterogeneity in risk among study participants. Intervention effectiveness is most commonly estimated with the Cox model, which compares event times between populations. When heterogeneity is present, this population-level measure underestimates intervention effectiveness for individuals who are at risk. We propose a likelihood-based Bayesian hierarchical model that estimates the individual-level effectiveness of candidate interventions by accounting for heterogeneity in risk with a compound Poisson-distributed frailty term. This model reflects the mechanisms of HIV risk and allows that some participants are not exposed to HIV and, therefore, have no risk of seroconversion during the study. We assess model performance via simulation and apply the model to data from an HIV prevention trial. PMID:26869051

  6. Hierarchical competition models with the Allee effect II: the case of immigration.

    Science.gov (United States)

    Assas, Laila; Dennis, Brian; Elaydi, Saber; Kwessi, Eddy; Livadiotis, George

    2015-01-01

    This is part II of an earlier paper that dealt with hierarchical models with the Allee effect but with no immigration. In this paper, we greatly simplify the proofs in part I and provide a proof of the global dynamics of the non-hyperbolic cases that were previously conjectured. Then, we show how immigration to one of the species or to both would, drastically, change the dynamics of the system. It is shown that if the level of immigration to one or to both species is above a specified level, then there will be no extinction region where both species go to extinction.

  7. High-accuracy critical exponents for O(N) hierarchical 3D sigma models

    International Nuclear Information System (INIS)

    Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B.

    2006-01-01

    The critical exponent γ and its subleading exponent Δ in the 3D O(N) Dyson's hierarchical model for N up to 20 are calculated with high accuracy. We calculate the critical temperatures for the measure δ(φ-vector.φ-vector-1). We extract the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits

  8. A hierarchical Markov decision process modeling feeding and marketing decisions of growing pigs

    DEFF Research Database (Denmark)

    Pourmoayed, Reza; Nielsen, Lars Relund; Kristensen, Anders Ringgaard

    2016-01-01

    Feeding is the most important cost in the production of growing pigs and has a direct impact on the marketing decisions, growth and the final quality of the meat. In this paper, we address the sequential decision problem of when to change the feed-mix within a finisher pig pen and when to pick pigs...... for marketing. We formulate a hierarchical Markov decision process with three levels representing the decision process. The model considers decisions related to feeding and marketing and finds the optimal decision given the current state of the pen. The state of the system is based on information from on...

  9. Sparse identification of a predator-prey system from simulation data of a convection model

    DEFF Research Database (Denmark)

    Dam, Magnus; Brøns, Morten; Rasmussen, Jens Juul

    2017-01-01

    of a convection problem. A convection model with a pressure source centered at the inner boundary models the edge dynamics of a magnetically confined plasma. The convection problem undergoes a sequence of bifurcations as the strength of the pressure source increases. The time evolution of the energies......The use of low-dimensional dynamical systems as reduced models for plasma dynamics is useful as solving an initial value problem requires much less computational resources than fluid simulations. We utilize a data-driven modeling approach to identify a reduced model from simulation data...

  10. Large-scale model of flow in heterogeneous and hierarchical porous media

    Science.gov (United States)

    Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît

    2017-11-01

    Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.

  11. Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development

    Directory of Open Access Journals (Sweden)

    Yuliya Vladimirovna Dubrovskaya

    2016-10-01

    Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.

  12. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon

    2018-01-01

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  13. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar

    2018-04-17

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  14. A hierarchical probabilistic model for rapid object categorization in natural scenes.

    Directory of Open Access Journals (Sweden)

    Xiaofu He

    Full Text Available Humans can categorize objects in complex natural scenes within 100-150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model feature space and often categorize objects in natural scenes by categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear how humans achieve rapid scene categorization.To address this issue, we developed a hierarchical probabilistic model for rapid object categorization in natural scenes. In this model, a natural object category is represented by a coarse hierarchical probability distribution (PD, which includes PDs of object geometry and spatial configuration of object parts. Object parts are encoded by PDs of a set of natural object structures, each of which is a concatenation of local object features. Rapid categorization is performed as statistical inference. Since the model uses a very small number (∼100 of structures for even complex object categories such as animals and cars, it requires little training and is robust in the presence of large variations within object categories and in their occurrences in natural scenes. Remarkably, we found that the model categorized animals in natural scenes and cars in street scenes with a near human-level performance. We also found that the model located animals and cars in natural scenes, thus overcoming a flaw in many other models which is to categorize objects in natural context by categorizing contextual features. These results suggest that coarse PDs of object categories based on natural object structures and statistical operations on these PDs may underlie the human ability to rapidly categorize scenes.

  15. Sparse structure regularized ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin

    2014-01-01

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse

  16. A dust spectral energy distribution model with hierarchical Bayesian inference - I. Formalism and benchmarking

    Science.gov (United States)

    Galliano, Frédéric

    2018-05-01

    This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.

  17. Merging information from multi-model flood projections in a hierarchical Bayesian framework

    Science.gov (United States)

    Le Vine, Nataliya

    2016-04-01

    Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  18. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    Science.gov (United States)

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  19. Construction of ground-state preserving sparse lattice models for predictive materials simulations

    Science.gov (United States)

    Huang, Wenxuan; Urban, Alexander; Rong, Ziqin; Ding, Zhiwei; Luo, Chuan; Ceder, Gerbrand

    2017-08-01

    First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since this property is not guaranteed by default. In this paper, we present a systematic and mathematically sound method to obtain cluster expansion models that are guaranteed to preserve the ground states of their reference data. The method builds on the recently introduced compressive sensing paradigm for cluster expansion and employs quadratic programming to impose constraints on the model parameters. The robustness of our methodology is illustrated for two lithium transition metal oxides with relevance for Li-ion battery cathodes, i.e., Li2xFe2(1-x)O2 and Li2xTi2(1-x)O2, for which the construction of cluster expansion models with compressive sensing alone has proven to be challenging. We demonstrate that our method not only guarantees ground-state preservation on the set of reference structures used for the model construction, but also show that out-of-sample ground-state preservation up to relatively large supercell size is achievable through a rapidly converging iterative refinement. This method provides a general tool for building robust, compressed and constrained physical models with predictive power.

  20. Sparse calibration of subsurface flow models using nonlinear orthogonal matching pursuit and an iterative stochastic ensemble method

    KAUST Repository

    Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim

    2013-01-01

    is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.

  1. The Impact of a Sparse Migration Topology on the Runtime of Island Models in Dynamic Optimization

    DEFF Research Database (Denmark)

    Lissovoi, Andrei; Witt, Carsten

    2017-01-01

    similar to (Formula presented.) islands optimizing the so-called Maze fitness function (Kötzing and Molter in Proceedings of parallel problem solving from nature (PPSN XII), Springer, Berlin, pp 113–122, 2012). Previous work has shown that when a complete migration topology is used, migration must...... of logarithmic diameter as the migration topology allows the model to track the oscillating optimum through nMaze-like phases with high probability, while using any graph of diameter less than (Formula presented.) for some sufficiently small constant (Formula presented.) results in the island model losing track......Island models denote a distributed system of evolutionary algorithms which operate independently, but occasionally share their solutions with each other along the so-called migration topology. We investigate the impact of the migration topology by introducing a simplified island model with behavior...

  2. Hierarchical neural network model of the visual system determining figure/ground relation

    Science.gov (United States)

    Kikuchi, Masayuki

    2017-07-01

    One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.

  3. Toward combining thematic information with hierarchical multiscale segmentations using tree Markov random field model

    Science.gov (United States)

    Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi

    2017-09-01

    It has been a common idea to produce multiscale segmentations to represent the various geographic objects in high-spatial resolution remote sensing (HR) images. However, it remains a great challenge to automatically select the proper segmentation scale(s) just according to the image information. In this study, we propose a novel way of information fusion at object level by combining hierarchical multiscale segmentations with existed thematic information produced by classification or recognition. The tree Markov random field (T-MRF) model is designed for the multiscale combination framework, through which the object type is determined as close as the existed thematic information. At the same time, the object boundary is jointly determined by the thematic labels and the multiscale segments through the minimization of the energy function. The benefits of the proposed T-MRF combination model include: (1) reducing the dependence of segmentation scale selection when utilizing multiscale segmentations; (2) exploring the hierarchical context naturally imbedded in the multiscale segmentations. The HR images in both urban and rural areas are used in the experiments to show the effectiveness of the proposed combination framework on these two aspects.

  4. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies.

    Science.gov (United States)

    Noma, Hisashi; Matsui, Shigeyuki

    2013-05-20

    The main purpose of microarray studies is screening of differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing genes are relevant statistical tasks in microarray studies. For effective gene selections, parametric empirical Bayes methods for ranking and selection of genes with largest effect sizes have been proposed (Noma et al., 2010; Biostatistics 11: 281-289). The hierarchical mixture model incorporates the differential and non-differential components and allows information borrowing across differential genes with separation from nuisance, non-differential genes. In this article, we develop empirical Bayes ranking methods via a semiparametric hierarchical mixture model. A nonparametric prior distribution, rather than parametric prior distributions, for effect sizes is specified and estimated using the "smoothing by roughening" approach of Laird and Louis (1991; Computational statistics and data analysis 12: 27-37). We present applications to childhood and infant leukemia clinical studies with microarrays for exploring genes related to prognosis or disease progression. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Hierarchical modeling of genome-wide Short Tandem Repeat (STR) markers infers native American prehistory.

    Science.gov (United States)

    Lewis, Cecil M

    2010-02-01

    This study examines a genome-wide dataset of 678 Short Tandem Repeat loci characterized in 444 individuals representing 29 Native American populations as well as the Tundra Netsi and Yakut populations from Siberia. Using these data, the study tests four current hypotheses regarding the hierarchical distribution of neutral genetic variation in native South American populations: (1) the western region of South America harbors more variation than the eastern region of South America, (2) Central American and western South American populations cluster exclusively, (3) populations speaking the Chibchan-Paezan and Equatorial-Tucanoan language stock emerge as a group within an otherwise South American clade, (4) Chibchan-Paezan populations in Central America emerge together at the tips of the Chibchan-Paezan cluster. This study finds that hierarchical models with the best fit place Central American populations, and populations speaking the Chibchan-Paezan language stock, at a basal position or separated from the South American group, which is more consistent with a serial founder effect into South America than that previously described. Western (Andean) South America is found to harbor similar levels of variation as eastern (Equatorial-Tucanoan and Ge-Pano-Carib) South America, which is inconsistent with an initial west coast migration into South America. Moreover, in all relevant models, the estimates of genetic diversity within geographic regions suggest a major bottleneck or founder effect occurring within the North American subcontinent, before the peopling of Central and South America. 2009 Wiley-Liss, Inc.

  6. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    Science.gov (United States)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  7. A Nonnegative Latent Factor Model for Large-Scale Sparse Matrices in Recommender Systems via Alternating Direction Method.

    Science.gov (United States)

    Luo, Xin; Zhou, MengChu; Li, Shuai; You, Zhuhong; Xia, Yunni; Zhu, Qingsheng

    2016-03-01

    Nonnegative matrix factorization (NMF)-based models possess fine representativeness of a target matrix, which is critically important in collaborative filtering (CF)-based recommender systems. However, current NMF-based CF recommenders suffer from the problem of high computational and storage complexity, as well as slow convergence rate, which prevents them from industrial usage in context of big data. To address these issues, this paper proposes an alternating direction method (ADM)-based nonnegative latent factor (ANLF) model. The main idea is to implement the ADM-based optimization with regard to each single feature, to obtain high convergence rate as well as low complexity. Both computational and storage costs of ANLF are linear with the size of given data in the target matrix, which ensures high efficiency when dealing with extremely sparse matrices usually seen in CF problems. As demonstrated by the experiments on large, real data sets, ANLF also ensures fast convergence and high prediction accuracy, as well as the maintenance of nonnegativity constraints. Moreover, it is simple and easy to implement for real applications of learning systems.

  8. A Novel 3D Imaging Method for Airborne Downward-Looking Sparse Array SAR Based on Special Squint Model

    Directory of Open Access Journals (Sweden)

    Xiaozhen Ren

    2014-01-01

    Full Text Available Three-dimensional (3D imaging technology based on antenna array is one of the most important 3D synthetic aperture radar (SAR high resolution imaging modes. In this paper, a novel 3D imaging method is proposed for airborne down-looking sparse array SAR based on the imaging geometry and the characteristic of echo signal. The key point of the proposed algorithm is the introduction of a special squint model in cross track processing to obtain accurate focusing. In this special squint model, point targets with different cross track positions have different squint angles at the same range resolution cell, which is different from the conventional squint SAR. However, after theory analysis and formulation deduction, the imaging procedure can be processed with the uniform reference function, and the phase compensation factors and algorithm realization procedure are demonstrated in detail. As the method requires only Fourier transform and multiplications and thus avoids interpolations, it is computationally efficient. Simulations with point scatterers are used to validate the method.

  9. Bayesian hierarchical models for smoothing in two-phase studies, with application to small area estimation.

    Science.gov (United States)

    Ross, Michelle; Wakefield, Jon

    2015-10-01

    Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.

  10. A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk

    Directory of Open Access Journals (Sweden)

    Lewei Duan

    2013-01-01

    Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.

  11. Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.

  12. Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs

    KAUST Repository

    Nobile, F.

    2015-10-30

    In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw–Curtis) or non-nested (Gauss–Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature.

  13. Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs

    KAUST Repository

    Nobile, F.; Tamellini, L.; Tempone, Raul

    2015-01-01

    In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw–Curtis) or non-nested (Gauss–Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature.

  14. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    Science.gov (United States)

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

  15. Frequency-Domain Hydrodynamic Modelling of Dense and Sparse Arrays of Wave Energy Converters

    NARCIS (Netherlands)

    Wei, Yanji; Barradas Berglind, Jose de Jesus; Yu, Zhiheng; van Rooij, Marijn; Prins, Wouter; Jayawardhana, Bayu; Vakis, Antonis I.

    2018-01-01

    In this work, we develop a frequency-domain model to study the hydrodynamic behaviour of a floater blanket (FB), i.e., an array of floater elements individually connected to power take-off (PTO) systems, which constitutes the core technology of the novel Ocean Grazer (OG) wave energy converter

  16. Sparse Statistical Deformation Model for the Analysis of Craniofacial Malformations in the Crouzon Mouse

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Hansen, Michael Sass; Sjöstrand, Karl

    2007-01-01

    Crouzon syndrome is characterised by the premature fusion of cranial sutures. Recently the first genetic Crouzon mouse model was generated. In this study, Micro CT skull scannings of wild-type mice and Crouzon mice were investigated. Using nonrigid registration, a wild-type mouse atlas was built...

  17. Travel Cost Inference from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models

    DEFF Research Database (Denmark)

    Yang, Bin; Guo, Chenjuan; Jensen, Christian S.

    2013-01-01

    of such time series offers insight into the underlying system and enables prediction of system behavior. While the techniques presented in the paper apply more generally, we consider the case of transportation systems and aim to predict travel cost from GPS tracking data from probe vehicles. Specifically, each...... road segment has an associated travel-cost time series, which is derived from GPS data. We use spatio-temporal hidden Markov models (STHMM) to model correlations among different traffic time series. We provide algorithms that are able to learn the parameters of an STHMM while contending...... with the sparsity, spatio-temporal correlation, and heterogeneity of the time series. Using the resulting STHMM, near future travel costs in the transportation network, e.g., travel time or greenhouse gas emissions, can be inferred, enabling a variety of routing services, e.g., eco-routing. Empirical studies...

  18. How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach.

    Science.gov (United States)

    Horn, Sebastian S; Pachur, Thorsten; Mata, Rui

    2015-01-01

    The recognition heuristic (RH) is a simple strategy for probabilistic inference according to which recognized objects are judged to score higher on a criterion than unrecognized objects. In this article, a hierarchical Bayesian extension of the multinomial r-model is applied to measure use of the RH on the individual participant level and to re-evaluate differences between younger and older adults' strategy reliance across environments. Further, it is explored how individual r-model parameters relate to alternative measures of the use of recognition and other knowledge, such as adherence rates and indices from signal-detection theory (SDT). Both younger and older adults used the RH substantially more often in an environment with high than low recognition validity, reflecting adaptivity in strategy use across environments. In extension of previous analyses (based on adherence rates), hierarchical modeling revealed that in an environment with low recognition validity, (a) older adults had a stronger tendency than younger adults to rely on the RH and (b) variability in RH use between individuals was larger than in an environment with high recognition validity; variability did not differ between age groups. Further, the r-model parameters correlated moderately with an SDT measure expressing how well people can discriminate cases where the RH leads to a correct vs. incorrect inference; this suggests that the r-model and the SDT measures may offer complementary insights into the use of recognition in decision making. In conclusion, younger and older adults are largely adaptive in their application of the RH, but cognitive aging may be associated with an increased tendency to rely on this strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hierarchical Colored Petri Nets for Modeling and Analysis of Transit Signal Priority Control Systems

    Directory of Open Access Journals (Sweden)

    Yisheng An

    2018-01-01

    Full Text Available In this paper, we consider the problem of developing a model for traffic signal control with transit priority using Hierarchical Colored Petri nets (HCPN. Petri nets (PN are useful for state analysis of discrete event systems due to their powerful modeling capability and mathematical formalism. This paper focuses on their use to formalize the transit signal priority (TSP control model. In a four-phase traffic signal control model, the transit detection and two kinds of transit priority strategies are integrated to obtain the HCPN-based TSP control models. One of the advantages to use these models is the clear presentation of traffic light behaviors in terms of conditions and events that cause the detection of a priority request by a transit vehicle. Another advantage of the resulting models is that the correctness and reliability of the proposed strategies are easily analyzed. After their full reachable states are generated, the boundness, liveness, and fairness of the proposed models are verified. Experimental results show that the proposed control model provides transit vehicles with better effectiveness at intersections. This work helps advance the state of the art in the design of signal control models related to the intersection of roadways.

  20. Prion Amplification and Hierarchical Bayesian Modeling Refine Detection of Prion Infection

    Science.gov (United States)

    Wyckoff, A. Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J.; Pulford, Bruce; Wild, Margaret; Antolin, Michael; Vercauteren, Kurt; Zabel, Mark

    2015-02-01

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  1. Prion amplification and hierarchical Bayesian modeling refine detection of prion infection.

    Science.gov (United States)

    Wyckoff, A Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J; Pulford, Bruce; Wild, Margaret; Antolin, Michael; VerCauteren, Kurt; Zabel, Mark

    2015-02-10

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  2. Multilevel Hierarchical Modeling of Benthic Macroinvertebrate Responses to Urbanization in Nine Metropolitan Regions across the Conterminous United States

    Science.gov (United States)

    Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.

    2010-01-01

    Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization

  3. Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope Using Sparse Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Kuramochi, Kazuki; Tazaki, Fumie; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ikeda, Shiro [Department of Statistical Science, School of Multidisciplinary Sciences, Graduate University for Advanced Studies, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562 (Japan); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5 (Canada); Dexter, Jason [Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85748 Garching (Germany); Mościbrodzka, Monika [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Bouman, Katherine L. [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States); Chael, Andrew A. [Black Hole Initiative, Harvard University, 20 Garden Street,Cambridge, MA 02138,USA (United States); Zaizen, Masamichi, E-mail: kazu@haystack.mit.edu [Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-03-20

    We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared interferometers, by utilizing two regularization functions: the ℓ {sub 1}-norm and total variation (TV) of the brightness distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an application of this technique, we present simulated observations of M87 with the EHT based on four physically motivated models. We confirm that ℓ {sub 1} + TV regularization can achieve an optimal resolution of ∼20%–30% of the diffraction limit λ / D {sub max}, which is the nominal spatial resolution of a radio interferometer. With the proposed technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*.

  4. Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model.

    Science.gov (United States)

    Zakeri, Fahimeh Sadat; Setarehdan, Seyed Kamaledin; Norouzi, Somayye

    2017-10-01

    Segmentation of the arterial wall boundaries from intravascular ultrasound images is an important image processing task in order to quantify arterial wall characteristics such as shape, area, thickness and eccentricity. Since manual segmentation of these boundaries is a laborious and time consuming procedure, many researchers attempted to develop (semi-) automatic segmentation techniques as a powerful tool for educational and clinical purposes in the past but as yet there is no any clinically approved method in the market. This paper presents a deterministic-statistical strategy for automatic media-adventitia border detection by a fourfold algorithm. First, a smoothed initial contour is extracted based on the classification in the sparse representation framework which is combined with the dynamic directional convolution vector field. Next, an active contour model is utilized for the propagation of the initial contour toward the interested borders. Finally, the extracted contour is refined in the leakage, side branch openings and calcification regions based on the image texture patterns. The performance of the proposed algorithm is evaluated by comparing the results to those manually traced borders by an expert on 312 different IVUS images obtained from four different patients. The statistical analysis of the results demonstrates the efficiency of the proposed method in the media-adventitia border detection with enough consistency in the leakage and calcification regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Using sparse LU factorisation to precondition GMRES for a family of similarly structured matrices arising from process modelling

    Energy Technology Data Exchange (ETDEWEB)

    Brooking, C. [Univ. of Bath (United Kingdom)

    1996-12-31

    Process engineering software is used to simulate the operation of large chemical plants. Such simulations are used for a variety of tasks, including operator training. For the software to be of practical use for this, dynamic simulations need to run in real-time. The models that the simulation is based upon are written in terms of Differential Algebraic Equations (DAE`s). In the numerical time-integration of systems of DAE`s using an implicit method such as backward Euler, the solution of nonlinear systems is required at each integration point. When solved using Newton`s method, this leads to the repeated solution of nonsymmetric sparse linear systems. These systems range in size from 500 to 20,000 variables. A typical integration may require around 3000 timesteps, and if 4 Newton iterates were needed on each time step, then this means approximately 12,000 linear systems must be solved. The matrices produced by the simulations have a similar sparsity pattern throughout the integration. They are also severely ill-conditioned, and have widely-scattered spectra.

  6. Doubly sparse factor models for unifying feature transformation and feature selection

    International Nuclear Information System (INIS)

    Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato; Matsumoto, Narihisa; Sugase-Miyamoto, Yasuko

    2010-01-01

    A number of unsupervised learning methods for high-dimensional data are largely divided into two groups based on their procedures, i.e., (1) feature selection, which discards irrelevant dimensions of the data, and (2) feature transformation, which constructs new variables by transforming and mixing over all dimensions. We propose a method that both selects and transforms features in a common Bayesian inference procedure. Our method imposes a doubly automatic relevance determination (ARD) prior on the factor loading matrix. We propose a variational Bayesian inference for our model and demonstrate the performance of our method on both synthetic and real data.

  7. Doubly sparse factor models for unifying feature transformation and feature selection

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato [ERATO, Okanoya Emotional Information Project, Japan Science Technology Agency, Saitama (Japan); Matsumoto, Narihisa; Sugase-Miyamoto, Yasuko, E-mail: okada@k.u-tokyo.ac.j [Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan)

    2010-06-01

    A number of unsupervised learning methods for high-dimensional data are largely divided into two groups based on their procedures, i.e., (1) feature selection, which discards irrelevant dimensions of the data, and (2) feature transformation, which constructs new variables by transforming and mixing over all dimensions. We propose a method that both selects and transforms features in a common Bayesian inference procedure. Our method imposes a doubly automatic relevance determination (ARD) prior on the factor loading matrix. We propose a variational Bayesian inference for our model and demonstrate the performance of our method on both synthetic and real data.

  8. Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-02-01

    An efficient Bayesian calibration method based on the nested sampling (NS) algorithm and non-intrusive polynomial chaos method is presented. Nested sampling is a Bayesian sampling algorithm that builds a discrete representation of the posterior distributions by iteratively re-focusing a set of samples to high likelihood regions. NS allows representing the posterior probability density function (PDF) with a smaller number of samples and reduces the curse of dimensionality effects. The main difficulty of the NS algorithm is in the constrained sampling step which is commonly performed using a random walk Markov Chain Monte-Carlo (MCMC) algorithm. In this work, we perform a two-stage sampling using a polynomial chaos response surface to filter out rejected samples in the Markov Chain Monte-Carlo method. The combined use of nested sampling and the two-stage MCMC based on approximate response surfaces provides significant computational gains in terms of the number of simulation runs. The proposed algorithm is applied for calibration and model selection of subsurface flow models. © 2013.

  9. Image understanding using sparse representations

    CERN Document Server

    Thiagarajan, Jayaraman J; Turaga, Pavan; Spanias, Andreas

    2014-01-01

    Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blin

  10. Epigenetic change detection and pattern recognition via Bayesian hierarchical hidden Markov models.

    Science.gov (United States)

    Wang, Xinlei; Zang, Miao; Xiao, Guanghua

    2013-06-15

    Epigenetics is the study of changes to the genome that can switch genes on or off and determine which proteins are transcribed without altering the DNA sequence. Recently, epigenetic changes have been linked to the development and progression of disease such as psychiatric disorders. High-throughput epigenetic experiments have enabled researchers to measure genome-wide epigenetic profiles and yield data consisting of intensity ratios of immunoprecipitation versus reference samples. The intensity ratios can provide a view of genomic regions where protein binding occur under one experimental condition and further allow us to detect epigenetic alterations through comparison between two different conditions. However, such experiments can be expensive, with only a few replicates available. Moreover, epigenetic data are often spatially correlated with high noise levels. In this paper, we develop a Bayesian hierarchical model, combined with hidden Markov processes with four states for modeling spatial dependence, to detect genomic sites with epigenetic changes from two-sample experiments with paired internal control. One attractive feature of the proposed method is that the four states of the hidden Markov process have well-defined biological meanings and allow us to directly call the change patterns based on the corresponding posterior probabilities. In contrast, none of existing methods can offer this advantage. In addition, the proposed method offers great power in statistical inference by spatial smoothing (via hidden Markov modeling) and information pooling (via hierarchical modeling). Both simulation studies and real data analysis in a cocaine addiction study illustrate the reliability and success of this method. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Sparse Modeling Reveals miRNA Signatures for Diagnostics of Inflammatory Bowel Disease.

    Directory of Open Access Journals (Sweden)

    Matthias Hübenthal

    Full Text Available The diagnosis of inflammatory bowel disease (IBD still remains a clinical challenge and the most accurate diagnostic procedure is a combination of clinical tests including invasive endoscopy. In this study we evaluated whether systematic miRNA expression profiling, in conjunction with machine learning techniques, is suitable as a non-invasive test for the major IBD phenotypes (Crohn's disease (CD and ulcerative colitis (UC. Based on microarray technology, expression levels of 863 miRNAs were determined for whole blood samples from 40 CD and 36 UC patients and compared to data from 38 healthy controls (HC. To further discriminate between disease-specific and general inflammation we included miRNA expression data from other inflammatory diseases (inflammation controls (IC: 24 chronic obstructive pulmonary disease (COPD, 23 multiple sclerosis, 38 pancreatitis and 45 sarcoidosis cases as well as 70 healthy controls from previous studies. Classification problems considering 2, 3 or 4 groups were solved using different types of penalized support vector machines (SVMs. The resulting models were assessed regarding sparsity and performance and a subset was selected for further investigation. Measured by the area under the ROC curve (AUC the corresponding median holdout-validated accuracy was estimated as ranging from 0.75 to 1.00 (including IC and 0.89 to 0.98 (excluding IC, respectively. In combination, the corresponding models provide tools for the distinction of CD and UC as well as CD, UC and HC with expected classification error rates of 3.1 and 3.3%, respectively. These results were obtained by incorporating not more than 16 distinct miRNAs. Validated target genes of these miRNAs have been previously described as being related to IBD. For others we observed significant enrichment for IBD susceptibility loci identified in earlier GWAS. These results suggest that the proposed miRNA signature is of relevance for the etiology of IBD. Its diagnostic

  12. Hierarchical modeling of bycatch rates of sea turtles in the western North Atlantic

    Science.gov (United States)

    Gardner, B.; Sullivan, P.J.; Epperly, S.; Morreale, S.J.

    2008-01-01

    Previous studies indicate that the locations of the endangered loggerhead Caretta caretta and critically endangered leatherback Dermochelys coriacea sea turtles are influenced by water temperatures, and that incidental catch rates in the pelagic longline fishery vary by region. We present a Bayesian hierarchical model to examine the effects of environmental variables, including water temperature, on the number of sea turtles captured in the US pelagic longline fishery in the western North Atlantic. The modeling structure is highly flexible, utilizes a Bayesian model selection technique, and is fully implemented in the software program WinBUGS. The number of sea turtles captured is modeled as a zero-inflated Poisson distribution and the model incorporates fixed effects to examine region-specific differences in the parameter estimates. Results indicate that water temperature, region, bottom depth, and target species are all significant predictors of the number of loggerhead sea turtles captured. For leatherback sea turtles, the model with only target species had the most posterior model weight, though a re-parameterization of the model indicates that temperature influences the zero-inflation parameter. The relationship between the number of sea turtles captured and the variables of interest all varied by region. This suggests that management decisions aimed at reducing sea turtle bycatch may be more effective if they are spatially explicit. ?? Inter-Research 2008.

  13. A hierarchical updating method for finite element model of airbag buffer system under landing impact

    Directory of Open Access Journals (Sweden)

    He Huan

    2015-12-01

    Full Text Available In this paper, we propose an impact finite element (FE model for an airbag landing buffer system. First, an impact FE model has been formulated for a typical airbag landing buffer system. We use the independence of the structure FE model from the full impact FE model to develop a hierarchical updating scheme for the recovery module FE model and the airbag system FE model. Second, we define impact responses at key points to compare the computational and experimental results to resolve the inconsistency between the experimental data sampling frequency and experimental triggering. To determine the typical characteristics of the impact dynamics response of the airbag landing buffer system, we present the impact response confidence factors (IRCFs to evaluate how consistent the computational and experiment results are. An error function is defined between the experimental and computational results at key points of the impact response (KPIR to serve as a modified objective function. A radial basis function (RBF is introduced to construct updating variables for a surrogate model for updating the objective function, thereby converting the FE model updating problem to a soluble optimization problem. Finally, the developed method has been validated using an experimental and computational study on the impact dynamics of a classic airbag landing buffer system.

  14. Parameterization of aquatic ecosystem functioning and its natural variation: Hierarchical Bayesian modelling of plankton food web dynamics

    Science.gov (United States)

    Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede

    2017-10-01

    Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.

  15. Using hierarchical linear growth models to evaluate protective mechanisms that mediate science achievement

    Science.gov (United States)

    von Secker, Clare Elaine

    The study of students at risk is a major topic of science education policy and discussion. Much research has focused on describing conditions and problems associated with the statistical risk of low science achievement among individuals who are members of groups characterized by problems such as poverty and social disadvantage. But outcomes attributed to these factors do not explain the nature and extent of mechanisms that account for differences in performance among individuals at risk. There is ample theoretical and empirical evidence that demographic differences should be conceptualized as social contexts, or collections of variables, that alter the psychological significance and social demands of life events, and affect subsequent relationships between risk and resilience. The hierarchical linear growth models used in this dissertation provide greater specification of the role of social context and the protective effects of attitude, expectations, parenting practices, peer influences, and learning opportunities on science achievement. While the individual influences of these protective factors on science achievement were small, their cumulative effect was substantial. Meta-analysis conducted on the effects associated with psychological and environmental processes that mediate risk mechanisms in sixteen social contexts revealed twenty-two significant differences between groups of students. Positive attitudes, high expectations, and more intense science course-taking had positive effects on achievement of all students, although these factors were not equally protective in all social contexts. In general, effects associated with authoritative parenting and peer influences were negative, regardless of social context. An evaluation comparing the performance and stability of hierarchical linear growth models with traditional repeated measures models is included as well.

  16. An Integrated Risk Index Model Based on Hierarchical Fuzzy Logic for Underground Risk Assessment

    Directory of Open Access Journals (Sweden)

    Muhammad Fayaz

    2017-10-01

    Full Text Available Available space in congested cities is getting scarce due to growing urbanization in the recent past. The utilization of underground space is considered as a solution to the limited space in smart cities. The numbers of underground facilities are growing day by day in the developing world. Typical underground facilities include the transit subway, parking lots, electric lines, water supply and sewer lines. The likelihood of the occurrence of accidents due to underground facilities is a random phenomenon. To avoid any accidental loss, a risk assessment method is required to conduct the continuous risk assessment and report any abnormality before it happens. In this paper, we have proposed a hierarchical fuzzy inference based model for under-ground risk assessment. The proposed hierarchical fuzzy inference architecture reduces the total number of rules from the rule base. Rule reduction is important because the curse of dimensionality damages the transparency and interpretation as it is very tough to understand and justify hundreds or thousands of fuzzy rules. The computation time also increases as rules increase. The proposed model takes 175 rules having eight input parameters to compute the risk index, and the conventional fuzzy logic requires 390,625 rules, having the same number of input parameters to compute risk index. Hence, the proposed model significantly reduces the curse of dimensionality. Rule design for fuzzy logic is also a tedious task. In this paper, we have also introduced new rule schemes, namely maximum rule-based and average rule-based; both schemes can be used interchangeably according to the logic needed for rule design. The experimental results show that the proposed method is a virtuous choice for risk index calculation where the numbers of variables are greater.

  17. Spatial patterns of breeding success of grizzly bears derived from hierarchical multistate models.

    Science.gov (United States)

    Fisher, Jason T; Wheatley, Matthew; Mackenzie, Darryl

    2014-10-01

    Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low-elevation wetlands or mid-elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy-herbaceous alpine ecotones-were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. © 2014 Society

  18. Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data

    KAUST Repository

    Zhou, Lan

    2010-03-01

    Hierarchical functional data are widely seen in complex studies where sub-units are nested within units, which in turn are nested within treatment groups. We propose a general framework of functional mixed effects model for such data: within unit and within sub-unit variations are modeled through two separate sets of principal components; the sub-unit level functions are allowed to be correlated. Penalized splines are used to model both the mean functions and the principal components functions, where roughness penalties are used to regularize the spline fit. An EM algorithm is developed to fit the model, while the specific covariance structure of the model is utilized for computational efficiency to avoid storage and inversion of large matrices. Our dimension reduction with principal components provides an effective solution to the difficult tasks of modeling the covariance kernel of a random function and modeling the correlation between functions. The proposed methodology is illustrated using simulations and an empirical data set from a colon carcinogenesis study. Supplemental materials are available online.

  19. A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data

    Science.gov (United States)

    Gallopin, Mélina; Rau, Andrea; Jaffrézic, Florence

    2013-01-01

    Gene network inference from transcriptomic data is an important methodological challenge and a key aspect of systems biology. Although several methods have been proposed to infer networks from microarray data, there is a need for inference methods able to model RNA-seq data, which are count-based and highly variable. In this work we propose a hierarchical Poisson log-normal model with a Lasso penalty to infer gene networks from RNA-seq data; this model has the advantage of directly modelling discrete data and accounting for inter-sample variance larger than the sample mean. Using real microRNA-seq data from breast cancer tumors and simulations, we compare this method to a regularized Gaussian graphical model on log-transformed data, and a Poisson log-linear graphical model with a Lasso penalty on power-transformed data. For data simulated with large inter-sample dispersion, the proposed model performs better than the other methods in terms of sensitivity, specificity and area under the ROC curve. These results show the necessity of methods specifically designed for gene network inference from RNA-seq data. PMID:24147011

  20. A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures.

    Science.gov (United States)

    Tanner, Martin A.; Peng, Fengchun; Jacobs, Robert A.

    1997-03-01

    There does not exist a statistical model that shows good performance on all tasks. Consequently, the model selection problem is unavoidable; investigators must decide which model is best at summarizing the data for each task of interest. This article presents an approach to the model selection problem in hierarchical mixtures-of-experts architectures. These architectures combine aspects of generalized linear models with those of finite mixture models in order to perform tasks via a recursive "divide-and-conquer" strategy. Markov chain Monte Carlo methodology is used to estimate the distribution of the architectures' parameters. One part of our approach to model selection attempts to estimate the worth of each component of an architecture so that relatively unused components can be pruned from the architecture's structure. A second part of this approach uses a Bayesian hypothesis testing procedure in order to differentiate inputs that carry useful information from nuisance inputs. Simulation results suggest that the approach presented here adheres to the dictum of Occam's razor; simple architectures that are adequate for summarizing the data are favored over more complex structures. Copyright 1997 Elsevier Science Ltd. All Rights Reserved.

  1. Bayesian Hierarchical Scale Mixtures of Log-Normal Models for Inference in Reliability with Stochastic Constraint

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2017-06-01

    Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.

  2. Superresolution Interferometric Imaging with Sparse Modeling Using Total Squared Variation: Application to Imaging the Black Hole Shadow

    Science.gov (United States)

    Kuramochi, Kazuki; Akiyama, Kazunori; Ikeda, Shiro; Tazaki, Fumie; Fish, Vincent L.; Pu, Hung-Yi; Asada, Keiichi; Honma, Mareki

    2018-05-01

    We propose a new imaging technique for interferometry using sparse modeling, utilizing two regularization terms: the ℓ 1-norm and a new function named total squared variation (TSV) of the brightness distribution. First, we demonstrate that our technique may achieve a superresolution of ∼30% compared with the traditional CLEAN beam size using synthetic observations of two point sources. Second, we present simulated observations of three physically motivated static models of Sgr A* with the Event Horizon Telescope (EHT) to show the performance of proposed techniques in greater detail. Remarkably, in both the image and gradient domains, the optimal beam size minimizing root-mean-squared errors is ≲10% of the traditional CLEAN beam size for ℓ 1+TSV regularization, and non-convolved reconstructed images have smaller errors than beam-convolved reconstructed images. This indicates that TSV is well matched to the expected physical properties of the astronomical images and the traditional post-processing technique of Gaussian convolution in interferometric imaging may not be required. We also propose a feature-extraction method to detect circular features from the image of a black hole shadow and use it to evaluate the performance of the image reconstruction. With this method and reconstructed images, the EHT can constrain the radius of the black hole shadow with an accuracy of ∼10%–20% in present simulations for Sgr A*, suggesting that the EHT would be able to provide useful independent measurements of the mass of the supermassive black holes in Sgr A* and also another primary target, M87.

  3. Synthetic generation of myocardial blood-oxygen-level-dependent MRI time series via structural sparse decomposition modeling.

    Science.gov (United States)

    Rusu, Cristian; Morisi, Rita; Boschetto, Davide; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2014-07-01

    This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for cardiac phase-resolved blood-oxygen-level-dependent (CP-BOLD) MRI. CP-BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye. Quantifying and visualizing the extent of disease relies on myocardial segmentation and registration to isolate the myocardium and establish temporal correspondences and ischemia detection algorithms to identify temporal differences in BOLD signal intensity patterns. If transmurality of the defect is of interest pixel-level analysis is necessary and thus a higher precision in registration is required. Such precision is currently not available affecting the design and performance of the ischemia detection algorithms. In this work, to enable algorithmic developments of ischemia detection irrespective to registration accuracy, we propose an approach that generates synthetic pixel-level myocardial time series. We do this by 1) modeling the temporal changes in BOLD signal intensity based on sparse multi-component dictionary learning, whereby segmentally derived myocardial time series are extracted from canine experimental data to learn the model; and 2) demonstrating the resemblance between real and synthetic time series for validation purposes. We envision that the proposed approach has the capacity to accelerate development of tools for ischemia detection while markedly reducing experimental costs so that cardiac BOLD MRI can be rapidly translated into the clinical arena for the noninvasive assessment of ischemic heart disease.

  4. Examining the Suitability of a Sparse In Situ Soil Moisture Monitoring Network for Assimilation into a Spatially Distributed Hydrologic Model

    Science.gov (United States)

    De Vleeschouwer, N.; Verhoest, N.; Pauwels, V. R. N.

    2015-12-01

    The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological data assimilation. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the finer temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typical small integration volume of in situ measurements and the often large spacing between monitoring locations. This causes only a small part of the modelling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically temporally non-dynamic. Therefore two questions can be raised. Do spatially sparse in situ soil moisture observations contain a sufficient data representativeness to successfully assimilate them into the largely unobserved spatial extent of a distributed hydrological model? And if so, how is this assimilation best performed? Consequently two important factors that can influence the success of assimilating in situ monitored soil moisture are the spatial configuration of the monitoring network and the applied assimilation algorithm. In this research the influence of those factors is examined by means of synthetic data-assimilation experiments. The study area is the ± 100 km² catchment of the Bellebeek in Flanders, Belgium. The influence of the spatial configuration is examined by varying the amount of locations and their position in the landscape. The latter is performed using several techniques including temporal stability analysis and clustering. Furthermore the observation depth is considered by comparing assimilation of surface layer (5 cm) and deeper layer (50 cm) observations. The impact of the assimilation algorithm is assessed by comparing the performance obtained with two well-known algorithms: Newtonian nudging and the Ensemble Kalman

  5. Class hierarchical test case generation algorithm based on expanded EMDPN model

    Institute of Scientific and Technical Information of China (English)

    LI Jun-yi; GONG Hong-fang; HU Ji-ping; ZOU Bei-ji; SUN Jia-guang

    2006-01-01

    A new model of event and message driven Petri network(EMDPN) based on the characteristic of class interaction for messages passing between two objects was extended. Using EMDPN interaction graph, a class hierarchical test-case generation algorithm with cooperated paths (copaths) was proposed, which can be used to solve the problems resulting from the class inheritance mechanism encountered in object-oriented software testing such as oracle, message transfer errors, and unreachable statement. Finally, the testing sufficiency was analyzed with the ordered sequence testing criterion(OSC). The results indicate that the test cases stemmed from newly proposed automatic algorithm of copaths generation satisfies synchronization message sequences testing criteria, therefore the proposed new algorithm of copaths generation has a good coverage rate.

  6. LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data.

    Science.gov (United States)

    Pernet, Cyril R; Chauveau, Nicolas; Gaspar, Carl; Rousselet, Guillaume A

    2011-01-01

    Magnetic- and electric-evoked brain responses have traditionally been analyzed by comparing the peaks or mean amplitudes of signals from selected channels and averaged across trials. More recently, tools have been developed to investigate single trial response variability (e.g., EEGLAB) and to test differences between averaged evoked responses over the entire scalp and time dimensions (e.g., SPM, Fieldtrip). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data. In addition, LIMO EEG provides robust parametric tests, therefore providing a new and complementary tool in the analysis of neural evoked responses.

  7. Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.

    Directory of Open Access Journals (Sweden)

    Ta-Chien Chan

    Full Text Available BACKGROUND: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty. METHODS AND FINDINGS: Based on the Bayesian posterior probability of influenza-like illness (ILI visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006-2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1-2 days prior to the rise of ILI visits. CONCLUSIONS: This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.

  8. Interneuronal Mechanism for Tinbergen’s Hierarchical Model of Behavioral Choice

    Science.gov (United States)

    Pirger, Zsolt; Crossley, Michael; László, Zita; Naskar, Souvik; Kemenes, György; O’Shea, Michael; Benjamin, Paul R.; Kemenes, Ildikó

    2014-01-01

    Summary Recent studies of behavioral choice support the notion that the decision to carry out one behavior rather than another depends on the reconfiguration of shared interneuronal networks [1]. We investigated another decision-making strategy, derived from the classical ethological literature [2, 3], which proposes that behavioral choice depends on competition between autonomous networks. According to this model, behavioral choice depends on inhibitory interactions between incompatible hierarchically organized behaviors. We provide evidence for this by investigating the interneuronal mechanisms mediating behavioral choice between two autonomous circuits that underlie whole-body withdrawal [4, 5] and feeding [6] in the pond snail Lymnaea. Whole-body withdrawal is a defensive reflex that is initiated by tactile contact with predators. As predicted by the hierarchical model, tactile stimuli that evoke whole-body withdrawal responses also inhibit ongoing feeding in the presence of feeding stimuli. By recording neurons from the feeding and withdrawal networks, we found no direct synaptic connections between the interneuronal and motoneuronal elements that generate the two behaviors. Instead, we discovered that behavioral choice depends on the interaction between two unique types of interneurons with asymmetrical synaptic connectivity that allows withdrawal to override feeding. One type of interneuron, the Pleuro-Buccal (PlB), is an extrinsic modulatory neuron of the feeding network that completely inhibits feeding when excited by touch-induced monosynaptic input from the second type of interneuron, Pedal-Dorsal12 (PeD12). PeD12 plays a critical role in behavioral choice by providing a synaptic pathway joining the two behavioral networks that underlies the competitive dominance of whole-body withdrawal over feeding. PMID:25155505

  9. Hierarchical Bayesian Spatio Temporal Model Comparison on the Earth Trapped Particle Forecast

    International Nuclear Information System (INIS)

    Suparta, Wayan; Gusrizal

    2014-01-01

    We compared two hierarchical Bayesian spatio temporal (HBST) results, Gaussian process (GP) and autoregressive (AR) models, on the Earth trapped particle forecast. Two models were employed on the South Atlantic Anomaly (SAA) region. Electron of >30 keV (mep0e1) from National Oceanic and Atmospheric Administration (NOAA) 15-18 satellites data was chosen as the particle modeled. We used two weeks data to perform the model fitting on a 5°x5° grid of longitude and latitude, and 31 August 2007 was set as the date of forecast. Three statistical validations were performed on the data, i.e. the root mean square error (RMSE), mean absolute percentage error (MAPE) and bias (BIAS). The statistical analysis showed that GP model performed better than AR with the average of RMSE = 0.38 and 0.63, MAPE = 11.98 and 17.30, and BIAS = 0.32 and 0.24, for GP and AR, respectively. Visual validation on both models with the NOAA map's also confirmed the superior of the GP than the AR. The variance of log flux minimum = 0.09 and 1.09, log flux maximum = 1.15 and 1.35, and in successively represents GP and AR

  10. A hierarchical model for estimating density in camera-trap studies

    Science.gov (United States)

    Royle, J. Andrew; Nichols, James D.; Karanth, K.Ullas; Gopalaswamy, Arjun M.

    2009-01-01

    Estimating animal density using capture–recapture data from arrays of detection devices such as camera traps has been problematic due to the movement of individuals and heterogeneity in capture probability among them induced by differential exposure to trapping.We develop a spatial capture–recapture model for estimating density from camera-trapping data which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to and detection by traps.We adopt a Bayesian approach to analysis of the hierarchical model using the technique of data augmentation.The model is applied to photographic capture–recapture data on tigers Panthera tigris in Nagarahole reserve, India. Using this model, we estimate the density of tigers to be 14·3 animals per 100 km2 during 2004.Synthesis and applications. Our modelling framework largely overcomes several weaknesses in conventional approaches to the estimation of animal density from trap arrays. It effectively deals with key problems such as individual heterogeneity in capture probabilities, movement of traps, presence of potential ‘holes’ in the array and ad hoc estimation of sample area. The formulation, thus, greatly enhances flexibility in the conduct of field surveys as well as in the analysis of data, from studies that may involve physical, photographic or DNA-based ‘captures’ of individual animals.

  11. Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality

    Science.gov (United States)

    Noh, Myoung-Jong; Howat, Ian M.

    2018-02-01

    The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.

  12. Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds1

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Ensor, Katherine B.; Rosner, Gary L.

    2011-01-01

    The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material. PMID:21765566

  13. Shearlets and Optimally Sparse Approximations

    DEFF Research Database (Denmark)

    Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q

    2012-01-01

    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....

  14. Sparse Representations of Hyperspectral Images

    KAUST Repository

    Swanson, Robin J.

    2015-01-01

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  15. Sparse Representations of Hyperspectral Images

    KAUST Repository

    Swanson, Robin J.

    2015-11-23

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  16. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model

    Science.gov (United States)

    Thogmartin, W.E.; Knutson, M.G.

    2007-01-01

    Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.

  17. Hierarchical Kinematic Modelling and Optimal Design of a Novel Hexapod Robot with Integrated Limb Mechanism

    Directory of Open Access Journals (Sweden)

    Guiyang Xin

    2015-09-01

    Full Text Available This paper presents a novel hexapod robot, hereafter named PH-Robot, with three degrees of freedom (3-DOF parallel leg mechanisms based on the concept of an integrated limb mechanism (ILM for the integration of legged locomotion and arm manipulation. The kinematic model plays an important role in the parametric optimal design and motion planning of robots. However, models of parallel mechanisms are often difficult to obtain because of the implicit relationship between the motions of actuated joints and the motion of a moving platform. In order to derive the kinematic equations of the proposed hexapod robot, an extended hierarchical kinematic modelling method is proposed. According to the kinematic model, the geometrical parameters of the leg are optimized utilizing a comprehensive objective function that considers both dexterity and payload. PH-Robot has distinct advantages in accuracy and load ability over a robot with serial leg mechanisms through the former's comparison of performance indices. The reachable workspace of the leg verifies its ability to walk and manipulate. The results of the trajectory tracking experiment demonstrate the correctness of the kinematic model of the hexapod robot.

  18. Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC

    Science.gov (United States)

    Susiluoto, Jouni; Raivonen, Maarit; Backman, Leif; Laine, Marko; Makela, Jarmo; Peltola, Olli; Vesala, Timo; Aalto, Tuula

    2018-03-01

    Estimating methane (CH4) emissions from natural wetlands is complex, and the estimates contain large uncertainties. The models used for the task are typically heavily parameterized and the parameter values are not well known. In this study, we perform a Bayesian model calibration for a new wetland CH4 emission model to improve the quality of the predictions and to understand the limitations of such models.The detailed process model that we analyze contains descriptions for CH4 production from anaerobic respiration, CH4 oxidation, and gas transportation by diffusion, ebullition, and the aerenchyma cells of vascular plants. The processes are controlled by several tunable parameters. We use a hierarchical statistical model to describe the parameters and obtain the posterior distributions of the parameters and uncertainties in the processes with adaptive Markov chain Monte Carlo (MCMC), importance resampling, and time series analysis techniques. For the estimation, the analysis utilizes measurement data from the Siikaneva flux measurement site in southern Finland. The uncertainties related to the parameters and the modeled processes are described quantitatively. At the process level, the flux measurement data are able to constrain the CH4 production processes, methane oxidation, and the different gas transport processes. The posterior covariance structures explain how the parameters and the processes are related. Additionally, the flux and flux component uncertainties are analyzed both at the annual and daily levels. The parameter posterior densities obtained provide information regarding importance of the different processes, which is also useful for development of wetland methane emission models other than the square root HelsinkI Model of MEthane buiLd-up and emIssion for peatlands (sqHIMMELI). The hierarchical modeling allows us to assess the effects of some of the parameters on an annual basis. The results of the calibration and the cross validation suggest that

  19. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  20. Hierarchical Bayesian models to assess between- and within-batch variability of pathogen contamination in food.

    Science.gov (United States)

    Commeau, Natalie; Cornu, Marie; Albert, Isabelle; Denis, Jean-Baptiste; Parent, Eric

    2012-03-01

    Assessing within-batch and between-batch variability is of major interest for risk assessors and risk managers in the context of microbiological contamination of food. For example, the ratio between the within-batch variability and the between-batch variability has a large impact on the results of a sampling plan. Here, we designed hierarchical Bayesian models to represent such variability. Compatible priors were built mathematically to obtain sound model comparisons. A numeric criterion is proposed to assess the contamination structure comparing the ability of the models to replicate grouped data at the batch level using a posterior predictive loss approach. Models were applied to two case studies: contamination by Listeria monocytogenes of pork breast used to produce diced bacon and contamination by the same microorganism on cold smoked salmon at the end of the process. In the first case study, a contamination structure clearly exists and is located at the batch level, that is, between batches variability is relatively strong, whereas in the second a structure also exists but is less marked. © 2012 Society for Risk Analysis.

  1. Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model

    KAUST Repository

    Mondal, Anirban

    2014-07-03

    We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.

  2. Comparison of Extreme Precipitation Return Levels using Spatial Bayesian Hierarchical Modeling versus Regional Frequency Analysis

    Science.gov (United States)

    Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.

    2017-12-01

    We compare gridded extreme precipitation return levels obtained using spatial Bayesian hierarchical modeling (BHM) with their respective counterparts from a traditional regional frequency analysis (RFA) using the same set of extreme precipitation data. Our study area is the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two ­thirds of Oregon's population and 20 of the 25 most populous cities in the state. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams and extreme precipitation estimates are required to support risk­ informed hydrologic analyses as part of the USACE Dam Safety Program. Our intent is to profile for the USACE an alternate methodology to an RFA that was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. We analyze 24-hour annual precipitation maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme precipitation by return level. Our BHM modeling analysis involved application of leave-one-out cross validation (LOO-CV), which not only supported model selection but also a comprehensive assessment of location specific model performance. The LOO-CV results will provide a basis for the BHM RFA comparison.

  3. TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model

    Science.gov (United States)

    Meurice, Y.

    2007-06-01

    We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).

  4. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yiming Yan

    2017-01-01

    Full Text Available In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM, which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.

  5. A hierarchical model for structure learning based on the physiological characteristics of neurons

    Institute of Scientific and Technical Information of China (English)

    WEI Hui

    2007-01-01

    Almost all applications of Artificial Neural Networks (ANNs) depend mainly on their memory ability.The characteristics of typical ANN models are fixed connections,with evolved weights,globalized representations,and globalized optimizations,all based on a mathematical approach.This makes those models to be deficient in robustness,efficiency of learning,capacity,anti-jamming between training sets,and correlativity of samples,etc.In this paper,we attempt to address these problems by adopting the characteristics of biological neurons in morphology and signal processing.A hierarchical neural network was designed and realized to implement structure learning and representations based on connected structures.The basic characteristics of this model are localized and random connections,field limitations of neuron fan-in and fan-out,dynamic behavior of neurons,and samples represented through different sub-circuits of neurons specialized into different response patterns.At the end of this paper,some important aspects of error correction,capacity,learning efficiency,and soundness of structural representation are analyzed theoretically.This paper has demonstrated the feasibility and advantages of structure learning and representation.This model can serve as a fundamental element of cognitive systems such as perception and associative memory.Key-words structure learning,representation,associative memory,computational neuroscience

  6. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework.

    Science.gov (United States)

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-06-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd.

  7. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework†

    Science.gov (United States)

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-01-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd. PMID:25505370

  8. Benefits of Applying Hierarchical Models to the Empirical Green's Function Approach

    Science.gov (United States)

    Denolle, M.; Van Houtte, C.

    2017-12-01

    Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study improves upon these existing methods, and shows that the fitting method may explain some of the discrepancy. In particular, Bayesian hierarchical modelling is shown to be a method that can reduce bias, better quantify uncertainties and allow additional effects to be resolved. The method is applied to the Mw7.1 Kumamoto, Japan earthquake, and other global, moderate-magnitude, strike-slip earthquakes between Mw5 and Mw7.5. It is shown that the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be reliably retrieved without overfitting the data. Additionally, it is shown that methods commonly used to calculate corner frequencies can give substantial biases. In particular, if fc were calculated for the Kumamoto earthquake using a model with a falloff rate fixed at 2 instead of the best fit 1.6, the obtained fc would be as large as twice its realistic value. The reliable retrieval of the falloff rate allows deeper examination of this parameter for a suite of global, strike-slip earthquakes, and its scaling with magnitude. The earthquake sequences considered in this study are from Japan, New Zealand, Haiti and California.

  9. A Bayesian hierarchical model with novel prior specifications for estimating HIV testing rates.

    Science.gov (United States)

    An, Qian; Kang, Jian; Song, Ruiguang; Hall, H Irene

    2016-04-30

    Human immunodeficiency virus (HIV) infection is a severe infectious disease actively spreading globally, and acquired immunodeficiency syndrome (AIDS) is an advanced stage of HIV infection. The HIV testing rate, that is, the probability that an AIDS-free HIV infected person seeks a test for HIV during a particular time interval, given no previous positive test has been obtained prior to the start of the time, is an important parameter for public health. In this paper, we propose a Bayesian hierarchical model with two levels of hierarchy to estimate the HIV testing rate using annual AIDS and AIDS-free HIV diagnoses data. At level one, we model the latent number of HIV infections for each year using a Poisson distribution with the intensity parameter representing the HIV incidence rate. At level two, the annual numbers of AIDS and AIDS-free HIV diagnosed cases and all undiagnosed cases stratified by the HIV infections at different years are modeled using a multinomial distribution with parameters including the HIV testing rate. We propose a new class of priors for the HIV incidence rate and HIV testing rate taking into account the temporal dependence of these parameters to improve the estimation accuracy. We develop an efficient posterior computation algorithm based on the adaptive rejection metropolis sampling technique. We demonstrate our model using simulation studies and the analysis of the national HIV surveillance data in the USA. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Exploring the Effects of Congruence and Holland's Personality Codes on Job Satisfaction: An Application of Hierarchical Linear Modeling Techniques

    Science.gov (United States)

    Ishitani, Terry T.

    2010-01-01

    This study applied hierarchical linear modeling to investigate the effect of congruence on intrinsic and extrinsic aspects of job satisfaction. Particular focus was given to differences in job satisfaction by gender and by Holland's first-letter codes. The study sample included nationally represented 1462 female and 1280 male college graduates who…

  11. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.

    Science.gov (United States)

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A; Valdés-Hernández, Pedro A; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods

  12. Factors associated with leisure time physical inactivity in black individuals: hierarchical model

    Directory of Open Access Journals (Sweden)

    Francisco José Gondim Pitanga

    2014-09-01

    Full Text Available Background. A number of studies have shown that the black population exhibits higher levels of leisure-time physical inactivity (LTPI, but few have investigated the factors associated with this behavior.Objective. The aim of this study was to analyze associated factors and the explanatory model proposed for LTPI in black adults.Methods. The design was cross-sectional with a sample of 2,305 adults from 20–96 years of age, 902 (39.1% men, living in the city of Salvador, Brazil. LTPI was analyzed using the International Physical Activity Questionnaire (IPAQ. A hierarchical model was built with the possible factors associated with LTPI, distributed in distal (age and sex, intermediate 1 (socioeconomic status, educational level and marital status, intermediate 2 (perception of safety/violence in the neighborhood, racial discrimination in private settings and physical activity at work and proximal blocks (smoking and participation in Carnival block rehearsals. We estimated crude and adjusted odds ratio (OR using logistic regression.Results. The variables inversely associated with LTPI were male gender, socioeconomic status and secondary/university education, although the proposed model explains only 4.2% of LTPI.Conclusions. We conclude that male gender, higher education and socioeconomic status can reduce LTPI in black adults.

  13. An Integrated Model Based on a Hierarchical Indices System for Monitoring and Evaluating Urban Sustainability

    Directory of Open Access Journals (Sweden)

    Xulin Guo

    2013-02-01

    Full Text Available Over 50% of world’s population presently resides in cities, and this number is expected to rise to ~70% by 2050. Increasing urbanization problems including population growth, urban sprawl, land use change, unemployment, and environmental degradation, have markedly impacted urban residents’ Quality of Life (QOL. Therefore, urban sustainability and its measurement have gained increasing attention from administrators, urban planners, and scientific communities throughout the world with respect to improving urban development and human well-being. The widely accepted definition of urban sustainability emphasizes the balancing development of three primary domains (urban economy, society, and environment. This article attempts to improve the aforementioned definition of urban sustainability by incorporating a human well-being dimension. Major problems identified in existing urban sustainability indicator (USI models include a weak integration of potential indicators, poor measurement and quantification, and insufficient spatial-temporal analysis. To tackle these challenges an integrated USI model based on a hierarchical indices system was established for monitoring and evaluating urban sustainability. This model can be performed by quantifying indicators using both traditional statistical approaches and advanced geomatic techniques based on satellite imagery and census data, which aims to provide a theoretical basis for a comprehensive assessment of urban sustainability from a spatial-temporal perspective.

  14. A bayesian hierarchical model for classification with selection of functional predictors.

    Science.gov (United States)

    Zhu, Hongxiao; Vannucci, Marina; Cox, Dennis D

    2010-06-01

    In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample-related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.

  15. Teacher characteristics and student performance: An analysis using hierarchical linear modelling

    Directory of Open Access Journals (Sweden)

    Paula Armstrong

    2015-12-01

    Full Text Available This research makes use of hierarchical linear modelling to investigate which teacher characteristics are significantly associated with student performance. Using data from the SACMEQ III study of 2007, an interesting and potentially important finding is that younger teachers are better able to improve the mean mathematics performance of their students. Furthermore, younger teachers themselves perform better on subject tests than do their older counterparts. Identical models are run for Sub Saharan countries bordering on South Africa, as well for Kenya and the strong relationship between teacher age and student performance is not observed. Similarly, the model is run for South Africa using data from SACMEQ II (conducted in 2002 and the relationship between teacher age and student performance is also not observed. It must be noted that South African teachers were not tested in SACMEQ II so it was not possible to observe differences in subject knowledge amongst teachers in different cohorts and it was not possible to control for teachers’ level of subject knowledge when observing the relationship between teacher age and student performance. Changes in teacher education in the late 1990s and early 2000s may explain the differences in the performance of younger teachers relative to their older counterparts observed in the later dataset.

  16. A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins

    Science.gov (United States)

    Gronewold, A.; Alameddine, I.; Anderson, R. M.

    2009-12-01

    Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United

  17. Fear of Failure, 2x2 Achievement Goal and Self-Handicapping: An Examination of the Hierarchical Model of Achievement Motivation in Physical Education

    Science.gov (United States)

    Chen, Lung Hung; Wu, Chia-Huei; Kee, Ying Hwa; Lin, Meng-Shyan; Shui, Shang-Hsueh

    2009-01-01

    In this study, the hierarchical model of achievement motivation [Elliot, A. J. (1997). Integrating the "classic" and "contemporary" approaches to achievement motivation: A hierarchical model of approach and avoidance achievement motivation. In P. Pintrich & M. Maehr (Eds.), "Advances in motivation and achievement"…

  18. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    Science.gov (United States)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling

  19. Hierarchical Model for the Similarity Measurement of a Complex Holed-Region Entity Scene

    Directory of Open Access Journals (Sweden)

    Zhanlong Chen

    2017-11-01

    Full Text Available Complex multi-holed-region entity scenes (i.e., sets of random region with holes are common in spatial database systems, spatial query languages, and the Geographic Information System (GIS. A multi-holed-region (region with an arbitrary number of holes is an abstraction of the real world that primarily represents geographic objects that have more than one interior boundary, such as areas that contain several lakes or lakes that contain islands. When the similarity of the two complex holed-region entity scenes is measured, the number of regions in the scenes and the number of holes in the regions are usually different between the two scenes, which complicates the matching relationships of holed-regions and holes. The aim of this research is to develop several holed-region similarity metrics and propose a hierarchical model to measure comprehensively the similarity between two complex holed-region entity scenes. The procedure first divides a complex entity scene into three layers: a complex scene, a micro-spatial-scene, and a simple entity (hole. The relationships between the adjacent layers are considered to be sets of relationships, and each level of similarity measurements is nested with the adjacent one. Next, entity matching is performed from top to bottom, while the similarity results are calculated from local to global. In addition, we utilize position graphs to describe the distribution of the holed-regions and subsequently describe the directions between the holes using a feature matrix. A case study that uses the Great Lakes in North America in 1986 and 2015 as experimental data illustrates the entire similarity measurement process between two complex holed-region entity scenes. The experimental results show that the hierarchical model accounts for the relationships of the different layers in the entire complex holed-region entity scene. The model can effectively calculate the similarity of complex holed-region entity scenes, even if the

  20. Structural Sparse Tracking

    KAUST Repository

    Zhang, Tianzhu

    2015-06-01

    Sparse representation has been applied to visual tracking by finding the best target candidate with minimal reconstruction error by use of target templates. However, most sparse representation based trackers only consider holistic or local representations and do not make full use of the intrinsic structure among and inside target candidates, thereby making the representation less effective when similar objects appear or under occlusion. In this paper, we propose a novel Structural Sparse Tracking (SST) algorithm, which not only exploits the intrinsic relationship among target candidates and their local patches to learn their sparse representations jointly, but also preserves the spatial layout structure among the local patches inside each target candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs favorably against several state-of-the-art methods.

  1. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    Science.gov (United States)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  2. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  3. Enriching the hierarchical model of achievement motivation: autonomous and controlling reasons underlying achievement goals.

    Science.gov (United States)

    Michou, Aikaterini; Vansteenkiste, Maarten; Mouratidis, Athanasios; Lens, Willy

    2014-12-01

    The hierarchical model of achievement motivation presumes that achievement goals channel the achievement motives of need for achievement and fear of failure towards motivational outcomes. Yet, less is known whether autonomous and controlling reasons underlying the pursuit of achievement goals can serve as additional pathways between achievement motives and outcomes. We tested whether mastery approach, performance approach, and performance avoidance goals and their underlying autonomous and controlling reasons would jointly explain the relation between achievement motives (i.e., fear of failure and need for achievement) and learning strategies (Study 1). Additionally, we examined whether the autonomous and controlling reasons underlying learners' dominant achievement goal would account for the link between achievement motives and the educational outcomes of learning strategies and cheating (Study 2). Six hundred and six Greek adolescent students (Mage = 15.05, SD = 1.43) and 435 university students (Mage M = 20.51, SD = 2.80) participated in studies 1 and 2, respectively. In both studies, a correlational design was used and the hypotheses were tested via path modelling. Autonomous and controlling reasons underlying the pursuit of achievement goals mediated, respectively, the relation of need for achievement and fear of failure to aspects of learning outcomes. Autonomous and controlling reasons underlying achievement goals could further explain learners' functioning in achievement settings. © 2014 The British Psychological Society.

  4. The SIS Model of Epidemic Spreading in a Hierarchical Social Network

    International Nuclear Information System (INIS)

    Grabowski, A.; Kosinski, R.A.

    2005-01-01

    The phenomenon of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The SIS model with temporal immunity to a disease and a time of incubation is used. In our model spatial localization of individuals belonging to different social groups, effectiveness of different interpersonal interactions and the mobility of a contemporary community are taken into account. The structure of interpersonal connections is based on a scale-free network. The influence of the structure of the social network on typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, is discussed. The probability that endemic state occurs is also calculated. Surprisingly it occurs, that less contagious diseases has greater chance to survive. The influence of preventive vaccinations on the spreading process is investigated and critical range of vaccinations that is sufficient for the suppression of an epidemic is calculated. Our results of numerical calculations are compared with the solutions of the master equation for the spreading process, and good agreement is found. (author)

  5. Motivation, Classroom Environment, and Learning in Introductory Geology: A Hierarchical Linear Model

    Science.gov (United States)

    Gilbert, L. A.; Hilpert, J. C.; Van Der Hoeven Kraft, K.; Budd, D.; Jones, M. H.; Matheney, R.; Mcconnell, D. A.; Perkins, D.; Stempien, J. A.; Wirth, K. R.

    2013-12-01

    Prior research has indicated that highly motivated students perform better and that learning increases in innovative, reformed classrooms, but untangling the student effects from the instructor effects is essential to understanding how to best support student learning. Using a hierarchical linear model, we examine these effects separately and jointly. We use data from nearly 2,000 undergraduate students surveyed by the NSF-funded GARNET (Geoscience Affective Research NETwork) project in 65 different introductory geology classes at research universities, public masters-granting universities, liberal arts colleges and community colleges across the US. Student level effects were measured as increases in expectancy and self-regulation using the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich et al., 1991). Instructor level effects were measured using the Reformed Teaching Observation Protocol, (RTOP; Sawada et al., 2000), with higher RTOP scores indicating a more reformed, student-centered classroom environment. Learning was measured by learning gains on a Geology Concept Inventory (GCI; Libarkin and Anderson, 2005) and normalized final course grade. The hierarchical linear model yielded significant results at several levels. At the student level, increases in expectancy and self-regulation are significantly and positively related to higher grades regardless of instructor; the higher the increase, the higher the grade. At the instructor level, RTOP scores are positively related to normalized average GCI learning gains. The higher the RTOP score, the higher the average class GCI learning gains. Across both levels, average class GCI learning gains are significantly and positively related to student grades; the higher the GCI learning gain, the higher the grade. Further, the RTOP scores are significantly and negatively related to the relationship between expectancy and course grade. The lower the RTOP score, the higher the correlation between change in

  6. Hierarchical modeling of systems with similar components: A framework for adaptive monitoring and control

    International Nuclear Information System (INIS)

    Memarzadeh, Milad; Pozzi, Matteo; Kolter, J. Zico

    2016-01-01

    System management includes the selection of maintenance actions depending on the available observations: when a system is made up by components known to be similar, data collected on one is also relevant for the management of others. This is typically the case of wind farms, which are made up by similar turbines. Optimal management of wind farms is an important task due to high cost of turbines' operation and maintenance: in this context, we recently proposed a method for planning and learning at system-level, called PLUS, built upon the Partially Observable Markov Decision Process (POMDP) framework, which treats transition and emission probabilities as random variables, and is therefore suitable for including model uncertainty. PLUS models the components as independent or identical. In this paper, we extend that formulation, allowing for a weaker similarity among components. The proposed approach, called Multiple Uncertain POMDP (MU-POMDP), models the components as POMDPs, and assumes the corresponding parameters as dependent random variables. Through this framework, we can calibrate specific degradation and emission models for each component while, at the same time, process observations at system-level. We compare the performance of the proposed MU-POMDP with PLUS, and discuss its potential and computational complexity. - Highlights: • A computational framework is proposed for adaptive monitoring and control. • It adopts a scheme based on Markov Chain Monte Carlo for inference and learning. • Hierarchical Bayesian modeling is used to allow a system-level flow of information. • Results show potential of significant savings in management of wind farms.

  7. Use of hierarchical models to analyze European trends in congenital anomaly prevalence

    DEFF Research Database (Denmark)

    Cavadino, Alana; Prieto-Merino, David; Addor, Marie-Claude

    2016-01-01

    BACKGROUND: Surveillance of congenital anomalies is important to identify potential teratogens. Despite known associations between different anomalies, current surveillance methods examine trends within each subgroup separately. We aimed to evaluate whether hierarchical statistical methods that c...

  8. A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System

    Science.gov (United States)

    Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.

    2005-12-01

    Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features

  9. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty: STRUCTURAL UNCERTAINTY DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Moges, Edom [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Demissie, Yonas [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Li, Hong-Yi [Hydrology Group, Pacific Northwest National Laboratory, Richland Washington USA

    2016-04-01

    In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integrate expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.

  10. Sparse PCA with Oracle Property.

    Science.gov (United States)

    Gu, Quanquan; Wang, Zhaoran; Liu, Han

    In this paper, we study the estimation of the k -dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank- k , and attains a [Formula: see text] statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets.

  11. Precipitation Data Merging over Mountainous Areas Using Satellite Estimates and Sparse Gauge Observations (PDMMA-USESGO) for Hydrological Modeling — A Case Study over the Tibetan Plateau

    Science.gov (United States)

    Yang, Z.; Hsu, K. L.; Sorooshian, S.; Xu, X.

    2017-12-01

    Precipitation in mountain regions generally occurs with high-frequency-intensity, whereas it is not well-captured by sparsely distributed rain-gauges imposing a great challenge on water management. Satellite-based Precipitation Estimation (SPE) provides global high-resolution alternative data for hydro-climatic studies, but are subject to considerable biases. In this study, a model named PDMMA-USESGO for Precipitation Data Merging over Mountainous Areas Using Satellite Estimates and Sparse Gauge Observations is developed to support precipitation mapping and hydrological modeling in mountainous catchments. The PDMMA-USESGO framework includes two calculating steps—adjusting SPE biases and merging satellite-gauge estimates—using the quantile mapping approach, a two-dimensional Gaussian weighting scheme (considering elevation effect), and an inverse root mean square error weighting method. The model is applied and evaluated over the Tibetan Plateau (TP) with the PERSIANN-CCS precipitation retrievals (daily, 0.04°×0.04°) and sparse observations from 89 gauges, for the 11-yr period of 2003-2013. To assess the data merging effects on streamflow modeling, a hydrological evaluation is conducted over a watershed in southeast TP based on the Soil and Water Assessment Tool (SWAT). Evaluation results indicate effectiveness of the model in generating high-resolution-accuracy precipitation estimates over mountainous terrain, with the merged estimates (Mer-SG) presenting consistently improved correlation coefficients, root mean square errors and absolute mean biases from original satellite estimates (Ori-CCS). It is found the Mer-SG forced streamflow simulations exhibit great improvements from those simulations using Ori-CCS, with coefficient of determination (R2) and Nash-Sutcliffe efficiency reach to 0.8 and 0.65, respectively. The presented model and case study serve as valuable references for the hydro-climatic applications using remote sensing-gauge information in

  12. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    KAUST Repository

    Sepú lveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G

    2013-01-01

    Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.

  13. Clarifying the Hubble constant tension with a Bayesian hierarchical model of the local distance ladder

    Science.gov (United States)

    Feeney, Stephen M.; Mortlock, Daniel J.; Dalmasso, Niccolò

    2018-05-01

    Estimates of the Hubble constant, H0, from the local distance ladder and from the cosmic microwave background (CMB) are discrepant at the ˜3σ level, indicating a potential issue with the standard Λ cold dark matter (ΛCDM) cosmology. A probabilistic (i.e. Bayesian) interpretation of this tension requires a model comparison calculation, which in turn depends strongly on the tails of the H0 likelihoods. Evaluating the tails of the local H0 likelihood requires the use of non-Gaussian distributions to faithfully represent anchor likelihoods and outliers, and simultaneous fitting of the complete distance-ladder data set to ensure correct uncertainty propagation. We have hence developed a Bayesian hierarchical model of the full distance ladder that does not rely on Gaussian distributions and allows outliers to be modelled without arbitrary data cuts. Marginalizing over the full ˜3000-parameter joint posterior distribution, we find H0 = (72.72 ± 1.67) km s-1 Mpc-1 when applied to the outlier-cleaned Riess et al. data, and (73.15 ± 1.78) km s-1 Mpc-1 with supernova outliers reintroduced (the pre-cut Cepheid data set is not available). Using our precise evaluation of the tails of the H0 likelihood, we apply Bayesian model comparison to assess the evidence for deviation from ΛCDM given the distance-ladder and CMB data. The odds against ΛCDM are at worst ˜10:1 when considering the Planck 2015 XIII data, regardless of outlier treatment, considerably less dramatic than naïvely implied by the 2.8σ discrepancy. These odds become ˜60:1 when an approximation to the more-discrepant Planck Intermediate XLVI likelihood is included.

  14. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data.

    Science.gov (United States)

    Sepúlveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G

    2013-02-26

    The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data.

  15. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    KAUST Repository

    Sepúlveda, Nuno

    2013-02-26

    Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.

  16. Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication.

    Science.gov (United States)

    Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia

    2016-10-01

    Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model

    Science.gov (United States)

    Mukhopadhyay, S.; Arumugam, S.

    2017-12-01

    Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior

  18. Predictors of Drinking Water Boiling and Bottled Water Consumption in Rural China: A Hierarchical Modeling Approach.

    Science.gov (United States)

    Cohen, Alasdair; Zhang, Qi; Luo, Qing; Tao, Yong; Colford, John M; Ray, Isha

    2017-06-20

    Approximately two billion people drink unsafe water. Boiling is the most commonly used household water treatment (HWT) method globally and in China. HWT can make water safer, but sustained adoption is rare and bottled water consumption is growing. To successfully promote HWT, an understanding of associated socioeconomic factors is critical. We collected survey data and water samples from 450 rural households in Guangxi Province, China. Covariates were grouped into blocks to hierarchically construct modified Poisson models and estimate risk ratios (RR) associated with boiling methods, bottled water, and untreated water. Female-headed households were most likely to boil (RR = 1.36, p water, or use electric kettles if they boiled. Our findings show that boiling is not an undifferentiated practice, but one with different methods of varying effectiveness, environmental impact, and adoption across socioeconomic strata. Our results can inform programs to promote safer and more efficient boiling using electric kettles, and suggest that if rural China's economy continues to grow then bottled water use will increase.

  19. Modelling the dynamics of an experimental host-pathogen microcosm within a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    David Lunn

    Full Text Available The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be combined to infer variations in the parasite's basic reproductive ratio across experimental groups, enabling us to make predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to be used more widely in experimental ecology.

  20. Determination of a Differential Item Functioning Procedure Using the Hierarchical Generalized Linear Model

    Directory of Open Access Journals (Sweden)

    Tülin Acar

    2012-01-01

    Full Text Available The aim of this research is to compare the result of the differential item functioning (DIF determining with hierarchical generalized linear model (HGLM technique and the results of the DIF determining with logistic regression (LR and item response theory–likelihood ratio (IRT-LR techniques on the test items. For this reason, first in this research, it is determined whether the students encounter DIF with HGLM, LR, and IRT-LR techniques according to socioeconomic status (SES, in the Turkish, Social Sciences, and Science subtest items of the Secondary School Institutions Examination. When inspecting the correlations among the techniques in terms of determining the items having DIF, it was discovered that there was significant correlation between the results of IRT-LR and LR techniques in all subtests; merely in Science subtest, the results of the correlation between HGLM and IRT-LR techniques were found significant. DIF applications can be made on test items with other DIF analysis techniques that were not taken to the scope of this research. The analysis results, which were determined by using the DIF techniques in different sample sizes, can be compared.

  1. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    Science.gov (United States)

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-12-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Subjective value of risky foods for individual domestic chicks: a hierarchical Bayesian model.

    Science.gov (United States)

    Kawamori, Ai; Matsushima, Toshiya

    2010-05-01

    For animals to decide which prey to attack, the gain and delay of the food item must be integrated in a value function. However, the subjective value is not obtained by expected profitability when it is accompanied by risk. To estimate the subjective value, we examined choices in a cross-shaped maze with two colored feeders in domestic chicks. When tested by a reversal in food amount or delay, chicks changed choices similarly in both conditions (experiment 1). We therefore examined risk sensitivity for amount and delay (experiment 2) by supplying one feeder with food of fixed profitability and the alternative feeder with high- or low-profitability food at equal probability. Profitability varied in amount (groups 1 and 2 at high and low variance) or in delay (group 3). To find the equilibrium, the amount (groups 1 and 2) or delay (group 3) of the food in the fixed feeder was adjusted in a total of 18 blocks. The Markov chain Monte Carlo method was applied to a hierarchical Bayesian model to estimate the subjective value. Chicks undervalued the variable feeder in group 1 and were indifferent in group 2 but overvalued the variable feeder in group 3 at a population level. Re-examination without the titration procedure (experiment 3) suggested that the subjective value was not absolute for each option. When the delay was varied, the variable option was often given a paradoxically high value depending on fixed alternative. Therefore, the basic assumption of the uniquely determined value function might be questioned.

  3. Factors influencing the occupational injuries of physical therapists in Taiwan: A hierarchical linear model approach.

    Science.gov (United States)

    Tao, Yu-Hui; Wu, Yu-Lung; Huang, Wan-Yun

    2017-01-01

    The evidence literature suggests that physical therapy practitioners are subjected to a high probability of acquiring work-related injuries, but only a few studies have specifically investigated Taiwanese physical therapy practitioners. This study was conducted to determine the relationships among individual and group hospital-level factors that contribute to the medical expenses for the occupational injuries of physical therapy practitioners in Taiwan. Physical therapy practitioners in Taiwan with occupational injuries were selected from the 2013 National Health Insurance Research Databases (NHIRD). The age, gender, job title, hospitals attributes, and outpatient data of physical therapy practitioners who sustained an occupational injury in 2013 were obtained with SAS 9.3. SPSS 20.0 and HLM 7.01 were used to conduct descriptive and hierarchical linear model analyses, respectively. The job title of physical therapy practitioners at the individual level and the hospital type at the group level exert positive effects on per person medical expenses. Hospital hierarchy moderates the individual-level relationships of age and job title with the per person medical expenses. Considering that age, job title, and hospital hierarchy affect medical expenses for the occupational injuries of physical therapy practitioners, we suggest strengthening related safety education and training and elevating the self-awareness of the risk of occupational injuries of physical therapy practitioners to reduce and prevent the occurrence of such injuries.

  4. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    International Nuclear Information System (INIS)

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-01-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. - Highlights: • It is assessed how the variability of indoor radon concentration depends on buildings and lithologies. • The lithological component has been found less relevant than the building one. • Radon-prone lithologies have been identified. • The effect of the floor where the room is located has been estimated. • Indoor radon concentration have been predicted for different dwelling typologies

  5. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    Science.gov (United States)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  6. Assessing exposure to violence using multiple informants: application of hierarchical linear model.

    Science.gov (United States)

    Kuo, M; Mohler, B; Raudenbush, S L; Earls, F J

    2000-11-01

    The present study assesses the effects of demographic risk factors on children's exposure to violence (ETV) and how these effects vary by informants. Data on exposure to violence of 9-, 12-, and 15-year-olds were collected from both child participants (N = 1880) and parents (N = 1776), as part of the assessment of the Project on Human Development in Chicago Neighborhoods (PHDCN). A two-level hierarchical linear model (HLM) with multivariate outcomes was employed to analyze information obtained from these two different groups of informants. The findings indicate that parents generally report less ETV than do their children and that associations of age, gender, and parent education with ETV are stronger in the self-reports than in the parent reports. The findings support a multivariate approach when information obtained from different sources is being integrated. The application of HLM allows an assessment of interactions between risk factors and informants and uses all available data, including data from one informant when data from the other informant is missing.

  7. A Bayesian Hierarchical Model for Glacial Dynamics Based on the Shallow Ice Approximation and its Evaluation Using Analytical Solutions

    Science.gov (United States)

    Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur

    2018-03-01

    Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.

  8. Clustering and Bayesian hierarchical modeling for the definition of informative prior distributions in hydrogeology

    Science.gov (United States)

    Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.

    2017-12-01

    In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.

  9. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...... is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...

  10. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model

    International Nuclear Information System (INIS)

    Deman, G.; Konakli, K.; Sudret, B.; Kerrou, J.; Perrochet, P.; Benabderrahmane, H.

    2016-01-01

    The study makes use of polynomial chaos expansions to compute Sobol' indices within the frame of a global sensitivity analysis of hydro-dispersive parameters in a simplified vertical cross-section of a segment of the subsurface of the Paris Basin. Applying conservative ranges, the uncertainty in 78 input variables is propagated upon the mean lifetime expectancy of water molecules departing from a specific location within a highly confining layer situated in the middle of the model domain. Lifetime expectancy is a hydrogeological performance measure pertinent to safety analysis with respect to subsurface contaminants, such as radionuclides. The sensitivity analysis indicates that the variability in the mean lifetime expectancy can be sufficiently explained by the uncertainty in the petrofacies, i.e. the sets of porosity and hydraulic conductivity, of only a few layers of the model. The obtained results provide guidance regarding the uncertainty modeling in future investigations employing detailed numerical models of the subsurface of the Paris Basin. Moreover, the study demonstrates the high efficiency of sparse polynomial chaos expansions in computing Sobol' indices for high-dimensional models. - Highlights: • Global sensitivity analysis of a 2D 15-layer groundwater flow model is conducted. • A high-dimensional random input comprising 78 parameters is considered. • The variability in the mean lifetime expectancy for the central layer is examined. • Sparse polynomial chaos expansions are used to compute Sobol' sensitivity indices. • The petrofacies of a few layers can sufficiently explain the response variance.

  11. Sparse structure regularized ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-04-17

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.

  12. Structural Sparse Tracking

    KAUST Repository

    Zhang, Tianzhu; Yang, Ming-Hsuan; Ahuja, Narendra; Ghanem, Bernard; Yan, Shuicheng; Xu, Changsheng; Liu, Si

    2015-01-01

    candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs

  13. Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models

    Science.gov (United States)

    Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas

    2017-02-01

    A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally

  14. A hierarchical spatial model of avian abundance with application to Cerulean Warblers

    Science.gov (United States)

    Thogmartin, Wayne E.; Sauer, John R.; Knutson, Melinda G.

    2004-01-01

    Surveys collecting count data are the primary means by which abundance is indexed for birds. These counts are confounded, however, by nuisance effects including observer effects and spatial correlation between counts. Current methods poorly accommodate both observer and spatial effects because modeling these spatially autocorrelated counts within a hierarchical framework is not practical using standard statistical approaches. We propose a Bayesian approach to this problem and provide as an example of its implementation a spatial model of predicted abundance for the Cerulean Warbler (Dendroica cerulea) in the Prairie-Hardwood Transition of the upper midwestern United States. We used an overdispersed Poisson regression with fixed and random effects, fitted by Markov chain Monte Carlo methods. We used 21 years of North American Breeding Bird Survey counts as the response in a loglinear function of explanatory variables describing habitat, spatial relatedness, year effects, and observer effects. The model included a conditional autoregressive term representing potential correlation between adjacent route counts. Categories of explanatory habitat variables in the model included land cover composition and configuration, climate, terrain heterogeneity, and human influence. The inherent hierarchy in the model was from counts occurring, in part, as a function of observers within survey routes within years. We found that the percentage of forested wetlands, an index of wetness potential, and an interaction between mean annual precipitation and deciduous forest patch size best described Cerulean Warbler abundance. Based on a map of relative abundance derived from the posterior parameter estimates, we estimated that only 15% of the species' population occurred on federal land, necessitating active engagement of public landowners and state agencies in the conservation of the breeding habitat for this species. Models of this type can be applied to any data in which the response

  15. Visual recognition and inference using dynamic overcomplete sparse learning.

    Science.gov (United States)

    Murray, Joseph F; Kreutz-Delgado, Kenneth

    2007-09-01

    We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.

  16. Type Ia Supernova Light Curve Inference: Hierarchical Models for Nearby SN Ia in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.

    2010-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.

  17. Construction of Hierarchical Models for Fluid Dynamics in Earth and Planetary Sciences : DCMODEL project

    Science.gov (United States)

    Takahashi, Y. O.; Takehiro, S.; Sugiyama, K.; Odaka, M.; Ishiwatari, M.; Sasaki, Y.; Nishizawa, S.; Ishioka, K.; Nakajima, K.; Hayashi, Y.

    2012-12-01

    Toward the understanding of fluid motions of planetary atmospheres and planetary interiors by performing multiple numerical experiments with multiple models, we are now proceeding ``dcmodel project'', where a series of hierarchical numerical models with various complexity is developed and maintained. In ``dcmodel project'', a series of the numerical models are developed taking care of the following points: 1) a common ``style'' of program codes assuring readability of the software, 2) open source codes of the models to the public, 3) scalability of the models assuring execution on various scales of computational resources, 4) stressing the importance of documentation and presenting a method for writing reference manuals. The lineup of the models and utility programs of the project is as follows: Gtool5, ISPACK/SPML, SPMODEL, Deepconv, Dcpam, and Rdoc-f95. In the followings, features of each component are briefly described. Gtool5 (Ishiwatari et al., 2012) is a Fortran90 library, which provides data input/output interfaces and various utilities commonly used in the models of dcmodel project. A self-descriptive data format netCDF is adopted as a IO format of Gtool5. The interfaces of gtool5 library can reduce the number of operation steps for the data IO in the program code of the models compared with the interfaces of the raw netCDF library. Further, by use of gtool5 library, procedures for data IO and addition of metadata for post-processing can be easily implemented in the program codes in a consolidated form independent of the size and complexity of the models. ``ISPACK'' is the spectral transformation library and ``SPML (SPMODEL library)'' (Takehiro et al., 2006) is its wrapper library. Most prominent feature of SPML is a series of array-handling functions with systematic function naming rules, and this enables us to write codes with a form which is easily deduced from the mathematical expressions of the governing equations. ``SPMODEL'' (Takehiro et al., 2006

  18. Monitoring Farmland Loss Caused by Urbanization in Beijing from Modis Time Series Using Hierarchical Hidden Markov Model

    Science.gov (United States)

    Yuan, Y.; Meng, Y.; Chen, Y. X.; Jiang, C.; Yue, A. Z.

    2018-04-01

    In this study, we proposed a method to map urban encroachment onto farmland using satellite image time series (SITS) based on the hierarchical hidden Markov model (HHMM). In this method, the farmland change process is decomposed into three hierarchical levels, i.e., the land cover level, the vegetation phenology level, and the SITS level. Then a three-level HHMM is constructed to model the multi-level semantic structure of farmland change process. Once the HHMM is established, a change from farmland to built-up could be detected by inferring the underlying state sequence that is most likely to generate the input time series. The performance of the method is evaluated on MODIS time series in Beijing. Results on both simulated and real datasets demonstrate that our method improves the change detection accuracy compared with the HMM-based method.

  19. Improved Sparse Channel Estimation for Cooperative Communication Systems

    Directory of Open Access Journals (Sweden)

    Guan Gui

    2012-01-01

    Full Text Available Accurate channel state information (CSI is necessary at receiver for coherent detection in amplify-and-forward (AF cooperative communication systems. To estimate the channel, traditional methods, that is, least squares (LS and least absolute shrinkage and selection operator (LASSO, are based on assumptions of either dense channel or global sparse channel. However, LS-based linear method neglects the inherent sparse structure information while LASSO-based sparse channel method cannot take full advantage of the prior information. Based on the partial sparse assumption of the cooperative channel model, we propose an improved channel estimation method with partial sparse constraint. At first, by using sparse decomposition theory, channel estimation is formulated as a compressive sensing problem. Secondly, the cooperative channel is reconstructed by LASSO with partial sparse constraint. Finally, numerical simulations are carried out to confirm the superiority of proposed methods over global sparse channel estimation methods.

  20. Hierarchical Bayesian Model for Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE)

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Mørup, Morten; Winther, Ole

    2009-01-01

    In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface, and ele......In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface...

  1. Relaxations to Sparse Optimization Problems and Applications

    Science.gov (United States)

    Skau, Erik West

    Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we

  2. Assessing Local Model Adequacy in Bayesian Hierarchical Models Using the Partitioned Deviance Information Criterion

    Science.gov (United States)

    Wheeler, David C.; Hickson, DeMarc A.; Waller, Lance A.

    2010-01-01

    Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model fit and influence for both individual observations and groups of observations in a Bayesian framework. We use visualization of the local DIC and differences in local DIC between models to assist in model selection and to visualize the global and local impacts of adding covariates or model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993 using a range of linear model specifications, from global effects only to spatially varying coefficient models, and a set of covariates related to sexual behavior. Results of applying the diagnostic visualization approach include more refined model selection and greater understanding of the models as applied to the data. PMID:21243121

  3. Comparison of a species distribution model and a process model from a hierarchical perspective to quantify effects of projected climate change on tree species

    Science.gov (United States)

    Jeffrey E. Schneiderman; Hong S. He; Frank R. Thompson; William D. Dijak; Jacob S. Fraser

    2015-01-01

    Tree species distribution and abundance are affected by forces operating across a hierarchy of ecological scales. Process and species distribution models have been developed emphasizing forces at different scales. Understanding model agreement across hierarchical scales provides perspective on prediction uncertainty and ultimately enables policy makers and managers to...

  4. Neighbor-dependent Ramachandran probability distributions of amino acids developed from a hierarchical Dirichlet process model.

    Directory of Open Access Journals (Sweden)

    Daniel Ting

    2010-04-01

    Full Text Available Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1 input data size and criteria for structure inclusion (resolution, R-factor, etc.; 2 filtering of suspect conformations and outliers using B-factors or other features; 3 secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included; 4 the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5 whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp.

  5. Multimethod, multistate Bayesian hierarchical modeling approach for use in regional monitoring of wolves.

    Science.gov (United States)

    Jiménez, José; García, Emilio J; Llaneza, Luis; Palacios, Vicente; González, Luis Mariano; García-Domínguez, Francisco; Múñoz-Igualada, Jaime; López-Bao, José Vicente

    2016-08-01

    In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population

  6. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  7. Enhancing Scalability of Sparse Direct Methods

    International Nuclear Information System (INIS)

    Li, Xiaoye S.; Demmel, James; Grigori, Laura; Gu, Ming; Xia, Jianlin; Jardin, Steve; Sovinec, Carl; Lee, Lie-Quan

    2007-01-01

    TOPS is providing high-performance, scalable sparse direct solvers, which have had significant impacts on the SciDAC applications, including fusion simulation (CEMM), accelerator modeling (COMPASS), as well as many other mission-critical applications in DOE and elsewhere. Our recent developments have been focusing on new techniques to overcome scalability bottleneck of direct methods, in both time and memory. These include parallelizing symbolic analysis phase and developing linear-complexity sparse factorization methods. The new techniques will make sparse direct methods more widely usable in large 3D simulations on highly-parallel petascale computers

  8. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Science.gov (United States)

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  9. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    be obtained. This paper presents a new approach for system modelling under partial (global) information (or the so called Gray-box modelling) that seeks to perserve the benefits of the global as well as local methodologies sithin a unified framework. While the proposed technique relies on local approximations......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality....

  10. A hierarchical Bayesian spatio-temporal model to forecast trapped particle fluxes over the SAA region

    Czech Academy of Sciences Publication Activity Database

    Suparta, W.; Gusrizal, G.; Kudela, Karel; Isa, Z.

    2017-01-01

    Roč. 28, č. 3 (2017), s. 357-370 ISSN 1017-0839 R&D Projects: GA MŠk EF15_003/0000481 Institutional support: RVO:61389005 Keywords : trapped particle * spatio-temporal * hierarchical Bayesian * forecasting Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 0.752, year: 2016

  11. Towards directional assembly of hierarchical structures: aniline oligomers as the model precursors

    Czech Academy of Sciences Publication Activity Database

    Zhao, Y.; Stejskal, Jaroslav; Wang, J.

    2013-01-01

    Roč. 5, č. 7 (2013), s. 2620-2626 ISSN 2040-3364 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : aniline oligomers * hierarchical nanostructures * microflowers Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.739, year: 2013

  12. Reduced-order modeling with sparse polynomial chaos expansion and dimension reduction for evaluating the impact of CO2 and brine leakage on groundwater

    Science.gov (United States)

    Liu, Y.; Zheng, L.; Pau, G. S. H.

    2016-12-01

    A careful assessment of the risk associated with geologic CO2 storage is critical to the deployment of large-scale storage projects. While numerical modeling is an indispensable tool for risk assessment, there has been increasing need in considering and addressing uncertainties in the numerical models. However, uncertainty analyses have been significantly hindered by the computational complexity of the model. As a remedy, reduced-order models (ROM), which serve as computationally efficient surrogates for high-fidelity models (HFM), have been employed. The ROM is constructed at the expense of an initial set of HFM simulations, and afterwards can be relied upon to predict the model output values at minimal cost. The ROM presented here is part of National Risk Assessment Program (NRAP) and intends to predict the water quality change in groundwater in response to hypothetical CO2 and brine leakage. The HFM based on which the ROM is derived is a multiphase flow and reactive transport model, with 3-D heterogeneous flow field and complex chemical reactions including aqueous complexation, mineral dissolution/precipitation, adsorption/desorption via surface complexation and cation exchange. Reduced-order modeling techniques based on polynomial basis expansion, such as polynomial chaos expansion (PCE), are widely used in the literature. However, the accuracy of such ROMs can be affected by the sparse structure of the coefficients of the expansion. Failing to identify vanishing polynomial coefficients introduces unnecessary sampling errors, the accumulation of which deteriorates the accuracy of the ROMs. To address this issue, we treat the PCE as a sparse Bayesian learning (SBL) problem, and the sparsity is obtained by detecting and including only the non-zero PCE coefficients one at a time by iteratively selecting the most contributing coefficients. The computational complexity due to predicting the entire 3-D concentration fields is further mitigated by a dimension

  13. Sparse distributed memory overview

    Science.gov (United States)

    Raugh, Mike

    1990-01-01

    The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.

  14. Sparse Regression by Projection and Sparse Discriminant Analysis

    KAUST Repository

    Qi, Xin

    2015-04-03

    © 2015, © American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high-dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross-validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares, and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared with the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplementary materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.

  15. A new Mumford-Shah total variation minimization based model for sparse-view x-ray computed tomography image reconstruction.

    Science.gov (United States)

    Chen, Bo; Bian, Zhaoying; Zhou, Xiaohui; Chen, Wensheng; Ma, Jianhua; Liang, Zhengrong

    2018-04-12

    Total variation (TV) minimization for the sparse-view x-ray computer tomography (CT) reconstruction has been widely explored to reduce radiation dose. However, due to the piecewise constant assumption for the TV model, the reconstructed images often suffer from over-smoothness on the image edges. To mitigate this drawback of TV minimization, we present a Mumford-Shah total variation (MSTV) minimization algorithm in this paper. The presented MSTV model is derived by integrating TV minimization and Mumford-Shah segmentation. Subsequently, a penalized weighted least-squares (PWLS) scheme with MSTV is developed for the sparse-view CT reconstruction. For simplicity, the proposed algorithm is named as 'PWLS-MSTV.' To evaluate the performance of the present PWLS-MSTV algorithm, both qualitative and quantitative studies were conducted by using a digital XCAT phantom and a physical phantom. Experimental results show that the present PWLS-MSTV algorithm has noticeable gains over the existing algorithms in terms of noise reduction, contrast-to-ratio measure and edge-preservation.

  16. Diffusion Indexes with Sparse Loadings

    DEFF Research Database (Denmark)

    Kristensen, Johannes Tang

    The use of large-dimensional factor models in forecasting has received much attention in the literature with the consensus being that improvements on forecasts can be achieved when comparing with standard models. However, recent contributions in the literature have demonstrated that care needs...... to the problem by using the LASSO as a variable selection method to choose between the possible variables and thus obtain sparse loadings from which factors or diffusion indexes can be formed. This allows us to build a more parsimonious factor model which is better suited for forecasting compared...... it to be an important alternative to PC....

  17. Efficient convolutional sparse coding

    Science.gov (United States)

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  18. Sparse approximation with bases

    CERN Document Server

    2015-01-01

    This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications.  The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...

  19. A Logistic Regression Model with a Hierarchical Random Error Term for Analyzing the Utilization of Public Transport

    Directory of Open Access Journals (Sweden)

    Chong Wei

    2015-01-01

    Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.

  20. Estimating temporal trend in the presence of spatial complexity: a Bayesian hierarchical model for a wetland plant population undergoing restoration.

    Directory of Open Access Journals (Sweden)

    Thomas J Rodhouse

    Full Text Available Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarc