Cerrolaza, Juan J; Villanueva, Arantxa; Cabeza, Rafael
2012-03-01
The accurate segmentation of subcortical brain structures in magnetic resonance (MR) images is of crucial importance in the interdisciplinary field of medical imaging. Although statistical approaches such as active shape models (ASMs) have proven to be particularly useful in the modeling of multiobject shapes, they are inefficient when facing challenging problems. Based on the wavelet transform, the fully generic multiresolution framework presented in this paper allows us to decompose the interobject relationships into different levels of detail. The aim of this hierarchical decomposition is twofold: to efficiently characterize the relationships between objects and their particular localities. Experiments performed on an eight-object structure defined in axial cross sectional MR brain images show that the new hierarchical segmentation significantly improves the accuracy of the segmentation, and while it exhibits a remarkable robustness with respect to the size of the training set.
Yokota, Futoshi; Okada, Toshiyuki; Takao, Masaki; Sugano, Nobuhiko; Tada, Yukio; Tomiyama, Noriyuki; Sato, Yoshinobu
2013-01-01
Segmentation of the femur and pelvis is a prerequisite for patient-specific planning and simulation for hip surgery. Accurate boundary determination of the femoral head and acetabulum is the primary challenge in diseased hip joints because of deformed shapes and extreme narrowness of the joint space. To overcome this difficulty, we investigated a multi-stage method in which the hierarchical hip statistical shape model (SSM) is initially utilized to complete segmentation of the pelvis and distal femur, and then the conditional femoral head SSM is used under the condition that the regions segmented during the previous stage are known. CT data from 100 diseased patients categorized on the basis of their disease type and severity, which included 200 hemi-hips, were used to validate the method, which delivered significantly increased segmentation accuracy for the femoral head.
Statistical theory of hierarchical avalanche ensemble
Olemskoi, Alexander I.
1999-01-01
The statistical ensemble of avalanche intensities is considered to investigate diffusion in ultrametric space of hierarchically subordinated avalanches. The stationary intensity distribution and the steady-state current are obtained. The critical avalanche intensity needed to initiate the global avalanche formation is calculated depending on noise intensity. The large time asymptotic for the probability of the global avalanche appearance is derived.
Hierarchical modelling for the environmental sciences statistical methods and applications
Clark, James S
2006-01-01
New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.
Statistical shape analysis with applications in R
Dryden, Ian L
2016-01-01
A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while reta...
Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures
Ma, Guobin; Xu, Yifei; Wang, Mu
2015-03-01
CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).
Low-Level Hierarchical Multiscale Segmentation Statistics of Natural Images.
Akbas, Emre; Ahuja, Narendra
2014-09-01
This paper is aimed at obtaining the statistics as a probabilistic model pertaining to the geometric, topological and photometric structure of natural images. The image structure is represented by its segmentation graph derived from the low-level hierarchical multiscale image segmentation. We first estimate the statistics of a number of segmentation graph properties from a large number of images. Our estimates confirm some findings reported in the past work, as well as provide some new ones. We then obtain a Markov random field based model of the segmentation graph which subsumes the observed statistics. To demonstrate the value of the model and the statistics, we show how its use as a prior impacts three applications: image classification, semantic image segmentation and object detection.
SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging
Energy Technology Data Exchange (ETDEWEB)
Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S.
2010-05-22
This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.
Statistical shape and appearance models of bones.
Sarkalkan, Nazli; Weinans, Harrie; Zadpoor, Amir A
2014-03-01
When applied to bones, statistical shape models (SSM) and statistical appearance models (SAM) respectively describe the mean shape and mean density distribution of bones within a certain population as well as the main modes of variations of shape and density distribution from their mean values. The availability of this quantitative information regarding the detailed anatomy of bones provides new opportunities for diagnosis, evaluation, and treatment of skeletal diseases. The potential of SSM and SAM has been recently recognized within the bone research community. For example, these models have been applied for studying the effects of bone shape on the etiology of osteoarthritis, improving the accuracy of clinical osteoporotic fracture prediction techniques, design of orthopedic implants, and surgery planning. This paper reviews the main concepts, methods, and applications of SSM and SAM as applied to bone.
Gap Shape Classification using Landscape Indices and Multivariate Statistics
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-11-01
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks’ lambda as satisfactory (p ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap.
Statistical shape and appearance models in osteoporosis.
Castro-Mateos, Isaac; Pozo, Jose M; Cootes, Timothy F; Wilkinson, J Mark; Eastell, Richard; Frangi, Alejandro F
2014-06-01
Statistical models (SMs) of shape (SSM) and appearance (SAM) have been acquiring popularity in medical image analysis since they were introduced in the early 1990s. They have been primarily used for segmentation, but they are also a powerful tool for 3D reconstruction and classification. All these tasks may be required in the osteoporosis domain, where fracture detection and risk estimation are key to reducing the mortality and/or morbidity of this bone disease. In this article, we review the different applications of SSMs and SAMs in the context of osteoporosis, and it concludes with a discussion of their advantages and disadvantages for this application.
A Hierarchical Statistic Methodology for Advanced Memory System Evaluation
Energy Technology Data Exchange (ETDEWEB)
Sun, X.-J.; He, D.; Cameron, K.W.; Luo, Y.
1999-04-12
Advances in technology have resulted in a widening of the gap between computing speed and memory access time. Data access time has become increasingly important for computer system design. Various hierarchical memory architectures have been developed. The performance of these advanced memory systems, however, varies with applications and problem sizes. How to reach an optimal cost/performance design eludes researchers still. In this study, the authors introduce an evaluation methodology for advanced memory systems. This methodology is based on statistical factorial analysis and performance scalability analysis. It is two fold: it first determines the impact of memory systems and application programs toward overall performance; it also identifies the bottleneck in a memory hierarchy and provides cost/performance comparisons via scalability analysis. Different memory systems can be compared in terms of mean performance or scalability over a range of codes and problem sizes. Experimental testing has been performed extensively on the Department of Energy's Accelerated Strategic Computing Initiative (ASCI) machines and benchmarks available at the Los Alamos National Laboratory to validate this newly proposed methodology. Experimental and analytical results show this methodology is simple and effective. It is a practical tool for memory system evaluation and design. Its extension to general architectural evaluation and parallel computer systems are possible and should be further explored.
2011-08-15
small numbers of sensed features associated with locations on the target geometry, although we plan to consider larger point clouds , or even...Correspondence Problem 7. Shapelets 8. Point Clouds 9. 3D Shape Reconstruction and Shape from Motion 10. Probability and Statistics of Shape...ideas can be used to align ladar data to CAD models and to speed various algorithms for matching point clouds to target models. In some cases it can be
Statistical models of shape optimisation and evaluation
Davies, Rhodri; Taylor, Chris
2014-01-01
Deformable shape models have wide application in computer vision and biomedical image analysis. This book addresses a key issue in shape modelling: establishment of a meaningful correspondence between a set of shapes. Full implementation details are provided.
Hierarchical Segmentation Using Tree-Based Shape Spaces.
Xu, Yongchao; Carlinet, Edwin; Geraud, Thierry; Najman, Laurent
2017-03-01
Current trends in image segmentation are to compute a hierarchy of image segmentations from fine to coarse. A classical approach to obtain a single meaningful image partition from a given hierarchy is to cut it in an optimal way, following the seminal approach of the scale-set theory. While interesting in many cases, the resulting segmentation, being a non-horizontal cut, is limited by the structure of the hierarchy. In this paper, we propose a novel approach that acts by transforming an input hierarchy into a new saliency map. It relies on the notion of shape space: a graph representation of a set of regions extracted from the image. Each region is characterized with an attribute describing it. We weigh the boundaries of a subset of meaningful regions (local minima) in the shape space by extinction values based on the attribute. This extinction-based saliency map represents a new hierarchy of segmentations highlighting regions having some specific characteristics. Each threshold of this map represents a segmentation which is generally different from any cut of the original hierarchy. This new approach thus enlarges the set of possible partition results that can be extracted from a given hierarchy. Qualitative and quantitative illustrations demonstrate the usefulness of the proposed method.
Fotouhi, Babak
2013-01-01
The theory of class struggle is modeled within the framework of statistical physics. Dichotomous spin dynamics on a pyramid-shaped hierarchical structure are examined (akin to the Cayley tree). A "head node" is placed at the apex. The system embodies a number of "classes", corresponding to different levels of the hierarchy. A class is comprised of nodes that are equidistant from the head. Weighted links exist between nodes from the same and different classes. We study the effect of these weights on the dynamics. The spin (hereafter, "state") of the head node is fixed, and it imposes its state on the rest of the hierarchy. Necessary conditions so that the classes eventually repudiate or acquiesce in the state imposed by the head node are found. The results show that, to reach unanimity across the hierarchy, it suffices for the head node to make the bottom-most class adopt the same state. Then the rest of the hierarchy will inevitably comply, regardless of the inter/intra class link configurations. Hence the ro...
Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions
Energy Technology Data Exchange (ETDEWEB)
Carpenter, D.C.
1997-04-01
Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions.
Cressie, Noel; Calder, Catherine A; Clark, James S; Ver Hoef, Jay M; Wikle, Christopher K
2009-04-01
Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.
A statistical shape model of the human second cervical vertebra.
Clogenson, Marine; Duff, John M; Luethi, Marcel; Levivier, Marc; Meuli, Reto; Baur, Charles; Henein, Simon
2015-07-01
Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.
A flexibly shaped spatial scan statistic for detecting clusters
Directory of Open Access Journals (Sweden)
Takahashi Kunihiko
2005-05-01
Full Text Available Abstract Background The spatial scan statistic proposed by Kulldorff has been applied to a wide variety of epidemiological studies for cluster detection. This scan statistic, however, uses a circular window to define the potential cluster areas and thus has difficulty in correctly detecting actual noncircular clusters. A recent proposal by Duczmal and Assunção for detecting noncircular clusters is shown to detect a cluster of very irregular shape that is much larger than the true cluster in our experiences. Methods We propose a flexibly shaped spatial scan statistic that can detect irregular shaped clusters within relatively small neighborhoods of each region. The performance of the proposed spatial scan statistic is compared to that of Kulldorff's circular spatial scan statistic with Monte Carlo simulation by considering several circular and noncircular hot-spot cluster models. For comparison, we also propose a new bivariate power distribution classified by the number of regions detected as the most likely cluster and the number of hot-spot regions included in the most likely cluster. Results The circular spatial scan statistics shows a high level of accuracy in detecting circular clusters exactly. The proposed spatial scan statistic is shown to have good usual powers plus the ability to detect the noncircular hot-spot clusters more accurately than the circular one. Conclusion The proposed spatial scan statistic is shown to work well for small to moderate cluster size, up to say 30. For larger cluster sizes, the method is not practically feasible and a more efficient algorithm is needed.
A model of shape memory materials with hierarchical twinning: Statics and dynamics
Energy Technology Data Exchange (ETDEWEB)
Saxena, A.; Bishop, A.R. [Los Alamos National Lab., NM (United States); Shenoy, S.R. [International Center for Theoretical Physics, Trieste (Italy); Wu, Y.; Lookman, T. [Western Ontario Univ., London, Ontario (Canada). Dept. of Applied Mathematics
1995-07-01
We consider a model of shape memory material in which hierarchical twinning near the habit plane (austenite-martensite interface) is a new and crucial ingredient. The model includes (1) a triple-well potential ({phi} model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation induced strain gradient terms. The last term favors hierarchy which enables communication between macroscopic (cm) and microscopic ({Angstrom}) regions essential for shape memory. Hierarchy also stabilizes between formation (critical pattern of twins). External stress or pressure (pattern) modulates the spacing of domain walls. Therefore the ``pattern`` is encoded in the modulated hierarchical variation of the depth and width of the twins. This hierarchy of length scales provides a hierarchy of time scales and thus the possibility of non-exponential decay. The four processes of the complete shape memory cycle -- write, record, erase and recall -- are explained within this model. Preliminary results based on 2D Langevin dynamics are shown for tweed and hierarchy formation.
Statistical shape model with random walks for inner ear segmentation
DEFF Research Database (Denmark)
Pujadas, Esmeralda Ruiz; Kjer, Hans Martin; Piella, Gemma
2016-01-01
Cochlear implants can restore hearing to completely or partially deaf patients. The intervention planning can be aided by providing a patient-specific model of the inner ear. Such a model has to be built from high resolution images with accurate segmentations. Thus, a precise segmentation...... is required. We propose a new framework for segmentation of micro-CT cochlear images using random walks combined with a statistical shape model (SSM). The SSM allows us to constrain the less contrasted areas and ensures valid inner ear shape outputs. Additionally, a topology preservation method is proposed...
Statistical mechanics and shape transitions in microscopic plates.
Yong, Ee Hou; Mahadevan, L
2014-01-31
Unlike macroscopic multistable mechanical systems such as snap bracelets or elastic shells that must be physically manipulated into various conformations, microscopic systems can undergo spontaneous conformation switching between multistable states due to thermal fluctuations. Here we investigate the statistical mechanics of shape transitions in small elastic elliptical plates and shells driven by noise. By assuming that the effects of edges are small, which we justify exactly for plates and shells with a lenticular section, we decompose the shapes into a few geometric modes whose dynamics are easy to follow. We use Monte Carlo simulations to characterize the shape transitions between conformational minimal as a function of noise strength, and corroborate our results using a Fokker-Planck formalism to study the stationary distribution and the mean first passage time problem. Our results are applicable to objects such as graphene flakes or protein β sheets, where fluctuations, geometry, and finite size effects are important.
Liver recognition based on statistical shape model in CT images
Xiang, Dehui; Jiang, Xueqing; Shi, Fei; Zhu, Weifang; Chen, Xinjian
2016-03-01
In this paper, an automatic method is proposed to recognize the liver on clinical 3D CT images. The proposed method effectively use statistical shape model of the liver. Our approach consist of three main parts: (1) model training, in which shape variability is detected using principal component analysis from the manual annotation; (2) model localization, in which a fast Euclidean distance transformation based method is able to localize the liver in CT images; (3) liver recognition, the initial mesh is locally and iteratively adapted to the liver boundary, which is constrained with the trained shape model. We validate our algorithm on a dataset which consists of 20 3D CT images obtained from different patients. The average ARVD was 8.99%, the average ASSD was 2.69mm, the average RMSD was 4.92mm, the average MSD was 28.841mm, and the average MSD was 13.31%.
Hierarchical statistical analysis of complex analog and mixed-signal systems
Webb, Matthew; Tang, Hua
2014-12-01
With increasing process parameter variations in nanometre regime, circuits and systems encounter significant performance variations and therefore statistical analysis has become increasingly important. For complex analog and mixed-signal circuits and systems, efficient yet accurate statistical analysis has been a challenge mainly due to significant simulation and modelling time. In the past years, there have been various approaches proposed for statistical analysis of analog and mixed-signal circuits. A recent work is reported to address statistical analysis for continuous-time Delta-Sigma modulators. In this article, we generalise that method and present a hierarchical method for efficient statistical analysis of complex analog and mixed-signal circuits while maintaining reasonable accuracy. At circuit level, we use the response surface modelling method to extract quadratic models of circuit-level performance parameters in terms of process parameters. Then at system level, we use behavioural models and apply the Monte-Carlo method for statistical evaluation of system performance parameters. We illustrate and validate the method on a continuous-time Delta-Sigma modulator and an analog filter.
DEFF Research Database (Denmark)
Le Goualher, G; Argenti, A.M.; Duyme, M
2000-01-01
Principal Component Analysis allows a quantitative description of shape variability with a restricted number of parameters (or modes) which can be used to quantify the difference between two shapes through the computation of a modal distance. A statistical test can then be applied to this set...... encoding. When applied to real data, this study highlighted genetic constraints on the shape of the central sulcus. We found from 10 pairs of monozygotic twins that the intrapair modal distance of the central sulcus was significantly smaller than the interpair modal distance, for both the left central...... sulcus (Z = -2.66; P definition of the central sulcus shape were confirmed by applying the same experiment to 10 pairs of normal young individuals (Z = -1.39; Z = -0.63, i.e., values not significant at the P
Directory of Open Access Journals (Sweden)
Jae S. Ahn
2015-01-01
Full Text Available We introduce higher-order cylindrical shell element based on ESL (equivalent single-layer theory for the analysis of laminated composite shells. The proposed elements are formulated by the dimensional reduction technique from three-dimensional solid to two-dimensional cylindrical surface with plane stress assumption. It allows the first-order shear deformation and considers anisotropic materials due to fiber orientation. The element displacement approximation is established by the integrals of Legendre polynomials with hierarchical concept to ensure the C0-continuity at the interface between adjacent elements as well as C1-continuity at the interface between adjacent layers. For geometry mapping, cylindrical coordinate is adopted to implement the exact mapping of curved shell configuration with a constant curvature with respect to any direction in the plane. The verification and characteristics of the proposed element are investigated through the analyses of three cylindrical shell problems with different shapes, loadings, and boundary conditions.
Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun
2014-02-21
Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.
A hierarchical statistical model for estimating population properties of quantitative genes
Directory of Open Access Journals (Sweden)
Wu Rongling
2002-06-01
Full Text Available Abstract Background Earlier methods for detecting major genes responsible for a quantitative trait rely critically upon a well-structured pedigree in which the segregation pattern of genes exactly follow Mendelian inheritance laws. However, for many outcrossing species, such pedigrees are not available and genes also display population properties. Results In this paper, a hierarchical statistical model is proposed to monitor the existence of a major gene based on its segregation and transmission across two successive generations. The model is implemented with an EM algorithm to provide maximum likelihood estimates for genetic parameters of the major locus. This new method is successfully applied to identify an additive gene having a large effect on stem height growth of aspen trees. The estimates of population genetic parameters for this major gene can be generalized to the original breeding population from which the parents were sampled. A simulation study is presented to evaluate finite sample properties of the model. Conclusions A hierarchical model was derived for detecting major genes affecting a quantitative trait based on progeny tests of outcrossing species. The new model takes into account the population genetic properties of genes and is expected to enhance the accuracy, precision and power of gene detection.
Deshmukh, Ruchi; Mehra, Anurag
2017-01-01
Aggregation and self-assembly are influenced by molecular interactions. With precise control of molecular interactions, in this study, a wide range of nanostructures ranging from zero-dimensional nanospheres to hierarchical nanoplates and spindles have been successfully synthesized at ambient temperature in aqueous solution. The nanostructures reported here are formed by aggregation of spherical seed particles (monomers) in presence of quaternary ammonium salts. Hydroxide ions and a magnetic moment of the monomers are essential to induce shape anisotropy in the nanostructures. The cobalt nanoplates are studied in detail, and a growth mechanism based on collision, aggregation, and crystal consolidation is proposed based on a electron microscopy studies. The growth mechanism is generalized for rods, spindles, and nearly spherical nanostructures, obtained by varying the cation group in the quaternary ammonium hydroxides. Electron diffraction shows different predominant lattice planes on the edge and on the surface of a nanoplate. The study explains, hereto unaddressed, the temporal evolution of complex magnetic nanostructures. These ferromagnetic nanostructures represent an interesting combination of shape anisotropy and magnetic characteristics.
HIERARCHICAL CLASSIFICATION OF POLARIMETRIC SAR IMAGE BASED ON STATISTICAL REGION MERGING
Directory of Open Access Journals (Sweden)
F. Lang
2012-07-01
Full Text Available Segmentation and classification of polarimetric SAR (PolSAR imagery are very important for interpretation of PolSAR data. This paper presents a new object-oriented classification method which is based on Statistical Region Merging (SRM segmentation algorithm and a two-level hierarchical clustering technique. The proposed method takes full advantage of the polarimetric information contained in the PolSAR data, and takes both effectiveness and efficiency into account according to the characteristic of PolSAR. A modification of over-merging to over-segmentation technique and a post processing of segmentation for SRM is proposed according to the application of classification. And a revised symmetric Wishart distance is derived from the Wishart PDF. Segmentation and classification results of AirSAR L-band PolSAR data over the Flevoland test site is shown to demonstrate the validity of the proposed method.
Reuter, M; Netter, P
2001-01-01
The present study proposes a hierarchical multivariate statistical prediction model which enables to determine the most prominent variables (physiological, biochemical and personality factors) related to nicotine craving and dopaminergic activation. Based on animal studies reporting a reduction of the rewarding effects of psychotropic drugs after blockade or destruction of the mesolimbic dopamine (DA) system, changes in nicotine craving after pharmacological manipulation by means of a DA agonist (lisuride 0.2 mg) and a DA antagonist (fluphenazine 2 mg) were assessed in 36 healthy male heavy smokers. The major aim was the development of a multivariate prediction model which is applicable in samples lacking variance homogeneity or the prerequisite of a multivariate normal distribution. The model proposed is a combination of multivariate parametric and nonparametric methods taking advantage of their individual merits. Especially personality variables, such as sensation seeking, impulsivity, and neuroticism showed to be important predictors of craving in this responder approach.
Smooth extrapolation of unknown anatomy via statistical shape models
Grupp, R. B.; Chiang, H.; Otake, Y.; Murphy, R. J.; Gordon, C. R.; Armand, M.; Taylor, R. H.
2015-03-01
Several methods to perform extrapolation of unknown anatomy were evaluated. The primary application is to enhance surgical procedures that may use partial medical images or medical images of incomplete anatomy. Le Fort-based, face-jaw-teeth transplant is one such procedure. From CT data of 36 skulls and 21 mandibles separate Statistical Shape Models of the anatomical surfaces were created. Using the Statistical Shape Models, incomplete surfaces were projected to obtain complete surface estimates. The surface estimates exhibit non-zero error in regions where the true surface is known; it is desirable to keep the true surface and seamlessly merge the estimated unknown surface. Existing extrapolation techniques produce non-smooth transitions from the true surface to the estimated surface, resulting in additional error and a less aesthetically pleasing result. The three extrapolation techniques evaluated were: copying and pasting of the surface estimate (non-smooth baseline), a feathering between the patient surface and surface estimate, and an estimate generated via a Thin Plate Spline trained from displacements between the surface estimate and corresponding vertices of the known patient surface. Feathering and Thin Plate Spline approaches both yielded smooth transitions. However, feathering corrupted known vertex values. Leave-one-out analyses were conducted, with 5% to 50% of known anatomy removed from the left-out patient and estimated via the proposed approaches. The Thin Plate Spline approach yielded smaller errors than the other two approaches, with an average vertex error improvement of 1.46 mm and 1.38 mm for the skull and mandible respectively, over the baseline approach.
Detecting hippocampal shape changes in Alzheimer's disease using statistical shape models
Shen, Kaikai; Bourgeat, Pierrick; Fripp, Jurgen; Meriaudeau, Fabrice; Salvado, Olivier
2011-03-01
The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). Using brain Magnetic Resonance (MR) images, we can investigate the effect of AD on the morphology of the hippocampus. Statistical shape models (SSM) are usually used to describe and model the hippocampal shape variations among the population. We use the shape variation from SSM as features to classify AD from normal control cases (NC). Conventional SSM uses principal component analysis (PCA) to compute the modes of variations among the population. Although these modes are representative of variations within the training data, they are not necessarily discriminant on labelled data. In this study, a Hotelling's T 2 test is used to qualify the landmarks which can be used for PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of these predictors is evaluated in terms of their classification performances using support vector machines (SVM). Using only landmarks statistically discriminant between AD and NC in SSM showed a better separation between AD and NC. These predictors also showed better correlation to the cognitive scores such as mini-mental state examination (MMSE) and Alzheimer's disease assessment scale (ADAS).
Sojoudi, Alireza; Goodyear, Bradley G
2016-12-01
Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Bettina Prüm
2012-01-01
Full Text Available Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring.
Fitzpatrick, Clare K; Baldwin, Mark A; Laz, Peter J; FitzPatrick, David P; Lerner, Amy L; Rullkoetter, Paul J
2011-09-02
Patellofemoral (PF)-related pathologies, including joint laxity, patellar maltracking, cartilage degradation and anterior knee pain, affect nearly 25% of the population. Researchers have investigated the influence of articular geometry on kinematics and contact mechanics in order to gain insight into the etiology of these conditions. The purpose of the current study was to create a three-dimensional statistical shape model of the PF joint and to characterize relationships between PF shape and function (kinematics and contact mechanics). A statistical shape model of the patellar and femoral articular surfaces and their relative alignment was developed from magnetic resonance images. Using 15 shape parameters, the model characterized 97% of the variation in the training set. The first three shape modes primarily described variation in size, patella alta-baja and depth of the sulcus groove. A previously verified finite element model was used to predict kinematics and contact mechanics for each subject. Combining the shape and joint mechanics data, a statistical shape-function model was developed that established quantitative relations of how changes in the shape of the PF joint influence mechanics. The predictive capability of the shape-function model was evaluated by comparing statistical model and finite element predictions, resulting in kinematic root mean square errors of less than 3° and 2.5 mm. The key results of the study are dually in the implementation of a novel approach linking statistical shape and finite element models and the relationships elucidated between PF articular geometry and mechanics.
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-07-01
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent
Natural auditory scene statistics shapes human spatial hearing.
Parise, Cesare V; Knorre, Katharina; Ernst, Marc O
2014-04-22
Human perception, cognition, and action are laced with seemingly arbitrary mappings. In particular, sound has a strong spatial connotation: Sounds are high and low, melodies rise and fall, and pitch systematically biases perceived sound elevation. The origins of such mappings are unknown. Are they the result of physiological constraints, do they reflect natural environmental statistics, or are they truly arbitrary? We recorded natural sounds from the environment, analyzed the elevation-dependent filtering of the outer ear, and measured frequency-dependent biases in human sound localization. We find that auditory scene statistics reveals a clear mapping between frequency and elevation. Perhaps more interestingly, this natural statistical mapping is tightly mirrored in both ear-filtering properties and in perceived sound location. This suggests that both sound localization behavior and ear anatomy are fine-tuned to the statistics of natural auditory scenes, likely providing the basis for the spatial connotation of human hearing.
Jayaramulu, Kolleboyina; Geyer, Florian; Petr, Martin; Zboril, Radek; Vollmer, Doris; Fischer, Roland A
2017-03-01
A versatile and facile synthetic route toward a ultralight hierarchical poroushybrid composed of metal-organic gels and fluorinated graphene oxide is reported. The composite gels show excellent absorbency of oil and various organic solvents due to their prominent meso/macropores, notable hydrophobicity, and superoleophilicity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hosseini, M.; Magagi, R.; Goita, K.
2013-12-01
are applied to the soil moisture products before application of disaggregation method. The disaggregation is also done by using an improved version of the model, i.e. Random Cascade Hierarchical and Statistical Arrangement (RCHSA) model (Shrestha et al., 2004). In this model, the spatial correlation parameter is used to improve the reliability of the model. The results show that by comparison with RC model, the RCHSA method could improve the accuracy of disaggregation up to about 0.05 (m3/m3). References Over, T. M., and Gupta, V. K., A space-time theory of mesoscale rainfall using random cascades, Journal of Geophysical Research, Vol. 101, No. D21, p. 26319-26331, 1996. Shrestha, R. K., Tachikawa, Y., and Takara, K., Downscaling spatial rainfall field from global scale to local scale using improved multiplicative random cascade method, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., p. 47, 2004.
Statistical Shape Modelling and Markov Random Field Restoration (invited tutorial and exercise)
DEFF Research Database (Denmark)
Hilger, Klaus Baggesen
This tutorial focuses on statistical shape analysis using point distribution models (PDM) which is widely used in modelling biological shape variability over a set of annotated training data. Furthermore, Active Shape Models (ASM) and Active Appearance Models (AAM) are based on PDMs and have prov...... using Markov random field relaxation of a spectral classifier. Keywords: the Ising model, the Potts model, stochastic sampling, discriminant analysis, expectation maximization.......This tutorial focuses on statistical shape analysis using point distribution models (PDM) which is widely used in modelling biological shape variability over a set of annotated training data. Furthermore, Active Shape Models (ASM) and Active Appearance Models (AAM) are based on PDMs and have proven...... deformation field between shapes. The tutorial demonstrates both generative active shape and appearance models, and MRF restoration on 3D polygonized surfaces. ''Exercise: Spectral-Spatial classification of multivariate images'' From annotated training data this exercise applies spatial image restoration...
Statistical mechanical analysis of a hierarchical random code ensemble in signal processing
Energy Technology Data Exchange (ETDEWEB)
Obuchi, Tomoyuki [Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka 560-0043 (Japan); Takahashi, Kazutaka [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Takeda, Koujin, E-mail: takeda@sp.dis.titech.ac.jp [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502 (Japan)
2011-02-25
We study a random code ensemble with a hierarchical structure, which is closely related to the generalized random energy model with discrete energy values. Based on this correspondence, we analyze the hierarchical random code ensemble by using the replica method in two situations: lossy data compression and channel coding. For both the situations, the exponents of large deviation analysis characterizing the performance of the ensemble, the distortion rate of lossy data compression and the error exponent of channel coding in Gallager's formalism, are accessible by a generating function of the generalized random energy model. We discuss that the transitions of those exponents observed in the preceding work can be interpreted as phase transitions with respect to the replica number. We also show that the replica symmetry breaking plays an essential role in these transitions.
Robust functional statistics applied to Probability Density Function shape screening of sEMG data.
Boudaoud, S; Rix, H; Al Harrach, M; Marin, F
2014-01-01
Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.
An invariant approach to statistical analysis of shapes
Lele, Subhash R
2001-01-01
INTRODUCTIONA Brief History of MorphometricsFoundations for the Study of Biological FormsDescription of the data SetsMORPHOMETRIC DATATypes of Morphometric DataLandmark Homology and CorrespondenceCollection of Landmark CoordinatesReliability of Landmark Coordinate DataSummarySTATISTICAL MODELS FOR LANDMARK COORDINATE DATAStatistical Models in GeneralModels for Intra-Group VariabilityEffect of Nuisance ParametersInvariance and Elimination of Nuisance ParametersA Definition of FormCoordinate System Free Representation of FormEst
Munshi, D; Melott, A L; Munshi, Dipak; Coles, Peter; Melott, Adrian L.
1999-01-01
We develop a diagrammatic technique to represent the multi-point cumulative probability density function (CPDF) of mass fluctuations in terms of the statistical properties of individual collapsed objects and relate this to other statistical descriptors such as cumulants, cumulant correlators and factorial moments. We use this approach to establish key scaling relations describing various measurable statistical quantities if clustering follows a simple general scaling ansatz, as expected in hierarchical models. We test these detailed predictions against high-resolution numerical simulations. We show that, when appropriate variables are used, the count probability distribution function (CPDF) and void probability distribution function (VPF) shows clear scaling properties in the non-linear regime. Generalising the results to the two-point count probability distribution function (2CPDF), and the bivariate void probability function (2VPF) we find good match with numerical simulations. We explore the behaviour of t...
Distortion in fingerprints: a statistical investigation using shape measurement tools.
Sheets, H David; Torres, Anne; Langenburg, Glenn; Bush, Peter J; Bush, Mary A
2014-07-01
Friction ridge impression appearance can be affected due to the type of surface touched and pressure exerted during deposition. Understanding the magnitude of alterations, regions affected, and systematic/detectable changes occurring would provide useful information. Geometric morphometric techniques were used to statistically characterize these changes. One hundred and fourteen prints were obtained from a single volunteer and impressed with heavy, normal, and light pressure on computer paper, soft gloss paper, 10-print card stock, and retabs. Six hundred prints from 10 volunteers were rolled with heavy, normal, and light pressure on soft gloss paper and 10-print card stock. Results indicate that while different substrates/pressure levels produced small systematic changes in fingerprints, the changes were small in magnitude: roughly the width of one ridge. There were no detectable changes in the degree of random variability of prints associated with either pressure or substrate. In conclusion, the prints transferred reliably regardless of pressure or substrate. © 2014 American Academy of Forensic Sciences.
CSIR Research Space (South Africa)
Motaung, DE
2014-05-01
Full Text Available . These materials were synthesized in a shape-selective manner using simple microwave assisted hydrothermal synthesis. Thermogravimetric analyses demonstrated the as-synthesized ZnO nanostructures to be stable and of high purity. Structural analyses showed...
Patch-based generative shape model and MDL model selection for statistical analysis of archipelagos
DEFF Research Database (Denmark)
Ganz, Melanie; Nielsen, Mads; Brandt, Sami
2010-01-01
We propose a statistical generative shape model for archipelago-like structures. These kind of structures occur, for instance, in medical images, where our intention is to model the appearance and shapes of calcifications in x-ray radio graphs. The generative model is constructed by (1) learning...... a patch-based dictionary for possible shapes, (2) building up a time-homogeneous Markov model to model the neighbourhood correlations between the patches, and (3) automatic selection of the model complexity by the minimum description length principle. The generative shape model is proposed...... as a probability distribution of a binary image where the model is intended to facilitate sequential simulation. Our results show that a relatively simple model is able to generate structures visually similar to calcifications. Furthermore, we used the shape model as a shape prior in the statistical segmentation...
Shape-correlated Deformation Statistics for Respiratory Motion Prediction in 4D Lung
Liu, Xiaoxiao; Oguz, Ipek; Pizer, Stephen M.; Mageras, Gig S.
2010-01-01
4D image-guided radiation therapy (IGRT) for free-breathing lungs is challenging due to the complicated respiratory dynamics. Effective modeling of respiratory motion is crucial to account for the motion affects on the dose to tumors. We propose a shape-correlated statistical model on dense image deformations for patient-specic respiratory motion estimation in 4D lung IGRT. Using the shape deformations of the high-contrast lungs as the surrogate, the statistical model trained from the plannin...
Ringk, Andreas
2016-03-30
High-surface-area π-conjugated polymeric networks have the potential to lend outstanding capacitance to supercapacitors because of the pronounced faradaic processes that take place across the dense intimate interface between active material and electrolytes. In this report, we describe how benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (BTT) and tris-EDOT-benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (TEBTT) can serve as 2D (trivalent) building blocks in the development of electropolymerized hierarchical π-conjugated frameworks with particularly high areal capacitance. In comparing electropolymerized networks of BTT, TEBTT, and their copolymers with EDOT, we show that P(TEBTT/EDOT)-based frameworks can achieve higher areal capacitance (e.g., as high as 443.8 mF cm-2 at 1 mA cm-2) than those achieved by their respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm-2 (at 1 mA cm-2) and PEDOT: 12.1 mF cm-2 (at 1 mA cm-2)). For example, P(TEBTT/EDOT)-based frameworks synthesized in a 1:1 monomer-to-comonomer ratio show a ca. 35x capacitance improvement over PEDOT. The high areal capacitance measured for P(TEBTT/EDOT) copolymers can be explained by the open, highly porous hierarchical morphologies formed during the electropolymerization step. With >70% capacitance retention over 1,000 cycles (up to 89% achieved), both PTEBTT- and P(TEBTT/EDOT)-based frameworks are resilient to repeated electrochemical cycling and can be considered promising systems for high life cycle capacitive electrode applications.
Estimation of the initial shape of meteoroids based on statistical distributions of fragment masses
Vinnikov, V. V.; Gritsevich, M. I.; Kuznetsova, D. V.; Turchak, L. I.
2016-06-01
An approach to the estimation of the initial shape of a meteoroid based on the statistical distributions of masses of its recovered fragments is presented. The fragment distribution function is used to determine the corresponding scaling index of the power law with exponential cutoff. The scaling index is related empirically to the shape parameter of a fragmenting body by a quadratic equation, and the shape parameter is expressed through the proportions of the initial object. This technique is used to study a representative set of fragments of the Bassikounou meteorite and compare the obtained data with the results of statistical analysis of other meteorites.
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.
Directory of Open Access Journals (Sweden)
Osamu Watanabe
2011-05-01
Full Text Available The human visual system can acquire the statistical structures in temporal sequences of object feature changes, such as changes in shape, color, and its combination. Here we investigate whether the statistical learning for spatial position and shape changes operates separately or not. It is known that the visual system processes these two types of information separately; the spatial information is processed in the parietal cortex, whereas object shapes and colors are detected in the temporal pathway, and, after that, we perceive bound information in the two streams. We examined whether the statistical learning operates before or after binding the shape and the spatial information by using the “re-paired triplet” paradigm proposed by Turk-Browne, Isola, Scholl, and Treat (2008. The result showed that observers acquired combined sequences of shape and position changes, but no statistical information in individual sequence was obtained. This finding suggests that the visual statistical learning works after binding the temporal sequences of shapes and spatial structures and would operate in the higher-order visual system; this is consistent with recent ERP (Abla & Okanoya, 2009 and fMRI (Turk-Browne, Scholl, Chun, & Johnson, 2009 studies.
Statistical shape analysis of the human spleen geometry for probabilistic occupant models.
Yates, Keegan M; Lu, Yuan-Chiao; Untaroiu, Costin D
2016-06-14
Statistical shape models are an effective way to create computational models of human organs that can incorporate inter-subject geometrical variation. The main objective of this study was to create statistical mean and boundary models of the human spleen in an occupant posture. Principal component analysis was applied to fifteen human spleens in order to find the statistical modes of variation, mean shape, and boundary models. A landmark sliding approach was utilized to refine the landmarks to obtain a better shape correspondence and create a better representation of the underlying shape contour. The first mode of variation was found to be the overall volume, and it accounted for 69% of the total variation. The mean model and boundary models could be used to develop probabilistic finite element (FE) models which may identify the risk of spleen injury during vehicle collisions and consequently help to improve automobile safety systems.
Hoell, Simon; Omenzetter, Piotr
2017-07-01
Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, applying advanced transformations to these DSFs and assessing systematically their contribution to damage detectability and localisation can significantly enhance the performance of structural health monitoring systems. This philosophy is explored here for partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated with the help of the linear discriminant analysis based on the Fukunaga-Koontz transformation using datasets of the healthy and selected reference damage states. Then, a simple but efficient fast forward selection procedure is applied to rank the DSF components with respect to statistical distance measures specialised for either damage detection or localisation. For the damage detection task, the optimal feature subsets are identified based on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool is developed that uses the DSF ranking to establish its own optimal architecture. The proposed approaches are evaluated experimentally on data from non-destructively simulated damage in a laboratory scale wind turbine blade. The results support our claim of being able to enhance damage detectability and localisation performance by transforming and optimally selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors or their Fukunaga-Koontz transformed versions can not only improve the detectability of damage via statistical hypothesis testing but also increase the accuracy of damage localisation when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational effort of employing these advanced soft computing models for damage localisation can be significantly reduced by using transformed DSFs.
A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring
Directory of Open Access Journals (Sweden)
Tango Toshiro
2008-04-01
Full Text Available Abstract Background Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Results Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. Conclusion The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.
Directory of Open Access Journals (Sweden)
Nahla F. Omran
2015-05-01
Full Text Available The graphs appear in many applications such as computer networks, data networks, and PERT networks, when the network includes a small number of devices, it can be drawn easily by hand, as the number of devices increases, drawing becomes a very difficult task. For this problem we will develop a new method for automatic graph drawing based on two steps, the first is applying the topology –shape –metric that is approaching to orthogonal drawings for the grid and the second step is applying the fuzzy genetic algorithm that is directed, in the topology –shape –metric the final drawing is achieved through three sequential steps: planarization, orthogonalization, and compaction. Each of these steps is responsible for the quality of the final drawing. Then the genetic algorithm applied at the planarization step of the topology-shape-metric to find the geometric position of each vertex to minimize bending in the graph. The developed technique generates a greater number of planar embedding by varying the order of edges’ insertion. This is achieved clearly in the Results given in the paper.
Bayesian hierarchical clustering for studying cancer gene expression data with unknown statistics.
Directory of Open Access Journals (Sweden)
Korsuk Sirinukunwattana
Full Text Available Clustering analysis is an important tool in studying gene expression data. The Bayesian hierarchical clustering (BHC algorithm can automatically infer the number of clusters and uses Bayesian model selection to improve clustering quality. In this paper, we present an extension of the BHC algorithm. Our Gaussian BHC (GBHC algorithm represents data as a mixture of Gaussian distributions. It uses normal-gamma distribution as a conjugate prior on the mean and precision of each of the Gaussian components. We tested GBHC over 11 cancer and 3 synthetic datasets. The results on cancer datasets show that in sample clustering, GBHC on average produces a clustering partition that is more concordant with the ground truth than those obtained from other commonly used algorithms. Furthermore, GBHC frequently infers the number of clusters that is often close to the ground truth. In gene clustering, GBHC also produces a clustering partition that is more biologically plausible than several other state-of-the-art methods. This suggests GBHC as an alternative tool for studying gene expression data. The implementation of GBHC is available at https://sites.google.com/site/gaussianbhc/
Lan, Wen-Jie; Kuo, Cheng-Chi; Chen, Chun-Hu
2013-04-14
A general redox procedure was successfully developed for the controlled synthesis of substituted cobalt oxides with hierarchical flower-like nanostructures comprising unique Y-shaped interconnections. The substitution and nanostructures synergistically enhance the material's electrochemical activities for highly efficient sensing of H2O2.
Plüisch, Claudia Simone; Wittemann, Alexander
2013-12-01
Anisometric polymer colloids are likely to behave differently when compared with centrosymmetric particles. Their study may not only shine new light on the organization of matter; they may also serve as building units with specific symmetries and complexity to build new materials from them. Polymer colloids of well-defined complex geometries can be obtained by packing a limited number of spherical polymer particles into clusters with defined configurations. Such supracolloidal architectures can be fabricated at larger scales using narrowly dispersed emulsion droplets as templates. Assemblies built from at least two different types of particles as elementary building units open perspectives in selective targeting of colloids with specific properties, aiming for mesoscale building blocks with tailor-made morphologies and multifunctionality. Polymer colloids with defined geometries are also ideal to study shape-dependent properties such as the diffusion of complex particles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity
Directory of Open Access Journals (Sweden)
U. Boonyang
2013-01-01
Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.
Statistical Shape Modelling and Markov Random Field Restoration (invited tutorial and exercise)
DEFF Research Database (Denmark)
Hilger, Klaus Baggesen
This tutorial focuses on statistical shape analysis using point distribution models (PDM) which is widely used in modelling biological shape variability over a set of annotated training data. Furthermore, Active Shape Models (ASM) and Active Appearance Models (AAM) are based on PDMs and have proven...... themselves a generic holistic tool in various segmentation and simulation studies. Finding a basis of homologous points is a fundamental issue in PDMs which effects both alignment and decomposition of the training data, and may be aided by Markov Random Field Restoration (MRF) of the correspondence...
Analysis of shape isomer yields of 237Pu in the framework of dynamical–statistical model
Indian Academy of Sciences (India)
Hadi Eslamizadeh
2012-02-01
Data on shape isomer yield for + 235U reaction at $E^{\\text{lab}}$ = 20–29 MeV are analysed in the framework of a combined dynamical–statistical model. From this analysis, information on the double humped ﬁssion barrier parameters for some Pu isotopes has been obtained and it is shown that the depth of the second potential well should be less than the results of statistical model calculations.
Comparing the Hearts of German Shepherd and Mongrel Dogs Using Statistical Shape Analysis
Directory of Open Access Journals (Sweden)
Guven Ozkaya*, Gulsum Ozyigit1, Ilker Ercan and Ilker Arican1
2013-04-01
Full Text Available The aim of this study was to conduct a statistical shape analysis of the heart of dogs and to compare this data between German Shepherd and Mongrel dogs. An effective way to examine these shapes is to record the locations of certain points on the object. In this study, 10 hearts were collected from each breed. EDMA and TPS techniques were used to examine genus-based changes in the shape of the heart. The shape deformations were expressed using expansion and compression grids. There was no statistically significant difference with respect to the general shape of the heart between the genera. However, there were local shape differences between the genera in some of the inter-landmark distances: 6% of the inter-landmark distances were greater in German Shepherd dogs, and 11% were greater in Mongrels. There are no heart shape differences between genera, although significant differences were found between the upper part of the left ventricle and the lower part of the right ventricle. The upper part of the left ventricle in Mongrels showed more enlargement than in German Shepherds. The lower part of the right ventricle in Mongrels had more enlargement than in German Shepherds; however, the middle part of the right ventricle of German Shepherds had more enlargement than in Mongrels. Although there were some local significant shape differences between the upper part of the left ventricle and the lower part of the right ventricle, however, there were no general heart shape differences between German Shepherd and Mongrel dogs.
Template-Based Orbital Wall Fracture Treatment Using Statistical Shape Analysis.
Doerfler, Hans-Martin; Huempfner-Hierl, Heike; Kruber, Daniel; Schulze, Peter; Hierl, Thomas
2017-07-01
Aim of this study was to investigate whether a mold generated from a statistical shape model of the orbit could be generated to provide a cost-efficient means for the treatment of orbital fractures. A statistical shape model was created from 131 computed tomographic (CT) scans of unaffected adult middle European human orbits. To generate the model, CT scans were segmented in Brainlab software, preregistered using anatomic landmarks, trimmed to an identical size, and definitely registered. Then, the model was created using the global master algorithm. Based on this model, a mold consisting of a male part and a female part was constructed and printed using a rapid prototyping technique. A statistical shape model of the human orbit was generated from 125 CT scans. Six scans (4.5%) presented major anatomic deviations and were discarded. A solid mold based on this model was printed. Using this mold, flat titanium mesh could be successfully deformed to serve as an orbital implant. A mold based on the statistical orbital shape could serve as a cost-effective means for the treatment of orbital fractures. It allows the anatomic preformation of titanium or resorbable implant material for orbital reconstruction. Because these materials could be cut from larger sheets, the use of a mold would be a cost-effective treatment alternative. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
The Shape of a Ponytail and the Statistical Physics of Hair Fiber Bundles
Goldstein, Raymond E.; Warren, Patrick B.; Ball, Robin C.
2012-02-01
From Leonardo to the Brothers Grimm our fascination with hair has endured in art and science. Yet, a quantitative understanding of the shapes of a hair bundles has been lacking. Here we combine experiment and theory to propose an answer to the most basic question: What is the shape of a ponytail? A model for the shape of hair bundles is developed from the perspective of statistical physics, treating individual fibers as elastic filaments with random intrinsic curvatures. The combined effects of bending elasticity, gravity, and bundle compressibility are recast as a differential equation for the envelope of a bundle, in which the compressibility enters through an ``equation of state.'' From this, we identify the balance of forces in various regions of the ponytail, extract the equation of state from analysis of ponytail shapes, and relate the observed pressure to the measured random curvatures of individual hairs.
Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy
DEFF Research Database (Denmark)
Baka, Nora; Kaptein, Bart L.; Giphart, J. Erik;
2014-01-01
State-of-the-art fluoroscopic knee kinematic analysis methods require the patient-specific bone shapes segmented from CT or MRI. Substituting the patient-specific bone shapes with personalizable models, such as statistical shape models (SSM), could eliminate the CT/MRI acquisitions, and thereby...... decrease costs and radiation dose (when eliminating CT). SSM based kinematics, however, have not yet been evaluated on clinically relevant joint motion parameters. Therefore, in this work the applicability of SSMs for computing knee kinematics from biplane fluoroscopic sequences was explored. Kinematic......-posterior tibial drawer, joint distraction-contraction, flexion, tibial rotation and adduction. The relationship between kinematic precision and bone shape accuracy was also investigated. The SSM based kinematics resulted in sub-millimeter (0.48-0.81mm) and approximately 1° (0.69-0.99°) median precision...
3D geometry analysis of the medial meniscus--a statistical shape modeling approach.
Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N
2014-10-01
The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence
3D geometry analysis of the medial meniscus – a statistical shape modeling approach
Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N
2014-01-01
The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence
Solar granulation and statistical crystallography: A modeling approach using size-shape relations
Noever, D. A.
1994-01-01
The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.
Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model.
Rasoulian, Abtin; Rohling, Robert; Abolmaesumi, Purang
2013-10-01
Segmentation of the spinal column from computed tomography (CT) images is a preprocessing step for a range of image-guided interventions. One intervention that would benefit from accurate segmentation is spinal needle injection. Previous spinal segmentation techniques have primarily focused on identification and separate segmentation of each vertebra. Recently, statistical multi-object shape models have been introduced to extract common statistical characteristics between several anatomies. These models can be used for segmentation purposes because they are robust, accurate, and computationally tractable. In this paper, we develop a statistical multi-vertebrae shape+pose model and propose a novel registration-based technique to segment the CT images of spine. The multi-vertebrae statistical model captures the variations in shape and pose simultaneously, which reduces the number of registration parameters. We validate our technique in terms of accuracy and robustness of multi-vertebrae segmentation of CT images acquired from lumbar vertebrae of 32 subjects. The mean error of the proposed technique is below 2 mm, which is sufficient for many spinal needle injection procedures, such as facet joint injections.
Energy Technology Data Exchange (ETDEWEB)
Park, Jinyong [Univ. of Arizona, Tucson, AZ (United States); Balasingham, P [Univ. of Arizona, Tucson, AZ (United States); McKenna, Sean Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kulatilake, Pinnaduwa H.S.W. [Univ. of Arizona, Tucson, AZ (United States)
2004-09-01
Sandia National Laboratories, under contract to Nuclear Waste Management Organization of Japan (NUMO), is performing research on regional classification of given sites in Japan with respect to potential volcanic disruption using multivariate statistics and geo-statistical interpolation techniques. This report provides results obtained for hierarchical probabilistic regionalization of volcanism for the Sengan region in Japan by applying multivariate statistical techniques and geostatistical interpolation techniques on the geologic data provided by NUMO. A workshop report produced in September 2003 by Sandia National Laboratories (Arnold et al., 2003) on volcanism lists a set of most important geologic variables as well as some secondary information related to volcanism. Geologic data extracted for the Sengan region in Japan from the data provided by NUMO revealed that data are not available at the same locations for all the important geologic variables. In other words, the geologic variable vectors were found to be incomplete spatially. However, it is necessary to have complete geologic variable vectors to perform multivariate statistical analyses. As a first step towards constructing complete geologic variable vectors, the Universal Transverse Mercator (UTM) zone 54 projected coordinate system and a 1 km square regular grid system were selected. The data available for each geologic variable on a geographic coordinate system were transferred to the aforementioned grid system. Also the recorded data on volcanic activity for Sengan region were produced on the same grid system. Each geologic variable map was compared with the recorded volcanic activity map to determine the geologic variables that are most important for volcanism. In the regionalized classification procedure, this step is known as the variable selection step. The following variables were determined as most important for volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater
Self-organized network of fractal-shaped components coupled through statistical interaction.
Ugajin, R
2001-09-01
A dissipative dynamics is introduced to generate self-organized networks of interacting objects, which we call coupled-fractal networks. The growth model is constructed based on a growth hypothesis in which the growth rate of each object is a product of the probability of receiving source materials from faraway and the probability of receiving adhesives from other grown objects, where each object grows to be a random fractal if isolated, but connects with others if glued. The network is governed by the statistical interaction between fractal-shaped components, which can only be identified in a statistical manner over ensembles. This interaction is investigated using the degree of correlation between fractal-shaped components, enabling us to determine whether it is attractive or repulsive.
Methods of artificial enlargement of the training set for statistical shape models.
Koikkalainen, Juha; Tölli, Tuomas; Lauerma, Kirsi; Antila, Kari; Mattila, Elina; Lilja, Mikko; Lötjönen, Jyrki
2008-11-01
Due to the small size of training sets, statistical shape models often over-constrain the deformation in medical image segmentation. Hence, artificial enlargement of the training set has been proposed as a solution for the problem to increase the flexibility of the models. In this paper, different methods were evaluated to artificially enlarge a training set. Furthermore, the objectives were to study the effects of the size of the training set, to estimate the optimal number of deformation modes, to study the effects of different error sources, and to compare different deformation methods. The study was performed for a cardiac shape model consisting of ventricles, atria, and epicardium, and built from magnetic resonance (MR) volume images of 25 subjects. Both shape modeling and image segmentation accuracies were studied. The objectives were reached by utilizing different training sets and datasets, and two deformation methods. The evaluation proved that artificial enlargement of the training set improves both the modeling and segmentation accuracy. All but one enlargement techniques gave statistically significantly (p < 0.05) better segmentation results than the standard method without enlargement. The two best enlargement techniques were the nonrigid movement technique and the technique that combines principal component analysis (PCA) and finite element model (FEM). The optimal number of deformation modes was found to be near 100 modes in our application. The active shape model segmentation gave better segmentation accuracy than the one based on the simulated annealing optimization of the model weights.
Statistical group differences in anatomical shape analysis using Hotelling T2 metric
Styner, Martin; Oguz, Ipek; Xu, Shun; Pantazis, Dimitrios; Gerig, Guido
2007-03-01
Shape analysis has become of increasing interest to the neuroimaging community due to its potential to precisely locate morphological changes between healthy and pathological structures. This manuscript presents a comprehensive set of tools for the computation of 3D structural statistical shape analysis. It has been applied in several studies on brain morphometry, but can potentially be employed in other 3D shape problems. Its main limitations is the necessity of spherical topology. The input of the proposed shape analysis is a set of binary segmentation of a single brain structure, such as the hippocampus or caudate. These segmentations are converted into a corresponding spherical harmonic description (SPHARM), which is then sampled into a triangulated surfaces (SPHARM-PDM). After alignment, differences between groups of surfaces are computed using the Hotelling T2 two sample metric. Statistical p-values, both raw and corrected for multiple comparisons, result in significance maps. Additional visualization of the group tests are provided via mean difference magnitude and vector maps, as well as maps of the group covariance information. The correction for multiple comparisons is performed via two separate methods that each have a distinct view of the problem. The first one aims to control the family-wise error rate (FWER) or false-positives via the extrema histogram of non-parametric permutations. The second method controls the false discovery rate and results in a less conservative estimate of the false-negatives. Prior versions of this shape analysis framework have been applied already to clinical studies on hippocampus and lateral ventricle shape in adult schizophrenics. The novelty of this submission is the use of the Hotelling T2 two-sample group difference metric for the computation of a template free statistical shape analysis. Template free group testing allowed this framework to become independent of any template choice, as well as it improved the
Energy Technology Data Exchange (ETDEWEB)
Wurtz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaplan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-28
Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-building elements and their functions in a fully-designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejection rate (GRR) relevant for realistic applications.
Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.
Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J
2016-10-03
Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods.
Whole vertebral bone segmentation method with a statistical intensity-shape model based approach
Hanaoka, Shouhei; Fritscher, Karl; Schuler, Benedikt; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Schubert, Rainer
2011-03-01
An automatic segmentation algorithm for the vertebrae in human body CT images is presented. Especially we focused on constructing and utilizing 4 different statistical intensity-shape combined models for the cervical, upper / lower thoracic and lumbar vertebrae, respectively. For this purpose, two previously reported methods were combined: a deformable model-based initial segmentation method and a statistical shape-intensity model-based precise segmentation method. The former is used as a pre-processing to detect the position and orientation of each vertebra, which determines the initial condition for the latter precise segmentation method. The precise segmentation method needs prior knowledge on both the intensities and the shapes of the objects. After PCA analysis of such shape-intensity expressions obtained from training image sets, vertebrae were parametrically modeled as a linear combination of the principal component vectors. The segmentation of each target vertebra was performed as fitting of this parametric model to the target image by maximum a posteriori estimation, combined with the geodesic active contour method. In the experimental result by using 10 cases, the initial segmentation was successful in 6 cases and only partially failed in 4 cases (2 in the cervical area and 2 in the lumbo-sacral). In the precise segmentation, the mean error distances were 2.078, 1.416, 0.777, 0.939 mm for cervical, upper and lower thoracic, lumbar spines, respectively. In conclusion, our automatic segmentation algorithm for the vertebrae in human body CT images showed a fair performance for cervical, thoracic and lumbar vertebrae.
Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.
2000-01-01
When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain
DEFF Research Database (Denmark)
Baka, N.; Kaptein, B. L.; de Bruijne, Marleen
2011-01-01
pose estimation of ground truth shapes as well as 3D shape estimation using a SSM of the whole femur, from stereo cadaver X-rays, in vivo biplane fluoroscopy image-pairs, and an in vivo biplane fluoroscopic sequence. Ground truth shapes for all experiments were available in the form of CT segmentations...
Yu, Pei; Li, Zi-Yuan; Xu, Hong-Ya; Huang, Liang; Dietz, Barbara; Grebogi, Celso; Lai, Ying-Cheng
2016-12-01
A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics, whereas those of time-reversal symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamental question, we investigate the spectral properties in a representative class of graphene billiards with shapes of classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is indeed true for energies close to the band edges where the quasiparticle obeys the Schrödinger equation. However, for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Poisson statistics is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This implies that, for circular-sector confinements with arbitrary angle, the spectral properties will generically be GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical understanding for our results.
Price, G J; Moore, C J
2007-04-07
In this paper we describe a technique that may be used to model the geometric uncertainties that accrue during the radiotherapy process. Using data from in-treatment cone beam CT scans, we simultaneously analyse non-uniform observer delineation variability and organ motion together with patient set-up errors via the creation of a point distribution model (PDM). We introduce a novel method of generating a coverage probability matrix, that may be used to determine treatment margins and calculate uncertainties in dose, from this statistical shape model. The technique does not assume rigid body motion and can extrapolate shape variability in a statistically meaningful manner. In order to construct the PDM, we generate corresponding surface points over a set of delineations. Correspondences are established at a set of points in parameter space on spherically parameterized and canonical aligned outlines. The method is demonstrated using rectal delineations from serially acquired in-treatment cone beam CT image volumes of a prostate patient (44 image volumes total), each delineated by a minimum of two observers (maximum six). Two PDMs are constructed, one with set-up errors included and one without. We test the normality assumptions of the PDMs and find the distributions to be Gaussian in nature. The rectal PDM variability is in general agreement with data in the literature. The two resultant coverage probability matrices show differences as expected.
Automatic Sex Determination of Skulls Based on a Statistical Shape Model
Directory of Open Access Journals (Sweden)
Li Luo
2013-01-01
Full Text Available Sex determination from skeletons is an important research subject in forensic medicine. Previous skeletal sex assessments are through subjective visual analysis by anthropologists or metric analysis of sexually dimorphic features. In this work, we present an automatic sex determination method for 3D digital skulls, in which a statistical shape model for skulls is constructed, which projects the high-dimensional skull data into a low-dimensional shape space, and Fisher discriminant analysis is used to classify skulls in the shape space. This method combines the advantages of metrical and morphological methods. It is easy to use without professional qualification and tedious manual measurement. With a group of Chinese skulls including 127 males and 81 females, we choose 92 males and 58 females to establish the discriminant model and validate the model with the other skulls. The correct rate is 95.7% and 91.4% for females and males, respectively. Leave-one-out test also shows that the method has a high accuracy.
Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia
2016-05-31
Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover
Energy Technology Data Exchange (ETDEWEB)
Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.
2016-10-25
An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.
Energy Technology Data Exchange (ETDEWEB)
Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.
2015-07-28
An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.
Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.
2016-10-25
An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.
Tassis, K; Hildebrand, R H; Kirby, L; Vaillancourt, J E
2009-01-01
We present a novel statistical analysis aimed at deriving the intrinsic shapes and magnetic field orientations of molecular clouds using dust emission and polarization observations by the Hertz polarimeter. Our observables are the aspect ratio of the projected plane-of-the-sky cloud image, and the angle between the mean direction of the plane-of-the-sky component of the magnetic field and the short axis of the cloud image. To overcome projection effects due to the unknown orientation of the line-of-sight, we combine observations from 24 clouds, assuming that line-of-sight orientations are random and all are equally probable. Through a weighted least-squares analysis, we find that the best-fit intrinsic cloud shape describing our sample is an oblate disk with only small degrees of triaxiality. The best-fit intrinsic magnetic field orientation is close to the direction of the shortest cloud axis, with small (~24 deg) deviations toward the long/middle cloud axes. However, due to the small number of observed clou...
Shapes and Statistics of the Rogue Waves Generated by Chaotic Ocean Current
Bayindir, Cihan
2015-01-01
In this study we discuss the shapes and statistics of the rogue (freak) waves emerging due to wave-current interactions. With this purpose, we use a simple governing equation which is a nonlinear Schrodinger equation (NLSE) extended by R. Smith (1976). This extended NLSE accounts for the effects of current gradient on the nonlinear dynamics of the ocean surface near blocking point. Using a split-step scheme we show that the extended NLSE of Smith is unstable against random chaotic perturbation in the current profile. Therefore the monochromatic wave field with unit amplitude turns into a chaotic sea state with many peaks. By comparing the numerical and analytical results, we show that rogue waves due to perturbations in the current profile are in the form of rational rogue wave solutions of the NLSE. We also discuss the effects of magnitude of the chaotic current profile perturbations on the statistics of the rogue wave generation at the ocean surface. The extension term in Smith's extended NLSE causes phase ...
Sparks, Rachel; Madabhushi, Anant
2012-03-01
Gleason patterns of prostate cancer histopathology, characterized primarily by morphological and architectural attributes of histological structures (glands and nuclei), have been found to be highly correlated with disease aggressiveness and patient outcome. Gleason patterns 4 and 5 are highly correlated with more aggressive disease and poorer patient outcome, while Gleason patterns 1-3 tend to reflect more favorable patient outcome. Because Gleason grading is done manually by a pathologist visually examining glass (or digital) slides, subtle morphologic and architectural differences of histological attributes may result in grading errors and hence cause high inter-observer variability. Recently some researchers have proposed computerized decision support systems to automatically grade Gleason patterns by using features pertaining to nuclear architecture, gland morphology, as well as tissue texture. Automated characterization of gland morphology has been shown to distinguish between intermediate Gleason patterns 3 and 4 with high accuracy. Manifold learning (ML) schemes attempt to generate a low dimensional manifold representation of a higher dimensional feature space while simultaneously preserving nonlinear relationships between object instances. Classification can then be performed in the low dimensional space with high accuracy. However ML is sensitive to the samples contained in the dataset; changes in the dataset may alter the manifold structure. In this paper we present a manifold regularization technique to constrain the low dimensional manifold to a specific range of possible manifold shapes, the range being determined via a statistical shape model of manifolds (SSMM). In this work we demonstrate applications of the SSMM in (1) identifying samples on the manifold which contain noise, defined as those samples which deviate from the SSMM, and (2) accurate out-of-sample extrapolation (OSE) of newly acquired samples onto a manifold constrained by the SSMM. We
Energy Technology Data Exchange (ETDEWEB)
Hufnagel, Heike [Institut National de Recherche en Informatique et en Automatique (INRIA), Asclepios Project, Sophia Antipolis (France); University Medical Center Hamburg-Eppendorf, Department of Medical Informatics, Hamburg (Germany); Pennec, Xavier; Ayache, Nicholas [Institut National de Recherche en Informatique et en Automatique (INRIA), Asclepios Project, Sophia Antipolis (France); Ehrhardt, Jan; Handels, Heinz [University Medical Center Hamburg-Eppendorf, Department of Medical Informatics, Hamburg (Germany)
2008-03-15
Identification of point correspondences between shapes is required for statistical analysis of organ shapes differences. Since manual identification of landmarks is not a feasible option in 3D, several methods were developed to automatically find one-to-one correspondences on shape surfaces. For unstructured point sets, however, one-to-one correspondences do not exist but correspondence probabilities can be determined. A method was developed to compute a statistical shape model based on shapes which are represented by unstructured point sets with arbitrary point numbers. A fundamental problem when computing statistical shape models is the determination of correspondences between the points of the shape observations of the training data set. In the absence of landmarks, exact correspondences can only be determined between continuous surfaces, not between unstructured point sets. To overcome this problem, we introduce correspondence probabilities instead of exact correspondences. The correspondence probabilities are found by aligning the observation shapes with the affine expectation maximization-iterative closest points (EM-ICP) registration algorithm. In a second step, the correspondence probabilities are used as input to compute a mean shape (represented once again by an unstructured point set). Both steps are unified in a single optimization criterion which depe nds on the two parameters 'registration transformation' and 'mean shape'. In a last step, a variability model which best represents the variability in the training data set is computed. Experiments on synthetic data sets and in vivo brain structure data sets (MRI) are then designed to evaluate the performance of our algorithm. The new method was applied to brain MRI data sets, and the estimated point correspondences were compared to a statistical shape model built on exact correspondences. Based on established measures of 'generalization ability' and &apos
Statistical shape and texture model of quadrature phase information for prostate segmentation.
Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Mitra, Jhimli; Vilanova, Joan C; Comet-Batlle, Josep; Meriaudeau, Fabrice
2012-01-01
Prostate volume estimation from segmentation of transrectal ultrasound (TRUS) images aids in diagnosis and treatment of prostate hypertrophy and cancer. Computer-aided accurate and computationally efficient prostate segmentation in TRUS images is a challenging task, owing to low signal-to-noise ratio, speckle noise, calcifications, and heterogeneous intensity distribution in the prostate region. A multi-resolution framework using texture features in a parametric deformable statistical model of shape and appearance was developed to segment the prostate. Local phase information of log-Gabor quadrature filter extracted texture of the prostate region in TRUS images. Large bandwidth of log-Gabor filter ensures easy estimation of local orientations, and zero response for a constant signal provides invariance to gray level shift. This aids in enhanced representation of the underlying texture information of the prostate unaffected by speckle noise and imaging artifacts. The parametric model of the propagating contour is derived from principal component analysis of prior shape and texture information of the prostate from the training data. The parameters were modified using prior knowledge of the optimization space to achieve segmentation. The proposed method achieves a mean Dice similarity coefficient value of 0.95 ± 0.02 and mean absolute distance of 1.26 ± 0.51 millimeter when validated with 24 TRUS images of 6 data sets in a leave-one-patient-out validation framework. The proposed method for prostate TRUS image segmentation is computationally efficient and provides accurate prostate segmentations in the presence of intensity heterogeneities and imaging artifacts.
Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng
2015-01-14
High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li(1.2)Ni(0.13)Mn(0.54)Co(0.13)O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li(+) intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAh g(-1)) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.
Lei, Ying; Li, Jing; Wang, Yanyan; Gu, Li; Chang, Yuefan; Yuan, Hongyan; Xiao, Dan
2014-02-12
Binary metal oxides with three-dimensional (3D) superstructure have been regarded as desirable electrode materials for the supercapacitor due to the combination of the improved electrical conductivity and effective porous structure. 3D hierarchical flower-shaped nickel cobaltite (NiCo2O4) microspheres have been fabricated by a rapid and template-free microwave-assisted heating (MAH) reflux approach followed by pyrolysis of the as-prepared precursors. The flower-shaped NiCo2O4 microspheres, composed of ultrathin nanopetals with thickness of about 15 nm, are endowed with large specific surface area (148.5 m(2) g(-1)) and a narrow pore size distribution (5-10 nm). The as-fabricated porous flower-shaped NiCo2O4 microspheres as electrode materials for supercapacitor exhibited high specific capacitance of 1006 F g(-1) at 1 A g(-1), enhanced rate capability, and excellent electrochemical stability with 93.2% retention after 1000 continuous charge-discharge (CD) cycles even at a high current density of 8 A g(-1). The desirable integrated performance enables it to be a promising electrode material for the electrochemical supercapacitor (EC).
Yang, Yuqing; Chen, Ning; Chen, Ting
2017-01-25
The inference of associations between environmental factors and microbes and among microbes is critical to interpreting metagenomic data, but compositional bias, indirect associations resulting from common factors, and variance within metagenomic sequencing data limit the discovery of associations. To account for these problems, we propose metagenomic Lognormal-Dirichlet-Multinomial (mLDM), a hierarchical Bayesian model with sparsity constraints, to estimate absolute microbial abundance and simultaneously infer both conditionally dependent associations among microbes and direct associations between microbes and environmental factors. We empirically show the effectiveness of the mLDM model using synthetic data, data from the TARA Oceans project, and a colorectal cancer dataset. Finally, we apply mLDM to 16S sequencing data from the western English Channel and report several associations. Our model can be used on both natural environmental and human metagenomic datasets, promoting the understanding of associations in the microbial community.
Directory of Open Access Journals (Sweden)
Liying Zheng
Full Text Available This study characterized the soft tissue insertion morphometrics on the tibial plateau and their inter-relationships as well as variabilities. The outlines of the cruciate ligament and meniscal root insertions along with the medial and lateral cartilage on 20 cadaveric tibias (10 left and 10 right knees were digitized and co-registered with corresponding CT-based 3D bone models. Generalized Procrustes Analysis was employed in conjunction with Principal Components Analysis to first create a geometric consensus based on tibial cartilage and then determine the means and variations of insertion morphometrics including shape, size, location, and inter-relationship measures. Step-wise regression analysis was conducted in search of parsimonious models relating the morphometric measures to the tibial plateau width and depth, and basic anthropometric and gender factors. The analyses resulted in statistical morphometric representations for Procrustes-superimposed cruciate ligament and meniscus insertions, and identified only a few moderate correlations (R2: 0.37-0.49. The study provided evidence challenging the isometric scaling based on a single dimension frequently employed in related morphometric studies, and data for evaluating cruciate ligament reconstruction strategies in terms of re-creating the native anatomy and minimizing the risk of iatrogenic injury. It paved the way for future development of computer-aided personalized orthopaedic surgery applications improving the quality of care and patient safety, and biomechanical models with a better population or average representation.
Dose coverage calculation using a statistical shape model—applied to cervical cancer radiotherapy
Tilly, David; van de Schoot, Agustinus J. A. J.; Grusell, Erik; Bel, Arjan; Ahnesjö, Anders
2017-05-01
A comprehensive methodology for treatment simulation and evaluation of dose coverage probabilities is presented where a population based statistical shape model (SSM) provide samples of fraction specific patient geometry deformations. The learning data consists of vector fields from deformable image registration of repeated imaging giving intra-patient deformations which are mapped to an average patient serving as a common frame of reference. The SSM is created by extracting the most dominating eigenmodes through principal component analysis of the deformations from all patients. The sampling of a deformation is thus reduced to sampling weights for enough of the most dominating eigenmodes that describe the deformations. For the cervical cancer patient datasets in this work, we found seven eigenmodes to be sufficient to capture 90% of the variance in the deformations of the, and only three eigenmodes for stability in the simulated dose coverage probabilities. The normality assumption of the eigenmode weights was tested and found relevant for the 20 most dominating eigenmodes except for the first. Individualization of the SSM is demonstrated to be improved using two deformation samples from a new patient. The probabilistic evaluation provided additional information about the trade-offs compared to the conventional single dataset treatment planning.
Local phase tensor features for 3-D ultrasound to statistical shape+pose spine model registration.
Hacihaliloglu, Ilker; Rasoulian, Abtin; Rohling, Robert N; Abolmaesumi, Purang
2014-11-01
Most conventional spine interventions are performed under X-ray fluoroscopy guidance. In recent years, there has been a growing interest to develop nonionizing imaging alternatives to guide these procedures. Ultrasound guidance has emerged as a leading alternative. However, a challenging problem is automatic identification of the spinal anatomy in ultrasound data. In this paper, we propose a local phase-based bone feature enhancement technique that can robustly identify the spine surface in ultrasound images. The local phase information is obtained using a gradient energy tensor filter. This information is used to construct local phase tensors in ultrasound images, which highlight the spine surface. We show that our proposed approach results in a more distinct enhancement of the bone surfaces compared to recently proposed techniques based on monogenic scale-space filters and logarithmic Gabor filters. We also demonstrate that registration accuracy of a statistical shape+pose model of the spine to 3-D ultrasound images can be significantly improved, using the proposed method, compared to those obtained using monogenic scale-space filters and logarithmic Gabor filters.
Phantom validation for ultrasound to statistical shape model registration of human pelvis
Ghanavati, Sahar; Mousavi, Parvin; Fichtinger, Gabor; Abolmaesumi, Purang
2011-03-01
Total Hip Replacement (THR) has become a common surgical procedure in recent years, as a result of increasing aging population with osteoarthritis of the hip joint. Localization of the pelvic anatomical coordinate system (PaCS) is a critical step in accurate placement of the femur prosthesis in the acetabulum in THR. Intra-operative ultrasound (US) imaging can provide a radiation-free navigation system for localization of the PaCS. However, US images are noisy and cannot provide any anatomical information beneath the bone surface due to the total reflection of US beam at the bone-soft tissue interface. A solution to this problem is to fuse intra-operative US with pre-operative imaging or a statistical shape model (SSM) of the pelvis. Here, we propose a multi-slice to volume intensity-based registration of the pelvic SSM to a sparse set of 2D US images in order to localize the PaCS in the US. In this registration technique, a set of 2D slices are extracted from a pelvic SSM using the approximate location and orientation of their corresponding 2D US images. During the registration, the comparison between the SSM slices and the US images is made using an ultrasound simulation technique and a correlation-based similarity metric. We demonstrate the feasibility of our proposed approach in localizing the PaCS on five patient-based phantoms. These results indicate the necessity of including pubic symphysis landmarks in the 2D US slices in order to have a precise estimation of the PaCS.
Statistical 2D and 3D shape analysis using Non-Euclidean Metrics
DEFF Research Database (Denmark)
Larsen, Rasmus; Hilger, Klaus Baggesen; Wrobel, Mark Christoph
2002-01-01
We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition. Furtherm......We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition...
Iterative graph cuts for image segmentation with a nonlinear statistical shape prior
Chang, Joshua C
2014-01-01
Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts.
Damage localization by statistical evaluation of signal-processed mode shapes
DEFF Research Database (Denmark)
Ulriksen, Martin Dalgaard; Damkilde, Lars
2015-01-01
in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement noise....... The present article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet transformation (CWT...
Hayslett, H T
1991-01-01
Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the
DEFF Research Database (Denmark)
Paulsen, Rasmus Reinhold; Larsen, Rasmus; Ersbøll, Bjarne Kjær
2002-01-01
This work deals with the analysis of the shape of the human ear canal. It is described how a dense surface point distribution model of the human ear canal is built based on a training set of laser scanned ear impressions and a sparse set of anatomical landmarks placed by an expert. The dense...... surface models are built by using the anatomical landmarks to warp a template mesh onto all shapes in the training set. Testing the gender related differences is done by initially reducing the dimensionality using principal component analysis of the vertices of the warped meshes. The number of components...
DEFF Research Database (Denmark)
Paulsen, Rasmus Reinhold; Larsen, Rasmus; Ersbøll, Bjarne Kjær;
2002-01-01
This work deals with the analysis of the shape of the human ear canal. It is described how a dense surface point distribution model of the human ear canal is built based on a training set of laser scanned ear impressions and a sparse set of anatomical landmarks placed by an expert. The dense...
Building and Testing a Statistical Shape Model of the Human Ear Canal
DEFF Research Database (Denmark)
Paulsen, Rasmus Reinhold; Larsen, Rasmus; Laugesen, Søren
2002-01-01
Today the design of custom in-the-ear hearing aids is based on personal experience and skills and not on a systematic description of the variation of the shape of the ear canal. In this paper it is described how a dense surface point distribution model of the human ear canal is built based on a t...
Statistical flaw characterization through Bayesian shape inversion from scattered wave observations
McMahan, Jerry A.; Criner, Amanda K.
2016-02-01
A method is discussed to characterize the shape of a flaw from noisy far-field measurements of a scattered wave. The scattering model employed is a two-dimensional Helmholtz equation which quantifies scattering due to interrogating signals from various physical phenomena such as acoustics or electromagnetics. The well-known inherent ill-posedness of the inverse scattering problem is addressed via Bayesian regularization. The method is loosely related to the approach described in [1] which uses the framework of [2] to prove the well-posedness of the infinite-dimensional problem and derive estimates of the error for a particular discretization approach. The method computes the posterior probability density for the flaw shape from the scattered field observations, taking into account prior assumptions which are used to describe any a priori knowledge of the flaw. We describe the computational approach to the forward problem as well as the Markov chain Monte Carlo (MCMC) based approach to approximating the posterior. We present simulation results for some hypothetical flaw shapes with varying levels of observation error and arrangement of observation points. The results show how the posterior probability density can be used to visualize the shape of the flaw taking into account the quantitative confidence in the quality of the estimation and how various arrangements of the measurements and interrogating signals affect the estimation
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
Statistical Analysis of a Weibull Extension with Bathtub-Shaped Failure Rate Function
Directory of Open Access Journals (Sweden)
Ronghua Wang
2014-01-01
Full Text Available We consider the parameter inference for a two-parameter life distribution with bathtub-shaped or increasing failure rate function. We present the point and interval estimations for the parameter of interest based on type-II censored samples. Through intensive Monte-Carlo simulations, we assess the performance of the proposed estimation methods by a comparison of precision. Example applications are demonstrated for the efficiency of the methods.
Lin, Ming; Chen, Rong; Liang, Jie
2008-02-01
Proteins contain many voids, which are unfilled spaces enclosed in the interior. A few of them have shapes compatible to ligands and substrates and are important for protein functions. An important general question is how the need for maintaining functional voids is influenced by, and affects other aspects of proteins structures and properties (e.g., protein folding stability, kinetic accessibility, and evolution selection pressure). In this paper, we examine in detail the effects of maintaining voids of different shapes and sizes using two-dimensional lattice models. We study the propensity for conformations to form a void of specific shape, which is related to the entropic cost of void maintenance. We also study the location that voids of a specific shape and size tend to form, and the influence of compactness on the formation of such voids. As enumeration is infeasible for long chain polymer, a key development in this work is the design of a novel sequential Monte Carlo strategy for generating large number of sample conformations under very constraining restrictions. Our method is validated by comparing results obtained from sampling and from enumeration for short polymer chains. We succeeded in accurate estimation of entropic cost of void maintenance, with and without an increasing number of restrictive conditions, such as loops forming the wall of void with fixed length, with additionally fixed starting position in the sequence. Additionally, we have identified the key structural properties of voids that are important in determining the entropic cost of void formation. We have further developed a parametric model to predict quantitatively void entropy. Our model is highly effective, and these results indicate that voids representing functional sites can be used as an improved model for studying the evolution of protein functions and how protein function relates to protein stability.
Statistical modelling of the interplay between solute shape and rejection in porous membranes
DEFF Research Database (Denmark)
Vinther, Frank; Pinelo, Manuel; Brøns, Morten
2012-01-01
–membrane, it can be expected that the possibility for a solute particle to enter the membrane pore will only depend upon the relation between such molecular conformation and pore size. The objective of the present study is to use geometric and statistical modelling to determine the effect of particle elongation...
How Narrative Focus and a Statistical Map Shape Health Policy Support Among State Legislators.
Niederdeppe, Jeff; Roh, Sungjong; Dreisbach, Caitlin
2016-01-01
This study attempts to advance theorizing about health policy advocacy with combinations of narrative focus and a statistical map in an attempt to increase state legislators' support for policies to address the issue of obesity by reducing food deserts. Specifically, we examine state legislators' responses to variations in narrative focus (individual vs. community) about causes and solutions for food deserts in U.S. communities, and a statistical map (presence vs. absence) depicting the prevalence of food deserts across the United States. Using a Web-based randomized experiment (N=496), we show that narrative focus and the statistical map interact to produce different patterns of cognitive response and support for policies to reduce the prevalence of food deserts. The presence of a statistical map showing the prevalence of food deserts in the United States appeared to matter only when combined with an individual narrative, offsetting the fact that the individual narrative in isolation produced fewer thoughts consistent with the story's persuasive goal and more counterarguments in opposition to environmental causes and solutions for obesity than other message conditions. The image did not have an impact when combined with a story describing a community at large. Cognitive responses fully mediated message effects on intended persuasive outcomes. We conclude by discussing the study's contributions to communication theory and practice.
Drop-Weight Impact Test on U-Shape Concrete Specimens with Statistical and Regression Analyses
Directory of Open Access Journals (Sweden)
Xue-Chao Zhu
2015-09-01
Full Text Available According to the principle and method of drop-weight impact test, the impact resistance of concrete was measured using self-designed U-shape specimens and a newly designed drop-weight impact test apparatus. A series of drop-weight impact tests were carried out with four different masses of drop hammers (0.875, 0.8, 0.675 and 0.5 kg. The test results show that the impact resistance results fail to follow a normal distribution. As expected, U-shaped specimens can predetermine the location of the cracks very well. It is also easy to record the cracks propagation during the test. The maximum of coefficient of variation in this study is 31.2%; it is lower than the values obtained from the American Concrete Institute (ACI impact tests in the literature. By regression analysis, the linear relationship between the first-crack and ultimate failure impact resistance is good. It can suggested that a minimum number of specimens is required to reliably measure the properties of the material based on the observed levels of variation.
Biffi, Benedetta; Bruse, Jan L.; Zuluaga, Maria A.; Ntsinjana, Hopewell N.; Taylor, Andrew M.; Schievano, Silvia
2017-01-01
Diagnosis of ventricular dysfunction in congenital heart disease is more and more based on medical imaging, which allows investigation of abnormal cardiac morphology and correlated abnormal function. Although analysis of 2D images represents the clinical standard, novel tools performing automatic processing of 3D images are becoming available, providing more detailed and comprehensive information than simple 2D morphometry. Among these, statistical shape analysis (SSA) allows a consistent and quantitative description of a population of complex shapes, as a way to detect novel biomarkers, ultimately improving diagnosis and pathology understanding. The aim of this study is to describe the implementation of a SSA method for the investigation of 3D left ventricular shape and motion patterns and to test it on a small sample of 4 congenital repaired aortic stenosis patients and 4 age-matched healthy volunteers to demonstrate its potential. The advantage of this method is the capability of analyzing subject-specific motion patterns separately from the individual morphology, visually and quantitatively, as a way to identify functional abnormalities related to both dynamics and shape. Specifically, we combined 3D, high-resolution whole heart data with 2D, temporal information provided by cine cardiovascular magnetic resonance images, and we used an SSA approach to analyze 3D motion per se. Preliminary results of this pilot study showed that using this method, some differences in end-diastolic and end-systolic ventricular shapes could be captured, but it was not possible to clearly separate the two cohorts based on shape information alone. However, further analyses on ventricular motion allowed to qualitatively identify differences between the two populations. Moreover, by describing shape and motion with a small number of principal components, this method offers a fully automated process to obtain visually intuitive and numerical information on cardiac shape and motion
Statistical characteristics of the observed Ly-α forest and the shape of initial power spectrum
Demiański, M.; Doroshkevich, A. G.; Turchaninov, V.
2003-04-01
Properties of approximately 4500 observed Ly α absorbers are investigated using the model of formation and evolution of dark matter (DM) structure elements based on the modified Zel'dovich theory. This model is generally consistent with simulations of absorber formation, describes the large-scale structure (LSS) observed in the galaxy distribution at small redshifts reasonably well and emphasizes the generic similarity of the LSS and absorbers. The simple physical model of absorbers asserts that they are composed of DM and gaseous matter. It allows us to estimate the column density and overdensity of DM and gaseous components and the entropy of the gas trapped within the DM potential wells. The parameters of the DM component are found to be consistent with theoretical expectations for the Gaussian initial perturbations with the warm dark matter-like power spectrum. The basic physical factors responsible for the evolution of the absorbers are discussed. The analysis of redshift distribution of absorbers confirms the self-consistency of the adopted physical model, Gaussianity of the initial perturbations and allows one to estimate the shape of the initial power spectrum at small scales that, in turn, restricts the mass of the dominant fraction of DM particles to MDM>= 1.5-5 keV. Our results indicate a possible redshift variations of intensity of the ultraviolet background by approximately a factor of 2-3 at redshifts z~ 2-3.
Statistical modelling of the interplay between solute shape and rejection in porous membranes
DEFF Research Database (Denmark)
Vinther, Frank; Pinelo, Manuel; Brøns, Morten
2012-01-01
–membrane, it can be expected that the possibility for a solute particle to enter the membrane pore will only depend upon the relation between such molecular conformation and pore size. The objective of the present study is to use geometric and statistical modelling to determine the effect of particle elongation...... suggested that the retention during porous membrane filtration can be manipulated when working with solute particles prone to alter conformation via, e.g., adding proper functional groups to the molecule, or modifying charge density/distribution by varying pH.......The structural conformation of complex molecules, e.g., polymers and proteins, is determined by several factors like composition of the basic structural units, charge, and properties of the surrounding solvent. In absence of any chemical or physical interaction solute–solute and/or solute...
Claes, Peter; Vandermeulen, Dirk; De Greef, Sven; Willems, Guy; Suetens, Paul
2006-05-15
Forensic facial reconstruction aims at estimating the facial outlook associated with an unidentified skull specimen. Estimation is generally based on tabulated average values of soft tissue thicknesses measured at a sparse set of landmarks on the skull. Traditional 'plastic' methods apply modeling clay or plasticine on a cast of the skull, approximating the estimated tissue depths at the landmarks and interpolating in between. Current computerized techniques mimic this landmark interpolation procedure using a single static facial surface template. However, the resulting reconstruction is biased by the specific choice of the template and no face-specific regularization is used during the interpolation process. We reduce the template bias by using a flexible statistical model of a dense set of facial surface points, combined with an associated sparse set of skull-based landmarks. This statistical model is constructed from a facial database of (N = 118) individuals and limits the reconstructions to statistically plausible outlooks. The actual reconstruction is obtained by fitting the skull-based landmarks of the template model to the corresponding landmarks indicated on a digital copy of the skull to be reconstructed. The fitting process changes the face-specific statistical model parameters in a regularized way and interpolates the remaining landmark fit error using a minimal bending thin-plate spline (TPS)-based deformation. Furthermore, estimated properties of the skull specimen (BMI, age and gender, e.g.) can be incorporated as conditions on the reconstruction by removing property-related shape variation from the statistical model description before the fitting process. The proposed statistical method is validated, both in terms of accuracy and identification success rate, based on leave-one-out cross-validation tests applied on the facial database. Accuracy results are obtained by statistically analyzing the local 3D facial surface differences of the
Kim, Won Hwa; Singh, Vikas; Chung, Moo K.; Hinrichs, Chris; Pachauri, Deepti; Okonkwo, Ozioma C.; Johnson, Sterling C.
2014-01-01
Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape descriptor, we make use of recent results from harmonic analysis that extend traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network). Using this descriptor, we conduct experiments on two different datasets, the Alzheimer’s Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer’s Disease Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer’s disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular, we contrast traditional univariate methods with our multi-resolution approach which show increased sensitivity and improved statistical power to detect a group-level effects. We also provide an open source implementation. PMID:24614060
Suzani, Amin; Rasoulian, Abtin; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang
2014-03-01
Segmentation of vertebral structures in magnetic resonance (MR) images is challenging because of poor contrast between bone surfaces and surrounding soft tissue. This paper describes a semi-automatic method for segmenting vertebral bodies in multi-slice MR images. In order to achieve a fast and reliable segmentation, the method takes advantage of the correlation between shape and pose of different vertebrae in the same patient by using a statistical multi-vertebrae anatomical shape+pose model. Given a set of MR images of the spine, we initially reduce the intensity inhomogeneity in the images by using an intensity-correction algorithm. Then a 3D anisotropic diffusion filter smooths the images. Afterwards, we extract edges from a relatively small region of the pre-processed image with a simple user interaction. Subsequently, an iterative Expectation Maximization technique is used to register the statistical multi-vertebrae anatomical model to the extracted edge points in order to achieve a fast and reliable segmentation for lumbar vertebral bodies. We evaluate our method in terms of speed and accuracy by applying it to volumetric MR images of the spine acquired from nine patients. Quantitative and visual results demonstrate that the method is promising for segmentation of vertebral bodies in volumetric MR images.
Directory of Open Access Journals (Sweden)
L. de Haro-Ariet
2003-09-01
Full Text Available The uplink capacity and the interference statistics of the sectorsof a long groove-shaped road W-CDMA microcell are studied. A model of 9microcells in a groove-shaped road is used to analyze the uplink. Ahybrid model for the propagation is used in the analysis. The capacityand the interference statistics of the cell are studied for differentsector ranges, different specific attenuation factors, differentantenna side lobe levels and different bend losses.
Detecting Hierarchical Structure in Networks
DEFF Research Database (Denmark)
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;
2012-01-01
a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....
Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.
2012-12-01
Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.
Classification of bones from MR images in torso PET-MR imaging using a statistical shape model
Energy Technology Data Exchange (ETDEWEB)
Reza Ay, Mohammad, E-mail: mohammadreza_ay@tums.ac.ir [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Akbarzadeh, Afshin [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ahmadian, Alireza [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Biomedical Technology and Robotics, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, CH-1211 Geneva (Switzerland); Geneva Neuroscience Center, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen (Netherlands)
2014-01-11
There have been exclusive features for hybrid PET/MRI systems in comparison with its PET/CT counterpart in terms of reduction of radiation exposure, improved soft-tissue contrast and truly simultaneous and multi-parametric imaging capabilities. However, quantitative imaging on PET/MR is challenged by attenuation of annihilation photons through their pathway. The correction for photon attenuation requires the availability of patient-specific attenuation map, which accounts for the spatial distribution of attenuation coefficients of biological tissues. However, the lack of information on electron density in the MR signal poses an inherent difficulty to the derivation of the attenuation map from MR images. In other words, the MR signal correlates with proton densities and tissue relaxation properties, rather than with electron density and, as such, it is not directly related to attenuation coefficients. In order to derive the attenuation map from MR images at 511 keV, various strategies have been proposed and implemented on prototype and commercial PET/MR systems. Segmentation-based methods generate an attenuation map by classification of T1-weighted or high resolution Dixon MR sequences followed by assignment of predefined attenuation coefficients to various tissue types. Intensity-based segmentation approaches fail to include bones in the attenuation map since the segmentation of bones from conventional MR sequences is a difficult task. Most MR-guided attenuation correction techniques ignore bones owing to the inherent difficulties associated with bone segmentation unless specialized MR sequences such as ultra-short echo (UTE) sequence are utilized. In this work, we introduce a new technique based on statistical shape modeling to segment bones and generate a four-class attenuation map. Our segmentation approach requires a torso bone shape model based on principle component analysis (PCA). A CT-based training set including clearly segmented bones of the torso region
Last, Carsten
2017-01-01
This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.
Li, Xin; Yu, Jiaguo; Jaroniec, Mietek
2016-05-01
As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.
Directory of Open Access Journals (Sweden)
Florian Heib
2016-11-01
Full Text Available Surface science, which includes the preparation, development and analysis of surfaces and coatings, is essential in both fundamental and applied as well as in engineering and industrial research. Contact angle measurements using sessile drop techniques are commonly used to characterize coated surfaces or surface modifications. Well-defined surfaces structures at both nanoscopic and microscopic level can be achieved but the reliable characterization by means of contact angle measurements and their interpretation often remains an open question. Thus, we focused our research effort on one main problem of surface science community, which is the determination of correct and valid definitions and measurements of contact angles. In this regard, we developed the high-precision drop shape analysis (HPDSA, which involves a complex transformation of images from sessile drop experiments to Cartesian coordinates and opens up the possibility of a physically meaningful contact angle calculation. To fulfill the dire need for a reproducible contact angle determination/definition, we developed three easily adaptable statistical analyses procedures. In the following, the basic principles of HPDSA will be explained and applications of HPDSA will be illustrated. Thereby, the unique potential of this analysis approach will be illustrated by means of selected examples.
Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan
2015-01-01
The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the three-dimensional (3D) joint surface model has been reported in the literature. In this study, we constructed a SSM database using 152 human computed tomography (CT) knee joint models, including the femur, tibia and patella and analysed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 s using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus, it may have a broad application in computer-assisted knee surgeries that require 3D surface models of the knee.
2010-05-10
targets in noisy/corrupted images (Bayesian active contours), finding shape models in point clouds derived from images, shape analysis of facial surfaces...Srivastava and I. H. Jermyn, Bayesian Classification of Shapes Hidden in Point Clouds , Proceedings of 13th Digital Signal Processing Workshop, Marco...CA, June 2010. 18. J. Su, Z. Zhu, F. Huffer, and A. Srivastava, Detecting Shapes in 2D Point Clouds Generated from Images, International Conference on
Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus
Jelonek, M
2006-01-01
The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of modeling hierarchical linear equations and estimation based on MPlus software. I present my own model to illustrate the impact of different factors on school acceptation level.
Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus
Jelonek, Magdalena
2006-01-01
The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of m...
Energy Technology Data Exchange (ETDEWEB)
Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: myp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Markov, A. B., E-mail: a.markov@hq.tsc.ru; Ozur, G. E., E-mail: vrotshtein@yahoo.com; Yakovlev, E. V., E-mail: msn@ispms.tsc.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Rotshtein, V. P., E-mail: yakovev@lve.hcei.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Tomsk State Pedagogical University, Tomsk, 634050 (Russian Federation); Gudimova, E. Yu., E-mail: ozur@lve.hcei.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)
2015-10-27
The regularities of surface cratering in TiNi alloy irradiated with a low-energy, high-current electron beam (LEHCEB) in dependence on energy density and number of pulses are studied. LEHCEB processing of TiNi samples was carried out using RITM-SP facility. Energy density E{sub s} was varied from 1 to 5 J/cm{sup 2}, pulse duration was 2.5–3.0 μs, the number of pulses n = 1–128. The dominant role of non-metallic inclusions [mainly, TiC(O)] in the nucleation of microcraters was found. It was revealed that at small number of pulses (n = 2), an increase in energy density leads both to increasing average diameter and density of microcraters. An increase in the number of pulses leads to a monotonic decrease in density of microcraters, and, therefore, that of the proportion of the area occupied by microcraters, as well as a decrease in the surface roughness. The multiple LEHCEB melting of TiNi alloy in crater-free modes enables to form quasi-periodical, hierarchically-organized microsized surface structures.
Indian Academy of Sciences (India)
K Yogesh Kumar; H B Muralidhara; Y Arthoba Nayaka; H Hanumanthappa; M S Veena; S R Kiran Kumar
2015-02-01
Hierarchical mesoporous NiO nanoflakes (NiOs) have been synthesized in high yield via a simple, economical and environmentally friendly hydrothermal route. The as-prepared NiOs were characterized by powder X-ray diffraction (PXRD), scanning electronicmicroscopy (SEM), transmission electronmicroscopy (TEM), selected area electron diffraction patterns (SAED), X-ray energy dispersive spectroscopy (EDS) and nitrogen adsorption–desorption techniques (Brunauer–Emmett–Teller, BET). Adsorption of heavy metal ions onto the as-prepared sample from aqueous solutions was investigated using differential pulse anodic stripping voltametry (DPASV) technique and discussed. The product possesses a BET surface area of 69.27 m2 g-1. It is found that NiOs exhibited the excellent performance for the removal of Hg(II), Pb(II) and Cd(II) from aqueous solution. The equilibrium adsorption data of Hg(II), Pb(II) and Cd(II) on the as-prepared NiOs were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of Hg(II), Pb(II) and Cd(II) were determined using the Langmuir equation and found to be 1324.5, 1428.9 and 1428.5 mg g-1, respectively. Adsorption kinetics of all the metal ions followed pseudo second-order model. Moreover, NiOs can be recycled by simple acid treatment, which could retain the high removal efficiency in three successive cycles. This study suggests that nanoflakes could be explored as a new adsorbent with high efficiency and recyclability for removing heavy metal ions from aqueous solution.
Hierarchical architecture of active knits
Abel, Julianna; Luntz, Jonathan; Brei, Diann
2013-12-01
Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm.
Anca Iridon
2012-01-01
The present paper shows the results of unidimensional statistic analyses of anthropometrical basic parameters such as: height (body length) – Ic, bust perimeter – PB and waist perimeter – PT, obtained by taking measurements on young men between 20-29 years of age, and the determination of initial data necessary for bi-dimensional statistical distributions. It should be noted that for the studied age group, in order to completely assess the variation of the main anthropometric measurements for...
Bazan, Carlos; Hawkins, Trevor; Torres-Barba, David; Blomgren, Peter; Paolini, Paul
2011-08-22
We are exploring the viability of a novel approach to cardiocyte contractility assessment based on biomechanical properties of the cardiac cells, energy conservation principles, and information content measures. We define our measure of cell contraction as being the distance between the shapes of the contracting cell, assessed by the minimum total energy of the domain deformation (warping) of one cell shape into another. To guarantee a meaningful vis-à-vis correspondence between the two shapes, we employ both a data fidelity term and a regularization term. The data fidelity term is based on nonlinear features of the shapes while the regularization term enforces the compatibility between the shape deformations and that of a hyper-elastic material. We tested the proposed approach by assessing the contractile responses in isolated adult rat cardiocytes and contrasted these measurements against two different methods for contractility assessment in the literature. Our results show good qualitative and quantitative agreements with these methods as far as frequency, pacing, and overall behavior of the contractions are concerned. We hypothesize that the proposed methodology, once appropriately developed and customized, can provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer statistically significant model parameters for the constitutive equations of the cardiocytes.
Discovering hierarchical structure in normal relational data
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten
2014-01-01
Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non-param...
Statistical Shape Analysis of the Human Ear Canal with Application to In-the-Ear Hearing Aid Design
DEFF Research Database (Denmark)
Paulsen, Rasmus Reinhold
2004-01-01
plate spline based approach creates a dense correspondence between the shapes in training set. In addition, a new flexible, non-rigid registration framework is proposed and used to optimise the correspondence ¯eld. The framework is based on Markov Random Field regularisation and is motivated by prior...... work on image restoration. It is shown how the method significantly improves the shape model. In the second part of the thesis, the shape model is used in software tools that mimic the skills of the expert hearing aid makers. The first result is that it is possible to learn an algorithm to cut an ear......- kanal er lavet på baggrund af et træningssæt af laser-skannede øre aftryk. En Thin Plate Spline baseret metode genererer en kompakt korrespondance mellem formerne i træningssættet. Endvidere er en fleksibel, ikke-rigid registrerings metode foreslået og brugt til at optimere korrespondance feltet...
Functional annotation of hierarchical modularity.
Directory of Open Access Journals (Sweden)
Kanchana Padmanabhan
Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our
An introduction to hierarchical linear modeling
National Research Council Canada - National Science Library
Woltman, Heather; Feldstain, Andrea; MacKay, J. Christine; Rocchi, Meredith
2012-01-01
This tutorial aims to introduce Hierarchical Linear Modeling (HLM). A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis...
PERFORMANCE OF SELECTED AGGLOMERATIVE HIERARCHICAL CLUSTERING METHODS
Directory of Open Access Journals (Sweden)
Nusa Erman
2015-01-01
Full Text Available A broad variety of different methods of agglomerative hierarchical clustering brings along problems how to choose the most appropriate method for the given data. It is well known that some methods outperform others if the analysed data have a specific structure. In the presented study we have observed the behaviour of the centroid, the median (Gower median method, and the average method (unweighted pair-group method with arithmetic mean – UPGMA; average linkage between groups. We have compared them with mostly used methods of hierarchical clustering: the minimum (single linkage clustering, the maximum (complete linkage clustering, the Ward, and the McQuitty (groups method average, weighted pair-group method using arithmetic averages - WPGMA methods. We have applied the comparison of these methods on spherical, ellipsoid, umbrella-like, “core-and-sphere”, ring-like and intertwined three-dimensional data structures. To generate the data and execute the analysis, we have used R statistical software. Results show that all seven methods are successful in finding compact, ball-shaped or ellipsoid structures when they are enough separated. Conversely, all methods except the minimum perform poor on non-homogenous, irregular and elongated ones. Especially challenging is a circular double helix structure; it is being correctly revealed only by the minimum method. We can also confirm formerly published results of other simulation studies, which usually favour average method (besides Ward method in cases when data is assumed to be fairly compact and well separated.
Hierarchical topic modeling with nested hierarchical Dirichlet process
Institute of Scientific and Technical Information of China (English)
Yi-qun DING; Shan-ping LI; Zhen ZHANG; Bin SHEN
2009-01-01
This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as welt as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more free-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.
Hierarchical modeling and analysis for spatial data
Banerjee, Sudipto; Gelfand, Alan E
2003-01-01
Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat
Energy Technology Data Exchange (ETDEWEB)
Shibayama, Y; Arimura, H; Nakamura, K; Honda, H; Toyofuku, F [Kyushu University, Fukuoka, JP (Japan); Hirose, T; Umezu, Y; Nakamura, Y [Kyushu University Hospital, Fukuoka, JP (Japan)
2015-06-15
Purpose: Our aim of this study was to propose a computational approach for determination of anisotropic planning target volume (PTV) margins based on statistical shape analysis with taking into account time variations of clinical target volume (CTV) shapes for the prostate cancer radiation treatment planning (RTP). Methods: Systematic and random setup errors were measured using orthogonal projection and cone beam computed tomography (CBCT) images for data of 20 patients, who underwent the intensity modulated radiation therapy for prostate cancer. The low-risk, intermediate-risk, and high-risk CTVs were defined as only a prostate, a prostate plus proximal 1-cm seminal vesicles, and a prostate plus proximal 2-cm seminal vesicles, respectively. All CTV regions were registered with a reference CTV region with a median volume to remove the effect of the setup errors, and converted to a point distribution models. The systematic and random errors for translations of CTV regions were automatically evaluated by analyzing the movements of centroids of CTV regions. The random and systematic errors for shape variations of CTV regions were obtained from covariance matrices based on point distributions for the CTV contours on CBCT images of 72 fractions of 10 patients. Anisotropic PTV margins for 6 directions (right, left, anterior, posterior, superior and inferior) were derived by using Yoda’s PTV margin model. Results: PTV margins with and without shape variations were 5.75 to 8.03 mm and 5.23 to 7.67 mm for low-risk group, 5.87 to 8.33 mm and 5.23 to 7.67 mm for intermediate-risk group, and 5.88 to 8.25 mm and 5.29 to 7.82 mm for highrisk group, respectively. Conclusion: The proposed computational approach could be feasible for determination of the anisotropic PTV margins with taking into account CTV shape variations for the RTP.
Hierarchically Nanostructured Materials for Sustainable Environmental Applications
Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian
2013-11-01
This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.
Hierarchically nanostructured materials for sustainable environmental applications
Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian
2013-01-01
This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946
Hierarchically Nanostructured Materials for Sustainable Environmental Applications
Directory of Open Access Journals (Sweden)
Zheng eRen
2013-11-01
Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.
Statistical characteristics of the observed Lyα forest and the shape of the initial power spectrum
Demiański, M.; Doroshkevich, A. G.; Turchaninov, V. I.
2006-09-01
We analyse the basic properties of about 6000 Lyman α absorbers observed in the high-resolution spectra of 19 quasars. We compare their observed characteristics with the predictions of our model of formation and evolution of absorbers and dark matter (DM) pancakes and voids based on the Zel'dovich theory of gravitational instability. This model asserts that absorbers are formed in the course of both linear and non-linear adiabatic and shock compression of DM and gaseous matter. Our model is consistent with simulations of structure formation, describes reasonably well the large-scale structure (LSS) observed in the distribution of galaxies at small redshifts, and emphasizes the generic similarity of the process of formation of LSS and absorbers. Using this model, we are able to link the column density and overdensity of the DM and gaseous components with the observed column density of neutral hydrogen, redshifts and Doppler parameters of absorbers. We show that the colder absorbers are associated with rapidly expanded underdense regions of galactic scale. We extend an existing method of measuring the power spectrum of initial perturbations. The observed separations between absorbers and their DM column density are linked with the correlation function of the initial velocity field. Applying this method to our sample of absorbers, we recover the cold dark matter (CDM) like power spectrum at scales of 10h-1 >= D >= 0.15h-1Mpc with a precision of ~15 per cent. However, at scales of ~3-150h-1kpc, the measured and CDM-like spectra are different. This result suggests a possible complex inflation with generation of excess power at small scales. Both confirmation of the CDM-like shape of the initial power spectrum and detection of its distortions at small scales are equally important for the widely discussed problems of physics of the early Universe, galaxy formation, and reheating of the Universe.
Directory of Open Access Journals (Sweden)
Todd L Bredbenner
2014-11-01
Full Text Available Cervical spinal injuries are a significant concern in all trauma injuries. Recent military conflicts have demonstrated the substantial risk of spinal injury for the modern warfighter. Finite element models used to investigate injury mechanisms often fail to examine the effects of variation in geometry or material properties on mechanical behavior. The goals of this study were to model geometric variation for a set of cervical spines, to extend this model to a parametric finite element model, and, as a first step, to validate the parametric model against experimental data for low-loading conditions. Individual finite element models were created using cervical spine (C3-T1 CT data for five male cadavers. Statistical shape modeling was used to generate a parametric finite element model incorporating variability of spine geometry, and soft tissue material property variation was also included. The probabilistic loading response of the parametric model was determined under flexion-extension, axial rotation, and lateral bending and validated by comparison to experimental data. Based on qualitative and quantitative comparison of the experimental loading response and model simulations, we suggest that the model performs adequately under relatively low-level loading conditions in multiple loading directions. In conclusion, statistical shape modeling methods coupled with finite element analyses within a probabilistic framework, along with the ability to statistically validate the overall model performance, provide innovative and important steps towards describing the differences in vertebral morphology, spinal curvature, and variation in material properties. We suggest that these methods, with additional investigation and validation under injurious loading conditions, will lead to understanding and mitigating the risks of injury in the spine and other musculoskeletal structures.
DEFF Research Database (Denmark)
Thomadsen, Tommy
2005-01-01
of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...
Hierarchical Multiagent Reinforcement Learning
2004-01-25
In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In
Tang, Xianyan; Geater, Alan; McNeil, Edward; Deng, Qiuyun; Dong, Aihu; Zhong, Ge
2017-04-04
Outbreaks of measles re-emerged in Guangxi province during 2013-2014, where measles again became a major public health concern. A better understanding of the patterns of measles cases would help in identifying high-risk areas and periods for optimizing preventive strategies, yet these patterns remain largely unknown. Thus, this study aimed to determine the patterns of measles clusters in space, time and space-time at the county level over the period 2004-2014 in Guangxi. Annual data on measles cases and population sizes for each county were obtained from Guangxi CDC and Guangxi Bureau of Statistics, respectively. Epidemic curves and Kulldorff's temporal scan statistics were used to identify seasonal peaks and high-risk periods. Tango's flexible scan statistics were implemented to determine irregular spatial clusters. Spatio-temporal clusters in elliptical cylinder shapes were detected by Kulldorff's scan statistics. Population attributable risk percent (PAR%) of children aged ≤24 months was used to identify regions with a heavy burden of measles. Seasonal peaks occurred between April and June, and a temporal measles cluster was detected in 2014. Spatial clusters were identified in West, Southwest and North Central Guangxi. Three phases of spatio-temporal clusters with high relative risk were detected: Central Guangxi during 2004-2005, Midwest Guangxi in 2007, and West and Southwest Guangxi during 2013-2014. Regions with high PAR% were mainly clustered in West, Southwest, North and Central Guangxi. A temporal uptrend of measles incidence existed in Guangxi between 2010 and 2014, while downtrend during 2004-2009. The hotspots shifted from Central to West and Southwest Guangxi, regions overburdened with measles. Thus, intensifying surveillance of timeliness and completeness of routine vaccination and implementing supplementary immunization activities for measles should prioritized in these regions.
Managing Clustered Data Using Hierarchical Linear Modeling
Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.
2012-01-01
Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…
Managing Clustered Data Using Hierarchical Linear Modeling
Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.
2012-01-01
Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…
DEFF Research Database (Denmark)
Thomadsen, Tommy
2005-01-01
Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...
Statistical methods in astronomy
Long, James P.; de Souza, Rafael S.
2017-01-01
We present a review of data types and statistical methods often encountered in astronomy. The aim is to provide an introduction to statistical applications in astronomy for statisticians and computer scientists. We highlight the complex, often hierarchical, nature of many astronomy inference problems and advocate for cross-disciplinary collaborations to address these challenges.
Hierarchical linear regression models for conditional quantiles
Institute of Scientific and Technical Information of China (English)
TIAN Maozai; CHEN Gemai
2006-01-01
The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectively with the data with a hierarchical structure.In practice,the existence of such data hierarchies is neither accidental nor ignorable,it is a common phenomenon.To ignore this hierarchical data structure risks overlooking the importance of group effects,and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid.On the other hand,the hierarchical models take a hierarchical data structure into account and have also many applications in statistics,ranging from overdispersion to constructing min-max estimators.However,the hierarchical models are virtually the mean regression,therefore,they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates.Furthermore,the estimated coefficient vector (marginal effects)is sensitive to an outlier observation on the dependent variable.In this article,a new approach,which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models,is developed.On the theoretical front,we also consider the asymptotic properties of the new method,obtaining the simple conditions for an n1/2-convergence and an asymptotic normality.We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained.
Directory of Open Access Journals (Sweden)
Dongsheng Chen
2016-01-01
Full Text Available Accurate biomass estimations are important for assessing and monitoring forest carbon storage. Bayesian theory has been widely applied to tree biomass models. Recently, a hierarchical Bayesian approach has received increasing attention for improving biomass models. In this study, tree biomass data were obtained by sampling 310 trees from 209 permanent sample plots from larch plantations in six regions across China. Non-hierarchical and hierarchical Bayesian approaches were used to model allometric biomass equations. We found that the total, root, stem wood, stem bark, branch and foliage biomass model relationships were statistically significant (p-values < 0.001 for both the non-hierarchical and hierarchical Bayesian approaches, but the hierarchical Bayesian approach increased the goodness-of-fit statistics over the non-hierarchical Bayesian approach. The R2 values of the hierarchical approach were higher than those of the non-hierarchical approach by 0.008, 0.018, 0.020, 0.003, 0.088 and 0.116 for the total tree, root, stem wood, stem bark, branch and foliage models, respectively. The hierarchical Bayesian approach significantly improved the accuracy of the biomass model (except for the stem bark and can reflect regional differences by using random parameters to improve the regional scale model accuracy.
A New Metrics for Hierarchical Clustering
Institute of Scientific and Technical Information of China (English)
YANGGuangwen; SHIShuming; WANGDingxing
2003-01-01
Hierarchical clustering is a popular method of performing unsupervised learning. Some metric must be used to determine the similarity between pairs of clusters in hierarchical clustering. Traditional similarity metrics either can deal with simple shapes (i.e. spherical shapes) only or are very sensitive to outliers (the chaining effect). The main contribution of this paper is to propose some potential-based similarity metrics (APES and AMAPES) between clusters in hierarchical clustering, inspired by the concepts of the electric potential and the gravitational potential in electromagnetics and astronomy. The main features of these metrics are: the first, they have strong antijamming capability; the second, they are capable of finding clusters of different shapes such as spherical, spiral, chain, circle, sigmoid, U shape or other complex irregular shapes; the third, existing algorithms and research fruits for classical metrics can be adopted to deal with these new potential-based metrics with no or little modification. Experiments showed that the new metrics are more superior to traditional ones. Different potential functions are compared, and the sensitivity to parameters is also analyzed in this paper.
Paranjape, Harshad Madhukar
Shape memory alloys (SMA) show two remarkable properties- pseudoelasticity and shape memory effect. These properties make them an attractive material for a variety of commercial applications. However, the mechanism of austenite to martensite phase transformation, responsible for these properties also induces plastic deformation leading to structural and functional fatigue. Micron scale experiments suggest that the plastic deformation is induced in part due to the local stress field of the fine martensite microstructure. However, the results are qualitative and the nature of transformation-plasticity interaction is dependent on factors like the width of the interfaces. This thesis presents a new modeling approach to study the interaction between martensite correspondence variant scale microstructure and plastic deformation in austenite. A phase field method based evolution law is developed for phase transformation and reorientation of martensite CVs. This is coupled with a crystal plasticity law for austenite plastic deformation. The model is formulated with finite deformation and rotations. The effect of local crystal orientation is incorporated. An explicit time integration scheme is developed and implemented in a finite element method (FEM) based framework, allowing the modeling of complex boundary conditions and arbitrary loading conditions. Two systematic studies are carried out with the model. First, the interaction between plasticity and phase transformation is studied for load-free and load-biased thermal cycling of single crystals. Key outcomes of this study are that, the residual martensite formed during thermal cycling provides nucleation sites for the phase transformation in the subsequent cycles. Further, the distribution of slip on different slip systems is determined by the martensite texture. This is a strong evidence for transformation induced plasticity. In the second study, experimentally informed simulations of NiTi micropillar compression are
Micromechanics of hierarchical materials
DEFF Research Database (Denmark)
Mishnaevsky, Leon, Jr.
2012-01-01
A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...
Hierarchical auxetic mechanical metamaterials.
Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N
2015-02-11
Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-12-05
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Hierarchical Auxetic Mechanical Metamaterials
Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.
2015-02-01
Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.
Applied Bayesian Hierarchical Methods
Congdon, Peter D
2010-01-01
Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.
Programming with Hierarchical Maps
DEFF Research Database (Denmark)
Ørbæk, Peter
This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....
Catalysis with hierarchical zeolites
DEFF Research Database (Denmark)
Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten
2011-01-01
Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...
Hierarchical Analysis of the Omega Ontology
Energy Technology Data Exchange (ETDEWEB)
Joslyn, Cliff A.; Paulson, Patrick R.
2009-12-01
Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.
Parallel hierarchical radiosity rendering
Energy Technology Data Exchange (ETDEWEB)
Carter, M.
1993-07-01
In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.
Neutrosophic Hierarchical Clustering Algoritms
Directory of Open Access Journals (Sweden)
Rıdvan Şahin
2014-03-01
Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.
Hierarchically Structured Monolithic ZSM-5 through Macroporous Silica Gel Zeolitization
Institute of Scientific and Technical Information of China (English)
Lei Qian; Zhao Tianbo; Li Fengyan; Zong Baoning; Tong Yangchuan
2006-01-01
The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of macroporous silica gel were well preserved. The hierarchically structured ZSM-5 monolith exhibited the hierarchical porosity, with mesopores and macropores existing inside the macroporous silica gel, and micropores formed by the ZSM-5. The products have been characterized properly by using the XRD, SEM and N2 adsorption-desorption methods.
Hierarchical Porous Structures
Energy Technology Data Exchange (ETDEWEB)
Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-07
Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.
Collaborative Hierarchical Sparse Modeling
Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina C
2010-01-01
Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is done by solving an l_1-regularized linear regression problem, usually called Lasso. In this work we first combine the sparsity-inducing property of the Lasso model, at the individual feature level, with the block-sparsity property of the group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the hierarchical Lasso, which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level but not necessarily at the lower one. Signals then share the same active groups, or classes, but not necessarily the same active set. This is very well suited for applications such as source separation. An efficient optimization procedure, which guarantees convergence to the global opt...
Hierarchical manifold learning.
Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Jo; Rueckert, Daniel
2012-01-01
We present a novel method of hierarchical manifold learning which aims to automatically discover regional variations within images. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate its utility in two very different settings: (1) to learn the regional correlations in motion within a sequence of time-resolved images of the thoracic cavity; (2) to find discriminative regions of 3D brain images in the classification of neurodegenerative disease,
Hierarchically Structured Electrospun Fibers
Directory of Open Access Journals (Sweden)
Nicole E. Zander
2013-01-01
Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.
Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.
2015-02-01
The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023). HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).
Hierarchical video summarization
Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.
1998-12-01
We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.
Zhang, Zhedong
2015-01-01
We provide a quantitative description of the nonequilibriumness based on the model of coupled oscillators interacting with multiple energy sources. This can be applied to the study of vibrational energy transport in molecules. The curl quantum flux quantifying the nonequilibriumness and time-irreversibility is quantified in the coherent representation and we find the geometric description of the shape and polarization of the flux which provides the connection between the microscopic description of quantum nonequilibriumness and the macroscopic observables, i.e., correlation function. We use the Wilson loop integral to quantify the magnitude of curl flux, which is shown to be correlated to the correlation function as well. Coherence contribution is explicitly demonstrated to be non-trivial and to considerably promote the heat transport quantified by heat current and efficiency. This comes from the fact that coherence effect is microscopically reflected by the geometric description of the flux. To uncover the e...
Tang, Yichao; Lin, Gaojian; Han, Lin; Qiu, Songgang; Yang, Shu; Yin, Jie
2015-11-25
Applying hierarchical cuts to thin sheets of elastomer generates super-stretchable and reconfigurable metamaterials, exhibiting highly nonlinear stress-strain behaviors and tunable phononic bandgaps. The cut concept fails on brittle thin sheets due to severe stress concentration in the rotating hinges. By engineering the local hinge shapes and global hierarchical structure, cut-based reconfigurable metamaterials with largely enhanced strength are realized.
Energy Technology Data Exchange (ETDEWEB)
Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne (Switzerland); De Zanet, Sandro I.; Rüegsegger, Michael B. [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); Pica, Alessia [Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern (Switzerland); Sznitman, Raphael [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); Thiran, Jean-Philippe [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Signal Processing Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Maeder, Philippe [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Munier, Francis L. [Unit of Pediatric Ocular Oncology, Jules Gonin Eye Hospital, Lausanne (Switzerland); Kowal, Jens H. [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); and others
2015-07-15
Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.
Context updates are hierarchical
Directory of Open Access Journals (Sweden)
Anton Karl Ingason
2016-10-01
Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.
Classifying hospitals as mortality outliers: logistic versus hierarchical logistic models.
Alexandrescu, Roxana; Bottle, Alex; Jarman, Brian; Aylin, Paul
2014-05-01
The use of hierarchical logistic regression for provider profiling has been recommended due to the clustering of patients within hospitals, but has some associated difficulties. We assess changes in hospital outlier status based on standard logistic versus hierarchical logistic modelling of mortality. The study population consisted of all patients admitted to acute, non-specialist hospitals in England between 2007 and 2011 with a primary diagnosis of acute myocardial infarction, acute cerebrovascular disease or fracture of neck of femur or a primary procedure of coronary artery bypass graft or repair of abdominal aortic aneurysm. We compared standardised mortality ratios (SMRs) from non-hierarchical models with SMRs from hierarchical models, without and with shrinkage estimates of the predicted probabilities (Model 1 and Model 2). The SMRs from standard logistic and hierarchical models were highly statistically significantly correlated (r > 0.91, p = 0.01). More outliers were recorded in the standard logistic regression than hierarchical modelling only when using shrinkage estimates (Model 2): 21 hospitals (out of a cumulative number of 565 pairs of hospitals under study) changed from a low outlier and 8 hospitals changed from a high outlier based on the logistic regression to a not-an-outlier based on shrinkage estimates. Both standard logistic and hierarchical modelling have identified nearly the same hospitals as mortality outliers. The choice of methodological approach should, however, also consider whether the modelling aim is judgment or improvement, as shrinkage may be more appropriate for the former than the latter.
On the geostatistical characterization of hierarchical media
Neuman, Shlomo P.; Riva, Monica; Guadagnini, Alberto
2008-02-01
The subsurface consists of porous and fractured materials exhibiting a hierarchical geologic structure, which gives rise to systematic and random spatial and directional variations in hydraulic and transport properties on a multiplicity of scales. Traditional geostatistical moment analysis allows one to infer the spatial covariance structure of such hierarchical, multiscale geologic materials on the basis of numerous measurements on a given support scale across a domain or "window" of a given length scale. The resultant sample variogram often appears to fit a stationary variogram model with constant variance (sill) and integral (spatial correlation) scale. In fact, some authors, who recognize that hierarchical sedimentary architecture and associated log hydraulic conductivity fields tend to be nonstationary, nevertheless associate them with stationary "exponential-like" transition probabilities and variograms, respectively, the latter being a consequence of the former. We propose that (1) the apparent ability of stationary spatial statistics to characterize the covariance structure of nonstationary hierarchical media is an artifact stemming from the finite size of the windows within which geologic and hydrologic variables are ubiquitously sampled, and (2) the artifact is eliminated upon characterizing the covariance structure of such media with the aid of truncated power variograms, which represent stationary random fields obtained upon sampling a nonstationary fractal over finite windows. To support our opinion, we note that truncated power variograms arise formally when a hierarchical medium is sampled jointly across all geologic categories and scales within a window; cite direct evidence that geostatistical parameters (variance and integral scale) inferred on the basis of traditional variograms vary systematically with support and window scales; demonstrate the ability of truncated power models to capture these variations in terms of a few scaling parameters
Metal hierarchical patterning by direct nanoimprint lithography.
Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S M; Kulkarni, Giridhar U
2013-01-01
Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles.
Semantic Image Segmentation with Contextual Hierarchical Models.
Seyedhosseini, Mojtaba; Tasdizen, Tolga
2016-05-01
Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).
What are hierarchical models and how do we analyze them?
Royle, Andy
2016-01-01
In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)
Statistical Images Segmentation
Directory of Open Access Journals (Sweden)
Corina Curilă
2008-05-01
Full Text Available This paper deals with fuzzy statistical imagesegmentation. We introduce a new hierarchicalMarkovian fuzzy hidden field model, which extends to thefuzzy case the classical Pérez and Heitz hard model. Twofuzzy statistical segmentation methods related with themodel proposed are defined in this paper and we show viasimulations that they are competitive with, in some casesthan, the classical Maximum Posterior Mode (MPMbased methods. Furthermore, they are faster, which willshould facilitate extensions to more than two hard classesin future work. In addition, the model proposed isapplicable to the multiscale segmentation andmultiresolution images fusion problems.
Hierarchical Object Parsing from Noisy Point Clouds
Barbu, Adrian
2011-01-01
Object parsing and segmentation from point clouds are challenging tasks because the relevant data is available only as thin structures along object boundaries or other object features and is corrupted by large amounts of noise. One way to handle this kind of data is by employing shape models that can accurately follow the object boundaries. Popular models such as Active Shape and Active Appearance models lack the necessary flexibility for this task. While more flexible models such as Recursive Compositional Models have been proposed, this paper builds on the Active Shape models and makes three contributions. First, it presents a flexible, mid-entropy, hierarchical generative model of object shape and appearance in images. The input data is explained by an object parsing layer, which is a deformation of a hidden PCA shape model with Gaussian prior. Second, it presents a novel efficient inference algorithm that uses a set of informed data-driven proposals to initialize local searches for the hidden variables. T...
Room Categorization Based on a Hierarchical Representation of Space
Directory of Open Access Journals (Sweden)
Peter Uršič
2013-02-01
Full Text Available For successful operation in real‐world environments, a mobile robot requires an effective spatial model. The model should be compact, should possess large expressive power and should scale well with respect to the number of modelled categories. In this paper we propose a new compositional hierarchical representation of space that is based on learning statistically significant observations, in terms of the frequency of occurrence of various shapes in the environment. We have focused on a two‐dimensional space, since many robots perceive their surroundings in two dimensions with the use of a laser range finder or sonar. We also propose a new low‐level image descriptor, by which we demonstrate the performance of our representation in the context of a room categorization problem. Using only the lower layers of the hierarchy, we obtain state‐of‐the‐art categorization results in two different experimental scenarios. We also present a large, freely available, dataset, which is intended for room categorization experiments based on data obtained with a laser range finder.
Hierarchical partial order ranking.
Carlsen, Lars
2008-09-01
Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritization of polluted sites is given.
Trees and Hierarchical Structures
Haeseler, Arndt
1990-01-01
The "raison d'etre" of hierarchical dustering theory stems from one basic phe nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.
Hierarchical Affinity Propagation
Givoni, Inmar; Frey, Brendan J
2012-01-01
Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...
Optimisation by hierarchical search
Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias
2015-03-01
Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.
How hierarchical is language use?
Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.
2012-01-01
It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157
How hierarchical is language use?
Frank, Stefan L; Bod, Rens; Christiansen, Morten H
2012-11-22
It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science.
Associative Hierarchical Random Fields.
Ladický, L'ubor; Russell, Chris; Kohli, Pushmeet; Torr, Philip H S
2014-06-01
This paper makes two contributions: the first is the proposal of a new model-The associative hierarchical random field (AHRF), and a novel algorithm for its optimization; the second is the application of this model to the problem of semantic segmentation. Most methods for semantic segmentation are formulated as a labeling problem for variables that might correspond to either pixels or segments such as super-pixels. It is well known that the generation of super pixel segmentations is not unique. This has motivated many researchers to use multiple super pixel segmentations for problems such as semantic segmentation or single view reconstruction. These super-pixels have not yet been combined in a principled manner, this is a difficult problem, as they may overlap, or be nested in such a way that the segmentations form a segmentation tree. Our new hierarchical random field model allows information from all of the multiple segmentations to contribute to a global energy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalizes much of the previous work based on pixels or segments, and the resulting labelings can be viewed both as a detailed segmentation at the pixel level, or at the other extreme, as a segment selector that pieces together a solution like a jigsaw, selecting the best segments from different segmentations as pieces. We evaluate its performance on some of the most challenging data sets for object class segmentation, and show that this ability to perform inference using multiple overlapping segmentations leads to state-of-the-art results.
Hierarchical structures of ZnO spherical particles synthesized solvothermally
Saito, Noriko; Haneda, Hajime
2011-12-01
We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.
Hierarchical structures of ZnO spherical particles synthesized solvothermally
Directory of Open Access Journals (Sweden)
Noriko Saito and Hajime Haneda
2011-01-01
Full Text Available We review the solvothermal synthesis, using a mixture of ethylene glycol (EG and water as the solvent, of zinc oxide (ZnO particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i EG restricts the growth of ZnO microcrystals, (ii EG promotes the self-assembly of small crystallites into spheroidal particles and (iii the high water content of EG results in hollow spheres.
An introduction to hierarchical linear modeling
Directory of Open Access Journals (Sweden)
Heather Woltman
2012-02-01
Full Text Available This tutorial aims to introduce Hierarchical Linear Modeling (HLM. A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis. The first section of the tutorial defines HLM, clarifies its purpose, and states its advantages. The second section explains the mathematical theory, equations, and conditions underlying HLM. HLM hypothesis testing is performed in the third section. Finally, the fourth section provides a practical example of running HLM, with which readers can follow along. Throughout this tutorial, emphasis is placed on providing a straightforward overview of the basic principles of HLM.
Statistical Hadronization and Holography
DEFF Research Database (Denmark)
Bechi, Jacopo
2009-01-01
In this paper we consider some issues about the statistical model of the hadronization in a holographic approach. We introduce a Rindler like horizon in the bulk and we understand the string breaking as a tunneling event under this horizon. We calculate the hadron spectrum and we get a thermal......, and so statistical, shape for it....
Bayesian Methods for Statistical Analysis
Puza, Borek
2015-01-01
Bayesian methods for statistical analysis is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical models, Markov chain Monte Carlo methods, finite population inference, biased sampling and nonignorable nonresponse. The book contains many exercises, all with worked solutions, including complete c...
Petrov, Romain G; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stephane; Bresson, Yves; Benkhaldoum, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu
2014-01-01
The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups. The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by g...
Tunesi, Luca; Armbruster, Philippe
2004-02-01
The objective of this paper is to demonstrate a suitable hierarchical networking solution to improve capabilities and performances of space systems, with significant recurrent costs saving and more efficient design & manufacturing flows. Classically, a satellite can be split in two functional sub-systems: the platform and the payload complement. The platform is in charge of providing power, attitude & orbit control and up/down-link services, whereas the payload represents the scientific and/or operational instruments/transponders and embodies the objectives of the mission. One major possibility to improve the performance of payloads, by limiting the data return to pertinent information, is to process data on board thanks to a proper implementation of the payload data system. In this way, it is possible to share non-recurring development costs by exploiting a system that can be adopted by the majority of space missions. It is believed that the Modular and Scalable Payload Data System, under development by ESA, provides a suitable solution to fulfil a large range of future mission requirements. The backbone of the system is the standardised high data rate SpaceWire network http://www.ecss.nl/. As complement, a lower speed command and control bus connecting peripherals is required. For instance, at instrument level, there is a need for a "local" low complexity bus, which gives the possibility to command and control sensors and actuators. Moreover, most of the connections at sub-system level are related to discrete signals management or simple telemetry acquisitions, which can easily and efficiently be handled by a local bus. An on-board hierarchical network can therefore be defined by interconnecting high-speed links and local buses. Additionally, it is worth stressing another important aspect of the design process: Agencies and ESA in particular are frequently confronted with a big consortium of geographically spread companies located in different countries, each one
Hierarchical Reverberation Mapping
Brewer, Brendon J
2013-01-01
Reverberation mapping (RM) is an important technique in studies of active galactic nuclei (AGN). The key idea of RM is to measure the time lag $\\tau$ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of $\\tau$ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass $M_{\\rm BH}$. A major difficulty with RM campaigns is the large amount of data needed to measure $\\tau$. Recently, Fine et al (2012) introduced a new approach to RM where the BLR light curve is sparsely sampled, but this is counteracted by observing a large sample of AGN, rather than a single system. The results are combined to infer properties of the sample of AGN. In this letter we implement this method using a hierarchical Bayesian model and contrast this with the results from the previous stacked cross-correlation technique. We find that our inferences are more precise and allow fo...
Hierarchical structure formation in supramolecular comb-shaped block copolymers
Hofman, Anton; ten Brinke, Gerrit; Loos, Katja
2016-01-01
Block copolymers are known to spontaneously form ordered structures at the nano-to mesoscale. Although the number of different morphologies is rather limited in diblock copolymer systems, their phase behavior becomes increasingly more complex with each additional building block. Synthesis of such al
Use of hierarchical models to analyze European trends in congenital anomaly prevalence
Cavadino, Alana; Prieto-Merino, David; Addor, Marie-Claude; Arriola, Larraitz; Bianchi, Fabrizio; Draper, Elizabeth; Garne, Ester; Greenlees, Ruth; Haeusler, Martin; Khoshnood, Babak; Kurinczuk, Jenny; McDonnell, Bob; Nelen, Vera; O'Mahony, Mary; Randrianaivo, Hanitra; Rankin, Judith; Rissmann, Anke; Tucker, David; Verellen-Dumoulin, Christine; de Walle, Hermien; Wellesley, Diana; Morris, Joan K.
Background: Surveillance of congenital anomalies is important to identify potential Teratcgens. Despite known associations between different anomalies, current surveillance methods examine trends witin each subgroup separately. We aimed to evaluate whether hierarchical statistical methods that
Hierarchical materials: Background and perspectives
DEFF Research Database (Denmark)
2016-01-01
Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...
Hierarchical clustering for graph visualization
Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi
2012-01-01
This paper describes a graph visualization methodology based on hierarchical maximal modularity clustering, with interactive and significant coarsening and refining possibilities. An application of this method to HIV epidemic analysis in Cuba is outlined.
Direct hierarchical assembly of nanoparticles
Xu, Ting; Zhao, Yue; Thorkelsson, Kari
2014-07-22
The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.
... Certification Import Safety International Recall Guidance Civil and Criminal Penalties Federal Court Orders & Decisions Research & Statistics Research & Statistics Technical Reports Injury Statistics NEISS Injury ...
Hierarchical analysis of the quiet Sun magnetism
Ramos, A Asensio
2014-01-01
Standard statistical analysis of the magnetic properties of the quiet Sun rely on simple histograms of quantities inferred from maximum-likelihood estimations. Because of the inherent degeneracies, either intrinsic or induced by the noise, this approach is not optimal and can lead to highly biased results. We carry out a meta-analysis of the magnetism of the quiet Sun from Hinode observations using a hierarchical probabilistic method. This model allows us to infer the statistical properties of the magnetic field vector over the observed field-of-view consistently taking into account the uncertainties in each pixel due to noise and degeneracies. Our results point out that the magnetic fields are very weak, below 275 G with 95% credibility, with a slight preference for horizontal fields, although the distribution is not far from a quasi-isotropic distribution.
Cosmic Statistics of Statistics
Szapudi, I.; Colombi, S.; Bernardeau, F.
1999-01-01
The errors on statistics measured in finite galaxy catalogs are exhaustively investigated. The theory of errors on factorial moments by Szapudi & Colombi (1996) is applied to cumulants via a series expansion method. All results are subsequently extended to the weakly non-linear regime. Together with previous investigations this yields an analytic theory of the errors for moments and connected moments of counts in cells from highly nonlinear to weakly nonlinear scales. The final analytic formu...
Models to relate species to environment: a hierarchical statistical approac
Jamil, T.
2012-01-01
In the last two decades, the interest of community ecologists in trait-based approaches has grown dramatically and these approaches have been increasingly applied to explain and predict response of species to environmental conditions. A variety of modelling techniques are available. The dominant
Models to relate species to environment: a hierarchical statistical approac
Jamil, T.
2012-01-01
In the last two decades, the interest of community ecologists in trait-based approaches has grown dramatically and these approaches have been increasingly applied to explain and predict response of species to environmental conditions. A variety of modelling techniques are available. The dominant tec
Synthesis strategies in the search for hierarchical zeolites.
Serrano, D P; Escola, J M; Pizarro, P
2013-05-07
Great interest has arisen in the past years in the development of hierarchical zeolites, having at least two levels of porosities. Hierarchical zeolites show an enhanced accessibility, leading to improved catalytic activity in reactions suffering from steric and/or diffusional limitations. Moreover, the secondary porosity offers an ideal space for the deposition of additional active phases and for functionalization with organic moieties. However, the secondary surface represents a discontinuity of the crystalline framework, with a low connectivity and a high concentration of silanols. Consequently, hierarchical zeolites exhibit a less "zeolitic behaviour" than conventional ones in terms of acidity, hydrophobic/hydrophilic character, confinement effects, shape-selectivity and hydrothermal stability. Nevertheless, this secondary surface is far from being amorphous, which provides hierarchical zeolites with a set of novel features. A wide variety of innovative strategies have been developed for generating a secondary porosity in zeolites. In the present review, the different synthetic routes leading to hierarchical zeolites have been classified into five categories: removal of framework atoms, surfactant-assisted procedures, hard-templating, zeolitization of preformed solids and organosilane-based methods. Significant advances have been achieved recently in several of these alternatives. These include desilication, due to its versatility, dual templating with polyquaternary ammonium surfactants and framework reorganization by treatment with surfactant-containing basic solutions. In the last two cases, the materials so prepared show both mesoscopic ordering and zeolitic lattice planes. Likewise, interesting results have been obtained with the incorporation of different types of organosilanes into the zeolite crystallization gels, taking advantage of their high affinity for silicate and aluminosilicate species. Crystallization of organofunctionalized species favours the
Advanced hierarchical distance sampling
Royle, Andy
2016-01-01
In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.
Guo, Yanxia; Lin, Siwen; Li, Xuan; Liu, Yuping
2016-10-01
Novel hierarchically structured ZnO, including rose-like, dandelion-like and flower-like, have been synthesized through a simple hydrothermal process using different amino acids (glutamine, histidine and glycine) as structure-directing agents and urea as deposition agent, followed by subsequent calcination. Amino acids played a crucial role in the formation of hierarchically structured ZnO, and different amino acids could induce different exquisite shapes and assembly ways, as well as more oxygen defects. The prepared hierarchically structured ZnO exhibited excellent photocatalytic activities for the photodegradation of Rhodamine B, which was associated with their special hierarchical structures, large BET surface area and the existence of more oxygen defects. Amino acid-assisted growth mechanism of hierarchically structured ZnO was also discussed.
Hierarchical Porous Patterns of n-type 6H-SiC Crystals via Photo- electrochemical Etching
National Research Council Canada - National Science Library
Lihuan Wang Huihui Shao Xiaobo Hu Xiangang Xu
2013-01-01
... face, and columnar and keel-shaped micro-patterns on the cross section. The formation of hierarchical porous pattern is ascribed to the dynamic competition balance between the electrochemical oxidation rate and the oxide removal rate...
Renormalization of Hierarchically Interacting Isotropic Diffusions
den Hollander, F.; Swart, J. M.
1998-10-01
We study a renormalization transformation arising in an infinite system of interacting diffusions. The components of the system are labeled by the N-dimensional hierarchical lattice ( N≥2) and take values in the closure of a compact convex set bar D subset {R}^d (d ≥slant 1). Each component starts at some θ ∈ D and is subject to two motions: (1) an isotropic diffusion according to a local diffusion rate g: bar D to [0,infty ] chosen from an appropriate class; (2) a linear drift toward an average of the surrounding components weighted according to their hierarchical distance. In the local mean-field limit N→∞, block averages of diffusions within a hierarchical distance k, on an appropriate time scale, are expected to perform a diffusion with local diffusion rate F ( k) g, where F^{(k)} g = (F_{c_k } circ ... circ F_{c_1 } ) g is the kth iterate of renormalization transformations F c ( c>0) applied to g. Here the c k measure the strength of the interaction at hierarchical distance k. We identify F c and study its orbit ( F ( k) g) k≥0. We show that there exists a "fixed shape" g* such that lim k→∞ σk F ( k) g = g* for all g, where the σ k are normalizing constants. In terms of the infinite system, this property means that there is complete universal behavior on large space-time scales. Our results extend earlier work for d = 1 and bar D = [0,1], resp. [0, ∞). The renormalization transformation F c is defined in terms of the ergodic measure of a d-dimensional diffusion. In d = 1 this diffusion allows a Yamada-Watanabe-type coupling, its ergodic measure is reversible, and the renormalization transformation F c is given by an explicit formula. All this breaks down in d≥2, which complicates the analysis considerably and forces us to new methods. Part of our results depend on a certain martingale problem being well-posed.
Understanding Computational Bayesian Statistics
Bolstad, William M
2011-01-01
A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistic
Multiple comparisons in genetic association studies: a hierarchical modeling approach.
Yi, Nengjun; Xu, Shizhong; Lou, Xiang-Yang; Mallick, Himel
2014-02-01
Multiple comparisons or multiple testing has been viewed as a thorny issue in genetic association studies aiming to detect disease-associated genetic variants from a large number of genotyped variants. We alleviate the problem of multiple comparisons by proposing a hierarchical modeling approach that is fundamentally different from the existing methods. The proposed hierarchical models simultaneously fit as many variables as possible and shrink unimportant effects towards zero. Thus, the hierarchical models yield more efficient estimates of parameters than the traditional methods that analyze genetic variants separately, and also coherently address the multiple comparisons problem due to largely reducing the effective number of genetic effects and the number of statistically "significant" effects. We develop a method for computing the effective number of genetic effects in hierarchical generalized linear models, and propose a new adjustment for multiple comparisons, the hierarchical Bonferroni correction, based on the effective number of genetic effects. Our approach not only increases the power to detect disease-associated variants but also controls the Type I error. We illustrate and evaluate our method with real and simulated data sets from genetic association studies. The method has been implemented in our freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/).
Functional and shape data analysis
Srivastava, Anuj
2016-01-01
This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...
Deliberate change without hierarchical influence?
DEFF Research Database (Denmark)
Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm
2017-01-01
Purpose This paper aims to present that deliberate change is strongly associated with formal structures and top-down influence. Hierarchical configurations have been used to structure processes, overcome resistance and get things done. But is deliberate change also possible without formal...... reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...
Static Correctness of Hierarchical Procedures
DEFF Research Database (Denmark)
Schwartzbach, Michael Ignatieff
1990-01-01
A system of hierarchical, fully recursive types in a truly imperative language allows program fragments written for small types to be reused for all larger types. To exploit this property to enable type-safe hierarchical procedures, it is necessary to impose a static requirement on procedure calls....... We introduce an example language and prove the existence of a sound requirement which preserves static correctness while allowing hierarchical procedures. This requirement is further shown to be optimal, in the sense that it imposes as few restrictions as possible. This establishes the theoretical...... basis for a general type hierarchy with static type checking, which enables first-order polymorphism combined with multiple inheritance and specialization in a language with assignments. We extend the results to include opaque types. An opaque version of a type is different from the original but has...
Bio-inspired hierarchical patterning of silicon by laser interference lithography.
Hu, Yaowei; Wang, Zuobin; Weng, Zhankun; Yu, Miao; Wang, Dapeng
2016-04-20
This paper presents a facile approach for the rapid and maskless fabrication of hierarchical structures by multibeam laser interference. In the work, three- and four-beam laser interference lithographies were proposed to fabricate ordered multiscale surface structures instead of six or more beam interference with a complicated system setup. The pitch and shape of hierarchical structures can be controlled by adjusting the parameters of incident light. The experiment results have shown that the hierarchical anisotropy and isotropy surface structures can be fabricated by this method with the control of the parameters of each incident beam, which is in accordance with the theoretical analysis and computer simulations.
Problematizing Statistical Literacy: An Intersection of Critical and Statistical Literacies
Weiland, Travis
2017-01-01
In this paper, I problematize traditional notions of statistical literacy by juxtaposing it with critical literacy. At the school level statistical literacy is vitally important for students who are preparing to become citizens in modern societies that are increasingly shaped and driven by data based arguments. The teaching of statistics, which is…
Noor Rashidah Rashid
2012-01-01
Cluster Analysis is a multivariate method in statistics. Agglomerative Hierarchical Cluster Analysis is one of approaches in Cluster Analysis. There are two linkage methods in Agglomerative Hierarchical Cluster Analysis which are Single Linkage and Complete Linkage. The purpose of this study is to compare between Single Linkage and Complete Linkage in Agglomerative Hierarchical Cluster Analysis. The comparison of performances between these linkage methods was shown by using Kruskal-Wallis tes...
Structural integrity of hierarchical composites
Directory of Open Access Journals (Sweden)
Marco Paggi
2012-01-01
Full Text Available Interface mechanical problems are of paramount importance in engineering and materials science. Traditionally, due to the complexity of modelling their mechanical behaviour, interfaces are often treated as defects and their features are not explored. In this study, a different approach is illustrated, where the interfaces play an active role in the design of innovative hierarchical composites and are fundamental for their structural integrity. Numerical examples regarding cutting tools made of hierarchical cellular polycrystalline materials are proposed, showing that tailoring of interface properties at the different scales is the way to achieve superior mechanical responses that cannot be obtained using standard materials
Hierarchical probabilistic inference of cosmic shear
Schneider, Michael D; Marshall, Philip J; Dawson, William A; Meyers, Joshua; Bard, Deborah J; Lang, Dustin
2014-01-01
Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the glo...
A new approach for modeling generalization gradients: A case for Hierarchical Models
Directory of Open Access Journals (Sweden)
Koen eVanbrabant
2015-05-01
Full Text Available A case is made for the use of hierarchical models in the analysis of generalization gradients. Hierarchical models overcome several restrictions that are imposed by repeated measures analysis-of-variance (rANOVA, the default statistical method in current generalization research. More specifically, hierarchical models allow to include continuous independent variables and overcomes problematic assumptions such as sphericity. We focus on how generalization research can benefit from this added flexibility. In a simulation study we demonstrate the dominance of hierarchical models over rANOVA. In addition, we show the lack of efficiency of the Mauchly's sphericity test in sample sizes typical for generalization research, and confirm how violations of sphericity increase the probability of type I errors. A worked example of a hierarchical model is provided, with a specific emphasis on the interpretation of parameters relevant for generalization research.
A new approach for modeling generalization gradients: a case for hierarchical models.
Vanbrabant, Koen; Boddez, Yannick; Verduyn, Philippe; Mestdagh, Merijn; Hermans, Dirk; Raes, Filip
2015-01-01
A case is made for the use of hierarchical models in the analysis of generalization gradients. Hierarchical models overcome several restrictions that are imposed by repeated measures analysis-of-variance (rANOVA), the default statistical method in current generalization research. More specifically, hierarchical models allow to include continuous independent variables and overcomes problematic assumptions such as sphericity. We focus on how generalization research can benefit from this added flexibility. In a simulation study we demonstrate the dominance of hierarchical models over rANOVA. In addition, we show the lack of efficiency of the Mauchly's sphericity test in sample sizes typical for generalization research, and confirm how violations of sphericity increase the probability of type I errors. A worked example of a hierarchical model is provided, with a specific emphasis on the interpretation of parameters relevant for generalization research.
Sensory Hierarchical Organization and Reading.
Skapof, Jerome
The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…
Memory Stacking in Hierarchical Networks.
Westö, Johan; May, Patrick J C; Tiitinen, Hannu
2016-02-01
Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns.
Hierarchical structures in fully developed turbulence
Liu, Li
Analysis of the probability density functions (PDFs) of the velocity increment dvl and of their deformation is used to reveal the statistical structure of the intermittent energy cascade dynamics of turbulence. By analyzing a series of turbulent data sets including that of an experiment of fully developed low temperature helium turbulent gas flow (Belin, Tabeling, & Willaime, Physica D 93, 52, 1996), of a three-dimensional isotropic Navier-Stokes simulation with a resolution of 2563 (Cao, Chen, & She, Phys. Rev. Lett. 76, 3711, 1996) and of a GOY shell model simulation (Leveque & She, Phys. Rev. E 55, 1997) of a very big sample size (up to 5 billions), the validity of the Hierarchical Structure model (She & Leveque, Phys. Rev. Lett. 72, 366, 1994) for the inertial-range is firmly demonstrated. Furthermore, it is shown that parameters in the Hierarchical Structure model can be reliably measured and used to characterize the cascade process. The physical interpretations of the parameters then allow to describe differential changes in different turbulent systems so as to address non-universal features of turbulent systems. It is proposed that the above study provides a framework for the study of non-homogeneous turbulence. A convergence study of moments and scaling exponents is also carried out with detailed analysis of effects of finite statistical sample size. A quantity Pmin is introduced to characterize the resolution of a PDF, and hence the sample size. The fact that any reported scaling exponent depends on the PDF resolution suggests that the validation (or rejection) of a model of turbulence needs to carry out a resolution dependence analysis on its scaling prediction.
Hierarchical nanostructure and synergy of multimolecular signalling complexes
Sherman, Eilon; Barr, Valarie A.; Merrill, Robert K.; Regan, Carole K.; Sommers, Connie L.; Samelson, Lawrence E.
2016-01-01
Signalling complexes are dynamic, multimolecular structures and sites for intracellular signal transduction. Although they play a crucial role in cellular activation, current research techniques fail to resolve their structure in intact cells. Here we present a multicolour, photoactivated localization microscopy approach for imaging multiple types of single molecules in fixed and live cells and statistical tools to determine the nanoscale organization, topology and synergy of molecular interactions in signalling complexes downstream of the T-cell antigen receptor. We observe that signalling complexes nucleated at the key adapter LAT show a hierarchical topology. The critical enzymes PLCγ1 and VAV1 localize to the centre of LAT-based complexes, and the adapter SLP-76 and actin molecules localize to the periphery. Conditional second-order statistics reveal a hierarchical network of synergic interactions between these molecules. Our results extend our understanding of the nanostructure of signalling complexes and are relevant to studying a wide range of multimolecular complexes. PMID:27396911
Hierarchical nanostructure and synergy of multimolecular signalling complexes
Sherman, Eilon; Barr, Valarie A.; Merrill, Robert K.; Regan, Carole K.; Sommers, Connie L.; Samelson, Lawrence E.
2016-07-01
Signalling complexes are dynamic, multimolecular structures and sites for intracellular signal transduction. Although they play a crucial role in cellular activation, current research techniques fail to resolve their structure in intact cells. Here we present a multicolour, photoactivated localization microscopy approach for imaging multiple types of single molecules in fixed and live cells and statistical tools to determine the nanoscale organization, topology and synergy of molecular interactions in signalling complexes downstream of the T-cell antigen receptor. We observe that signalling complexes nucleated at the key adapter LAT show a hierarchical topology. The critical enzymes PLCγ1 and VAV1 localize to the centre of LAT-based complexes, and the adapter SLP-76 and actin molecules localize to the periphery. Conditional second-order statistics reveal a hierarchical network of synergic interactions between these molecules. Our results extend our understanding of the nanostructure of signalling complexes and are relevant to studying a wide range of multimolecular complexes.
Norén, Patrik
2013-01-01
Algebraic statistics brings together ideas from algebraic geometry, commutative algebra, and combinatorics to address problems in statistics and its applications. Computer algebra provides powerful tools for the study of algorithms and software. However, these tools are rarely prepared to address statistical challenges and therefore new algebraic results need often be developed. This way of interplay between algebra and statistics fertilizes both disciplines. Algebraic statistics is a relativ...
Directory of Open Access Journals (Sweden)
Adrion Christine
2012-09-01
provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. Conclusions The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint.
Statistical properties of convex clustering
Tan, Kean Ming; Witten, Daniela
2015-01-01
In this manuscript, we study the statistical properties of convex clustering. We establish that convex clustering is closely related to single linkage hierarchical clustering and $k$-means clustering. In addition, we derive the range of the tuning parameter for convex clustering that yields a non-trivial solution. We also provide an unbiased estimator of the degrees of freedom, and provide a finite sample bound for the prediction error for convex clustering. We compare convex clustering to so...
O'Connell, Emily
2009-01-01
This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)
Emergence of a 'visual number sense' in hierarchical generative models.
Stoianov, Ivilin; Zorzi, Marco
2012-01-08
Numerosity estimation is phylogenetically ancient and foundational to human mathematical learning, but its computational bases remain controversial. Here we show that visual numerosity emerges as a statistical property of images in 'deep networks' that learn a hierarchical generative model of the sensory input. Emergent numerosity detectors had response profiles resembling those of monkey parietal neurons and supported numerosity estimation with the same behavioral signature shown by humans and animals.
Hierarchical Prisoner's Dilemma in Hierarchical Public-Goods Game
Fujimoto, Yuma; Kaneko, Kunihiko
2016-01-01
The dilemma in cooperation is one of the major concerns in game theory. In a public-goods game, each individual pays a cost for cooperation, or to prevent defection, and receives a reward from the collected cost in a group. Thus, defection is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individual players also play games. To study such a multi-level game, we introduce a hierarchical public-goods (HPG) game in which two groups compete for finite resources by utilizing costs collected from individuals in each group. Analyzing this HPG game, we found a hierarchical prisoner's dilemma, in which groups choose the defection policy (say, armaments) as a Nash strategy to optimize each group's benefit, while cooperation optimizes the total benefit. On the other hand, for each individual within a group, refusing to pay the cost (say, tax) is a Nash strategy, which turns to be a cooperation policy for the group, thus leading to a hierarchical d...
Shape analysis in medical image analysis
Tavares, João
2014-01-01
This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...
New Statistical Perspective to The Cosmic Void Distribution
Pycke, Jean-Renaud
2016-01-01
In this study, we obtain the size distribution of voids as a 3-parameter redshift independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we here obtain is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks which are tuned to three mock SDSS samples to investigate the void distribution statistically and the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the 3-parameter log-normal distribution. In addition, we find that there may be a relation between hierarchical formation, skewness and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the 3-paramet...
新家, 健精
2013-01-01
© 2012 Springer Science+Business Media, LLC. All rights reserved. Article Outline: Glossary Definition of the Subject and Introduction The Bayesian Statistical Paradigm Three Examples Comparison with the Frequentist Statistical Paradigm Future Directions Bibliography
Hierarchical structure of biological systems
Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M
2014-01-01
A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961
Automatic Hierarchical Color Image Classification
Directory of Open Access Journals (Sweden)
Jing Huang
2003-02-01
Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.
Intuitionistic fuzzy hierarchical clustering algorithms
Institute of Scientific and Technical Information of China (English)
Xu Zeshui
2009-01-01
Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a mem-bership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clus-tering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.
Hierarchical Formation of Galactic Clusters
Elmegreen, B G
2006-01-01
Young stellar groupings and clusters have hierarchical patterns ranging from flocculent spiral arms and star complexes on the largest scale to OB associations, OB subgroups, small loose groups, clusters and cluster subclumps on the smallest scales. There is no obvious transition in morphology at the cluster boundary, suggesting that clusters are only the inner parts of the hierarchy where stars have had enough time to mix. The power-law cluster mass function follows from this hierarchical structure: n(M_cl) M_cl^-b for b~2. This value of b is independently required by the observation that the summed IMFs from many clusters in a galaxy equals approximately the IMF of each cluster.
Hierarchical matrices algorithms and analysis
Hackbusch, Wolfgang
2015-01-01
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...
Hierarchical Cont-Bouchaud model
Paluch, Robert; Holyst, Janusz A
2015-01-01
We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent's interactions. The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-level, nested Erdos-Renyi random graph and individual decisions by agents according to Potts dynamics. This approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-Bouchaud model. In the second model we introduce a limited hierarchical Erdos-Renyi graph, where merging of clusters at a level h+1 involves only clusters that have merged at the previous level h and we use the original Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.
Pestman, Wiebe R
2009-01-01
This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.
Guided hierarchical co-assembly of soft patchy nanoparticles
Gröschel, André H.; Walther, Andreas; Löbling, Tina I.; Schacher, Felix H.; Schmalz, Holger; Müller, Axel H. E.
2013-11-01
The concept of hierarchical bottom-up structuring commonly encountered in natural materials provides inspiration for the design of complex artificial materials with advanced functionalities. Natural processes have achieved the orchestration of multicomponent systems across many length scales with very high precision, but man-made self-assemblies still face obstacles in realizing well-defined hierarchical structures. In particle-based self-assembly, the challenge is to program symmetries and periodicities of superstructures by providing monodisperse building blocks with suitable shape anisotropy or anisotropic interaction patterns (`patches'). Irregularities in particle architecture are intolerable because they generate defects that amplify throughout the hierarchical levels. For patchy microscopic hard colloids, this challenge has been approached by using top-down methods (such as metal shading or microcontact printing), enabling molecule-like directionality during aggregation. However, both top-down procedures and particulate systems based on molecular assembly struggle to fabricate patchy particles controllably in the desired size regime (10-100nm). Here we introduce the co-assembly of dynamic patchy nanoparticles--that is, soft patchy nanoparticles that are intrinsically self-assembled and monodisperse--as a modular approach for producing well-ordered binary and ternary supracolloidal hierarchical assemblies. We bridge up to three hierarchical levels by guiding triblock terpolymers (length scale ~10nm) to form soft patchy nanoparticles (20-50nm) of different symmetries that, in combination, co-assemble into substructured, compartmentalized materials (>10μm) with predictable and tunable nanoscale periodicities. We establish how molecular control over polymer composition programs the building block symmetries and regulates particle positioning, offering a route to well-ordered mixed mesostructures of high complexity.
Hierarchical Clustering and Active Galaxies
Hatziminaoglou, E; Manrique, A
2000-01-01
The growth of Super Massive Black Holes and the parallel development of activity in galactic nuclei are implemented in an analytic code of hierarchical clustering. The evolution of the luminosity function of quasars and AGN will be computed with special attention paid to the connection between quasars and Seyfert galaxies. One of the major interests of the model is the parallel study of quasar formation and evolution and the History of Star Formation.
Hybrid and hierarchical composite materials
Kim, Chang-Soo; Sano, Tomoko
2015-01-01
This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous and detailed examples and over 150 illustrations. In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.
Treatment Protocols as Hierarchical Structures
Ben-Bassat, Moshe; Carlson, Richard W.; Puri, Vinod K.; Weil, Max Harry
1978-01-01
We view a treatment protocol as a hierarchical structure of therapeutic modules. The lowest level of this structure consists of individual therapeutic actions. Combinations of individual actions define higher level modules, which we call routines. Routines are designed to manage limited clinical problems, such as the routine for fluid loading to correct hypovolemia. Combinations of routines and additional actions, together with comments, questions, or precautions organized in a branching logic, in turn, define the treatment protocol for a given disorder. Adoption of this modular approach may facilitate the formulation of treatment protocols, since the physician is not required to prepare complex flowcharts. This hierarchical approach also allows protocols to be updated and modified in a flexible manner. By use of such a standard format, individual components may be fitted together to create protocols for multiple disorders. The technique is suited for computer implementation. We believe that this hierarchical approach may facilitate standarization of patient care as well as aid in clinical teaching. A protocol for acute pancreatitis is used to illustrate this technique.
Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons
Yao, Zhenwei; Olvera de la Cruz, Monica
2016-04-01
We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.
Learning curve estimation in medical devices and procedures: hierarchical modeling.
Govindarajulu, Usha S; Stillo, Marco; Goldfarb, David; Matheny, Michael E; Resnic, Frederic S
2017-07-30
In the use of medical device procedures, learning effects have been shown to be a critical component of medical device safety surveillance. To support their estimation of these effects, we evaluated multiple methods for modeling these rates within a complex simulated dataset representing patients treated by physicians clustered within institutions. We employed unique modeling for the learning curves to incorporate the learning hierarchy between institution and physicians and then modeled them within established methods that work with hierarchical data such as generalized estimating equations (GEE) and generalized linear mixed effect models. We found that both methods performed well, but that the GEE may have some advantages over the generalized linear mixed effect models for ease of modeling and a substantially lower rate of model convergence failures. We then focused more on using GEE and performed a separate simulation to vary the shape of the learning curve as well as employed various smoothing methods to the plots. We concluded that while both hierarchical methods can be used with our mathematical modeling of the learning curve, the GEE tended to perform better across multiple simulated scenarios in order to accurately model the learning effect as a function of physician and hospital hierarchical data in the use of a novel medical device. We found that the choice of shape used to produce the 'learning-free' dataset would be dataset specific, while the choice of smoothing method was negligibly different from one another. This was an important application to understand how best to fit this unique learning curve function for hierarchical physician and hospital data. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Introduction to Hierarchical Bayesian Modeling for Ecological Data
Parent, Eric
2012-01-01
Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a
Eliazar, Iddo
2017-05-01
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their 'public relations' for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford's law, and 1/f noise.
Fernández-Arjona, María del Mar; Grondona, Jesús M.; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D.
2017-01-01
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable
Statistical ecology comes of age.
Gimenez, Olivier; Buckland, Stephen T; Morgan, Byron J T; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric
2014-12-01
The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.
Statistical ecology comes of age
Gimenez, Olivier; Buckland, Stephen T.; Morgan, Byron J. T.; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M.; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M.; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric
2014-01-01
The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data. PMID:25540151
Sadovskii, Michael V
2012-01-01
This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.
Szulc, Stefan
1965-01-01
Statistical Methods provides a discussion of the principles of the organization and technique of research, with emphasis on its application to the problems in social statistics. This book discusses branch statistics, which aims to develop practical ways of collecting and processing numerical data and to adapt general statistical methods to the objectives in a given field.Organized into five parts encompassing 22 chapters, this book begins with an overview of how to organize the collection of such information on individual units, primarily as accomplished by government agencies. This text then
Goodman, Joseph W
2015-01-01
This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i
... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Histoplasmosis Statistics Recommend on Facebook Tweet Share Compartir How common is histoplasmosis? In the United States, an estimated 60% to ...
Forbes, Catherine; Hastings, Nicholas; Peacock, Brian J.
2010-01-01
A new edition of the trusted guide on commonly used statistical distributions Fully updated to reflect the latest developments on the topic, Statistical Distributions, Fourth Edition continues to serve as an authoritative guide on the application of statistical methods to research across various disciplines. The book provides a concise presentation of popular statistical distributions along with the necessary knowledge for their successful use in data modeling and analysis. Following a basic introduction, forty popular distributions are outlined in individual chapters that are complete with re
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2017-05-15
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
Strange attractor in the Potts spin glass on hierarchical lattices
Energy Technology Data Exchange (ETDEWEB)
Lima, Washington de [Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Pernambuco (Brazil); Camelo-Neto, G. [Universidade Federal de Alagoas, Núcleo de Ciências Exatas, Laboratório de Física Teórica e Computacional, CEP 57309-005 Arapiraca, Alagoas (Brazil); Coutinho, S., E-mail: sergio@ufpe.br [Universidade Federal de Pernambuco, Departamento de Física, Laboratório de Física Teórica e Computacional, Cidade Universitária, CEP 50670-901 Recife, Pernambuco (Brazil)
2013-11-29
The spin-glass q-state Potts model on d-dimensional diamond hierarchical lattices is investigated by an exact real space renormalization group scheme. Above a critical dimension d{sub l}(q) for q>2, the coupling constants probability distribution flows to a low-temperature strange attractor or to the high-temperature paramagnetic fixed point, according to the temperature is below or above the critical temperature T{sub c}(q,d). The strange attractor was investigated considering four initial different distributions for q=3 and d=5 presenting strong robustness in shape and temperature interval suggesting a condensed phase with algebraic decay.
Nonclassical properties and quantum resources of hierarchical photonic superposition states
Energy Technology Data Exchange (ETDEWEB)
Volkoff, T. J., E-mail: adidasty@gmail.com [University of California, Department of Chemistry (United States)
2015-11-15
We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.
Cheng, Wenjing; Jiang, Yanqiu; Xu, Xianzhu; Wang, Yan; Lin, Kaifeng; Pescarmona, Paolo P.
2016-01-01
Titanosilicate zeolite beads with hierarchical porosity and 0.2-0.5 mm diameter (HPB-TS-1) have been synthesized from a titanosilicate solution, employing a porous anion-exchange resin as shape- and structure-directing template. The characterization results showed the existence of crystalline TS-1 n
Hierarchical Control for Smart Grids
DEFF Research Database (Denmark)
Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob
2011-01-01
This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the ﬂexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising...
Glaz, Joseph
2009-01-01
Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.
Petocz, Peter; Sowey, Eric
2008-01-01
In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…
Lyons, L
2016-01-01
Accelerators and detectors are expensive, both in terms of money and human effort. It is thus important to invest effort in performing a good statistical anal- ysis of the data, in order to extract the best information from it. This series of five lectures deals with practical aspects of statistical issues that arise in typical High Energy Physics analyses.
Institute of Scientific and Technical Information of China (English)
亚玲
2007-01-01
<正>Teenagers have been of a new shape these days. They are about 20 pounds heavier than teenagers were 60 years ago. They are about four inches taller, too. These facts come from J. M. Tanner, a professor in England.
Estimating 3D Human Shapes from Measurements
Wuhrer, Stefanie
2011-01-01
We describe a solution to the problem of estimating 3D human shapes (either faces or full body shapes) based on a set of anthropometric measurements. We use statistical learning to model the relationship between the shape and a set of measurements. We learn the relationship using a database of human shapes. When predicting a shape, our approach finds an initial solution using a variant of feature analysis and refines the solution to fit the measurements using non-linear optimization. This way, we can predict likely human shapes with local variations that are outside the shape space spanned by the database used for learning.
Hierarchical Structures in Hypertext Learning Environments
Bezdan, Eniko; Kester, Liesbeth; Kirschner, Paul A.
2011-01-01
Bezdan, E., Kester, L., & Kirschner, P. A. (2011, 9 September). Hierarchical Structures in Hypertext Learning Environments. Presentation for the visit of KU Leuven, Open University, Heerlen, The Netherlands.
A hierarchical instrumental decision theory of nicotine dependence.
Hogarth, Lee; Troisi, Joseph R
2015-01-01
It is important to characterize the learning processes governing tobacco-seeking in order to understand how best to treat this behavior. Most drug learning theories have adopted a Pavlovian framework wherein the conditioned response is the main motivational process. We favor instead a hierarchical instrumental decision account, wherein expectations about the instrumental contingency between voluntary tobacco-seeking and the receipt of nicotine reward determines the probability of executing this behavior. To support this view, we review titration and nicotine discrimination research showing that internal signals for deprivation/satiation modulate expectations about the current incentive value of smoking, thereby modulating the propensity of this behavior. We also review research on cue-reactivity which has shown that external smoking cues modulate expectations about the probability of the tobacco-seeking response being effective, thereby modulating the propensity of this behavior. Economic decision theory is then considered to elucidate how expectations about the value and probability of response-nicotine contingency are integrated to form an overall utility estimate for that option for comparison with qualitatively different, nonsubstitute reinforcers, to determine response selection. As an applied test for this hierarchical instrumental decision framework, we consider how well it accounts for individual liability to smoking uptake and perseveration, pharmacotherapy, cue-extinction therapies, and plain packaging. We conclude that the hierarchical instrumental account is successful in reconciling this broad range of phenomenon precisely because it accepts that multiple diverse sources of internal and external information must be integrated to shape the decision to smoke.
Directory of Open Access Journals (Sweden)
Miha Deniša
2015-10-01
Full Text Available This paper presents a novel approach to discovering motor primitives in a hierarchical database of example trajectories. An initial set of example trajectories is obtained by human demonstration. The trajectories are clustered and organized in a binary tree-like hierarchical structure, from which transition graphs at different levels of granularity are constructed. A novel procedure for searching in this hierarchical structure is presented. It can exploit the interdependencies between movements and can discover new series of partial paths. From these partial paths, complete new movements are generated by encoding them as dynamic movement primitives. In this way, the number of example trajectories that must be acquired with the assistance of a human teacher can be reduced. By combining the results of the hierarchical search with statistical generalization techniques, a complete representation of new, not directly demonstrated, movement primitives can be generated.
Qian, Song S; Craig, J Kevin; Baustian, Melissa M; Rabalais, Nancy N
2009-12-01
We introduce the Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies using a data set intended for inference on the effects of bottom-water hypoxia on macrobenthic communities in the northern Gulf of Mexico off the coast of Louisiana, USA. We illustrate (1) the process of developing a model, (2) the use of the hierarchical model results for statistical inference through innovative graphical presentation, and (3) a comparison to the conventional linear modeling approach (ANOVA). Our results indicate that the Bayesian hierarchical approach is better able to detect a "treatment" effect than classical ANOVA while avoiding several arbitrary assumptions necessary for linear models, and is also more easily interpreted when presented graphically. These results suggest that the hierarchical modeling approach is a better alternative than conventional linear models and should be considered for the analysis of observational field data from marine systems.
Dynamic Organization of Hierarchical Memories.
Kurikawa, Tomoki; Kaneko, Kunihiko
2016-01-01
In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a "dynamic categorization"; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity.
Ross, Sheldon M
2005-01-01
In this revised text, master expositor Sheldon Ross has produced a unique work in introductory statistics. The text's main merits are the clarity of presentation, contemporary examples and applications from diverse areas, and an explanation of intuition and ideas behind the statistical methods. To quote from the preface, ""It is only when a student develops a feel or intuition for statistics that she or he is really on the path toward making sense of data."" Ross achieves this goal through a coherent mix of mathematical analysis, intuitive discussions and examples.* Ross's clear writin
Ross, Sheldon M
2010-01-01
In this 3rd edition revised text, master expositor Sheldon Ross has produced a unique work in introductory statistics. The text's main merits are the clarity of presentation, contemporary examples and applications from diverse areas, and an explanation of intuition and ideas behind the statistical methods. Concepts are motivated, illustrated and explained in a way that attempts to increase one's intuition. To quote from the preface, ""It is only when a student develops a feel or intuition for statistics that she or he is really on the path toward making sense of data."" Ross achieves this
Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James
2014-01-01
Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.
Wannier, Gregory H
2010-01-01
Until recently, the field of statistical physics was traditionally taught as three separate subjects: thermodynamics, statistical mechanics, and kinetic theory. This text, a forerunner in its field and now a classic, was the first to recognize the outdated reasons for their separation and to combine the essentials of the three subjects into one unified presentation of thermal physics. It has been widely adopted in graduate and advanced undergraduate courses, and is recommended throughout the field as an indispensable aid to the independent study and research of statistical physics.Designed for
Blakemore, J S
1962-01-01
Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co
Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.
2014-03-01
This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.
A nontransferring dry adhesive with hierarchical polymer nanohairs
Jeong, H. E.
2009-03-20
We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.
The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute works to provide information on cancer statistics in an effort to reduce the burden of cancer among the U.S. population.
... Resources Conducting Clinical Trials Statistical Tools and Data Terminology Resources NCI Data Catalog Cryo-EM NCI's Role ... Contacts Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training ...
U.S. Department of Health & Human Services — The CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health...
DEFF Research Database (Denmark)
Tryggestad, Kjell
2004-01-01
The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...
Energy Technology Data Exchange (ETDEWEB)
Wendelberger, Laura Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-08
In large datasets, it is time consuming or even impossible to pick out interesting images. Our proposed solution is to find statistics to quantify the information in each image and use those to identify and pick out images of interest.
Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...
Serdobolskii, Vadim Ivanovich
2007-01-01
This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. ...
HIERARCHICAL PROBABILISTIC INFERENCE OF COSMIC SHEAR
Energy Technology Data Exchange (ETDEWEB)
Schneider, Michael D.; Dawson, William A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Hogg, David W. [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); Marshall, Philip J.; Bard, Deborah J. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Meyers, Joshua [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035 (United States); Lang, Dustin, E-mail: schneider42@llnl.gov [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)
2015-07-01
Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the global shear inference, thereby rendering our algorithm computationally tractable for large surveys. With simple numerical examples we demonstrate the improvements in accuracy from our importance sampling approach, as well as the significance of the conditional distribution specification for the intrinsic galaxy properties when the data are generated from an unknown number of distinct galaxy populations with different morphological characteristics.
HIDEN: Hierarchical decomposition of regulatory networks
Directory of Open Access Journals (Sweden)
Gülsoy Günhan
2012-09-01
Full Text Available Abstract Background Transcription factors regulate numerous cellular processes by controlling the rate of production of each gene. The regulatory relations are modeled using transcriptional regulatory networks. Recent studies have shown that such networks have an underlying hierarchical organization. We consider the problem of discovering the underlying hierarchy in transcriptional regulatory networks. Results We first transform this problem to a mixed integer programming problem. We then use existing tools to solve the resulting problem. For larger networks this strategy does not work due to rapid increase in running time and space usage. We use divide and conquer strategy for such networks. We use our method to analyze the transcriptional regulatory networks of E. coli, H. sapiens and S. cerevisiae. Conclusions Our experiments demonstrate that: (i Our method gives statistically better results than three existing state of the art methods; (ii Our method is robust against errors in the data and (iii Our method’s performance is not affected by the different topologies in the data.
Hierarchical characterization procedures for dimensional metrology
MacKinnon, David; Beraldin, Jean-Angelo; Cournoyer, Luc; Carrier, Benjamin
2011-03-01
We present a series of dimensional metrology procedures for evaluating the geometrical performance of a 3D imaging system that have either been designed or modified from existing procedures to ensure, where possible, statistical traceability of each characteristic value from the certified reference surface to the certifying laboratory. Because there are currently no internationally-accepted standards for characterizing 3D imaging systems, these procedures have been designed to avoid using characteristic values provided by the vendors of 3D imaging systems. For this paper, we focus only on characteristics related to geometric surface properties, dividing them into surface form precision and surface fit trueness. These characteristics have been selected to be familiar to operators of 3D imaging systems that use Geometrical Dimensioning and Tolerancing (GD&T). The procedures for generating characteristic values would form the basis of either a volumetric or application-specific analysis of the characteristic profile of a 3D imaging system. We use a hierarchical approach in which each procedure builds on either certified reference values or previously-generated characteristic values. Starting from one of three classes of surface forms, we demonstrate how procedures for quantifying for flatness, roundness, angularity, diameter error, angle error, sphere-spacing error, and unidirectional and bidirectional plane-spacing error are built upon each other. We demonstrate how these procedures can be used as part of a process for characterizing the geometrical performance of a 3D imaging system.
Hierarchical group dynamics in pigeon flocks.
Nagy, Máté; Akos, Zsuzsa; Biro, Dora; Vicsek, Tamás
2010-04-08
Animals that travel together in groups display a variety of fascinating motion patterns thought to be the result of delicate local interactions among group members. Although the most informative way of investigating and interpreting collective movement phenomena would be afforded by the collection of high-resolution spatiotemporal data from moving individuals, such data are scarce and are virtually non-existent for long-distance group motion within a natural setting because of the associated technological difficulties. Here we present results of experiments in which track logs of homing pigeons flying in flocks of up to 10 individuals have been obtained by high-resolution lightweight GPS devices and analysed using a variety of correlation functions inspired by approaches common in statistical physics. We find a well-defined hierarchy among flock members from data concerning leading roles in pairwise interactions, defined on the basis of characteristic delay times between birds' directional choices. The average spatial position of a pigeon within the flock strongly correlates with its place in the hierarchy, and birds respond more quickly to conspecifics perceived primarily through the left eye-both results revealing differential roles for birds that assume different positions with respect to flock-mates. From an evolutionary perspective, our results suggest that hierarchical organization of group flight may be more efficient than an egalitarian one, at least for those flock sizes that permit regular pairwise interactions among group members, during which leader-follower relationships are consistently manifested.
Statistical Model-Based Face Pose Estimation
Institute of Scientific and Technical Information of China (English)
GE Xinliang; YANG Jie; LI Feng; WANG Huahua
2007-01-01
A robust face pose estimation approach is proposed by using face shape statistical model approach and pose parameters are represented by trigonometric functions. The face shape statistical model is firstly built by analyzing the face shapes from different people under varying poses. The shape alignment is vital in the process of building the statistical model. Then, six trigonometric functions are employed to represent the face pose parameters. Lastly, the mapping function is constructed between face image and face pose by linearly relating different parameters. The proposed approach is able to estimate different face poses using a few face training samples. Experimental results are provided to demonstrate its efficiency and accuracy.
Discursive Hierarchical Patterning in Economics Cases
Lung, Jane
2011-01-01
This paper attempts to apply Lung's (2008) model of the discursive hierarchical patterning of cases to a closer and more specific study of Economics cases and proposes a model of the distinct discursive hierarchical patterning of the same. It examines a corpus of 150 Economics cases with a view to uncovering the patterns of discourse construction.…
A Model of Hierarchical Key Assignment Scheme
Institute of Scientific and Technical Information of China (English)
ZHANG Zhigang; ZHAO Jing; XU Maozhi
2006-01-01
A model of the hierarchical key assignment scheme is approached in this paper, which can be used with any cryptography algorithm. Besides, the optimal dynamic control property of a hierarchical key assignment scheme will be defined in this paper. Also, our scheme model will meet this property.
Object recognition with hierarchical discriminant saliency networks
Directory of Open Access Journals (Sweden)
Sunhyoung eHan
2014-09-01
Full Text Available The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognitionmodel, the hierarchical discriminant saliency network (HDSN, whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. The HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a neuralnetwork implementation, all layers are convolutional and implement acombination of filtering, rectification, and pooling. The rectificationis performed with a parametric extension of the now popular rectified linearunits (ReLUs, whose parameters can be tuned for the detection of targetobject classes. This enables a number of functional enhancementsover neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation ofsaliency responses by the discriminant power of the underlying features,and the ability to detect both feature presence and absence.In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity totarget object classes and invariance. The resulting performance demonstrates benefits for all the functional enhancements of the HDSN.
Galaxy formation through hierarchical clustering
White, Simon D. M.; Frenk, Carlos S.
1991-01-01
Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.
Groups possessing extensive hierarchical decompositions
Januszkiewicz, T; Leary, I J
2009-01-01
Kropholler's class of groups is the smallest class of groups which contains all finite groups and is closed under the following operator: whenever $G$ admits a finite-dimensional contractible $G$-CW-complex in which all stabilizer groups are in the class, then $G$ is itself in the class. Kropholler's class admits a hierarchical structure, i.e., a natural filtration indexed by the ordinals. For example, stage 0 of the hierarchy is the class of all finite groups, and stage 1 contains all groups of finite virtual cohomological dimension. We show that for each countable ordinal $\\alpha$, there is a countable group that is in Kropholler's class which does not appear until the $\\alpha+1$st stage of the hierarchy. Previously this was known only for $\\alpha= 0$, 1 and 2. The groups that we construct contain torsion. We also review the construction of a torsion-free group that lies in the third stage of the hierarchy.
Quantum transport through hierarchical structures.
Boettcher, S; Varghese, C; Novotny, M A
2011-04-01
The transport of quantum electrons through hierarchical lattices is of interest because such lattices have some properties of both regular lattices and random systems. We calculate the electron transmission as a function of energy in the tight-binding approximation for two related Hanoi networks. HN3 is a Hanoi network with every site having three bonds. HN5 has additional bonds added to HN3 to make the average number of bonds per site equal to five. We present a renormalization group approach to solve the matrix equation involved in this quantum transport calculation. We observe band gaps in HN3, while no such band gaps are observed in linear networks or in HN5. We provide a detailed scaling analysis near the edges of these band gaps.
Hierarchical networks of scientific journals
Palla, Gergely; Mones, Enys; Pollner, Péter; Vicsek, Tamás
2015-01-01
Scientific journals are the repositories of the gradually accumulating knowledge of mankind about the world surrounding us. Just as our knowledge is organised into classes ranging from major disciplines, subjects and fields to increasingly specific topics, journals can also be categorised into groups using various metrics. In addition to the set of topics characteristic for a journal, they can also be ranked regarding their relevance from the point of overall influence. One widespread measure is impact factor, but in the present paper we intend to reconstruct a much more detailed description by studying the hierarchical relations between the journals based on citation data. We use a measure related to the notion of m-reaching centrality and find a network which shows the level of influence of a journal from the point of the direction and efficiency with which information spreads through the network. We can also obtain an alternative network using a suitably modified nested hierarchy extraction method applied ...
Adaptive Sampling in Hierarchical Simulation
Energy Technology Data Exchange (ETDEWEB)
Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R
2007-07-09
We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.
Multicollinearity in hierarchical linear models.
Yu, Han; Jiang, Shanhe; Land, Kenneth C
2015-09-01
This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model.
Hierarchically organized soft-materials based on fullerenes
Nakanishi, Takashi
2009-04-01
Simple chemical modifications of fullerene (C60) with long aliphatic chains provide novel type amphiphilic molecules playing in organic solvents due to the two different intermolecular interactions, namely π-π on C60 and van der Waals interactions on aliphatic chain moieties, respectively, and open a door developing supramolecular soft-materials having hierarchically organized architectures, various morphologies and functions based on fullerenes. By tuning the length and number of aliphatic chains on the derivatives as well as experimental conditions such as solvents, temperature, substrates for preparation of the assemblies, the assembled fullerenes showed various faces such as creating of many unique-shaped objects with controlled their dimensionality. For instance, nanowires and thin disks with single bilayer thickness in nanometer size, globular, fibrous, conical objects in mesoscopic (sub-micrometer) scale and flower-shaped and direction-controlled spiral objects in micrometer scale are obtained. As bulk states, thermotropic liquid crystals and room temperature (isotropic) liquid fullerenes are interestingly prepared from this molecular designs and showed not only their fluid natures and comparably high carrier mobility as fullerene-based organic-semiconductor phenomena. In addition, nano-carbon superhydrophobic surface with fractal morphology of the two-tier roughness on a nano- and microscopic scale was created from one of the supramolecular objects. The all of hierarchical supramolecular assemblies describing in this review is derived from fine-tuning intermolecular interactions of fullerene derivatives bearing long aliphatic chains.
A neural signature of hierarchical reinforcement learning.
Ribas-Fernandes, José J F; Solway, Alec; Diuk, Carlos; McGuire, Joseph T; Barto, Andrew G; Niv, Yael; Botvinick, Matthew M
2011-07-28
Human behavior displays hierarchical structure: simple actions cohere into subtask sequences, which work together to accomplish overall task goals. Although the neural substrates of such hierarchy have been the target of increasing research, they remain poorly understood. We propose that the computations supporting hierarchical behavior may relate to those in hierarchical reinforcement learning (HRL), a machine-learning framework that extends reinforcement-learning mechanisms into hierarchical domains. To test this, we leveraged a distinctive prediction arising from HRL. In ordinary reinforcement learning, reward prediction errors are computed when there is an unanticipated change in the prospects for accomplishing overall task goals. HRL entails that prediction errors should also occur in relation to task subgoals. In three neuroimaging studies we observed neural responses consistent with such subgoal-related reward prediction errors, within structures previously implicated in reinforcement learning. The results reported support the relevance of HRL to the neural processes underlying hierarchical behavior.
Hierarchical Identity-Based Lossy Trapdoor Functions
Escala, Alex; Libert, Benoit; Rafols, Carla
2012-01-01
Lossy trapdoor functions, introduced by Peikert and Waters (STOC'08), have received a lot of attention in the last years, because of their wide range of applications in theoretical cryptography. The notion has been recently extended to the identity-based scenario by Bellare et al. (Eurocrypt'12). We provide one more step in this direction, by considering the notion of hierarchical identity-based lossy trapdoor functions (HIB-LTDFs). Hierarchical identity-based cryptography generalizes identitybased cryptography in the sense that identities are organized in a hierarchical way; a parent identity has more power than its descendants, because it can generate valid secret keys for them. Hierarchical identity-based cryptography has been proved very useful both for practical applications and to establish theoretical relations with other cryptographic primitives. In order to realize HIB-LTDFs, we first build a weakly secure hierarchical predicate encryption scheme. This scheme, which may be of independent interest, is...
Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes
DEFF Research Database (Denmark)
He, W.; Min, D.D.; Zhang, X.D.
2014-01-01
Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...
Hierarchical models and the analysis of bird survey information
Sauer, J.R.; Link, W.A.
2003-01-01
Management of birds often requires analysis of collections of estimates. We describe a hierarchical modeling approach to the analysis of these data, in which parameters associated with the individual species estimates are treated as random variables, and probability statements are made about the species parameters conditioned on the data. A Markov-Chain Monte Carlo (MCMC) procedure is used to fit the hierarchical model. This approach is computer intensive, and is based upon simulation. MCMC allows for estimation both of parameters and of derived statistics. To illustrate the application of this method, we use the case in which we are interested in attributes of a collection of estimates of population change. Using data for 28 species of grassland-breeding birds from the North American Breeding Bird Survey, we estimate the number of species with increasing populations, provide precision-adjusted rankings of species trends, and describe a measure of population stability as the probability that the trend for a species is within a certain interval. Hierarchical models can be applied to a variety of bird survey applications, and we are investigating their use in estimation of population change from survey data.
Perotti, Juan Ignacio; Caldarelli, Guido
2015-01-01
The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the {\\it hierarchical mutual information}, which is a generalization of the traditional mutual information, and allows to compare hierarchical partitions and hierarchical community structures. The {\\it normalized} version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here, the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies, and on the hierarchical ...
Energy flow in plate assembles by hierarchical version of finite element method
DEFF Research Database (Denmark)
Wachulec, Marcin; Kirkegaard, Poul Henning
method has been proposed. In this paper a modified hierarchical version of finite element method is used for modelling of energy flow in plate assembles. The formulation includes description of in-plane forces so that planes lying in different planes can be modelled. Two examples considered are: L......-corner of two rectangular plates an a I-shaped plate girder made of five plates. Energy distribution among plates due to harmonic load is studied and the comparison of performance between the hierarchical and standard finite element formulation is presented....
Sob'yanin, Denis Nikolaevich
2012-06-01
A principle of hierarchical entropy maximization is proposed for generalized superstatistical systems, which are characterized by the existence of three levels of dynamics. If a generalized superstatistical system comprises a set of superstatistical subsystems, each made up of a set of cells, then the Boltzmann-Gibbs-Shannon entropy should be maximized first for each cell, second for each subsystem, and finally for the whole system. Hierarchical entropy maximization naturally reflects the sufficient time-scale separation between different dynamical levels and allows one to find the distribution of both the intensive parameter and the control parameter for the corresponding superstatistics. The hierarchical maximum entropy principle is applied to fluctuations of the photon Bose-Einstein condensate in a dye microcavity. This principle provides an alternative to the master equation approach recently applied to this problem. The possibility of constructing generalized superstatistics based on a statistics different from the Boltzmann-Gibbs statistics is pointed out.
Jana, Madhusudan
2015-01-01
Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...
Schwabl, Franz
2006-01-01
The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...
Bayesian hierarchical modeling for detecting safety signals in clinical trials.
Xia, H Amy; Ma, Haijun; Carlin, Bradley P
2011-09-01
Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.
An Extended Hierarchical Trusted Model for Wireless Sensor Networks
Institute of Scientific and Technical Information of China (English)
DU Ruiying; XU Mingdi; ZHANG Huanguo
2006-01-01
Cryptography and authentication are traditional approach for providing network security. However, they are not sufficient for solving the problems which malicious nodes compromise whole wireless sensor network leading to invalid data transmission and wasting resource by using vicious behaviors. This paper puts forward an extended hierarchical trusted architecture for wireless sensor network, and establishes trusted congregations by three-tier framework. The method combines statistics, economics with encrypt mechanism for developing two trusted models which evaluate cluster head nodes and common sensor nodes respectively. The models form logical trusted-link from command node to common sensor nodes and guarantees the network can run in secure and reliable circumstance.
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-07
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Rohatgi, Vijay K
2003-01-01
Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth
Mandl, Franz
1988-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Levine-Wissing, Robin
2012-01-01
All Access for the AP® Statistics Exam Book + Web + Mobile Everything you need to prepare for the Advanced Placement® exam, in a study system built around you! There are many different ways to prepare for an Advanced Placement® exam. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. To score your highest, you need a system that can be customized to fit you: your schedule, your learning style, and your current level of knowledge. This book, and the online tools that come with it, will help you personalize your AP® Statistics prep
Freund, Rudolf J; Wilson, William J
2010-01-01
Statistical Methods, 3e provides students with a working introduction to statistical methods offering a wide range of applications that emphasize the quantitative skills useful across many academic disciplines. This text takes a classic approach emphasizing concepts and techniques for working out problems and intepreting results. The book includes research projects, real-world case studies, numerous examples and data exercises organized by level of difficulty. This text requires that a student be familiar with algebra. New to this edition: NEW expansion of exercises a
Davidson, Norman
2003-01-01
Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody
Coding of shape from shading in area V4 of the macaque monkey
Directory of Open Access Journals (Sweden)
Jouffrais Christophe
2009-11-01
Full Text Available Abstract Background The shading of an object provides an important cue for recognition, especially for determining its 3D shape. However, neuronal mechanisms that allow the recovery of 3D shape from shading are poorly understood. The aim of our study was to determine the neuronal basis of 3D shape from shading coding in area V4 of the awake macaque monkey. Results We recorded the responses of V4 cells to stimuli presented parafoveally while the monkeys fixated a central spot. We used a set of stimuli made of 8 different 3D shapes illuminated from 4 directions (from above, the left, the right and below and different 2D controls for each stimulus. The results show that V4 neurons present a broad selectivity to 3D shape and illumination direction, but without a preference for a unique illumination direction. However, 3D shape and illumination direction selectivities are correlated suggesting that V4 neurons can use the direction of illumination present in complex patterns of shading present on the surface of objects. In addition, a vast majority of V4 neurons (78% have statistically different responses to the 3D and 2D versions of the stimuli, while responses to 3D are not systematically stronger than those to 2D controls. However, a hierarchical cluster analysis showed that the different classes of stimuli (3D, 2D controls are clustered in the V4 cells response space suggesting a coding of 3D stimuli based on the population response. The different illumination directions also tend to be clustered in this space. Conclusion Together, these results show that area V4 participates, at the population level, in the coding of complex shape from the shading patterns coming from the illumination of the surface of corrugated objects. Hence V4 provides important information for one of the steps of cortical processing of the 3D aspect of objects in natural light environment.
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-31
For the year 1997 and 1998, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually includes also historical time series over a longer period (see e.g. Energiatilastot 1997, Statistics Finland, Helsinki 1998, ISSN 0784-3165). The inside of the Review`s back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO{sub 2}-emissions, Electricity supply, Energy imports by country of origin in January-September 1998, Energy exports by recipient country in January-September 1998, Consumer prices of liquid fuels, Consumer prices of hard coal, Natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, Value added taxes and fiscal charges and fees included in consumer prices of some energy sources, Energy taxes and precautionary stock fees, pollution fees on oil products
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-31
For the year 1997 and 1998, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually includes also historical time series over a longer period (see e.g. Energiatilastot 1996, Statistics Finland, Helsinki 1997, ISSN 0784-3165). The inside of the Review`s back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO{sub 2}-emissions, Electricity supply, Energy imports by country of origin in January-June 1998, Energy exports by recipient country in January-June 1998, Consumer prices of liquid fuels, Consumer prices of hard coal, Natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, Value added taxes and fiscal charges and fees included in consumer prices of some energy sources, Energy taxes and precautionary stock fees, pollution fees on oil products
Gallavotti, Giovanni
2011-01-01
C. Cercignani: A sketch of the theory of the Boltzmann equation.- O.E. Lanford: Qualitative and statistical theory of dissipative systems.- E.H. Lieb: many particle Coulomb systems.- B. Tirozzi: Report on renormalization group.- A. Wehrl: Basic properties of entropy in quantum mechanics.
Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.
2011-01-01
This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint
Osei, Frank B.; Duker, Alfred A.; Stein, Alfred
2011-01-01
This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint
Hierarchical object parsing from structured noisy point clouds.
Barbu, Adrian
2013-07-01
Object parsing and segmentation from point clouds are challenging tasks because the relevant data is available only as thin structures along object boundaries or other features, and is corrupted by large amounts of noise. To handle this kind of data, flexible shape models are desired that can accurately follow the object boundaries. Popular models such as active shape and active appearance models (AAMs) lack the necessary flexibility for this task, while recent approaches such as the recursive compositional models make model simplifications to obtain computational guarantees. This paper investigates a hierarchical Bayesian model of shape and appearance in a generative setting. The input data is explained by an object parsing layer which is a deformation of a hidden principal component analysis (PCA) shape model with Gaussian prior. The paper also introduces a novel efficient inference algorithm that uses informed data-driven proposals to initialize local searches for the hidden variables. Applied to the problem of object parsing from structured point clouds such as edge detection images, the proposed approach obtains state-of-the-art parsing errors on two standard datasets without using any intensity information.
Per Object statistical analysis
DEFF Research Database (Denmark)
2008-01-01
Variable. This procedure was developed in order to be able to export objects as ESRI shape data with the 90-percentile of the Hue of each object's pixels as an item in the shape attribute table. This procedure uses a sub-level single pixel chessboard segmentation, loops for each of the objects......This RS code is to do Object-by-Object analysis of each Object's sub-objects, e.g. statistical analysis of an object's individual image data pixels. Statistics, such as percentiles (so-called "quartiles") are derived by the process, but the return of that can only be a Scene Variable, not an Object...... of a specific class in turn, and uses as pair of PPO stages to derive the statistics and then assign them to the objects' Object Variables. It may be that this could all be done in some other, simply way, but several other ways that were tried did not succeed. The procedure ouptut has been tested against...
DEFF Research Database (Denmark)
Larsen, Gunner Chr.
2003-01-01
patterns of a wind turbine when a gust event is imposed. Methods exist to embed a gust of a prescribed appearance in a stochastic wind field. The present report deals with a method to derive realistic gustshapes based only on a few stochastic features of the relevant turbulence field. The investigation...... is limited to investigation of the longitudinal turbulence component, and consequently no attention is paid to wind direction gusts. A theoreticalexpression, based on level crossing statistics, is proposed for the description of a mean wind speed gust shape. The description also allows for information...
Hierarchically structured, nitrogen-doped carbon membranes
Wang, Hong
2017-08-03
The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional ﬂuidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.
A Model for Slicing JAVA Programs Hierarchically
Institute of Scientific and Technical Information of China (English)
Bi-Xin Li; Xiao-Cong Fan; Jun Pang; Jian-Jun Zhao
2004-01-01
Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing Tool (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.
Hierarchical analysis of acceptable use policies
Directory of Open Access Journals (Sweden)
P. A. Laughton
2008-01-01
Full Text Available Acceptable use policies (AUPs are vital tools for organizations to protect themselves and their employees from misuse of computer facilities provided. A well structured, thorough AUP is essential for any organization. It is impossible for an effective AUP to deal with every clause and remain readable. For this reason, some sections of an AUP carry more weight than others, denoting importance. The methodology used to develop the hierarchical analysis is a literature review, where various sources were consulted. This hierarchical approach to AUP analysis attempts to highlight important sections and clauses dealt with in an AUP. The emphasis of the hierarchal analysis is to prioritize the objectives of an AUP.
Instance-Based Generative Biological Shape Modeling.
Peng, Tao; Wang, Wei; Rohde, Gustavo K; Murphy, Robert F
2009-01-01
Biological shape modeling is an essential task that is required for systems biology efforts to simulate complex cell behaviors. Statistical learning methods have been used to build generative shape models based on reconstructive shape parameters extracted from microscope image collections. However, such parametric modeling approaches are usually limited to simple shapes and easily-modeled parameter distributions. Moreover, to maximize the reconstruction accuracy, significant effort is required to design models for specific datasets or patterns. We have therefore developed an instance-based approach to model biological shapes within a shape space built upon diffeomorphic measurement. We also designed a recursive interpolation algorithm to probabilistically synthesize new shape instances using the shape space model and the original instances. The method is quite generalizable and therefore can be applied to most nuclear, cell and protein object shapes, in both 2D and 3D.
Natrella, Mary Gibbons
2005-01-01
Formulated to assist scientists and engineers engaged in army ordnance research and development programs, this well-known and highly regarded handbook is a ready reference for advanced undergraduate and graduate students as well as for professionals seeking engineering information and quantitative data for designing, developing, constructing, and testing equipment. Topics include characterizing and comparing the measured performance of a material, product, or process; general considerations in planning experiments; statistical techniques for analyzing extreme-value data; use of transformations
Meneghetti, M; Dahle, H; Limousin, M
2013-01-01
The existence of an arc statistics problem was at the center of a strong debate in the last fifteen years. With the aim to clarify if the optical depth for giant gravitational arcs by galaxy clusters in the so called concordance model is compatible with observations, several studies were carried out which helped to significantly improve our knowledge of strong lensing clusters, unveiling their extremely complex internal structure. In particular, the abundance and the frequency of strong lensing events like gravitational arcs turned out to be a potentially very powerful tool to trace the structure formation. However, given the limited size of observational and theoretical data-sets, the power of arc statistics as a cosmological tool has been only minimally exploited so far. On the other hand, the last years were characterized by significant advancements in the field, and several cluster surveys that are ongoing or planned for the near future seem to have the potential to make arc statistics a competitive cosmo...
Image meshing via hierarchical optimization
Institute of Scientific and Technical Information of China (English)
Hao XIE; Ruo-feng TONG‡
2016-01-01
Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., defi nition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to fi nd a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it diﬃcult to fi nd a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to fi ner ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.
Image meshing via hierarchical optimization＊
Institute of Scientific and Technical Information of China (English)
Hao XIE; Ruo-feng TONGS
2016-01-01
Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., definition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to find a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to find a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to finer ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.
Hierarchical Bayes Ensemble Kalman Filtering
Tsyrulnikov, Michael
2015-01-01
Ensemble Kalman filtering (EnKF), when applied to high-dimensional systems, suffers from an inevitably small affordable ensemble size, which results in poor estimates of the background error covariance matrix ${\\bf B}$. The common remedy is a kind of regularization, usually an ad-hoc spatial covariance localization (tapering) combined with artificial covariance inflation. Instead of using an ad-hoc regularization, we adopt the idea by Myrseth and Omre (2010) and explicitly admit that the ${\\bf B}$ matrix is unknown and random and estimate it along with the state (${\\bf x}$) in an optimal hierarchical Bayes analysis scheme. We separate forecast errors into predictability errors (i.e. forecast errors due to uncertainties in the initial data) and model errors (forecast errors due to imperfections in the forecast model) and include the two respective components ${\\bf P}$ and ${\\bf Q}$ of the ${\\bf B}$ matrix into the extended control vector $({\\bf x},{\\bf P},{\\bf Q})$. Similarly, we break the traditional backgrou...
The type I error rate for in vivo Comet assay data when the hierarchical structure is disregarded
DEFF Research Database (Denmark)
Hansen, Merete Kjær; Kulahci, Murat
The Comet assay is a sensitive technique for detection of DNA strand breaks. The experimental design of in vivo Comet assay studies are often hierarchically structured, which should be reWected in the statistical analysis. However, the hierarchical structure sometimes seems to be disregarded, and...... the exposition of the statistical methodology and to suitably account for the hierarchical structure of Comet assay data whenever present.......The Comet assay is a sensitive technique for detection of DNA strand breaks. The experimental design of in vivo Comet assay studies are often hierarchically structured, which should be reWected in the statistical analysis. However, the hierarchical structure sometimes seems to be disregarded......, and this imposes considerable impact on the type I error rate. This study aims to demonstrate the implications that result from disregarding the hierarchical structure. DiUerent combinations of the factor levels as they appear in a literature study give type I error rates up to 0.51 and for all combinations...
An Automatic Hierarchical Delay Analysis Tool
Institute of Scientific and Technical Information of China (English)
FaridMheir－El－Saadi; BozenaKaminska
1994-01-01
The performance analysis of VLSI integrated circuits(ICs) with flat tools is slow and even sometimes impossible to complete.Some hierarchical tools have been developed to speed up the analysis of these large ICs.However,these hierarchical tools suffer from a poor interaction with the CAD database and poorly automatized operations.We introduce a general hierarchical framework for performance analysis to solve these problems.The circuit analysis is automatic under the proposed framework.Information that has been automatically abstracted in the hierarchy is kept in database properties along with the topological information.A limited software implementation of the framework,PREDICT,has also been developed to analyze the delay performance.Experimental results show that hierarchical analysis CPU time and memory requirements are low if heuristics are used during the abstraction process.
Packaging glass with hierarchically nanostructured surface
He, Jr-Hau
2017-08-03
An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.
Generation of hierarchically correlated multivariate symbolic sequences
Tumminello, Mi; Mantegna, R N
2008-01-01
We introduce an algorithm to generate multivariate series of symbols from a finite alphabet with a given hierarchical structure of similarities. The target hierarchical structure of similarities is arbitrary, for instance the one obtained by some hierarchical clustering procedure as applied to an empirical matrix of Hamming distances. The algorithm can be interpreted as the finite alphabet equivalent of the recently introduced hierarchically nested factor model (M. Tumminello et al. EPL 78 (3) 30006 (2007)). The algorithm is based on a generating mechanism that is different from the one used in the mutation rate approach. We apply the proposed methodology for investigating the relationship between the bootstrap value associated with a node of a phylogeny and the probability of finding that node in the true phylogeny.
Hierarchical modularity in human brain functional networks
Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009
2010-01-01
The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...
HIERARCHICAL ORGANIZATION OF INFORMATION, IN RELATIONAL DATABASES
Directory of Open Access Journals (Sweden)
Demian Horia
2008-05-01
Full Text Available In this paper I will present different types of representation, of hierarchical information inside a relational database. I also will compare them to find the best organization for specific scenarios.
Hierarchical Network Design Using Simulated Annealing
DEFF Research Database (Denmark)
Thomadsen, Tommy; Clausen, Jens
2002-01-01
The hierarchical network problem is the problem of finding the least cost network, with nodes divided into groups, edges connecting nodes in each groups and groups ordered in a hierarchy. The idea of hierarchical networks comes from telecommunication networks where hierarchies exist. Hierarchical...... networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub......-algorithm uses a construction algorithm to determine edges and route the demand. Performance for different versions of the algorithm are reported in terms of runtime and quality of the solutions. The algorithm is able to find solutions of reasonable quality in approximately 1 hour for networks with 100 nodes....
When to Use Hierarchical Linear Modeling
National Research Council Canada - National Science Library
Veronika Huta
2014-01-01
Previous publications on hierarchical linear modeling (HLM) have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis...
Conservation Laws in the Hierarchical Model
Beijeren, H. van; Gallavotti, G.; Knops, H.
1974-01-01
An exposition of the renormalization-group equations for the hierarchical model is given. Attention is drawn to some properties of the spin distribution functions which are conserved under the action of the renormalization group.
Hierarchical DSE for multi-ASIP platforms
DEFF Research Database (Denmark)
Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak;
2013-01-01
This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...
Retrieval capabilities of hierarchical networks: from Dyson to Hopfield.
Agliari, Elena; Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Tantari, Daniele; Tavani, Flavia
2015-01-16
We consider statistical-mechanics models for spin systems built on hierarchical structures, which provide a simple example of non-mean-field framework. We show that the coupling decay with spin distance can give rise to peculiar features and phase diagrams much richer than their mean-field counterpart. In particular, we consider the Dyson model, mimicking ferromagnetism in lattices, and we prove the existence of a number of metastabilities, beyond the ordered state, which become stable in the thermodynamic limit. Such a feature is retained when the hierarchical structure is coupled with the Hebb rule for learning, hence mimicking the modular architecture of neurons, and gives rise to an associative network able to perform single pattern retrieval as well as multiple-pattern retrieval, depending crucially on the external stimuli and on the rate of interaction decay with distance; however, those emergent multitasking features reduce the network capacity with respect to the mean-field counterpart. The analysis is accomplished through statistical mechanics, Markov chain theory, signal-to-noise ratio technique, and numerical simulations in full consistency. Our results shed light on the biological complexity shown by real networks, and suggest future directions for understanding more realistic models.
Hierarchical organization versus self-organization
Busseniers, Evo
2014-01-01
In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...
Hierarchical decision making for flood risk reduction
DEFF Research Database (Denmark)
Custer, Rocco; Nishijima, Kazuyoshi
2013-01-01
. In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...
Hierarchical self-organization of tectonic plates
2010-01-01
The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly chan...
Angelic Hierarchical Planning: Optimal and Online Algorithms
2008-12-06
restrict our attention to plans in I∗(Act, s0). Definition 2. ( Parr and Russell , 1998) A plan ah∗ is hierarchically optimal iff ah∗ = argmina∈I∗(Act,s0):T...Murdock, Dan Wu, and Fusun Yaman. SHOP2: An HTN planning system. JAIR, 20:379–404, 2003. Ronald Parr and Stuart Russell . Reinforcement Learning with...Angelic Hierarchical Planning: Optimal and Online Algorithms Bhaskara Marthi Stuart J. Russell Jason Wolfe Electrical Engineering and Computer
Hierarchical Needs, Income Comparisons and Happiness Levels
Drakopoulos, Stavros
2011-01-01
The cornerstone of the hierarchical approach is that there are some basic human needs which must be satisfied before non-basic needs come into the picture. The hierarchical structure of needs implies that the satisfaction of primary needs provides substantial increases to individual happiness compared to the subsequent satisfaction of secondary needs. This idea can be combined with the concept of comparison income which means that individuals compare rewards with individuals with similar char...
Universality classes of fluctuation dynamics in hierarchical complex systems
Macêdo, A. M. S.; González, Iván R. Roa; Salazar, D. S. P.; Vasconcelos, G. L.
2017-03-01
A unified approach is proposed to describe the statistics of the short-time dynamics of multiscale complex systems. The probability density function of the relevant time series (signal) is represented as a statistical superposition of a large time-scale distribution weighted by the distribution of certain internal variables that characterize the slowly changing background. The dynamics of the background is formulated as a hierarchical stochastic model whose form is derived from simple physical constraints, which in turn restrict the dynamics to only two possible classes. The probability distributions of both the signal and the background have simple representations in terms of Meijer G functions. The two universality classes for the background dynamics manifest themselves in the signal distribution as two types of tails: power law and stretched exponential, respectively. A detailed analysis of empirical data from classical turbulence and financial markets shows excellent agreement with the theory.
Directory of Open Access Journals (Sweden)
Kai Liu
2015-01-01
Full Text Available Hierarchical structured TiO2 nanotubes were prepared by mechanical ball milling of highly ordered TiO2 nanotube arrays grown by electrochemical anodization of titanium foil. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, specific surface area analysis, UV-visible absorption spectroscopy, photocurrent measurement, photoluminescence spectra, electrochemical impedance spectra, and photocatalytic degradation test were applied to characterize the nanocomposites. Surface area increased as the milling time extended. After 5 h ball milling, TiO2 hierarchical nanotubes exhibited a corn-like shape and exhibited enhanced photoelectrochemical activity in comparison to commercial P25. The superior photocatalytic activity is suggested to be due to the combined advantages of high surface area of nanoparticles and rapid electron transfer as well as collection of the nanotubes in the hierarchical structure. The hierarchical structured TiO2 nanotubes could be applied into flexible applications on solar cells, sensors, and other photoelectrochemical devices.
2012-01-01
In 1975 John Tukey proposed a multivariate median which is the 'deepest' point in a given data cloud in R^d. Later, in measuring the depth of an arbitrary point z with respect to the data, David Donoho and Miriam Gasko considered hyperplanes through z and determined its 'depth' by the smallest portion of data that are separated by such a hyperplane. Since then, these ideas has proved extremely fruitful. A rich statistical methodology has developed that is based on data depth and, more general...
Sheffield, Scott
2009-01-01
In recent years, statistical mechanics has been increasingly recognized as a central domain of mathematics. Major developments include the Schramm-Loewner evolution, which describes two-dimensional phase transitions, random matrix theory, renormalization group theory and the fluctuations of random surfaces described by dimers. The lectures contained in this volume present an introduction to recent mathematical progress in these fields. They are designed for graduate students in mathematics with a strong background in analysis and probability. This book will be of particular interest to graduate students and researchers interested in modern aspects of probability, conformal field theory, percolation, random matrices and stochastic differential equations.
Evaluating Hierarchical Structure in Music Annotations.
McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo
2017-01-01
Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.
Evaluating Hierarchical Structure in Music Annotations
Directory of Open Access Journals (Sweden)
Brian McFee
2017-08-01
Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.
Hierarchical Nanoceramics for Industrial Process Sensors
Energy Technology Data Exchange (ETDEWEB)
Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang
2011-07-15
This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.
Directory of Open Access Journals (Sweden)
Jamie Joseph
2015-06-01
Full Text Available The power of SNP association studies to detect valid relationships with clinical phenotypes in schizophrenia is largely limited by the number of SNPs selected and non-specificity of phenotypes. To address this, we first assessed performance on two visual perceptual organization tasks designed to avoid many generalized deficit confounds, Kanizsa shape perception and contour integration, in a schizophrenia patient sample. Then, to reduce the total number of candidate SNPs analyzed in association with perceptual organization phenotypes, we employed a two-stage strategy: first a priori SNPs from three candidate genes were selected (GAD1, NRG1 and DTNBP1; then a Hierarchical Classes Analysis (HICLAS was performed to reduce the total number of SNPs, based on statistically related SNP clusters. HICLAS reduced the total number of candidate SNPs for subsequent phenotype association analyses from 6 to 3. MANCOVAs indicated that rs10503929 and rs1978340 were associated with the Kanizsa shape perception filling in metric but not the global shape detection metric. rs10503929 was also associated with altered contour integration performance. SNPs not selected by the HICLAS model were unrelated to perceptual phenotype indices. While the contribution of candidate SNPs to perceptual impairments requires further clarification, this study reports the first application of HICLAS as a hypothesis-independent mathematical method for SNP data reduction. HICLAS may be useful for future larger scale genotype-phenotype association studies.
Terhorst, Lauren; Beck, Kelly Battle; McKeon, Ashlee B; Graham, Kristin M; Ye, Feifei; Shiffman, Saul
2017-08-01
Ecological momentary assessment (EMA) methods collect real-time data in real-world environments, which allow physical medicine and rehabilitation researchers to examine objective outcome data and reduces bias from retrospective recall. The statistical analysis of EMA data is directly related to the research question and the temporal design of the study. Hierarchical linear modeling, which accounts for multiple observations from the same participant, is a particularly useful approach to analyzing EMA data. The objective of this paper was to introduce the process of conducting hierarchical linear modeling analyses with EMA data. This is accomplished using exemplars from recent physical medicine and rehabilitation literature.
HIERARCHICAL OPTIMIZATION MODEL ON GEONETWORK
Directory of Open Access Journals (Sweden)
Z. Zha
2012-07-01
Full Text Available In existing construction experience of Spatial Data Infrastructure (SDI, GeoNetwork, as the geographical information integrated solution, is an effective way of building SDI. During GeoNetwork serving as an internet application, several shortcomings are exposed. The first one is that the time consuming of data loading has been considerately increasing with the growth of metadata count. Consequently, the efficiency of query and search service becomes lower. Another problem is that stability and robustness are both ruined since huge amount of metadata. The final flaw is that the requirements of multi-user concurrent accessing based on massive data are not effectively satisfied on the internet. A novel approach, Hierarchical Optimization Model (HOM, is presented to solve the incapability of GeoNetwork working with massive data in this paper. HOM optimizes the GeoNetwork from these aspects: internal procedure, external deployment strategies, etc. This model builds an efficient index for accessing huge metadata and supporting concurrent processes. In this way, the services based on GeoNetwork can maintain stable while running massive metadata. As an experiment, we deployed more than 30 GeoNetwork nodes, and harvest nearly 1.1 million metadata. From the contrast between the HOM-improved software and the original one, the model makes indexing and retrieval processes more quickly and keeps the speed stable on metadata amount increasing. It also shows stable on multi-user concurrent accessing to system services, the experiment achieved good results and proved that our optimization model is efficient and reliable.
Ruso, Juan M; Sartuqui, Javier; Messina, Paula V
2015-01-01
Bone is a biologically and structurally sophisticated multifunctional tissue. It dynamically responds to biochemical, mechanical and electrical clues by remodelling itself and accordingly the maximum strength and toughness are along the lines of the greatest applied stress. The challenge is to develop an orthopaedic biomaterial that imitates the micro- and nano-structural elements and compositions of bone to locally match the properties of the host tissue resulting in a biologically fixed implant. Looking for the ideal implant, the convergence of life and materials sciences occurs. Researchers in many different fields apply their expertise to improve implantable devices and regenerative medicine. Materials of all kinds, but especially hierarchical nano-materials, are being exploited. The application of nano-materials with hierarchical design to calcified tissue reconstructive medicine involve intricate systems including scaffolds with multifaceted shapes that provides temporary mechanical function; materials with nano-topography modifications that guarantee their integration to tissues and that possesses functionalized surfaces to transport biologic factors to stimulate tissue growth in a controlled, safe, and rapid manner. Furthermore materials that should degrade on a timeline coordinated to the time that takes the tissues regrow, are prepared. These implantable devices are multifunctional and for its construction they involve the use of precise strategically techniques together with specific material manufacturing processes that can be integrated to achieve in the design, the required multifunctionality. For such reasons, even though the idea of displacement from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been guaranteed for well over a decade, the reality has yet to emerge. In this paper, we examine the recent approaches to create enhanced bioactive materials. Their design and manufacturing procedures as well
Audiometric shape and presbycusis.
Demeester, Kelly; van Wieringen, Astrid; Hendrickx, Jan-jaap; Topsakal, Vedat; Fransen, Erik; van Laer, Lut; Van Camp, Guy; Van de Heyning, Paul
2009-04-01
The aim of this study was to describe the prevalence of specific audiogram configurations in a healthy, otologically screened population between 55 and 65 years old. The audiograms of 1147 subjects (549 males and 598 females between 55 and 65 years old) were collected through population registries and classified according to the configuration of hearing loss. Gender and noise/solvent-exposure effects on the prevalence of the different audiogram shapes were determined statistically. In our population 'Flat' audiograms were most dominantly represented (37%) followed by 'High frequency Gently sloping' audiograms (35%) and 'High frequency Steeply sloping' audiograms (27%). 'Low frequency Ascending' audiograms, 'Mid frequency U-shape' audiograms and 'Mid frequency Reverse U-shape' audiograms were very rare (together less than 1%). The 'Flat'-configuration was significantly more common in females, whereas the 'High frequency Steeply sloping'-configuration was more common in males. Exposure to noise and/or solvents did not change this finding. In addition, females with a 'Flat' audiogram had a significantly larger amount of overall hearing loss compared to males. Furthermore, our data reveal a significant association between the prevalence of 'High frequency Steeply sloping' audiograms and the degree of noise/solvent exposure, despite a relatively high proportion of non-exposed subjects showing a 'High frequency Steeply sloping' audiogram as well.
Object recognition with hierarchical discriminant saliency networks.
Han, Sunhyoung; Vasconcelos, Nuno
2014-01-01
The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and
A Statistical Approach to Crime Linkage
Porter, Michael D.
2014-01-01
The object of this paper is to develop a statistical approach to criminal linkage analysis that discovers and groups crime events that share a common offender and prioritizes suspects for further investigation. Bayes factors are used to describe the strength of evidence that two crimes are linked. Using concepts from agglomerative hierarchical clustering, the Bayes factors for crime pairs are combined to provide similarity measures for comparing two crime series. This facilitates crime series...
Energy Technology Data Exchange (ETDEWEB)
Peterson, David; Stofleth, Jerome H.; Saul, Venner W.
2017-07-11
Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.
Colloidal quantum dot solar cells exploiting hierarchical structuring
Labelle, André J.
2015-02-11
Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.
Estimation of shape model parameters for 3D surfaces
DEFF Research Database (Denmark)
Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen;
2008-01-01
Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D s...
Regularized Statistical Analysis of Anatomy
DEFF Research Database (Denmark)
Sjöstrand, Karl
2007-01-01
This thesis presents the application and development of regularized methods for the statistical analysis of anatomical structures. Focus is on structure-function relationships in the human brain, such as the connection between early onset of Alzheimer’s disease and shape changes of the corpus cal...
Paine, Gregory Harold
1982-03-01
The primary objective of the thesis is to explore the dynamical properties of small nerve networks by means of the methods of statistical mechanics. To this end, a general formalism is developed and applied to elementary groupings of model neurons which are driven by either constant (steady state) or nonconstant (nonsteady state) forces. Neuronal models described by a system of coupled, nonlinear, first-order, ordinary differential equations are considered. A linearized form of the neuronal equations is studied in detail. A Lagrange function corresponding to the linear neural network is constructed which, through a Legendre transformation, provides a constant of motion. By invoking the Maximum-Entropy Principle with the single integral of motion as a constraint, a probability distribution function for the network in a steady state can be obtained. The formalism is implemented for some simple networks driven by a constant force; accordingly, the analysis focuses on a study of fluctuations about the steady state. In particular, a network composed of N noninteracting neurons, termed Free Thinkers, is considered in detail, with a view to interpretation and numerical estimation of the Lagrange multiplier corresponding to the constant of motion. As an archetypical example of a net of interacting neurons, the classical neural oscillator, consisting of two mutually inhibitory neurons, is investigated. It is further shown that in the case of a network driven by a nonconstant force, the Maximum-Entropy Principle can be applied to determine a probability distribution functional describing the network in a nonsteady state. The above examples are reconsidered with nonconstant driving forces which produce small deviations from the steady state. Numerical studies are performed on simplified models of two physical systems: the starfish central nervous system and the mammalian olfactory bulb. Discussions are given as to how statistical neurodynamics can be used to gain a better
Institute of Scientific and Technical Information of China (English)
Takao Araya; Takuya Kubo; Nicolaus von Wiren; Hideki Takahashi
2016-01-01
Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition, statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study, we developed a statistical modeling approach to investigate modulations of root system archi-tecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical configuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were gener-ated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(i ) rapid progression of lateral root emergence in response to ammonium; and (i i) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture, supported by meta-analysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.
Generalized Models for Rock Joint Surface Shapes
Directory of Open Access Journals (Sweden)
Shigui Du
2014-01-01
Full Text Available Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough.
Eadie, Gwendolyn; Harris, William
2016-01-01
We present a hierarchical Bayesian method for estimating the total mass and mass profile of the Milky Way Galaxy. The new hierarchical Bayesian approach further improves the framework presented by Eadie, Harris, & Widrow (2015) and Eadie & Harris (2016) and builds upon the preliminary reports by Eadie et al (2015a,c). The method uses a distribution function $f(\\mathcal{E},L)$ to model the galaxy and kinematic data from satellite objects such as globular clusters to trace the Galaxy's gravitational potential. A major advantage of the method is that it not only includes complete and incomplete data simultaneously in the analysis, but also incorporates measurement uncertainties in a coherent and meaningful way. We first test the hierarchical Bayesian framework, which includes measurement uncertainties, using the same data and power-law model assumed in Eadie & Harris (2016), and find the results are similar but more strongly constrained. Next, we take advantage of the new statistical framework and in...
Genton, Marc G.
2017-09-07
We present a hierarchical decomposition scheme for computing the n-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n2) to O(mn+knlog(n/m)), where k is the numerical rank of off-diagonal matrix blocks and m is the size of small diagonal blocks in the matrix that are not well-approximated by low rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations.
Bistability of mixed states in a neural network storing hierarchical patterns
Toya, Kaname; Fukushima, Kunihiko; Kabashima, Yoshiyuki; Okada, Masato
2000-04-01
We discuss the properties of equilibrium states in an autoassociative memory model storing hierarchically correlated patterns (hereafter, hierarchical patterns). We will show that symmetric mixed states (hereafter, mixed states) are bistable on the associative memory model storing the hierarchical patterns in a region of the ferromagnetic phase. This means that the first-order transition occurs in this ferromagnetic phase. We treat these contents with a statistical mechanical method (SCSNA) and by computer simulation. Finally, we discuss a physiological implication of this model. Sugase et al (1999 Nature 400 869) analysed the time-course of the information carried by the firing of face-responsive neurons in the inferior temporal cortex. We also discuss the relation between the theoretical results and the physiological experiments of Sugase et al .
Building Hierarchical Representations for Oracle Character and Sketch Recognition.
Jun Guo; Changhu Wang; Roman-Rangel, Edgar; Hongyang Chao; Yong Rui
2016-01-01
In this paper, we study oracle character recognition and general sketch recognition. First, a data set of oracle characters, which are the oldest hieroglyphs in China yet remain a part of modern Chinese characters, is collected for analysis. Second, typical visual representations in shape- and sketch-related works are evaluated. We analyze the problems suffered when addressing these representations and determine several representation design criteria. Based on the analysis, we propose a novel hierarchical representation that combines a Gabor-related low-level representation and a sparse-encoder-related mid-level representation. Extensive experiments show the effectiveness of the proposed representation in both oracle character recognition and general sketch recognition. The proposed representation is also complementary to convolutional neural network (CNN)-based models. We introduce a solution to combine the proposed representation with CNN-based models, and achieve better performances over both approaches. This solution has beaten humans at recognizing general sketches.
Use of hierarchical models to analyze European trends in congenital anomaly prevalence.
Cavadino, Alana; Prieto-Merino, David; Addor, Marie-Claude; Arriola, Larraitz; Bianchi, Fabrizio; Draper, Elizabeth; Garne, Ester; Greenlees, Ruth; Haeusler, Martin; Khoshnood, Babak; Kurinczuk, Jenny; McDonnell, Bob; Nelen, Vera; O'Mahony, Mary; Randrianaivo, Hanitra; Rankin, Judith; Rissmann, Anke; Tucker, David; Verellen-Dumoulin, Christine; de Walle, Hermien; Wellesley, Diana; Morris, Joan K
2016-06-01
Surveillance of congenital anomalies is important to identify potential teratogens. Despite known associations between different anomalies, current surveillance methods examine trends within each subgroup separately. We aimed to evaluate whether hierarchical statistical methods that combine information from several subgroups simultaneously would enhance current surveillance methods using data collected by EUROCAT, a European network of population-based congenital anomaly registries. Ten-year trends (2003 to 2012) in 18 EUROCAT registries over 11 countries were analyzed for the following groups of anomalies: neural tube defects, congenital heart defects, digestive system, and chromosomal anomalies. Hierarchical Poisson regression models that combined related subgroups together according to EUROCAT's hierarchy of subgroup coding were applied. Results from hierarchical models were compared with those from Poisson models that consider each congenital anomaly separately. Hierarchical models gave similar results as those obtained when considering each anomaly subgroup in a separate analysis. Hierarchical models that included only around three subgroups showed poor convergence and were generally found to be over-parameterized. Larger sets of anomaly subgroups were found to be too heterogeneous to group together in this way. There were no substantial differences between independent analyses of each subgroup and hierarchical models when using the EUROCAT anomaly subgroups. Considering each anomaly separately, therefore, remains an appropriate method for the detection of potential changes in prevalence by surveillance systems. Hierarchical models do, however, remain an interesting alternative method of analysis when considering the risks of specific exposures in relation to the prevalence of congenital anomalies, which could be investigated in other studies. Birth Defects Research (Part A) 106:480-10, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Self-assembled biomimetic superhydrophobic hierarchical arrays.
Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng
2013-09-01
Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.
Analysis hierarchical model for discrete event systems
Ciortea, E. M.
2015-11-01
The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.
Hierarchical models and chaotic spin glasses
Berker, A. Nihat; McKay, Susan R.
1984-09-01
Renormalization-group studies in position space have led to the discovery of hierarchical models which are exactly solvable, exhibiting nonclassical critical behavior at finite temperature. Position-space renormalization-group approximations that had been widely and successfully used are in fact alternatively applicable as exact solutions of hierarchical models, this realizability guaranteeing important physical requirements. For example, a hierarchized version of the Sierpiriski gasket is presented, corresponding to a renormalization-group approximation which has quantitatively yielded the multicritical phase diagrams of submonolayers on graphite. Hierarchical models are now being studied directly as a testing ground for new concepts. For example, with the introduction of frustration, chaotic renormalization-group trajectories were obtained for the first time. Thus, strong and weak correlations are randomly intermingled at successive length scales, and a new microscopic picture and mechanism for a spin glass emerges. An upper critical dimension occurs via a boundary crisis mechanism in cluster-hierarchical variants developed to have well-behaved susceptibilities.
Global Considerations in Hierarchical Clustering Reveal Meaningful Patterns in Data
Varshavsky, Roy; Horn, David; Linial, Michal
2008-01-01
Background A hierarchy, characterized by tree-like relationships, is a natural method of organizing data in various domains. When considering an unsupervised machine learning routine, such as clustering, a bottom-up hierarchical (BU, agglomerative) algorithm is used as a default and is often the only method applied. Methodology/Principal Findings We show that hierarchical clustering that involve global considerations, such as top-down (TD, divisive), or glocal (global-local) algorithms are better suited to reveal meaningful patterns in the data. This is demonstrated, by testing the correspondence between the results of several algorithms (TD, glocal and BU) and the correct annotations provided by experts. The correspondence was tested in multiple domains including gene expression experiments, stock trade records and functional protein families. The performance of each of the algorithms is evaluated by statistical criteria that are assigned to clusters (nodes of the hierarchy tree) based on expert-labeled data. Whereas TD algorithms perform better on global patterns, BU algorithms perform well and are advantageous when finer granularity of the data is sought. In addition, a novel TD algorithm that is based on genuine density of the data points is presented and is shown to outperform other divisive and agglomerative methods. Application of the algorithm to more than 500 protein sequences belonging to ion-channels illustrates the potential of the method for inferring overlooked functional annotations. ClustTree, a graphical Matlab toolbox for applying various hierarchical clustering algorithms and testing their quality is made available. Conclusions Although currently rarely used, global approaches, in particular, TD or glocal algorithms, should be considered in the exploratory process of clustering. In general, applying unsupervised clustering methods can leverage the quality of manually-created mapping of proteins families. As demonstrated, it can also provide
Statistical Model of Extreme Shear
DEFF Research Database (Denmark)
Larsen, Gunner Chr.; Hansen, Kurt Schaldemose
2004-01-01
In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....
Universal hierarchical symmetry for turbulence and general multi-scale fluctuation systems
Institute of Scientific and Technical Information of China (English)
Zhen-Su She; Zhi-Xiong Zhang
2009-01-01
Scaling is an important measure of multi-scale fluctuation systems. Turbulence as the most remarkable multi-scale system possesses scaling over a wide range of scales. She-Leveque (SL) hierarchical symmetry, since its publication in 1994, has received wide attention. A num-ber of experimental, numerical and theoretical work have been devoted to its verification, extension, and modification. Application to the understanding of magnetohydrodynamic turbulence, motions of cosmic baryon fluids, cosmological supersonic turbulence, natural image, spiral turbulent patterns, DNA anomalous composition, human heart vari-ability are just a few among the most successful examples. A number of modified scaling laws have been derived in the framework of the hierarchical symmetry, and the SL model parameters are found to reveal both the organizational order of the whole system and the properties of the most signif-icant fluctuation structures. A partial set of work related to these studies are reviewed. Particular emphasis is placed on the nature of the hierarchical symmetry. It is suggested that the SL hierarchical symmetry is a new form of the self-orga-nization principle for multi-scale fluctuation systems, and can be employed as a standard analysis tool in the general multi-scale methodology. It is further suggested that the SL hierarchical symmetry implies the existence of a turbulence ensemble. It is speculated that the search for defining the turbulence ensemble might open a new way for deriving sta-tistical closure equations for turbulence and other multi-scale fluctuation systems.
Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.
Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana
2016-01-01
The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.
Robust Real-Time Music Transcription with a Compositional Hierarchical Model
Pesek, Matevž; Leonardis, Aleš; Marolt, Matija
2017-01-01
The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model’s structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model’s performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks. PMID:28046074
The Wulff construction in statistical mechanics and combinatorics
Energy Technology Data Exchange (ETDEWEB)
Shlosman, S B [Centre de Physique Theorique, Marseille (France)
2001-08-31
Geometric solutions are presented for some variational problems of statistical mechanics and combinatorics, and the Wulff construction predicting crystal shapes is discussed along with a construction determining the shape of a typical Young diagram and a typical skyscraper.
Spectral properties of supersymmetric shape invariant potentials
Indian Academy of Sciences (India)
Barnali Chakrabarti
2008-01-01
We present the spectral properties of supersymmetric shape invariant potentials (SIPs). Although the folded spectrum is completely random, unfolded spectrum shows that energy levels are highly correlated and absolutely rigid. All the SIPs exhibit harmonic oscillator-type spectral statistics in the unfolded spectrum. We conjecture that this is the reflection of shape invariant symmetry.
ANALYSIS OF BODY SHAPES AMONG BARBUS TRIMACULATUS ...
African Journals Online (AJOL)
nb
variations existed. The relative warps analysis for Barbus trimaculatus and Barbus jacksonii ... due to its statistically comparable shape variables, it is possible to .... new set of shape variables together with the ... to test for all uniform and non-uniform measures .... discriminate between congeneric species of B. trimaculatus ...
Biased trapping issue on weighted hierarchical networks
Indian Academy of Sciences (India)
Meifeng Dai; Jie Liu; Feng Zhu
2014-10-01
In this paper, we present trapping issues of weight-dependent walks on weighted hierarchical networks which are based on the classic scale-free hierarchical networks. Assuming that edge’s weight is used as local information by a random walker, we introduce a biased walk. The biased walk is that a walker, at each step, chooses one of its neighbours with a probability proportional to the weight of the edge. We focus on a particular case with the immobile trap positioned at the hub node which has the largest degree in the weighted hierarchical networks. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping issue. Let parameter (0 < < 1) be the weight factor. We show that the efficiency of the trapping process depends on the parameter a; the smaller the value of a, the more efficient is the trapping process.
Improving broadcast channel rate using hierarchical modulation
Meric, Hugo; Arnal, Fabrice; Lesthievent, Guy; Boucheret, Marie-Laure
2011-01-01
We investigate the design of a broadcast system where the aim is to maximise the throughput. This task is usually challenging due to the channel variability. Forty years ago, Cover introduced and compared two schemes: time sharing and superposition coding. The second scheme was proved to be optimal for some channels. Modern satellite communications systems such as DVB-SH and DVB-S2 mainly rely on time sharing strategy to optimize throughput. They consider hierarchical modulation, a practical implementation of superposition coding, but only for unequal error protection or backward compatibility purposes. We propose in this article to combine time sharing and hierarchical modulation together and show how this scheme can improve the performance in terms of available rate. We present the gain on a simple channel modeling the broadcasting area of a satellite. Our work is applied to the DVB-SH standard, which considers hierarchical modulation as an optional feature.
Incentive Mechanisms for Hierarchical Spectrum Markets
Iosifidis, George; Alpcan, Tansu; Koutsopoulos, Iordanis
2011-01-01
We study spectrum allocation mechanisms in hierarchical multi-layer markets which are expected to proliferate in the near future based on the current spectrum policy reform proposals. We consider a setting where a state agency sells spectrum to Primary Operators (POs) and in turn these resell it to Secondary Operators (SOs) through auctions. We show that these hierarchical markets do not result in a socially efficient spectrum allocation which is aimed by the agency, due to lack of coordination among the entities in different layers and the inherently selfish revenue-maximizing strategy of POs. In order to reconcile these opposing objectives, we propose an incentive mechanism which aligns the strategy and the actions of the POs with the objective of the agency, and thus it leads to system performance improvement in terms of social welfare. This pricing based mechanism constitutes a method for hierarchical market regulation and requires the feedback provision from SOs. A basic component of the proposed incenti...
Hierarchical self-organization of tectonic plates
Morra, Gabriele; Müller, R Dietmar
2010-01-01
The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly changes from a weak hierarchy at 120-100 million years ago (Ma) towards a strong hierarchy, which peaked at 65-50, Ma subsequently relaxing back towards a minimum hierarchical structure. We suggest that this fluctuation reflects an alternation between top and bottom driven plate tectonics, revealing a previously undiscovered tectonic cyclicity at a timescale of 100 million years.
Towards a sustainable manufacture of hierarchical zeolites.
Verboekend, Danny; Pérez-Ramírez, Javier
2014-03-01
Hierarchical zeolites have been established as a superior type of aluminosilicate catalysts compared to their conventional (purely microporous) counterparts. An impressive array of bottom-up and top-down approaches has been developed during the last decade to design and subsequently exploit these exciting materials catalytically. However, the sustainability of the developed synthetic methods has rarely been addressed. This paper highlights important criteria to ensure the ecological and economic viability of the manufacture of hierarchical zeolites. Moreover, by using base leaching as a promising case study, we verify a variety of approaches to increase reactor productivity, recycle waste streams, prevent the combustion of organic compounds, and minimize separation efforts. By reducing their synthetic footprint, hierarchical zeolites are positioned as an integral part of sustainable chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Classification using Hierarchical Naive Bayes models
DEFF Research Database (Denmark)
Langseth, Helge; Dyhre Nielsen, Thomas
2006-01-01
Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe...... an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to “information double-counting” and interaction omission. In this paper we focus on a relatively new set of models......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...
Hierarchical Neural Network Structures for Phoneme Recognition
Vasquez, Daniel; Minker, Wolfgang
2013-01-01
In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.
Universal hierarchical behavior of citation networks
Mones, Enys; Vicsek, Tamás
2014-01-01
Many of the essential features of the evolution of scientific research are imprinted in the structure of citation networks. Connections in these networks imply information about the transfer of knowledge among papers, or in other words, edges describe the impact of papers on other publications. This inherent meaning of the edges infers that citation networks can exhibit hierarchical features, that is typical of networks based on decision-making. In this paper, we investigate the hierarchical structure of citation networks consisting of papers in the same field. We find that the majority of the networks follow a universal trend towards a highly hierarchical state, and i) the various fields display differences only concerning their phase in life (distance from the "birth" of a field) or ii) the characteristic time according to which they are approaching the stationary state. We also show by a simple argument that the alterations in the behavior are related to and can be understood by the degree of specializatio...
Static and dynamic friction of hierarchical surfaces
Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M.
2016-12-01
Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.
Growth of hierarchical based ZnO micro/nanostructured films and their tunable wettability behavior
Suresh Kumar, P.; Dhayal Raj, A.; Mangalaraj, D.; Nataraj, D.; Ponpandian, N.; Li, Lin; Chabrol, G.
2011-05-01
Hierarchical zinc oxide (ZnO) micro/nanostructured thin films were grown onto as-prepared and different annealed ZnO seed layer films by a simple two step chemical process. A cost effective successive ionic layer adsorption and reaction (SILAR) method was employed to grow the seed layer films at optimal temperature (80 °C) and secondly, different hierarchical based ZnO structured thin films were deposited over the seed layered films by chemical bath deposition (CBD). The influence of seed layer on the structural, surface morphological, optical and wettability behavior of the ZnO thin films were systematically investigated. The XRD analysis confirms the high crystalline nature of both the seed layer and corresponding ZnO micro/nanostructured films with a perfect hexagonal structure oriented along (0 0 2) direction. The surface morphology revels a complex and orientated hierarchical based ZnO structured films with diverse shapes from plates to hexagonal rod-like crystal to tube-like structure and even much more complex needle-like shapes during secondary nucleation, by changing the seed layer conditions. The water contact angle (WCA) measurements on hierarchical ZnO structured films are completely examined to study its surface wettability behavior for its suitability in future self-cleaning application. Photoluminescence (PL) spectra of the ZnO structured film exhibit UV and visible emissions in the range of 420-500 nm. The present approach demonstrates its potential for low-temperature, large-scale, controlled synthesis of crystalline hierarchical ZnO nanostructures films.
Hierarchical Interference Mitigation for Massive MIMO Cellular Networks
Liu, An; Lau, Vincent
2014-09-01
We propose a hierarchical interference mitigation scheme for massive MIMO cellular networks. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and an outer precoder. The inner precoder controls the intra-cell interference and is adaptive to local channel state information (CSI) at each BS (CSIT). The outer precoder controls the inter-cell interference and is adaptive to channel statistics. Such hierarchical precoding structure reduces the number of pilot symbols required for CSI estimation in massive MIMO downlink and is robust to the backhaul latency. We study joint optimization of the outer precoders, the user selection, and the power allocation to maximize a general concave utility which has no closed-form expression. We first apply random matrix theory to obtain an approximated problem with closed-form objective. We show that the solution of the approximated problem is asymptotically optimal with respect to the original problem as the number of antennas per BS grows large. Then using the hidden convexity of the problem, we propose an iterative algorithm to find the optimal solution for the approximated problem. We also obtain a low complexity algorithm with provable convergence. Simulations show that the proposed design has significant gain over various state-of-the-art baselines.
Linguistic steganography on Twitter: hierarchical language modeling with manual interaction
Wilson, Alex; Blunsom, Phil; Ker, Andrew D.
2014-02-01
This work proposes a natural language stegosystem for Twitter, modifying tweets as they are written to hide 4 bits of payload per tweet, which is a greater payload than previous systems have achieved. The system, CoverTweet, includes novel components, as well as some already developed in the literature. We believe that the task of transforming covers during embedding is equivalent to unilingual machine translation (paraphrasing), and we use this equivalence to de ne a distortion measure based on statistical machine translation methods. The system incorporates this measure of distortion to rank possible tweet paraphrases, using a hierarchical language model; we use human interaction as a second distortion measure to pick the best. The hierarchical language model is designed to model the speci c language of the covers, which in this setting is the language of the Twitter user who is embedding. This is a change from previous work, where general-purpose language models have been used. We evaluate our system by testing the output against human judges, and show that humans are unable to distinguish stego tweets from cover tweets any better than random guessing.
Hierarchical and Multidimensional Academic Self-Concept of Commercial Students.
Yeung; Chui; Lau
1999-10-01
Adapting the Marsh (1990) Academic Self-Description Questionnaire (ASDQ), this study examined the academic self-concept of students in a school of commerce in Hong Kong (N = 212). Confirmatory factor analysis found that students clearly distinguished among self-concept constructs in English, Chinese, Math and Statistics, Economics, and Principles of Accounting, and each of these constructs was highly associated with a global Academic self-concept construct, reflecting the validity of each construct in measuring an academic component of self-concept. Domain-specific self-concepts were more highly related with students' intention of course selection in corresponding areas than in nonmatching areas, further supporting the multidimensionality of the students' academic self-concept. Students' self-concepts in the five curriculum domains can be represented by the global Academic self-concept, supporting the hierarchical structure of students' academic self-concept in an educational institution with a specific focus, such as commercial studies. The academic self-concepts of the commercial students are both multidimensional and hierarchical. Copyright 1999 Academic Press.
Hierarchical animal movement models for population-level inference
Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.
2016-01-01
New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.
Finite Population Correction for Two-Level Hierarchical Linear Models.
Lai, Mark H C; Kwok, Oi-Man; Hsiao, Yu-Yu; Cao, Qian
2017-03-16
The research literature has paid little attention to the issue of finite population at a higher level in hierarchical linear modeling. In this article, we propose a method to obtain finite-population-adjusted standard errors of Level-1 and Level-2 fixed effects in 2-level hierarchical linear models. When the finite population at Level-2 is incorrectly assumed as being infinite, the standard errors of the fixed effects are overestimated, resulting in lower statistical power and wider confidence intervals. The impact of ignoring finite population correction is illustrated by using both a real data example and a simulation study with a random intercept model and a random slope model. Simulation results indicated that the bias in the unadjusted fixed-effect standard errors was substantial when the Level-2 sample size exceeded 10% of the Level-2 population size; the bias increased with a larger intraclass correlation, a larger number of clusters, and a larger average cluster size. We also found that the proposed adjustment produced unbiased standard errors, particularly when the number of clusters was at least 30 and the average cluster size was at least 10. We encourage researchers to consider the characteristics of the target population for their studies and adjust for finite population when appropriate. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Quantification of the Molecular Topology for Hierarchical Macromolecules
Beaucage, Gregory
2009-03-01
Hierarchical structures are often produced from ramified macromolecules such as comb, star, hyperbranched and dendritic polymers. We have recently derived a method for the description of complex molecular and nanostructural topologies based on a statistical analysis [1,2]. The method has been applied to a wide range of hierarchical materials from long chain branched polyolefins, hyperbranched polymers [3], star polymers, H-branched polymers to cyclics, biopolymers [4], and branched nanostructured aggregates. This method, when applied to neutron scattering data, yields the mole fraction of a structure involved in branching, the number of branch sites, the average branch length, and the number if inner chain segments. Further, quantitative measures of the convolution or tortuosity of the structure and the connectivity of the branching network can be made, opening a new window for our understanding of complex molecular topologies. This understanding has recently been applied to biological chain molecules to understand protein and RNA folding [4] for example as well as to aggregated, nanostructured, carbon soot. [0pt] [1] Beaucage, G, Phys. Rev. E 2004, 70, 031401. [2] Kulkarni, AS & Beaucage, G, J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 1395. [3] Kulkarni, AS & Beaucage, G, Macromol. Rapid Comm. 2007, 28, 1312.?4) Beaucage, G, Biophysical J. 2008, 95, 503.
Uncovering hierarchical data structure in single molecule transport
Wu, Ben H.; Ivie, Jeffrey A.; Johnson, Tyler K.; Monti, Oliver L. A.
2017-03-01
Interpretation of single molecule transport data is complicated by the fact that all such data are inherently highly stochastic in nature. Features are often broad, seemingly unstructured and distributed over more than an order of magnitude. However, the distribution contains information necessary for capturing the full variety of processes relevant in nanoscale transport, and a better understanding of its hierarchical structure is needed to gain deeper insight into the physics and chemistry of single molecule electronics. Here, we describe a novel data analysis approach based on hierarchical clustering to aid in the interpretation of single molecule conductance-displacement histograms. The primary purpose of statistically partitioning transport data is to provide avenues for unbiased hypothesis generation in single molecule break junction experiments by revealing otherwise potentially hidden aspects in the conductance data. Our approach is generalizable to the analysis of a wide variety of other single molecule experiments in molecular electronics, as well as in single molecule fluorescence spectroscopy, force microscopy, and ion-channel conductance measurements.
Hierarchical Cluster Analysis – Various Approaches to Data Preparation
Directory of Open Access Journals (Sweden)
Z. Pacáková
2013-09-01
Full Text Available The article deals with two various approaches to data preparation to avoid multicollinearity. The aim of the article is to find similarities among the e-communication level of EU states using hierarchical cluster analysis. The original set of fourteen indicators was first reduced on the basis of correlation analysis while in case of high correlation indicator of higher variability was included in further analysis. Secondly the data were transformed using principal component analysis while the principal components are poorly correlated. For further analysis five principal components explaining about 92% of variance were selected. Hierarchical cluster analysis was performed both based on the reduced data set and the principal component scores. Both times three clusters were assumed following Pseudo t-Squared and Pseudo F Statistic, but the final clusters were not identical. An important characteristic to compare the two results found was to look at the proportion of variance accounted for by the clusters which was about ten percent higher for the principal component scores (57.8% compared to 47%. Therefore it can be stated, that in case of using principal component scores as an input variables for cluster analysis with explained proportion high enough (about 92% for in our analysis, the loss of information is lower compared to data reduction on the basis of correlation analysis.
Hierarchical control of electron-transfer
DEFF Research Database (Denmark)
Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis;
1997-01-01
In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...
Genetic Algorithm for Hierarchical Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Sajid Hussain
2007-09-01
Full Text Available Large scale wireless sensor networks (WSNs can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.
DC Hierarchical Control System for Microgrid Applications
Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.; Huang, Lipei
2013-01-01
In order to enhance the DC side performance of AC-DC hybrid microgrid,a DC hierarchical control system is proposed in this paper.To meet the requirement of DC load sharing between the parallel power interfaces,droop method is adopted.Meanwhile,DC voltage secondary control is employed to restore the deviation in the DC bus voltage.The hierarchical control system is composed of two levels.DC voltage and AC current controllers are achieved in the primary control level.
Hierarchical social networks and information flow
López, Luis; F. F. Mendes, Jose; Sanjuán, Miguel A. F.
2002-12-01
Using a simple model for the information flow on social networks, we show that the traditional hierarchical topologies frequently used by companies and organizations, are poorly designed in terms of efficiency. Moreover, we prove that this type of structures are the result of the individual aim of monopolizing as much information as possible within the network. As the information is an appropriate measurement of centrality, we conclude that this kind of topology is so attractive for leaders, because the global influence each actor has within the network is completely determined by the hierarchical level occupied.
Analyzing security protocols in hierarchical networks
DEFF Research Database (Denmark)
Zhang, Ye; Nielson, Hanne Riis
2006-01-01
Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...
Hierarchic Models of Turbulence, Superfluidity and Superconductivity
Kaivarainen, A
2000-01-01
New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.
Royle, J. Andrew; Dorazio, Robert M.
2008-01-01
A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.
Wang, Li; Zhang, Yayun; Xie, Yingzhen; Yu, Jie; Yang, Han; Miao, Longfei; Song, Yonghai
2017-04-01
A novel supporting material named as three-dimensional kenaf stem-derived carbon (3D-KSCs) was used to load hierarchical Co3O4 nanoclusters for electrochemical sensing glucose. The 3D-KSCs/hierarchical Co3O4 nanoclusters were constructed by two steps. Los of acicular precursor nanoclusters firstly grew on the channels of 3D-KSCs densely by hydrothermal method and then the as-prepared 3D-KSCs/hierarchical Co3O4 nanoclusters was obtained by thermal pyrolysis of the 3D-KSCs/precursors nanocomposites at 400 °C. The 3D macroporous configuration of 3D-KSCs resulted in lots of hierarchical Co3O4 nanoclusters arrayed on the surface of 3D-KSCs owing to its large enough specific surface area, which effectively avoided their aggregations and improved the stability of nanocomposites. The obtained 3D-KSCs/hierarchical Co3O4 nanoclusters showed a large number of needle-shaped and layered Co3O4 nanoclusters uniformly grew on the macropore's walls of 3D-KSC. Due to its unique nanostructures, the 3D-KSCs/hierarchical Co3O4 nanoclusters integrated electrode showed superior performance for nonenzymatic electrochemical glucose sensing, showing wide linear range (0.088-7.0 mM) and low detection limit of 26 μM. It might be a new strategy to prepare nanostructures on 3D-KSC for future applications.
Tibely, Gergely; Vicsek, Tamas; Palla, Gergely
2012-01-01
Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary topic with great actuality and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely "flat", while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organisation of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other type of tagged networks available for research, where the tags are already organised into a directed acyclic graph (DAG), encapsulating the "is a sub-category of" type of hierarchy between each other. In this paper we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various r...
Baek, Jonggyu; Sanchez-Vaznaugh, Emma V; Sánchez, Brisa N
2016-03-15
It is well known that associations between features of the built environment and health depend on the geographic scale used to construct environmental attributes. In the built environment literature, it has long been argued that geographic scales may vary across study locations. However, this hypothesized variation has not been systematically examined due to a lack of available statistical methods. We propose a hierarchical distributed-lag model (HDLM) for estimating the underlying overall shape of food environment-health associations as a function of distance from locations of interest. This method enables indirect assessment of relevant geographic scales and captures area-level heterogeneity in the magnitudes of associations, along with relevant distances within areas. The proposed model was used to systematically examine area-level variation in the association between availability of convenience stores around schools and children's weights. For this case study, body mass index (weight kg)/height (m)2) z scores (BMIz) for 7th grade children collected via California's 2001-2009 FitnessGram testing program were linked to a commercial database that contained locations of food outlets statewide. Findings suggested that convenience store availability may influence BMIz only in some places and at varying distances from schools. Future research should examine localized environmental or policy differences that may explain the heterogeneity in convenience store-BMIz associations.
Hierarchical population model with a carrying capacity distribution
Indekeu, J O
2002-01-01
A time- and space-discrete model for the growth of a rapidly saturating local biological population $N(x,t)$ is derived from a hierarchical random deposition process previously studied in statistical physics. Two biologically relevant parameters, the probabilities of birth, $B$, and of death, $D$, determine the carrying capacity $K$. Due to the randomness the population depends strongly on position, $x$, and there is a distribution of carrying capacities, $\\Pi (K)$. This distribution has self-similar character owing to the imposed hierarchy. The most probable carrying capacity and its probability are studied as a function of $B$ and $D$. The effective growth rate decreases with time, roughly as in a Verhulst process. The model is possibly applicable, for example, to bacteria forming a "towering pillar" biofilm. The bacteria divide on randomly distributed nutrient-rich regions and are exposed to random local bactericidal agent (antibiotic spray). A gradual overall temperature change away from optimal growth co...
A Maximum Entropy Estimator for the Aggregate Hierarchical Logit Model
Directory of Open Access Journals (Sweden)
Pedro Donoso
2011-08-01
Full Text Available A new approach for estimating the aggregate hierarchical logit model is presented. Though usually derived from random utility theory assuming correlated stochastic errors, the model can also be derived as a solution to a maximum entropy problem. Under the latter approach, the Lagrange multipliers of the optimization problem can be understood as parameter estimators of the model. Based on theoretical analysis and Monte Carlo simulations of a transportation demand model, it is demonstrated that the maximum entropy estimators have statistical properties that are superior to classical maximum likelihood estimators, particularly for small or medium-size samples. The simulations also generated reduced bias in the estimates of the subjective value of time and consumer surplus.
Multi- Layer Tree Hierarchical Architecture Based on Web Service
Institute of Scientific and Technical Information of China (English)
TONG Hengjian; LI Deren; ZHU Xinyan; SHAO Zhenfeng
2006-01-01
To solve the problem of the information share and services integration in population information system, we propose a multi-layer tree hierarchical architecture. The com mand (Web Service Call) is recursively multicast from top layer of tree to bottom layer of tree and statistical data are gathered from bottom layer to top layer. We implemented the architecture by using Web Services technology. In our implementation, client program is the requestor of Web Services,and all leaf nodes of the last layer are only the provider of Web Services. For those nodes of intermediate layers, every node is not only the provider of Web Services, but also the dispatcher of Web Services. We take population census as an example to describe the working flow of the architecture.
Unsupervised Transient Light Curve Analysis Via Hierarchical Bayesian Inference
Sanders, Nathan; Soderberg, Alicia
2014-01-01
Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometr...
Prediction of road accidents: A Bayesian hierarchical approach
DEFF Research Database (Denmark)
Deublein, Markus; Schubert, Matthias; Adey, Bryan T.;
2013-01-01
In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson......-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...... in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models.Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis...
Bayesian hierarchical modelling of weak lensing - the golden goal
Heavens, Alan; Jaffe, Andrew; Hoffmann, Till; Kiessling, Alina; Wandelt, Benjamin
2016-01-01
To accomplish correct Bayesian inference from weak lensing shear data requires a complete statistical description of the data. The natural framework to do this is a Bayesian Hierarchical Model, which divides the chain of reasoning into component steps. Starting with a catalogue of shear estimates in tomographic bins, we build a model that allows us to sample simultaneously from the the underlying tomographic shear fields and the relevant power spectra (E-mode, B-mode, and E-B, for auto- and cross-power spectra). The procedure deals easily with masked data and intrinsic alignments. Using Gibbs sampling and messenger fields, we show with simulated data that the large (over 67000-)dimensional parameter space can be efficiently sampled and the full joint posterior probability density function for the parameters can feasibly be obtained. The method correctly recovers the underlying shear fields and all of the power spectra, including at levels well below the shot noise.
Hierarchical machining materials and their performance
DEFF Research Database (Denmark)
Sidorenko, Daria; Loginov, Pavel; Levashov, Evgeny
2016-01-01
as nanoparticles in the binder, or polycrystalline, aggregate-like reinforcements, also at several scale levels). Such materials can ensure better productivity, efficiency, and lower costs of drilling, cutting, grinding, and other technological processes. This article reviews the main groups of hierarchical...
Hierarchical Optimization of Material and Structure
DEFF Research Database (Denmark)
Rodrigues, Helder C.; Guedes, Jose M.; Bendsøe, Martin P.
2002-01-01
This paper describes a hierarchical computational procedure for optimizing material distribution as well as the local material properties of mechanical elements. The local properties are designed using a topology design approach, leading to single scale microstructures, which may be restricted...... in various ways, based on design and manufacturing criteria. Implementation issues are also discussed and computational results illustrate the nature of the procedure....
Hierarchical structure of nanofibers by bubbfil spinning
Directory of Open Access Journals (Sweden)
Liu Chang
2015-01-01
Full Text Available A polymer bubble is easy to be broken under a small external force, various different fragments are formed, which can be produced to different morphologies of products including nanofibers and plate-like strip. Polyvinyl-alcohol/honey solution is used in the experiment to show hierarchical structure by the bubbfil spinning.
Sharing the proceeds from a hierarchical venture
DEFF Research Database (Denmark)
Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Tvede, Mich;
2017-01-01
We consider the problem of distributing the proceeds generated from a joint venture in which the participating agents are hierarchically organized. We introduce and characterize a family of allocation rules where revenue ‘bubbles up’ in the hierarchy. The family is flexible enough to accommodate...
Metal oxide nanostructures with hierarchical morphology
Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish
2007-11-13
The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.
Hierarchical Scaling in Systems of Natural Cities
Chen, Yanguang
2016-01-01
Hierarchies can be modeled by a set of exponential functions, from which we can derive a set of power laws indicative of scaling. These scaling laws are followed by many natural and social phenomena such as cities, earthquakes, and rivers. This paper is devoted to revealing the scaling patterns in systems of natural cities by reconstructing the hierarchy with cascade structure. The cities of America, Britain, France, and Germany are taken as examples to make empirical analyses. The hierarchical scaling relations can be well fitted to the data points within the scaling ranges of the size and area of the natural cities. The size-number and area-number scaling exponents are close to 1, and the allometric scaling exponent is slightly less than 1. The results suggest that natural cities follow hierarchical scaling laws and hierarchical conservation law. Zipf's law proved to be one of the indications of the hierarchical scaling, and the primate law of city-size distribution represents a local pattern and can be mer...
Semiparametric Quantile Modelling of Hierarchical Data
Institute of Scientific and Technical Information of China (English)
Mao Zai TIAN; Man Lai TANG; Ping Shing CHAN
2009-01-01
The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biology, economics and education. However, it assumes the within-group errors to be independently and identically distributed (i.i.d.) and models at all levels to be linear. Most importantly, traditional hierarchical models (just like other ordinary mean regression methods) cannot characterize the entire conditional distribution of a dependent variable given a set of covariates and fail to yield robust estimators. In this article, we relax the aforementioned and normality assumptions, and develop a so-called Hierarchical Semiparametric Quantile Regression Models in which the within-group errors could be heteroscedastic and models at some levels are allowed to be nonparametric. We present the ideas with a 2-level model. The level-l model is specified as a nonparametric model whereas level-2 model is set as a parametric model. Under the proposed semiparametric setting the vector of partial derivatives of the nonparametric function in level-1 becomes the response variable vector in level 2. The proposed method allows us to model the fixed effects in the innermost level (i.e., level 2) as a function of the covariates instead of a constant effect. We outline some mild regularity conditions required for convergence and asymptotic normality for our estimators. We illustrate our methodology with a real hierarchical data set from a laboratory study and some simulation studies.
Hierarchical Context Modeling for Video Event Recognition.
Wang, Xiaoyang; Ji, Qiang
2016-10-11
Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.
Strategic games on a hierarchical network model
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Among complex network models, the hierarchical network model is the one most close to such real networks as world trade web, metabolic network, WWW, actor network, and so on. It has not only the property of power-law degree distribution, but growth based on growth and preferential attachment, showing the scale-free degree distribution property. In this paper, we study the evolution of cooperation on a hierarchical network model, adopting the prisoner's dilemma (PD) game and snowdrift game (SG) as metaphors of the interplay between connected nodes. BA model provides a unifying framework for the emergence of cooperation. But interestingly, we found that on hierarchical model, there is no sign of cooperation for PD game, while the frequency of cooperation decreases as the common benefit decreases for SG. By comparing the scaling clustering coefficient properties of the hierarchical network model with that of BA model, we found that the former amplifies the effect of hubs. Considering different performances of PD game and SG on complex network, we also found that common benefit leads to cooperation in the evolution. Thus our study may shed light on the emergence of cooperation in both natural and social environments.
Endogenous Effort Norms in Hierarchical Firms
J. Tichem (Jan)
2013-01-01
markdownabstract__Abstract__ This paper studies how a three-layer hierarchical firm (principal-supervisor-agent) optimally creates effort norms for its employees. The key assumption is that effort norms are affected by the example of superiors. In equilibrium, norms are eroded as one moves down
Complex Evaluation of Hierarchically-Network Systems
Polishchuk, Dmytro; Yadzhak, Mykhailo
2016-01-01
Methods of complex evaluation based on local, forecasting, aggregated, and interactive evaluation of the state, function quality, and interaction of complex system's objects on the all hierarchical levels is proposed. Examples of analysis of the structural elements of railway transport system are used for illustration of efficiency of proposed approach.
A Hierarchical Grouping of Great Educators
Barker, Donald G.
1977-01-01
Great educators of history were categorized on the basis of their: aims of education, fundamental ideas, and educational theories. They were classed by Ward's method of hierarchical analysis into six groupings: Socrates, Ausonius, Jerome, Abelard; Quintilian, Origen, Melanchthon, Ascham, Loyola; Alciun, Comenius; Vittorino, Basedow, Pestalozzi,…
Ultrafast Hierarchical OTDM/WDM Network
Directory of Open Access Journals (Sweden)
Hideyuki Sotobayashi
2003-12-01
Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.
Hierarchical fuzzy identification of MR damper
Wang, Hao; Hu, Haiyan
2009-07-01
Magneto-rheological (MR) dampers, recently, have found many successful applications in civil engineering and numerous area of mechanical engineering. When an MR damper is to be used for vibration suppression, an inevitable problem is to determine the input voltage so as to gain the desired restoring force determined from the control law. This is the so-called inverse problem of MR dampers and is always an obstacle in the application of MR dampers to vibration control. It is extremely difficult to get the inverse model of MR damper because MR dampers are highly nonlinear and hysteretic. When identifying the inverse model of MR damper with simple fuzzy system, there maybe exists curse of dimensionality of fuzzy system. Therefore, it will take much more time, and even the inverse model may not be identifiable. The paper presents two-layer hierarchical fuzzy system, that is, two-layer hierarchical ANFIS to deal with the curse of dimensionality of the fuzzy identification of MR damper and to identify the inverse model of MR damper. Data used for training the model are generated from numerical simulation of nonlinear differential equations. The numerical simulation proves that the proposed hierarchical fuzzy system can model the inverse model of MR damper much more quickly than simple fuzzy system without any reduction of identification precision. Such hierarchical ANFIS shows the higher priority for the complicated system, and can also be used in system identification and system control for the complicated system.
Equivalence Checking of Hierarchical Combinational Circuits
DEFF Research Database (Denmark)
Williams, Poul Frederick; Hulgaard, Henrik; Andersen, Henrik Reif
1999-01-01
This paper presents a method for verifying that two hierarchical combinational circuits implement the same Boolean functions. The key new feature of the method is its ability to exploit the modularity of circuits to reuse results obtained from one part of the circuits in other parts. We demonstrate...... our method on large adder and multiplier circuits....
Plasmonic hierarchical nanostructures with cascaded field enhancement and their SERS applications
Bai, Benfeng; Zhu, Zhendong
2016-04-01
Plasmonic nanostructures with strong near field "hot spots" are highly demanded in many applications such as surface enhanced Raman spectroscopy (SERS). Here, we present some specially designed plasmonic hierarchical nanostructures that combine geometric features of micro- and nanoscales. Owing to the mode coupling and hybridization in these multiscale systems that can produce the cascaded field enhancement (CFE) effect, extremely strong and highly confined field hot spots can be readily generated in nanoscale volumes. Two typical hierarchical nanostructures are presented: an Mshaped grating with 30 nm narrow V-shaped grooves and a nanoparticle-in-cavity (PIC) plasmonic nanoantenna array. A cost-effective, efficient and reliable fabrication technique based on room-temperature nanoimprinting and anisotropic reactive ion etching is developed to fabricate these plasmonic hierarchical nanostructures in large area, during which the nano-features can be finely controlled and tuned. The field distributions and enhancement in the proposed structures are experimentally characterized, which agree very well with the numerical simulations. SERS experiments show the SERS enhancement factor as high as 5×108 by employing these hierarchical nanostructures as SERS substrates, which verify the strong light-matter interaction and show the great potential of these devices as low-cost and highly-active substrates for SERS applications.
Huang, Qiang; Cun, Tangxiang; Zuo, Wenbin; Liu, Jianping
2015-03-01
We report the fabrication of hierarchically microstructured flower-like ZnO by a facile and single-step procedure involving poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) assisted aqueous chemical method. The shapes and sizes can be controlled just by varying the concentrations of the water-soluble polymer. When a suitable PAMPAS concentration was utilized, uniform well-defined and mono-dispersed chrysanthemum-like ZnO microstructures based on nanorod building blocks were obtained. The formation mechanism of the hierarchical structure was presented. The structured studies using XRD, HRTEM and SAED reveal these ZnO nanorods are composed of a single phase nature with wurtzite structure and grow along with the c-axis. FTIR spectrum indicated the incorporation of a trace of PAMPSA into ZnO crystals. HRTEM, Raman and XPS analyses showed that the hierarchical ZnO microstructures contain high concentration of oxygen vacancies which enable them exhibiting a significant intense deep-level emission centered at green luminescence in its photoluminescence spectra. They also show enhanced photocatalytic efficiency in degradation of methylene blue. It is hoped that the present work may provide a simple method to fabricate ZnO hierarchical microstructures and a positive relationship among polar plane, oxygen vacancy and green emission.
Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard
2015-12-01
Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.
Statistical framework for decision making in mine action
DEFF Research Database (Denmark)
2007-01-01
The lecture discusses the basics of statistical decision making in connection with humanitarian mine action. There is special focus on: 1) requirements for mine detection; 2) design and evaluation and confidence of mine equipment; 3) efficient mine action by hierarchical approaches; 4) performance...
Statistical framework for decision making in mine action
DEFF Research Database (Denmark)
Larsen, Jan
The lecture discusses the basics of statistical decision making in connection with humanitarian mine action. There is special focus on: 1) requirements for mine detection; 2) design and evaluation and confidence of mine equipment; 3) efficient mine action by hierarchical approaches; 4) performance...
A Theory of Shape-Shifting Droplets
Haas, Pierre; Goldstein, Raymond; Smoukov, Stoyan; Denkov, Nikolai
2016-11-01
Recent observations of cooled oil emulsion droplets uncovered a remarkable array of shape transformations: the initially spherical droplets flatten into polygonal shapes, first hexagons, then triangles or quadrilaterals that ultimately grow thin protrusions from their corners. These transformations are driven by a partial phase transition of the bulk liquid phase. In this talk, we explore theoretically the simplest geometric competition between this phase transition and surface tension in planar polygons. We recover the experimental sequence of shapes and predict shape statistics in qualitative agreement with experiments. Extending the model to capture some of the three-dimensional structure of the droplets, we analyse the topological transition of droplet puncture observed in experiments.
Generic hierarchical engine for mask data preparation
Kalus, Christian K.; Roessl, Wolfgang; Schnitker, Uwe; Simecek, Michal
2002-07-01
Electronic layouts are usually flattened on their path from the hierarchical source downstream to the wafer. Mask data preparation has certainly been identified as a severe bottleneck since long. Data volumes are not only doubling every year along the ITRS roadmap. With the advent of optical proximity correction and phase-shifting masks data volumes are escalating up to non-manageable heights. Hierarchical treatment is one of the most powerful means to keep memory and CPU consumption in reasonable ranges. Only recently, however, has this technique acquired more public attention. Mask data preparation is the most critical area calling for a sound infrastructure to reduce the handling problem. Gaining more and more attention though, are other applications such as large area simulation and manufacturing rule checking (MRC). They all would profit from a generic engine capable to efficiently treat hierarchical data. In this paper we will present a generic engine for hierarchical treatment which solves the major problem, steady transitions along cell borders. Several alternatives exist how to walk through the hierarchy tree. They have, to date, not been thoroughly investigated. One is a bottom-up attempt to treat cells starting with the most elementary cells. The other one is a top-down approach which lends itself to creating a new hierarchy tree. In addition, since the variety, degree of hierarchy and quality of layouts extends over a wide range a generic engine has to take intelligent decisions when exploding the hierarchy tree. Several applications will be shown, in particular how far the limits can be pushed with the current hierarchical engine.
Hierarchical organisation in perception of orientation.
Spinelli, D; Antonucci, G; Daini, R; Martelli, M L; Zoccolotti, P
1999-01-01
According to Rock [1990, in The Legacy of Solomon Asch (Hillsdale, NJ: Lawrence Erlbaum Associates)], hierarchical organisation of perception describes cases in which the orientation of an object is affected by the immediately surrounding elements in the visual field. Various experiments were performed to study the hierarchical organisation of orientation perception. In most of them the rod-and-frame-illusion (RFI: change of the apparent vertical measured on a central rod surrounded by a tilted frame) was measured in the presence/absence of a second inner frame. The first three experiments showed that, when the inner frame is vertical, the direction and size of the illusion are consistent with expectancies based on the hierarchical organisation hypothesis. An analysis of published and unpublished data collected on a large number of subjects showed that orientational hierarchical effects are independent from the absolute size of the RFI. In experiments 4 to 7 we examined the perceptual conditions of the inner stimulus (enclosure, orientation, and presence of luminance borders) critical for obtaining a hierarchical organisation effect. Although an inner vertical square was effective in reducing the illusion (experiment 3), an inner circle enclosing the rod was ineffective (experiment 4). This indicates that definite orientation is necessary to modulate the illusion. However, orientational information provided by a vertical or horizontal rectangle presented near the rod, but not enclosing it, did not modulate the RFI (experiment 5). This suggests that the presence of a figure with oriented contours enclosing the rod is critical. In experiments 6 and 7 we studied whether the presence of luminance borders is important or whether the inner upright square might be effective also if made of subjective contours. When the subjective contour figure was salient and the observers perceived it clearly, its effectiveness in modulating the RFI was comparable to that observed with
Directory of Open Access Journals (Sweden)
Odilia Yim
2015-02-01
Full Text Available Cluster analysis refers to a class of data reduction methods used for sorting cases, observations, or variables of a given dataset into homogeneous groups that differ from each other. The present paper focuses on hierarchical agglomerative cluster analysis, a statistical technique where groups are sequentially created by systematically merging similar clusters together, as dictated by the distance and linkage measures chosen by the researcher. Specific distance and linkage measures are reviewed, including a discussion of how these choices can influence the clustering process by comparing three common linkage measures (single linkage, complete linkage, average linkage. The tutorial guides researchers in performing a hierarchical cluster analysis using the SPSS statistical software. Through an example, we demonstrate how cluster analysis can be used to detect meaningful subgroups in a sample of bilinguals by examining various language variables.
Noma, Hisashi; Matsui, Shigeyuki
2013-05-20
The main purpose of microarray studies is screening of differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing genes are relevant statistical tasks in microarray studies. For effective gene selections, parametric empirical Bayes methods for ranking and selection of genes with largest effect sizes have been proposed (Noma et al., 2010; Biostatistics 11: 281-289). The hierarchical mixture model incorporates the differential and non-differential components and allows information borrowing across differential genes with separation from nuisance, non-differential genes. In this article, we develop empirical Bayes ranking methods via a semiparametric hierarchical mixture model. A nonparametric prior distribution, rather than parametric prior distributions, for effect sizes is specified and estimated using the "smoothing by roughening" approach of Laird and Louis (1991; Computational statistics and data analysis 12: 27-37). We present applications to childhood and infant leukemia clinical studies with microarrays for exploring genes related to prognosis or disease progression.
Statistical learning across development: Flexible yet constrained
Directory of Open Access Journals (Sweden)
Lauren eKrogh
2013-01-01
Full Text Available Much research in the past two decades has documented infants’ and adults' ability to extract statistical regularities from auditory input. Importantly, recent research has extended these findings to the visual domain, demonstrating learners' sensitivity to statistical patterns within visual arrays and sequences of shapes. In this review we discuss both auditory and visual statistical learning to elucidate both the generality of and constraints on statistical learning. The review first outlines the major findings of the statistical learning literature with infants, followed by discussion of statistical learning across domains, modalities, and development. The second part of this review considers constraints on statistical learning. The discussion focuses on two categories of constraint: constraints on the types of input over which statistical learning operates and constraints based on the state of the learner. The review concludes with a discussion of possible mechanisms underlying statistical learning.
Tsou, Chi-Hsuan; Lor, Kuo-Lung; Chang, Yeun-Chung; Chen, Chung-Ming
2015-05-14
This paper proposes a semantic segmentation algorithm that provides the spatial distribution patterns of pulmonary ground-glass nodules with solid portions in computed tomography (CT) images. The proposed segmentation algorithm, anatomy packing with hierarchical segments (APHS), performs pulmonary nodule segmentation and quantification in CT images. In particular, the APHS algorithm consists of two essential processes: hierarchical segmentation tree construction and anatomy packing. It constructs the hierarchical segmentation tree based on region attributes and local contour cues along the region boundaries. Each node of the tree corresponds to the soft boundary associated with a family of nested segmentations through different scales applied by a hierarchical segmentation operator that is used to decompose the image in a structurally coherent manner. The anatomy packing process detects and localizes individual object instances by optimizing a hierarchical conditional random field model. Ninety-two histopathologically confirmed pulmonary nodules were used to evaluate the performance of the proposed APHS algorithm. Further, a comparative study was conducted with two conventional multi-label image segmentation algorithms based on four assessment metrics: the modified Williams index, percentage statistic, overlapping ratio, and difference ratio. Under the same framework, the proposed APHS algorithm was applied to two clinical applications: multi-label segmentation of nodules with a solid portion and surrounding tissues and pulmonary nodule segmentation. The results obtained indicate that the APHS-generated boundaries are comparable to manual delineations with a modified Williams index of 1.013. Further, the resulting segmentation of the APHS algorithm is also better than that achieved by two conventional multi-label image segmentation algorithms. The proposed two-level hierarchical segmentation algorithm effectively labelled the pulmonary nodule and its surrounding
Directory of Open Access Journals (Sweden)
Marc Behl
2007-04-01
Full Text Available Shape-memory polymers are an emerging class of active polymers that have dual-shape capability. They can change their shape in a predefined way from shape A to shape B when exposed to an appropriate stimulus. While shape B is given by the initial processing step, shape A is determined by applying a process called programming. We review fundamental aspects of the molecular design of suitable polymer architectures, tailored programming and recovery processes, and the quantification of the shape-memory effect. Shape-memory research was initially founded on the thermally induced dual-shape effect. This concept has been extended to other stimuli by either indirect thermal actuation or direct actuation by addressing stimuli-sensitive groups on the molecular level. Finally, polymers are introduced that can be multifunctional. Besides their dual-shape capability, these active materials are biofunctional or biodegradable. Potential applications for such materials as active medical devices are highlighted.
Statistical Model of Extreme Shear
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2005-01-01
In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...
Directory of Open Access Journals (Sweden)
Marín Ignacio
2007-11-01
Full Text Available Abstract Background Classification procedures are widely used in phylogenetic inference, the analysis of expression profiles, the study of biological networks, etc. Many algorithms have been proposed to establish the similarity between two different classifications of the same elements. However, methods to determine significant coincidences between hierarchical and non-hierarchical partitions are still poorly developed, in spite of the fact that the search for such coincidences is implicit in many analyses of massive data. Results We describe a novel strategy to compare a hierarchical and a dichotomic non-hierarchical classification of elements, in order to find clusters in a hierarchical tree in which elements of a given "flat" partition are overrepresented. The key improvement of our strategy respect to previous methods is using permutation analyses of ranked clusters to determine whether regions of the dendrograms present a significant enrichment. We show that this method is more sensitive than previously developed strategies and how it can be applied to several real cases, including microarray and interactome data. Particularly, we use it to compare a hierarchical representation of the yeast mitochondrial interactome and a catalogue of known mitochondrial protein complexes, demonstrating a high level of congruence between those two classifications. We also discuss extensions of this method to other cases which are conceptually related. Conclusion Our method is highly sensitive and outperforms previously described strategies. A PERL script that implements it is available at http://www.uv.es/~genomica/treetracker.
2011-06-01
application designed for conducting human-in-the-loop experiments focused on information and social domain phenomena (Martin and Mc Ever, 2008...environment designed to experiment and research differences between Edge and Hierarchical organizational configurations within the information and social ...indicated in the following tables. Tests of Normality ,132 17 ,200* ,927 17 ,191 ,131 17 ,200* ,919 17 ,141 Grupo Edge SIN Edge CON Rend Statistic df Sig
2016-07-01
affect microstructure? What is the uncertainty associated with microstructure statistics (i.e., representative volume size )? How does material...Voronoi vertices to the occurrence and size of these interdendritic features. Interestingly, with respect to the distance from the dendrite core, it...TMS 2015 Annual Meeting, March 15–19, 2013, Orlando, FL Program Review Meetings 1. M.A. Tschopp, A.L. Oppedal, S. Turnage, ( Poster ) Hierarchically
NEW METHOD TO ESTIMATE SCALING OF POWER-LAW DEGREE DISTRIBUTION AND HIERARCHICAL NETWORKS
Institute of Scientific and Technical Information of China (English)
YANG Bo; DUAN Wen-qi; CHEN Zhong
2006-01-01
A new method and corresponding numerical procedure are introduced to estimate scaling exponents of power-law degree distribution and hierarchical clustering func tion for complex networks. This method can overcome the biased and inaccurate faults of graphical linear fitting methods commonly used in current network research. Furthermore, it is verified to have higher goodness-of-fit than graphical methods by comparing the KS (Kolmogorov-Smirnov) test statistics for 10 CNN (Connecting Nearest-Neighbor)networks.
Use of hierarchical models to analyze European trends in congenital anomaly prevalence
DEFF Research Database (Denmark)
Cavadino, Alana; Prieto-Merino, David; Addor, Marie-Claude
2016-01-01
BACKGROUND: Surveillance of congenital anomalies is important to identify potential teratogens. Despite known associations between different anomalies, current surveillance methods examine trends within each subgroup separately. We aimed to evaluate whether hierarchical statistical methods that c...... in relation to the prevalence of congenital anomalies, which could be investigated in other studies. Birth Defects Research (Part A) 106:480-10, 2016. © 2016 Wiley Periodicals, Inc....
EXTREME PROGRAMMING PROJECT PERFORMANCE MANAGEMENT BY STATISTICAL EARNED VALUE ANALYSIS
Wei Lu; Li Lu
2013-01-01
As an important project type of Agile Software Development, the performance evaluation and prediction for eXtreme Programming project has significant meanings. Targeting on the short release life cycle and concurrent multitask features, a statistical earned value analysis model is proposed. Based on the traditional concept of earned value analysis, the statistical earned value analysis model introduced Elastic Net regression function and Laplacian hierarchical model to construct a Bayesian El...
Toward a theory of statistical tree-shape analysis
DEFF Research Database (Denmark)
Feragen, Aasa; Lo, Pechin Chien Pau; de Bruijne, Marleen
2013-01-01
these advantages. Along with the theoretical framework we provide experimental proof-of-concept results on synthetic data trees as well as small airway trees from pulmonary CT scans. This way, we illustrate that our framework has promising theoretical and qualitative properties necessary to build a theory...
Statistical shape model-based femur kinematics from biplane fluoroscopy
DEFF Research Database (Denmark)
Baka, N.; de Bruijne, Marleen; Walsum, T. van
2012-01-01
on the distal femur using eight biplane fluoroscopic drop-landing sequences. The proposed dynamic prior and features increased the convergence rate of the reconstruction from 71% to 91%, using a convergence limit of 3 mm. The achieved root mean square point-to-surface accuracy at the converged frames was 1...
Comparative Analysis of Kernel Methods for Statistical Shape Learning
2006-01-01
successfully used by the machine learning community for pattern recognition and image denoising [14]. A Gaussian kernel was used by Cremers et al. [8] for...matrix M, where φi ∈ RNd . Using Singular Value Decomposition ( SVD ), the covariance matrix 1nMM T is decomposed as: UΣUT = 1 n MMT (1) where U is a
Multi-region Statistical Shape Model for Cochlear Implantation
DEFF Research Database (Denmark)
Romera, Jordi; Kjer, H. Martin; Piella, Gemma
2016-01-01
the best results. The complexity of a proper global model increases even more when the amount of data available is limited to a small number of datasets. Typically, the anatomical variability between structures is associated to the variability of their physiological regions. In this paper, a complete...
Understanding statistical concepts using S-PLUS
Schumacker, Randall E
2001-01-01
Written as a supplemental text for an introductory or intermediate statistics course, this book is organized along the lines of many popular statistics texts. The chapters provide a good conceptual understanding of basic statistics and include exercises that use S-PLUS simulation programs. Each chapter lists a set of objectives and a summary.The book offers a rich insight into how probability has shaped statistical procedures in the behavioral sciences, as well as a brief history behind the creation of various statistics. Computational skills are kept to a minimum by including S-PLUS programs
Sensometrics: Thurstonian and Statistical Models
DEFF Research Database (Denmark)
Christensen, Rune Haubo Bojesen
of human senses. Thurstonian models provide a stochastic model for the data-generating mechanism through a psychophysical model for the cognitive processes and in addition provides an independent measure for quantification of sensory differences. In the interest of cost-reduction and health...... of generalized linear mixed models, cumulative link models and cumulative link mixed models. The relation between the Wald, likelihood and score statistics is expanded upon using the shape of the (profile) likelihood function as common reference....
Genomic analysis of the hierarchical structure of regulatory networks
Yu, Haiyuan; Gerstein, Mark
2006-01-01
A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135
Reinforced Airfoil Shaped Body
DEFF Research Database (Denmark)
2011-01-01
The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...
Learning a hierarchical deformable template for rapid deformable object parsing.
Zhu, Long Leo; Chen, Yuanhao; Yuille, Alan
2010-06-01
In this paper, we address the tasks of detecting, segmenting, parsing, and matching deformable objects. We use a novel probabilistic object model that we call a hierarchical deformable template (HDT). The HDT represents the object by state variables defined over a hierarchy (with typically five levels). The hierarchy is built recursively by composing elementary structures to form more complex structures. A probability distribution--a parameterized exponential model--is defined over the hierarchy to quantify the variability in shape and appearance of the object at multiple scales. To perform inference--to estimate the most probable states of the hierarchy for an input image--we use a bottom-up algorithm called compositional inference. This algorithm is an approximate version of dynamic programming where approximations are made (e.g., pruning) to ensure that the algorithm is fast while maintaining high performance. We adapt the structure-perceptron algorithm to estimate the parameters of the HDT in a discriminative manner (simultaneously estimating the appearance and shape parameters). More precisely, we specify an exponential distribution for the HDT using a dictionary of potentials, which capture the appearance and shape cues. This dictionary can be large and so does not require handcrafting the potentials. Instead, structure-perceptron assigns weights to the potentials so that less important potentials receive small weights (this is like a "soft" form of feature selection). Finally, we provide experimental evaluation of HDTs on different visual tasks, including detection, segmentation, matching (alignment), and parsing. We show that HDTs achieve state-of-the-art performance for these different tasks when evaluated on data sets with groundtruth (and when compared to alternative algorithms, which are typically specialized to each task).
Discriminative Shape Alignment
DEFF Research Database (Denmark)
Loog, M.; de Bruijne, M.
2009-01-01
The alignment of shape data to a common mean before its subsequent processing is an ubiquitous step within the area shape analysis. Current approaches to shape analysis or, as more specifically considered in this work, shape classification perform the alignment in a fully unsupervised way......, not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two......-dimensional shapes from a two-class recognition problem....
Energy Technology Data Exchange (ETDEWEB)
Wilson, Thomas S.; Bearinger, Jane P.
2017-08-29
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Wilson, Thomas S.; Bearinger, Jane P.
2015-06-09
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin
2012-01-11
We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling.
Facile synthesis of uniform hierarchical composites CuO-CeO2 for enhanced dye removal
Xu, Pan; Niu, Helin; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Gao, Yuanhao; Chen, Changle
2016-12-01
The hierarchically shaped CuO-CeO2 composites were prepared through a facile solvothermal method without using any template. The as-prepared products were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and N2 adsorption-desorption analysis. In the characterization, we found that CuO-CeO2 composites were showed uniform size and morphology which were consisted of the secondary nanoflakes interconnected with each other. Most interestingly, the composites showed efficient performance to remove methyl blue and Congo red dyes from water with maximum adsorption capacities of 2131.24 and 1072.09 mg g-1, respectively. In addition, because of their larger surface area and the unique hierarchical structures, the adsorption performance of the CuO-CeO2 composites is much better than the materials of CuO and CeO2.
Energy flow in plate assembles by hierarchical version of finite element method
DEFF Research Database (Denmark)
Wachulec, Marcin; Kirkegaard, Poul Henning
method has been proposed. In this paper a modified hierarchical version of finite element method is used for modelling of energy flow in plate assembles. The formulation includes description of in-plane forces so that planes lying in different planes can be modelled. Two examples considered are: L......The dynamic analysis of structures in medium and high frequencies are usually focused on frequency and spatial averages of energy of components, and not the displacement/velocity fields. This is especially true for structure-borne noise modelling. For the analysis of complicated structures......-corner of two rectangular plates an a I-shaped plate girder made of five plates. Energy distribution among plates due to harmonic load is studied and the comparison of performance between the hierarchical and standard finite element formulation is presented....
A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres
Directory of Open Access Journals (Sweden)
Huadong Fu
2015-01-01
Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.
Application of hierarchical matrices for partial inverse
Litvinenko, Alexander
2013-11-26
In this work we combine hierarchical matrix techniques (Hackbusch, 1999) and domain decomposition methods to obtain fast and efficient algorithms for the solution of multiscale problems. This combination results in the hierarchical domain decomposition (HDD) method, which can be applied for solution multi-scale problems. Multiscale problems are problems that require the use of different length scales. Using only the finest scale is very expensive, if not impossible, in computational time and memory. Domain decomposition methods decompose the complete problem into smaller systems of equations corresponding to boundary value problems in subdomains. Then fast solvers can be applied to each subdomain. Subproblems in subdomains are independent, much smaller and require less computational resources as the initial problem.
First-passage phenomena in hierarchical networks
Tavani, Flavia
2016-01-01
In this paper we study Markov processes and related first passage problems on a class of weighted, modular graphs which generalize the Dyson hierarchical model. In these networks, the coupling strength between two nodes depends on their distance and is modulated by a parameter $\\sigma$. We find that, in the thermodynamic limit, ergodicity is lost and the "distant" nodes can not be reached. Moreover, for finite-sized systems, there exists a threshold value for $\\sigma$ such that, when $\\sigma$ is relatively large, the inhomogeneity of the coupling pattern prevails and "distant" nodes are hardly reached. The same analysis is carried on also for generic hierarchical graphs, where interactions are meant to involve $p$-plets ($p>2$) of nodes, finding that ergodicity is still broken in the thermodynamic limit, but no threshold value for $\\sigma$ is evidenced, ultimately due to a slow growth of the network diameter with the size.
An Hierarchical Approach to Big Data
Allen, M G; Boch, T; Durand, D; Oberto, A; Merin, B; Stoehr, F; Genova, F; Pineau, F-X; Salgado, J
2016-01-01
The increasing volumes of astronomical data require practical methods for data exploration, access and visualisation. The Hierarchical Progressive Survey (HiPS) is a HEALPix based scheme that enables a multi-resolution approach to astronomy data from the individual pixels up to the whole sky. We highlight the decisions and approaches that have been taken to make this scheme a practical solution for managing large volumes of heterogeneous data. Early implementors of this system have formed a network of HiPS nodes, with some 250 diverse data sets currently available, with multiple mirror implementations for important data sets. This hierarchical approach can be adapted to expose Big Data in different ways. We describe how the ease of implementation, and local customisation of the Aladin Lite embeddable HiPS visualiser have been keys for promoting collaboration on HiPS.
Non-homogeneous fractal hierarchical weighted networks.
Dong, Yujuan; Dai, Meifeng; Ye, Dandan
2015-01-01
A model of fractal hierarchical structures that share the property of non-homogeneous weighted networks is introduced. These networks can be completely and analytically characterized in terms of the involved parameters, i.e., the size of the original graph Nk and the non-homogeneous weight scaling factors r1, r2, · · · rM. We also study the average weighted shortest path (AWSP), the average degree and the average node strength, taking place on the non-homogeneous hierarchical weighted networks. Moreover the AWSP is scrupulously calculated. We show that the AWSP depends on the number of copies and the sum of all non-homogeneous weight scaling factors in the infinite network order limit.
Noise enhances information transfer in hierarchical networks.
Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A
2013-01-01
We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.
Design of Hierarchical Structures for Synchronized Deformations
Seifi, Hamed; Javan, Anooshe Rezaee; Ghaedizadeh, Arash; Shen, Jianhu; Xu, Shanqing; Xie, Yi Min
2017-01-01
In this paper we propose a general method for creating a new type of hierarchical structures at any level in both 2D and 3D. A simple rule based on a rotate-and-mirror procedure is introduced to achieve multi-level hierarchies. These new hierarchical structures have remarkably few degrees of freedom compared to existing designs by other methods. More importantly, these structures exhibit synchronized motions during opening or closure, resulting in uniform and easily-controllable deformations. Furthermore, a simple analytical formula is found which can be used to avoid collision of units of the structure during the closing process. The novel design concept is verified by mathematical analyses, computational simulations and physical experiments.
Hierarchical model of vulnerabilities for emotional disorders.
Norton, Peter J; Mehta, Paras D
2007-01-01
Clark and Watson's (1991) tripartite model of anxiety and depression has had a dramatic impact on our understanding of the dispositional variables underlying emotional disorders. More recently, calls have been made to examine not simply the influence of negative affectivity (NA) but also mediating factors that might better explain how NA influences anxious and depressive syndromes (e.g. Taylor, 1998; Watson, 2005). Extending preliminary projects, this study evaluated two hierarchical models of NA, mediating factors of anxiety sensitivity and intolerance of uncertainty, and specific emotional manifestations. Data provided a very good fit to a model elaborated from preliminary studies, lending further support to hierarchical models of emotional vulnerabilities. Implications for classification and diagnosis are discussed.
Hierarchical Self-organization of Complex Systems
Institute of Scientific and Technical Information of China (English)
CHAI Li-he; WEN Dong-sheng
2004-01-01
Researches on organization and structure in complex systems are academic and industrial fronts in modern sciences. Though many theories are tentatively proposed to analyze complex systems, we still lack a rigorous theory on them. Complex systems possess various degrees of freedom, which means that they should exhibit all kinds of structures. However, complex systems often show similar patterns and structures. Then the question arises why such similar structures appear in all kinds of complex systems. The paper outlines a theory on freedom degree compression and the existence of hierarchical self-organization for all complex systems is found. It is freedom degree compression and hierarchical self-organization that are responsible for the existence of these similar patterns or structures observed in the complex systems.
Bayesian hierarchical modeling of drug stability data.
Chen, Jie; Zhong, Jinglin; Nie, Lei
2008-06-15
Stability data are commonly analyzed using linear fixed or random effect model. The linear fixed effect model does not take into account the batch-to-batch variation, whereas the random effect model may suffer from the unreliable shelf-life estimates due to small sample size. Moreover, both methods do not utilize any prior information that might have been available. In this article, we propose a Bayesian hierarchical approach to modeling drug stability data. Under this hierarchical structure, we first use Bayes factor to test the poolability of batches. Given the decision on poolability of batches, we then estimate the shelf-life that applies to all batches. The approach is illustrated with two example data sets and its performance is compared in simulation studies with that of the commonly used frequentist methods. (c) 2008 John Wiley & Sons, Ltd.
Hierarchical Boltzmann simulations and model error estimation
Torrilhon, Manuel; Sarna, Neeraj
2017-08-01
A hierarchical simulation approach for Boltzmann's equation should provide a single numerical framework in which a coarse representation can be used to compute gas flows as accurately and efficiently as in computational fluid dynamics, but a subsequent refinement allows to successively improve the result to the complete Boltzmann result. We use Hermite discretization, or moment equations, for the steady linearized Boltzmann equation for a proof-of-concept of such a framework. All representations of the hierarchy are rotationally invariant and the numerical method is formulated on fully unstructured triangular and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demonstrate the performance of the numerical method on model problems which in particular highlights the relevance of stability of boundary conditions on curved domains. The hierarchical nature of the method allows also to provide model error estimates by comparing subsequent representations. We present various model errors for a flow through a curved channel with obstacles.
Hierarchical State Machines as Modular Horn Clauses
Directory of Open Access Journals (Sweden)
Pierre-Loïc Garoche
2016-07-01
Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.
Hierarchical community structure in complex (social) networks
Massaro, Emanuele
2014-01-01
The investigation of community structure in networks is a task of great importance in many disciplines, namely physics, sociology, biology and computer science where systems are often represented as graphs. One of the challenges is to find local communities from a local viewpoint in a graph without global information in order to reproduce the subjective hierarchical vision for each vertex. In this paper we present the improvement of an information dynamics algorithm in which the label propagation of nodes is based on the Markovian flow of information in the network under cognitive-inspired constraints \\cite{Massaro2012}. In this framework we have introduced two more complex heuristics that allow the algorithm to detect the multi-resolution hierarchical community structure of networks from a source vertex or communities adopting fixed values of model's parameters. Experimental results show that the proposed methods are efficient and well-behaved in both real-world and synthetic networks.
Object tracking with hierarchical multiview learning
Yang, Jun; Zhang, Shunli; Zhang, Li
2016-09-01
Building a robust appearance model is useful to improve tracking performance. We propose a hierarchical multiview learning framework to construct the appearance model, which has two layers for tracking. On the top layer, two different views of features, grayscale value and histogram of oriented gradients, are adopted for representation under the cotraining framework. On the bottom layer, for each view of each feature, three different random subspaces are generated to represent the appearance from multiple views. For each random view submodel, the least squares support vector machine is employed to improve the discriminability for concrete and efficient realization. These two layers are combined to construct the final appearance model for tracking. The proposed hierarchical model assembles two types of multiview learning strategies, in which the appearance can be described more accurately and robustly. Experimental results in the benchmark dataset demonstrate that the proposed method can achieve better performance than many existing state-of-the-art algorithms.
Assembling hierarchical cluster solids with atomic precision.
Turkiewicz, Ari; Paley, Daniel W; Besara, Tiglet; Elbaz, Giselle; Pinkard, Andrew; Siegrist, Theo; Roy, Xavier
2014-11-12
Hierarchical solids created from the binary assembly of cobalt chalcogenide and iron oxide molecular clusters are reported. Six different molecular clusters based on the octahedral Co6E8 (E = Se or Te) and the expanded cubane Fe8O4 units are used as superatomic building blocks to construct these crystals. The formation of the solid is driven by the transfer of charge between complementary electron-donating and electron-accepting clusters in solution that crystallize as binary ionic compounds. The hierarchical structures are investigated by single-crystal X-ray diffraction, providing atomic and superatomic resolution. We report two different superstructures: a superatomic relative of the CsCl lattice type and an unusual packing arrangement based on the double-hexagonal close-packed lattice. Within these superstructures, we demonstrate various compositions and orientations of the clusters.
Hierarchical Robot Control In A Multisensor Environment
Bhanu, Bir; Thune, Nils; Lee, Jih Kun; Thune, Mari
1987-03-01
Automatic recognition, inspection, manipulation and assembly of objects will be a common denominator in most of tomorrow's highly automated factories. These tasks will be handled by intelligent computer controlled robots with multisensor capabilities which contribute to desired flexibility and adaptability. The control of a robot in such a multisensor environment becomes of crucial importance as the complexity of the problem grows exponentially with the number of sensors, tasks, commands and objects. In this paper we present an approach which uses CAD (Computer-Aided Design) based geometric and functional models of objects together with action oriented neuroschemas to recognize and manipulate objects by a robot in a multisensor environment. The hierarchical robot control system is being implemented on a BBN Butterfly multi processor. Index terms: CAD, Hierarchical Control, Hypothesis Generation and Verification, Parallel Processing, Schemas