WorldWideScience

Sample records for hierarchical regressions test

  1. Hierarchical linear regression models for conditional quantiles

    Institute of Scientific and Technical Information of China (English)

    TIAN Maozai; CHEN Gemai

    2006-01-01

    The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectively with the data with a hierarchical structure.In practice,the existence of such data hierarchies is neither accidental nor ignorable,it is a common phenomenon.To ignore this hierarchical data structure risks overlooking the importance of group effects,and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid.On the other hand,the hierarchical models take a hierarchical data structure into account and have also many applications in statistics,ranging from overdispersion to constructing min-max estimators.However,the hierarchical models are virtually the mean regression,therefore,they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates.Furthermore,the estimated coefficient vector (marginal effects)is sensitive to an outlier observation on the dependent variable.In this article,a new approach,which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models,is developed.On the theoretical front,we also consider the asymptotic properties of the new method,obtaining the simple conditions for an n1/2-convergence and an asymptotic normality.We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained.

  2. The Infinite Hierarchical Factor Regression Model

    CERN Document Server

    Rai, Piyush

    2009-01-01

    We propose a nonparametric Bayesian factor regression model that accounts for uncertainty in the number of factors, and the relationship between factors. To accomplish this, we propose a sparse variant of the Indian Buffet Process and couple this with a hierarchical model over factors, based on Kingman's coalescent. We apply this model to two problems (factor analysis and factor regression) in gene-expression data analysis.

  3. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  4. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  5. Regression Testing Cost Reduction Suite

    Directory of Open Access Journals (Sweden)

    Mohamed Alaa El-Din

    2014-08-01

    Full Text Available The estimated cost of software maintenance exceeds 70 percent of total software costs [1], and large portion of this maintenance expenses is devoted to regression testing. Regression testing is an expensive and frequently executed maintenance activity used to revalidate the modified software. Any reduction in the cost of regression testing would help to reduce the software maintenance cost. Test suites once developed are reused and updated frequently as the software evolves. As a result, some test cases in the test suite may become redundant when the software is modified over time since the requirements covered by them are also covered by other test cases. Due to the resource and time constraints for re-executing large test suites, it is important to develop techniques to minimize available test suites by removing redundant test cases. In general, the test suite minimization problem is NP complete. This paper focuses on proposing an effective approach for reducing the cost of regression testing process. The proposed approach is applied on real-time case study. It was found that the reduction in cost of regression testing for each regression testing cycle is ranging highly improved in the case of programs containing high number of selected statements which in turn maximize the benefits of using it in regression testing of complex software systems. The reduction in the regression test suite size will reduce the effort and time required by the testing teams to execute the regression test suite. Since regression testing is done more frequently in software maintenance phase, the overall software maintenance cost can be reduced considerably by applying the proposed approach.

  6. Coordinate Descent Based Hierarchical Interactive Lasso Penalized Logistic Regression and Its Application to Classification Problems

    Directory of Open Access Journals (Sweden)

    Jin-Jia Wang

    2014-01-01

    Full Text Available We present the hierarchical interactive lasso penalized logistic regression using the coordinate descent algorithm based on the hierarchy theory and variables interactions. We define the interaction model based on the geometric algebra and hierarchical constraint conditions and then use the coordinate descent algorithm to solve for the coefficients of the hierarchical interactive lasso model. We provide the results of some experiments based on UCI datasets, Madelon datasets from NIPS2003, and daily activities of the elder. The experimental results show that the variable interactions and hierarchy contribute significantly to the classification. The hierarchical interactive lasso has the advantages of the lasso and interactive lasso.

  7. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin

    2017-01-19

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  8. Hierarchical Matching and Regression with Application to Photometric Redshift Estimation

    Science.gov (United States)

    Murtagh, Fionn

    2017-06-01

    This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in data is to be exploited in classification and regression problems. A global a priori model may not be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our aim is matching and similarity-based analytics that takes account of discrete relationships in the data. The information structure of the data is represented by a hierarchy or tree where the branch structure, rather than just the proximity, is important. The representation is related to p-adic number theory. The clustering or binning of the data values, related to the precision of the measurements, has a central role in this methodology. If used for regression, our approach is a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify this analytics approach, and to demonstrate computational benefits, we address the well-known photometric redshift or `photo-z' problem, seeking to match Sloan Digital Sky Survey (SDSS) spectroscopic and photometric redshifts.

  9. Analyzing Multilevel Data: Comparing Findings from Hierarchical Linear Modeling and Ordinary Least Squares Regression

    Science.gov (United States)

    Rocconi, Louis M.

    2013-01-01

    This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…

  10. Hierarchical Multiple Regression in Counseling Research: Common Problems and Possible Remedies.

    Science.gov (United States)

    Petrocelli, John V.

    2003-01-01

    A brief content analysis was conducted on the use of hierarchical regression in counseling research published in the "Journal of Counseling Psychology" and the "Journal of Counseling & Development" during the years 1997-2001. Common problems are cited and possible remedies are described. (Contains 43 references and 3 tables.) (Author)

  11. Analysis of genomic signatures in prokaryotes using multinomial regression and hierarchical clustering

    DEFF Research Database (Denmark)

    Ussery, David; Bohlin, Jon; Skjerve, Eystein

    2009-01-01

    Recently there has been an explosion in the availability of bacterial genomic sequences, making possible now an analysis of genomic signatures across more than 800 hundred different bacterial chromosomes, from a wide variety of environments. Using genomic signatures, we pair-wise compared 867...... different genomic DNA sequences, taken from chromosomes and plasmids more than 100,000 base-pairs in length. Hierarchical clustering was performed on the outcome of the comparisons before a multinomial regression model was fitted. The regression model included the cluster groups as the response variable...... AT content. Small improvements to the regression model, although significant, were also obtained by factors such as sequence size, habitat, growth temperature, selective pressure measured as oligonucleotide usage variance, and oxygen requirement.The statistics obtained using hierarchical clustering...

  12. Neighborhood social capital and crime victimization: comparison of spatial regression analysis and hierarchical regression analysis.

    Science.gov (United States)

    Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro

    2012-11-01

    Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan.

  13. Regression Test Selection for C# Programs

    Directory of Open Access Journals (Sweden)

    Nashat Mansour

    2009-01-01

    Full Text Available We present a regression test selection technique for C# programs. C# is fairly new and is often used within the Microsoft .Net framework to give programmers a solid base to develop a variety of applications. Regression testing is done after modifying a program. Regression test selection refers to selecting a suitable subset of test cases from the original test suite in order to be rerun. It aims to provide confidence that the modifications are correct and did not affect other unmodified parts of the program. The regression test selection technique presented in this paper accounts for C#.Net specific features. Our technique is based on three phases; the first phase builds an Affected Class Diagram consisting of classes that are affected by the change in the source code. The second phase builds a C# Interclass Graph (CIG from the affected class diagram based on C# specific features. In this phase, we reduce the number of selected test cases. The third phase involves further reduction and a new metric for assigning weights to test cases for prioritizing the selected test cases. We have empirically validated the proposed technique by using case studies. The empirical results show the usefulness of the proposed regression testing technique for C#.Net programs.

  14. Structural Break Tests Robust to Regression Misspecification

    NARCIS (Netherlands)

    Abi Morshed, Alaa; Andreou, E.; Boldea, Otilia

    2016-01-01

    Structural break tests developed in the literature for regression models are sensitive to model misspecification. We show - analytically and through simulations - that the sup Wald test for breaks in the conditional mean and variance of a time series process exhibits severe size distortions when the

  15. Hypotheses testing for fuzzy robust regression parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kula, Kamile Sanli [Ahi Evran University, Department of Mathematics, 40200 Kirsehir (Turkey)], E-mail: sanli2004@hotmail.com; Apaydin, Aysen [Ankara University, Department of Statistics, 06100 Ankara (Turkey)], E-mail: apaydin@science.ankara.edu.tr

    2009-11-30

    The classical least squares (LS) method is widely used in regression analysis because computing its estimate is easy and traditional. However, LS estimators are very sensitive to outliers and to other deviations from basic assumptions of normal theory [Huynh H. A comparison of four approaches to robust regression. Psychol Bull 1982;92:505-12; Stephenson D. 2000. Available from: (http://folk.uib.no/ngbnk/kurs/notes/node38.html); Xu R, Li C. Multidimensional least-squares fitting with a fuzzy model. Fuzzy Sets and Systems 2001;119:215-23.]. If there exists outliers in the data set, robust methods are preferred to estimate parameters values. We proposed a fuzzy robust regression method by using fuzzy numbers when x is crisp and Y is a triangular fuzzy number and in case of outliers in the data set, a weight matrix was defined by the membership function of the residuals. In the fuzzy robust regression, fuzzy sets and fuzzy regression analysis was used in ranking of residuals and in estimation of regression parameters, respectively [Sanli K, Apaydin A. Fuzzy robust regression analysis based on the ranking of fuzzy sets. Inernat. J. Uncertainty Fuzziness and Knowledge-Based Syst 2008;16:663-81.]. In this study, standard deviation estimations are obtained for the parameters by the defined weight matrix. Moreover, we propose another point of view in hypotheses testing for parameters.

  16. Mission assurance increased with regression testing

    Science.gov (United States)

    Lang, R.; Spezio, M.

    Knowing what to test is an important attribute in any testing campaign, especially when it has to be right or the mission could be in jeopardy. The New Horizons mission, developed and operated by the John Hopkins University Applied Physics Laboratory, received a planned major upgrade to their Mission Operations and Control (MOC) ground system architecture. Early in the mission planning it was recognized that the ground system platform would require an upgrade to assure continued support of technology used for spacecraft operations. With the planned update to the six year operational ground architecture from Solaris 8 to Solaris 10, it was critical that the new architecture maintain critical operations and control functions. The New Horizons spacecraft is heading to its historic rendezvous with Pluto in July 2015 and then proceeding into the Kuiper Belt. This paper discusses the Independent Software Acceptance Testing (ISAT) Regression test campaign that played a critical role to assure the continued success of the New Horizons mission. The New Horizons ISAT process was designed to assure all the requirements were being met for the ground software functions developed to support the mission objectives. The ISAT team developed a test plan with a series of test case designs. The test objectives were to verify that the software developed from the requirements functioned as expected in the operational environment. As the test cases were developed and executed, a regression test suite was identified at the functional level. This regression test suite would serve as a crucial resource in assuring the operational system continued to function as required with such a large scale change being introduced. Some of the New Horizons ground software changes required modifications to the most critical functions of the operational software. Of particular concern was the new MOC architecture (Solaris 10) is Intel based and little endian, and the legacy architecture (Solaris 8) was SPA

  17. Evidence for a non-universal Kennicutt-Schmidt relationship using hierarchical Bayesian linear regression

    CERN Document Server

    Shetty, Rahul; Bigiel, Frank

    2012-01-01

    We develop a Bayesian linear regression method which rigorously treats measurement uncertainties, and accounts for hierarchical data structure for investigating the relationship between the star formation rate and gas surface density. The method simultaneously estimates the intercept, slope, and scatter about the regression line of each individual subject (e.g. a galaxy) and the population (e.g. an ensemble of galaxies). Using synthetic datasets, we demonstrate that the Bayesian method accurately recovers the parameters of both the individuals and the population, especially when compared to commonly employed least squares methods, such as the bisector. We apply the Bayesian method to estimate the Kennicutt-Schmidt (KS) parameters of a sample of spiral galaxies compiled by Bigiel et al. (2008). We find significant variation in the KS parameters, indicating that no single KS relationship holds for all galaxies. This suggests that the relationship between molecular gas and star formation differs between galaxies...

  18. Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data.

    Science.gov (United States)

    Wilderjans, Tom Frans; Vande Gaer, Eva; Kiers, Henk A L; Van Mechelen, Iven; Ceulemans, Eva

    2017-03-01

    In the behavioral sciences, many research questions pertain to a regression problem in that one wants to predict a criterion on the basis of a number of predictors. Although in many cases, ordinary least squares regression will suffice, sometimes the prediction problem is more challenging, for three reasons: first, multiple highly collinear predictors can be available, making it difficult to grasp their mutual relations as well as their relations to the criterion. In that case, it may be very useful to reduce the predictors to a few summary variables, on which one regresses the criterion and which at the same time yields insight into the predictor structure. Second, the population under study may consist of a few unknown subgroups that are characterized by different regression models. Third, the obtained data are often hierarchically structured, with for instance, observations being nested into persons or participants within groups or countries. Although some methods have been developed that partially meet these challenges (i.e., principal covariates regression (PCovR), clusterwise regression (CR), and structural equation models), none of these methods adequately deals with all of them simultaneously. To fill this gap, we propose the principal covariates clusterwise regression (PCCR) method, which combines the key idea's behind PCovR (de Jong & Kiers in Chemom Intell Lab Syst 14(1-3):155-164, 1992) and CR (Späth in Computing 22(4):367-373, 1979). The PCCR method is validated by means of a simulation study and by applying it to cross-cultural data regarding satisfaction with life.

  19. Automation of Flight Software Regression Testing

    Science.gov (United States)

    Tashakkor, Scott B.

    2016-01-01

    NASA is developing the Space Launch System (SLS) to be a heavy lift launch vehicle supporting human and scientific exploration beyond earth orbit. SLS will have a common core stage, an upper stage, and different permutations of boosters and fairings to perform various crewed or cargo missions. Marshall Space Flight Center (MSFC) is writing the Flight Software (FSW) that will operate the SLS launch vehicle. The FSW is developed in an incremental manner based on "Agile" software techniques. As the FSW is incrementally developed, testing the functionality of the code needs to be performed continually to ensure that the integrity of the software is maintained. Manually testing the functionality on an ever-growing set of requirements and features is not an efficient solution and therefore needs to be done automatically to ensure testing is comprehensive. To support test automation, a framework for a regression test harness has been developed and used on SLS FSW. The test harness provides a modular design approach that can compile or read in the required information specified by the developer of the test. The modularity provides independence between groups of tests and the ability to add and remove tests without disturbing others. This provides the SLS FSW team a time saving feature that is essential to meeting SLS Program technical and programmatic requirements. During development of SLS FSW, this technique has proved to be a useful tool to ensure all requirements have been tested, and that desired functionality is maintained, as changes occur. It also provides a mechanism for developers to check functionality of the code that they have developed. With this system, automation of regression testing is accomplished through a scheduling tool and/or commit hooks. Key advantages of this test harness capability includes execution support for multiple independent test cases, the ability for developers to specify precisely what they are testing and how, the ability to add

  20. Testing the gonadal regression-cytoprotection hypothesis.

    Science.gov (United States)

    Crawford, B A; Spaliviero, J A; Simpson, J M; Handelsman, D J

    1998-11-15

    Germinal damage is an almost universal accompaniment of cancer treatment as the result of bystander damage to the testis from cytotoxic drugs and/or irradiation. Cancer treatment for the most common cancers of the reproductive age group in men has improved such that most are now treated with curative intent, and many others are treated with likelihood of prolonged survival, so that the preservation of fertility is an important component of posttreatment quality of life. This has led to the consideration of developing adjuvant treatments that may reduce the gonadal toxicity of cancer therapy. One dominant hypothesis has been based on the supposition that the immature testis was resistant to cytotoxin damage. Hence, if hormonal treatment were able to cause spermatogenic regression to an immature state via an effective withdrawal of gonadotrophin secretion, the testis might be maintained temporarily in a protected state during cytotoxin exposure. However, clinical studies have been disappointing but have also been unable to test the hypothesis definitively thus far, due to the inability to completely suppress gonadotrophin secretion. Similarly, experimental models have also given conflicting results and, at best, a modest cytoprotection. To definitively test this hypothesis experimentally, we used the fact that the functionally hpg mouse has complete gonadotrophin deficiency but can undergo the induction of full spermatogenesis by testosterone. Thus, if complete gonadotrophin deficiency were an advantage during cytotoxin exposure, then the hpg mouse should exhibit some degree of germinal protection against cytotoxin-induced damage. We therefore administered three different cytotoxins (200 mg/kg procarbazine, 9 mg/kg doxorubicin, 8 Gy of X irradiation) to produce a range of severity in testicular damage and mechanism of action to either phenotypically normal or hpg mice. Testis weight and homogenization-resistant spermatid numbers were measured to evaluate the

  1. Hierarchical Vector Auto-Regressive Models and Their Applications to Multi-subject Effective Connectivity

    Directory of Open Access Journals (Sweden)

    Cristina eGorrostieta

    2013-11-01

    Full Text Available Vector auto-regressive (VAR models typically form the basis for constructing directed graphical models for investigating connectivity in a brain network with brain regions of interest (ROIs as nodes. There are limitations in the standard VAR models. The number of parameters in the VAR model increases quadratically with the number of ROIs and linearly with the order of the model and thus due to the large number of parameters, the model could pose serious estimation problems. Moreover, when applied to imaging data, the standard VAR model does not account for variability in the connectivity structure across all subjects. In this paper, we develop a novel generalization of the VAR model that overcomes these limitations. To deal with the high dimensionality of the parameter space, we propose a Bayesian hierarchical framework for the VAR model that will account for both temporal correlation within a subject and between subject variation. Our approach uses prior distributions that give rise to estimates that correspond to penalized least squares criterion with the elastic net penalty. We apply the proposed model to investigate differences in effective connectivity during a hand grasp experiment between healthy controls and patients with residual motor deficit following a stroke.

  2. Bayesian hierarchical regression analysis of variations in sea surface temperature change over the past million years

    Science.gov (United States)

    Snyder, Carolyn W.

    2016-09-01

    Statistical challenges often preclude comparisons among different sea surface temperature (SST) reconstructions over the past million years. Inadequate consideration of uncertainty can result in misinterpretation, overconfidence, and biased conclusions. Here I apply Bayesian hierarchical regressions to analyze local SST responsiveness to climate changes for 54 SST reconstructions from across the globe over the past million years. I develop methods to account for multiple sources of uncertainty, including the quantification of uncertainty introduced from absolute dating into interrecord comparisons. The estimates of local SST responsiveness explain 64% (62% to 77%, 95% interval) of the total variation within each SST reconstruction with a single number. There is remarkable agreement between SST proxy methods, with the exception of Mg/Ca proxy methods estimating muted responses at high latitudes. The Indian Ocean exhibits a muted response in comparison to other oceans. I find a stable estimate of the proposed "universal curve" of change in local SST responsiveness to climate changes as a function of sin2(latitude) over the past 400,000 years: SST change at 45°N/S is larger than the average tropical response by a factor of 1.9 (1.5 to 2.6, 95% interval) and explains 50% (35% to 58%, 95% interval) of the total variation between each SST reconstruction. These uncertainty and statistical methods are well suited for application across paleoclimate and environmental data series intercomparisons.

  3. Type Ia Supernova Colors and Ejecta Velocities: Hierarchical Bayesian Regression with Non-Gaussian Distributions

    CERN Document Server

    Mandel, Kaisey S; Kirshner, Robert P

    2014-01-01

    We investigate the correlations between the peak intrinsic colors of Type Ia supernovae (SN Ia) and their expansion velocities at maximum light, measured from the Si II 6355 A spectral feature. We construct a new hierarchical Bayesian regression model and Gibbs sampler to estimate the dependence of the intrinsic colors of a SN Ia on its ejecta velocity, while accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust. The method is applied to the apparent color data from BVRI light curves and Si II velocity data for 79 nearby SN Ia. Comparison of the apparent color distributions of high velocity (HV) and normal velocity (NV) supernovae reveals significant discrepancies in B-V and B-R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B-band, rather than dust reddening. The mean intrinsic B-V and B-R color differences between HV and NV groups are 0.06 +/- 0.02 and 0.09 +/- 0.02 mag, respectively. Under a linear m...

  4. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, Kaisey S.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  5. Testing for Stock Market Contagion: A Quantile Regression Approach

    NARCIS (Netherlands)

    S.Y. Park (Sung); W. Wang (Wendun); N. Huang (Naijing)

    2015-01-01

    markdownabstract__Abstract__ Regarding the asymmetric and leptokurtic behavior of financial data, we propose a new contagion test in the quantile regression framework that is robust to model misspecification. Unlike conventional correlation-based tests, the proposed quantile contagion test

  6. Research of the Control Domain of Edges in Regression Testing

    Institute of Scientific and Technical Information of China (English)

    GAO Jian-Hua

    2005-01-01

    Regression testing is the process of validating modified software to provide confidence that the changed parts of the software behave as intended and that the unchanged parts have not been adversely affected by the modifications. The goal of regression testing is to reduce the test suit by testing the new characters and the modified parts of a program with the original test suit. Regression testing is a high cost testing method. This paper presents a regression testing selection technique that can reduce the test suit on the basis of Control Flow Graph (CFG). It import the inherit strategy of object-oriented language to ensure an edge's control domain to reduce the test suit size effectively. We implement the idea by coding the edge. An algorithm is also presented at last.

  7. Testing hypotheses for differences between linear regression lines

    Science.gov (United States)

    Stanley J. Zarnoch

    2009-01-01

    Five hypotheses are identified for testing differences between simple linear regression lines. The distinctions between these hypotheses are based on a priori assumptions and illustrated with full and reduced models. The contrast approach is presented as an easy and complete method for testing for overall differences between the regressions and for making pairwise...

  8. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback

  9. A Logistic Regression Model with a Hierarchical Random Error Term for Analyzing the Utilization of Public Transport

    Directory of Open Access Journals (Sweden)

    Chong Wei

    2015-01-01

    Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.

  10. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Guo Junqiao

    2008-09-01

    Full Text Available Abstract Background The effects of climate variations on bacillary dysentery incidence have gained more recent concern. However, the multi-collinearity among meteorological factors affects the accuracy of correlation with bacillary dysentery incidence. Methods As a remedy, a modified method to combine ridge regression and hierarchical cluster analysis was proposed for investigating the effects of climate variations on bacillary dysentery incidence in northeast China. Results All weather indicators, temperatures, precipitation, evaporation and relative humidity have shown positive correlation with the monthly incidence of bacillary dysentery, while air pressure had a negative correlation with the incidence. Ridge regression and hierarchical cluster analysis showed that during 1987–1996, relative humidity, temperatures and air pressure affected the transmission of the bacillary dysentery. During this period, all meteorological factors were divided into three categories. Relative humidity and precipitation belonged to one class, temperature indexes and evaporation belonged to another class, and air pressure was the third class. Conclusion Meteorological factors have affected the transmission of bacillary dysentery in northeast China. Bacillary dysentery prevention and control would benefit from by giving more consideration to local climate variations.

  11. Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging

    Science.gov (United States)

    An, Jinxia; Guo, Qianqian; Zhang, Peng; Sinclair, Andrew; Zhao, Yu; Zhang, Xinge; Wu, Kan; Sun, Fang; Hung, Hsiang-Chieh; Li, Chaoxing; Jiang, Shaoyi

    2016-04-01

    Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake, enhanced tumor cell internalization, pH-controlled drug release and simultaneous imaging. This co-assembled nanoparticle showed exceptional stability in complex biological media. Benefiting from the synergistic effects of zwitterionic and multivalent galactose polymers, drug-loaded nanoparticles were selectively internalized by cancer cells rather than normal tissue cells. In addition, the pH-responsive core retained their cargo within their polymeric coating through hydrophobic interaction and released it under slightly acidic conditions. In vivo pharmacokinetic studies in mice showed minimal uptake of nanoparticles by the mononuclear phagocyte system and excellent blood circulation half-lives of 14.4 h. As a result, tumor growth was completely inhibited and no damage was observed for normal organ tissues. This newly developed drug nanovehicle has great potential in cancer therapy, and the hierarchical design principle should provide valuable information for the development of the next generation of drug delivery systems.Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake

  12. Testing for Stock Market Contagion: A Quantile Regression Approach

    NARCIS (Netherlands)

    S.Y. Park (Sung); W. Wang (Wendun); N. Huang (Naijing)

    2015-01-01

    markdownabstract__Abstract__ Regarding the asymmetric and leptokurtic behavior of financial data, we propose a new contagion test in the quantile regression framework that is robust to model misspecification. Unlike conventional correlation-based tests, the proposed quantile contagion test allows

  13. Regressão múltipla stepwise e hierárquica em Psicologia Organizacional: aplicações, problemas e soluções Stepwise and hierarchical multiple regression in organizational psychology: Applications, problemas and solutions

    Directory of Open Access Journals (Sweden)

    Gardênia Abbad

    2002-01-01

    Full Text Available Este artigo discute algumas aplicações das técnicas de análise de regressão múltipla stepwise e hierárquica, as quais são muito utilizadas em pesquisas da área de Psicologia Organizacional. São discutidas algumas estratégias de identificação e de solução de problemas relativos à ocorrência de erros do Tipo I e II e aos fenômenos de supressão, complementaridade e redundância nas equações de regressão múltipla. São apresentados alguns exemplos de pesquisas nas quais esses padrões de associação entre variáveis estiveram presentes e descritas as estratégias utilizadas pelos pesquisadores para interpretá-los. São discutidas as aplicações dessas análises no estudo de interação entre variáveis e na realização de testes para avaliação da linearidade do relacionamento entre variáveis. Finalmente, são apresentadas sugestões para lidar com as limitações das análises de regressão múltipla (stepwise e hierárquica.This article discusses applications of stepwise and hierarchical multiple regression analyses to research in organizational psychology. Strategies for identifying type I and II errors, and solutions to potential problems that may arise from such errors are proposed. In addition, phenomena such as suppression, complementarity, and redundancy are reviewed. The article presents examples of research where these phenomena occurred, and the manner in which they were explained by researchers. Some applications of multiple regression analyses to studies involving between-variable interactions are presented, along with tests used to analyze the presence of linearity among variables. Finally, some suggestions are provided for dealing with limitations implicit in multiple regression analyses (stepwise and hierarchical.

  14. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  15. DYNA3D/ParaDyn Regression Test Suite Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-01

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of preliminary release 16.1 in September 2016. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark (√) in the corresponding column. The definition of “feature” has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors, except problems involving features only available in serial mode. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds; compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.

  16. Measurement and Analysis of Test Suite Volume Metrics for Regression Testing

    Directory of Open Access Journals (Sweden)

    S Raju

    2014-01-01

    Full Text Available Regression testing intends to ensure that a software applications works as specified after changes made to it during maintenance. It is an important phase in software development lifecycle. Regression testing is the re-execution of some subset of test cases that has already been executed. It is an expensive process used to detect defects due to regressions. Regression testing has been used to support software-testing activities and assure acquiring an appropriate quality through several versions of a software product during its development and maintenance. Regression testing assures the quality of modified applications. In this proposed work, a study and analysis of metrics related to test suite volume was undertaken. It was shown that the software under test needs more test cases after changes were made to it. A comparative analysis was performed for finding the change in test suite size before and after the regression test.

  17. Bayesian hierarchical piecewise regression models: a tool to detect trajectory divergence between groups in long-term observational studies.

    Science.gov (United States)

    Buscot, Marie-Jeanne; Wotherspoon, Simon S; Magnussen, Costan G; Juonala, Markus; Sabin, Matthew A; Burgner, David P; Lehtimäki, Terho; Viikari, Jorma S A; Hutri-Kähönen, Nina; Raitakari, Olli T; Thomson, Russell J

    2017-06-06

    Bayesian hierarchical piecewise regression (BHPR) modeling has not been previously formulated to detect and characterise the mechanism of trajectory divergence between groups of participants that have longitudinal responses with distinct developmental phases. These models are useful when participants in a prospective cohort study are grouped according to a distal dichotomous health outcome. Indeed, a refined understanding of how deleterious risk factor profiles develop across the life-course may help inform early-life interventions. Previous techniques to determine between-group differences in risk factors at each age may result in biased estimate of the age at divergence. We demonstrate the use of Bayesian hierarchical piecewise regression (BHPR) to generate a point estimate and credible interval for the age at which trajectories diverge between groups for continuous outcome measures that exhibit non-linear within-person response profiles over time. We illustrate our approach by modeling the divergence in childhood-to-adulthood body mass index (BMI) trajectories between two groups of adults with/without type 2 diabetes mellitus (T2DM) in the Cardiovascular Risk in Young Finns Study (YFS). Using the proposed BHPR approach, we estimated the BMI profiles of participants with T2DM diverged from healthy participants at age 16 years for males (95% credible interval (CI):13.5-18 years) and 21 years for females (95% CI: 19.5-23 years). These data suggest that a critical window for weight management intervention in preventing T2DM might exist before the age when BMI growth rate is naturally expected to decrease. Simulation showed that when using pairwise comparison of least-square means from categorical mixed models, smaller sample sizes tended to conclude a later age of divergence. In contrast, the point estimate of the divergence time is not biased by sample size when using the proposed BHPR method. BHPR is a powerful analytic tool to model long-term non

  18. Predictive Ability of Pender's Health Promotion Model for Physical Activity and Exercise in People with Spinal Cord Injuries: A Hierarchical Regression Analysis

    Science.gov (United States)

    Keegan, John P.; Chan, Fong; Ditchman, Nicole; Chiu, Chung-Yi

    2012-01-01

    The main objective of this study was to validate Pender's Health Promotion Model (HPM) as a motivational model for exercise/physical activity self-management for people with spinal cord injuries (SCIs). Quantitative descriptive research design using hierarchical regression analysis (HRA) was used. A total of 126 individuals with SCI were recruited…

  19. Empirical likelihood ratio tests for multivariate regression models

    Institute of Scientific and Technical Information of China (English)

    WU Jianhong; ZHU Lixing

    2007-01-01

    This paper proposes some diagnostic tools for checking the adequacy of multivariate regression models including classical regression and time series autoregression. In statistical inference, the empirical likelihood ratio method has been well known to be a powerful tool for constructing test and confidence region. For model checking, however, the naive empirical likelihood (EL) based tests are not of Wilks' phenomenon. Hence, we make use of bias correction to construct the EL-based score tests and derive a nonparametric version of Wilks' theorem. Moreover, by the advantages of both the EL and score test method, the EL-based score tests share many desirable features as follows: They are self-scale invariant and can detect the alternatives that converge to the null at rate n-1/2, the possibly fastest rate for lack-of-fit testing; they involve weight functions, which provides us with the flexibility to choose scores for improving power performance, especially under directional alternatives. Furthermore, when the alternatives are not directional, we construct asymptotically distribution-free maximin tests for a large class of possible alternatives. A simulation study is carried out and an application for a real dataset is analyzed.

  20. Testing the Perturbation Sensitivity of Abortion-Crime Regressions

    OpenAIRE

    2012-01-01

    The hypothesis that the legalisation of abortion contributed significantly to the reduction of crime in the United States in 1990s is one of the most prominent ideas from the recent 'economics-made-fun' movement sparked by the book Freakonomics. This paper expands on the existing literature about the computational stability of abortion-crime regressions by testing the sensitivity of coefficients' estimates to small amounts of data perturbation. In contrast to previous studies, we use a new da...

  1. Testing for a constant coefficient of variation in nonparametric regression

    OpenAIRE

    Dette, Holger; Marchlewski, Mareen; Wagener, Jens

    2010-01-01

    In the common nonparametric regression model Y_i=m(X_i)+sigma(X_i)epsilon_i we consider the problem of testing the hypothesis that the coefficient of the scale and location function is constant. The test is based on a comparison of the observations Y_i=\\hat{sigma}(X_i) with their mean by a smoothed empirical process, where \\hat{sigma} denotes the local linear estimate of the scale function. We show weak convergence of a centered version of this process to a Gaussian process under the null ...

  2. Testing the Perturbation Sensitivity of Abortion-Crime Regressions

    Directory of Open Access Journals (Sweden)

    Michał Brzeziński

    2012-06-01

    Full Text Available The hypothesis that the legalisation of abortion contributed significantly to the reduction of crime in the United States in 1990s is one of the most prominent ideas from the recent “economics-made-fun” movement sparked by the book Freakonomics. This paper expands on the existing literature about the computational stability of abortion-crime regressions by testing the sensitivity of coefficients’ estimates to small amounts of data perturbation. In contrast to previous studies, we use a new data set on crime correlates for each of the US states, the original model specifica-tion and estimation methodology, and an improved data perturbation algorithm. We find that the coefficients’ estimates in abortion-crime regressions are not computationally stable and, therefore, are unreliable.

  3. Regression Test-Selection Technique Using Component Model Based Modification: Code to Test Traceability

    Directory of Open Access Journals (Sweden)

    Ahmad A. Saifan

    2016-04-01

    Full Text Available Regression testing is a safeguarding procedure to validate and verify adapted software, and guarantee that no errors have emerged. However, regression testing is very costly when testers need to re-execute all the test cases against the modified software. This paper proposes a new approach in regression test selection domain. The approach is based on meta-models (test models and structured models to decrease the number of test cases to be used in the regression testing process. The approach has been evaluated using three Java applications. To measure the effectiveness of the proposed approach, we compare the results using the re-test to all approaches. The results have shown that our approach reduces the size of test suite without negative impact on the effectiveness of the fault detection.

  4. REGRESSION TESTING : TABU SEARCH TECHNIQUE FOR CODE COVERAGE

    Directory of Open Access Journals (Sweden)

    T.Prem Jacob

    2013-07-01

    Full Text Available Software testing is one of the most expensive and critical activities which carries out every time in order to give a best quality of a software product. Here the regression testing which is based on testing mechanism is used to analyze the source code changes and also to make sure that the changes that does not establish new bugs in theearlier validated codes. Now a days many innovative methods are raised in performing the software testing, among them the unit testing which uses minimum time frame and gives more effort in performing a task. Under lots of schedule the unit testing mechanism is done by more developers as the software companies has an enough time to find cooperation among different operations like functionality, quality and time to market. There is an essential to reduce the unit testing time by making it as an automated one and also by making its process as more optimistic.Here, this paper propose a technique called Tabu search based technique for an effective code coverage to cyclomatic complexity which is used to measure the complexity of a program.

  5. Improving Measurement Precision of Hierarchical Latent Traits Using Adaptive Testing

    Science.gov (United States)

    Wang, Chun

    2014-01-01

    Many latent traits in social sciences display a hierarchical structure, such as intelligence, cognitive ability, or personality. Usually a second-order factor is linearly related to a group of first-order factors (also called domain abilities in cognitive ability measures), and the first-order factors directly govern the actual item responses.…

  6. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  7. Polygraph Test Results Assessment by Regression Analysis Methods

    Directory of Open Access Journals (Sweden)

    K. A. Leontiev

    2014-01-01

    Full Text Available The paper considers a problem of defining the importance of asked questions for the examinee under judicial and psychophysiological polygraph examination by methods of mathematical statistics. It offers the classification algorithm based on the logistic regression as an optimum Bayesian classifier, considering weight coefficients of information for the polygraph-recorded physiological parameters with no condition for independence of the measured signs.Actually, binary classification is executed by results of polygraph examination with preliminary normalization and standardization of primary results, with check of a hypothesis that distribution of obtained data is normal, as well as with calculation of coefficients of linear regression between input values and responses by method of maximum likelihood. Further, the logistic curve divided signs into two classes of the "significant" and "insignificant" type.Efficiency of model is estimated by means of the ROC analysis (Receiver Operator Characteristics. It is shown that necessary minimum sample has to contain results of 45 measurements at least. This approach ensures a reliable result provided that an expert-polygraphologist possesses sufficient qualification and follows testing techniques.

  8. A Spreadsheet Tool for Learning the Multiple Regression F-Test, T-Tests, and Multicollinearity

    Science.gov (United States)

    Martin, David

    2008-01-01

    This note presents a spreadsheet tool that allows teachers the opportunity to guide students towards answering on their own questions related to the multiple regression F-test, the t-tests, and multicollinearity. The note demonstrates approaches for using the spreadsheet that might be appropriate for three different levels of statistics classes,…

  9. Bayesian hierarchical model used to analyze regression between fish body size and scale size: application to rare fish species Zingel asper

    Directory of Open Access Journals (Sweden)

    Fontez B.

    2014-04-01

    Full Text Available Back-calculation allows to increase available data on fish growth. The accuracy of back-calculation models is of paramount importance for growth analysis. Frequentist and Bayesian hierarchical approaches were used for regression between fish body size and scale size for the rare fish species Zingel asper. The Bayesian approach permits more reliable estimation of back-calculated size, taking into account biological information and cohort variability. This method greatly improves estimation of back-calculated length when sampling is uneven and/or small.

  10. Predicting Examination Performance Using an Expanded Integrated Hierarchical Model of Test Emotions and Achievement Goals

    Science.gov (United States)

    Putwain, Dave; Deveney, Carolyn

    2009-01-01

    The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…

  11. Improving Regression Testing through Modified Ant Colony Algorithm on a Dependency Injected Test Pattern

    Directory of Open Access Journals (Sweden)

    G.Keerthi Lakshmi

    2012-03-01

    Full Text Available Performing regression testing on a pre production environment is often viewed by software practitioners as a daunting task since often the test execution shall by-pass the stipulated downtime or the test coverage would be non linear. Choosing the exact test cases to match this type of complexity not only needs prior knowledge of the system, but also a right use of calculations to set the goals right. On systems that are just entering the production environment after getting promoted from the staging phase, trade-offs are often needed to between time and the test coverage to ensure the maximum test cases are covered within the stipulated time. There arises a need to refine the test cases to accommodate the maximum test coverage it makes within the stipulated period of time since at most of the times, the most important test cases are often not deemed to qualify under the sanity test suite and any bugs that creped in them would go undetected until it is found out by the actual user at firsthand. Hence An attempt has been made in the paper to layout a testing framework to address the process of improving the regression suite by adopting a modified version of the Ant Colony Algorithm over and thus dynamically injecting dependency over the best route encompassed by the ant colony.

  12. Improved Testing and Specifivations of Smooth Transition Regression Models

    OpenAIRE

    Escribano, Álvaro; Jordá, Óscar

    1997-01-01

    This paper extends previous work in Escribano and Jordá (1997)and introduces new LM specification procedures to choose between Logistic and Exponential Smooth Transition Regression (STR)Models. These procedures are simpler, consistent and more powerful than those previously available in the literature. An analysis of the properties of Taylor approximations around the transition function of STR models permits one to understand why these procedures work better and it suggests ways to improve te...

  13. Robust Medical Test Evaluation Using Flexible Bayesian Semiparametric Regression Models

    Directory of Open Access Journals (Sweden)

    Adam J. Branscum

    2013-01-01

    Full Text Available The application of Bayesian methods is increasing in modern epidemiology. Although parametric Bayesian analysis has penetrated the population health sciences, flexible nonparametric Bayesian methods have received less attention. A goal in nonparametric Bayesian analysis is to estimate unknown functions (e.g., density or distribution functions rather than scalar parameters (e.g., means or proportions. For instance, ROC curves are obtained from the distribution functions corresponding to continuous biomarker data taken from healthy and diseased populations. Standard parametric approaches to Bayesian analysis involve distributions with a small number of parameters, where the prior specification is relatively straight forward. In the nonparametric Bayesian case, the prior is placed on an infinite dimensional space of all distributions, which requires special methods. A popular approach to nonparametric Bayesian analysis that involves Polya tree prior distributions is described. We provide example code to illustrate how models that contain Polya tree priors can be fit using SAS software. The methods are used to evaluate the covariate-specific accuracy of the biomarker, soluble epidermal growth factor receptor, for discerning lung cancer cases from controls using a flexible ROC regression modeling framework. The application highlights the usefulness of flexible models over a standard parametric method for estimating ROC curves.

  14. Regression Tests and the Efficiency of Fixed Odds Betting Markets

    NARCIS (Netherlands)

    Koning, Ruud H.

    The informational content of odds posted in sports betting market has been an ongoing topic of research. In this paper, I test whether fixed odds betting markets in soccer are informationally efficient. The contributions of the paper are threefold: first, I propose a simple yet flexible statistical

  15. A Negative Binomial Regression Model for Accuracy Tests

    Science.gov (United States)

    Hung, Lai-Fa

    2012-01-01

    Rasch used a Poisson model to analyze errors and speed in reading tests. An important property of the Poisson distribution is that the mean and variance are equal. However, in social science research, it is very common for the variance to be greater than the mean (i.e., the data are overdispersed). This study embeds the Rasch model within an…

  16. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

    Science.gov (United States)

    Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

    2009-11-01

    G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

  17. A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning

    Science.gov (United States)

    Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei

    2013-03-01

    In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.

  18. Multi-platform SCADA GUI Regression Testing at CERN

    CERN Document Server

    Burkimsher, P C; Klikovits, S

    2011-01-01

    The JCOP Framework is a toolkit used widely at CERN for the development of industrial control systems in several domains (i.e. experiments, accelerators and technical infrastructure). The software development started 10 years ago and there is now a large base of production systems running it. For the success of the project, it was essential to formalize and automate the quality assurance process. This paper will present the overall testing strategy and will describe in detail mechanisms used for GUI testing. The choice of a commercial tool (Squish) and the architectural features making it appropriate for our multi-platform environment will be described. Practical difficulties encountered when using the tool in the CERN context are discussed as well as how these were addressed. In the light of initial experience, the test code itself has been recently reworked in object-oriented style to facilitate future maintenance and extension. The current reporting process is described, as well as future plans for easy re...

  19. Using Fuzzy Logic in Test Case Prioritization for Regression Testing Programs with Assertions

    Directory of Open Access Journals (Sweden)

    Ali M. Alakeel

    2014-01-01

    Full Text Available Program assertions have been recognized as a supporting tool during software development, testing, and maintenance. Therefore, software developers place assertions within their code in positions that are considered to be error prone or that have the potential to lead to a software crash or failure. Similar to any other software, programs with assertions must be maintained. Depending on the type of modification applied to the modified program, assertions also might have to undergo some modifications. New assertions may also be introduced in the new version of the program, while some assertions can be kept the same. This paper presents a novel approach for test case prioritization during regression testing of programs that have assertions using fuzzy logic. The main objective of this approach is to prioritize the test cases according to their estimated potential in violating a given program assertion. To develop the proposed approach, we utilize fuzzy logic techniques to estimate the effectiveness of a given test case in violating an assertion based on the history of the test cases in previous testing operations. We have conducted a case study in which the proposed approach is applied to various programs, and the results are promising compared to untreated and randomly ordered test cases.

  20. Using fuzzy logic in test case prioritization for regression testing programs with assertions.

    Science.gov (United States)

    Alakeel, Ali M

    2014-01-01

    Program assertions have been recognized as a supporting tool during software development, testing, and maintenance. Therefore, software developers place assertions within their code in positions that are considered to be error prone or that have the potential to lead to a software crash or failure. Similar to any other software, programs with assertions must be maintained. Depending on the type of modification applied to the modified program, assertions also might have to undergo some modifications. New assertions may also be introduced in the new version of the program, while some assertions can be kept the same. This paper presents a novel approach for test case prioritization during regression testing of programs that have assertions using fuzzy logic. The main objective of this approach is to prioritize the test cases according to their estimated potential in violating a given program assertion. To develop the proposed approach, we utilize fuzzy logic techniques to estimate the effectiveness of a given test case in violating an assertion based on the history of the test cases in previous testing operations. We have conducted a case study in which the proposed approach is applied to various programs, and the results are promising compared to untreated and randomly ordered test cases.

  1. Testing Edge versus Hierarchical C2 Organizations using the ELICIT Platform and Common Identification Picture Tool

    Science.gov (United States)

    2011-06-01

    application designed for conducting human-in-the-loop experiments focused on information and social domain phenomena (Martin and Mc Ever, 2008...environment designed to experiment and research differences between Edge and Hierarchical organizational configurations within the information and social ...indicated in the following tables. Tests of Normality ,132 17 ,200* ,927 17 ,191 ,131 17 ,200* ,919 17 ,141 Grupo Edge SIN Edge CON Rend Statistic df Sig

  2. Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning

    Science.gov (United States)

    Li, Zhushan

    2014-01-01

    Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…

  3. Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning

    Science.gov (United States)

    Li, Zhushan

    2014-01-01

    Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…

  4. The empirical likelihood goodness-of-fit test for regression model

    Institute of Scientific and Technical Information of China (English)

    Li-xing ZHU; Yong-song QIN; Wang-li XU

    2007-01-01

    Goodness-of-fit test for regression modes has received much attention in literature. In this paper, empirical likelihood (EL) goodness-of-fit tests for regression models including classical parametric and autoregressive (AR) time series models are proposed. Unlike the existing locally smoothing and globally smoothing methodologies, the new method has the advantage that the tests are self-scale invariant and that the asymptotic null distribution is chi-squared. Simulations are carried out to illustrate the methodology.

  5. Class hierarchical test case generation algorithm based on expanded EMDPN model

    Institute of Scientific and Technical Information of China (English)

    LI Jun-yi; GONG Hong-fang; HU Ji-ping; ZOU Bei-ji; SUN Jia-guang

    2006-01-01

    A new model of event and message driven Petri network(EMDPN) based on the characteristic of class interaction for messages passing between two objects was extended. Using EMDPN interaction graph, a class hierarchical test-case generation algorithm with cooperated paths (copaths) was proposed, which can be used to solve the problems resulting from the class inheritance mechanism encountered in object-oriented software testing such as oracle, message transfer errors, and unreachable statement. Finally, the testing sufficiency was analyzed with the ordered sequence testing criterion(OSC). The results indicate that the test cases stemmed from newly proposed automatic algorithm of copaths generation satisfies synchronization message sequences testing criteria, therefore the proposed new algorithm of copaths generation has a good coverage rate.

  6. The importance of trait emotional intelligence and feelings in the prediction of perceived and biological stress in adolescents: hierarchical regressions and fsQCA models.

    Science.gov (United States)

    Villanueva, Lidón; Montoya-Castilla, Inmaculada; Prado-Gascó, Vicente

    2017-07-01

    The purpose of this study is to analyze the combined effects of trait emotional intelligence (EI) and feelings on healthy adolescents' stress. Identifying the extent to which adolescent stress varies with trait emotional differences and the feelings of adolescents is of considerable interest in the development of intervention programs for fostering youth well-being. To attain this goal, self-reported questionnaires (perceived stress, trait EI, and positive/negative feelings) and biological measures of stress (hair cortisol concentrations, HCC) were collected from 170 adolescents (12-14 years old). Two different methodologies were conducted, which included hierarchical regression models and a fuzzy-set qualitative comparative analysis (fsQCA). The results support trait EI as a protective factor against stress in healthy adolescents and suggest that feelings reinforce this relation. However, the debate continues regarding the possibility of optimal levels of trait EI for effective and adaptive emotional management, particularly in the emotional attention and clarity dimensions and for female adolescents.

  7. strucchange: An R Package for Testing for Structural Change in Linear Regression Models

    Directory of Open Access Journals (Sweden)

    Achim Zeileis

    2002-01-01

    Full Text Available This paper reviews tests for structural change in linear regression models from the generalized fluctuation test framework as well as from the F test (Chow test framework. It introduces a unified approach for implementing these tests and presents how these ideas have been realized in an R package called strucchange. Enhancing the standard significance test approach the package contains methods to fit, plot and test empirical fluctuation processes (like CUSUM, MOSUM and estimates-based processes and to compute, plot and test sequences of F statistics with the supF , aveF and expF test. Thus, it makes powerful tools available to display information about structural changes in regression relationships and to assess their significance. Furthermore, it is described how incoming data can be monitored.

  8. A Note on Three Statistical Tests in the Logistic Regression DIF Procedure

    Science.gov (United States)

    Paek, Insu

    2012-01-01

    Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…

  9. A Note on Three Statistical Tests in the Logistic Regression DIF Procedure

    Science.gov (United States)

    Paek, Insu

    2012-01-01

    Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…

  10. A Bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data.

    Science.gov (United States)

    Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E

    2013-06-01

    Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework.

  11. Significance tests to determine the direction of effects in linear regression models.

    Science.gov (United States)

    Wiedermann, Wolfgang; Hagmann, Michael; von Eye, Alexander

    2015-02-01

    Previous studies have discussed asymmetric interpretations of the Pearson correlation coefficient and have shown that higher moments can be used to decide on the direction of dependence in the bivariate linear regression setting. The current study extends this approach by illustrating that the third moment of regression residuals may also be used to derive conclusions concerning the direction of effects. Assuming non-normally distributed variables, it is shown that the distribution of residuals of the correctly specified regression model (e.g., Y is regressed on X) is more symmetric than the distribution of residuals of the competing model (i.e., X is regressed on Y). Based on this result, 4 one-sample tests are discussed which can be used to decide which variable is more likely to be the response and which one is more likely to be the explanatory variable. A fifth significance test is proposed based on the differences of skewness estimates, which leads to a more direct test of a hypothesis that is compatible with direction of dependence. A Monte Carlo simulation study was performed to examine the behaviour of the procedures under various degrees of associations, sample sizes, and distributional properties of the underlying population. An empirical example is given which illustrates the application of the tests in practice.

  12. Using probit regression to disclose the analytical performance of qualitative and semi-quantitative tests.

    Science.gov (United States)

    Åsberg, Arne; Johnsen, Harald; Mikkelsen, Gustav; Hov, Gunhild Garmo

    2016-11-01

    The analytical performance of qualitative and semi-quantitative tests is usually studied by calculating the fraction of positive results after replicate testing of a few specimens with known concentrations of the analyte. We propose using probit regression to model the probability of positive results as a function of the analyte concentration, based on testing many specimens once with a qualitative and a quantitative test. We collected laboratory data where urine specimens had been analyzed by both a urine albumin ('protein') dipstick test (Combur-Test strips) and a quantitative test (BN ProSpec System). For each dipstick cut-off level probit regression was used to estimate the probability of positive results as a function of urine albumin concentration. We also used probit regression to estimate the standard deviation of the continuous measurement signal that lies behind the binary test response. Finally, we used probit regression to estimate the probability of reading a specific semi-quantitative dipstick result as a function of urine albumin concentration. Based on analyses of 3259 specimens, the concentration of urine albumin with a 0.5 (50%) probability of positive result was 57 mg/L at the lowest possible cut-off limit, and 246 and 750 mg/L at the next (higher) levels. The corresponding standard deviations were 29, 83, and 217 mg/L, respectively. Semi-quantitatively, the maximum probability of these three readings occurred at a u-albumin of 117, 420, and 1200 mg/L, respectively. Probit regression is a useful tool to study the analytical performance of qualitative and semi-quantitative tests.

  13. A Bayesian hierarchical model with novel prior specifications for estimating HIV testing rates

    Science.gov (United States)

    An, Qian; Kang, Jian; Song, Ruiguang; Hall, H. Irene

    2016-01-01

    Human immunodeficiency virus (HIV) infection is a severe infectious disease actively spreading globally, and acquired immunodeficiency syndrome (AIDS) is an advanced stage of HIV infection. The HIV testing rate, that is, the probability that an AIDS-free HIV infected person seeks a test for HIV during a particular time interval, given no previous positive test has been obtained prior to the start of the time, is an important parameter for public health. In this paper, we propose a Bayesian hierarchical model with two levels of hierarchy to estimate the HIV testing rate using annual AIDS and AIDS-free HIV diagnoses data. At level one, we model the latent number of HIV infections for each year using a Poisson distribution with the intensity parameter representing the HIV incidence rate. At level two, the annual numbers of AIDS and AIDS-free HIV diagnosed cases and all undiagnosed cases stratified by the HIV infections at different years are modeled using a multinomial distribution with parameters including the HIV testing rate. We propose a new class of priors for the HIV incidence rate and HIV testing rate taking into account the temporal dependence of these parameters to improve the estimation accuracy. We develop an efficient posterior computation algorithm based on the adaptive rejection metropolis sampling technique. We demonstrate our model using simulation studies and the analysis of the national HIV surveillance data in the USA. PMID:26567891

  14. Distributed, Cross-Platform, and Regression Testing Architecture for Service-Oriented Architecture

    CERN Document Server

    Bassil, Youssef

    2012-01-01

    As per leading IT experts, today's large enterprises are going through business transformations. They are adopting service-based IT models such as SOA to develop their enterprise information systems and applications. In fact, SOA is an integration of loosely-coupled interoperable components, possibly built using heterogeneous software technologies and hardware platforms. As a result, traditional testing architectures are no more adequate for verifying and validating the quality of SOA systems and whether they are operating to specifications. This paper first discusses the various state-of-the-art methods for testing SOA applications, and then it proposes a novel automated, distributed, cross-platform, and regression testing architecture for SOA systems. The proposed testing architecture consists of several testing units which include test engine, test code generator, test case generator, test executer, and test monitor units. Experiments conducted showed that the proposed testing architecture managed to use p...

  15. Permutation Tests of Hierarchical Cluster Analyses of Carrion Communities and Their Potential Use in Forensic Entomology.

    Science.gov (United States)

    van der Ham, Joris L

    2016-05-19

    Forensic entomologists can use carrion communities' ecological succession data to estimate the postmortem interval (PMI). Permutation tests of hierarchical cluster analyses of these data provide a conceptual method to estimate part of the PMI, the post-colonization interval (post-CI). This multivariate approach produces a baseline of statistically distinct clusters that reflect changes in the carrion community composition during the decomposition process. Carrion community samples of unknown post-CIs are compared with these baseline clusters to estimate the post-CI. In this short communication, I use data from previously published studies to demonstrate the conceptual feasibility of this multivariate approach. Analyses of these data produce series of significantly distinct clusters, which represent carrion communities during 1- to 20-day periods of the decomposition process. For 33 carrion community samples, collected over an 11-day period, this approach correctly estimated the post-CI within an average range of 3.1 days.

  16. Price promotions on healthier compared with less healthy foods: a hierarchical regression analysis of the impact on sales and social patterning of responses to promotions in Great Britain.

    Science.gov (United States)

    Nakamura, Ryota; Suhrcke, Marc; Jebb, Susan A; Pechey, Rachel; Almiron-Roig, Eva; Marteau, Theresa M

    2015-04-01

    There is a growing concern, but limited evidence, that price promotions contribute to a poor diet and the social patterning of diet-related disease. We examined the following questions: 1) Are less-healthy foods more likely to be promoted than healthier foods? 2) Are consumers more responsive to promotions on less-healthy products? 3) Are there socioeconomic differences in food purchases in response to price promotions? With the use of hierarchical regression, we analyzed data on purchases of 11,323 products within 135 food and beverage categories from 26,986 households in Great Britain during 2010. Major supermarkets operated the same price promotions in all branches. The number of stores that offered price promotions on each product for each week was used to measure the frequency of price promotions. We assessed the healthiness of each product by using a nutrient profiling (NP) model. A total of 6788 products (60%) were in healthier categories and 4535 products (40%) were in less-healthy categories. There was no significant gap in the frequency of promotion by the healthiness of products neither within nor between categories. However, after we controlled for the reference price, price discount rate, and brand-specific effects, the sales uplift arising from price promotions was larger in less-healthy than in healthier categories; a 1-SD point increase in the category mean NP score, implying the category becomes less healthy, was associated with an additional 7.7-percentage point increase in sales (from 27.3% to 35.0%; P sales uplift from promotions was larger for higher-socioeconomic status (SES) groups than for lower ones (34.6% for the high-SES group, 28.1% for the middle-SES group, and 23.1% for the low-SES group). Finally, there was no significant SES gap in the absolute volume of purchases of less-healthy foods made on promotion. Attempts to limit promotions on less-healthy foods could improve the population diet but would be unlikely to reduce health

  17. Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures

    Science.gov (United States)

    Atar, Burcu; Kamata, Akihito

    2011-01-01

    The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…

  18. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  19. Interpreting Reading Comprehension Test Results: Quantile Regression Shows That Explanatory Factors Can Vary with Performance Level

    Science.gov (United States)

    Hua, Anh N.; Keenan, Janice M.

    2017-01-01

    One of the most important findings to emerge from recent reading comprehension research is that there are large differences between tests in what they assess--specifically, the extent to which performance depends on word recognition versus listening comprehension skills. Because this research used ordinary least squares regression, it is not clear…

  20. A Percentile Regression Model for the Number of Errors in Group Conversation Tests.

    Science.gov (United States)

    Liski, Erkki P.; Puntanen, Simo

    A statistical model is presented for analyzing the results of group conversation tests in English, developed in a Finnish university study from 1977 to 1981. The model is illustrated with the findings from the study. In this study, estimates of percentile curves for the number of errors are of greater interest than the mean regression line. It was…

  1. A unified framework for testing in the linear regression model under unknown order of fractional integration

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Kruse, Robinson; Sibbertsen, Philipp

    We consider hypothesis testing in a general linear time series regression framework when the possibly fractional order of integration of the error term is unknown. We show that the approach suggested by Vogelsang (1998a) for the case of integer integration does not apply to the case of fractional...

  2. Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures

    Science.gov (United States)

    Atar, Burcu; Kamata, Akihito

    2011-01-01

    The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…

  3. Notes on power of normality tests of error terms in regression models

    Energy Technology Data Exchange (ETDEWEB)

    Střelec, Luboš [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, Brno, 61300 (Czech Republic)

    2015-03-10

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importance of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models.

  4. msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation

    Directory of Open Access Journals (Sweden)

    Takebayashi Naoki

    2007-07-01

    Full Text Available Abstract Background Although testing for simultaneous divergence (vicariance across different population-pairs that span the same barrier to gene flow is of central importance to evolutionary biology, researchers often equate the gene tree and population/species tree thereby ignoring stochastic coalescent variance in their conclusions of temporal incongruence. In contrast to other available phylogeographic software packages, msBayes is the only one that analyses data from multiple species/population pairs under a hierarchical model. Results msBayes employs approximate Bayesian computation (ABC under a hierarchical coalescent model to test for simultaneous divergence (TSD in multiple co-distributed population-pairs. Simultaneous isolation is tested by estimating three hyper-parameters that characterize the degree of variability in divergence times across co-distributed population pairs while allowing for variation in various within population-pair demographic parameters (sub-parameters that can affect the coalescent. msBayes is a software package consisting of several C and R programs that are run with a Perl "front-end". Conclusion The method reasonably distinguishes simultaneous isolation from temporal incongruence in the divergence of co-distributed population pairs, even with sparse sampling of individuals. Because the estimate step is decoupled from the simulation step, one can rapidly evaluate different ABC acceptance/rejection conditions and the choice of summary statistics. Given the complex and idiosyncratic nature of testing multi-species biogeographic hypotheses, we envision msBayes as a powerful and flexible tool for tackling a wide array of difficult research questions that use population genetic data from multiple co-distributed species. The msBayes pipeline is available for download at http://msbayes.sourceforge.net/ under an open source license (GNU Public License. The msBayes pipeline is comprised of several C and R programs that

  5. The Effects of Test Characteristics on the Hierarchical Order of Reading Skills

    Science.gov (United States)

    Badrasawi, Kamal J. I.; Abu Kassim, Noor Lide; Daud, Nuraihan Mat

    2017-01-01

    Purpose: The study sought to determine the hierarchical nature of reading skills. Whether reading is a "unitary" or "multi-divisible" skill is still a contentious issue. So is the hierarchical order of reading skills. Determining the hierarchy of reading skills is challenging as item difficulty is greatly influenced by factors…

  6. Preparation of Pd-Loaded Hierarchical FAU Membranes and Testing in Acetophenone Hydrogenation

    Directory of Open Access Journals (Sweden)

    Raffaele Molinari

    2016-03-01

    Full Text Available Pd-loaded hierarchical FAU (Pd-FAU membranes, containing an intrinsic secondary non-zeolitic (mesoporosity, were prepared and tested in the catalytic transfer hydrogenation of acetophenone (AP to produce phenylethanol (PE, an industrially relevant product. The best operating conditions were preliminarily identified by testing different solvents and organic hydrogen donors in a batch hydrogenation process where micron-sized FAU seeds were employed as catalyst support. Water as solvent and formic acid as hydrogen source resulted to be the best choice in terms of conversion for the catalytic hydrogenation of AP, providing the basis for the design of a green and sustainable process. The best experimental conditions were selected and applied to the Pd-loaded FAU membrane finding enhanced catalytic performance such as a five-fold higher productivity than with the unsupported Pd-FAU crystals (11.0 vs. 2.2 mgproduct gcat−1·h−1. The catalytic performance of the membrane on the alumina support was also tested in a tangential flow system obtaining a productivity higher than that of the batch system (22.0 vs. 11.0 mgproduct gcat−1·h−1.

  7. Preparation of Pd-Loaded Hierarchical FAU Membranes and Testing in Acetophenone Hydrogenation.

    Science.gov (United States)

    Molinari, Raffaele; Lavorato, Cristina; Mastropietro, Teresa F; Argurio, Pietro; Drioli, Enrico; Poerio, Teresa

    2016-03-22

    Pd-loaded hierarchical FAU (Pd-FAU) membranes, containing an intrinsic secondary non-zeolitic (meso)porosity, were prepared and tested in the catalytic transfer hydrogenation of acetophenone (AP) to produce phenylethanol (PE), an industrially relevant product. The best operating conditions were preliminarily identified by testing different solvents and organic hydrogen donors in a batch hydrogenation process where micron-sized FAU seeds were employed as catalyst support. Water as solvent and formic acid as hydrogen source resulted to be the best choice in terms of conversion for the catalytic hydrogenation of AP, providing the basis for the design of a green and sustainable process. The best experimental conditions were selected and applied to the Pd-loaded FAU membrane finding enhanced catalytic performance such as a five-fold higher productivity than with the unsupported Pd-FAU crystals (11.0 vs. 2.2 mgproduct gcat(-1)·h(-1)). The catalytic performance of the membrane on the alumina support was also tested in a tangential flow system obtaining a productivity higher than that of the batch system (22.0 vs. 11.0 mgproduct gcat(-1)·h(-1)).

  8. Regression Test Case Selection for MultiObjective Optimization Using Metaheuristics

    Directory of Open Access Journals (Sweden)

    Rahul Chaudhary

    2015-03-01

    Full Text Available A new heuristic algorithm is proposed by this paper, on multi-objective optimization using metaheuristics and TSP (travelling salesman problems. Basic thinking behind this algorithm is minimizing the TSP path or tour by dividing the entire tour into blocks that are overlapped to each other and then improve each individual block separately. Although it is unproven that a good solution have small improvement chances if a node moved far way to a position compared to its original solution. By intensively searching each block, further improvement is possible in TSP path or tour that never be supported in various search methods and genetic algorithm. Proposed algorithm and computational experiment performance was tested, and these tests are carried out with support of already present instances of problem. According to the results represented by paper, the computation verifies that proposed algorithm can solve TSPs efficiently. Proposed algorithm is then used for selecting optimal test cases, thousands of those test cases which are selected after confirming that they identify bugs and they itself selected from a repository of test cases; these thousand test cases are those test cases which are selected from several thousand test cases because they detect bugs. Few test cases from repository act as milestones (nodes and having certain weight associated with each, proposed algorithm based on TSP implemented over selected result and select the optimal result or path or solution. These selected optimal test cases or selected path are further used to perform the regression testing, by applying those test cases selected by proposed algorithm in order to remove most of the faults or bugs effectively, i.e. take less time and identify almost all the bugs with few test cases. Hence this proposed algorithm assures most effective solution for regression testing test case selection.

  9. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Treating Latent Variable Regression Coefficients as Random Coefficients in a Three-Level Hierarchical Model

    Science.gov (United States)

    Choi, Kilchan; Seltzer, Michael

    2010-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…

  10. Hierarchical Testing with Automated Document Generation for Amanzi, ASCEM's Subsurface Flow and Reactive Transport Simulator

    Science.gov (United States)

    Moulton, J. D.; Steefel, C. I.; Yabusaki, S.; Castleton, K.; Scheibe, T. D.; Keating, E. H.; Freedman, V. L.

    2013-12-01

    The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments use a graded and iterative approach, beginning with simplified highly abstracted models, and adding geometric and geologic complexity as understanding is gained. To build confidence in this assessment capability, extensive testing of the underlying tools is needed. Since the tools themselves, such as the subsurface flow and reactive-transport simulator, Amanzi, are under active development, testing must be both hierarchical and highly automated. In this presentation we show how we have met these requirements, by leveraging the python-based open-source documentation system called Sphinx with several other open-source tools. Sphinx builds on the reStructured text tool docutils, with important extensions that include high-quality formatting of equations, and integrated plotting through matplotlib. This allows the documentation, as well as the input files for tests, benchmark and tutorial problems, to be maintained with the source code under a version control system. In addition, it enables developers to build documentation in several different formats (e.g., html and pdf) from a single source. We will highlight these features, and discuss important benefits of this approach for Amanzi. In addition, we'll show that some of ASCEM's other tools, such as the sampling provided by the Uncertainty Quantification toolset, are naturally leveraged to enable more comprehensive testing. Finally, we will highlight the integration of this hiearchical testing and documentation framework with our build system and tools (CMake, CTest, and CDash).

  11. Predicting Student Success on the Texas Chemistry STAAR Test: A Logistic Regression Analysis

    Science.gov (United States)

    Johnson, William L.; Johnson, Annabel M.; Johnson, Jared

    2012-01-01

    Background: The context is the new Texas STAAR end-of-course testing program. Purpose: The authors developed a logistic regression model to predict who would pass-or-fail the new Texas chemistry STAAR end-of-course exam. Setting: Robert E. Lee High School (5A) with an enrollment of 2700 students, Tyler, Texas. Date of the study was the 2011-2012…

  12. Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach

    Directory of Open Access Journals (Sweden)

    Meyer Christopher P

    2008-11-01

    Full Text Available Abstract Background Marine allopatric speciation is an enigma because pelagic larval dispersal can potentially connect disjunct populations thereby preventing reproductive and morphological divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC that tests two hypotheses of marine allopatric speciation: 1. "soft vicariance", where a speciation involves fragmentation of a large widespread ancestral species range that was previously connected by long distance gene flow; and 2. peripatric colonization, where speciations in peripheral archipelagos emerge from sweepstakes colonizations from central source regions. The HABC approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair inferences about biogeographic processes while explicitly allowing for uncertainty in the demographic differences within each taxon-pair. Our method uses comparative phylogeographic data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing pairs of central and peripheral populations. We use the method on two comparative phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian (11 taxon-pairs and Marquesan archipelagos (7 taxon-pairs. Results Given the Marquesan data, we find strong evidence of simultaneous colonization across all seven cowrie gastropod endemics co-distributed in the Marquesas. In contrast, the lower sample sizes in the Hawaiian data lead to greater uncertainty associated with the Hawaiian estimates. Although, the hyper-parameter estimates point to soft vicariance in a subset of the 11 Hawaiian taxon-pairs, the hyper-prior and hyper-posterior are too similar to make a definitive conclusion. Both results are not inconsistent with what is known about the geologic history of the archipelagos. Simulations verify that our method can successfully distinguish these two histories across a wide range of conditions given

  13. Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error

    KAUST Repository

    Carroll, Raymond J.

    2011-03-01

    In many applications we can expect that, or are interested to know if, a density function or a regression curve satisfies some specific shape constraints. For example, when the explanatory variable, X, represents the value taken by a treatment or dosage, the conditional mean of the response, Y , is often anticipated to be a monotone function of X. Indeed, if this regression mean is not monotone (in the appropriate direction) then the medical or commercial value of the treatment is likely to be significantly curtailed, at least for values of X that lie beyond the point at which monotonicity fails. In the case of a density, common shape constraints include log-concavity and unimodality. If we can correctly guess the shape of a curve, then nonparametric estimators can be improved by taking this information into account. Addressing such problems requires a method for testing the hypothesis that the curve of interest satisfies a shape constraint, and, if the conclusion of the test is positive, a technique for estimating the curve subject to the constraint. Nonparametric methodology for solving these problems already exists, but only in cases where the covariates are observed precisely. However in many problems, data can only be observed with measurement errors, and the methods employed in the error-free case typically do not carry over to this error context. In this paper we develop a novel approach to hypothesis testing and function estimation under shape constraints, which is valid in the context of measurement errors. Our method is based on tilting an estimator of the density or the regression mean until it satisfies the shape constraint, and we take as our test statistic the distance through which it is tilted. Bootstrap methods are used to calibrate the test. The constrained curve estimators that we develop are also based on tilting, and in that context our work has points of contact with methodology in the error-free case.

  14. A semiparametric Wald statistic for testing logistic regression models based on case-control data

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We propose a semiparametric Wald statistic to test the validity of logistic regression models based on case-control data. The test statistic is constructed using a semiparametric ROC curve estimator and a nonparametric ROC curve estimator. The statistic has an asymptotic chi-squared distribution and is an alternative to the Kolmogorov-Smirnov-type statistic proposed by Qin and Zhang in 1997, the chi-squared-type statistic proposed by Zhang in 1999 and the information matrix test statistic proposed by Zhang in 2001. The statistic is easy to compute in the sense that it requires none of the following methods: using a bootstrap method to find its critical values, partitioning the sample data or inverting a high-dimensional matrix. We present some results on simulation and on analysis of two real examples. Moreover, we discuss how to extend our statistic to a family of statistics and how to construct its Kolmogorov-Smirnov counterpart.

  15. Modified likelihood ratio tests in heteroskedastic multivariate regression models with measurement error

    CERN Document Server

    Melo, Tatiane F N; Patriota, Alexandre G

    2012-01-01

    In this paper, we develop a modified version of the likelihood ratio test for multivariate heteroskedastic errors-in-variables regression models. The error terms are allowed to follow a multivariate distribution in the elliptical class of distributions, which has the normal distribution as a special case. We derive the Skovgaard adjusted likelihood ratio statistic, which follows a chi-squared distribution with a high degree of accuracy. We conduct a simulation study and show that the proposed test displays superior finite sample behavior as compared to the standard likelihood ratio test. We illustrate the usefulness of our results in applied settings using a data set from the WHO MONICA Project on cardiovascular disease.

  16. Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.

    Directory of Open Access Journals (Sweden)

    Gu Mi

    Full Text Available This work is about assessing model adequacy for negative binomial (NB regression, particularly (1 assessing the adequacy of the NB assumption, and (2 assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.

  17. Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.

    Science.gov (United States)

    Mi, Gu; Di, Yanming; Schafer, Daniel W

    2015-01-01

    This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.

  18. Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests

    Directory of Open Access Journals (Sweden)

    Lawrence Rudner

    2016-07-01

    Full Text Available In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Na ve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows that the conclusion also applies to the probabilities estimated from short subtests of mental abilities and that small samples can yield excellent accuracy. The calculated Bayes probabilities can be used to provide meaningful examinee feedback regardless of whether the test was originally designed to be unidimensional.

  19. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure

    Science.gov (United States)

    Yoo, Yun Joo; Sun, Lei; Poirier, Julia G.; Paterson, Andrew D.

    2016-01-01

    ABSTRACT By jointly analyzing multiple variants within a gene, instead of one at a time, gene‐based multiple regression can improve power, robustness, and interpretation in genetic association analysis. We investigate multiple linear combination (MLC) test statistics for analysis of common variants under realistic trait models with linkage disequilibrium (LD) based on HapMap Asian haplotypes. MLC is a directional test that exploits LD structure in a gene to construct clusters of closely correlated variants recoded such that the majority of pairwise correlations are positive. It combines variant effects within the same cluster linearly, and aggregates cluster‐specific effects in a quadratic sum of squares and cross‐products, producing a test statistic with reduced degrees of freedom (df) equal to the number of clusters. By simulation studies of 1000 genes from across the genome, we demonstrate that MLC is a well‐powered and robust choice among existing methods across a broad range of gene structures. Compared to minimum P‐value, variance‐component, and principal‐component methods, the mean power of MLC is never much lower than that of other methods, and can be higher, particularly with multiple causal variants. Moreover, the variation in gene‐specific MLC test size and power across 1000 genes is less than that of other methods, suggesting it is a complementary approach for discovery in genome‐wide analysis. The cluster construction of the MLC test statistics helps reveal within‐gene LD structure, allowing interpretation of clustered variants as haplotypic effects, while multiple regression helps to distinguish direct and indirect associations. PMID:27885705

  20. Drop-Weight Impact Test on U-Shape Concrete Specimens with Statistical and Regression Analyses

    Directory of Open Access Journals (Sweden)

    Xue-Chao Zhu

    2015-09-01

    Full Text Available According to the principle and method of drop-weight impact test, the impact resistance of concrete was measured using self-designed U-shape specimens and a newly designed drop-weight impact test apparatus. A series of drop-weight impact tests were carried out with four different masses of drop hammers (0.875, 0.8, 0.675 and 0.5 kg. The test results show that the impact resistance results fail to follow a normal distribution. As expected, U-shaped specimens can predetermine the location of the cracks very well. It is also easy to record the cracks propagation during the test. The maximum of coefficient of variation in this study is 31.2%; it is lower than the values obtained from the American Concrete Institute (ACI impact tests in the literature. By regression analysis, the linear relationship between the first-crack and ultimate failure impact resistance is good. It can suggested that a minimum number of specimens is required to reliably measure the properties of the material based on the observed levels of variation.

  1. Neoclassical versus Frontier Production Models ? Testing for the Skewness of Regression Residuals

    DEFF Research Database (Denmark)

    Kuosmanen, T; Fosgerau, Mogens

    2009-01-01

    The empirical literature on production and cost functions is divided into two strands. The neoclassical approach concentrates on model parameters, while the frontier approach decomposes the disturbance term to a symmetric noise term and a positively skewed inefficiency term. We propose a theoreti......The empirical literature on production and cost functions is divided into two strands. The neoclassical approach concentrates on model parameters, while the frontier approach decomposes the disturbance term to a symmetric noise term and a positively skewed inefficiency term. We propose...... a theoretical justification for the skewness of the inefficiency term, arguing that this skewness is the key testable hypothesis of the frontier approach. We propose to test the regression residuals for skewness in order to distinguish the two competing approaches. Our test builds directly upon the asymmetry...

  2. Modeling type 1 and type 2 diabetes mellitus incidence in youth: an application of Bayesian hierarchical regression for sparse small area data.

    Science.gov (United States)

    Song, Hae-Ryoung; Lawson, Andrew; D'Agostino, Ralph B; Liese, Angela D

    2011-03-01

    Sparse count data violate assumptions of traditional Poisson models due to the excessive amount of zeros, and modeling sparse data becomes challenging. However, since aggregation to reduce sparseness may result in biased estimates of risk, solutions need to be found at the level of disaggregated data. We investigated different statistical approaches within a Bayesian hierarchical framework for modeling sparse data without aggregation of data. We compared our proposed models with the traditional Poisson model and the zero-inflated model based on simulated data. We applied statistical models to type 1 and type 2 diabetes in youth 10-19 years known as rare diseases, and compared models using the inference results and various model diagnostic tools. We showed that one of the models we proposed, a sparse Poisson convolution model, performed better than other models in the simulation and application based on the deviance information criterion (DIC) and the mean squared prediction error.

  3. Testing for constant nonparametric effects in general semiparametric regression models with interactions

    KAUST Repository

    Wei, Jiawei

    2011-07-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work was originally motivated by a unique testing problem in genetic epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model but with an additional term reminiscent of the Tukey one-degree-of-freedom formulation, and their interest was in testing for main effects of the genetic variables, while gaining statistical power by allowing for a possible interaction between genes and the environment. Later work (Maity, et al., 2009) involved the possibility of modeling the environmental variable nonparametrically, but they focused on whether there was a parametric main effect for the genetic variables. In this paper, we consider the complementary problem, where the interest is in testing for the main effect of the nonparametrically modeled environmental variable. We derive a generalized likelihood ratio test for this hypothesis, show how to implement it, and provide evidence that our method can improve statistical power when compared to standard partially linear models with main effects only. We use the method for the primary purpose of analyzing data from a case-control study of colorectal adenoma.

  4. Testing for Constant Nonparametric Effects in General Semiparametric Regression Models with Interactions.

    Science.gov (United States)

    Wei, Jiawei; Carroll, Raymond J; Maity, Arnab

    2011-07-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work was originally motivated by a unique testing problem in genetic epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model but with an additional term reminiscent of the Tukey one-degree-of-freedom formulation, and their interest was in testing for main effects of the genetic variables, while gaining statistical power by allowing for a possible interaction between genes and the environment. Later work (Maity, et al., 2009) involved the possibility of modeling the environmental variable nonparametrically, but they focused on whether there was a parametric main effect for the genetic variables. In this paper, we consider the complementary problem, where the interest is in testing for the main effect of the nonparametrically modeled environmental variable. We derive a generalized likelihood ratio test for this hypothesis, show how to implement it, and provide evidence that our method can improve statistical power when compared to standard partially linear models with main effects only. We use the method for the primary purpose of analyzing data from a case-control study of colorectal adenoma.

  5. Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test.

    Science.gov (United States)

    Zhao, Ni; Chen, Jun; Carroll, Ian M; Ringel-Kulka, Tamar; Epstein, Michael P; Zhou, Hua; Zhou, Jin J; Ringel, Yehuda; Li, Hongzhe; Wu, Michael C

    2015-05-01

    High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Distance-based analysis is a popular strategy for evaluating the overall association between microbiome diversity and outcome, wherein the phylogenetic distance between individuals' microbiome profiles is computed and tested for association via permutation. Despite their practical popularity, distance-based approaches suffer from important challenges, especially in selecting the best distance and extending the methods to alternative outcomes, such as survival outcomes. We propose the microbiome regression-based kernel association test (MiRKAT), which directly regresses the outcome on the microbiome profiles via the semi-parametric kernel machine regression framework. MiRKAT allows for easy covariate adjustment and extension to alternative outcomes while non-parametrically modeling the microbiome through a kernel that incorporates phylogenetic distance. It uses a variance-component score statistic to test for the association with analytical p value calculation. The model also allows simultaneous examination of multiple distances, alleviating the problem of choosing the best distance. Our simulations demonstrated that MiRKAT provides correctly controlled type I error and adequate power in detecting overall association. "Optimal" MiRKAT, which considers multiple candidate distances, is robust in that it suffers from little power loss in comparison to when the best distance is used and can achieve tremendous power gain in comparison to when a poor distance is chosen. Finally, we applied MiRKAT to real microbiome datasets to show that microbial communities are associated with smoking and with fecal protease levels after confounders are controlled for.

  6. Genetic parameters for tunisian holsteins using a test-day random regression model.

    Science.gov (United States)

    Hammami, H; Rekik, B; Soyeurt, H; Ben Gara, A; Gengler, N

    2008-05-01

    Genetic parameters of milk, fat, and protein yields were estimated in the first 3 lactations for registered Tunisian Holsteins. Data included 140,187; 97,404; and 62,221 test-day production records collected on 22,538; 15,257; and 9,722 first-, second-, and third-parity cows, respectively. Records were of cows calving from 1992 to 2004 in 96 herds. (Co)variance components were estimated by Bayesian methods and a 3-trait-3-lactation random regression model. Gibbs sampling was used to obtain posterior distributions. The model included herd x test date, age x season of calving x stage of lactation [classes of 25 days in milk (DIM)], production sector x stage of lactation (classes of 5 DIM) as fixed effects, and random regression coefficients for additive genetic, permanent environmental, and herd-year of calving effects, which were defined as modified constant, linear, and quadratic Legendre coefficients. Heritability estimates for 305-d milk, fat and protein yields were moderate (0.12 to 0.18) and in the same range of parameters estimated in management systems with low to medium production levels. Heritabilities of test-day milk and protein yields for selected DIM were higher in the middle than at the beginning or the end of lactation. Inversely, heritabilities of fat yield were high at the peripheries of lactation. Genetic correlations among 305-d yield traits ranged from 0.50 to 0.86. The largest genetic correlation was observed between the first and second lactation, potentially due to the limited expression of genetic potential of superior cows in later lactations. Results suggested a lack of adaptation under the local management and climatic conditions. Results should be useful to implement a BLUP evaluation for the Tunisian cow population; however, results also indicated that further research focused on data quality might be needed.

  7. Construction Et Etude De Tests En Regression. 1. Correction Du Rapport De Vraisemblance Par Approximation De Laplace En Regression Non-lineaire. 2. Test D'adequation En Regression Isotonique A Partir D'une Asymptotique Des Fluctuations De La Distance

    CERN Document Server

    Tocquet, A S

    1998-01-01

    Construction Et Etude De Tests En Regression. 1. Correction Du Rapport De Vraisemblance Par Approximation De Laplace En Regression Non-lineaire. 2. Test D'adequation En Regression Isotonique A Partir D'une Asymptotique Des Fluctuations De La Distance

  8. Tests of Simple Slopes in Multiple Regression Models with an Interaction: Comparison of Four Approaches.

    Science.gov (United States)

    Liu, Yu; West, Stephen G; Levy, Roy; Aiken, Leona S

    2017-01-01

    In multiple regression researchers often follow up significant tests of the interaction between continuous predictors X and Z with tests of the simple slope of Y on X at different sample-estimated values of the moderator Z (e.g., ±1 SD from the mean of Z). We show analytically that when X and Z are randomly sampled from the population, the variance expression of the simple slope at sample-estimated values of Z differs from the traditional variance expression obtained when the values of X and Z are fixed. A simulation study using randomly sampled predictors compared four approaches: (a) the Aiken and West ( 1991 ) test of simple slopes at fixed population values of Z, (b) the Aiken and West test at sample-estimated values of Z, (c) a 95% percentile bootstrap confidence interval approach, and (d) a fully Bayesian approach with diffuse priors. The results showed that approach (b) led to inflated Type 1 error rates and 95% confidence intervals with inadequate coverage rates, whereas other approaches maintained acceptable Type 1 error rates and adequate coverage of confidence intervals. Approach (c) had asymmetric rejection rates at small sample sizes. We used an empirical data set to illustrate these approaches.

  9. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  10. Testing the water-energy theory on American palms (Arecaceae) using geographically weighted regression.

    Science.gov (United States)

    Eiserhardt, Wolf L; Bjorholm, Stine; Svenning, Jens-Christian; Rangel, Thiago F; Balslev, Henrik

    2011-01-01

    Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness patterns. A corollary hypothesis of water-energy dynamics theory is that the influence of water decreases and the influence of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset was divided into northern and southern hemispheric portions to test whether predictor shifts are more pronounced in the less oceanic northern hemisphere. American palms (Arecaceae, n = 547 spp.), whose species richness and distributions are known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in agreement with water-energy dynamics theory were found, but the results did not differ qualitatively between hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables were identified as important methodological challenges. We overcame these problems by using simultaneous autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are related to gradual latitudinal changes in ambient energy (related to solar flux input) rather than to abrupt transitions at specific latitudes, such as the occurrence of frost.

  11. Testing the water-energy theory on American palms (Arecaceae using geographically weighted regression.

    Directory of Open Access Journals (Sweden)

    Wolf L Eiserhardt

    Full Text Available Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness patterns. A corollary hypothesis of water-energy dynamics theory is that the influence of water decreases and the influence of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset was divided into northern and southern hemispheric portions to test whether predictor shifts are more pronounced in the less oceanic northern hemisphere. American palms (Arecaceae, n = 547 spp., whose species richness and distributions are known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in agreement with water-energy dynamics theory were found, but the results did not differ qualitatively between hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables were identified as important methodological challenges. We overcame these problems by using simultaneous autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are related to gradual latitudinal changes in ambient energy (related to solar flux input rather than to abrupt transitions at specific latitudes, such as the occurrence of frost.

  12. Genetic analysis of somatic cell score in Norwegian cattle using random regression test-day models.

    Science.gov (United States)

    Odegård, J; Jensen, J; Klemetsdal, G; Madsen, P; Heringstad, B

    2003-12-01

    The dataset used in this analysis contained a total of 341,736 test-day observations of somatic cell scores from 77,110 primiparous daughters of 1965 Norwegian Cattle sires. Initial analyses, using simple random regression models without genetic effects, indicated that use of homogeneous residual variance was appropriate. Further analyses were carried out by use of a repeatability model and 12 random regression sire models. Legendre polynomials of varying order were used to model both permanent environmental and sire effects, as did the Wilmink function, the Lidauer-Mäntysaari function, and the Ali-Schaeffer function. For all these models, heritability estimates were lowest at the beginning (0.05 to 0.07) and higher at the end (0.09 to 0.12) of lactation. Genetic correlations between somatic cell scores early and late in lactation were moderate to high (0.38 to 0.71), whereas genetic correlations for adjacent DIM were near unity. Models were compared based on likelihood ratio tests, Bayesian information criterion, Akaike information criterion, residual variance, and predictive ability. Based on prediction of randomly excluded observations, models with 4 coefficients for permanent environmental effect were preferred over simpler models. More highly parameterized models did not substantially increase predictive ability. Evaluation of the different model selection criteria indicated that a reduced order of fit for sire effects was desireable. Models with zeroth- or first-order of fit for sire effects and higher order of fit for permanent environmental effects probably underestimated sire variance. The chosen model had Legendre polynomials with 3 coefficients for sire, and 4 coefficients for permanent environmental effects. For this model, trajectories of sire variance and heritability were similar assuming either homogeneous or heterogeneous residual variance structure.

  13. Modelling QTL effect on BTA06 using random regression test day models.

    Science.gov (United States)

    Suchocki, T; Szyda, J; Zhang, Q

    2013-02-01

    In statistical models, a quantitative trait locus (QTL) effect has been incorporated either as a fixed or as a random term, but, up to now, it has been mainly considered as a time-independent variable. However, for traits recorded repeatedly, it is very interesting to investigate the variation of QTL over time. The major goal of this study was to estimate the position and effect of QTL for milk, fat, protein yields and for somatic cell score based on test day records, while testing whether the effects are constant or variable throughout lactation. The analysed data consisted of 23 paternal half-sib families (716 daughters of 23 sires) of Chinese Holstein-Friesian cattle genotyped at 14 microsatellites located in the area of the casein loci on BTA6. A sequence of three models was used: (i) a lactation model, (ii) a random regression model with a QTL constant in time and (iii) a random regression model with a QTL variable in time. The results showed that, for each production trait, at least one significant QTL exists. For milk and protein yields, the QTL effect was variable in time, while for fat yield, each of the three models resulted in a significant QTL effect. When a QTL is incorporated into a model as a constant over time, its effect is averaged over lactation stages and may, thereby, be difficult or even impossible to be detected. Our results showed that, in such a situation, only a longitudinal model is able to identify loci significantly influencing trait variation.

  14. Small-Sample Adjustments for Tests of Moderators and Model Fit in Robust Variance Estimation in Meta-Regression

    Science.gov (United States)

    Tipton, Elizabeth; Pustejovsky, James E.

    2015-01-01

    Randomized experiments are commonly used to evaluate the effectiveness of educational interventions. The goal of the present investigation is to develop small-sample corrections for multiple contrast hypothesis tests (i.e., F-tests) such as the omnibus test of meta-regression fit or a test for equality of three or more levels of a categorical…

  15. A semiparametric Wald statistic for testing logistic regression models based on case-control data

    Institute of Scientific and Technical Information of China (English)

    WAN ShuWen

    2008-01-01

    We propose a semiparametric Wald statistic to test the validity of logistic regression models based on case-control data.The test statistic is constructed using a semiparametric ROC curve estimator and a nonparametric ROC curve estimator.The statistic has an asymptotic chi-squared distribution and is an alternative to the Kolmogorov-Smirnov-type statistic proposed by Qin and Zhang in 1997,the chi-squared-type statistic proposed by Zhang in 1999 and the information matrix test statistic proposed by Zhang in 2001.The statistic is easy to compute in the sense that it requires none of the following methods:using a bootstrap method to find its critical values,partitioning the sample data or inverting a high-dimensional matrix.We present some results on simulation and on analysis of two real examples.Moreover,we discuss how to extend our statistic to a family of statistics and how to construct its Kolmogorov-Smirnov counterpart.

  16. Testing Environmental Kuznets Curve in the Selected Transition Economies with Panel Smooth Transition Regression Analysis

    Directory of Open Access Journals (Sweden)

    Mahmut Zortuk

    2016-08-01

    Full Text Available The Environmental Kuznets Curve (EKC introduces an inverted U-shaped relationship between environmental pollution and economic development. The inverted U-shaped curve is seen as complete pattern for developed economies. However, our study tests the EKC for developing transition economies of European Union, therefore, our results could make a significant contribution to the literature. In this paper, the relationship between carbon dioxide (CO2 emissions, gross domestic product (GDP, energy use and urban population is investigated in the Transition Economies (Bulgaria, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia. Environmental Kuznets Curve is tested by panel smooth transition regression for these economies for 1993 – 2010 periods. As a result of study, the null hypothesis of linearity was rejected and no-remaining nonlinearity test showed that there is a smooth transition exists between two regimes (below $5176 GDP per capita is first one and above $5176 GDP per capita is second one in the related period for these economies.

  17. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    Science.gov (United States)

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  18. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    Science.gov (United States)

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  19. Advancing the Parameter-elevation Regressions on Independent Slopes Model (PRISM) to Accommodate Atmospheric River Influences Using a Hierarchical Estimation Structure

    Science.gov (United States)

    Hsu, C.; Cifelli, R.; Zamora, R. J.; Schneider, T.

    2014-12-01

    The PRISM monthly climatology has been widely used by various agencies for diverse purposes. In the River Forecast Centers (RFCs), the PRISM monthly climatology is used to support tasks such as QPE, or quality control of point precipitation observation, and fine tune QPFs. Validation studies by forecasters and researchers have shown that interpolation involving PRISM climatology can effectually reduce the estimation bias for the locations where moderate or little orographic phenomena occur. However, many studies have pointed out limitations in PRISM monthly climatology. These limitations are especially apparent in storm events with fast-moving wet air masses or with storm tracks that are different from climatology. In order to upgrade PRISM climatology so it possesses the capability to characterize the climatology of storm events, it is critical to integrate large-scale atmospheric conditions with the original PRISM predictor variables and to simulate them at a temporal resolution higher than monthly. To this end, a simple, flexible, and powerful framework for precipitation estimation modeling that can be applied to very large data sets is thus developed. In this project, a decision tree based estimation structure was developed to perform the aforementioned variable integration work. Three Atmospheric River events (ARs) were selected to explore the hierarchical relationships among these variables and how these relationships shape the event-based precipitation distribution pattern across California. Several atmospheric variables, including vertically Integrated Vapor Transport (IVT), temperature, zonal wind (u), meridional wind (v), and omega (ω), were added to enhance the sophistication of the tree-based structure in estimating precipitation. To develop a direction-based climatology, the directions the ARs moving over the Pacific Ocean were also calculated and parameterized within the tree estimation structure. The results show that the involvement of the

  20. Testing Cold Dark Matter with the hierarchical buildup of stellar light

    CERN Document Server

    Balogh, Michael L; Bower, Richard G; Eke, Vincent R

    2008-01-01

    (Abridged) We demonstrate that the tenet of hierarchical structure growth leads directly to a robust, falsifiable prediction for the correlation between stellar fraction (fstar) and total system mass (M500) of galaxy groups and clusters. This prediction is relatively insensitive to the details of baryonic physics or cosmological parameters. In particular, if the fstar-M500 relation is fixed and does not evolve with redshift, CDM models predict the logarithmic slope of this relation to be b>-0.3. This constraint can be weakened if the fstar-M500 relation evolves strongly, but this implies more stars must be formed in situ in groups at low redshift. Conservatively requiring that at least half the stars in groups were formed by z=1, the constraint from evolution models is b>-0.35. Since the most massive clusters (M500=1E15 Msun) are observed to have fstar=0.01, this means that groups with M500=5E13 Msun must have fstar0.04 in groups, leading to b=-0.64. If confirmed, this would rule out hierarchical structure fo...

  1. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    Science.gov (United States)

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P valuelinear regression P value). The statistical power of CAT test decreased, while the result of linear regression analysis remained the same when population size was reduced by 100 times and AMI incidence rate remained unchanged. The two statistical methods have their advantages and disadvantages. It is necessary to choose statistical method according the fitting degree of data, or comprehensively analyze the results of two methods.

  2. An Approximation of a Hierarchical Logistic Regression Model Used To Establish the Predictive Validity of Scores on a Nursing Licensure Exam.

    Science.gov (United States)

    Schmidt, Amy Elizabeth

    2000-01-01

    Conducted a validity study to examine the degree to which scores on the newly developed Diagnostic Readiness Test (DRT) and National League for Nursing Pre-Admission Test scores could predict success or failure on the National Council Licensure Examination for Registered Nurses (NCLEX-RN). Results for 5,698 students indicate that the DRT is a…

  3. Near infrared spectrometric technique for testing fruit quality: optimisation of regression models using genetic algorithms

    Science.gov (United States)

    Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.

    2016-02-01

    Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.

  4. Investigation of the degree of organisational influence on patient experience scores in acute medical admission units in all acute hospitals in England using multilevel hierarchical regression modelling

    Science.gov (United States)

    Sullivan, Paul

    2017-01-01

    Objectives Previous studies found that hospital and specialty have limited influence on patient experience scores, and patient level factors are more important. This could be due to heterogeneity of experience delivery across subunits within organisations. We aimed to determine whether organisation level factors have greater impact if scores for the same subspecialty microsystem are analysed in each hospital. Setting Acute medical admission units in all NHS Acute Trusts in England. Participants We analysed patient experience data from the English Adult Inpatient Survey which is administered to 850 patients annually in each acute NHS Trusts in England. We selected all 8753 patients who returned the survey and who were emergency medical admissions and stayed in their admission unit for 1–2 nights, so as to isolate the experience delivered during the acute admission process. Primary and secondary outcome measures We used multilevel logistic regression to determine the apportioned influence of host organisation and of organisation level factors (size and teaching status), and patient level factors (demographics, presence of long-term conditions and disabilities). We selected ‘being treated with respect and dignity’ and ‘pain control’ as primary outcome parameters. Other Picker Domain question scores were analysed as secondary parameters. Results The proportion of overall variance attributable at organisational level was small; 0.5% (NS) for respect and dignity, 0.4% (NS) for pain control. Long-standing conditions and consequent disabilities were associated with low scores. Other item scores also showed that most influence was from patient level factors. Conclusions When a single microsystem, the acute medical admission process, is isolated, variance in experience scores is mainly explainable by patient level factors with limited organisational level influence. This has implications for the use of generic patient experience surveys for comparison between

  5. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  6. Hierarchical sulfur electrodes as a testing platform for understanding the high-loading capability of Li-S batteries

    Science.gov (United States)

    Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam

    2016-12-01

    Lithium-sulfur (Li-S) batteries are considered as an attractive electrochemical energy storage system due to the high theoretical capacity of sulfur (1,675 mA h g-1). However, high-loading sulfur cathodes would need to be employed for the Li-S cells to be practical, but the resulting poor cell cyclability and severe electrode degradation hamper their development. Here, we present a hierarchical sulfur cathode as a testing platform for understanding the high-loading capability of Li-S batteries. The hierarchical cathode presents good electrochemical utilization of above 70%, stable cyclability for 500-1,000 cycles, and high sulfur loadings of 4.2-10.0 mg cm-2. The exploration of the activation and the polysulfide-retention processes of the high-loading cathodes illustrates that the electrochemical stability mainly results from the stabilization of dissolved polysulfides within the cathode region as the electrochemically active catholyte. Therefore, the utilization of stabilized polysulfide migration might be a meaningful opportunity for designing high-loading cathodes and further improving their electrochemical stability and long-term cyclability.

  7. Developing and testing a global-scale regression model to quantify mean annual streamflow

    Science.gov (United States)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.

    2017-01-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.

  8. Summary of Documentation for DYNA3D-ParaDyn's Software Quality Assurance Regression Test Problems

    Energy Technology Data Exchange (ETDEWEB)

    Zywicz, Edward [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-18

    The Software Quality Assurance (SQA) regression test suite for DYNA3D (Zywicz and Lin, 2015) and ParaDyn (DeGroot, et al., 2015) currently contains approximately 600 problems divided into 21 suites, and is a required component of ParaDyn’s SQA plan (Ferencz and Oliver, 2013). The regression suite allows developers to ensure that software modifications do not unintentionally alter the code response. The entire regression suite is run prior to permanently incorporating any software modification or addition. When code modifications alter test problem results, the specific cause must be determined and fully understood before the software changes and revised test answers can be incorporated. The regression suite is executed on LLNL platforms using a Python script and an associated data file. The user specifies the DYNA3D or ParaDyn executable, number of processors to use, test problems to run, and other options to the script. The data file details how each problem and its answer extraction scripts are executed. For each problem in the regression suite there exists an input deck, an eight-processor partition file, an answer file, and various extraction scripts. These scripts assemble a temporary answer file in a specific format from the simulation results. The temporary and stored answer files are compared to a specific level of numerical precision, and when differences are detected the test problem is flagged as failed. Presently, numerical results are stored and compared to 16 digits. At this accuracy level different processor types, compilers, number of partitions, etc. impact the results to various degrees. Thus, for consistency purposes the regression suite is run with ParaDyn using 8 processors on machines with a specific processor type (currently the Intel Xeon E5530 processor). For non-parallel regression problems, i.e., the two XFEM problems, DYNA3D is used instead. When environments or platforms change, executables using the current source code and the new

  9. Gene-based multiple regression association testing for combined examination of common and low frequency variants in quantitative trait analysis

    Directory of Open Access Journals (Sweden)

    Yun Joo eYoo

    2013-11-01

    Full Text Available Multi-marker methods for genetic association analysis can be performed for common and low frequency SNPs to improve power. Regression models are an intuitive way to formulate multi-marker tests. In previous studies we evaluated regression-based multi-marker tests for common SNPs, and through identification of bins consisting of correlated SNPs, developed a multi-bin linear combination (MLC test that is a compromise between a 1df linear combination test and a multi-df global test. Bins of SNPs in high linkage disequilibrium (LD are identified, and a linear combination of individual SNP statistics is constructed within each bin. Then association with the phenotype is represented by an overall statistic with df as many or few as the number of bins. In this report we evaluate multi-marker tests for SNPs that occur at low frequencies. There are many linear and quadratic multi-marker tests that are suitable for common or low frequency variant analysis. We compared the performance of the MLC tests with various linear and quadratic statistics in joint or marginal regressions. For these comparisons, we performed a simulation study of genotypes and quantitative traits for 85 genes with many low frequency SNPs based on HapMap Phase III. We compared the tests using 1 set of all SNPs in a gene, 2 set of common SNPs in a gene (MAF≥5%, 3 set of low frequency SNPs (1%≤MAF

  10. From Snakes to Stars, the Statistics of Collapsed Objects - II. Testing a Generic Scaling Ansatz for Hierarchical Clustering

    CERN Document Server

    Munshi, D; Melott, A L; Munshi, Dipak; Coles, Peter; Melott, Adrian L.

    1999-01-01

    We develop a diagrammatic technique to represent the multi-point cumulative probability density function (CPDF) of mass fluctuations in terms of the statistical properties of individual collapsed objects and relate this to other statistical descriptors such as cumulants, cumulant correlators and factorial moments. We use this approach to establish key scaling relations describing various measurable statistical quantities if clustering follows a simple general scaling ansatz, as expected in hierarchical models. We test these detailed predictions against high-resolution numerical simulations. We show that, when appropriate variables are used, the count probability distribution function (CPDF) and void probability distribution function (VPF) shows clear scaling properties in the non-linear regime. Generalising the results to the two-point count probability distribution function (2CPDF), and the bivariate void probability function (2VPF) we find good match with numerical simulations. We explore the behaviour of t...

  11. Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests

    Science.gov (United States)

    Rudner, Lawrence

    2016-01-01

    In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows…

  12. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    Science.gov (United States)

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  13. Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests

    Science.gov (United States)

    Rudner, Lawrence

    2016-01-01

    In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows…

  14. Summary receiver operating characteristics (SROC) and hierarchical SROC models for analysis of diagnostic test evaluations of antibody ELISAs for paratuberculosis.

    Science.gov (United States)

    Toft, Nils; Nielsen, Søren S

    2009-11-15

    Critical, systematic reviews of available diagnostic test evaluations are a meticulous approach to synthesize evidence about a diagnostic test. However, often the review finds that data quality is poor due to deficiencies in design and reporting of the test evaluations and formal statistical comparisons are discouraged. Even when only simple summary measures are appropriate, the strong correlation between sensitivity and specificity and their dependence on differences in diagnostic threshold across studies, creates the need for tools to summarise properties of the diagnostic test under investigation. This study presents summary receiver operating characteristics (SROC) analysis as a means to synthesize information from diagnostic test evaluation studies. Using data from a review of diagnostic tests for ante mortem diagnosis of paratuberculosis as an illustration, SROC and hierarchical SROC (HSROC) analysis were used to estimate overall diagnostic accuracies of antibody ELISAs for bovine paratuberculosis while accounting for covariates: the target condition (infectious or infected) used in the test evaluation (one for the evaluation of Se and one for Sp); and the type of test (serum vs. milk). The methods gave comparable results (regarding the estimated diagnostic log odds ratio), considering the small sample size and the quality of data. The SROC analysis found a difference in the performance of tests when the target condition for evaluation of Se was infected rather than infectious, suggesting that ELISAs are not suitable for detecting infected cattle. However, the SROC model does not take differences in sample size between study units into account, whereas the HSROC allows for both between and within study variation. Considering the small sample size, more credibility should be given to the results of the HSROC. For both methods the area under the (H)SROC curve was calculated and results were comparable. The conclusion is that while the SROC is simpler and easier

  15. The Effect of Multicollinearity and the Violation of the Assumption of Normality on the Testing of Hypotheses in Regression Analysis.

    Science.gov (United States)

    Vasu, Ellen S.; Elmore, Patricia B.

    The effects of the violation of the assumption of normality coupled with the condition of multicollinearity upon the outcome of testing the hypothesis Beta equals zero in the two-predictor regression equation is investigated. A monte carlo approach was utilized in which three differenct distributions were sampled for two sample sizes over…

  16. DEVELOPMENT OF A COMPUTER PROGRAM TO SUPPORT AN EFFICIENT NON-REGRESSION TEST OF A THERMAL-HYDRAULIC SYSTEM CODE

    Directory of Open Access Journals (Sweden)

    JUN YEOB LEE

    2014-10-01

    Full Text Available During the development process of a thermal-hydraulic system code, a non-regression test (NRT must be performed repeatedly in order to prevent software regression. The NRT process, however, is time-consuming and labor-intensive. Thus, automation of this process is an ideal solution. In this study, we have developed a program to support an efficient NRT for the SPACE code and demonstrated its usability. This results in a high degree of efficiency for code development. The program was developed using the Visual Basic for Applications and designed so that it can be easily customized for the NRT of other computer codes.

  17. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  18. Testing the Hierarchical Structure of the Children's Depression Inventory: A Multigroup Analysis

    Science.gov (United States)

    Garcia, Luis F.; Aluja, Anton; del Barrio, Victoria

    2008-01-01

    Using exploratory and confirmatory factor analyses, the aims were (a) to obtain, describe, and compare different solutions of three, five, and six first-order factors raised in the previous literature about the Children's Depression Inventory (CDI); (b) analyze the number and nature of the second-order factors; (c) test which model best reproduces…

  19. A hierarchical framework for modeling speed and accuracy on test items

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2005-01-01

    Current modeling of response times on test items has been influenced by the experimental paradigm of reaction-time research in psychology. For instance, some of the models have a parameter structure that was chosen to represent a speed-accuracy tradeoff, while others equate speed directly with respo

  20. A hierarchical framework for modeling speed and accuracy on test items

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2007-01-01

    Current modeling of response times on test items has been strongly influenced by the paradigm of experimental reaction-time research in psychology. For instance, some of the models have a parameter structure that was chosen to represent a speed-accuracy tradeoff, while others equate speed directly w

  1. Comparison of random regression and repeatability models to predict breeding values from test-day records of Norwegian goats.

    Science.gov (United States)

    Andonov, S; Ødegård, J; Svendsen, M; Ådnøy, T; Vegara, M; Klemetsdal, G

    2013-03-01

    One aim of the research was to challenge a previously selected repeatability model with 2 other repeatability models. The main aim, however, was to evaluate random regression models based on the repeatability model with lowest mean-squared error of prediction, using Legendre polynomials up to third order for both animal additive genetic and permanent environmental effects. The random regression and repeatability models were compared for model fit (using likelihood-ratio testing, Akaike information criterion, and the Bayesian information criterion) and the models' mean-squared errors of prediction, and by cross-validation. Cross-validation was carried out by correlating excluded observations in one data set with the animals' breeding values as predicted from the pedigree only in the remaining data, and vice versa (splitting proportion: 0.492). The data was from primiparous goats in 2 closely tied buck circles (17 flocks) in Norway, with 11,438 records for daily milk yield and 5,686 to 5,896 records for content traits (fat, protein, and lactose percentages). A simple pattern was revealed; for daily milk yield with about 5 records per animal in first lactation, a second-order random regression model should be chosen, whereas for content traits that had only about 3 observations per goat, a first-order polynomial was preferred. The likelihood-ratio test, Akaike information criterion, and mean-squared error of prediction favored more complex models, although the results from the latter and the Bayesian information criterion were in the direction of those obtained with cross-validation. As the correlation from cross-validation was largest with random regression, genetic merit was predicted more accurate with random regression models than with the repeatability model.

  2. Estimation of Genetic Parameters for First Lactation Monthly Test-day Milk Yields using Random Regression Test Day Model in Karan Fries Cattle

    Science.gov (United States)

    Singh, Ajay; Singh, Avtar; Singh, Manvendra; Prakash, Ved; Ambhore, G. S.; Sahoo, S. K.; Dash, Soumya

    2016-01-01

    A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM) considering different order of Legendre polynomial for the additive genetic effect (4th order) and the permanent environmental effect (5th order). Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11) to 0.99 (TD-4 and TD-5). The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields. PMID:26954137

  3. DISCREPANCIES IN THE REGRESSION MODELLING OF RECRYSTALLIZATION RATE AS USING THE DATA FROM PHYSICAL SIMULATION TESTS

    Institute of Scientific and Technical Information of China (English)

    L.P. Karjalainen; M.C. Somani; S.F. Medina

    2004-01-01

    The analysis of numerous experimental equations published in the literature reveals a wide scatter in the predictions for the static recrystallization kinetics of steels. The powers of the deformation variables, strain and strain rate, similarly as the power of the grain size vary in these equations. These differences are highlighted and the typical values are compared between torsion and compression tests. Potential errors in physical simulation testing are discussed.

  4. Spatial regression test for ensuring temperature data quality in southern Spain

    Science.gov (United States)

    Estévez, J.; Gavilán, P.; García-Marín, A. P.

    2016-10-01

    Quality assurance of meteorological data is crucial for ensuring the reliability of applications and models that use such data as input variables, especially in the field of environmental sciences. Spatial validation of meteorological data is based on the application of quality control procedures using data from neighbouring stations to assess the validity of data from a candidate station (the station of interest). These kinds of tests, which are referred to in the literature as spatial consistency tests, take data from neighbouring stations in order to estimate the corresponding measurement at the candidate station. These estimations can be made by weighting values according to the distance between the stations or to the coefficient of correlation, among other methods. The test applied in this study relies on statistical decision-making and uses a weighting based on the standard error of the estimate. This paper summarizes the results of the application of this test to maximum, minimum and mean temperature data from the Agroclimatic Information Network of Andalusia (southern Spain). This quality control procedure includes a decision based on a factor f, the fraction of potential outliers for each station across the region. Using GIS techniques, the geographic distribution of the errors detected has been also analysed. Finally, the performance of the test was assessed by evaluating its effectiveness in detecting known errors.

  5. Test-particle acceleration in a hierarchical three-dimensional turbulence model

    Energy Technology Data Exchange (ETDEWEB)

    Dalena, S.; Rappazzo, A. F.; Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Greco, A., E-mail: serena.dalena@fis.unical.it [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy)

    2014-03-10

    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.

  6. Relationship between Academic Stress and Suicidal Ideation: Testing for Depression as a Mediator Using Multiple Regression

    Science.gov (United States)

    Ang, Rebecca P.; Huan, Vivien S.

    2006-01-01

    Relations among academic stress, depression, and suicidal ideation were examined in 1,108 Asian adolescents 12-18 years old from a secondary school in Singapore. Using Baron and Kenny's [J Pers Soc Psychol 51:1173-1192, 1986] framework, this study tested the prediction that adolescent depression mediated the relationship between academic stress…

  7. Relationship between Academic Stress and Suicidal Ideation: Testing for Depression as a Mediator Using Multiple Regression

    Science.gov (United States)

    Ang, Rebecca P.; Huan, Vivien S.

    2006-01-01

    Relations among academic stress, depression, and suicidal ideation were examined in 1,108 Asian adolescents 12-18 years old from a secondary school in Singapore. Using Baron and Kenny's [J Pers Soc Psychol 51:1173-1192, 1986] framework, this study tested the prediction that adolescent depression mediated the relationship between academic stress…

  8. Comparison of multianalyte proficiency test results by sum of ranking differences, principal component analysis, and hierarchical cluster analysis.

    Science.gov (United States)

    Škrbić, Biljana; Héberger, Károly; Durišić-Mladenović, Nataša

    2013-10-01

    Sum of ranking differences (SRD) was applied for comparing multianalyte results obtained by several analytical methods used in one or in different laboratories, i.e., for ranking the overall performances of the methods (or laboratories) in simultaneous determination of the same set of analytes. The data sets for testing of the SRD applicability contained the results reported during one of the proficiency tests (PTs) organized by EU Reference Laboratory for Polycyclic Aromatic Hydrocarbons (EU-RL-PAH). In this way, the SRD was also tested as a discriminant method alternative to existing average performance scores used to compare mutlianalyte PT results. SRD should be used along with the z scores--the most commonly used PT performance statistics. SRD was further developed to handle the same rankings (ties) among laboratories. Two benchmark concentration series were selected as reference: (a) the assigned PAH concentrations (determined precisely beforehand by the EU-RL-PAH) and (b) the averages of all individual PAH concentrations determined by each laboratory. Ranking relative to the assigned values and also to the average (or median) values pointed to the laboratories with the most extreme results, as well as revealed groups of laboratories with similar overall performances. SRD reveals differences between methods or laboratories even if classical test(s) cannot. The ranking was validated using comparison of ranks by random numbers (a randomization test) and using seven folds cross-validation, which highlighted the similarities among the (methods used in) laboratories. Principal component analysis and hierarchical cluster analysis justified the findings based on SRD ranking/grouping. If the PAH-concentrations are row-scaled, (i.e., z scores are analyzed as input for ranking) SRD can still be used for checking the normality of errors. Moreover, cross-validation of SRD on z scores groups the laboratories similarly. The SRD technique is general in nature, i.e., it can

  9. Regressive approach for predicting bearing capacity of bored piles from cone penetration test data

    Directory of Open Access Journals (Sweden)

    Iyad S. Alkroosh

    2015-10-01

    Full Text Available In this study, the least square support vector machine (LSSVM algorithm was applied to predicting the bearing capacity of bored piles embedded in sand and mixed soils. Pile geometry and cone penetration test (CPT results were used as input variables for prediction of pile bearing capacity. The data used were collected from the existing literature and consisted of 50 case records. The application of LSSVM was carried out by dividing the data into three sets: a training set for learning the problem and obtaining a relationship between input variables and pile bearing capacity, and testing and validation sets for evaluation of the predictive and generalization ability of the obtained relationship. The predictions of pile bearing capacity by LSSVM were evaluated by comparing with experimental data and with those by traditional CPT-based methods and the gene expression programming (GEP model. It was found that the LSSVM performs well with coefficient of determination, mean, and standard deviation equivalent to 0.99, 1.03, and 0.08, respectively, for the testing set, and 1, 1.04, and 0.11, respectively, for the validation set. The low values of the calculated mean squared error and mean absolute error indicated that the LSSVM was accurate in predicting the pile bearing capacity. The results of comparison also showed that the proposed algorithm predicted the pile bearing capacity more accurately than the traditional methods including the GEP model.

  10. Price promotions on healthier compared with less healthy foods: a hierarchical regression analysis of the impact on sales and social patterning of responses to promotions in Great Britain12345

    Science.gov (United States)

    Nakamura, Ryota; Suhrcke, Marc; Jebb, Susan A; Pechey, Rachel; Almiron-Roig, Eva; Marteau, Theresa M

    2015-01-01

    Background: There is a growing concern, but limited evidence, that price promotions contribute to a poor diet and the social patterning of diet-related disease. Objective: We examined the following questions: 1) Are less-healthy foods more likely to be promoted than healthier foods? 2) Are consumers more responsive to promotions on less-healthy products? 3) Are there socioeconomic differences in food purchases in response to price promotions? Design: With the use of hierarchical regression, we analyzed data on purchases of 11,323 products within 135 food and beverage categories from 26,986 households in Great Britain during 2010. Major supermarkets operated the same price promotions in all branches. The number of stores that offered price promotions on each product for each week was used to measure the frequency of price promotions. We assessed the healthiness of each product by using a nutrient profiling (NP) model. Results: A total of 6788 products (60%) were in healthier categories and 4535 products (40%) were in less-healthy categories. There was no significant gap in the frequency of promotion by the healthiness of products neither within nor between categories. However, after we controlled for the reference price, price discount rate, and brand-specific effects, the sales uplift arising from price promotions was larger in less-healthy than in healthier categories; a 1-SD point increase in the category mean NP score, implying the category becomes less healthy, was associated with an additional 7.7–percentage point increase in sales (from 27.3% to 35.0%; P sales uplift from promotions was larger for higher–socioeconomic status (SES) groups than for lower ones (34.6% for the high-SES group, 28.1% for the middle-SES group, and 23.1% for the low-SES group). Finally, there was no significant SES gap in the absolute volume of purchases of less-healthy foods made on promotion. Conclusion: Attempts to limit promotions on less-healthy foods could improve the

  11. High Adherence to Iron/Folic Acid Supplementation during Pregnancy Time among Antenatal and Postnatal Care Attendant Mothers in Governmental Health Centers in Akaki Kality Sub City, Addis Ababa, Ethiopia: Hierarchical Negative Binomial Poisson Regression

    Science.gov (United States)

    Gebreamlak, Bisratemariam; Dadi, Abel Fekadu; Atnafu, Azeb

    2017-01-01

    Background Iron deficiency during pregnancy is a risk factor for anemia, preterm delivery, and low birth weight. Iron/Folic Acid supplementation with optimal adherence can effectively prevent anemia in pregnancy. However, studies that address this area of adherence are very limited. Therefore, the current study was conducted to assess the adherence and to identify factors associated with a number of Iron/Folic Acid uptake during pregnancy time among mothers attending antenatal and postnatal care follow up in Akaki kality sub city. Methods Institutional based cross-sectional study was conducted on a sample of 557 pregnant women attending antenatal and postnatal care service. Systematic random sampling was used to select study subjects. The mothers were interviewed and the collected data was cleaned and entered into Epi Info 3.5.1 and analyzed by R version 3.2.0. Hierarchical Negative Binomial Poisson Regression Model was fitted to identify the factors associated with a number of Iron/Folic Acid uptake. Adjusted Incidence rate ratio (IRR) with 95% confidence interval (CI) was computed to assess the strength and significance of the association. Result More than 90% of the mothers were supplemented with at least one Iron/Folic Acid supplement from pill per week during their pregnancy time. Sixty percent of the mothers adhered (took four or more tablets per week) (95%CI, 56%—64.1%). Higher IRR of Iron/Folic Acid supplementation was observed among women: who received health education; which were privately employed; who achieved secondary education; and who believed that Iron/Folic Acid supplements increase blood, whereas mothers who reported a side effect, who were from families with relatively better monthly income, and who took the supplement when sick were more likely to adhere. Conclusion Adherence to Iron/Folic Acid supplement during their pregnancy time among mothers attending antenatal and postnatal care was found to be high. Activities that would address the

  12. Hierarchical photocatalysts.

    Science.gov (United States)

    Li, Xin; Yu, Jiaguo; Jaroniec, Mietek

    2016-05-01

    As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.

  13. TESTING OF CORRELATION AND HETEROSCEDASTICITY IN NONLINEAR REGRESSION MODELS WITH DBL(p,q,1) RANDOM ERRORS

    Institute of Scientific and Technical Information of China (English)

    Liu Yingan; Wei Bocheng

    2008-01-01

    Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (Kantz and Schreiber (1997)). Tsai (1986) introduced a composite test for autocorrelation and heteroscedasticity in linear models with AR(1) errors. Liu (2003) introduced a composite test for correlation and heteroscedasticity in nonlinear models with DBL(p, 0, 1) errors. Therefore, the important problems in regres- sion model are detections of bilinearity, correlation and heteroscedasticity. In this article, the authors discuss more general case of nonlinear models with DBL(p, q, 1) random errors by score test. Several statistics for the test of bilinearity, correlation, and heteroscedas-ticity are obtained, and expressed in simple matrix formulas. The results of regression models with linear errors are extended to those with bilinear errors. The simulation study is carried out to investigate the powers of the test statistics. All results of this article extend and develop results of Tsai (1986), Wei, et al (1995), and Liu, et al (2003).

  14. A Hierarchical Framework for Facial Age Estimation

    Directory of Open Access Journals (Sweden)

    Yuyu Liang

    2014-01-01

    Full Text Available Age estimation is a complex issue of multiclassification or regression. To address the problems of uneven distribution of age database and ignorance of ordinal information, this paper shows a hierarchic age estimation system, comprising age group and specific age estimation. In our system, two novel classifiers, sequence k-nearest neighbor (SKNN and ranking-KNN, are introduced to predict age group and value, respectively. Notably, ranking-KNN utilizes the ordinal information between samples in estimation process rather than regards samples as separate individuals. Tested on FG-NET database, our system achieves 4.97 evaluated by MAE (mean absolute error for age estimation.

  15. Lord-Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing.

    Science.gov (United States)

    Cai, Li

    2015-06-01

    Lord and Wingersky's (Appl Psychol Meas 8:453-461, 1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord-Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord-Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications.

  16. Collaborative Hierarchical Sparse Modeling

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina C

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is done by solving an l_1-regularized linear regression problem, usually called Lasso. In this work we first combine the sparsity-inducing property of the Lasso model, at the individual feature level, with the block-sparsity property of the group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the hierarchical Lasso, which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level but not necessarily at the lower one. Signals then share the same active groups, or classes, but not necessarily the same active set. This is very well suited for applications such as source separation. An efficient optimization procedure, which guarantees convergence to the global opt...

  17. 基于分层回归的中国互联网保险驱动因素实证研究%Empirical Study on the Driving Factors of China’s Internet Insurance Based on Hierarchical Regression Analysis

    Institute of Scientific and Technical Information of China (English)

    汤英汉

    2015-01-01

    By analyzing the features and status quo of China’s internet insurance development, this paper found that the main reason causing the weak growth in the insurance industry is the conflict between people’s increasing needs for insurance and the relatively backward insurance management approaches. Internet insurance is a supplement to traditional insurance to a certain degree. By using the hierarchical regression method, this paper analyzes the insurance premium and its relative data from 2003 to 2013. The result shows that the driving factors of the internet insurance are: tax, population, internet, etc. The study also indicates that internet insurance is not a replacement or a threat to the traditional insurance business, but a new form of it instead. Internet insurance can satisfy people’s various needs for insurance. Finally, the author proposes that internet insurance, as a new insurance business, its development facilitates changes in the thoughts and ideas of the insurance industry as a whole. Internet technology has pushed it forward, especially, in such areas as insurance channels, product and service innovations. Therefore, internet insurance also injects fresh blood to China’s insurance industry.%通过分析我国互联网保险的特点和发展现状,发现快速变化的市场环境引致的社会日益增长的保险需求同相对落后的保险经营管理方式之间的矛盾日益突出,造成当前保险业增长乏力。互联网保险的出现弥补了传统保险的不足,成为保险业新的增长动力。本文运用分层回归分析方法,对我国2003-2013年网销保费及相关数据进行研究,验证了我国互联网保险驱动因素主要取决于税收、人口、互联网等方面,保险业自身因素对互联网保险影响不显著。研究发现,互联网保险的发展不是对传统保险的替代和竞争,而是保险新需求的发现,互联网保险满足多层次的保险需求。提出互联

  18. Accounting for regression-to-the-mean in tests for recent changes in institutional performance: analysis and power.

    Science.gov (United States)

    Jones, Hayley E; Spiegelhalter, David J

    2009-05-30

    Recent changes in individual units are often of interest when monitoring and assessing the performance of healthcare providers. We consider three high profile examples: (a) annual teenage pregnancy rates in English local authorities, (b) quarterly rates of the hospital-acquired infection Clostridium difficile in National Health Service (NHS) Trusts and (c) annual mortality rates following heart surgery in New York State hospitals. Increasingly, government targets call for continual improvements, in each individual provider as well as overall.Owing to the well-known statistical phenomenon of regression-to-the-mean, observed changes between just two measurements are potentially misleading. This problem has received much attention in other areas, but there is a need for guidelines within performance monitoring.In this paper we show theoretically and with worked examples that a simple random effects predictive distribution can be used to 'correct' for the potentially undesirable consequences of regression-to-the-mean on a test for individual change. We discuss connections to the literature in other fields, and build upon this, in particular by examining the effect of the correction on the power to detect genuine changes. It is demonstrated that a gain in average power can be expected, but that this gain is only very slight if the providers are very different from one another, for example due to poor risk adjustment. Further, the power of the corrected test depends on the provider's baseline rate and, although large gains can be expected for some providers, this is at the cost of some power to detect real changes in others.

  19. Variation in the Slope Coefficient of the Fama Regression for Testing Uncovered Interest Rate Parity: Evidence from Fixed and Time-varying Coefficient Approaches

    NARCIS (Netherlands)

    C. de Koning (Camiel); S. Straetmans

    1997-01-01

    textabstractWe investigate the potential presence of time variation in the coefficients of the ''Fama regression'' for Uncovered Interest Rate Parity. We implement coefficient constancy tests, rolling regression techniques, and stochastic coefficient models based on state space modelling. Among six

  20. Variation in the Slope Coefficient of the Fama Regression for Testing Uncovered Interest Rate Parity: Evidence from Fixed and Time-varying Coefficient Approaches

    NARCIS (Netherlands)

    C. de Koning (Camiel); S. Straetmans

    1997-01-01

    textabstractWe investigate the potential presence of time variation in the coefficients of the ''Fama regression'' for Uncovered Interest Rate Parity. We implement coefficient constancy tests, rolling regression techniques, and stochastic coefficient models based on state space modelling. Among six

  1. Quantile regression

    CERN Document Server

    Hao, Lingxin

    2007-01-01

    Quantile Regression, the first book of Hao and Naiman's two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao

  2. Do means-end chains exist? Experimental tests of their hierarchicity, automatic spreading activation, directionality, and self-relevance

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Grunert, Klaus G.

    2004-01-01

    Despite its popularity in consumer research, means-end chain (MEC) theory suffers from problems of unconfirmed validity. Theoretically, MECs can be cast as associative networks with a three-layered structure that should exhibit four properties: hierarchicity, automatic spreading activation...... this material, individualized stimulus sets were generated for use in the second session. In the second session, each participant completed a series of single-presentation lexical decision tasks. Analysis of spreading activation processes under different procedural variations showed that MECs are firmly...

  3. Three Statistical Testing Procedures in Logistic Regression: Their Performance in Differential Item Functioning (DIF) Investigation. Research Report. ETS RR-09-35

    Science.gov (United States)

    Paek, Insu

    2009-01-01

    Three statistical testing procedures well-known in the maximum likelihood approach are the Wald, likelihood ratio (LR), and score tests. Although well-known, the application of these three testing procedures in the logistic regression method to investigate differential item function (DIF) has not been rigorously made yet. Employing a variety of…

  4. Data Quality in Linear Regression Models: Effect of Errors in Test Data and Errors in Training Data on Predictive Accuracy

    Directory of Open Access Journals (Sweden)

    Barbara D. Klein

    1999-01-01

    Full Text Available Although databases used in many organizations have been found to contain errors, little is known about the effect of these errors on predictions made by linear regression models. The paper uses a real-world example, the prediction of the net asset values of mutual funds, to investigate the effect of data quality on linear regression models. The results of two experiments are reported. The first experiment shows that the error rate and magnitude of error in data used in model prediction negatively affect the predictive accuracy of linear regression models. The second experiment shows that the error rate and the magnitude of error in data used to build the model positively affect the predictive accuracy of linear regression models. All findings are statistically significant. The findings have managerial implications for users and builders of linear regression models.

  5. Hierarchical Spectral Analysis Isomorphism Testing Algorithm for Undirected Graph%无向图的层次化谱分析同构判定算法

    Institute of Scientific and Technical Information of China (English)

    谢敏; 杨帆; 曾璇

    2015-01-01

    In this paper, a hierarchical isomorphism testing algorithm based on spectral analysis is proposed for undirected graphs. The proposed algorithm firstly checks the vertices number, edge number and degree sequence of the two graphs. Afterwards, a hierarchical spectral algorithm is employed to further test the isomorphism of the graphs. The proposed algorithm can achieve higher efficiency for graphs of regular grid or fixed degrees compared with the state-of-the-art Nauty algorithm.%针对无向图同构的判定问题, 一种层次化的基于谱分析的同构判定算法. 比较两图的顶点数、边数以及度数序列对图进行预同构判定; 然后对具有唯一 Fiedler 向量的图通过层次化的谱分析算法进行再次同构判定. 与最具代表性的同构判定算法 Nauty 相比, 随着判定图的规模增大, 该算法对于规则网格图和固定度数图具有更高的同构判定效率.

  6. Testing and Validation of a Hierarchical Values-Attitudes Model in the Context of Green Food in China

    DEFF Research Database (Denmark)

    Perrea, Toula; Grunert, Klaus G; Krystallis Krontalis, Athanasios

    2014-01-01

    Purpose – Values-attitudes hierarchical models are quite frequent in the consumer behaviour literature. In attitudinal models specific to food produced in an environmentally friendly way (i.e. “green” food), past research evidence mainly originating in Western cultures posits that the strongest path...... comprising 34 items reflecting the conceptual model was designed. Data collection was focused on six major Chinese cities, as this is where the current changes in eating habits are predominantly taking place. Data were collected by personal interviews conducted by local researchers between January and March...... 2009 through a mall-intercept method. A total number of 479 respondents were recruited, equally distributed among the six cities. Findings – Collectivistic values and environmental attitudes were still found to be strong determinants of Chinese consumers’ attitudes towards green foods; contrary...

  7. Definitions and validation criteria for biomarkers and surrogate endpoints: development and testing of a quantitative hierarchical levels of evidence schema

    DEFF Research Database (Denmark)

    Lassere, Marissa N; Johnson, Kent R; Boers, Maarten

    2007-01-01

    to develop a hierarchical schema that systematically evaluates and ranks the surrogacy status of biomarkers and surrogates; and to obtain feedback from stakeholders. METHODS: After a systematic search of Medline and Embase on biomarkers, surrogate (outcomes, endpoints, markers, indicators), intermediate...... endpoints, and leading indicators, a quantitative surrogate validation schema was developed and subsequently evaluated at a stakeholder workshop. RESULTS: The search identified several classification schema and definitions. Components of these were incorporated into a new quantitative surrogate validation...... of the National Institutes of Health definitions of biomarker, surrogate endpoint, and clinical endpoint was useful. CONCLUSION: Further development and application of this schema provides incentives and guidance for effective biomarker and surrogate endpoint research, and more efficient drug discovery...

  8. Hierarchical Multiscale Framework for Materials Modeling: Advances in Scale-Bridging Applied to a Taylor Anvil Impact Test of RDX

    Science.gov (United States)

    Barnes, Brian; Leiter, Kenneth; Becker, Richard; Knap, Jaroslaw; Brennan, John

    As part of a multiscale modeling effort, we present progress on a challenge in continuum-scale modeling: the direct incorporation of complex molecular-level processes in the constitutive evaluation. In this initial phase of the research we use a concurrent scale-bridging approach, with a hierarchical multiscale framework running in parallel to couple a particle-based model (the ''lower scale'') computing the equation of state (EOS) to the constitutive response in a finite-element multi-physics simulation (the ''upper scale''). The lower scale simulations of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) use a force-matched coarse-grain model and dissipative particle dynamics methods, and the upper scale simulation is of a Taylor anvil impact experiment. Results emphasize use of adaptive sampling (via dynamic kriging) that accelerates time to solution, and its comparison to fully ''on the fly'' runs. Work towards inclusion of a fully reactive EOS is also discussed.

  9. Relationship of push-ups and sit-ups tests to selected anthropometric variables and performance results: a multiple regression study.

    Science.gov (United States)

    Esco, Michael R; Olson, Michele S; Williford, Henry

    2008-11-01

    The purpose of this study was to explore whether selected anthropometric measures such as specific skinfold sites, along with weight, height, body mass index (BMI), waist and hip circumferences, and waist/hip ratio (WHR) were associated with sit-ups (SU) and push-ups (PU) performance, and to build a regression model for SU and PU tests. One hundred apparently healthy adults (40 men and 60 women) served as the subjects for test validation. The subjects performed 60-second SU and PU tests. The variables analyzed via multiple regression included weight, height, BMI, hip and waist circumferences, WHR, skinfolds at the abdomen (SFAB), thigh (SFTH), and subscapularis (SFSS), and sex. An additional cohort of 40 subjects (17 men and 23 women) was used to cross-validate the regression models. Validity was confirmed by correlation and paired t-tests. The regression analysis yielded a four-variable (PU, height, SFAB, and SFTH) multiple regression equation for estimating SU (R2 = 0.64, SEE = 7.5 repetitions). For PU, only SU was loaded into the regression equation (R2 = 0.43, SEE = 9.4 repetitions). Thus, the variables in the regression models accounted for 64% and 43% of the variation in SU and PU, respectively. The cross-validation sample elicited a high correlation for SU (r = 0.87) and PU (r = 0.79) scores. Moreover, paired-samples t-tests revealed that there were no significant differences between actual and predicted SU and PU scores. Therefore, this study shows that there are a number of selected, health-related anthropometric variables that account significantly for, and are predictive of, SU and PU tests.

  10. Variation in the Slope Coefficient of the Fama Regression for Testing Uncovered Interest Rate Parity: Evidence from Fixed and Time-varying Coefficient Approaches

    OpenAIRE

    Koning, Camiel de; Straetmans, S.

    1997-01-01

    textabstractWe investigate the potential presence of time variation in the coefficients of the ''Fama regression'' for Uncovered Interest Rate Parity. We implement coefficient constancy tests, rolling regression techniques, and stochastic coefficient models based on state space modelling. Among six major US bilateral exchange rates we find significant evidence for stochastic time variation. Using the statistical equivalence between stochastically varying coefficients and conditional heterosce...

  11. Regression Basics

    CERN Document Server

    Kahane, Leo H

    2007-01-01

    Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition Offers greater coverage of simple panel-data estimation:

  12. Semiparametric regression during 2003–2007

    KAUST Repository

    Ruppert, David

    2009-01-01

    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.

  13. 基于WATIR的WEB自动化回归测试框架%Web automated regression test framework based on WATIR

    Institute of Scientific and Technical Information of China (English)

    黄梦薇; 黄大庆; 周未

    2012-01-01

    In the process of iterative development, a large number of regression test eases need to be operated, due to high repetition rate in the test cases, a web automated regression test framework is proposed to improve manual testing. After intensively comparing and studying currently existing testing tool and test script techniques, Watir is chosen as the driver, and the keyword driven test framework-WATF is designed. By applying WATF to practical regression test, test efficiency has been improved 75% compared with manual testing, and human input has been considerably reduced simultaneously.%由于在迭代开发模式中需要执行大量的回归测试,针对其测试项目重复率高的特点,提出了一种Web自动化回归测试框架来改进全手工的作业。通过对现有测试工具和测试脚本技术的对比研究,选择Watir作为驱动程序,设计了关键字驱动机制的测试框架WATF。实际使用WATF进行回归测试,和人工测试相比提高了75%的测试效率,大幅减少在回归测试上的人力投入。

  14. 一种改进的层次化SOCs并行测试封装扫描单元%A Modified Parallel Wrapper Cell for Hierarchical SOCs Test

    Institute of Scientific and Technical Information of China (English)

    邓立宝; 乔立岩; 俞洋; 彭喜元

    2012-01-01

    测试封装是实现SOC内部IP核可测性和可控性的关键,而扫描单元是测试封装最重要的组成部分.然而传统的测试封装扫描单元在应用于层次化SOCs测试时存在很多缺点,无法保证内部IP核的完全并行测试,并且在测试的安全性,功耗等方面表现出很大问题.本文提出一种改进的层次化SOCs测试封装扫描单元结构,能够有效解决上述问题,该结构的主要思想是对现有的扫描单元进行改进,实现并行测试的同时,通过在适当的位置增加一个传输门,阻止无序的数据在非测试时段进入IP核,使得IP核处于休眠状态,保证了测试的安全性,实现了测试时的低功耗.最后将这种方法应用在一个工业上的层次化SOCs,实验分析表明,改进的测试封装扫描单元比现有扫描单元在增加较小硬件开销的前提下,在并行测试、低功耗、测试安全性和测试覆盖率方面有着明显的优势.%Test wrapper,which to make IP cores in SOC measurable and controllable,is the key architecture,and its important part is wrapper cell.Traditional test wrapper has many shortcomings,such as parallel test,test secure and test power,when used in hierarchical SOCs.This paper presented a modified test wrapper design for embedded IP cores,which only inserted a CMOS transmission gate to the test wrapper cell to eliminate the precarious effect to IP cores,to make the IP cores dormancy.Experiments on an industry hierarchical SOCs show that the proposed test wrapper cell not only takes less area overhead and time delay,but also make test parallel,secure and fully,thus decreases the dynamic test power during scan shifting.

  15. COVAR: Computer Program for Multifactor Relative Risks and Tests of Hypotheses Using a Variance-Covariance Matrix from Linear and Log-Linear Regression

    Directory of Open Access Journals (Sweden)

    Leif E. Peterson

    1997-11-01

    Full Text Available A computer program for multifactor relative risks, confidence limits, and tests of hypotheses using regression coefficients and a variance-covariance matrix obtained from a previous additive or multiplicative regression analysis is described in detail. Data used by the program can be stored and input from an external disk-file or entered via the keyboard. The output contains a list of the input data, point estimates of single or joint effects, confidence intervals and tests of hypotheses based on a minimum modified chi-square statistic. Availability of the program is also discussed.

  16. Nonparametric Predictive Regression

    OpenAIRE

    Ioannis Kasparis; Elena Andreou; Phillips, Peter C.B.

    2012-01-01

    A unifying framework for inference is developed in predictive regressions where the predictor has unknown integration properties and may be stationary or nonstationary. Two easily implemented nonparametric F-tests are proposed. The test statistics are related to those of Kasparis and Phillips (2012) and are obtained by kernel regression. The limit distribution of these predictive tests holds for a wide range of predictors including stationary as well as non-stationary fractional and near unit...

  17. Progression and regression of cervical pap test lesions in an urban AIDS clinic in the combined antiretroviral therapy era: a longitudinal, retrospective study.

    Science.gov (United States)

    Lofgren, Sarah M; Tadros, Talaat; Herring-Bailey, Gina; Birdsong, George; Mosunjac, Marina; Flowers, Lisa; Nguyen, Minh Ly

    2015-05-01

    Our objective was to evaluate the progression and regression of cervical dysplasia in human immunodeficiency virus (HIV)-positive women during the late antiretroviral era. Risk factors as well as outcomes after treatment of cancerous or precancerous lesions were examined. This is a longitudinal retrospective review of cervical Pap tests performed on HIV-infected women with an intact cervix between 2004 and 2011. Subjects needed over two Pap tests for at least 2 years of follow-up. Progression was defined as those who developed a squamous intraepithelial lesion (SIL), atypical glandular cells (AGC), had low-grade SIL (LSIL) followed by atypical squamous cells-cannot exclude high-grade SIL (ASC-H) or high-grade SIL (HSIL), or cancer. Regression was defined as an initial SIL with two or more subsequent normal Pap tests. Persistence was defined as having an SIL without progression or regression. High-risk human papillomavirus (HPV) testing started in 2006 on atypical squamous cells of undetermined significance (ASCUS) Pap tests. AGC at enrollment were excluded from progression analysis. Of 1,445 screened, 383 patients had over two Pap tests for a 2-year period. Of those, 309 had an intact cervix. The median age was 40 years and CD4+ cell count was 277 cells/mL. Four had AGC at enrollment. A quarter had persistently normal Pap tests, 64 (31%) regressed, and 50 (24%) progressed. Four developed cancer. The only risk factor associated with progression was CD4 count. In those with treated lesions, 24 (59%) had negative Pap tests at the end of follow-up. More studies are needed to evaluate follow-up strategies of LSIL patients, potentially combined with HPV testing. Guidelines for HIV-seropositive women who are in care, have improved CD4, and have persistently negative Pap tests could likely lengthen the follow-up interval.

  18. Using hierarchical linear models to test differences in Swedish results from OECD’s PISA 2003: Integrated and subject-specific science education

    Directory of Open Access Journals (Sweden)

    Maria Åström

    2012-06-01

    Full Text Available The possible effects of different organisations of the science curriculum in schools participating in PISA 2003 are tested with a hierarchical linear model (HLM of two levels. The analysis is based on science results. Swedish schools are free to choose how they organise the science curriculum. They may choose to work subject-specifically (with Biology, Chemistry and Physics, integrated (with Science or to mix these two. In this study, all three ways of organising science classes in compulsory school are present to some degree. None of the different ways of organising science education displayed statistically significant better student results in scientific literacy as measured in PISA 2003. The HLM model used variables of gender, country of birth, home language, preschool attendance, an economic, social and cultural index as well as the teaching organisation.

  19. In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosis in sputum specimens: meta-analysis and meta-regression

    Directory of Open Access Journals (Sweden)

    Pai Madhukar

    2005-10-01

    Full Text Available Abstract Background More than 200 studies related to nucleic acid amplification (NAA tests to detect Mycobacterium tuberculosis directly from clinical specimens have appeared in the world literature since this technology was first introduced. NAA tests come as either commercial kits or as tests designed by the reporting investigators themselves (in-house tests. In-house tests vary widely in their accuracy, and factors that contribute to heterogeneity in test accuracy are not well characterized. Here, we used meta-analytical methods, including meta-regression, to identify factors related to study design and assay protocols that affect test accuracy in order to identify those factors associated with high estimates of accuracy. Results By searching multiple databases and sources, we identified 2520 potentially relevant citations, and analyzed 84 separate studies from 65 publications that dealt with in-house NAA tests to detect M. tuberculosis in sputum samples. Sources of heterogeneity in test accuracy estimates were determined by subgroup and meta-regression analyses. Among 84 studies analyzed, the sensitivity and specificity estimates varied widely; sensitivity varied from 9.4% to 100%, and specificity estimates ranged from 5.6% to 100%. In the meta-regression analysis, the use of IS6110 as a target, and the use of nested PCR methods appeared to be significantly associated with higher diagnostic accuracy. Conclusion Estimates of accuracy of in-house NAA tests for tuberculosis are highly heterogeneous. The use of IS6110 as an amplification target, and the use of nested PCR methods appeared to be associated with higher diagnostic accuracy. However, the substantial heterogeneity in both sensitivity and specificity of the in-house NAA tests rendered clinically useful estimates of test accuracy difficult. Future development of NAA-based tests to detect M. tuberculosis from sputum specimens should take into consideration these findings in improving

  20. Regression-Based Norms for a Bi-factor Model for Scoring the Brief Test of Adult Cognition by Telephone (BTACT).

    Science.gov (United States)

    Gurnani, Ashita S; John, Samantha E; Gavett, Brandon E

    2015-05-01

    The current study developed regression-based normative adjustments for a bi-factor model of the The Brief Test of Adult Cognition by Telephone (BTACT). Archival data from the Midlife Development in the United States-II Cognitive Project were used to develop eight separate linear regression models that predicted bi-factor BTACT scores, accounting for age, education, gender, and occupation-alone and in various combinations. All regression models provided statistically significant fit to the data. A three-predictor regression model fit best and accounted for 32.8% of the variance in the global bi-factor BTACT score. The fit of the regression models was not improved by gender. Eight different regression models are presented to allow the user flexibility in applying demographic corrections to the bi-factor BTACT scores. Occupation corrections, while not widely used, may provide useful demographic adjustments for adult populations or for those individuals who have attained an occupational status not commensurate with expected educational attainment. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Regression-Based Norms for a Bi-factor Model for Scoring the Brief Test of Adult Cognition by Telephone (BTACT)

    Science.gov (United States)

    Gurnani, Ashita S.; John, Samantha E.; Gavett, Brandon E.

    2015-01-01

    The current study developed regression-based normative adjustments for a bi-factor model of the The Brief Test of Adult Cognition by Telephone (BTACT). Archival data from the Midlife Development in the United States-II Cognitive Project were used to develop eight separate linear regression models that predicted bi-factor BTACT scores, accounting for age, education, gender, and occupation-alone and in various combinations. All regression models provided statistically significant fit to the data. A three-predictor regression model fit best and accounted for 32.8% of the variance in the global bi-factor BTACT score. The fit of the regression models was not improved by gender. Eight different regression models are presented to allow the user flexibility in applying demographic corrections to the bi-factor BTACT scores. Occupation corrections, while not widely used, may provide useful demographic adjustments for adult populations or for those individuals who have attained an occupational status not commensurate with expected educational attainment. PMID:25724515

  2. Autistic Regression

    Science.gov (United States)

    Matson, Johnny L.; Kozlowski, Alison M.

    2010-01-01

    Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…

  3. Logistic regression.

    Science.gov (United States)

    Nick, Todd G; Campbell, Kathleen M

    2007-01-01

    The Medical Subject Headings (MeSH) thesaurus used by the National Library of Medicine defines logistic regression models as "statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable." Logistic regression models are used to study effects of predictor variables on categorical outcomes and normally the outcome is binary, such as presence or absence of disease (e.g., non-Hodgkin's lymphoma), in which case the model is called a binary logistic model. When there are multiple predictors (e.g., risk factors and treatments) the model is referred to as a multiple or multivariable logistic regression model and is one of the most frequently used statistical model in medical journals. In this chapter, we examine both simple and multiple binary logistic regression models and present related issues, including interaction, categorical predictor variables, continuous predictor variables, and goodness of fit.

  4. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  5. An efficient algorithm for finding optimal gain-ratio multiple-split tests on hierarchical attributes in decision tree learning

    Energy Technology Data Exchange (ETDEWEB)

    Almuallim, H. [King Fahd Univ. of Petroleum & Minerals, Dhahran (Saudi Arabia); Akiba, Yasuhiro; Kaneda, Shigeo [NTT Communication Science Labs., Kanagawa (Japan)

    1996-12-31

    Given a set of training examples S and a tree-structured attribute x, the goal in this work is to find a multiple-split test defined on x that maximizes Quinlan`s gain-ratio measure. The number of possible such multiple-split tests grows exponentially in the size of the hierarchy associated with the attribute. It is, therefore, impractical to enumerate and evaluate all these tests in order to choose the best one. We introduce an efficient algorithm for solving this problem that guarantees maximizing the gain-ratio over all possible tests. For a training set of m examples and an attribute hierarchy of height d, our algorithm runs in time proportional to dm, which makes it efficient enough for practical use.

  6. When to Use Hierarchical Linear Modeling

    Directory of Open Access Journals (Sweden)

    Veronika Huta

    2014-04-01

    Full Text Available Previous publications on hierarchical linear modeling (HLM have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis: Does HLM apply to one’s data and research question? And if it does apply, how does one choose between HLM and other methods sometimes used in these circumstances, including multiple regression, repeated-measures or mixed ANOVA, and structural equation modeling or path analysis? The purpose of this tutorial is to briefly introduce HLM and then to review some of the considerations that are helpful in answering these questions, including the nature of the data, the model to be tested, and the information desired on the output. Some examples of how the same analysis could be performed in HLM, repeated-measures or mixed ANOVA, and structural equation modeling or path analysis are also provided. .

  7. Correlation and Regression Analyses on the Washback effects of Achieve-ment Oral Test on College English Learning

    Institute of Scientific and Technical Information of China (English)

    郑丽萍

    2013-01-01

      The purpose of this study was to investigate how washback effect of a reformed test influenced students’perspectives in their spoken English learning. This study was expected to enrich the existing literature in testing washback in English as a foreign language context.Findings indicate that the adding of oral part in achievement test does have a positive washback effect on students’learning. However, such a washback effect on students’learning is quite superficial and limited.

  8. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...

  9. Regression to Causality

    DEFF Research Database (Denmark)

    Bordacconi, Mats Joe; Larsen, Martin Vinæs

    2014-01-01

    Humans are fundamentally primed for making causal attributions based on correlations. This implies that researchers must be careful to present their results in a manner that inhibits unwarranted causal attribution. In this paper, we present the results of an experiment that suggests regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...

  10. A Bayesian approach to linear regression in astronomy

    CERN Document Server

    Sereno, Mauro

    2015-01-01

    Linear regression is common in astronomical analyses. I discuss a Bayesian hierarchical modeling of data with heteroscedastic and possibly correlated measurement errors and intrinsic scatter. The method fully accounts for time evolution. The slope, the normalization, and the intrinsic scatter of the relation can evolve with the redshift. The intrinsic distribution of the independent variable is approximated using a mixture of Gaussian distributions whose means and standard deviations depend on time. The method can address scatter in the measured independent variable (a kind of Eddington bias), selection effects in the response variable (Malmquist bias), and departure from linearity in form of a knee. I tested the method with toy models and simulations and quantified the effect of biases and inefficient modeling. The R-package LIRA (LInear Regression in Astronomy) is made available to perform the regression.

  11. Hierarchical Multiagent Reinforcement Learning

    Science.gov (United States)

    2004-01-25

    In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In

  12. Hierarchical linear modeling of California Verbal Learning Test--Children's Version learning curve characteristics following childhood traumatic head injury.

    Science.gov (United States)

    Warschausky, Seth; Kay, Joshua B; Chi, PaoLin; Donders, Jacobus

    2005-03-01

    California Verbal Learning Test-Children's Version (CVLT-C) indices have been shown to be sensitive to the neurocognitive effects of traumatic brain injury (TBI). The effects of TBI on the learning process were examined with a growth curve analysis of CVLT-C raw scores across the 5 learning trials. The sample with history of TBI comprised 86 children, ages 6-16 years, at a mean of 10.0 (SD=19.5) months postinjury; 37.2% had severe injury, 27.9% moderate, and 34.9% mild. The best-fit model for verbal learning was with a quadratic function. Greater TBI severity was associated with lower rate of acquisition and more gradual deceleration in the rate of acquisition. Intelligence test index scores, previously shown to be sensitive to severity of TBI, were positively correlated with rate of acquisition. Results provide evidence that the CVLT-C learning slope is not a simple linear function and further support for specific effects of TBI on verbal learning. ((c) 2005 APA, all rights reserved).

  13. Should metacognition be measured by logistic regression?

    Science.gov (United States)

    Rausch, Manuel; Zehetleitner, Michael

    2017-03-01

    Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Note on the Effect on Power of Score Tests via Dimension Reduction by Penalized Regression under the Null*

    Science.gov (United States)

    Martinez, Josue G.; Carroll, Raymond J; Muller, Samuel; Sampson, Joshua N.; Chatterjee, Nilanjan

    2010-01-01

    We consider the problem of score testing for certain low dimensional parameters of interest in a model that could include finite but high dimensional secondary covariates and associated nuisance parameters. We investigate the possibility of the potential gain in power by reducing the dimensionality of the secondary variables via oracle estimators such as the Adaptive Lasso. As an application, we use a recently developed framework for score tests of association of a disease outcome with an exposure of interest in the presence of a possible interaction of the exposure with other co-factors of the model. We derive the local power of such tests and show that if the primary and secondary predictors are independent, then having an oracle estimator does not improve the local power of the score test. Conversely, if they are dependent, there is the potential for power gain. Simulations are used to validate the theoretical results and explore the extent of correlation needed between the primary and secondary covariates to observe an improvement of the power of the test by using the oracle estimator. Our conclusions are likely to hold more generally beyond the model of interactions considered here. PMID:20405045

  15. Genetic analysis of somatic cell score in Danish dairy cattle using ramdom regression test-day model

    DEFF Research Database (Denmark)

    Elsaid, Reda; Sabry, Ayman; Lund, Mogens Sandø

    2011-01-01

    over first lactation, genetic correlations are near unity between any time points in first lactation, and including a Wilmink term will improve the likelihood of more than an extra order Legendre polynomial. Ten data sets, consisting of 1,190,584 test day somatic cell count (SCC) records from 149...... with fifth order LP for PE effect and genetic effect were adequate to fit the data. The average heritability differed over the lactation and was lowest at the beginning (0.098) and higher at the end of lactation (0.138 to 0.151). Genetic correlations between daily SCS were high for adjacent tests (nearly 1...

  16. A hybrid Bayesian hierarchical model combining cohort and case-control studies for meta-analysis of diagnostic tests: Accounting for partial verification bias.

    Science.gov (United States)

    Ma, Xiaoye; Chen, Yong; Cole, Stephen R; Chu, Haitao

    2014-05-26

    To account for between-study heterogeneity in meta-analysis of diagnostic accuracy studies, bivariate random effects models have been recommended to jointly model the sensitivities and specificities. As study design and population vary, the definition of disease status or severity could differ across studies. Consequently, sensitivity and specificity may be correlated with disease prevalence. To account for this dependence, a trivariate random effects model had been proposed. However, the proposed approach can only include cohort studies with information estimating study-specific disease prevalence. In addition, some diagnostic accuracy studies only select a subset of samples to be verified by the reference test. It is known that ignoring unverified subjects may lead to partial verification bias in the estimation of prevalence, sensitivities, and specificities in a single study. However, the impact of this bias on a meta-analysis has not been investigated. In this paper, we propose a novel hybrid Bayesian hierarchical model combining cohort and case-control studies and correcting partial verification bias at the same time. We investigate the performance of the proposed methods through a set of simulation studies. Two case studies on assessing the diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in detecting lymph node metastases and of adrenal fluorine-18 fluorodeoxyglucose positron emission tomography in characterizing adrenal masses are presented.

  17. Pretest Item Analyses Using Polynomial Logistic Regression: An Approach to Small Sample Calibration Problems Associated with Computerized Adaptive Testing.

    Science.gov (United States)

    Patsula, Liane N.; Pashley, Peter J.

    Many large-scale testing programs routinely pretest new items alongside operational (or scored) items to determine their empirical characteristics. If these pretest items pass certain statistical criteria, they are placed into an operational item pool; otherwise they are edited and re-pretested or simply discarded. In these situations, reliable…

  18. Purified protein derivative skin testing on HIV/AIDS patients and logistic regression analysis of its risk factors

    Institute of Scientific and Technical Information of China (English)

    Fengren Liu; Jianjun Ye; Changfu Xiong; Jiguo Yin; Weihua He; Gaobo Li; Dingyuan Zhao; Linxiang Ye

    2007-01-01

    Objective: To understand the reactivity of purified protein derivative skin test(PPD test) in HIV-infected persons and to determine the influential factors associated with PPD. Methods: 174 HIV/AIDS patients registered in the local center for disease control and prevention(CDC) participated this study from April to June in 2006. Questionnaire, CD4 count and thoracic roentgenogram were performed for all participants. Results: In this study, response rate of questionnaires was 83.65%. The majority of these participants had a different degree of immunodeficiency that accounted for 93.64%. Female patients had a higher CD4 count than that of males. The total positive rate of PPD was 38.15%. Analysis of single factor in our study indicated that CD4 count, previous tuberculosis history, tuberculosis contact history and thoracic roentgenogram manifestation of patients were related to their PPD diameters. Further analysis of multiple factors also supports the previous conclusion that CD4 count and previous tuberculosis history of patients were risk factors in the PPD test. Conclusion: The PPD test of HIV/AIDS patients could be affected by several factors. For persons infected with HIV, the confirmation of latent tuberculosis infection (LTBI) should be considered the combination effect of previous MTB infection and body cellular immune function.

  19. Hierarchical multiscale framework for materials modeling: Equation of state implementation and application to a Taylor anvil impact test of RDX

    Science.gov (United States)

    Barnes, Brian C.; Spear, Carrie E.; Leiter, Ken W.; Becker, Richard; Knap, Jaroslaw; Lísal, Martin; Brennan, John K.

    2017-01-01

    In order to progress towards a materials-by-design capability, we present work on a challenge in continuum-scale modeling: the direct incorporation of complex physical processes in the constitutive evaluation. In this work, we use an adaptive scale-bridging computational framework executing in parallel in a heterogeneous computational environment to couple a fine-scale, particle-based model computing the equation of state (EOS) to the constitutive response in a finite-element multi-physics simulation. The EOS is obtained from high fidelity materials simulations performed via dissipative particle dynamics (DPD) methods. This scale-bridging framework is progress towards an innovation infrastructure that will be of great utility for systems in which essential aspects of material response are too complex to capture by closed form material models. The design, implementation, and performance of the scale-bridging framework are discussed. Also presented is a proof-of-concept Taylor anvil impact test of non-reacting 1,3,5-trinitrohexahydro-s-triazine (RDX).

  20. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...

  1. The use of a random regression model on the estimation of genetic parameters for weight at performance test in Appenninica sheep breed

    Directory of Open Access Journals (Sweden)

    Francesca M. Sarti

    2015-07-01

    Full Text Available The Appenninica breed is an Italian meat sheep; the rams are approved according to a phenotypic index that is based on an average daily gain at performance test. The 8546 live weights of 1930 Appenninica male lambs tested in the performance station of the ASSONAPA (National Sheep Breeders Association, Italy from 1986 to 2010 showed a great variability in age at weighing and in number of records by year. The goal of the study is to verify the feasibility of the estimation of a genetic index for weight in the Appenninica sheep by a mixed model, and to explore the use of random regression to avoid the corrections for weighing at different ages. The heritability and repeatability (mean±SE of the average live weight were 0.27±0.04 and 0.54±0.08 respectively; the heritabilities of weights recorded at different weighing days ranged from 0.27 to 0.58, while the heritabilities of weights at different ages showed a narrower variability (0.29÷0.41. The estimates of live weight heritability by random regressions ranged between 0.34 at 123 d of age and 0.52 at 411 d. The results proved that the random regression model is the most adequate to analyse the data of Appenninica breed.

  2. Design and Testing of Lab-scale Red Fuming Nitric Acid/Hydroxyl-terminated Polybutadiene Hybrid Rocket Motor for Studying Regression Rate

    Directory of Open Access Journals (Sweden)

    Sankaran Venugopal

    2011-10-01

    Full Text Available This paper presents the design of a hybrid rocket motor and the experiments carried out for investigation of hybrid combustion and regression rates for a combination of liquid oxidiser red fuming nitric acid with solid fuel hydroxyl-terminated Polybutadiene. The regression rate is enhanced with the addition of small quantity of solid oxidiser ammonium perchlorate in the fuel. The characteristics of the combustion products were calculated using the NASA CEA Code and were used in a ballistic code developed for predicting the performance of the hybrid rocket motor. A lab-scale motor was designed and the oxidiser mass flow requirements of the hybrid motor for the above combination of fuel and oxidiser have been calculated using the developed ballistic code. A static rocket motor testing facility has been realised for conducting the hybrid experiments. A series of tests were conducted and proper ignition with stable combustion in the hybrid mode has been established. The regression rate correlations were obtained as a function of the oxidiser mass flux and chamber pressure from the experiments for the various combinations.Defence Science Journal, 2011, 61(6, pp.515-522, DOI:http://dx.doi.org/10.14429/dsj.61.873

  3. Application of single-step genomic best linear unbiased prediction with a multiple-lactation random regression test-day model for Japanese Holsteins.

    Science.gov (United States)

    Baba, Toshimi; Gotoh, Yusaku; Yamaguchi, Satoshi; Nakagawa, Satoshi; Abe, Hayato; Masuda, Yutaka; Kawahara, Takayoshi

    2017-08-01

    This study aimed to evaluate a validation reliability of single-step genomic best linear unbiased prediction (ssGBLUP) with a multiple-lactation random regression test-day model and investigate an effect of adding genotyped cows on the reliability. Two data sets for test-day records from the first three lactations were used: full data from February 1975 to December 2015 (60 850 534 records from 2 853 810 cows) and reduced data cut off in 2011 (53 091 066 records from 2 502 307 cows). We used marker genotypes of 4480 bulls and 608 cows. Genomic enhanced breeding values (GEBV) of 305-day milk yield in all the lactations were estimated for at least 535 young bulls using two marker data sets: bull genotypes only and both bulls and cows genotypes. The realized reliability (R(2) ) from linear regression analysis was used as an indicator of validation reliability. Using only genotyped bulls, R(2) was ranged from 0.41 to 0.46 and it was always higher than parent averages. The very similar R(2) were observed when genotyped cows were added. An application of ssGBLUP to a multiple-lactation random regression model is feasible and adding a limited number of genotyped cows has no significant effect on reliability of GEBV for genotyped bulls. © 2016 Japanese Society of Animal Science.

  4. Commercial nucleic-acid amplification tests for diagnosis of pulmonary tuberculosis in respiratory specimens: meta-analysis and meta-regression.

    Directory of Open Access Journals (Sweden)

    Daphne I Ling

    Full Text Available BACKGROUND: Hundreds of studies have evaluated the diagnostic accuracy of nucleic-acid amplification tests (NAATs for tuberculosis (TB. Commercial tests have been shown to give more consistent results than in-house assays. Previous meta-analyses have found high specificity but low and highly variable estimates of sensitivity. However, reasons for variability in study results have not been adequately explored. We performed a meta-analysis on the accuracy of commercial NAATs to diagnose pulmonary TB and meta-regression to identify factors that are associated with higher accuracy. METHODOLOGY/PRINCIPAL FINDINGS: We identified 2948 citations from searching the literature. We found 402 articles that met our eligibility criteria. In the final analysis, 125 separate studies from 105 articles that reported NAAT results from respiratory specimens were included. The pooled sensitivity was 0.85 (range 0.36-1.00 and the pooled specificity was 0.97 (range 0.54-1.00. However, both measures were significantly heterogeneous (p<.001. We performed subgroup and meta-regression analyses to identify sources of heterogeneity. Even after stratifying by type of commercial test, we could not account for the variability. In the meta-regression, the threshold effect was significant (p = .01 and the use of other respiratory specimens besides sputum was associated with higher accuracy. CONCLUSIONS/SIGNIFICANCE: The sensitivity and specificity estimates for commercial NAATs in respiratory specimens were highly variable, with sensitivity lower and more inconsistent than specificity. Thus, summary measures of diagnostic accuracy are not clinically meaningful. The use of different cut-off values and the use of specimens other than sputum could explain some of the observed heterogeneity. Based on these observations, commercial NAATs alone cannot be recommended to replace conventional tests for diagnosing pulmonary TB. Improvements in diagnostic accuracy, particularly sensitivity

  5. Genetic parameters of a random regression model for daily feed intake of performance tested French Landrace and Large White growing pigs

    Directory of Open Access Journals (Sweden)

    Hofer Andreas

    2001-11-01

    Full Text Available Abstract Daily feed intake data of 1 279 French Landrace (FL, 1 039 boars and 240 castrates and 2 417 Large White (LW, 2 032 boars and 385 castrates growing pigs were recorded with electronic feed dispensers in three French central testing stations from 1992–1994. Male (35 to 95 kg live body weight or castrated (100 kg live body weight group housed, ad libitum fed pigs were performance tested. A quadratic polynomial in days on test with fixed regressions for sex and batch, random regressions for additive genetic, pen, litter and individual permanent environmental effects was used, with two different models for the residual variance: constant in model 1 and modelled with a quadratic polynomial depending on the day on test dm as follows in model 2: . Variance components were estimated from weekly means of daily feed intake by means of a Bayesian analysis using Gibbs sampling. Posterior means of (covariances were calculated using 800 000 samples from four chains (200 000 each. Heritability estimates of regression coefficients were 0.30 (FL model 1, 0.21 (FL model 2, 0.14 (LW1 and 0.14 (LW2 for the intercept, 0.04 (FL1, 0.04 (FL2, 0.11 (LW1 and 0.06 (LW2 for the linear, 0.03 (FL1, 0.04 (FL2 0.11 (LW1 and 0.06 (LW2 for the quadratic term. Heritability estimates for weekly means of daily feed intake were the lowest in week 4 (FL1: 0.11, FL2: 0.11 and week 1 (LW1: 0.09, LW2: 0.10, and the highest in week 11 (FL1: 0.25, FL2: 0.24 and week 8 (LW1: 0.19, LW2: 0.18, respectively. Genetic eigenfunctions revealed that altering the shape of the feed intake curve by selection is difficult.

  6. Estimating Intelligence in Spanish: Regression Equations With the Word Accentuation Test and Demographic Variables in Latin America.

    Science.gov (United States)

    Sierra Sanjurjo, Natalia; Montañes, Patricia; Sierra Matamoros, Fabio Alexander; Burin, Debora

    2015-01-01

    Spanish is the fourth most spoken language in the world, and the majority of Spanish speakers have a Latin American origin. Reading aloud infrequently accentuated words has been established as a National Adult Reading Test-like method to assess premorbid intelligence in Spanish. However, several versions have been proposed and validated with small and selected samples, in particular geographical conditions, and they seldom derive a formula for IQ estimation with the Wechsler Adult Intelligence Scale (WAIS) Full-Scale IQ (FSIQ). The objective of this study was to develop equations to estimate WAIS-Third Edition (WAIS-III) FSIQ from the Word Accentuation Test-Revised (WAT-R), demographic variables, and their combination within diverse Latin American samples. Two hundred and forty participants from Argentina and Colombia, selected according to age and years of education strata, were assessed with the WAT-R, the WAIS-III, and a structured questionnaire about demographic and medical information. A combined approach including place of birth, years of education, and WAT-R provided the best equation, explaining 76% of IQ variance. These equations could be useful for estimating premorbid IQ in patients with Latin American Spanish as their birth language.

  7. 一种低代价的图形用户界面回归测试框架%Low-cost Graphical User Interface Regression Test Framework

    Institute of Scientific and Technical Information of China (English)

    华涛; 李红红; 李来祥

    2011-01-01

    Graphical User Interface(GUI) is created with rapid prototyping, has characteristics that differ it from traditional software, so test techniques for traditional software can't directly apply to GUI. This paper analyses interaction between GUI events, researches on why some events can lead to defects and gives a cost-effective Event Interaction Graph(EIG) based GUI automated regression test framework and corresponding regression test process, which is used to provide the best combination of defect detection rate and cost.%图形用户界面(GUD采用快速原型法生成,具有一些不同于传统软件的特性,使得传统软件测试技术不能直接应用于GUI.为此,分析GUI事件的交互,研究事件交互可能导致缺陷的原因,进而提出一个低代价的基于事件交互图的GUI自动化回归测试框架及相应的回归测试过程,用于提供最优的缺陷发现率和成本组合.

  8. A neural signature of hierarchical reinforcement learning.

    Science.gov (United States)

    Ribas-Fernandes, José J F; Solway, Alec; Diuk, Carlos; McGuire, Joseph T; Barto, Andrew G; Niv, Yael; Botvinick, Matthew M

    2011-07-28

    Human behavior displays hierarchical structure: simple actions cohere into subtask sequences, which work together to accomplish overall task goals. Although the neural substrates of such hierarchy have been the target of increasing research, they remain poorly understood. We propose that the computations supporting hierarchical behavior may relate to those in hierarchical reinforcement learning (HRL), a machine-learning framework that extends reinforcement-learning mechanisms into hierarchical domains. To test this, we leveraged a distinctive prediction arising from HRL. In ordinary reinforcement learning, reward prediction errors are computed when there is an unanticipated change in the prospects for accomplishing overall task goals. HRL entails that prediction errors should also occur in relation to task subgoals. In three neuroimaging studies we observed neural responses consistent with such subgoal-related reward prediction errors, within structures previously implicated in reinforcement learning. The results reported support the relevance of HRL to the neural processes underlying hierarchical behavior.

  9. Linear Regression Analysis

    CERN Document Server

    Seber, George A F

    2012-01-01

    Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

  10. Genetic evaluation using random regression models with different covariance functions for test-day milk yield in an admixture population of Thailand goats.

    Science.gov (United States)

    Thepparat, Mongkol; Boonkum, Wuttigrai; Duangjinda, Monchai; Tumwasorn, Sornthep; Nakavisut, Sansak; Thongchumroon, Thumrong

    2015-07-01

    The objectives of this study were to compare covariance functions (CF) and estimate the heritability of milk yield from test-day records among exotic (Saanen, Anglo-Nubian, Toggenburg and Alpine) and crossbred goats (Thai native and exotic breed), using a random regression model. A total of 1472 records of test-day milk yield were used, collected from 112 does between 2003 and 2006. CF of the study were Wilmink function, second- and third-order Legendre polynomials, and linear splines 4 knots located at 5, 25, 90 and 155 days in milk (SP25-90) and 5, 35, 95 and 155 of days in milk (SP35-95). Variance components were estimated by restricted maximum likelihood method (REML). Goodness of fit, Akaike information criterion (AIC), percentage of squared bias (PSB), mean square error (MSE), and empirical correlation (RHO) between the observed and predicted values were used to compare models. The results showed that CF had an impact on (co)variance estimation in random regression models (RRM). The RRM with splines 4 knots located at 5, 25, 90 and 155 of days in milk had the lowest AIC, PSB and MSE, and the highest RHO. The heritability estimated throughout lactation obtained with this model ranged from 0.13 to 0.23. © 2014 Japanese Society of Animal Science.

  11. A Model for Slicing JAVA Programs Hierarchically

    Institute of Scientific and Technical Information of China (English)

    Bi-Xin Li; Xiao-Cong Fan; Jun Pang; Jian-Jun Zhao

    2004-01-01

    Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing Tool (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.

  12. [Understanding logistic regression].

    Science.gov (United States)

    El Sanharawi, M; Naudet, F

    2013-10-01

    Logistic regression is one of the most common multivariate analysis models utilized in epidemiology. It allows the measurement of the association between the occurrence of an event (qualitative dependent variable) and factors susceptible to influence it (explicative variables). The choice of explicative variables that should be included in the logistic regression model is based on prior knowledge of the disease physiopathology and the statistical association between the variable and the event, as measured by the odds ratio. The main steps for the procedure, the conditions of application, and the essential tools for its interpretation are discussed concisely. We also discuss the importance of the choice of variables that must be included and retained in the regression model in order to avoid the omission of important confounding factors. Finally, by way of illustration, we provide an example from the literature, which should help the reader test his or her knowledge.

  13. Gelişmekte Olan Piyasalarda Finansal Piyasa İstikrarının Kantil Regresyon Yöntemiyle Test Edilmesi = Tests for Financial Market Stability in Emerging Markets by Using Quantile Regression

    Directory of Open Access Journals (Sweden)

    Cüneyt AKAR

    2013-01-01

    Full Text Available In this study, the financial market stability is investigated for the emerging market countries of Morgan Stanley Capital International (MSCI, Europe, the Middle East and Africa index by using quantile regression based new empirical test proposed by Baur and Schulze (2009. The daily logarithmic return dataset covers the period of June 1, 2002 to February 17, 2011. The results show that Poland and Morocco exhibit financial market stability among the investigated countries.

  14. An Approach to Object-Oriented Software Regression Testing%面向对象软件回归测试技术研究

    Institute of Scientific and Technical Information of China (English)

    杨芙清

    2001-01-01

    After changes are made to a previously tested program, a goal ofregression testing is to retest the program based only on the modification while maintaining the same testing coverage as the complete retesting of the program. Several regression techniques for structural programs using data flow or partial data flow (also known as program slicing) have been proposed. With the object oriented (OO for short) method growing mature, there is an urgent need of testing techniques for OO programs. In this paper, based on the analysis of characteristics of OO system, firstly, the dependency relations among objects are defined, from which series of objects' methods are deduced. Secondly, program slicing techniques are used to identify test cases to be applied to modification. Finally, a complete regression approach to OO program is presented.%回归测试的目标之一是在程序修改后,只对进行修改的部分重新测试,从而达到与完全测试相同的测试覆盖.利用数据流或部分数据流技术,对结构化程序进行回归测试的技术已相继提出.随着面向对象方法的逐渐成熟,对面向对象软件测试技术的研究有了迫切的需求.通过分析对象系统的特性,定义了对象之间的依赖关系,通过这个依赖关系,导出测试对象的方法序列,并应用程序切片技术,标识那些受到程序修改影响的测试用例,只有这些测试用例才需要在回归测试中重新执行.最后给出了一完整的对象系统的回归测试解决方案.

  15. 车削温度多元回归模型的试验研究%Testing study of multiple regression model based on turning temperature

    Institute of Scientific and Technical Information of China (English)

    杨睿; 李顺才; 袁冠雷; 吴明明

    2016-01-01

    Using control variable method,the turning tests were conducted on the work-piece under different parameters,and the real-time temperatures near the turning point of the cutting tool were collected by using infrared thermometry. By the tests,the temperature-time curve and mean temperature under different parameters were obtained,and the multiple regression model of the mean temperature on turning speed,feed rate,back cutting depth was also established based on the least square method.This article analyzes the correlation between the mean turning temperatures with three parameters,and the measured temperature values are compared with the fitted values.The research shows that under the given condition,the regression model can better predict the mean cutting temperature based on the turning parameters.%采用控制变量法对工件进行不同车削参数下的车削试验,利用红外测温仪实时采集车刀刀尖附近的温度,得到不同车削参量下的温度-时间曲线及温度均值。基于最小二乘法拟合得到了车削温度均值关于车削速度、进给速度、背吃刀量的多元回归模型,分析了车削温度均值与3个车削参数的相关性。研究表明,在给定车削条件下该回归模型能基于车削参数较好地预测车刀温度均值。

  16. Classifying hospitals as mortality outliers: logistic versus hierarchical logistic models.

    Science.gov (United States)

    Alexandrescu, Roxana; Bottle, Alex; Jarman, Brian; Aylin, Paul

    2014-05-01

    The use of hierarchical logistic regression for provider profiling has been recommended due to the clustering of patients within hospitals, but has some associated difficulties. We assess changes in hospital outlier status based on standard logistic versus hierarchical logistic modelling of mortality. The study population consisted of all patients admitted to acute, non-specialist hospitals in England between 2007 and 2011 with a primary diagnosis of acute myocardial infarction, acute cerebrovascular disease or fracture of neck of femur or a primary procedure of coronary artery bypass graft or repair of abdominal aortic aneurysm. We compared standardised mortality ratios (SMRs) from non-hierarchical models with SMRs from hierarchical models, without and with shrinkage estimates of the predicted probabilities (Model 1 and Model 2). The SMRs from standard logistic and hierarchical models were highly statistically significantly correlated (r > 0.91, p = 0.01). More outliers were recorded in the standard logistic regression than hierarchical modelling only when using shrinkage estimates (Model 2): 21 hospitals (out of a cumulative number of 565 pairs of hospitals under study) changed from a low outlier and 8 hospitals changed from a high outlier based on the logistic regression to a not-an-outlier based on shrinkage estimates. Both standard logistic and hierarchical modelling have identified nearly the same hospitals as mortality outliers. The choice of methodological approach should, however, also consider whether the modelling aim is judgment or improvement, as shrinkage may be more appropriate for the former than the latter.

  17. Regression: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  18. Regression: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  19. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  20. Hierarchical auxetic mechanical metamaterials.

    Science.gov (United States)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N

    2015-02-11

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  1. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  2. Hierarchical Auxetic Mechanical Metamaterials

    Science.gov (United States)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.

    2015-02-01

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  3. Applied Bayesian Hierarchical Methods

    CERN Document Server

    Congdon, Peter D

    2010-01-01

    Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.

  4. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  5. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  6. Semiparametric Quantile Modelling of Hierarchical Data

    Institute of Scientific and Technical Information of China (English)

    Mao Zai TIAN; Man Lai TANG; Ping Shing CHAN

    2009-01-01

    The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biology, economics and education. However, it assumes the within-group errors to be independently and identically distributed (i.i.d.) and models at all levels to be linear. Most importantly, traditional hierarchical models (just like other ordinary mean regression methods) cannot characterize the entire conditional distribution of a dependent variable given a set of covariates and fail to yield robust estimators. In this article, we relax the aforementioned and normality assumptions, and develop a so-called Hierarchical Semiparametric Quantile Regression Models in which the within-group errors could be heteroscedastic and models at some levels are allowed to be nonparametric. We present the ideas with a 2-level model. The level-l model is specified as a nonparametric model whereas level-2 model is set as a parametric model. Under the proposed semiparametric setting the vector of partial derivatives of the nonparametric function in level-1 becomes the response variable vector in level 2. The proposed method allows us to model the fixed effects in the innermost level (i.e., level 2) as a function of the covariates instead of a constant effect. We outline some mild regularity conditions required for convergence and asymptotic normality for our estimators. We illustrate our methodology with a real hierarchical data set from a laboratory study and some simulation studies.

  7. 基于分位数回归的金融市场稳定性检验%Test for Financial Market Stability Based on Quantile Regression Method

    Institute of Scientific and Technical Information of China (English)

    史金凤; 刘维奇; 杨威

    2011-01-01

    Based on the angles of the volatility, this paper gives a definition of financial market stability,proposes the test based on quantile regression method, and then tests the stability of Shanghai Market using the method. The empirical results show that the Shanghai stock market developed from unstable to stable, and particularly after the global financial crisis triggered by the U.S. subprime mortgage crisis, it has entered a stable state in relatively fast manner. The test method performs robust to the selections of systematic shock and periods of volatility. Meanwhile, the change of stock market stability indicate that a good range of policies for global financial crisis play a role in promoting a stable and healthy development of financial market.%本文立足于收益波动率的视角界定了金融市场稳定的内涵,提出了基于分位数回归的检验金融市场稳定的方法,并运用该方法对我国股票市场的稳定性做了实证分析.结果显示,上海股票市场从不稳定状态向稳定状态发展,特别是在美国次贷危机引发的全球金融危机之后较快地进入了稳定状态,该结论同时也通过了来自系统性冲击和波动率周期选取的稳健性检验,并且支持了我国政府应对全球性金融危机出台各项政策的积极效应和正面效应.

  8. What are hierarchical models and how do we analyze them?

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)

  9. Time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik

    2008-01-01

    An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....

  10. Onboard hierarchical network

    Science.gov (United States)

    Tunesi, Luca; Armbruster, Philippe

    2004-02-01

    developing a part of the system. Only when all the units are delivered to the system integrator, it is possible to test the complete system. Consequently, this normally happens at the final development stage and it is then often costly to face serious compatibility problems. Pre-integration would be a possible way of anticipating problems during the integration phase. In this case, a scheme allowing the interconnection of unit models (simulators, breadboards and flight-representative hardware) must be defined. For this purpose intranets and Internet can be of significant help. As a consequence of these well-identified needs a new concept has been formulated by the Agency and will extensively be described in this paper. On-board hierarchical networks have to be seen as an integrated infrastructure able to support not only software level functions but also hardware oriented diagnostic tools. As a complement to presently developed SpaceWire networks, a lower level bus must be selected. It must be reliable, flexible, easy-to-implement and it should have a strong error control and management scheme in order to ensure an appropriate availability figure. Of course, the adoption of an industrial standard bus is advisable because of the existence of development tools, devices and experience. Therefore, the use of a standard bus provides the possibility of evaluating and potentially using commercial systems, with a significant reduction of non-recurrent costs. As a consequence, ESA has recently set-up a working group with the objective of evaluating and, if needed, customising the Controller Area Network (CAN) bus (http://groups.yahoo.com/group/CAN_Space/). On this basis, it has been decided to consider the use of the CAN bus for payload systems and steps are being issued for its on-board implementation in space. As far as the lowest hierarchical level is concerned, a JTAG-like interface appears to be adequate but this selection is still subject to investigations. In the scenario

  11. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  12. Regression analysis by example

    National Research Council Canada - National Science Library

    Chatterjee, Samprit; Hadi, Ali S

    2012-01-01

    .... The emphasis continues to be on exploratory data analysis rather than statistical theory. The coverage offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression...

  13. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  14. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    Science.gov (United States)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross

  15. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating e...

  16. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  17. Logistic regression: a brief primer.

    Science.gov (United States)

    Stoltzfus, Jill C

    2011-10-01

    Regression techniques are versatile in their application to medical research because they can measure associations, predict outcomes, and control for confounding variable effects. As one such technique, logistic regression is an efficient and powerful way to analyze the effect of a group of independent variables on a binary outcome by quantifying each independent variable's unique contribution. Using components of linear regression reflected in the logit scale, logistic regression iteratively identifies the strongest linear combination of variables with the greatest probability of detecting the observed outcome. Important considerations when conducting logistic regression include selecting independent variables, ensuring that relevant assumptions are met, and choosing an appropriate model building strategy. For independent variable selection, one should be guided by such factors as accepted theory, previous empirical investigations, clinical considerations, and univariate statistical analyses, with acknowledgement of potential confounding variables that should be accounted for. Basic assumptions that must be met for logistic regression include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers. Additionally, there should be an adequate number of events per independent variable to avoid an overfit model, with commonly recommended minimum "rules of thumb" ranging from 10 to 20 events per covariate. Regarding model building strategies, the three general types are direct/standard, sequential/hierarchical, and stepwise/statistical, with each having a different emphasis and purpose. Before reaching definitive conclusions from the results of any of these methods, one should formally quantify the model's internal validity (i.e., replicability within the same data set) and external validity (i.e., generalizability beyond the current sample). The resulting logistic regression model

  18. 基于层次MAP的虚拟试验系统互操作协议研究%Interoperability Protocol Study of Virtual Test System Based on Hierarchical MAP

    Institute of Scientific and Technical Information of China (English)

    李雨江; 杜承烈; 尤涛

    2011-01-01

    Aiming at the problem that Ethernet and VMIC rellective memory network cannot communicate directly in virtual test system, an interoperability protocol scheme based on hierarchical MAP is proposed .BAsed on the introduction of gateway node which connects Ethernet and VWIC reflective memory network, we propose three-tier memory division scheme of VMIC refective memory, achieve the distribution and release algorithms of reflective memory by hierarchical MAP, complete the mutual mapping between Ethernet data and reflective memory data, thus achieving interoperability protocol of virtual test system. Tests show the the interoperability protocol can effectively exchanges and shares data between Ethernet and VMIC real-time metwor,and satisfies the real-time request of virtual test system.%在虚拟试验系统中,针对以太网和VMIC反射内存网不能直接通信的问题,提出了一种基于层次MAP的互操作协议方案;在引入网关节点连接以太网和VMIC反射内存网的基础上,提出了VMIC反射内存的三层内存划分方案,利用层次MAP实现了反射内存的分配和释放算法,完成了以太网数据和反射内存网数据的相互映射,从而实现了虚拟试验系统的互操作;试验表明,该互操作协议方案能够有效实现以太网和VMIC实时网之间的数据交换和共享,较好地满足了虚拟试验系统的实时性要求.

  19. 18F-FDG PET/CT makes a significant contribution to diagnosis of malignancy in patients with cervical lymphadenopathy: a study using optimal scale regression tests

    Institute of Scientific and Technical Information of China (English)

    OUYANG Lin; SHI Zhao-yin; LIN Zhi-gang

    2013-01-01

    Background The specificity and precision of lymphadenopathy assessment using US,CT and MRI are generally unsatisfactory,while fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) can support this process by providing additional information about the lymph node features.However,which image features of 18F-FDG PET/CT play the key role in the diagnosis and cutoffs of malignant cervical lymphadenopathy still needs to be determined by further studies.Our study aimed to identify 18F-FDG PET/CT abnormalities that would assist in making a reliable diagnosis of malignant cervical lymphadenopathy in enlarged cervical lymph nodes of patients with unknown primary diseases.Methods One hundred and ninety-one consecutive patients of cervical lymphadenopathy with unknown primary causes were examined by 18F-FDG PET/CT from May 2007 to October 2011 and a definite diagnosis was established by pathologic biopsy.18F-FDG PET/CT images were evaluated to identify the relevant abnormalities.All image features were analyzed by optimal scale regression tests to determine the important factors that were predictive for the diagnosis of malignant cervical lymphadenopathy and the cutoffs.Results The factors studied in 18F-FDG PET/CT images for predicting malignant cervical lymphadenopathy were sex,age,node location,size,shape,margins,maximum standard uptake value (SUV),mean SUV,FDG uptake pattern and number of nodes.It was found that mean SUV,maximum SUV,FDG uptake pattern,location,size and margins were the important risk factors of cervical lymph nodes that could predict malignant cervical lymphadenopathy.Signs of mean SUV≥2.5 (or maximum SUV≥3.5),nodular FDG uptake pattern,location of ⅡA,Ⅲ,Ⅳ,ⅤB,Ⅵ and Ⅶ regions,size≥1.5 cm and vague margins had their optimal diagnostic accuracy (Ac) and Youden index (YI),further,combination of any three factors of these six important risk factors would led to the best diagnosticAc of 96% and YI of 0

  20. Hierarchical models and chaotic spin glasses

    Science.gov (United States)

    Berker, A. Nihat; McKay, Susan R.

    1984-09-01

    Renormalization-group studies in position space have led to the discovery of hierarchical models which are exactly solvable, exhibiting nonclassical critical behavior at finite temperature. Position-space renormalization-group approximations that had been widely and successfully used are in fact alternatively applicable as exact solutions of hierarchical models, this realizability guaranteeing important physical requirements. For example, a hierarchized version of the Sierpiriski gasket is presented, corresponding to a renormalization-group approximation which has quantitatively yielded the multicritical phase diagrams of submonolayers on graphite. Hierarchical models are now being studied directly as a testing ground for new concepts. For example, with the introduction of frustration, chaotic renormalization-group trajectories were obtained for the first time. Thus, strong and weak correlations are randomly intermingled at successive length scales, and a new microscopic picture and mechanism for a spin glass emerges. An upper critical dimension occurs via a boundary crisis mechanism in cluster-hierarchical variants developed to have well-behaved susceptibilities.

  1. Prediction of spatial soil property information from ancillary sensor data using ordinary linear regression: Model derivations, residual assumptions and model validation tests

    Science.gov (United States)

    Geospatial measurements of ancillary sensor data, such as bulk soil electrical conductivity or remotely sensed imagery data, are commonly used to characterize spatial variation in soil or crop properties. Geostatistical techniques like kriging with external drift or regression kriging are often use...

  2. 微核试验数据的Poisson和负二项回归模型拟合效果比较%Comparison of Fitting Results of Poisson Regression and Negative Binomial Regression Models for Data of Cytokinesis-block Micronucleus Test

    Institute of Scientific and Technical Information of China (English)

    郑辉烈; 王增珍; 俞慧强

    2011-01-01

    Objective To compare the fitting results of the Poisson regression model and negative binomial regression model for data of cytokinesis-block micronucleus test, and to provide a basis for statistical analysis of data of cytokinesis-block micronucleus test. Methods By using the log likelihood function,the deviance,Pearson x2 and cluster index, the fitting results of Poisson regression model and the negative binomial regression model for data of cytokinesis-block micronucleus test were evaluated. Result The ratio of log lielihood function to degree of freedom for negative binomial regression was greater than that for Poisson regression. The ratio of deviance to degree of freedom and the ratio of Pearson x2 to degree of freedom for negative binomial regression were less than those for Poisson regression. There was a significant difference in cluster index that was not equal to zero for negative binomial regression model(x2= 1 160.42, P<0.001).Conclusion The negative binomial regression model was superior to Poisson regression model for data of cytokinesis-block micronucleus test.%目的 比较Poisson和负二项回归模型对微核试验数据(每1 000个双核淋巴细胞中具有微核的淋巴细胞数)的拟合效果,为微核试验数据的模型拟合提供依据.方法 运用微核试验数据,拟合Poisson分布和负二项分布回归模型,采用对数似然函数、偏差统计量、Pearson χ2统计量和聚集性指数等指标比较2种回归模型对实例数据的拟合效果.结果 负二项回归模型对数似然函数值与自由度的比值(-2.51)大于Poisson回归模型(-3.52);负二项回归模型拟合优度统计量-偏差统计量和Pearson χ2统计量与对应的自由度比值(1.16和1.07)小于Poisson回归模型;聚集性指数的似然比检验(H0:k=0)显示,聚集性指数不等于0具有统计学意义(χ2=1 160.42,P<0.001).结论对于微核试验数据,拟合负二项回归模型要优于Poisson回归模型.

  3. Fast, Linear Time Hierarchical Clustering using the Baire Metric

    CERN Document Server

    Contreras, Pedro

    2011-01-01

    The Baire metric induces an ultrametric on a dataset and is of linear computational complexity, contrasted with the standard quadratic time agglomerative hierarchical clustering algorithm. In this work we evaluate empirically this new approach to hierarchical clustering. We compare hierarchical clustering based on the Baire metric with (i) agglomerative hierarchical clustering, in terms of algorithm properties; (ii) generalized ultrametrics, in terms of definition; and (iii) fast clustering through k-means partititioning, in terms of quality of results. For the latter, we carry out an in depth astronomical study. We apply the Baire distance to spectrometric and photometric redshifts from the Sloan Digital Sky Survey using, in this work, about half a million astronomical objects. We want to know how well the (more costly to determine) spectrometric redshifts can predict the (more easily obtained) photometric redshifts, i.e. we seek to regress the spectrometric on the photometric redshifts, and we use clusterwi...

  4. Hierarchical manifold learning.

    Science.gov (United States)

    Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Jo; Rueckert, Daniel

    2012-01-01

    We present a novel method of hierarchical manifold learning which aims to automatically discover regional variations within images. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate its utility in two very different settings: (1) to learn the regional correlations in motion within a sequence of time-resolved images of the thoracic cavity; (2) to find discriminative regions of 3D brain images in the classification of neurodegenerative disease,

  5. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  6. HDS: Hierarchical Data System

    Science.gov (United States)

    Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.

    2015-02-01

    The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023). HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

  7. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  8. Regression analysis by example

    CERN Document Server

    Chatterjee, Samprit

    2012-01-01

    Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded

  9. Unitary Response Regression Models

    Science.gov (United States)

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  10. Flexible survival regression modelling

    DEFF Research Database (Denmark)

    Cortese, Giuliana; Scheike, Thomas H; Martinussen, Torben

    2009-01-01

    Regression analysis of survival data, and more generally event history data, is typically based on Cox's regression model. We here review some recent methodology, focusing on the limitations of Cox's regression model. The key limitation is that the model is not well suited to represent time-varyi...

  11. Quantile Regression Methods

    DEFF Research Database (Denmark)

    Fitzenberger, Bernd; Wilke, Ralf Andreas

    2015-01-01

    Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights by m...... treatment of the topic is based on the perspective of applied researchers using quantile regression in their empirical work....

  12. Heteroscedasticity checks for regression models

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For checking on heteroscedasticity in regression models, a unified approach is proposed to constructing test statistics in parametric and nonparametric regression models. For nonparametric regression, the test is not affected sensitively by the choice of smoothing parameters which are involved in estimation of the nonparametric regression function. The limiting null distribution of the test statistic remains the same in a wide range of the smoothing parameters. When the covariate is one-dimensional, the tests are, under some conditions, asymptotically distribution-free. In the high-dimensional cases, the validity of bootstrap approximations is investigated. It is shown that a variant of the wild bootstrap is consistent while the classical bootstrap is not in the general case, but is applicable if some extra assumption on conditional variance of the squared error is imposed. A simulation study is performed to provide evidence of how the tests work and compare with tests that have appeared in the literature. The approach may readily be extended to handle partial linear, and linear autoregressive models.

  13. ORDINAL REGRESSION FOR INFORMATION RETRIEVAL

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This letter presents a new discriminative model for Information Retrieval (IR), referred to as Ordinal Regression Model (ORM). ORM is different from most existing models in that it views IR as ordinal regression problem (i.e. ranking problem) instead of binary classification. It is noted that the task of IR is to rank documents according to the user information needed, so IR can be viewed as ordinal regression problem. Two parameter learning algorithms for ORM are presented. One is a perceptron-based algorithm. The other is the ranking Support Vector Machine (SVM). The effectiveness of the proposed approach has been evaluated on the task of ad hoc retrieval using three English Text REtrieval Conference (TREC) sets and two Chinese TREC sets. Results show that ORM significantly outperforms the state-of-the-art language model approaches and OKAPI system in all test sets; and it is more appropriate to view IR as ordinal regression other than binary classification.

  14. Regression for economics

    CERN Document Server

    Naghshpour, Shahdad

    2012-01-01

    Regression analysis is the most commonly used statistical method in the world. Although few would characterize this technique as simple, regression is in fact both simple and elegant. The complexity that many attribute to regression analysis is often a reflection of their lack of familiarity with the language of mathematics. But regression analysis can be understood even without a mastery of sophisticated mathematical concepts. This book provides the foundation and will help demystify regression analysis using examples from economics and with real data to show the applications of the method. T

  15. Correcting for Test Score Measurement Error in ANCOVA Models for Estimating Treatment Effects

    Science.gov (United States)

    Lockwood, J. R.; McCaffrey, Daniel F.

    2014-01-01

    A common strategy for estimating treatment effects in observational studies using individual student-level data is analysis of covariance (ANCOVA) or hierarchical variants of it, in which outcomes (often standardized test scores) are regressed on pretreatment test scores, other student characteristics, and treatment group indicators. Measurement…

  16. Hierarchical Star Formation Across Galactic Disks

    Science.gov (United States)

    Gouliermis, Dimitrios

    2016-09-01

    Most stars form in clusters. This fact has emerged from the finding that "embedded clusters account for the 70 - 90% fraction of all stars formed in Giant Molecular Clouds (GMCs)." While this is the case at scales of few 10 parsecs, typical for GMCs, a look at star-forming galaxies in the Local Group (LG) shows significant populations of enormous loose complexes of early-type stars extending at scales from few 100 to few 1000 parsecs. The fact that these stellar complexes host extremely large numbers of loosely distributed massive blue stars implies either that stars form also in an unbound fashion or they are immediately dislocated from their original compact birthplaces or both. The Legacy Extra-Galactic UV Survey (LEGUS) has produced remarkable collections of resolved early-type stars in 50 star-forming LG galaxies, suited for testing ideas about recent star formation. I will present results from our ongoing project on star formation across LEGUS disk galaxies. We characterize the global clustering behavior of the massive young stars in order to understand the morphology of star formation over galactic scales. This morphology appears to be self-similar with fractal dimensions comparable to those of the molecular interstellar medium, apparently driven by large-scale turbulence. Our clustering analysis reveals compact stellar systems nested in larger looser concentrations, which themselves are the dense parts of unbound complexes and super-structures, giving evidence of hierarchical star formation up to galactic scales. We investigate the structural and star formation parameters demographics of the star-forming complexes revealed at various levels of compactness. I will discuss the outcome of our correlation and regression analyses on these parameters in an attempt to understand the link between galactic disk dynamics and morphological structure in spiral and ring galaxies of the local universe.

  17. A hierarchical linear model for tree height prediction.

    Science.gov (United States)

    Vicente J. Monleon

    2003-01-01

    Measuring tree height is a time-consuming process. Often, tree diameter is measured and height is estimated from a published regression model. Trees used to develop these models are clustered into stands, but this structure is ignored and independence is assumed. In this study, hierarchical linear models that account explicitly for the clustered structure of the data...

  18. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  19. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  20. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  1. Autistic epileptiform regression.

    Science.gov (United States)

    Canitano, Roberto; Zappella, Michele

    2006-01-01

    Autistic regression is a well known condition that occurs in one third of children with pervasive developmental disorders, who, after normal development in the first year of life, undergo a global regression during the second year that encompasses language, social skills and play. In a portion of these subjects, epileptiform abnormalities are present with or without seizures, resembling, in some respects, other epileptiform regressions of language and behaviour such as Landau-Kleffner syndrome. In these cases, for a more accurate definition of the clinical entity, the term autistic epileptifom regression has been suggested. As in other epileptic syndromes with regression, the relationships between EEG abnormalities, language and behaviour, in autism, are still unclear. We describe two cases of autistic epileptiform regression selected from a larger group of children with autistic spectrum disorders, with the aim of discussing the clinical features of the condition, the therapeutic approach and the outcome.

  2. Scaled Sparse Linear Regression

    CERN Document Server

    Sun, Tingni

    2011-01-01

    Scaled sparse linear regression jointly estimates the regression coefficients and noise level in a linear model. It chooses an equilibrium with a sparse regression method by iteratively estimating the noise level via the mean residual squares and scaling the penalty in proportion to the estimated noise level. The iterative algorithm costs nearly nothing beyond the computation of a path of the sparse regression estimator for penalty levels above a threshold. For the scaled Lasso, the algorithm is a gradient descent in a convex minimization of a penalized joint loss function for the regression coefficients and noise level. Under mild regularity conditions, we prove that the method yields simultaneously an estimator for the noise level and an estimated coefficient vector in the Lasso path satisfying certain oracle inequalities for the estimation of the noise level, prediction, and the estimation of regression coefficients. These oracle inequalities provide sufficient conditions for the consistency and asymptotic...

  3. Assessing the Significance of Cohort and Period Effects in Hierarchical Age-Period-Cohort Models: Applications to Verbal Test Scores and Voter Turnout in U.S. Presidential Elections.

    Science.gov (United States)

    Frenk, Steven M; Yang, Yang Claire; Land, Kenneth C

    2013-01-01

    In recently developed hierarchical age-period-cohort (HAPC) models, inferential questions arise: How can one assess or judge the significance of estimates of individual cohort and period effects in such models? And how does one assess the overall statistical significance of the cohort and/or the period effects? Beyond statistical significance is the question of substantive significance. This paper addresses these questions. In the context of empirical applications of linear and generalized linear mixed-model specifications of HAPC models using data on verbal test scores and voter turnout in U.S. presidential elections, respectively, we describe a two-step approach and a set of guidelines for assessing statistical significance. The guidelines include assessments of patterns of effects and statistical tests both for the effects of individual cohorts and time periods as well as for entire sets of cohorts and periods. The empirical applications show strong evidence that trends in verbal test scores are primarily cohort driven, while voter turnout is primarily a period phenomenon.

  4. Rolling Regressions with Stata

    OpenAIRE

    Kit Baum

    2004-01-01

    This talk will describe some work underway to add a "rolling regression" capability to Stata's suite of time series features. Although commands such as "statsby" permit analysis of non-overlapping subsamples in the time domain, they are not suited to the analysis of overlapping (e.g. "moving window") samples. Both moving-window and widening-window techniques are often used to judge the stability of time series regression relationships. We will present an implementation of a rolling regression...

  5. Unbiased Quasi-regression

    Institute of Scientific and Technical Information of China (English)

    Guijun YANG; Lu LIN; Runchu ZHANG

    2007-01-01

    Quasi-regression, motivated by the problems arising in the computer experiments, focuses mainly on speeding up evaluation. However, its theoretical properties are unexplored systemically. This paper shows that quasi-regression is unbiased, strong convergent and asymptotic normal for parameter estimations but it is biased for the fitting of curve. Furthermore, a new method called unbiased quasi-regression is proposed. In addition to retaining the above asymptotic behaviors of parameter estimations, unbiased quasi-regression is unbiased for the fitting of curve.

  6. Introduction to regression graphics

    CERN Document Server

    Cook, R Dennis

    2009-01-01

    Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava

  7. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2005-01-01

    Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: ""I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression."" -Technometrics, February 1987 ""Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis."" -American Scientist, May-June 1987

  8. Is the current pertussis incidence only the results of testing? A spatial and space-time analysis of pertussis surveillance data using cluster detection methods and geographically weighted regression modelling

    Science.gov (United States)

    Kauhl, Boris; Heil, Jeanne; Hoebe, Christian J. P. A.; Schweikart, Jürgen; Krafft, Thomas; Dukers-Muijrers, Nicole H. T. M.

    2017-01-01

    Background Despite high vaccination coverage, pertussis incidence in the Netherlands is amongst the highest in Europe with a shifting tendency towards adults and elderly. Early detection of outbreaks and preventive actions are necessary to prevent severe complications in infants. Efficient pertussis control requires additional background knowledge about the determinants of testing and possible determinants of the current pertussis incidence. Therefore, the aim of our study is to examine the possibility of locating possible pertussis outbreaks using space-time cluster detection and to examine the determinants of pertussis testing and incidence using geographically weighted regression models. Methods We analysed laboratory registry data including all geocoded pertussis tests in the southern area of the Netherlands between 2007 and 2013. Socio-demographic and infrastructure-related population data were matched to the geo-coded laboratory data. The spatial scan statistic was applied to detect spatial and space-time clusters of testing, incidence and test-positivity. Geographically weighted Poisson regression (GWPR) models were then constructed to model the associations between the age-specific rates of testing and incidence and possible population-based determinants. Results Space-time clusters for pertussis incidence overlapped with space-time clusters for testing, reflecting a strong relationship between testing and incidence, irrespective of the examined age group. Testing for pertussis itself was overall associated with lower socio-economic status, multi-person-households, proximity to primary school and availability of healthcare. The current incidence in contradiction is mainly determined by testing and is not associated with a lower socioeconomic status. Discussion Testing for pertussis follows to an extent the general healthcare seeking behaviour for common respiratory infections, whereas the current pertussis incidence is largely the result of testing. More

  9. Advantages and limitations of anticipating laboratory test results from regression- and tree-based rules derived from electronic health-record data.

    Directory of Open Access Journals (Sweden)

    Fahim Mohammad

    Full Text Available Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal". We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV and area under the receiver-operator characteristic curve (ROC AUCs. Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.

  10. Morse–Smale Regression

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Samuel [Univ. of Utah, Salt Lake City, UT (United States); Rubel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Whitaker, Ross T. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-19

    This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduces a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse–Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this article introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to overfitting. The Morse–Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse–Smale regression. Supplementary Materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse–Smale complex approximation, and additional tables for the climate-simulation study.

  11. Hierarchical partial order ranking.

    Science.gov (United States)

    Carlsen, Lars

    2008-09-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritization of polluted sites is given.

  12. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  13. Hierarchical Affinity Propagation

    CERN Document Server

    Givoni, Inmar; Frey, Brendan J

    2012-01-01

    Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...

  14. Optimisation by hierarchical search

    Science.gov (United States)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  15. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Yonghao; Hess, Dennis W [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100 (United States); Liu Yan; Wong, C P, E-mail: dennis.hess@chbe.gatech.edu, E-mail: cp.wong@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245 (United States)

    2010-04-16

    Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion.

  16. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  17. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L; Bod, Rens; Christiansen, Morten H

    2012-11-22

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science.

  18. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  19. Associative Hierarchical Random Fields.

    Science.gov (United States)

    Ladický, L'ubor; Russell, Chris; Kohli, Pushmeet; Torr, Philip H S

    2014-06-01

    This paper makes two contributions: the first is the proposal of a new model-The associative hierarchical random field (AHRF), and a novel algorithm for its optimization; the second is the application of this model to the problem of semantic segmentation. Most methods for semantic segmentation are formulated as a labeling problem for variables that might correspond to either pixels or segments such as super-pixels. It is well known that the generation of super pixel segmentations is not unique. This has motivated many researchers to use multiple super pixel segmentations for problems such as semantic segmentation or single view reconstruction. These super-pixels have not yet been combined in a principled manner, this is a difficult problem, as they may overlap, or be nested in such a way that the segmentations form a segmentation tree. Our new hierarchical random field model allows information from all of the multiple segmentations to contribute to a global energy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalizes much of the previous work based on pixels or segments, and the resulting labelings can be viewed both as a detailed segmentation at the pixel level, or at the other extreme, as a segment selector that pieces together a solution like a jigsaw, selecting the best segments from different segmentations as pieces. We evaluate its performance on some of the most challenging data sets for object class segmentation, and show that this ability to perform inference using multiple overlapping segmentations leads to state-of-the-art results.

  20. XRA image segmentation using regression

    Science.gov (United States)

    Jin, Jesse S.

    1996-04-01

    Segmentation is an important step in image analysis. Thresholding is one of the most important approaches. There are several difficulties in segmentation, such as automatic selecting threshold, dealing with intensity distortion and noise removal. We have developed an adaptive segmentation scheme by applying the Central Limit Theorem in regression. A Gaussian regression is used to separate the distribution of background from foreground in a single peak histogram. The separation will help to automatically determine the threshold. A small 3 by 3 widow is applied and the modal of the local histogram is used to overcome noise. Thresholding is based on local weighting, where regression is used again for parameter estimation. A connectivity test is applied to the final results to remove impulse noise. We have applied the algorithm to x-ray angiogram images to extract brain arteries. The algorithm works well for single peak distribution where there is no valley in the histogram. The regression provides a method to apply knowledge in clustering. Extending regression for multiple-level segmentation needs further investigation.

  1. Utilização de modelos de regressão aleatória para produção de leite no dia do controle, com diferentes estruturas de variâncias residuais Random regression test-day models for milk yield records, with different structure of residual variances

    Directory of Open Access Journals (Sweden)

    Lenira El Faro

    2003-10-01

    Full Text Available Foram utilizados quatorze modelos de regressão aleatória, para ajustar 86.598 dados de produção de leite no dia do controle de 2.155 primeiras lactações de vacas Caracu, truncadas aos 305 dias. Os modelos incluíram os efeitos fixos de grupo contemporâneo e a covariável idade da vaca ao parto. Uma regressão ortogonal de ordem cúbica foi usada para modelar a trajetória média da população. Os efeitos genéticos aditivos e de ambiente permanente foram modelados por meio de regressões aleatórias, usando polinômios ortogonais de Legendre, de ordens cúbicas. Diferentes estruturas de variâncias residuais foram testadas e consideradas por meio de classes contendo 1, 10, 15 e 43 variâncias residuais e de funções de variâncias (FV usando polinômios ordinários e ortogonais, cujas ordens variaram de quadrática até sêxtupla. Os modelos foram comparados usando o teste da razão de verossimilhança, o Critério de Informação de Akaike e o Critério de Informação Bayesiano de Schwar. Os testes indicaram que, quanto maior a ordem da função de variâncias, melhor o ajuste. Dos polinômios ordinários, a função de sexta ordem foi superior. Os modelos com classes de variâncias residuais foram aparentemente superiores àqueles com funções de variância. O modelo com homogeneidade de variâncias foi inadequado. O modelo com 15 classes heterogêneas foi o que melhor ajustou às variâncias residuais, entretanto, os parâmetros genéticos estimados foram muito próximos para os modelos com 10, 15 ou 43 classes de variâncias ou com FV de sexta ordem.Fourteen random regression models were used to adjust 86,595 test-day milk records of 2,155 first lactation of native Caracu cows. The models include fixed effects of contemporary group and age of cow as covariable. A cubic regression on Legendre orthogonal polynomial of days in milk was used to model the mean trend and the additive genetic and permanent environmental regressions

  2. Applied logistic regression

    CERN Document Server

    Hosmer, David W; Sturdivant, Rodney X

    2013-01-01

     A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

  3. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  4. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    Directory of Open Access Journals (Sweden)

    Maria João Gaspar

    Full Text Available Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  5. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    CERN Document Server

    Jelonek, M

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of modeling hierarchical linear equations and estimation based on MPlus software. I present my own model to illustrate the impact of different factors on school acceptation level.

  6. Transductive Ordinal Regression

    CERN Document Server

    Seah, Chun-Wei; Ong, Yew-Soon

    2011-01-01

    Ordinal regression is commonly formulated as a multi-class problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, are often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely Transductive Ordinal Regression (TOR). The key challenge of the present study lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive setting...

  7. Using Logistic Regression for Validating or Invalidating Initial Statewide Cut-Off Scores on Basic Skills Placement Tests at the Community College Level

    Science.gov (United States)

    Secolsky, Charles; Krishnan, Sathasivam; Judd, Thomas P.

    2013-01-01

    The community colleges in the state of New Jersey went through a process of establishing statewide cut-off scores for English and mathematics placement tests. The colleges wanted to communicate to secondary schools a consistent preparation that would be necessary for enrolling in Freshman Composition and College Algebra at the community college…

  8. APPLICATION OF HIERARCHICAL REINFORCEMENT LEARNING IN ENGINEERING DOMAIN

    Institute of Scientific and Technical Information of China (English)

    WEI LI; Qingtai YE; Changming ZHU

    2005-01-01

    The slow convergence rate of reinforcement learning algorithms limits their wider application.In engineering domains, hierarchical reinforcement learning is developed to perform actions temporally according to prior knowledge. This system can converge fast due to reduced state space.There is a test of elevator group control to show the power of the new system. Two conventional group control algorithms are adopted as prior knowledge. Performance indicates that hierarchical reinforcement learning can reduce the learning time dramatically.

  9. Using Historical Data and Quasi-Likelihood Logistic Regression Modeling to Test Spatial Patterns of Channel Response to Peak Flows in a Mountain Watershed

    Science.gov (United States)

    Faustini, J. M.; Jones, J. A.

    2001-12-01

    This study used an empirical modeling approach to explore landscape controls on spatial variations in reach-scale channel response to peak flows in a mountain watershed. We used historical cross-section surveys spanning 20 years at five sites on 2nd to 5th-order channels and stream gaging records spanning up to 50 years. We related the observed proportion of cross-sections at a site exhibiting detectable change between consecutive surveys to the recurrence interval of the largest peak flow during the corresponding period using a quasi-likelihood logistic regression model. Stream channel response was linearly related to flood size or return period through the logit function, but the shape of the response function varied according to basin size, bed material, and the presence or absence of large wood. At the watershed scale, we hypothesized that the spatial scale and frequency of channel adjustment should increase in the downstream direction as sediment supply increases relative to transport capacity, resulting in more transportable sediment in the channel and hence increased bed mobility. Consistent with this hypothesis, cross sections from the 4th and 5th-order main stem channels exhibit more frequent detectable changes than those at two steep third-order tributary sites. Peak flows able to mobilize bed material sufficiently to cause detectable changes in 50% of cross-section profiles had an estimated recurrence interval of 3 years for the 4th and 5th-order channels and 4 to 6 years for the 3rd-order sites. This difference increased for larger magnitude channel changes; peak flows with recurrence intervals of about 7 years produced changes in 90% of cross sections at the main stem sites, but flows able to produce the same level of response at tributary sites were three times less frequent. At finer scales, this trend of increasing bed mobility in the downstream direction is modified by variations in the degree of channel confinement by bedrock and landforms, the

  10. The new age of sudomotor function testing: a sensitive and specific biomarker for diagnosis, estimation of severity, monitoring progression and regression in response to intervention

    Directory of Open Access Journals (Sweden)

    Aaron eVinik

    2015-06-01

    Full Text Available Sudorimetry technology has evolved dramatically, as a rapid, non-invasive, robust, and accurate biomarker for small fibers that can easily be integrated into clinical practice. Though skin biopsy with quantitation of intraepidermal nerve fiber density (IENFD is still currently recognized as the gold standard in the evaluation, sudorimetry may yield diagnostic information not only on autonomic dysfunction, but also enhance the assessment of the small somatosensory nerves, disease detection, progression, and response to therapy. Sudoscan is based on different electrochemical principles (reverse iontophoresis and chronoamperometry to measure sudomotor function than prior technologies, affording it a much more practical and precise performance profile for routine clinical use with potential as a research tool. Small nerve fiber dysfunction has been found to occur early in metabolic syndrome and diabetes and may also be the only neurological manifestation in small fiber neuropathies, beneath the detection limits of traditional nerve function tests. Test results are robust, accomplished within minutes, require little technical training, no calculations since established norms have been provided for the effects of age, gender and ethnicity. Sudomotor testing has been greatly under-utilized in the past, restricted to specialist centers capable of handling the technically demanding, invasive biopsies for quantitation of IENF and expensive technology. Yet evaluation of autonomic and somatic nerve function has been shown to be the single best estimate of cardiovascular risk. Evaluation of sweating has the appeal of quantifiable non–invasive determination of the integrity of the peripheral autonomic nervous system, and can now be accomplished with the Sudoscan™ tool rapidly at point of care clinics, allowing intervention for morbid complications prior to permanent structural nerve damage. We review here sudomotor function testing technology; the

  11. A general framework for the use of logistic regression models in meta-analysis.

    Science.gov (United States)

    Simmonds, Mark C; Higgins, Julian Pt

    2016-12-01

    Where individual participant data are available for every randomised trial in a meta-analysis of dichotomous event outcomes, "one-stage" random-effects logistic regression models have been proposed as a way to analyse these data. Such models can also be used even when individual participant data are not available and we have only summary contingency table data. One benefit of this one-stage regression model over conventional meta-analysis methods is that it maximises the correct binomial likelihood for the data and so does not require the common assumption that effect estimates are normally distributed. A second benefit of using this model is that it may be applied, with only minor modification, in a range of meta-analytic scenarios, including meta-regression, network meta-analyses and meta-analyses of diagnostic test accuracy. This single model can potentially replace the variety of often complex methods used in these areas. This paper considers, with a range of meta-analysis examples, how random-effects logistic regression models may be used in a number of different types of meta-analyses. This one-stage approach is compared with widely used meta-analysis methods including Bayesian network meta-analysis and the bivariate and hierarchical summary receiver operating characteristic (ROC) models for meta-analyses of diagnostic test accuracy.

  12. The Role of Achievement Goals in Online Test Anxiety and Help-Seeking

    Science.gov (United States)

    Yang, Yan; Taylor, Jeff

    2013-01-01

    The purpose of this study was to examine the role of achievement goals in online test anxiety and help-seeking while controlling for self-efficacy and potential demographic differences. A total of 150 online students participated in the survey. Separate hierarchical regression analysis results suggested the differential roles of achievement goals…

  13. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    OpenAIRE

    Jelonek, Magdalena

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of m...

  14. Bayesian hierarchical modeling of drug stability data.

    Science.gov (United States)

    Chen, Jie; Zhong, Jinglin; Nie, Lei

    2008-06-15

    Stability data are commonly analyzed using linear fixed or random effect model. The linear fixed effect model does not take into account the batch-to-batch variation, whereas the random effect model may suffer from the unreliable shelf-life estimates due to small sample size. Moreover, both methods do not utilize any prior information that might have been available. In this article, we propose a Bayesian hierarchical approach to modeling drug stability data. Under this hierarchical structure, we first use Bayes factor to test the poolability of batches. Given the decision on poolability of batches, we then estimate the shelf-life that applies to all batches. The approach is illustrated with two example data sets and its performance is compared in simulation studies with that of the commonly used frequentist methods. (c) 2008 John Wiley & Sons, Ltd.

  15. Hierarchical fringe tracking

    CERN Document Server

    Petrov, Romain G; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stephane; Bresson, Yves; Benkhaldoum, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu

    2014-01-01

    The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups. The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by g...

  16. Hierarchical Reverberation Mapping

    CERN Document Server

    Brewer, Brendon J

    2013-01-01

    Reverberation mapping (RM) is an important technique in studies of active galactic nuclei (AGN). The key idea of RM is to measure the time lag $\\tau$ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of $\\tau$ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass $M_{\\rm BH}$. A major difficulty with RM campaigns is the large amount of data needed to measure $\\tau$. Recently, Fine et al (2012) introduced a new approach to RM where the BLR light curve is sparsely sampled, but this is counteracted by observing a large sample of AGN, rather than a single system. The results are combined to infer properties of the sample of AGN. In this letter we implement this method using a hierarchical Bayesian model and contrast this with the results from the previous stacked cross-correlation technique. We find that our inferences are more precise and allow fo...

  17. Constrained Sparse Galerkin Regression

    CERN Document Server

    Loiseau, Jean-Christophe

    2016-01-01

    In this work, we demonstrate the use of sparse regression techniques from machine learning to identify nonlinear low-order models of a fluid system purely from measurement data. In particular, we extend the sparse identification of nonlinear dynamics (SINDy) algorithm to enforce physical constraints in the regression, leading to energy conservation. The resulting models are closely related to Galerkin projection models, but the present method does not require the use of a full-order or high-fidelity Navier-Stokes solver to project onto basis modes. Instead, the most parsimonious nonlinear model is determined that is consistent with observed measurement data and satisfies necessary constraints. The constrained Galerkin regression algorithm is implemented on the fluid flow past a circular cylinder, demonstrating the ability to accurately construct models from data.

  18. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  19. Hierarchical clustering for graph visualization

    CERN Document Server

    Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi

    2012-01-01

    This paper describes a graph visualization methodology based on hierarchical maximal modularity clustering, with interactive and significant coarsening and refining possibilities. An application of this method to HIV epidemic analysis in Cuba is outlined.

  20. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  1. Practical Session: Logistic Regression

    Science.gov (United States)

    Clausel, M.; Grégoire, G.

    2014-12-01

    An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.

  2. Minimax Regression Quantiles

    DEFF Research Database (Denmark)

    Bache, Stefan Holst

    A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....

  3. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  4. Assumptions of Multiple Regression: Correcting Two Misconceptions

    Directory of Open Access Journals (Sweden)

    Matt N. Williams

    2013-09-01

    Full Text Available In 2002, an article entitled - Four assumptions of multiple regression that researchers should always test- by.Osborne and Waters was published in PARE. This article has gone on to be viewed more than 275,000 times.(as of August 2013, and it is one of the first results displayed in a Google search for - regression.assumptions- . While Osborne and Waters' efforts in raising awareness of the need to check assumptions.when using regression are laudable, we note that the original article contained at least two fairly important.misconceptions about the assumptions of multiple regression: Firstly, that multiple regression requires the.assumption of normally distributed variables; and secondly, that measurement errors necessarily cause.underestimation of simple regression coefficients. In this article, we clarify that multiple regression models.estimated using ordinary least squares require the assumption of normally distributed errors in order for.trustworthy inferences, at least in small samples, but not the assumption of normally distributed response or.predictor variables. Secondly, we point out that regression coefficients in simple regression models will be.biased (toward zero estimates of the relationships between variables of interest when measurement error is.uncorrelated across those variables, but that when correlated measurement error is present, regression.coefficients may be either upwardly or downwardly biased. We conclude with a brief corrected summary of.the assumptions of multiple regression when using ordinary least squares.

  5. Hierarchical architecture of active knits

    Science.gov (United States)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-12-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm.

  6. Heteroscedasticity checks for regression models

    Institute of Scientific and Technical Information of China (English)

    ZHU; Lixing

    2001-01-01

    [1]Carroll, R. J., Ruppert, D., Transformation and Weighting in Regression, New York: Chapman and Hall, 1988.[2]Cook, R. D., Weisberg, S., Diagnostics for heteroscedasticity in regression, Biometrika, 1988, 70: 1—10.[3]Davidian, M., Carroll, R. J., Variance function estimation, J. Amer. Statist. Assoc., 1987, 82: 1079—1091.[4]Bickel, P., Using residuals robustly I: Tests for heteroscedasticity, Ann. Statist., 1978, 6: 266—291.[5]Carroll, R. J., Ruppert, D., On robust tests for heteroscedasticity, Ann. Statist., 1981, 9: 205—209.[6]Eubank, R. L., Thomas, W., Detecting heteroscedasticity in nonparametric regression, J. Roy. Statist. Soc., Ser. B, 1993, 55: 145—155.[7]Diblasi, A., Bowman, A., Testing for constant variance in a linear model, Statist. and Probab. Letters, 1997, 33: 95—103.[8]Dette, H., Munk, A., Testing heteoscedasticity in nonparametric regression, J. R. Statist. Soc. B, 1998, 60: 693—708.[9]Müller, H. G., Zhao, P. L., On a semi-parametric variance function model and a test for heteroscedasticity, Ann. Statist., 1995, 23: 946—967.[10]Stute, W., Manteiga, G., Quindimil, M. P., Bootstrap approximations in model checks for regression, J. Amer. Statist. Asso., 1998, 93: 141—149.[11]Stute, W., Thies, G., Zhu, L. X., Model checks for regression: An innovation approach, Ann. Statist., 1998, 26: 1916—1939.[12]Shorack, G. R., Wellner, J. A., Empirical Processes with Applications to Statistics, New York: Wiley, 1986.[13]Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Statist., 1979, 7: 1—26.[14]Wu, C. F. J., Jackknife, bootstrap and other re-sampling methods in regression analysis, Ann. Statist., 1986, 14: 1261—1295.[15]H rdle, W., Mammen, E., Comparing non-parametric versus parametric regression fits, Ann. Statist., 1993, 21: 1926—1947.[16]Liu, R. Y., Bootstrap procedures under some non-i.i.d. models, Ann. Statist., 1988, 16: 1696—1708.[17

  7. Advanced hierarchical distance sampling

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.

  8. Nonlinear Regression with R

    CERN Document Server

    Ritz, Christian; Parmigiani, Giovanni

    2009-01-01

    R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

  9. Multiple linear regression analysis

    Science.gov (United States)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  10. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  11. Software Regression Verification

    Science.gov (United States)

    2013-12-11

    of recursive procedures. Acta Informatica , 45(6):403 – 439, 2008. [GS11] Benny Godlin and Ofer Strichman. Regression verifica- tion. Technical Report...functions. Therefore, we need to rede - fine m-term. – Mutual termination. If either function f or function f ′ (or both) is non- deterministic, then their

  12. Regression Model With Elliptically Contoured Errors

    CERN Document Server

    Arashi, M; Tabatabaey, S M M

    2012-01-01

    For the regression model where the errors follow the elliptically contoured distribution (ECD), we consider the least squares (LS), restricted LS (RLS), preliminary test (PT), Stein-type shrinkage (S) and positive-rule shrinkage (PRS) estimators for the regression parameters. We compare the quadratic risks of the estimators to determine the relative dominance properties of the five estimators.

  13. Low rank Multivariate regression

    CERN Document Server

    Giraud, Christophe

    2010-01-01

    We consider in this paper the multivariate regression problem, when the target regression matrix $A$ is close to a low rank matrix. Our primary interest in on the practical case where the variance of the noise is unknown. Our main contribution is to propose in this setting a criterion to select among a family of low rank estimators and prove a non-asymptotic oracle inequality for the resulting estimator. We also investigate the easier case where the variance of the noise is known and outline that the penalties appearing in our criterions are minimal (in some sense). These penalties involve the expected value of the Ky-Fan quasi-norm of some random matrices. These quantities can be evaluated easily in practice and upper-bounds can be derived from recent results in random matrix theory.

  14. Subset selection in regression

    CERN Document Server

    Miller, Alan

    2002-01-01

    Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...

  15. Classification and regression trees

    CERN Document Server

    Breiman, Leo; Olshen, Richard A; Stone, Charles J

    1984-01-01

    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  16. Aid and growth regressions

    DEFF Research Database (Denmark)

    Hansen, Henrik; Tarp, Finn

    2001-01-01

    . There are, however, decreasing returns to aid, and the estimated effectiveness of aid is highly sensitive to the choice of estimator and the set of control variables. When investment and human capital are controlled for, no positive effect of aid is found. Yet, aid continues to impact on growth via...... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes....

  17. Robust Nonstationary Regression

    OpenAIRE

    1993-01-01

    This paper provides a robust statistical approach to nonstationary time series regression and inference. Fully modified extensions of traditional robust statistical procedures are developed which allow for endogeneities in the nonstationary regressors and serial dependence in the shocks that drive the regressors and the errors that appear in the equation being estimated. The suggested estimators involve semiparametric corrections to accommodate these possibilities and they belong to the same ...

  18. Hierarchical topic modeling with nested hierarchical Dirichlet process

    Institute of Scientific and Technical Information of China (English)

    Yi-qun DING; Shan-ping LI; Zhen ZHANG; Bin SHEN

    2009-01-01

    This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as welt as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more free-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.

  19. TWO REGRESSION CREDIBILITY MODELS

    Directory of Open Access Journals (Sweden)

    Constanţa-Nicoleta BODEA

    2010-03-01

    Full Text Available In this communication we will discuss two regression credibility models from Non – Life Insurance Mathematics that can be solved by means of matrix theory. In the first regression credibility model, starting from a well-known representation formula of the inverse for a special class of matrices a risk premium will be calculated for a contract with risk parameter θ. In the next regression credibility model, we will obtain a credibility solution in the form of a linear combination of the individual estimate (based on the data of a particular state and the collective estimate (based on aggregate USA data. To illustrate the solution with the properties mentioned above, we shall need the well-known representation theorem for a special class of matrices, the properties of the trace for a square matrix, the scalar product of two vectors, the norm with respect to a positive definite matrix given in advance and the complicated mathematical properties of conditional expectations and of conditional covariances.

  20. REGRESSION ANALYSIS OF PRODUCTIVITY USING MIXED EFFECT MODEL

    Directory of Open Access Journals (Sweden)

    Siana Halim

    2007-01-01

    Full Text Available Production plants of a company are located in several areas that spread across Middle and East Java. As the production process employs mostly manpower, we suspected that each location has different characteristics affecting the productivity. Thus, the production data may have a spatial and hierarchical structure. For fitting a linear regression using the ordinary techniques, we are required to make some assumptions about the nature of the residuals i.e. independent, identically and normally distributed. However, these assumptions were rarely fulfilled especially for data that have a spatial and hierarchical structure. We worked out the problem using mixed effect model. This paper discusses the model construction of productivity and several characteristics in the production line by taking location as a random effect. The simple model with high utility that satisfies the necessary regression assumptions was built using a free statistic software R version 2.6.1.

  1. Road Network Selection Based on Road Hierarchical Structure Control

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2015-04-01

    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  2. Building Algebra Testlets: A Comparison of Hierarchical and Linear Structures.

    Science.gov (United States)

    Wainer, Howard; And Others

    1991-01-01

    Hierarchical (adaptive) and linear methods of testlet construction were compared. The performance of 2,080 ninth and tenth graders on a 4-item testlet was used to predict performance on the entire test. The adaptive test was slightly superior as a predictor, but the cost of obtaining that superiority was considerable. (SLD)

  3. Building Algebra Testlets: A Comparison of Hierarchical and Linear Structures.

    Science.gov (United States)

    Wainer, Howard; And Others

    1991-01-01

    Hierarchical (adaptive) and linear methods of testlet construction were compared. The performance of 2,080 ninth and tenth graders on a 4-item testlet was used to predict performance on the entire test. The adaptive test was slightly superior as a predictor, but the cost of obtaining that superiority was considerable. (SLD)

  4. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    Purpose This paper aims to present that deliberate change is strongly associated with formal structures and top-down influence. Hierarchical configurations have been used to structure processes, overcome resistance and get things done. But is deliberate change also possible without formal...... reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  5. Static Correctness of Hierarchical Procedures

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff

    1990-01-01

    A system of hierarchical, fully recursive types in a truly imperative language allows program fragments written for small types to be reused for all larger types. To exploit this property to enable type-safe hierarchical procedures, it is necessary to impose a static requirement on procedure calls....... We introduce an example language and prove the existence of a sound requirement which preserves static correctness while allowing hierarchical procedures. This requirement is further shown to be optimal, in the sense that it imposes as few restrictions as possible. This establishes the theoretical...... basis for a general type hierarchy with static type checking, which enables first-order polymorphism combined with multiple inheritance and specialization in a language with assignments. We extend the results to include opaque types. An opaque version of a type is different from the original but has...

  6. 基于蚁群算法的GUI软件回归测试用例集优化%Ant Algorithm-Based Regression Test Suite Optimization for GUI Software

    Institute of Scientific and Technical Information of China (English)

    于长钺; 张萌萌; 窦平安; 于秀山

    2012-01-01

    针对GUI(Graphical User Interface)软件输入/输出图形化、事件驱动、事件触发随机性所带来的回归测试用例数量巨大的难题,在GUI事件模型图基础上,构建了GUI软件回归测试用例集优化数学模型,给出了目标函数和约束条件,提出了一种基于蚁群算法的求解方法,制定了蚂蚁信息素更新规则和蚂蚁路径选择规则.仿真结果表明,该方法在保证覆盖效果的前提下,可以有效减少回归测试用例的数量和长度.%Aimed at the large number of regression test cases caused by the features of graphical input/output, event driven, random event trigger in GUI (Graphical User Interface) software, and on the basis of GUI event model, a mathematical model of regression test suite optimization for GUI software is constructed. The objective function and constraints in the model are given. And an ant algorithm is presented to solve the problem. Ant pheromone update rules and ant path selection rules in the algorithm are set. Simulation results show that under the premise that coverage is guaranteed, this method can reduce both the number and length of test case effectively.

  7. An introduction to hierarchical linear modeling

    Directory of Open Access Journals (Sweden)

    Heather Woltman

    2012-02-01

    Full Text Available This tutorial aims to introduce Hierarchical Linear Modeling (HLM. A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis. The first section of the tutorial defines HLM, clarifies its purpose, and states its advantages. The second section explains the mathematical theory, equations, and conditions underlying HLM. HLM hypothesis testing is performed in the third section. Finally, the fourth section provides a practical example of running HLM, with which readers can follow along. Throughout this tutorial, emphasis is placed on providing a straightforward overview of the basic principles of HLM.

  8. Regression Verification Using Impact Summaries

    Science.gov (United States)

    Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana

    2013-01-01

    Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program

  9. Structural integrity of hierarchical composites

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2012-01-01

    Full Text Available Interface mechanical problems are of paramount importance in engineering and materials science. Traditionally, due to the complexity of modelling their mechanical behaviour, interfaces are often treated as defects and their features are not explored. In this study, a different approach is illustrated, where the interfaces play an active role in the design of innovative hierarchical composites and are fundamental for their structural integrity. Numerical examples regarding cutting tools made of hierarchical cellular polycrystalline materials are proposed, showing that tailoring of interface properties at the different scales is the way to achieve superior mechanical responses that cannot be obtained using standard materials

  10. Climate information based streamflow and rainfall forecasts for Huai River Basin using Hierarchical Bayesian Modeling

    Directory of Open Access Journals (Sweden)

    X. Chen

    2013-09-01

    Full Text Available A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow season-ahead using exogenous climate variables for East Central China is presented. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multilevel structure with regression coefficients modeled from a common multivariate normal distribution results in partial-pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include Receiver Operating Characteristic, Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast regional summer rainfall and streamflow season-ahead offers potential for developing adaptive water risk management strategies.

  11. Novel algorithm for constructing support vector machine regression ensemble

    Institute of Scientific and Technical Information of China (English)

    Li Bo; Li Xinjun; Zhao Zhiyan

    2006-01-01

    A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression(SVMR) ensemble is proposed by resampling from given training data sets repeatedly and aggregating several independent SVMRs, each of which is trained to use a replicated training set. After training, several independently trained SVMRs need to be aggregated in an appropriate combination manner. Generally, the linear weighting is usually used like expert weighting score in Boosting Regression and it is without optimization capacity. Three combination techniques are proposed, including simple arithmetic mean,linear least square error weighting and nonlinear hierarchical combining that uses another upper-layer SVMR to combine several lower-layer SVMRs. Finally, simulation experiments demonstrate the accuracy and validity of the presented algorithm.

  12. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  13. Sensory Hierarchical Organization and Reading.

    Science.gov (United States)

    Skapof, Jerome

    The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…

  14. Memory Stacking in Hierarchical Networks.

    Science.gov (United States)

    Westö, Johan; May, Patrick J C; Tiitinen, Hannu

    2016-02-01

    Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns.

  15. Caudal Regression Syndrome

    Directory of Open Access Journals (Sweden)

    Karim Hardani*

    2012-05-01

    Full Text Available A 10-month-old baby presented with developmental delay. He had flaccid paralysis on physical examination.An MRI of the spine revealed malformation of the ninth and tenth thoracic vertebral bodies with complete agenesis of the rest of the spine down that level. The thoracic spinal cord ends at the level of the fifth thoracic vertebra with agenesis of the posterior arches of the eighth, ninth and tenth thoracic vertebral bodies. The roots of the cauda equina appear tightened down and backward and ended into a subdermal fibrous fatty tissue at the level of the ninth and tenth thoracic vertebral bodies (closed meningocele. These findings are consistent with caudal regression syndrome.

  16. The Application of Classification and Regression Trees for the Triage of Women for Referral to Colposcopy and the Estimation of Risk for Cervical Intraepithelial Neoplasia: A Study Based on 1625 Cases with Incomplete Data from Molecular Tests

    Directory of Open Access Journals (Sweden)

    Abraham Pouliakis

    2015-01-01

    Full Text Available Objective. Nowadays numerous ancillary techniques detecting HPV DNA and mRNA compete with cytology; however no perfect test exists; in this study we evaluated classification and regression trees (CARTs for the production of triage rules and estimate the risk for cervical intraepithelial neoplasia (CIN in cases with ASCUS+ in cytology. Study Design. We used 1625 cases. In contrast to other approaches we used missing data to increase the data volume, obtain more accurate results, and simulate real conditions in the everyday practice of gynecologic clinics and laboratories. The proposed CART was based on the cytological result, HPV DNA typing, HPV mRNA detection based on NASBA and flow cytometry, p16 immunocytochemical expression, and finally age and parous status. Results. Algorithms useful for the triage of women were produced; gynecologists could apply these in conjunction with available examination results and conclude to an estimation of the risk for a woman to harbor CIN expressed as a probability. Conclusions. The most important test was the cytological examination; however the CART handled cases with inadequate cytological outcome and increased the diagnostic accuracy by exploiting the results of ancillary techniques even if there were inadequate missing data. The CART performance was better than any other single test involved in this study.

  17. The Development of a Hierarchical Polychotomous ADL-IADL Scale for Noninstitutionalized Elders.

    Science.gov (United States)

    Kempen, G. I. J. M.; Suurmeijer, T. P. B. M.

    1990-01-01

    Tested hierarchical scale comprising 18 activities of daily living (ADL) and instrumental activities of daily living (IADL) items on 101 noninstitutionalized older adults in Netherlands. Results confirmed possibility of constructing unidimensional, hierarchical. polychotomous scale measuring "functional problems on ADL-IADL." Considered…

  18. A Hierarchical Bayesian Model for Crowd Emotions

    Science.gov (United States)

    Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias

    2016-01-01

    Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366

  19. Parâmetros genéticos para a produção de leite de controles individuais de vacas da raça Gir estimados com modelos de repetibilidade e regressão aleatória Estimation of genetic parameters for test day milk records of first lactation Gyr cows using repeatability and random regression animal models

    Directory of Open Access Journals (Sweden)

    Claudio Napolis Costa

    2005-10-01

    número de estimativas negativas entre as PLC do início e fim da lactação do que a FAS. Exceto para a FAS, observou-se redução das estimativas de correlação genética próximas à unidade entre as PLC adjacentes para valores negativos entre as PLC no início e no fim da lactação. Entre os polinômios de Legendre, o de quinta ordem apresentou um melhor o ajuste das PLC. Os resultados indicam o potencial de uso de regressão aleatória, com os modelos LP5 e a FAS apresentando-se como os mais adequados para a modelagem das variâncias genética e de efeito permanente das PLC da raça Gir.Data comprising 8,183 test day records of 1,273 first lactations of Gyr cows from herds supervised by ABCZ were used to estimate variance components and genetic parameters for milk yield using repeatability and random regression animal models by REML. Genetic modelling of logarithmic (FAS, exponential (FW curves was compared to orthogonal Legendre polynomials (LP of order 3 to 5. Residual variance was assumed to be constant in all (ME=1 or some periods of lactation (ME=4. Lactation milk yield in 305-d was also adjusted by an animal model. Genetic variance, heritability and repeatability for test day milk yields estimated by a repeatability animal model were 1.74 kg2, 0.27, and 0.76, respectively. Genetic variance and heritability estimates for lactation milk yield were respectively 121,094.6 and 0.22. Heritability estimates from FAS and FW, respectively, decreased from 0,59 and 0.74 at the beginning of lactation to 0.20 at the end of the period. Except for a fifth-order LP with ME=1, heritability estimates decreased from around 0,70 at early lactation to 0,30 at the end of lactation. Residual variance estimates were slightly smaller for logarithimic than for exponential curves both for homogeneous and heterogeneous variance assumptions. Estimates of residual variance in all stages of lactation decreased as the order of LP increased and depended on the assumption about ME

  20. Variable and subset selection in PLS regression

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2001-01-01

    The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion...... is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than...

  1. Predicting smear negative pulmonary tuberculosis with classification trees and logistic regression: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kritski Afrânio

    2006-02-01

    Full Text Available Abstract Background Smear negative pulmonary tuberculosis (SNPT accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.

  2. Hierarchical Prisoner's Dilemma in Hierarchical Public-Goods Game

    CERN Document Server

    Fujimoto, Yuma; Kaneko, Kunihiko

    2016-01-01

    The dilemma in cooperation is one of the major concerns in game theory. In a public-goods game, each individual pays a cost for cooperation, or to prevent defection, and receives a reward from the collected cost in a group. Thus, defection is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individual players also play games. To study such a multi-level game, we introduce a hierarchical public-goods (HPG) game in which two groups compete for finite resources by utilizing costs collected from individuals in each group. Analyzing this HPG game, we found a hierarchical prisoner's dilemma, in which groups choose the defection policy (say, armaments) as a Nash strategy to optimize each group's benefit, while cooperation optimizes the total benefit. On the other hand, for each individual within a group, refusing to pay the cost (say, tax) is a Nash strategy, which turns to be a cooperation policy for the group, thus leading to a hierarchical d...

  3. Complementary Person-Culture Values Fit and Hierarchical Career Status

    Science.gov (United States)

    Holtschlag, Claudia; Morales, Carlos E.; Masuda, Aline D.; Maydeu-Olivares, Alberto

    2013-01-01

    Although career success is an issue of global concern, few studies have examined the antecedents of career success across cultures. In this study we test whether the relationship between individuals' self-enhancement values (achievement and power) and hierarchical status differs across 29 countries and whether this variation depends on countries'…

  4. Multiple comparisons in genetic association studies: a hierarchical modeling approach.

    Science.gov (United States)

    Yi, Nengjun; Xu, Shizhong; Lou, Xiang-Yang; Mallick, Himel

    2014-02-01

    Multiple comparisons or multiple testing has been viewed as a thorny issue in genetic association studies aiming to detect disease-associated genetic variants from a large number of genotyped variants. We alleviate the problem of multiple comparisons by proposing a hierarchical modeling approach that is fundamentally different from the existing methods. The proposed hierarchical models simultaneously fit as many variables as possible and shrink unimportant effects towards zero. Thus, the hierarchical models yield more efficient estimates of parameters than the traditional methods that analyze genetic variants separately, and also coherently address the multiple comparisons problem due to largely reducing the effective number of genetic effects and the number of statistically "significant" effects. We develop a method for computing the effective number of genetic effects in hierarchical generalized linear models, and propose a new adjustment for multiple comparisons, the hierarchical Bonferroni correction, based on the effective number of genetic effects. Our approach not only increases the power to detect disease-associated variants but also controls the Type I error. We illustrate and evaluate our method with real and simulated data sets from genetic association studies. The method has been implemented in our freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/).

  5. Hierarchical surfaces for enhanced self-cleaning applications

    Science.gov (United States)

    Fernández, Ariadna; Francone, Achille; Thamdrup, Lasse H.; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus; Sotomayor Torres, Clivia M.; Kehagias, Nikolaos

    2017-04-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets.

  6. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  7. Hierarchical structure of biological systems

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961

  8. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  9. Intuitionistic fuzzy hierarchical clustering algorithms

    Institute of Scientific and Technical Information of China (English)

    Xu Zeshui

    2009-01-01

    Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a mem-bership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clus-tering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.

  10. Hierarchical Formation of Galactic Clusters

    CERN Document Server

    Elmegreen, B G

    2006-01-01

    Young stellar groupings and clusters have hierarchical patterns ranging from flocculent spiral arms and star complexes on the largest scale to OB associations, OB subgroups, small loose groups, clusters and cluster subclumps on the smallest scales. There is no obvious transition in morphology at the cluster boundary, suggesting that clusters are only the inner parts of the hierarchy where stars have had enough time to mix. The power-law cluster mass function follows from this hierarchical structure: n(M_cl) M_cl^-b for b~2. This value of b is independently required by the observation that the summed IMFs from many clusters in a galaxy equals approximately the IMF of each cluster.

  11. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  12. Hierarchical Cont-Bouchaud model

    CERN Document Server

    Paluch, Robert; Holyst, Janusz A

    2015-01-01

    We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent's interactions. The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-level, nested Erdos-Renyi random graph and individual decisions by agents according to Potts dynamics. This approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-Bouchaud model. In the second model we introduce a limited hierarchical Erdos-Renyi graph, where merging of clusters at a level h+1 involves only clusters that have merged at the previous level h and we use the original Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.

  13. Hierarchical Clustering and Active Galaxies

    CERN Document Server

    Hatziminaoglou, E; Manrique, A

    2000-01-01

    The growth of Super Massive Black Holes and the parallel development of activity in galactic nuclei are implemented in an analytic code of hierarchical clustering. The evolution of the luminosity function of quasars and AGN will be computed with special attention paid to the connection between quasars and Seyfert galaxies. One of the major interests of the model is the parallel study of quasar formation and evolution and the History of Star Formation.

  14. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  15. A Hierarchical Bayes Ensemble Kalman Filter

    Science.gov (United States)

    Tsyrulnikov, Michael; Rakitko, Alexander

    2017-01-01

    A new ensemble filter that allows for the uncertainty in the prior distribution is proposed and tested. The filter relies on the conditional Gaussian distribution of the state given the model-error and predictability-error covariance matrices. The latter are treated as random matrices and updated in a hierarchical Bayes scheme along with the state. The (hyper)prior distribution of the covariance matrices is assumed to be inverse Wishart. The new Hierarchical Bayes Ensemble Filter (HBEF) assimilates ensemble members as generalized observations and allows ordinary observations to influence the covariances. The actual probability distribution of the ensemble members is allowed to be different from the true one. An approximation that leads to a practicable analysis algorithm is proposed. The new filter is studied in numerical experiments with a doubly stochastic one-variable model of "truth". The model permits the assessment of the variance of the truth and the true filtering error variance at each time instance. The HBEF is shown to outperform the EnKF and the HEnKF by Myrseth and Omre (2010) in a wide range of filtering regimes in terms of performance of its primary and secondary filters.

  16. Treatment Protocols as Hierarchical Structures

    Science.gov (United States)

    Ben-Bassat, Moshe; Carlson, Richard W.; Puri, Vinod K.; Weil, Max Harry

    1978-01-01

    We view a treatment protocol as a hierarchical structure of therapeutic modules. The lowest level of this structure consists of individual therapeutic actions. Combinations of individual actions define higher level modules, which we call routines. Routines are designed to manage limited clinical problems, such as the routine for fluid loading to correct hypovolemia. Combinations of routines and additional actions, together with comments, questions, or precautions organized in a branching logic, in turn, define the treatment protocol for a given disorder. Adoption of this modular approach may facilitate the formulation of treatment protocols, since the physician is not required to prepare complex flowcharts. This hierarchical approach also allows protocols to be updated and modified in a flexible manner. By use of such a standard format, individual components may be fitted together to create protocols for multiple disorders. The technique is suited for computer implementation. We believe that this hierarchical approach may facilitate standarization of patient care as well as aid in clinical teaching. A protocol for acute pancreatitis is used to illustrate this technique.

  17. Robust Bayesian Regularized Estimation Based on t Regression Model

    Directory of Open Access Journals (Sweden)

    Zean Li

    2015-01-01

    Full Text Available The t distribution is a useful extension of the normal distribution, which can be used for statistical modeling of data sets with heavy tails, and provides robust estimation. In this paper, in view of the advantages of Bayesian analysis, we propose a new robust coefficient estimation and variable selection method based on Bayesian adaptive Lasso t regression. A Gibbs sampler is developed based on the Bayesian hierarchical model framework, where we treat the t distribution as a mixture of normal and gamma distributions and put different penalization parameters for different regression coefficients. We also consider the Bayesian t regression with adaptive group Lasso and obtain the Gibbs sampler from the posterior distributions. Both simulation studies and real data example show that our method performs well compared with other existing methods when the error distribution has heavy tails and/or outliers.

  18. A new bivariate negative binomial regression model

    Science.gov (United States)

    Faroughi, Pouya; Ismail, Noriszura

    2014-12-01

    This paper introduces a new form of bivariate negative binomial (BNB-1) regression which can be fitted to bivariate and correlated count data with covariates. The BNB regression discussed in this study can be fitted to bivariate and overdispersed count data with positive, zero or negative correlations. The joint p.m.f. of the BNB1 distribution is derived from the product of two negative binomial marginals with a multiplicative factor parameter. Several testing methods were used to check overdispersion and goodness-of-fit of the model. Application of BNB-1 regression is illustrated on Malaysian motor insurance dataset. The results indicated that BNB-1 regression has better fit than bivariate Poisson and BNB-2 models with regards to Akaike information criterion.

  19. Regression in autistic spectrum disorders.

    Science.gov (United States)

    Stefanatos, Gerry A

    2008-12-01

    A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.

  20. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  1. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology

    Science.gov (United States)

    Kavanaugh, Maria T.; Hales, Burke; Saraceno, Martin; Spitz, Yvette H.; White, Angelicque E.; Letelier, Ricardo M.

    2014-01-01

    Comparative analyses of oceanic ecosystems require an objective framework to define coherent study regions and scale the patterns and processes observed within them. We applied the hierarchical patch mosaic paradigm of landscape ecology to the study of the seasonal variability of the North Pacific to facilitate comparative analysis between pelagic ecosystems and provide spatiotemporal context for Eulerian time-series studies. Using 13-year climatologies of sea surface temperature (SST), photosynthetically active radiation (PAR), and chlorophyll a (chl-a), we classified seascapes in environmental space that were monthly-resolved, dynamic and nested in space and time. To test the assumption that seascapes represent coherent regions with unique biogeochemical function and to determine the hierarchical scale that best characterized variance in biogeochemical parameters, independent data sets were analyzed across seascapes using analysis of variance (ANOVA), nested-ANOVA and multiple linear regression (MLR) analyses. We also compared the classification efficiency (as defined by the ANOVA F-statistic) of resultant dynamic seascapes to a commonly-used static classification system. Variance of nutrients and net primary productivity (NPP) were well characterized in the first two levels of hierarchy of eight seascapes nested within three superseascapes (R2 = 0.5-0.7). Dynamic boundaries at this level resulted in a nearly 2-fold increase in classification efficiency over static boundaries. MLR analyses revealed differential forcing on pCO2 across seascapes and hierarchical levels and a 33% reduction in mean model error with increased partitioning (from 18.5 μatm to 12.0 μatm pCO2). Importantly, the empirical influence of seasonality was minor across seascapes at all hierarchical levels, suggesting that seascape partitioning minimizes the effect of non-hydrographic variables. As part of the emerging field of pelagic seascape ecology, this effort provides an improved means of

  2. Linear regression in astronomy. I

    Science.gov (United States)

    Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh

    1990-01-01

    Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.

  3. Relative risk regression analysis of epidemiologic data.

    Science.gov (United States)

    Prentice, R L

    1985-11-01

    Relative risk regression methods are described. These methods provide a unified approach to a range of data analysis problems in environmental risk assessment and in the study of disease risk factors more generally. Relative risk regression methods are most readily viewed as an outgrowth of Cox's regression and life model. They can also be viewed as a regression generalization of more classical epidemiologic procedures, such as that due to Mantel and Haenszel. In the context of an epidemiologic cohort study, relative risk regression methods extend conventional survival data methods and binary response (e.g., logistic) regression models by taking explicit account of the time to disease occurrence while allowing arbitrary baseline disease rates, general censorship, and time-varying risk factors. This latter feature is particularly relevant to many environmental risk assessment problems wherein one wishes to relate disease rates at a particular point in time to aspects of a preceding risk factor history. Relative risk regression methods also adapt readily to time-matched case-control studies and to certain less standard designs. The uses of relative risk regression methods are illustrated and the state of development of these procedures is discussed. It is argued that asymptotic partial likelihood estimation techniques are now well developed in the important special case in which the disease rates of interest have interpretations as counting process intensity functions. Estimation of relative risks processes corresponding to disease rates falling outside this class has, however, received limited attention. The general area of relative risk regression model criticism has, as yet, not been thoroughly studied, though a number of statistical groups are studying such features as tests of fit, residuals, diagnostics and graphical procedures. Most such studies have been restricted to exponential form relative risks as have simulation studies of relative risk estimation

  4. Lumbar herniated disc: spontaneous regression

    Science.gov (United States)

    Yüksel, Kasım Zafer

    2017-01-01

    Background Low back pain is a frequent condition that results in substantial disability and causes admission of patients to neurosurgery clinics. To evaluate and present the therapeutic outcomes in lumbar disc hernia (LDH) patients treated by means of a conservative approach, consisting of bed rest and medical therapy. Methods This retrospective cohort was carried out in the neurosurgery departments of hospitals in Kahramanmaraş city and 23 patients diagnosed with LDH at the levels of L3−L4, L4−L5 or L5−S1 were enrolled. Results The average age was 38.4 ± 8.0 and the chief complaint was low back pain and sciatica radiating to one or both lower extremities. Conservative treatment was administered. Neurological examination findings, durations of treatment and intervals until symptomatic recovery were recorded. Laségue tests and neurosensory examination revealed that mild neurological deficits existed in 16 of our patients. Previously, 5 patients had received physiotherapy and 7 patients had been on medical treatment. The number of patients with LDH at the level of L3−L4, L4−L5, and L5−S1 were 1, 13, and 9, respectively. All patients reported that they had benefit from medical treatment and bed rest, and radiologic improvement was observed simultaneously on MRI scans. The average duration until symptomatic recovery and/or regression of LDH symptoms was 13.6 ± 5.4 months (range: 5−22). Conclusions It should be kept in mind that lumbar disc hernias could regress with medical treatment and rest without surgery, and there should be an awareness that these patients could recover radiologically. This condition must be taken into account during decision making for surgical intervention in LDH patients devoid of indications for emergent surgery. PMID:28119770

  5. Image Segmentation Using Hierarchical Merge Tree

    Science.gov (United States)

    Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2016-10-01

    This paper investigates one of the most fundamental computer vision problems: image segmentation. We propose a supervised hierarchical approach to object-independent image segmentation. Starting with over-segmenting superpixels, we use a tree structure to represent the hierarchy of region merging, by which we reduce the problem of segmenting image regions to finding a set of label assignment to tree nodes. We formulate the tree structure as a constrained conditional model to associate region merging with likelihoods predicted using an ensemble boundary classifier. Final segmentations can then be inferred by finding globally optimal solutions to the model efficiently. We also present an iterative training and testing algorithm that generates various tree structures and combines them to emphasize accurate boundaries by segmentation accumulation. Experiment results and comparisons with other very recent methods on six public data sets demonstrate that our approach achieves the state-of-the-art region accuracy and is very competitive in image segmentation without semantic priors.

  6. Hierarchical image segmentation for learning object priors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.; Li, Nan [TEMPLE UNIV.

    2010-11-10

    The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.

  7. Hierarchical Structure of Abilities: Factorial Validation of Higher Order Constructs in Thurstone's Primary Mental Abilities.

    Science.gov (United States)

    Paden, Patricia

    1981-01-01

    Thurstone's primary mental abilities (1938/1968) involving 57 tests were factor analyzed to produce a comprehensive hierarchical model. Kaiser's varimax solution for primary mental abilities served as the raw data for this study. (Author/GK)

  8. A new approach for modeling generalization gradients: A case for Hierarchical Models

    Directory of Open Access Journals (Sweden)

    Koen eVanbrabant

    2015-05-01

    Full Text Available A case is made for the use of hierarchical models in the analysis of generalization gradients. Hierarchical models overcome several restrictions that are imposed by repeated measures analysis-of-variance (rANOVA, the default statistical method in current generalization research. More specifically, hierarchical models allow to include continuous independent variables and overcomes problematic assumptions such as sphericity. We focus on how generalization research can benefit from this added flexibility. In a simulation study we demonstrate the dominance of hierarchical models over rANOVA. In addition, we show the lack of efficiency of the Mauchly's sphericity test in sample sizes typical for generalization research, and confirm how violations of sphericity increase the probability of type I errors. A worked example of a hierarchical model is provided, with a specific emphasis on the interpretation of parameters relevant for generalization research.

  9. A new approach for modeling generalization gradients: a case for hierarchical models.

    Science.gov (United States)

    Vanbrabant, Koen; Boddez, Yannick; Verduyn, Philippe; Mestdagh, Merijn; Hermans, Dirk; Raes, Filip

    2015-01-01

    A case is made for the use of hierarchical models in the analysis of generalization gradients. Hierarchical models overcome several restrictions that are imposed by repeated measures analysis-of-variance (rANOVA), the default statistical method in current generalization research. More specifically, hierarchical models allow to include continuous independent variables and overcomes problematic assumptions such as sphericity. We focus on how generalization research can benefit from this added flexibility. In a simulation study we demonstrate the dominance of hierarchical models over rANOVA. In addition, we show the lack of efficiency of the Mauchly's sphericity test in sample sizes typical for generalization research, and confirm how violations of sphericity increase the probability of type I errors. A worked example of a hierarchical model is provided, with a specific emphasis on the interpretation of parameters relevant for generalization research.

  10. Regression Benchmarking: An Approach to Quality Assurance in Performance

    OpenAIRE

    2005-01-01

    The paper presents a short summary of our work in the area of regression benchmarking and its application to software development. Specially, we explain the concept of regression benchmarking, the requirements for employing regression testing in a software project, and methods used for analyzing the vast amounts of data resulting from repeated benchmarking. We present the application of regression benchmarking on a real software project and conclude with a glimpse at the challenges for the fu...

  11. Linear regression in astronomy. II

    Science.gov (United States)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  12. Hierarchical Control for Smart Grids

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2011-01-01

    This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising...

  13. Polynomial Regression on Riemannian Manifolds

    CERN Document Server

    Hinkle, Jacob; Fletcher, P Thomas; Joshi, Sarang

    2012-01-01

    In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds and Lie groups. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein as well as the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer's study.

  14. Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models

    Science.gov (United States)

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…

  15. Quantile regression theory and applications

    CERN Document Server

    Davino, Cristina; Vistocco, Domenico

    2013-01-01

    A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and

  16. Business applications of multiple regression

    CERN Document Server

    Richardson, Ronny

    2015-01-01

    This second edition of Business Applications of Multiple Regression describes the use of the statistical procedure called multiple regression in business situations, including forecasting and understanding the relationships between variables. The book assumes a basic understanding of statistics but reviews correlation analysis and simple regression to prepare the reader to understand and use multiple regression. The techniques described in the book are illustrated using both Microsoft Excel and a professional statistical program. Along the way, several real-world data sets are analyzed in deta

  17. Finite Algorithms for Robust Linear Regression

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun

    1990-01-01

    The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...

  18. Finite Algorithms for Robust Linear Regression

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun

    1990-01-01

    The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...

  19. 基于Logistic模型的我国房地产开发投资压力测试研究%Stress Test on Real Estate Development Investment Based on Logistic Regression Model

    Institute of Scientific and Technical Information of China (English)

    朱俊; 庄新田; 王倩蓉

    2012-01-01

    对我国房地产开发投资风险进行压力测试分析,考虑房地产开发投资的地域性差异,选取三个代表地区——上海、辽宁和贵州,首先分析影响房地产投资的风险因素,然后运用Logistic回归模型建立该地区的房地产投资风险评价模型,确定重要影响因素,设定“异常”情景,最后测试房地产业的抗压能力.研究发现:影响三个地区房地产投资的因素不同,且重要性不一致.房地产销售价格变动与上海房地产投资风险关系最为密切,居民消费价格指数波动对辽宁房地产投资影响最大,而房地产投资的波动直接影响贵州房地产业的健康运行.对这三个重要指标设定极端情景,三个地区的房地产投资风险出现了不同程度的提高,由此得出,在投资这三个地区或与其相似类型的地区时,要充分考虑实际的宏观经济情况,特别是显著指标的变动情况,使投资更加的合理和安全.%Through studies from domestic and foreign researches' results, the thesis points out that it is necessary and feasible to carry on stress test analysis on real estate development investment. So we start to study on it. In this research, we choose Shanghai, Liaoning and Guizhou as representations after thorough consideration of the regional difference in our country's real estate development investment; Firstly, we analyze the factors that influence the investment, and then establish Logistic regression model to evaluate real estate development investment's risk, from the Logistic regression model we find the most important factors, then design extreme macroeconomic scenarios, finally do the test to see the results. Results displayed that: "Different regions have different significant factors. The fluctuations of real estate price, Consumer Price Index and the amount of real estate investment have much stronger impact on Shanghai, Liaoning and Guizhou respectively than other factors) when we construct

  20. Hierarchical Multiclass Decompositions with Application to Authorship Determination

    CERN Document Server

    El-Yaniv, Ran

    2010-01-01

    This paper is mainly concerned with the question of how to decompose multiclass classification problems into binary subproblems. We extend known Jensen-Shannon bounds on the Bayes risk of binary problems to hierarchical multiclass problems and use these bounds to develop a heuristic procedure for constructing hierarchical multiclass decomposition for multinomials. We test our method and compare it to the well known "all-pairs" decomposition. Our tests are performed using a new authorship determination benchmark test of machine learning authors. The new method consistently outperforms the all-pairs decomposition when the number of classes is small and breaks even on larger multiclass problems. Using both methods, the classification accuracy we achieve, using an SVM over a feature set consisting of both high frequency single tokens and high frequency token-pairs, appears to be exceptionally high compared to known results in authorship determination.

  1. Hierarchical Structures in Hypertext Learning Environments

    NARCIS (Netherlands)

    Bezdan, Eniko; Kester, Liesbeth; Kirschner, Paul A.

    2011-01-01

    Bezdan, E., Kester, L., & Kirschner, P. A. (2011, 9 September). Hierarchical Structures in Hypertext Learning Environments. Presentation for the visit of KU Leuven, Open University, Heerlen, The Netherlands.

  2. Dynamic Organization of Hierarchical Memories.

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2016-01-01

    In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a "dynamic categorization"; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity.

  3. Collaborative regression-based anatomical landmark detection

    Science.gov (United States)

    Gao, Yaozong; Shen, Dinggang

    2015-12-01

    Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through voting from all image voxels, which is completely different from the classification-based methods that use voxel-wise classification to detect landmarks. Despite their robustness, the accuracy of regression-based landmark detection methods is often limited due to (1) the inclusion of uninformative image voxels in the voting procedure, and (2) the lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. (1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localise landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for informative voxels near the landmark, a spherical sampling strategy is also designed at the training stage to improve their prediction accuracy. (2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of ‘difficult-to-detect’ landmarks by using spatial guidance from ‘easy-to-detect’ landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head & neck landmarks in computed tomography images, and also dental landmarks in cone beam computed tomography images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods.

  4. Prediction of road accidents: A Bayesian hierarchical approach

    DEFF Research Database (Denmark)

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T.;

    2013-01-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson......-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...... in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models.Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis...

  5. Logistic Regression: Concept and Application

    Science.gov (United States)

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  6. Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae.

    Science.gov (United States)

    Ho, Audrey Yoke Yee; Yeo, Lip Pin; Lam, Yee Cheong; Rodríguez, Isabel

    2011-03-22

    A gecko's superb ability to adhere to surfaces is widely credited to the large attachment area of the hierarchical and fibrillar structure on its feet. The combination of these two features provides the necessary compliance for the gecko toe-pad to effectively engage a high percentage of the spatulae at each step to any kind of surface topography. With the use of multi-tiered porous anodic alumina template and capillary force assisted nanoimprinting, we have successfully fabricated a gecko-inspired hierarchical topography of branched nanopillars on a stiff polymer. We also demonstrated that the hierarchical topography improved the shear adhesion force over a topography of linear structures by 150%. A systematic analysis to understand the phenomenon was performed. It was determined that the effective stiffness of the hierarchical branched structure was lower than that of the linear structure. The reduction in effective stiffness favored a more efficient bending of the branched topography and a better compliance to a test surface, hence resulting in a higher area of residual deformation. As the area of residual deformation increased, the shear adhesion force emulated. The branched pillar topography also showed a marked increase in hydrophobicity, which is an essential property in the practical applications of these structures for good self-cleaning in dry adhesion conditions.

  7. Multicollinearity in cross-sectional regressions

    Science.gov (United States)

    Lauridsen, Jørgen; Mur, Jesùs

    2006-10-01

    The paper examines robustness of results from cross-sectional regression paying attention to the impact of multicollinearity. It is well known that the reliability of estimators (least-squares or maximum-likelihood) gets worse as the linear relationships between the regressors become more acute. We resolve the discussion in a spatial context, looking closely into the behaviour shown, under several unfavourable conditions, by the most outstanding misspecification tests when collinear variables are added to the regression. A Monte Carlo simulation is performed. The conclusions point to the fact that these statistics react in different ways to the problems posed.

  8. Fungible weights in logistic regression.

    Science.gov (United States)

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record

  9. Detecting and Analyzing I/O Performance Regressions

    NARCIS (Netherlands)

    Bezemer, C.P.; Milon, E.; Zaidman, A.; Pouwelse, J.

    2014-01-01

    Regression testing can be done by re-executing a test suite on different software versions and comparing the outcome. For functional testing, the outcome of such tests is either pass (correct behaviour) or fail (incorrect behaviour). For non-functional testing, such as performance testing, this is m

  10. Detecting and Analyzing I/O Performance Regressions

    NARCIS (Netherlands)

    Bezemer, C.P.; Milon, E.; Zaidman, A.; Pouwelse, J.

    2014-01-01

    Regression testing can be done by re-executing a test suite on different software versions and comparing the outcome. For functional testing, the outcome of such tests is either pass (correct behaviour) or fail (incorrect behaviour). For non-functional testing, such as performance testing, this is

  11. Unsupervised K-Nearest Neighbor Regression

    CERN Document Server

    Kramer, Oliver

    2011-01-01

    In many scientific disciplines structures in high-dimensional data have to be found, e.g., in stellar spectra, in genome data, or for face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related approaches that are mostly based on kernel methods, unsupervised K-nearest neighbor (UKNN) regression optimizes latent variables w.r.t. the data space reconstruction error employing the K-nearest neighbor heuristic. The problem of optimizing latent neighborhoods is difficult to solve, but the UKNN formulation allows an efficient strategy of iteratively embedding latent points to fixed neighborhood topologies. The approaches will be tested experimentally.

  12. Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study,measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2 500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respectively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demonstrates that it is feasible to estimate the disease severity office brown spot using hyperspectral reflectance data at the leaf level.

  13. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non-param...

  14. Discursive Hierarchical Patterning in Economics Cases

    Science.gov (United States)

    Lung, Jane

    2011-01-01

    This paper attempts to apply Lung's (2008) model of the discursive hierarchical patterning of cases to a closer and more specific study of Economics cases and proposes a model of the distinct discursive hierarchical patterning of the same. It examines a corpus of 150 Economics cases with a view to uncovering the patterns of discourse construction.…

  15. A Model of Hierarchical Key Assignment Scheme

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhigang; ZHAO Jing; XU Maozhi

    2006-01-01

    A model of the hierarchical key assignment scheme is approached in this paper, which can be used with any cryptography algorithm. Besides, the optimal dynamic control property of a hierarchical key assignment scheme will be defined in this paper. Also, our scheme model will meet this property.

  16. Rank regression: an alternative regression approach for data with outliers.

    Science.gov (United States)

    Chen, Tian; Tang, Wan; Lu, Ying; Tu, Xin

    2014-10-01

    Linear regression models are widely used in mental health and related health services research. However, the classic linear regression analysis assumes that the data are normally distributed, an assumption that is not met by the data obtained in many studies. One method of dealing with this problem is to use semi-parametric models, which do not require that the data be normally distributed. But semi-parametric models are quite sensitive to outlying observations, so the generated estimates are unreliable when study data includes outliers. In this situation, some researchers trim the extreme values prior to conducting the analysis, but the ad-hoc rules used for data trimming are based on subjective criteria so different methods of adjustment can yield different results. Rank regression provides a more objective approach to dealing with non-normal data that includes outliers. This paper uses simulated and real data to illustrate this useful regression approach for dealing with outliers and compares it to the results generated using classical regression models and semi-parametric regression models.

  17. SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S.

    2010-05-22

    This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.

  18. Galaxy formation through hierarchical clustering

    Science.gov (United States)

    White, Simon D. M.; Frenk, Carlos S.

    1991-01-01

    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  19. Groups possessing extensive hierarchical decompositions

    CERN Document Server

    Januszkiewicz, T; Leary, I J

    2009-01-01

    Kropholler's class of groups is the smallest class of groups which contains all finite groups and is closed under the following operator: whenever $G$ admits a finite-dimensional contractible $G$-CW-complex in which all stabilizer groups are in the class, then $G$ is itself in the class. Kropholler's class admits a hierarchical structure, i.e., a natural filtration indexed by the ordinals. For example, stage 0 of the hierarchy is the class of all finite groups, and stage 1 contains all groups of finite virtual cohomological dimension. We show that for each countable ordinal $\\alpha$, there is a countable group that is in Kropholler's class which does not appear until the $\\alpha+1$st stage of the hierarchy. Previously this was known only for $\\alpha= 0$, 1 and 2. The groups that we construct contain torsion. We also review the construction of a torsion-free group that lies in the third stage of the hierarchy.

  20. Quantum transport through hierarchical structures.

    Science.gov (United States)

    Boettcher, S; Varghese, C; Novotny, M A

    2011-04-01

    The transport of quantum electrons through hierarchical lattices is of interest because such lattices have some properties of both regular lattices and random systems. We calculate the electron transmission as a function of energy in the tight-binding approximation for two related Hanoi networks. HN3 is a Hanoi network with every site having three bonds. HN5 has additional bonds added to HN3 to make the average number of bonds per site equal to five. We present a renormalization group approach to solve the matrix equation involved in this quantum transport calculation. We observe band gaps in HN3, while no such band gaps are observed in linear networks or in HN5. We provide a detailed scaling analysis near the edges of these band gaps.

  1. Hierarchical networks of scientific journals

    CERN Document Server

    Palla, Gergely; Mones, Enys; Pollner, Péter; Vicsek, Tamás

    2015-01-01

    Scientific journals are the repositories of the gradually accumulating knowledge of mankind about the world surrounding us. Just as our knowledge is organised into classes ranging from major disciplines, subjects and fields to increasingly specific topics, journals can also be categorised into groups using various metrics. In addition to the set of topics characteristic for a journal, they can also be ranked regarding their relevance from the point of overall influence. One widespread measure is impact factor, but in the present paper we intend to reconstruct a much more detailed description by studying the hierarchical relations between the journals based on citation data. We use a measure related to the notion of m-reaching centrality and find a network which shows the level of influence of a journal from the point of the direction and efficiency with which information spreads through the network. We can also obtain an alternative network using a suitably modified nested hierarchy extraction method applied ...

  2. Adaptive Sampling in Hierarchical Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R

    2007-07-09

    We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.

  3. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model.

  4. A Tool for Fast Development of Modular and Hierarchic Neural Network-based Systems

    Directory of Open Access Journals (Sweden)

    Francisco Reinaldo

    2006-08-01

    Full Text Available This paper presents PyramidNet tool as a fast and easy way to develop Modular and Hierarchic Neural Network-based Systems. This tool facilitates the fast emergence of autonomous behaviors in agents because it uses a hierarchic and modular control methodology of heterogeneous learning modules: the pyramid. Using the graphical resources of PyramidNet the user is able to specify a behavior system even having little understanding of artificial neural networks. Experimental tests have shown that a very significant speedup is attained in the development of modular and hierarchic neural network-based systems by using this tool.

  5. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Science.gov (United States)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-11-01

    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  6. Hierarchical Identity-Based Lossy Trapdoor Functions

    CERN Document Server

    Escala, Alex; Libert, Benoit; Rafols, Carla

    2012-01-01

    Lossy trapdoor functions, introduced by Peikert and Waters (STOC'08), have received a lot of attention in the last years, because of their wide range of applications in theoretical cryptography. The notion has been recently extended to the identity-based scenario by Bellare et al. (Eurocrypt'12). We provide one more step in this direction, by considering the notion of hierarchical identity-based lossy trapdoor functions (HIB-LTDFs). Hierarchical identity-based cryptography generalizes identitybased cryptography in the sense that identities are organized in a hierarchical way; a parent identity has more power than its descendants, because it can generate valid secret keys for them. Hierarchical identity-based cryptography has been proved very useful both for practical applications and to establish theoretical relations with other cryptographic primitives. In order to realize HIB-LTDFs, we first build a weakly secure hierarchical predicate encryption scheme. This scheme, which may be of independent interest, is...

  7. Hierarchically nanostructured materials for sustainable environmental applications

    Science.gov (United States)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  8. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  9. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  10. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...

  11. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    CERN Document Server

    Perotti, Juan Ignacio; Caldarelli, Guido

    2015-01-01

    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the {\\it hierarchical mutual information}, which is a generalization of the traditional mutual information, and allows to compare hierarchical partitions and hierarchical community structures. The {\\it normalized} version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here, the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies, and on the hierarchical ...

  12. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Science.gov (United States)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  13. Demonstration of a Fiber Optic Regression Probe

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for

  14. Multiple Regression and Its Discontents

    Science.gov (United States)

    Snell, Joel C.; Marsh, Mitchell

    2012-01-01

    Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.

  15. Multiple Regression and Its Discontents

    Science.gov (United States)

    Snell, Joel C.; Marsh, Mitchell

    2012-01-01

    Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.

  16. Fabrication of micro/nano hierarchical structures with analysis on the surface mechanics

    Science.gov (United States)

    Jheng, Yu-Sheng; Lee, Yeeu-Chang

    2016-10-01

    Biomimicry refers to the imitation of mechanisms and features found in living creatures using artificial methods. This study used optical lithography, colloidal lithography, and dry etching to mimic the micro/nano hierarchical structures covering the soles of gecko feet. We measured the static contact angle and contact angle hysteresis to reveal the behavior of liquid drops on the hierarchical structures. Pulling tests were also performed to measure the resistance of movement between the hierarchical structures and a testing plate. Our results reveal that hierarchical structures at the micro-/nano-scale are considerably hydrophobic, they provide good flow characteristics, and they generate more contact force than do surfaces with micro-scale cylindrical structures.

  17. Regression methods for medical research

    CERN Document Server

    Tai, Bee Choo

    2013-01-01

    Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the

  18. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  19. Wrong Signs in Regression Coefficients

    Science.gov (United States)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  20. From Rasch scores to regression

    DEFF Research Database (Denmark)

    Christensen, Karl Bang

    2006-01-01

    Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....

  1. Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice.

    Science.gov (United States)

    Scheibehenne, Benjamin; Pachur, Thorsten

    2015-04-01

    To be useful, cognitive models with fitted parameters should show generalizability across time and allow accurate predictions of future observations. It has been proposed that hierarchical procedures yield better estimates of model parameters than do nonhierarchical, independent approaches, because the formers' estimates for individuals within a group can mutually inform each other. Here, we examine Bayesian hierarchical approaches to evaluating model generalizability in the context of two prominent models of risky choice-cumulative prospect theory (Tversky & Kahneman, 1992) and the transfer-of-attention-exchange model (Birnbaum & Chavez, 1997). Using empirical data of risky choices collected for each individual at two time points, we compared the use of hierarchical versus independent, nonhierarchical Bayesian estimation techniques to assess two aspects of model generalizability: parameter stability (across time) and predictive accuracy. The relative performance of hierarchical versus independent estimation varied across the different measures of generalizability. The hierarchical approach improved parameter stability (in terms of a lower absolute discrepancy of parameter values across time) and predictive accuracy (in terms of deviance; i.e., likelihood). With respect to test-retest correlations and posterior predictive accuracy, however, the hierarchical approach did not outperform the independent approach. Further analyses suggested that this was due to strong correlations between some parameters within both models. Such intercorrelations make it difficult to identify and interpret single parameters and can induce high degrees of shrinkage in hierarchical models. Similar findings may also occur in the context of other cognitive models of choice.

  2. Organizational Benchmarks for Test Utilization Performance: An Example Based on Positivity Rates for Genetic Tests.

    Science.gov (United States)

    Rudolf, Joseph; Jackson, Brian R; Wilson, Andrew R; Smock, Kristi J; Schmidt, Robert L

    2017-04-01

    Health care organizations are under increasing pressure to deliver value by improving test utilization management. Many factors, including organizational factors, could affect utilization performance. Past research has focused on the impact of specific interventions in single organizations. The impact of organizational factors is unknown. The objective of this study is to determine whether testing patterns are subject to organizational effects, ie, are utilization patterns for individual tests correlated within organizations. Comparative analysis of ordering patterns (positivity rates for three genetic tests) across 659 organizations. Hierarchical regression was used to assess the impact of organizational factors after controlling for test-level factors (mutation prevalence) and hospital bed size. Test positivity rates were correlated within organizations. Organizations have a statistically significant impact on the positivity rate of three genetic tests.

  3. A Matlab program for stepwise regression

    Directory of Open Access Journals (Sweden)

    Yanhong Qi

    2016-03-01

    Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.

  4. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  5. Hierarchical analysis of acceptable use policies

    Directory of Open Access Journals (Sweden)

    P. A. Laughton

    2008-01-01

    Full Text Available Acceptable use policies (AUPs are vital tools for organizations to protect themselves and their employees from misuse of computer facilities provided. A well structured, thorough AUP is essential for any organization. It is impossible for an effective AUP to deal with every clause and remain readable. For this reason, some sections of an AUP carry more weight than others, denoting importance. The methodology used to develop the hierarchical analysis is a literature review, where various sources were consulted. This hierarchical approach to AUP analysis attempts to highlight important sections and clauses dealt with in an AUP. The emphasis of the hierarchal analysis is to prioritize the objectives of an AUP.

  6. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  7. Determination of a Differential Item Functioning Procedure Using the Hierarchical Generalized Linear Model

    Directory of Open Access Journals (Sweden)

    Tülin Acar

    2012-01-01

    Full Text Available The aim of this research is to compare the result of the differential item functioning (DIF determining with hierarchical generalized linear model (HGLM technique and the results of the DIF determining with logistic regression (LR and item response theory–likelihood ratio (IRT-LR techniques on the test items. For this reason, first in this research, it is determined whether the students encounter DIF with HGLM, LR, and IRT-LR techniques according to socioeconomic status (SES, in the Turkish, Social Sciences, and Science subtest items of the Secondary School Institutions Examination. When inspecting the correlations among the techniques in terms of determining the items having DIF, it was discovered that there was significant correlation between the results of IRT-LR and LR techniques in all subtests; merely in Science subtest, the results of the correlation between HGLM and IRT-LR techniques were found significant. DIF applications can be made on test items with other DIF analysis techniques that were not taken to the scope of this research. The analysis results, which were determined by using the DIF techniques in different sample sizes, can be compared.

  8. Selection of higher order regression models in the analysis of multi-factorial transcription data.

    Directory of Open Access Journals (Sweden)

    Olivia Prazeres da Costa

    Full Text Available INTRODUCTION: Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding. Higher order linear regression models can account for these effects. We present a new methodology for linear model selection and apply it to microarray data of bone marrow-derived macrophages. This experiment investigates the influence of three variable factors: the genetic background of the mice from which the macrophages were obtained, Yersinia enterocolitica infection (two strains, and a mock control, and treatment/non-treatment with interferon-γ. RESULTS: We set up four different linear regression models in a hierarchical order. We introduce the eruption plot as a new practical tool for model selection complementary to global testing. It visually compares the size and significance of effect estimates between two nested models. Using this methodology we were able to select the most appropriate model by keeping only relevant factors showing additional explanatory power. Application to experimental data allowed us to qualify the interaction of factors as either neutral (no interaction, alleviating (co-occurring effects are weaker than expected from the single effects, or aggravating (stronger than expected. We find a biologically meaningful gene cluster of putative C2TA target genes that appear to be co-regulated with MHC class II genes. CONCLUSIONS: We introduced the eruption plot as a tool for visual model comparison to identify relevant higher order interactions in the analysis of expression data obtained under the influence of multiple factors. We conclude that model selection in higher order linear regression models should generally be performed for the analysis of multi-factorial microarray data.

  9. Dengeleme Teorisi’nin Geçerliliğinin Panel Veri Analizi ile Test Edilmesi: BİST’de Ampirik Bir Uygulama(Testing the Validity of Trade-Off Theory by Using Panel Regression Analysis: An Empirical Application on ISE

    Directory of Open Access Journals (Sweden)

    İbrahim BOZKURT

    2014-12-01

    Full Text Available The aim of this study is to test the validity of Trade-Off theory by investigating the relationship between capital structures and market values of firms on ISE. In this study, 127.008 financial ratio, 20.664 monthly stock return, 4.704 market value and debt ratio which are belong to 168 firms traded on ISE between 2005 and 2011 is used. Firstly, efficient model predicting bankruptcy is confirmed by using balanced panel regression analysis for ISE. Secondly, by using efficient model, firms are divided two groups that consist of firms which have or not bankruptcy risk for each period and the relationship market values and debt levels of firms in each group is analyzed by using unbalanced panel regression analysis. The results of the analysis reveal that there is positive relationship between market values and debt levels of firms in terms of both groups. This result implies that Trade-Off theory is not validity on ISE.

  10. A hierarchical view of grounded, embodied, and situated numerical cognition.

    Science.gov (United States)

    Fischer, Martin H

    2012-08-01

    There is much recent interest in the idea that we represent our knowledge together with the sensory and motor features that were activated during its acquisition. This paper reviews the evidence for such "embodiment" in the domain of numerical cognition, a traditional stronghold of abstract theories of knowledge representation. The focus is on spatial-numerical associations, such as the SNARC effect (small numbers are associated with left space, larger numbers with right space). Using empirical evidence from behavioral research, I first describe sensory and motor biases induced by SNARC, thus identifying numbers as embodied concepts. Next, I propose a hierarchical relationship between grounded, embodied, and situated aspects of number knowledge. This hierarchical conceptualization helps to understand the variety of SNARC-related findings and yields testable predictions about numerical cognition. I report several such tests, ranging from cross-cultural comparisons of horizontal and vertical SNARC effects (Shaki and Fischer in J Exp Psychol Hum Percept Perform 38(3):804-809, 2012) to motor cortical activation studies in adults with left- and right-hand counting preferences (Tschentscher et al. in NeuroImage 59:3139-3148, 2012). It is concluded that the diagnostic features for each level of the proposed hierarchical knowledge representation, together with the spatial associations of numbers, make the domain of numerical knowledge an ideal testing ground for embodied cognition research.

  11. Biplots in Reduced-Rank Regression

    NARCIS (Netherlands)

    Braak, ter C.J.F.; Looman, C.W.N.

    1994-01-01

    Regression problems with a number of related response variables are typically analyzed by separate multiple regressions. This paper shows how these regressions can be visualized jointly in a biplot based on reduced-rank regression. Reduced-rank regression combines multiple regression and principal c

  12. A Route Confidence Evaluation Method for Reliable Hierarchical Text Categorization

    CERN Document Server

    Hatami, Nima; Armano, Giuliano

    2012-01-01

    Hierarchical Text Categorization (HTC) is becoming increasingly important with the rapidly growing amount of text data available in the World Wide Web. Among the different strategies proposed to cope with HTC, the Local Classifier per Node (LCN) approach attains good performance by mirroring the underlying class hierarchy while enforcing a top-down strategy in the testing step. However, the problem of embedding hierarchical information (parent-child relationship) to improve the performance of HTC systems still remains open. A confidence evaluation method for a selected route in the hierarchy is proposed to evaluate the reliability of the final candidate labels in an HTC system. In order to take into account the information embedded in the hierarchy, weight factors are used to take into account the importance of each level. An acceptance/rejection strategy in the top-down decision making process is proposed, which improves the overall categorization accuracy by rejecting a few percentage of samples, i.e., thos...

  13. Interpretation of Standardized Regression Coefficients in Multiple Regression.

    Science.gov (United States)

    Thayer, Jerome D.

    The extent to which standardized regression coefficients (beta values) can be used to determine the importance of a variable in an equation was explored. The beta value and the part correlation coefficient--also called the semi-partial correlation coefficient and reported in squared form as the incremental "r squared"--were compared for…

  14. Image meshing via hierarchical optimization

    Institute of Scientific and Technical Information of China (English)

    Hao XIE; Ruo-feng TONG‡

    2016-01-01

    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., defi nition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to fi nd a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to fi nd a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to fi ner ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  15. Image meshing via hierarchical optimization*

    Institute of Scientific and Technical Information of China (English)

    Hao XIE; Ruo-feng TONGS

    2016-01-01

    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., definition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to find a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to find a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to finer ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  16. Hierarchical Bayes Ensemble Kalman Filtering

    CERN Document Server

    Tsyrulnikov, Michael

    2015-01-01

    Ensemble Kalman filtering (EnKF), when applied to high-dimensional systems, suffers from an inevitably small affordable ensemble size, which results in poor estimates of the background error covariance matrix ${\\bf B}$. The common remedy is a kind of regularization, usually an ad-hoc spatial covariance localization (tapering) combined with artificial covariance inflation. Instead of using an ad-hoc regularization, we adopt the idea by Myrseth and Omre (2010) and explicitly admit that the ${\\bf B}$ matrix is unknown and random and estimate it along with the state (${\\bf x}$) in an optimal hierarchical Bayes analysis scheme. We separate forecast errors into predictability errors (i.e. forecast errors due to uncertainties in the initial data) and model errors (forecast errors due to imperfections in the forecast model) and include the two respective components ${\\bf P}$ and ${\\bf Q}$ of the ${\\bf B}$ matrix into the extended control vector $({\\bf x},{\\bf P},{\\bf Q})$. Similarly, we break the traditional backgrou...

  17. Inferential Models for Linear Regression

    Directory of Open Access Journals (Sweden)

    Zuoyi Zhang

    2011-09-01

    Full Text Available Linear regression is arguably one of the most widely used statistical methods in applications.  However, important problems, especially variable selection, remain a challenge for classical modes of inference.  This paper develops a recently proposed framework of inferential models (IMs in the linear regression context.  In general, an IM is able to produce meaningful probabilistic summaries of the statistical evidence for and against assertions about the unknown parameter of interest and, moreover, these summaries are shown to be properly calibrated in a frequentist sense.  Here we demonstrate, using simple examples, that the IM framework is promising for linear regression analysis --- including model checking, variable selection, and prediction --- and for uncertain inference in general.

  18. Logistic Regression Model on Antenna Control Unit Autotracking Mode

    Science.gov (United States)

    2015-10-20

    412TW-PA-15240 Logistic Regression Model on Antenna Control Unit Autotracking Mode DANIEL T. LAIRD AIR FORCE TEST CENTER EDWARDS AFB, CA...OCT 15 4. TITLE AND SUBTITLE Logistic Regression Model on Antenna Control Unit Autotracking Mode 5a. CONTRACT NUMBER 5b. GRANT...alternative-hypothesis. This paper will present an Antenna Auto- tracking model using Logistic Regression modeling. This paper presents an example of

  19. Regression Segmentation for M³ Spinal Images.

    Science.gov (United States)

    Wang, Zhijie; Zhen, Xiantong; Tay, KengYeow; Osman, Said; Romano, Walter; Li, Shuo

    2015-08-01

    Clinical routine often requires to analyze spinal images of multiple anatomic structures in multiple anatomic planes from multiple imaging modalities (M(3)). Unfortunately, existing methods for segmenting spinal images are still limited to one specific structure, in one specific plane or from one specific modality (S(3)). In this paper, we propose a novel approach, Regression Segmentation, that is for the first time able to segment M(3) spinal images in one single unified framework. This approach formulates the segmentation task innovatively as a boundary regression problem: modeling a highly nonlinear mapping function from substantially diverse M(3) images directly to desired object boundaries. Leveraging the advancement of sparse kernel machines, regression segmentation is fulfilled by a multi-dimensional support vector regressor (MSVR) which operates in an implicit, high dimensional feature space where M(3) diversity and specificity can be systematically categorized, extracted, and handled. The proposed regression segmentation approach was thoroughly tested on images from 113 clinical subjects including both disc and vertebral structures, in both sagittal and axial planes, and from both MRI and CT modalities. The overall result reaches a high dice similarity index (DSI) 0.912 and a low boundary distance (BD) 0.928 mm. With our unified and expendable framework, an efficient clinical tool for M(3) spinal image segmentation can be easily achieved, and will substantially benefit the diagnosis and treatment of spinal diseases.

  20. Assessing risk factors for periodontitis using regression

    Science.gov (United States)

    Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa

    2013-10-01

    Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.

  1. [Is regression of atherosclerosis possible?].

    Science.gov (United States)

    Thomas, D; Richard, J L; Emmerich, J; Bruckert, E; Delahaye, F

    1992-10-01

    Experimental studies have shown the regression of atherosclerosis in animals given a cholesterol-rich diet and then given a normal diet or hypolipidemic therapy. Despite favourable results of clinical trials of primary prevention modifying the lipid profile, the concept of atherosclerosis regression in man remains very controversial. The methodological approach is difficult: this is based on angiographic data and requires strict standardisation of angiographic views and reliable quantitative techniques of analysis which are available with image processing. Several methodologically acceptable clinical coronary studies have shown not only stabilisation but also regression of atherosclerotic lesions with reductions of about 25% in total cholesterol levels and of about 40% in LDL cholesterol levels. These reductions were obtained either by drugs as in CLAS (Cholesterol Lowering Atherosclerosis Study), FATS (Familial Atherosclerosis Treatment Study) and SCOR (Specialized Center of Research Intervention Trial), by profound modifications in dietary habits as in the Lifestyle Heart Trial, or by surgery (ileo-caecal bypass) as in POSCH (Program On the Surgical Control of the Hyperlipidemias). On the other hand, trials with non-lipid lowering drugs such as the calcium antagonists (INTACT, MHIS) have not shown significant regression of existing atherosclerotic lesions but only a decrease on the number of new lesions. The clinical benefits of these regression studies are difficult to demonstrate given the limited period of observation, relatively small population numbers and the fact that in some cases the subjects were asymptomatic. The decrease in the number of cardiovascular events therefore seems relatively modest and concerns essentially subjects who were symptomatic initially. The clinical repercussion of studies of prevention involving a single lipid factor is probably partially due to the reduction in progression and anatomical regression of the atherosclerotic plaque

  2. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Clinical time series prediction: towards a hierarchical dynamical system framework

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  4. Nonparametric regression with filtered data

    CERN Document Server

    Linton, Oliver; Nielsen, Jens Perch; Van Keilegom, Ingrid; 10.3150/10-BEJ260

    2011-01-01

    We present a general principle for estimating a regression function nonparametrically, allowing for a wide variety of data filtering, for example, repeated left truncation and right censoring. Both the mean and the median regression cases are considered. The method works by first estimating the conditional hazard function or conditional survivor function and then integrating. We also investigate improved methods that take account of model structure such as independent errors and show that such methods can improve performance when the model structure is true. We establish the pointwise asymptotic normality of our estimators.

  5. Logistic regression for circular data

    Science.gov (United States)

    Al-Daffaie, Kadhem; Khan, Shahjahan

    2017-05-01

    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  6. Quasi-least squares regression

    CERN Document Server

    Shults, Justine

    2014-01-01

    Drawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitu

  7. Use of hierarchical models to analyze European trends in congenital anomaly prevalence.

    Science.gov (United States)

    Cavadino, Alana; Prieto-Merino, David; Addor, Marie-Claude; Arriola, Larraitz; Bianchi, Fabrizio; Draper, Elizabeth; Garne, Ester; Greenlees, Ruth; Haeusler, Martin; Khoshnood, Babak; Kurinczuk, Jenny; McDonnell, Bob; Nelen, Vera; O'Mahony, Mary; Randrianaivo, Hanitra; Rankin, Judith; Rissmann, Anke; Tucker, David; Verellen-Dumoulin, Christine; de Walle, Hermien; Wellesley, Diana; Morris, Joan K

    2016-06-01

    Surveillance of congenital anomalies is important to identify potential teratogens. Despite known associations between different anomalies, current surveillance methods examine trends within each subgroup separately. We aimed to evaluate whether hierarchical statistical methods that combine information from several subgroups simultaneously would enhance current surveillance methods using data collected by EUROCAT, a European network of population-based congenital anomaly registries. Ten-year trends (2003 to 2012) in 18 EUROCAT registries over 11 countries were analyzed for the following groups of anomalies: neural tube defects, congenital heart defects, digestive system, and chromosomal anomalies. Hierarchical Poisson regression models that combined related subgroups together according to EUROCAT's hierarchy of subgroup coding were applied. Results from hierarchical models were compared with those from Poisson models that consider each congenital anomaly separately. Hierarchical models gave similar results as those obtained when considering each anomaly subgroup in a separate analysis. Hierarchical models that included only around three subgroups showed poor convergence and were generally found to be over-parameterized. Larger sets of anomaly subgroups were found to be too heterogeneous to group together in this way. There were no substantial differences between independent analyses of each subgroup and hierarchical models when using the EUROCAT anomaly subgroups. Considering each anomaly separately, therefore, remains an appropriate method for the detection of potential changes in prevalence by surveillance systems. Hierarchical models do, however, remain an interesting alternative method of analysis when considering the risks of specific exposures in relation to the prevalence of congenital anomalies, which could be investigated in other studies. Birth Defects Research (Part A) 106:480-10, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Test Anxiety and Academic Performance among Undergraduates: The Moderating Role of Achievement Motivation.

    Science.gov (United States)

    Balogun, Anthony Gbenro; Balogun, Shyngle Kolawole; Onyencho, Chidi Victor

    2017-02-13

    This study investigated the moderating role of achievement motivation in the relationship between test anxiety and academic performance. Three hundred and ninety three participants (192 males and 201 females) selected from a public university in Ondo State, Nigeria using a purposive sampling technique, participated in the study. They responded to measures of test anxiety and achievement motivation. Three hypotheses were tested using moderated hierarchical multiple regression analysis. Results showed that test anxiety had a negative impact on academic performance (β = -.23; p academic performance (β = .38; p academic performance (β = .10; p < .01). These findings suggest that university management should design appropriate psycho-educational interventions that would enhance students' achievement motivation.

  9. An Automatic Hierarchical Delay Analysis Tool

    Institute of Scientific and Technical Information of China (English)

    FaridMheir-El-Saadi; BozenaKaminska

    1994-01-01

    The performance analysis of VLSI integrated circuits(ICs) with flat tools is slow and even sometimes impossible to complete.Some hierarchical tools have been developed to speed up the analysis of these large ICs.However,these hierarchical tools suffer from a poor interaction with the CAD database and poorly automatized operations.We introduce a general hierarchical framework for performance analysis to solve these problems.The circuit analysis is automatic under the proposed framework.Information that has been automatically abstracted in the hierarchy is kept in database properties along with the topological information.A limited software implementation of the framework,PREDICT,has also been developed to analyze the delay performance.Experimental results show that hierarchical analysis CPU time and memory requirements are low if heuristics are used during the abstraction process.

  10. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  11. Generation of hierarchically correlated multivariate symbolic sequences

    CERN Document Server

    Tumminello, Mi; Mantegna, R N

    2008-01-01

    We introduce an algorithm to generate multivariate series of symbols from a finite alphabet with a given hierarchical structure of similarities. The target hierarchical structure of similarities is arbitrary, for instance the one obtained by some hierarchical clustering procedure as applied to an empirical matrix of Hamming distances. The algorithm can be interpreted as the finite alphabet equivalent of the recently introduced hierarchically nested factor model (M. Tumminello et al. EPL 78 (3) 30006 (2007)). The algorithm is based on a generating mechanism that is different from the one used in the mutation rate approach. We apply the proposed methodology for investigating the relationship between the bootstrap value associated with a node of a phylogeny and the probability of finding that node in the true phylogeny.

  12. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  13. HIERARCHICAL ORGANIZATION OF INFORMATION, IN RELATIONAL DATABASES

    Directory of Open Access Journals (Sweden)

    Demian Horia

    2008-05-01

    Full Text Available In this paper I will present different types of representation, of hierarchical information inside a relational database. I also will compare them to find the best organization for specific scenarios.

  14. Hierarchical Network Design Using Simulated Annealing

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Clausen, Jens

    2002-01-01

    The hierarchical network problem is the problem of finding the least cost network, with nodes divided into groups, edges connecting nodes in each groups and groups ordered in a hierarchy. The idea of hierarchical networks comes from telecommunication networks where hierarchies exist. Hierarchical...... networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub......-algorithm uses a construction algorithm to determine edges and route the demand. Performance for different versions of the algorithm are reported in terms of runtime and quality of the solutions. The algorithm is able to find solutions of reasonable quality in approximately 1 hour for networks with 100 nodes....

  15. When to Use Hierarchical Linear Modeling

    National Research Council Canada - National Science Library

    Veronika Huta

    2014-01-01

    Previous publications on hierarchical linear modeling (HLM) have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis...

  16. An introduction to hierarchical linear modeling

    National Research Council Canada - National Science Library

    Woltman, Heather; Feldstain, Andrea; MacKay, J. Christine; Rocchi, Meredith

    2012-01-01

    This tutorial aims to introduce Hierarchical Linear Modeling (HLM). A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis...

  17. Conservation Laws in the Hierarchical Model

    NARCIS (Netherlands)

    Beijeren, H. van; Gallavotti, G.; Knops, H.

    1974-01-01

    An exposition of the renormalization-group equations for the hierarchical model is given. Attention is drawn to some properties of the spin distribution functions which are conserved under the action of the renormalization group.

  18. Hierarchical DSE for multi-ASIP platforms

    DEFF Research Database (Denmark)

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak;

    2013-01-01

    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  19. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    Science.gov (United States)

    Bai, Hao; Zhang, Xi-wen

    2017-06-01

    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  20. Hierarchical organization versus self-organization

    OpenAIRE

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  1. Hierarchical decision making for flood risk reduction

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2013-01-01

    . In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...

  2. Hierarchical self-organization of tectonic plates

    OpenAIRE

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly chan...

  3. Angelic Hierarchical Planning: Optimal and Online Algorithms

    Science.gov (United States)

    2008-12-06

    restrict our attention to plans in I∗(Act, s0). Definition 2. ( Parr and Russell , 1998) A plan ah∗ is hierarchically optimal iff ah∗ = argmina∈I∗(Act,s0):T...Murdock, Dan Wu, and Fusun Yaman. SHOP2: An HTN planning system. JAIR, 20:379–404, 2003. Ronald Parr and Stuart Russell . Reinforcement Learning with...Angelic Hierarchical Planning: Optimal and Online Algorithms Bhaskara Marthi Stuart J. Russell Jason Wolfe Electrical Engineering and Computer

  4. Hierarchical Needs, Income Comparisons and Happiness Levels

    OpenAIRE

    Drakopoulos, Stavros

    2011-01-01

    The cornerstone of the hierarchical approach is that there are some basic human needs which must be satisfied before non-basic needs come into the picture. The hierarchical structure of needs implies that the satisfaction of primary needs provides substantial increases to individual happiness compared to the subsequent satisfaction of secondary needs. This idea can be combined with the concept of comparison income which means that individuals compare rewards with individuals with similar char...

  5. Expectation and attention in hierarchical auditory prediction.

    Science.gov (United States)

    Chennu, Srivas; Noreika, Valdas; Gueorguiev, David; Blenkmann, Alejandro; Kochen, Silvia; Ibáñez, Agustín; Owen, Adrian M; Bekinschtein, Tristan A

    2013-07-03

    Hierarchical predictive coding suggests that attention in humans emerges from increased precision in probabilistic inference, whereas expectation biases attention in favor of contextually anticipated stimuli. We test these notions within auditory perception by independently manipulating top-down expectation and attentional precision alongside bottom-up stimulus predictability. Our findings support an integrative interpretation of commonly observed electrophysiological signatures of neurodynamics, namely mismatch negativity (MMN), P300, and contingent negative variation (CNV), as manifestations along successive levels of predictive complexity. Early first-level processing indexed by the MMN was sensitive to stimulus predictability: here, attentional precision enhanced early responses, but explicit top-down expectation diminished it. This pattern was in contrast to later, second-level processing indexed by the P300: although sensitive to the degree of predictability, responses at this level were contingent on attentional engagement and in fact sharpened by top-down expectation. At the highest level, the drift of the CNV was a fine-grained marker of top-down expectation itself. Source reconstruction of high-density EEG, supported by intracranial recordings, implicated temporal and frontal regions differentially active at early and late levels. The cortical generators of the CNV suggested that it might be involved in facilitating the consolidation of context-salient stimuli into conscious perception. These results provide convergent empirical support to promising recent accounts of attention and expectation in predictive coding.

  6. Multivariate Chemometrics with Regression and Classification Analyses in Heroin Profiling Based on the Chromatographic Data.

    Science.gov (United States)

    B Gadžurić, Slobodan; O Podunavac Kuzmanović, Sanja; B Vraneš, Milan; Petrin, Marija; Bugarski, Tatjana; Kovačević, Strahinja Z

    2016-01-01

    The purpose of this work is to promote and facilitate forensic profiling and chemical analysis of illicit drug samples in order to determine their origin, methods of production and transfer through the country. The article is based on the gas chromatography analysis of heroin samples seized from three different locations in Serbia. Chemometric approach with appropriate statistical tools (multiple-linear regression (MLR), hierarchical cluster analysis (HCA) and Wald-Wolfowitz run (WWR) test) were applied on chromatographic data of heroin samples in order to correlate and examine the geographic origin of seized heroin samples. The best MLR models were further validated by leave-one-out technique as well as by the calculation of basic statistical parameters for the established models. To confirm the predictive power of the models, external set of heroin samples was used. High agreement between experimental and predicted values of acetyl thebaol and diacetyl morphine peak ratio, obtained in the validation procedure, indicated the good quality of derived MLR models. WWR test showed which examined heroin samples come from the same population, and HCA was applied in order to overview the similarities among the studied heroine samples.

  7. QSAR study of prolylcarboxypeptidase inhibitors by genetic algorithm: Multiple linear regressions

    Indian Academy of Sciences (India)

    Eslam Pourbasheer; Saadat Vahdani; Reza Aalizadeh; Alireza Banaei; Mohammad Reza Ganjali

    2015-07-01

    The predictive analysis based on quantitative structure activity relationships (QSAR) on benzim-idazolepyrrolidinyl amides as prolylcarboxypeptidase (PrCP) inhibitors was performed. Molecules were represented by chemical descriptors that encode constitutional, topological, geometrical, and electronic structure features. The hierarchical clustering method was used to classify the dataset into training and test subsets. The important descriptors were selected with the aid of the genetic algorithm method. The QSAR model was constructed, using the multiple linear regressions (MLR), and its robustness and predictability were verified by internal and external cross-validation methods. Furthermore, the calculation of the domain of applicability defines the area of reliable predictions. The root mean square errors (RMSE) of the training set and the test set for GA-MLR model were calculated to be 0.176, 0.279 and the correlation coefficients (R2) were obtained to be 0.839, 0.923, respectively. The proposed model has good stability, robustness and predictability when verified by internal and external validation.

  8. Regression of lumbar disk herniation

    Directory of Open Access Journals (Sweden)

    G. Yu Evzikov

    2015-01-01

    Full Text Available Compression of the spinal nerve root, giving rise to pain and sensory and motor disorders in the area of its innervation is the most vivid manifestation of herniated intervertebral disk. Different treatment modalities, including neurosurgery, for evolving these conditions are discussed. There has been recent evidence that spontaneous regression of disk herniation can regress. The paper describes a female patient with large lateralized disc extrusion that has caused compression of the nerve root S1, leading to obvious myotonic and radicular syndrome. Magnetic resonance imaging has shown that the clinical manifestations of discogenic radiculopathy, as well myotonic syndrome and morphological changes completely regressed 8 months later. The likely mechanism is inflammation-induced resorption of a large herniated disk fragment, which agrees with the data available in the literature. A decision to perform neurosurgery for which the patient had indications was made during her first consultation. After regression of discogenic radiculopathy, there was only moderate pain caused by musculoskeletal diseases (facet syndrome, piriformis syndrome that were successfully eliminated by minimally invasive techniques. 

  9. Cactus: An Introduction to Regression

    Science.gov (United States)

    Hyde, Hartley

    2008-01-01

    When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…

  10. Growth Regression and Economic Theory

    NARCIS (Netherlands)

    Elbers, Chris; Gunning, Jan Willem

    2002-01-01

    In this note we show that the standard, loglinear growth regression specificationis consistent with one and only one model in the class of stochastic Ramsey models. Thismodel is highly restrictive: it requires a Cobb-Douglas technology and a 100% depreciationrate and it implies that risk does not af

  11. Correlation Weights in Multiple Regression

    Science.gov (United States)

    Waller, Niels G.; Jones, Jeff A.

    2010-01-01

    A general theory on the use of correlation weights in linear prediction has yet to be proposed. In this paper we take initial steps in developing such a theory by describing the conditions under which correlation weights perform well in population regression models. Using OLS weights as a comparison, we define cases in which the two weighting…

  12. Ridge Regression for Interactive Models.

    Science.gov (United States)

    Tate, Richard L.

    1988-01-01

    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are favorable to…

  13. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  14. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  15. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  16. Leukemia prediction using sparse logistic regression.

    Directory of Open Access Journals (Sweden)

    Tapio Manninen

    Full Text Available We describe a supervised prediction method for diagnosis of acute myeloid leukemia (AML from patient samples based on flow cytometry measurements. We use a data driven approach with machine learning methods to train a computational model that takes in flow cytometry measurements from a single patient and gives a confidence score of the patient being AML-positive. Our solution is based on an [Formula: see text] regularized logistic regression model that aggregates AML test statistics calculated from individual test tubes with different cell populations and fluorescent markers. The model construction is entirely data driven and no prior biological knowledge is used. The described solution scored a 100% classification accuracy in the DREAM6/FlowCAP2 Molecular Classification of Acute Myeloid Leukaemia Challenge against a golden standard consisting of 20 AML-positive and 160 healthy patients. Here we perform a more extensive validation of the prediction model performance and further improve and simplify our original method showing that statistically equal results can be obtained by using simple average marker intensities as features in the logistic regression model. In addition to the logistic regression based model, we also present other classification models and compare their performance quantitatively. The key benefit in our prediction method compared to other solutions with similar performance is that our model only uses a small fraction of the flow cytometry measurements making our solution highly economical.

  17. Satellite rainfall retrieval by logistic regression

    Science.gov (United States)

    Chiu, Long S.

    1986-01-01

    The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.

  18. Changes in persistence, spurious regressions and the Fisher hypothesis

    DEFF Research Database (Denmark)

    Kruse, Robinson; Ventosa-Santaulària, Daniel; Noriega, Antonio E.

    Declining inflation persistence has been documented in numerous studies. When such series are analyzed in a regression framework in conjunction with other persistent time series, spurious regressions are likely to occur. We propose to use the coefficient of determination R2 as a test statistic to...

  19. HIERARCHICAL OPTIMIZATION MODEL ON GEONETWORK

    Directory of Open Access Journals (Sweden)

    Z. Zha

    2012-07-01

    Full Text Available In existing construction experience of Spatial Data Infrastructure (SDI, GeoNetwork, as the geographical information integrated solution, is an effective way of building SDI. During GeoNetwork serving as an internet application, several shortcomings are exposed. The first one is that the time consuming of data loading has been considerately increasing with the growth of metadata count. Consequently, the efficiency of query and search service becomes lower. Another problem is that stability and robustness are both ruined since huge amount of metadata. The final flaw is that the requirements of multi-user concurrent accessing based on massive data are not effectively satisfied on the internet. A novel approach, Hierarchical Optimization Model (HOM, is presented to solve the incapability of GeoNetwork working with massive data in this paper. HOM optimizes the GeoNetwork from these aspects: internal procedure, external deployment strategies, etc. This model builds an efficient index for accessing huge metadata and supporting concurrent processes. In this way, the services based on GeoNetwork can maintain stable while running massive metadata. As an experiment, we deployed more than 30 GeoNetwork nodes, and harvest nearly 1.1 million metadata. From the contrast between the HOM-improved software and the original one, the model makes indexing and retrieval processes more quickly and keeps the speed stable on metadata amount increasing. It also shows stable on multi-user concurrent accessing to system services, the experiment achieved good results and proved that our optimization model is efficient and reliable.

  20. C-HiLasso: A Collaborative Hierarchical Sparse Modeling Framework

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is performed by solving an L1-regularized linear regression problem, commonly referred to as Lasso or Basis Pursuit. In this work we combine the sparsity-inducing property of the Lasso model at the individual feature level, with the block-sparsity property of the Group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the Hierarchical Lasso (HiLasso), which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level, but not necessarily at the lower (inside the group) level, obtaining the collaborative HiLasso model (C-HiLasso). Such signals then share the same active groups, or classes, but not necessarily the same active set. This model is very well suited for ap...

  1. 基于模拟退火的岭回归模型在体质测试中的应用%Application of Ridge Regression Model Based on Simulated Annealing in Physical Fitness Test

    Institute of Scientific and Technical Information of China (English)

    钱晓杨

    2013-01-01

    By discussing the relevance and the multicollinearity problems between physical indicators, this paper improves the existing linear regressing model and proposes a kind of new optimized ridge regression model estimation algorithm based on simulated annealing technique to determine the parameter k. And experiments with reference standard of mse and common sense are made to prove the accuracy and reliability of the algorithm.%以体质指标关联性为研究对象,针对体质指标间存在的多重共线性问题,对现有的线性回归模型进行改选,本文提出一种基于模拟退火技术来确定岭参数k值的改进的岭回归估计模型算法.在实验中,以均方误差和理论常识为参考标准,证明此算法更具有一定的准确性和可靠性.

  2. Tax Evasion, Information Reporting, and the Regressive Bias Hypothesis

    DEFF Research Database (Denmark)

    Boserup, Simon Halphen; Pinje, Jori Veng

    A robust prediction from the tax evasion literature is that optimal auditing induces a regressive bias in effective tax rates compared to statutory rates. If correct, this will have important distributional consequences. Nevertheless, the regressive bias hypothesis has never been tested empirically....... Using a unique data set, we provide evidence in favor of the regressive bias prediction but only when controlling for the tax agency's use of third-party information in predicting true incomes. In aggregate data, the regressive bias vanishes because of the systematic use of third-party information...

  3. Continuum damage modeling and simulation of hierarchical dental enamel

    Science.gov (United States)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-05-01

    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.

  4. A hierarchical instrumental decision theory of nicotine dependence.

    Science.gov (United States)

    Hogarth, Lee; Troisi, Joseph R

    2015-01-01

    It is important to characterize the learning processes governing tobacco-seeking in order to understand how best to treat this behavior. Most drug learning theories have adopted a Pavlovian framework wherein the conditioned response is the main motivational process. We favor instead a hierarchical instrumental decision account, wherein expectations about the instrumental contingency between voluntary tobacco-seeking and the receipt of nicotine reward determines the probability of executing this behavior. To support this view, we review titration and nicotine discrimination research showing that internal signals for deprivation/satiation modulate expectations about the current incentive value of smoking, thereby modulating the propensity of this behavior. We also review research on cue-reactivity which has shown that external smoking cues modulate expectations about the probability of the tobacco-seeking response being effective, thereby modulating the propensity of this behavior. Economic decision theory is then considered to elucidate how expectations about the value and probability of response-nicotine contingency are integrated to form an overall utility estimate for that option for comparison with qualitatively different, nonsubstitute reinforcers, to determine response selection. As an applied test for this hierarchical instrumental decision framework, we consider how well it accounts for individual liability to smoking uptake and perseveration, pharmacotherapy, cue-extinction therapies, and plain packaging. We conclude that the hierarchical instrumental account is successful in reconciling this broad range of phenomenon precisely because it accepts that multiple diverse sources of internal and external information must be integrated to shape the decision to smoke.

  5. Social Influence on Information Technology Adoption and Sustained Use in Healthcare: A Hierarchical Bayesian Learning Method Analysis

    Science.gov (United States)

    Hao, Haijing

    2013-01-01

    Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…

  6. Multilevel modeling was a convenient alternative to common regression designs in longitudinal suicide research.

    Science.gov (United States)

    Antretter, Elfi; Dunkel, Dirk; Osvath, Peter; Voros, Viktor; Fekete, Sandor; Haring, Christian

    2006-06-01

    The prospective investigation of repetitive nonfatal suicidal behavior is associated with two methodological problems. Due to the commonly used definitions of nonfatal suicidal behavior, clinical samples usually consist of patients with a considerable between-person variability. Second, repeated nonfatal suicidal episodes of the same subjects are likely to be correlated. We examined three regression techniques to comparatively evaluate their efficiency in addressing the given methodological problems. Repeated episodes of nonfatal suicidal behavior were assessed in two independent patient samples during a 2-year follow-up period. The first regression design modeled repetitive nonfatal suicidal behavior as a summary measure. The second regression model treated repeated episodes of the same subject as independent events. The third regression model represented a hierarchical linear model. The estimated mean effects of the first model were likely to be nonrepresentative for a considerable part of the study subjects. The second regression design overemphasized the impact of the predictor variables. The hierarchical linear model most appropriately accounted for the heterogeneity of the samples and the correlated data structure. The nonhierarchical regression designs did not provide appropriate statistical models for the prospective investigation of repetitive nonfatal suicidal behavior. Multilevel modeling provides a convenient alternative.

  7. Convex Clustering: An Attractive Alternative to Hierarchical Clustering

    Science.gov (United States)

    Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth

    2015-01-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340

  8. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    Science.gov (United States)

    Tashayo, Behnam; Alimohammadi, Abbas

    2016-10-01

    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  9. Using Regression Equations Built from Summary Data in the Psychological Assessment of the Individual Case: Extension to Multiple Regression

    Science.gov (United States)

    Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J.

    2012-01-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…

  10. Regression-kriging for characterizing soils with remotesensing data

    Institute of Scientific and Technical Information of China (English)

    Yufeng GE; J.Alex THOMASSON; Ruixiu SUI; James WOOTEN

    2011-01-01

    In precision agriculture regression has been used widely to quantify the relationship between soil attributes and other environmental variables.However,spatial correlation existing in soil samples usually violates a basic assumption of regression:sample independence.In this study,a regression-kriging method was attempted in relating soil properties to the remote sensing image of a cotton field near Vance,Mississippi,USA.The regressionkriging model was developed and tested by using 273 soil samples collected from the field.The result showed that by properly incorporating the spatial correlation information of regression residuals,the regression-kriging model generally achieved higher prediction accuracy than the stepwise multiple linear regression model.Most strikingly,a 50% increase in prediction accuracy was shown in soil sodium concentration.Potential usages of regressionkriging in future precision agriculture applications include real-time soil sensor development and digital soil mapping.

  11. Polynomial Regressions and Nonsense Inference

    Directory of Open Access Journals (Sweden)

    Daniel Ventosa-Santaulària

    2013-11-01

    Full Text Available Polynomial specifications are widely used, not only in applied economics, but also in epidemiology, physics, political analysis and psychology, just to mention a few examples. In many cases, the data employed to estimate such specifications are time series that may exhibit stochastic nonstationary behavior. We extend Phillips’ results (Phillips, P. Understanding spurious regressions in econometrics. J. Econom. 1986, 33, 311–340. by proving that an inference drawn from polynomial specifications, under stochastic nonstationarity, is misleading unless the variables cointegrate. We use a generalized polynomial specification as a vehicle to study its asymptotic and finite-sample properties. Our results, therefore, lead to a call to be cautious whenever practitioners estimate polynomial regressions.

  12. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    to be a committed artist, and how that translates into supporting al-Assad’s rule in Syria; the Ramadan programme Harrir Aqlak’s attempt to relaunch an intellectual renaissance and to promote religious pluralism; and finally, al-Mayadeen’s cooperation with the pan-Latin American TV station TeleSur and its ambitions...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...... coalition (Iran, Hizbollah, Syria), capitalises on a series of factors that bring them together in spite of their otherwise diverse worldviews and agendas. The New Regressive Left is united by resistance against the growing influence of Saudi Arabia in the religious, cultural, political, economic...

  13. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  14. Clustered regression with unknown clusters

    CERN Document Server

    Barman, Kishor

    2011-01-01

    We consider a collection of prediction experiments, which are clustered in the sense that groups of experiments ex- hibit similar relationship between the predictor and response variables. The experiment clusters as well as the regres- sion relationships are unknown. The regression relation- ships define the experiment clusters, and in general, the predictor and response variables may not exhibit any clus- tering. We call this prediction problem clustered regres- sion with unknown clusters (CRUC) and in this paper we focus on linear regression. We study and compare several methods for CRUC, demonstrate their applicability to the Yahoo Learning-to-rank Challenge (YLRC) dataset, and in- vestigate an associated mathematical model. CRUC is at the crossroads of many prior works and we study several prediction algorithms with diverse origins: an adaptation of the expectation-maximization algorithm, an approach in- spired by K-means clustering, the singular value threshold- ing approach to matrix rank minimization u...

  15. Multicollinearity and correlation among local regression coefficients in geographically weighted regression

    Science.gov (United States)

    Wheeler, David; Tiefelsdorf, Michael

    2005-06-01

    Present methodological research on geographically weighted regression (GWR) focuses primarily on extensions of the basic GWR model, while ignoring well-established diagnostics tests commonly used in standard global regression analysis. This paper investigates multicollinearity issues surrounding the local GWR coefficients at a single location and the overall correlation between GWR coefficients associated with two different exogenous variables. Results indicate that the local regression coefficients are potentially collinear even if the underlying exogenous variables in the data generating process are uncorrelated. Based on these findings, applied GWR research should practice caution in substantively interpreting the spatial patterns of local GWR coefficients. An empirical disease-mapping example is used to motivate the GWR multicollinearity problem. Controlled experiments are performed to systematically explore coefficient dependency issues in GWR. These experiments specify global models that use eigenvectors from a spatial link matrix as exogenous variables.

  16. Robust nonlinear regression in applications

    OpenAIRE

    Lim, Changwon; Sen, Pranab K.; Peddada, Shyamal D.

    2013-01-01

    Robust statistical methods, such as M-estimators, are needed for nonlinear regression models because of the presence of outliers/influential observations and heteroscedasticity. Outliers and influential observations are commonly observed in many applications, especially in toxicology and agricultural experiments. For example, dose response studies, which are routinely conducted in toxicology and agriculture, sometimes result in potential outliers, especially in the high dose gr...

  17. Astronomical Methods for Nonparametric Regression

    Science.gov (United States)

    Steinhardt, Charles L.; Jermyn, Adam

    2017-01-01

    I will discuss commonly used techniques for nonparametric regression in astronomy. We find that several of them, particularly running averages and running medians, are generically biased, asymmetric between dependent and independent variables, and perform poorly in recovering the underlying function, even when errors are present only in one variable. We then examine less-commonly used techniques such as Multivariate Adaptive Regressive Splines and Boosted Trees and find them superior in bias, asymmetry, and variance both theoretically and in practice under a wide range of numerical benchmarks. In this context the chief advantage of the common techniques is runtime, which even for large datasets is now measured in microseconds compared with milliseconds for the more statistically robust techniques. This points to a tradeoff between bias, variance, and computational resources which in recent years has shifted heavily in favor of the more advanced methods, primarily driven by Moore's Law. Along these lines, we also propose a new algorithm which has better overall statistical properties than all techniques examined thus far, at the cost of significantly worse runtime, in addition to providing guidance on choosing the nonparametric regression technique most suitable to any specific problem. We then examine the more general problem of errors in both variables and provide a new algorithm which performs well in most cases and lacks the clear asymmetry of existing non-parametric methods, which fail to account for errors in both variables.

  18. Perception of hierarchical boundaries in music and its modulation by expertise.

    Science.gov (United States)

    Zhang, Jingjing; Jiang, Cunmei; Zhou, Linshu; Yang, Yufang

    2016-10-01

    Hierarchical structure with units of different timescales is a key feature of music. For the perception of such structures, the detection of each boundary is crucial. Here, using electroencephalography (EEG), we explore the perception of hierarchical boundaries in music, and test whether musical expertise modifies such processing. Musicians and non-musicians were presented with musical excerpts containing boundaries at three hierarchical levels, including section, phrase and period boundaries. Non-boundary was chosen as a baseline condition. Recordings from musicians showed CPS (closure positive shift) was evoked at all the three boundaries, and their amplitude increased as the hierarchical level became higher, which suggest that musicians could represent music events at different timescales in a hierarchical way. For non-musicians, the CPS was only elicited at the period boundary and undistinguishable negativities were induced at all the three boundaries. The results indicate that a different and less clear way was used by non-musicians in boundary perception. Our findings reveal, for the first time, an ERP correlate of perceiving hierarchical boundaries in music, and show that the phrasing ability could be enhanced by musical expertise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Genetics Home Reference: caudal regression syndrome

    Science.gov (United States)

    ... Twitter Home Health Conditions caudal regression syndrome caudal regression syndrome Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Caudal regression syndrome is a disorder that impairs the development ...

  20. Outlier Detection Using Nonconvex Penalized Regression

    CERN Document Server

    She, Yiyuan

    2010-01-01

    This paper studies the outlier detection problem from the point of view of penalized regressions. Our regression model adds one mean shift parameter for each of the $n$ data points. We then apply a regularization favoring a sparse vector of mean shift parameters. The usual $L_1$ penalty yields a convex criterion, but we find that it fails to deliver a robust estimator. The $L_1$ penalty corresponds to soft thresholding. We introduce a thresholding (denoted by $\\Theta$) based iterative procedure for outlier detection ($\\Theta$-IPOD). A version based on hard thresholding correctly identifies outliers on some hard test problems. We find that $\\Theta$-IPOD is much faster than iteratively reweighted least squares for large data because each iteration costs at most $O(np)$ (and sometimes much less) avoiding an $O(np^2)$ least squares estimate. We describe the connection between $\\Theta$-IPOD and $M$-estimators. Our proposed method has one tuning parameter with which to both identify outliers and estimate regression...