WorldWideScience

Sample records for hierarchical image-based rendering

  1. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  2. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  3. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  4. Image Based Rendering under Varying Illumination

    Institute of Scientific and Technical Information of China (English)

    Wang Chengfeng (王城峰); Hu Zhanyi

    2003-01-01

    A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.

  5. Layered Textures for Image-Based Rendering

    Institute of Scientific and Technical Information of China (English)

    en-Cheng Wang; ui-Yu Li; in Zheng; n-Hua Wu

    2004-01-01

    An extension to texture mapping is given in this paper for improving the efficiency of image-based rendering. For a depth image with an orthogonal displacement at each pixel, it is decomposed by the displacement into a series of layered textures (LTs) with each one having the same displacement for all its texels. Meanwhile,some texels of the layered textures are interpolated for obtaining a continuous 3D approximation of the model represented in the depth image. Thus, the plane-to-plane texture mapping can be used to map these layered textures to produce novel views and the advantages can be obtained as follows: accelerating the rendering speed,supporting the 3D surface details and view motion parallax, and avoiding the expensive task of hole-filling in the rendering stage. Experimental results show the new method can produce high-quality images and run faster than many famous image-based rendering techniques.

  6. Automatic Image-Based Pencil Sketch Rendering

    Institute of Scientific and Technical Information of China (English)

    王进; 鲍虎军; 周伟华; 彭群生; 徐迎庆

    2002-01-01

    This paper presents an automatic image-based approach for converting greyscale images to pencil sketches, in which strokes follow the image features. The algorithm first extracts a dense direction field automatically using Logical/Linear operators which embody the drawing mechanism. Next, a reconstruction approach based on a sampling-and-interpolation scheme is introduced to generate stroke paths from the direction field. Finally, pencil strokes are rendered along the specified paths with consideration of image tone and artificial illumination.As an important application, the technique is applied to render portraits from images with little user interaction. The experimental results demonstrate that the approach can automatically achieve compelling pencil sketches from reference images.

  7. Virtual try-on through image-based rendering.

    Science.gov (United States)

    Hauswiesner, Stefan; Straka, Matthias; Reitmayr, Gerhard

    2013-09-01

    Virtual try-on applications have become popular because they allow users to watch themselves wearing different clothes without the effort of changing them physically. This helps users to make quick buying decisions and, thus, improves the sales efficiency of retailers. Previous solutions usually involve motion capture, 3D reconstruction or modeling, which are time consuming and not robust for all body poses. Our method avoids these steps by combining image-based renderings of the user and previously recorded garments. It transfers the appearance of a garment recorded from one user to another by matching input and recorded frames, image-based visual hull rendering, and online registration methods. Using images of real garments allows for a realistic rendering quality with high performance. It is suitable for a wide range of clothes and complex appearances, allows arbitrary viewing angles, and requires only little manual input. Our system is particularly useful for virtual try-on applications as well as interactive games.

  8. Joint Projection Filling method for occlusion handling in Depth-Image-Based Rendering

    OpenAIRE

    Jantet, Vincent; Guillemot, Christine; Morin, Luce

    2011-01-01

    International audience; This paper addresses the disocclusion problem which may occur when using Depth-Image-Based Rendering (DIBR) techniques in 3DTV and Free-Viewpoint TV applications. A new DIBR technique is proposed, which combines three methods: a Joint Projection Filling (JPF) method to handle disocclusions in synthesized depth maps; a backward projection to synthesize virtual views; and a full-Z depth-aided inpainting to fill in disoccluded areas in textures. The JPF method performs th...

  9. Image-based haptic roughness estimation and rendering for haptic palpation from in vivo skin image.

    Science.gov (United States)

    Kim, Kwangtaek

    2017-08-08

    Despite the advancement of measuring technologies, there was a need for palpation by hands to be able to better diagnose skin diseases and to learn about the tactile properties of in vivo skin surface. However, directly touching in vivo skin surface can cause secondary infections or damages. Therefore, a technology providing infection- and damage-free skin palpations and precise haptic skin roughness rendering is needed. A multidimensional (2D and 3D) rendering system was developed for multimodal (visual and haptic) rendering that can run with any given in vivo input skin images. For haptic rendering, a commercial haptic device with 3 degrees of freedom (3DOF), Geomagic Touch X, was used. To improve haptic roughness rendering, a force shading algorithm that reduces force discontinuity on rough surface patches but preserves the original roughness values was implemented and applied. In addition, a new image-based roughness estimation method was introduced and the results were compared with haptic roughness results to verify roughness rendering in the system. The developed haptic roughness rendering system will help to diagnose abnormalities on in vivo skin surfaces by virtual haptic palpation with no concern about secondary infections or damages (caused by touch interactions) especially in case of psoriasis, atopic dermatitis, or aging, which results in significant changes of skin roughness. Besides, the system can also be a good tool to examine skin condition changes before and after the use of skin care products (cosmetics). In addition, the proposed 2D skin roughness estimation method can be applied for mobile applications to provide an online roughness estimation tool with a simple phone camera.

  10. 3D-TV System with Depth-Image-Based Rendering Architectures, Techniques and Challenges

    CERN Document Server

    Zhao, Yin; Yu, Lu; Tanimoto, Masayuki

    2013-01-01

    Riding on the success of 3D cinema blockbusters and advances in stereoscopic display technology, 3D video applications have gathered momentum in recent years. 3D-TV System with Depth-Image-Based Rendering: Architectures, Techniques and Challenges surveys depth-image-based 3D-TV systems, which are expected to be put into applications in the near future. Depth-image-based rendering (DIBR) significantly enhances the 3D visual experience compared to stereoscopic systems currently in use. DIBR techniques make it possible to generate additional viewpoints using 3D warping techniques to adjust the perceived depth of stereoscopic videos and provide for auto-stereoscopic displays that do not require glasses for viewing the 3D image.   The material includes a technical review and literature survey of components and complete systems, solutions for technical issues, and implementation of prototypes. The book is organized into four sections: System Overview, Content Generation, Data Compression and Transmission, and 3D V...

  11. Spatially Varying Image Based Lighting by Light Probe Sequences, Capture, Processing and Rendering

    OpenAIRE

    Unger, Jonas; Gustavson, Stefan; Ynnerman, Anders

    2007-01-01

    We present a novel technique for capturing spatially or temporally resolved light probe sequences, and using them for image based lighting. For this purpose we have designed and built a real-time light probe, a catadioptric imaging system that can capture the full dynamic range of the lighting incident at each point in space at video frame rates, while being moved through a scene. The real-time light probe uses a digital imaging system which we have programmed to capture high quality, photome...

  12. Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering

    Directory of Open Access Journals (Sweden)

    Benoit M

    2015-03-01

    Full Text Available Michel Benoit,1,2 Rachid Guerchouche,3 Pierre-David Petit,1 Emmanuelle Chapoulie,3 Valeria Manera,1 Gaurav Chaurasia,3 George Drettakis,3 Philippe Robert1,4 1EA CoBTeK/IA, University of Nice Sophia Antipolis, 2Clinique de Psychiatrie, Pole des Neurosciences Cliniques, CHU de Nice, 3Institut National de Recherche en Informatique et en Automatique, Sophia-Antipolis, 4Centre Mémoire de Ressources et de Recherche, CHU de Nice, Nice, France Background: Virtual reality (VR opens up a vast number of possibilities in many domains of therapy. The primary objective of the present study was to evaluate the acceptability for elderly subjects of a VR experience using the image-based rendering virtual environment (IBVE approach and secondly to test the hypothesis that visual cues using VR may enhance the generation of autobiographical memories.Methods: Eighteen healthy volunteers (mean age 68.2 years presenting memory complaints with a Mini-Mental State Examination score higher than 27 and no history of neuropsychiatric disease were included. Participants were asked to perform an autobiographical fluency task in four conditions. The first condition was a baseline grey screen, the second was a photograph of a well-known location in the participant’s home city (FamPhoto, and the last two conditions displayed VR, ie, a familiar image-based virtual environment (FamIBVE consisting of an image-based representation of a known landmark square in the center of the city of experimentation (Nice and an unknown image-based virtual environment (UnknoIBVE, which was captured in a public housing neighborhood containing unrecognizable building fronts. After each of the four experimental conditions, participants filled in self-report questionnaires to assess the task acceptability (levels of emotion, motivation, security, fatigue, and familiarity. CyberSickness and Presence questionnaires were also assessed after the two VR conditions. Autobiographical memory was assessed

  13. A Feasibility Study with Image-Based Rendered Virtual Reality in Patients with Mild Cognitive Impairment and Dementia.

    Science.gov (United States)

    Manera, Valeria; Chapoulie, Emmanuelle; Bourgeois, Jérémy; Guerchouche, Rachid; David, Renaud; Ondrej, Jan; Drettakis, George; Robert, Philippe

    2016-01-01

    Virtual Reality (VR) has emerged as a promising tool in many domains of therapy and rehabilitation, and has recently attracted the attention of researchers and clinicians working with elderly people with MCI, Alzheimer's disease and related disorders. Here we present a study testing the feasibility of using highly realistic image-based rendered VR with patients with MCI and dementia. We designed an attentional task to train selective and sustained attention, and we tested a VR and a paper version of this task in a single-session within-subjects design. Results showed that participants with MCI and dementia reported to be highly satisfied and interested in the task, and they reported high feelings of security, low discomfort, anxiety and fatigue. In addition, participants reported a preference for the VR condition compared to the paper condition, even if the task was more difficult. Interestingly, apathetic participants showed a preference for the VR condition stronger than that of non-apathetic participants. These findings suggest that VR-based training can be considered as an interesting tool to improve adherence to cognitive training in elderly people with cognitive impairment.

  14. A Feasibility Study with Image-Based Rendered Virtual Reality in Patients with Mild Cognitive Impairment and Dementia.

    Directory of Open Access Journals (Sweden)

    Valeria Manera

    Full Text Available Virtual Reality (VR has emerged as a promising tool in many domains of therapy and rehabilitation, and has recently attracted the attention of researchers and clinicians working with elderly people with MCI, Alzheimer's disease and related disorders. Here we present a study testing the feasibility of using highly realistic image-based rendered VR with patients with MCI and dementia. We designed an attentional task to train selective and sustained attention, and we tested a VR and a paper version of this task in a single-session within-subjects design. Results showed that participants with MCI and dementia reported to be highly satisfied and interested in the task, and they reported high feelings of security, low discomfort, anxiety and fatigue. In addition, participants reported a preference for the VR condition compared to the paper condition, even if the task was more difficult. Interestingly, apathetic participants showed a preference for the VR condition stronger than that of non-apathetic participants. These findings suggest that VR-based training can be considered as an interesting tool to improve adherence to cognitive training in elderly people with cognitive impairment.

  15. Virtual reality system for treatment of the fear of public speaking using image-based rendering and moving pictures.

    Science.gov (United States)

    Lee, Jae M; Ku, Jeong H; Jang, Dong P; Kim, Dong H; Choi, Young H; Kim, In Y; Kim, Sun I

    2002-06-01

    The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology enabled us to use virtual reality (VR) for the treatment of the fear of public speaking. There have been two techniques used to construct a virtual environment for the treatment of the fear of public speaking: model-based and movie-based. Virtual audiences and virtual environments made by model-based technique are unrealistic and unnatural. The movie-based technique has a disadvantage in that each virtual audience cannot be controlled respectively, because all virtual audiences are included in one moving picture file. To address this disadvantage, this paper presents a virtual environment made by using image-based rendering (IBR) and chroma keying simultaneously. IBR enables us to make the virtual environment realistic because the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma keying allows a virtual audience to be controlled individually. In addition, a real-time capture technique was applied in constructing the virtual environment to give the subjects more interaction, in that they can talk with a therapist or another subject.

  16. Hierarchical multilevel authentication system for multiple-image based on phase retrieval and basic vector operations

    Science.gov (United States)

    Li, Xianye; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Peng, Xiang; He, Wenqi; Pan, Xuemei; Dong, Guoyan; Chen, Hongyi

    2017-02-01

    A hierarchical multilevel authentication system for multiple-image based on phase retrieval and basic vector operations in the Fresnel domain is proposed, by which more certification images are iteratively encoded into multiple cascaded phase masks according to different hierarchical levels. Based on the secret sharing algorithm by basic vector decomposition and composition operations, the iterated phase distributions are split into n pairs of shadow images keys (SIKs), and then distributed to n different participants (the authenticators). During each level in the high authentication process, any 2 or more participants can be gathered to reconstruct the original meaningful certification images. While in the case of each level in the low authentication process, only one authenticator who possesses a correct pair of SIKs, will gain no significant information of certification image; however, it can result in a remarkable peak output in the nonlinear correlation coefficient of the recovered image and the standard certification image, which can successfully provide an additional authentication layer for the high-level authentication. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  17. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering and Image-Based Motion Blur

    DEFF Research Database (Denmark)

    Kraus, Martin

    2013-01-01

    While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively...... avoided by a decomposition into sub-images and the independent blurring of each sub-image. This decomposition, however, can result in rendering artifacts at silhouettes of objects. We propose a new blur filter that increases the opacity of all pixels to avoid these artifacts at the cost of physically less...... accurate but still plausible rendering results. The proposed filter is named "opaque image blur" and is based on a glowfilter that is applied to the alpha channel. We present a highly efficient GPU-based pyramid algorithm that implements this filter for depth-of-field rendering. Moreover, we demonstrate...

  18. Multi-Grained Level of Detail for Rendering Complex Meshes Using a Hierarchical Seamless Texture Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Niski, K; Purnomo, B; Cohen, J

    2006-11-06

    Previous algorithms for view-dependent level of detail provide local mesh refinements either at the finest granularity or at a fixed, coarse granularity. The former provides triangle-level adaptation, often at the expense of heavy CPU usage and low triangle rendering throughput; the latter improves CPU usage and rendering throughput by operating on groups of triangles. We present a new multiresolution hierarchy and associated algorithms that provide adaptive granularity. This multi-grained hierarchy allows independent control of the number of hierarchy nodes processed on the CPU and the number of triangles to be rendered on the GPU. We employ a seamless texture atlas style of geometry image as a GPU-friendly data organization, enabling efficient rendering and GPU-based stitching of patch borders. We demonstrate our approach on both large triangle meshes and terrains with up to billions of vertices.

  19. Hierarchical rendering of trees from precomputed multi-layer z-buffers

    Energy Technology Data Exchange (ETDEWEB)

    Max, N. [California Univ., Davis, CA (United States)

    1996-02-01

    Chen and Williams show how precomputed z-buffer images from different fixed viewing positions can be reprojected to produce an image for a new viewpoint. Here images are precomputed for twigs and branches at various levels in the hierarchical structure of a tree, and adaptively combined, depending on the position of the new viewpoint. The precomputed images contain multiple z levels to avoid missing pixels in the reconstruction, subpixel masks for anti-aliasing, and colors and normals for shading after reprojection.

  20. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    Science.gov (United States)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  1. Repair approach for DMC images based on hierarchical location using edge curve

    Institute of Scientific and Technical Information of China (English)

    PAN Jun; WANG Mi; LI DeRen; FENG TianTian

    2009-01-01

    The color composite digital mapping camera (DMC) images are produced by the post-processing software of Z/I imaging. But the failure of radiometric correction in post-processing leads to residual radiometric differences between CCD images, which then affect the quality of the images in further applications. This paper, via analyzing the characters and causes of such a phenomenon, proposes a repair approach based on hierarchical location using edge curve. The approach employs a hierarchical strategy to locate the transition area and seam-line automatically and then repair the image through the global reconstruction between CCD images and the local reconstruction in the transition area. Experiments indicate that the approach proposed by this paper is feasible and can improve the quality of images effectively.

  2. HIERARCHICAL CLASSIFICATION OF POLARIMETRIC SAR IMAGE BASED ON STATISTICAL REGION MERGING

    Directory of Open Access Journals (Sweden)

    F. Lang

    2012-07-01

    Full Text Available Segmentation and classification of polarimetric SAR (PolSAR imagery are very important for interpretation of PolSAR data. This paper presents a new object-oriented classification method which is based on Statistical Region Merging (SRM segmentation algorithm and a two-level hierarchical clustering technique. The proposed method takes full advantage of the polarimetric information contained in the PolSAR data, and takes both effectiveness and efficiency into account according to the characteristic of PolSAR. A modification of over-merging to over-segmentation technique and a post processing of segmentation for SRM is proposed according to the application of classification. And a revised symmetric Wishart distance is derived from the Wishart PDF. Segmentation and classification results of AirSAR L-band PolSAR data over the Flevoland test site is shown to demonstrate the validity of the proposed method.

  3. Page Layout Analysis of the Document Image Based on the Region Classification in a Decision Hierarchical Structure

    Directory of Open Access Journals (Sweden)

    Hossein Pourghassem

    2010-10-01

    Full Text Available The conversion of document image to its electronic version is a very important problem in the saving, searching and retrieval application in the official automation system. For this purpose, analysis of the document image is necessary. In this paper, a hierarchical classification structure based on a two-stage segmentation algorithm is proposed. In this structure, image is segmented using the proposed two-stage segmentation algorithm. Then, the type of the image regions such as document and non-document image is determined using multiple classifiers in the hierarchical classification structure. The proposed segmentation algorithm uses two algorithms based on wavelet transform and thresholding. Texture features such as correlation, homogeneity and entropy that extracted from co-occurrenc matrix and also two new features based on wavelet transform are used to classifiy and lable the regions of the image. The hierarchical classifier is consisted of two Multilayer Perceptron (MLP classifiers and a Support Vector Machine (SVM classifier. The proposed algorithm is evaluated on a database consisting of document and non-document images that provides from Internet. The experimental results show the efficiency of the proposed approach in the region segmentation and classification. The proposed algorithm provides accuracy rate of 97.5% on classification of the regions.

  4. Quantum rendering

    Science.gov (United States)

    Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.

    2003-08-01

    In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.

  5. A CAD System for Identification and Classification of Breast Cancer Tumors in DCE-MR Images Based on Hierarchical Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Rastiboroujeni

    2015-06-01

    Full Text Available In this paper, we propose a computer aided diagnosis (CAD system based on hierarchical convolutional neural networks (HCNNs to discriminate between malignant and benign tumors in breast DCE-MRIs. A HCNN is a hierarchical neural network that operates on two-dimensional images. A HCNN integrates feature extraction and classification processes into one single and fully adaptive structure. It can extract two-dimensional key features automatically, and it is relatively tolerant to geometric and local distortions in input images. We evaluate CNN implementation learning and testing processes based on gradient descent (GD and resilient back-propagation (RPROP approaches. We show that, proposed HCNN with RPROP learning approach provide an effective and robust neural structure to design a CAD base system for breast MRI, and has potential as a mechanism for the evaluation of different types of abnormalities in medical images.

  6. Segmentation Algorithm for Oil Spill SAR Images Based on Hierarchical Agglomerative Clustering%基于HAC的溢油SAR图像分割算法

    Institute of Scientific and Technical Information of China (English)

    苏腾飞; 孟俊敏; 张晰

    2013-01-01

    图像分割是SAR溢油检测中的关键步骤,但由于SAR影像中存在斑点噪声,使得一般的图像分割算法难以收到理想的效果,严重影响溢油检测的精度.发展一种基于凝聚层次聚类(Hierarchical Agglomerative Clustering,HAC)的溢油SAR图像分割算法.该算法利用多尺度分割的思想,能够有效保持SAR影像中溢油斑块的形状特征,并能减少细碎斑块的产生.利用2010年墨西哥湾的Envisat ASAR影像开展了溢油SAR图像分割实验,并将该算法和Canny边缘检测、OTSU阈值分割、FCM分割、水平集分割等方法进行了对比.结果显示,HAC方法可以有效减少细碎斑块的产生,有助于提高SAR溢油检测的精度.%Image segmentation is a crucial stage in the SAR oil spill detection.However,the common image segmentation algorithms can hardly achieve satisfactory results due to speckle noise in the SAR images,thus affecting seriously the accuracy of oil spill detection.For this reason,an image segmentation algorithm which is based on HAC (Hierarchical Agglomerative Clustering) is developed for the oil spill SAR images.This method takes advantage of multi-resolution segmentation to maintain effectively the shape property of oil spill patches,and can reduce the formation of small patches.By using Envisat ASAR images of the Gulf of Mexico obtained in 2010,an experiment of SAR oil spill image segmentation has been conducted.Comparing with other approaches such as Canny,OTSU,FCM and Levelset,the results show that HAC can effectively reduce the producing of small patches,which is helpful to improve the accuracy of SAR oil spill detection.

  7. Lumiproxy: A Hybrid Representation of Image-Based Models

    Institute of Scientific and Technical Information of China (English)

    Bin Sheng; Jian Zhu; En-Hua; Yan-Ci Zhang

    2009-01-01

    In this paper, we present a hybrid representation of image-based models combining the textured planes and the hierarchical points. Taking a set of depth images as input, our method starts from classifying input pixels into two categories, indicating the planar and non-planar surfaces respectively. For the planar surfaces, the geometric coefficients are reconstructed to form the uniformly sampled textures. For nearly planar surfaces, some textured planes, called lumiproxies,are constructed to represent the equivalent visual appearance. The Hough transform is used to find the positions of these textured planes, and optic flow measures are used to determine their textures. For remaining pixels corresponding to the non-planar geometries, the point primitive is applied, reorganized as the OBB-tree structure. Then, texture mapping and point splatting are employed together to render the novel views, with the hardware acceleration.

  8. Practical Parallel Rendering

    CERN Document Server

    Chalmers, Alan

    2002-01-01

    Meeting the growing demands for speed and quality in rendering computer graphics images requires new techniques. Practical parallel rendering provides one of the most practical solutions. This book addresses the basic issues of rendering within a parallel or distributed computing environment, and considers the strengths and weaknesses of multiprocessor machines and networked render farms for graphics rendering. Case studies of working applications demonstrate, in detail, practical ways of dealing with complex issues involved in parallel processing.

  9. Method and system for rendering and interacting with an adaptable computing environment

    Science.gov (United States)

    Osbourn, Gordon Cecil [Albuquerque, NM; Bouchard, Ann Marie [Albuquerque, NM

    2012-06-12

    An adaptable computing environment is implemented with software entities termed "s-machines", which self-assemble into hierarchical data structures capable of rendering and interacting with the computing environment. A hierarchical data structure includes a first hierarchical s-machine bound to a second hierarchical s-machine. The first hierarchical s-machine is associated with a first layer of a rendering region on a display screen and the second hierarchical s-machine is associated with a second layer of the rendering region overlaying at least a portion of the first layer. A screen element s-machine is linked to the first hierarchical s-machine. The screen element s-machine manages data associated with a screen element rendered to the display screen within the rendering region at the first layer.

  10. Image-based BRDF Representation

    Directory of Open Access Journals (Sweden)

    Mihálik A.

    2015-12-01

    Full Text Available To acquire a certain level of photorealism in computer graphics, it is necessary to analyze, how the materials scatter the incident light. In this work, we propose the method to direct rendering of isotropic bidirectional reflectance function (BRDF from the small set of images. The image-based rendering is focused to synthesize as accurately as possible scenes composed of natural and artificial objects. The realistic image synthesis of BRDF data requires evaluation of radiance over the multiple directions of incident and scattered light from the surface. In our approach the images depict only the material reflectance, the shape is represented as the object geometry. We store the BRDF representation, acquired from the sample material, in a number of two-dimensional textures that contain images of spheres lit from the multiple directions. In order to render particular material, we interpolate between textures in the similar way the image morphing works. Our method allows the real-time rendering of tabulated BRDF data on low memory devices such as mobile phones.

  11. Video-based rendering

    CERN Document Server

    Magnor, Marcus A

    2005-01-01

    Driven by consumer-market applications that enjoy steadily increasing economic importance, graphics hardware and rendering algorithms are a central focus of computer graphics research. Video-based rendering is an approach that aims to overcome the current bottleneck in the time-consuming modeling process and has applications in areas such as computer games, special effects, and interactive TV. This book offers an in-depth introduction to video-based rendering, a rapidly developing new interdisciplinary topic employing techniques from computer graphics, computer vision, and telecommunication en

  12. Rendering the Topological Spines

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Rivera, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-05

    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  13. Anti-Aliased Rendering of Water Surface

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Qin; Eihachiro Nakamae; Wei Hua; Yasuo Nagai; Qun-Sheng Peng

    2004-01-01

    Water surface is one of the most important components of landscape scenes. When rendering spacious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves,pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir.

  14. 基于多空间多层次谱聚类的非监督SAR图像分割算法%Segmentation method for SAR images based on unsupervised spectral clustering of multi-hierarchical region

    Institute of Scientific and Technical Information of China (English)

    田玲; 邓旌波; 廖紫纤; 石博; 何楚

    2013-01-01

    提出了一种基于多层区域谱聚类的非监督SAR图像分割算法(multi-space and multi-hierarchical region based spectral clustering,MSMHSC).该算法首先在特征与几何空间求距离,快速获得初始过分割区域,然后在过分割区域的谱空间上进行聚类,最终实现非监督的SAR图像分割.该方法计算复杂度小,无须训练样本,使用层次化思想使其能更充分地利用SAR图像各类先验与似然信息.在MSTAR真实SAR数据集上的实验验证了该算法的快速性和有效性.%This paper proposed a method based on the hierarchical clustering concept.First,it over-segmented the source image into many small regions.And then,it conducted a spectral clustering algorithm on those regions.The algorithm was tested on the MSTAR SAR data set,and was proved to be fast and efficient.

  15. High Fidelity Haptic Rendering

    CERN Document Server

    Otaduy, Miguel A

    2006-01-01

    The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance t

  16. Fast Hierarchical Registration Method for Remote Sensing Image based on SIFT%一种基于SIFT特征的快速逐层遥感图像配准方法

    Institute of Scientific and Technical Information of China (English)

    侯鹏洋; 季艳; 高峰; 胡蕾

    2014-01-01

    当前SIFT特征分层配准方法中存在特征点匹配复杂度高以及不同时相地物变化导致特征点误匹配等问题,提出一种基于SIFT特征的“低分辨率配准、高分辨率验证”快速逐层遥感图像配准方法.该方法针对同源同分辨率不同时相的遥感图像,通过在金字塔的低分辨率图层匹配特征点对并建立仿射变换模型,在金字塔的高分辨率图层评估并修正模型.实验表明:提出的方法在保证配准精度的前提下,有效提高了配准算法的效率.%For the current automatic image registration based on SIFT,feature point matching algorithm is time-consuming,in addition,the changes of multi-temporal images affect the accuracy of registration,this paper proposes a SIFT-based feature of the "low-resolution matching,high resolution authentication" hierarchical image registration algorithm to improve the above issues.In the proposed algorithm,affine transformation model is established in low-resolution pyramid images and sequentially evaluated and revised by match points in high resolution pyramid images.Experimental results show that the improved SIFT algorithm can reduce the time complexity with rather considerable accuracy.

  17. ARE: Ada Rendering Engine

    Directory of Open Access Journals (Sweden)

    Stefano Penge

    2009-10-01

    Full Text Available E' ormai pratica diffusa, nello sviluppo di applicazioni web, l'utilizzo di template e di potenti template engine per automatizzare la generazione dei contenuti da presentare all'utente. Tuttavia a volte la potenza di tali engine è€ ottenuta mescolando logica e interfaccia, introducendo linguaggi diversi da quelli di descrizione della pagina, o addirittura inventando nuovi linguaggi dedicati.ARE (ADA Rendering Engine è€ pensato per gestire l'intero flusso di creazione del contenuto HTML/XHTML dinamico, la selezione del corretto template, CSS, JavaScript e la produzione dell'output separando completamente logica e interfaccia. I templates utilizzati sono puro HTML senza parti in altri linguaggi, e possono quindi essere gestiti e visualizzati autonomamente. Il codice HTML generato è€ uniforme e parametrizzato.E' composto da due moduli, CORE (Common Output Rendering Engine e ALE (ADA Layout Engine.Il primo (CORE viene utilizzato per la generazione OO degli elementi del DOM ed è pensato per aiutare lo sviluppatore nella produzione di codice valido rispetto al DTD utilizzato. CORE genera automaticamente gli elementi del DOM in base al DTD impostato nella configurazioneIl secondo (ALE viene utilizzato come template engine per selezionare automaticamente in base ad alcuni parametri (modulo, profilo utente, tipologia del nodo, del corso, preferenze di installazione il template HTML, i CSS e i file JavaScript appropriati. ALE permette di usare templates di default e microtemplates ricorsivi per semplificare il lavoro del grafico.I due moduli possono in ogni caso essere utilizzati indipendentemente l'uno dall'altro. E' possibile generare e renderizzare una pagina HTML utilizzando solo CORE oppure inviare gli oggetti CORE al template engine ALE che provvede a renderizzare la pagina HTML. Viceversa è possibile generare HTML senza utilizzare CORE ed inviarlo al template engine ALECORE è alla prima release ed è€ già utilizzato all

  18. Sea modeling and rendering

    Science.gov (United States)

    Cathala, Thierry; Latger, Jean

    2010-10-01

    More and more defence and civil applications require simulation of marine synthetic environment. Currently, the "Future Anti-Surface-Guided-Weapon" (FASGW) or "anti-navire léger" (ANL) missile needs this kind of modelling. This paper presents a set of technical enhancement of the SE-Workbench that aim at better representing the sea profile and the interaction with targets. The operational scenario variability is a key criterion: the generic geographical area (e.g. Persian Gulf, coast of Somalia,...), the type of situation (e.g. peace keeping, peace enforcement, anti-piracy, drug interdiction,...)., the objectives (political, strategic, or military objectives), the description of the mission(s) (e.g. antipiracy) and operation(s) (e.g. surveillance and reconnaissance, escort, convoying) to achieve the objectives, the type of environment (Weather, Time of day, Geography [coastlines, islands, hills/mountains]). The paper insists on several points such as the dual rendering using either ray tracing [and the GP GPU optimization] or rasterization [and GPU shaders optimization], the modelling of sea-surface based on hypertextures and shaders, the wakes modelling, the buoyancy models for targets, the interaction of coast and littoral, the dielectric infrared modelling of water material.

  19. High-quality multi-resolution volume rendering in medicine

    Institute of Scientific and Technical Information of China (English)

    XIE Kai; YANG Jie; LI Xiao-liang

    2007-01-01

    In order to perform a high-quality interactive rendering of large medical data sets on a single off-theshelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.

  20. Interactive View-Dependent Rendering of Large Isosurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gregorski, B; Duchaineau, M; Lindstrom, P; Pascucci, V; Joy, K I

    2002-11-19

    We present an algorithm for interactively extracting and rendering isosurfaces of large volume datasets in a view-dependent fashion. A recursive tetrahedral mesh refinement scheme, based on longest edge bisection, is used to hierarchically decompose the data into a multiresolution structure. This data structure allows fast extraction of arbitrary isosurfaces to within user specified view-dependent error bounds. A data layout scheme based on hierarchical space filling curves provides access to the data in a cache coherent manner that follows the data access pattern indicated by the mesh refinement.

  1. Entropy, color, and color rendering.

    Science.gov (United States)

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  2. Real-Time Rendering of Teeth with No Preprocessing

    DEFF Research Database (Denmark)

    Larsen, Christian Thode; Frisvad, Jeppe Revall; Jensen, Peter Dahl Ejby

    2012-01-01

    We present a technique for real-time rendering of teeth with no need for computational or artistic preprocessing. Teeth constitute a translucent material consisting of several layers; a highly scattering material (dentine) beneath a semitransparent layer (enamel) with a transparent coating (saliva......). In this study we examine how light interacts with this multilayered structure. In the past, rendering of teeth has mostly been done using image-based texturing or volumetric scans. We work with surface scans and have therefore developed a simple way of estimating layer thicknesses. We use scattering properties...... based on measurements reported in the optics literature, and we compare rendered results qualitatively to images of ceramic teeth created by denturists....

  3. Exposure render: an interactive photo-realistic volume rendering framework.

    Directory of Open Access Journals (Sweden)

    Thomas Kroes

    Full Text Available The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT, coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR. With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license.

  4. RenderMan design principles

    Science.gov (United States)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  5. Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework

    NARCIS (Netherlands)

    Kroes, T.; Post, F.H.; Botha, C.P.

    2012-01-01

    The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by i

  6. Hierarchical photocatalysts.

    Science.gov (United States)

    Li, Xin; Yu, Jiaguo; Jaroniec, Mietek

    2016-05-01

    As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.

  7. GPU Pro advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2010-01-01

    This book covers essential tools and techniques for programming the graphics processing unit. Brought to you by Wolfgang Engel and the same team of editors who made the ShaderX series a success, this volume covers advanced rendering techniques, engine design, GPGPU techniques, related mathematical techniques, and game postmortems. A special emphasis is placed on handheld programming to account for the increased importance of graphics on mobile devices, especially the iPhone and iPod touch.Example programs and source code can be downloaded from the book's CRC Press web page. 

  8. Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics

    Science.gov (United States)

    Ellsworth, David; Chiang, Ling-Jen; Shen, Han-Wei; Kwak, Dochan (Technical Monitor)

    2000-01-01

    This paper describes a new hardware volume rendering algorithm for time-varying data. The algorithm uses the Time-Space Partitioning (TSP) tree data structure to identify regions within the data that have spatial or temporal coherence. By using this coherence, the rendering algorithm can improve performance when the volume data is larger than the texture memory capacity by decreasing the amount of textures required. This coherence can also allow improved speed by appropriately rendering flat-shaded polygons instead of textured polygons, and by not rendering transparent regions. To reduce the polygonization overhead caused by the use of the hierarchical data structure, we introduce an optimization method using polygon templates. The paper also introduces new color-based error metrics, which more accurately identify coherent regions compared to the earlier scalar-based metrics. By showing experimental results from runs using different data sets and error metrics, we demonstrate that the new methods give substantial improvements in volume rendering performance.

  9. Multiscale Image Based Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Strzodka, Robert

    2006-01-01

    We present MIBFV, a method to produce real-time, multiscale animations of flow datasets. MIBFV extends the attractive features of the Image-Based Flow Visualization (IBFV) method, i.e. dense flow domain coverage with flow-aligned noise, real-time animation, implementation simplicity, and few (or no)

  10. Real-time graphics rendering engine

    CERN Document Server

    Bao, Hujun

    2011-01-01

    ""Real-Time Graphics Rendering Engine"" reveals the software architecture of the modern real-time 3D graphics rendering engine and the relevant technologies based on the authors' experience developing this high-performance, real-time system. The relevant knowledge about real-time graphics rendering such as the rendering pipeline, the visual appearance and shading and lighting models are also introduced. This book is intended to offer well-founded guidance for researchers and developers who are interested in building their own rendering engines. Hujun Bao is a professor at the State Key Lab of

  11. Hardware Accelerated Point Rendering of Isosurfaces

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2003-01-01

    an approximate technique for point scaling using distance attenuation which makes it possible to render points stored in display lists or vertex arrays. This enables us to render points quickly using OpenGL. Our comparisons show that point generation is significantly faster than triangle generation...... and that the advantage of rendering points as opposed to triangles increases with the size and complexity of the volumes. To gauge the visual quality of future hardware accelerated point rendering schemes, we have implemented a software based point rendering method and compare the quality to both MC and our OpenGL based...

  12. High dynamic range (HDR) virtual bronchoscopy rendering for video tracking

    Science.gov (United States)

    Popa, Teo; Choi, Jae

    2007-03-01

    In this paper, we present the design and implementation of a new rendering method based on high dynamic range (HDR) lighting and exposure control. This rendering method is applied to create video images for a 3D virtual bronchoscopy system. One of the main optical parameters of a bronchoscope's camera is the sensor exposure. The exposure adjustment is needed since the dynamic range of most digital video cameras is narrower than the high dynamic range of real scenes. The dynamic range of a camera is defined as the ratio of the brightest point of an image to the darkest point of the same image where details are present. In a video camera exposure is controlled by shutter speed and the lens aperture. To create the virtual bronchoscopic images, we first rendered a raw image in absolute units (luminance); then, we simulated exposure by mapping the computed values to the values appropriate for video-acquired images using a tone mapping operator. We generated several images with HDR and others with low dynamic range (LDR), and then compared their quality by applying them to a 2D/3D video-based tracking system. We conclude that images with HDR are closer to real bronchoscopy images than those with LDR, and thus, that HDR lighting can improve the accuracy of image-based tracking.

  13. Cluster parallel rendering based on encoded mesh

    Institute of Scientific and Technical Information of China (English)

    QIN Ai-hong; XIONG Hua; PENG Hao-yu; LIU Zhen; SHI Jiao-ying

    2006-01-01

    Use of compressed mesh in parallel rendering architecture is still an unexplored area, the main challenge of which is to partition and sort the encoded mesh in compression-domain. This paper presents a mesh compression scheme PRMC (Parallel Rendering based Mesh Compression) supplying encoded meshes that can be partitioned and sorted in parallel rendering system even in encoded-domain. First, we segment the mesh into submeshes and clip the submeshes' boundary into Runs, and then piecewise compress the submeshes and Runs respectively. With the help of several auxiliary index tables, compressed submeshes and Runs can serve as rendering primitives in parallel rendering system. Based on PRMC, we design and implement a parallel rendering architecture. Compared with uncompressed representation, experimental results showed that PRMC meshes applied in cluster parallel rendering system can dramatically reduce the communication requirement.

  14. Binaural Rendering in MPEG Surround

    Directory of Open Access Journals (Sweden)

    Kristofer Kjörling

    2008-04-01

    Full Text Available This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate “binaural parameters” that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  15. Binaural Rendering in MPEG Surround

    Science.gov (United States)

    Breebaart, Jeroen; Villemoes, Lars; Kjörling, Kristofer

    2008-12-01

    This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial) properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate "binaural parameters" that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  16. Rendering Caustics on Non-Lambertian Surfaces

    DEFF Research Database (Denmark)

    Jensen, Henrik Wann

    1997-01-01

    This paper presents a new technique for rendering caustics on non-Lambertian surfaces. The method is based on an extension of the photon map which removes previous restrictions limiting the usage to Lambertian surfaces. We add information about the incoming direction to the photons and this allow...... reduces the rendering time. We have used the method to render caustics on surfaces with reflectance functions varying from Lambertian to glossy specular....

  17. Building Interstellar's black hole: the gravitational renderer

    OpenAIRE

    James, Oliver; Dieckmann, Sylvan; Pabst, Simon; Roberts, Paul-George H.; Thorne, Kip S.

    2015-01-01

    Interstellar is the first feature film to attempt depicting a black hole as it would actually be seen by somebody nearby. A close collaboration between the production's Scientific Advisor and the Visual Effects team led to the development of a new renderer, DNGR (Double Negative Gravitational Renderer) which uses novel techniques for rendering in curved space-time. Following the completion of the movie, the code was adapted for scientific research, leading to new insights into gravitational l...

  18. RenderToolbox3: MATLAB tools that facilitate physically based stimulus rendering for vision research.

    Science.gov (United States)

    Heasly, Benjamin S; Cottaris, Nicolas P; Lichtman, Daniel P; Xiao, Bei; Brainard, David H

    2014-02-07

    RenderToolbox3 provides MATLAB utilities and prescribes a workflow that should be useful to researchers who want to employ graphics in the study of vision and perhaps in other endeavors as well. In particular, RenderToolbox3 facilitates rendering scene families in which various scene attributes and renderer behaviors are manipulated parametrically, enables spectral specification of object reflectance and illuminant spectra, enables the use of physically based material specifications, helps validate renderer output, and converts renderer output to physical units of radiance. This paper describes the design and functionality of the toolbox and discusses several examples that demonstrate its use. We have designed RenderToolbox3 to be portable across computer hardware and operating systems and to be free and open source (except for MATLAB itself). RenderToolbox3 is available at https://github.com/DavidBrainard/RenderToolbox3.

  19. Image Based Camera Localization: an Overview

    OpenAIRE

    Wu, Yihong

    2016-01-01

    Recently, virtual reality, augmented reality, robotics, self-driving cars et al attractive much attention of industrial community, in which image based camera localization is a key task. It is urgent to give an overview of image based camera localization. In this paper, an overview of image based camera localization is presented. It will be useful to not only researchers but also engineers.

  20. Physically based rendering: from theory to implementation

    National Research Council Canada - National Science Library

    Pharr, Matt; Humphreys, Greg, Ph. D

    2010-01-01

    ... rendering algorithm variations. This book is not only a textbook for students, but also a useful reference book for practitioners in the field. The second edition has been extended with sections on Metropolis light transport, subsurface scattering, precomputed light transport, and more. Per Christensen Senior Software Developer, RenderMan Products,...

  1. Moisture movements in render on brick wall

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Munch, Thomas Astrup; Thorsen, Peter Schjørmann

    2003-01-01

    A three-layer render on brick wall used for building facades is studied in the laboratory. The vertical render surface is held in contact with water for 24 hours simulating driving rain while it is measured with non-destructive X-ray equipment every hour in order to follow the moisture front...... through the render and into the brick. The test specimen is placed between the source and the detector. The test specimens are all scanned before they are exposed to water. In that way the loss of counts from the dry scan to the wet scan qualitatively shows the presence of water. The results show nearly...... no penetration of water through the render and into the brick, and the results are independent of the start condition of the test specimens. Also drying experiments are performed. The results show a small difference in the rate of drying, in favour of the bricks without render....

  2. Physically based rendering from theory to implementation

    CERN Document Server

    Pharr, Matt

    2010-01-01

    "Physically Based Rendering, 2nd Edition" describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. A method - known as 'literate programming'- combines human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The result is a stunning achievement in graphics education. Through the ideas and software in this book, you will learn to design and employ a full-featured rendering system for creating stunning imagery. This book features new sections on subsurface scattering, Metropolis light transport, precomputed light transport, multispectral rendering, and much more. It includes a companion site complete with source code for the rendering system described in the book, with support for Windows, OS X, and Linux. Code and text are tightly woven together through a unique indexing feature that lists each function, variable, and method on the page that they are first described.

  3. Optimization-Based Wearable Tactile Rendering.

    Science.gov (United States)

    Perez, Alvaro G; Lobo, Daniel; Chinello, Francesco; Cirio, Gabriel; Malvezzi, Monica; San Martin, Jose; Prattichizzo, Domenico; Otaduy, Miguel A

    2016-10-20

    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches.

  4. 3D Rendering - Techniques and Challenges

    Directory of Open Access Journals (Sweden)

    Ekta Walia

    2010-04-01

    Full Text Available Computer generated images and animations are getting more and more common. They are used in many different contexts such as movies,mobiles, medical visualization, architectural visualization and CAD. Advanced ways of describing surface and light source properties are important to ensure that artists are able to create realistic and stylish looking images. Even when using advanced rendering algorithms such as ray tracing, time required for shading may contribute towards a large part of the image creation time. Therefore both performance and flexibility is important in a rendering system. This paper gives a comparative study of various 3D Rendering techniques and their challenges in a complete and systematic manner.

  5. FAST CROWD RENDERING IN COMPUTER GAMES

    Directory of Open Access Journals (Sweden)

    Kaya OĞUZ

    2010-06-01

    Full Text Available Computer games, with the speed advancements of graphical processors, are coming closer to the quality of cinema industry. Contrary to offline rendering of the scenes in a motion picture, computer games should be able to render at 30 frames per second. Therefore, CPU and memory performance are sought by using various techniques. This paper is about using instancing feature of contemporary graphical processors along with level of detail techniques which has been in use for a very long time. Using instancing, 15,000 instances were successfully rendered at 30 frames per second using a very low %10 CPU usage. The application can render 40,000 instances at 13 frames per second.

  6. Visibility-Aware Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    Wai-Ho Mak; Yingcai Wu; Ming-Yuen Chan; Huamin Qu

    2011-01-01

    Direct volume rendering (DVR) is a powerful visualization technique which allows users to effectively explore and study volumetric datasets. Different transparency settings can be flexibly assigned to different structures such that some valuable information can be revealed in direct volume rendered images (DVRIs). However, end-users often feel that some risks are always associated with DVR because they do not know whether any important information is missing from the transparent regions of DVRIs. In this paper, we investigate how to semi-automatically generate a set of DVRIs and also an animation which can reveal information missed in the original DVRIs and meanwhile satisfy some image quality criteria such as coherence. A complete framework is developed to tackle various problems related to the generation and quality evaluation of visibility-aware DVRIs and animations. Our technique can reduce the risk of using direct volume rendering and thus boost the confidence of users in volume rendering systems.

  7. ARC Code TI: SLAB Spatial Audio Renderer

    Data.gov (United States)

    National Aeronautics and Space Administration — SLAB is a software-based, real-time virtual acoustic environment rendering system being developed as a tool for the study of spatial hearing. SLAB is designed to...

  8. Composed Scattering Model for Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    蔡文立; 石教英

    1996-01-01

    Based on the equation of transfer in transport theory of optical physics,a new volume rendering model,called composed scattering model(CSM),is presented.In calculating the scattering term of the equation,it is decomposed into volume scattering intensity and surface scattering intensity,and they are composed with the boundary detection operator as the weight function.This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in existing models they are regarded as two separate ones.This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI.The resultant images show not only rich details but also clear boundary surfaces.CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.

  9. Rendering and Compositing Infrastructure Improvements to VisIt for Insitu Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ruebel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Compared to posthoc rendering, insitu rendering often generates larger numbers of images, as a result rendering performance and scalability are critical in the insitu setting. In this work we present improvements to VisIt's rendering and compositing infrastructure that deliver increased performance and scalability in both posthoc and insitu settings. We added the capability for alpha blend compositing and use it with ordered compositing when datasets have disjoint block domain decomposition to optimize the rendering of transparent geometry. We also made improvements that increase overall efficiency by reducing communication and data movement and have addressed a number of performance issues. We structured our code to take advantage of SIMD parallelization and use threads to overlap communication and compositing. We tested our improvements on a 20 core workstation using 8 cores to render geometry generated from a $256^3$ cosmology dataset and on a Cray XC31 using 512 cores to render geometry generated from a $2000^2 \\times 800$ plasma dataset. Our results show that ordered compositing provides a speed up of up to $4 \\times$ over the current sort first strategy. The other improvements resulted in modest speed up with one notable exception where we achieve up to $40 \\times$ speed up of rendering and compositing of opaque geometry when both opaque and transparent geometry are rendered together. We also investigated the use of depth peeling, but found that the implementation provided by VTK is substantially slower,both with and without GPU acceleration, than a local camera order sort.

  10. Brain Image Representation and Rendering: A Survey

    Directory of Open Access Journals (Sweden)

    Mudassar Raza

    2012-09-01

    Full Text Available Brain image representation and rendering processes are basically used for evaluation, development and investigation consent experimental examination and formation of brain images of a variety of modalities that includes the major brain types like MEG, EEG, PET, MRI, CT or microscopy. So, there is a need to conduct a study to review the existing work in this area. This paper provides a review of different existing techniques and methods regarding the brain image representation and rendering. Image Rendering is the method of generating an image by means of a model, through computer programs. The basic purpose of brain image representation and rendering processes is to analyze the brain images precisely in order to effectively diagnose and examine the diseases and problems. The basic objective of this study is to evaluate and discuss different techniques and approaches proposed in order to handle different brain imaging types. The paper provides a short overview of different methods, in the form of advantages and limitations, presented in the prospect of brain image representation and rendering along with their sub categories proposed by different authors.

  11. Equalizer: a scalable parallel rendering framework.

    Science.gov (United States)

    Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato

    2009-01-01

    Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.

  12. Standardized rendering from IR surveillance motion imagery

    Science.gov (United States)

    Prokoski, F. J.

    2014-06-01

    Government agencies, including defense and law enforcement, increasingly make use of video from surveillance systems and camera phones owned by non-government entities.Making advanced and standardized motion imaging technology available to private and commercial users at cost-effective prices would benefit all parties. In particular, incorporating thermal infrared into commercial surveillance systems offers substantial benefits beyond night vision capability. Face rendering is a process to facilitate exploitation of thermal infrared surveillance imagery from the general area of a crime scene, to assist investigations with and without cooperating eyewitnesses. Face rendering automatically generates greyscale representations similar to police artist sketches for faces in surveillance imagery collected from proximate locations and times to a crime under investigation. Near-realtime generation of face renderings can provide law enforcement with an investigation tool to assess witness memory and credibility, and integrate reports from multiple eyewitnesses, Renderings can be quickly disseminated through social media to warn of a person who may pose an immediate threat, and to solicit the public's help in identifying possible suspects and witnesses. Renderings are pose-standardized so as to not divulge the presence and location of eyewitnesses and surveillance cameras. Incorporation of thermal infrared imaging into commercial surveillance systems will significantly improve system performance, and reduce manual review times, at an incremental cost that will continue to decrease. Benefits to criminal justice would include improved reliability of eyewitness testimony and improved accuracy of distinguishing among minority groups in eyewitness and surveillance identifications.

  13. The Role of Prototype Learning in Hierarchical Models of Vision

    Science.gov (United States)

    Thomure, Michael David

    2014-01-01

    I conduct a study of learning in HMAX-like models, which are hierarchical models of visual processing in biological vision systems. Such models compute a new representation for an image based on the similarity of image sub-parts to a number of specific patterns, called prototypes. Despite being a central piece of the overall model, the issue of…

  14. Adaptive Rendering Based on Visual Acuity Equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new method of adaptable rendering for interaction in Virtual Environment(VE) through different visual acuity equations is proposed. An acuity factor equation of luminance vision is first given. Secondly, five equations which calculate the visual acuity through visual acuity factors are presented, and adaptive rendering strategy based on different visual acuity equations is given. The VE system may select one of them on the basis of the host's load, hereby select LOD for each model which would be rendered. A coarser LOD is selected where the visual acuity is lower, and a better LOD is used where it is higher. This method is tested through experiments and the experimental results show that it is effective.

  15. Rendering Falling Leaves on Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Marcos Balsa

    2008-04-01

    Full Text Available There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount of detail to be represented. Moreover, the interactions between the objects (grass, leaves and external forces such as wind are complex to model. In this paper we concentrate in the rendering of falling leaves at low cost. We present a technique that exploits graphics hardware in order to render thousands of leaves with different falling paths in real time and low memory requirements.

  16. On-line Free-viewpoint Video: From Single to Multiple View Rendering

    Institute of Scientific and Technical Information of China (English)

    Vincent Nozick; Hideo Saito

    2008-01-01

    In recent years, many image-based rendering techniques have advanced from static to dynamic scenes and thus become video-based rendering (VBR) methods. But actually, only a few of them can render new views on-line. We present a new VBR system that creates new views of a live dynamic scene. This system provides high quality images and does not require any background subtraction. Our method follows a plane-sweep approach and reaches real-time rendering using consumer graphic hardware, graphics processing unit (GPU). Only one computer is used for both acquisition and rendering. The video stream acquisition is performed by at least 3 webcams. We propose an additional video stream management that extends the number of webcams to 10 or more. These considerations make our system low-cost and hence accessible for everyone. We also present an adaptation of our plane-sweep method to create simultaneously multiple views of the scene in real-time. Our system is especially designed for stereovision using autostereoscopic displays. The new views are computed from 4 webcams connected to a computer and are compressed in order to be transfered to a mobile phone. Using CPU programming, our method provides up to 16 images of the scene in real-time. The use of both GPU and CPU makes this method work on only one consumer grade computer.

  17. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...

  18. Blender cycles lighting and rendering cookbook

    CERN Document Server

    Iraci, Bernardo

    2013-01-01

    An in-depth guide full of step-by-step recipes to explore the concepts behind the usage of Cycles. Packed with illustrations, and lots of tips and tricks; the easy-to-understand nature of the book will help the reader understand even the most complex concepts with ease.If you are a digital artist who already knows your way around Blender, and you want to learn about the new Cycles' rendering engine, this is the book for you. Even experts will be able to pick up new tips and tricks to make the most of the rendering capabilities of Cycles.

  19. Volume Rendering for Curvilinear and Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Williams, P; Silva, C; Cook, R

    2003-03-05

    We discuss two volume rendering methods developed at Lawrence Livermore National Laboratory. The first, cell projection, renders the polygons in the projection of each cell. It requires a global visibility sort in order to composite the cells in back to front order, and we discuss several different algorithms for this sort. The second method uses regularly spaced slice planes perpendicular to the X, Y, or Z axes, which slice the cells into polygons. Both methods are supplemented with anti-aliasing techniques to deal with small cells that might fall between pixel samples or slice planes, and both have been parallelized.

  20. GPU Pro 5 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2014-01-01

    In GPU Pro5: Advanced Rendering Techniques, section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Marius Bjorge have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book covers rendering, lighting, effects in image space, mobile devices, 3D engine design, and compute. It explores rasterization of liquids, ray tracing of art assets that would otherwise be used in a rasterized engine, physically based area lights, volumetric light

  1. Digital color acquisition, perception, coding and rendering

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    In this book the authors identify the basic concepts and recent advances in the acquisition, perception, coding and rendering of color. The fundamental aspects related to the science of colorimetry in relation to physiology (the human visual system) are addressed, as are constancy and color appearance. It also addresses the more technical aspects related to sensors and the color management screen. Particular attention is paid to the notion of color rendering in computer graphics. Beyond color, the authors also look at coding, compression, protection and quality of color images and videos.

  2. Haptic rendering for simulation of fine manipulation

    CERN Document Server

    Wang, Dangxiao; Zhang, Yuru

    2014-01-01

    This book introduces the latest progress in six degrees of freedom (6-DoF) haptic rendering with the focus on a new approach for simulating force/torque feedback in performing tasks that require dexterous manipulation skills. One of the major challenges in 6-DoF haptic rendering is to resolve the conflict between high speed and high fidelity requirements, especially in simulating a tool interacting with both rigid and deformable objects in a narrow space and with fine features. The book presents a configuration-based optimization approach to tackle this challenge. Addressing a key issue in man

  3. Hierarchical Multiagent Reinforcement Learning

    Science.gov (United States)

    2004-01-25

    In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In

  4. Feature-Adaptive Rendering of Loop Subdivision Surfaces on Modern GPUs

    Institute of Scientific and Technical Information of China (English)

    黄韵岑; 冯结青; 崔元敏; 杨宝光

    2014-01-01

    We present a novel approach for real-time rendering Loop subdivision surfaces on modern graphics hardware. Our algorithm evaluates both positions and normals accurately, thus providing the true Loop subdivision surface. The core idea is to recursively refine irregular patches using a GPU compute kernel. All generated regular patches are then directly evaluated and rendered using the hardware tessellation unit. Our approach handles triangular control meshes of arbitrary topologies and incorporates common subdivision surface features such as semi-sharp creases and hierarchical edits. While surface rendering is accurate up to machine precision, we also enforce a consistent bitwise evaluation of positions and normals at patch boundaries. This is particularly useful in the context of displacement mapping which strictly requires matching surface normals. Furthermore, we incorporate efficient level-of-detail rendering where subdivision depth and tessellation density can be adjusted on-the-fly. Overall, our algorithm provides high-quality results at real-time frame rates, thus being ideally suited to interactive rendering applications such as video games or authoring tools.

  5. Rendering Visible: Painting and Sexuate Subjectivity

    Science.gov (United States)

    Daley, Linda

    2015-01-01

    In this essay, I examine Luce Irigaray's aesthetic of sexual difference, which she develops by extrapolating from Paul Klee's idea that the role of painting is to render the non-visible rather than represent the visible. This idea is the premise of her analyses of phenomenology and psychoanalysis and their respective contributions to understanding…

  6. Haptic rendering for dental training system

    Institute of Scientific and Technical Information of China (English)

    WANG DangXiao; ZHANG YuRu; WANG Yong; L(U) PeiJun; ZHOU RenGe; ZHOU WanLin

    2009-01-01

    Immersion and Interaction are two key features of virtual reality systems,which are especially important for medical applications.Based on the requirement of motor skill training in dental surgery,haptic rendering method based on triangle model is investigated in this paper.Multi-rate haptic rendering architecture is proposed to solve the contradiction between fidelity and efficiency requirements.Realtime collision detection algorithm based on spatial partition and time coherence is utilized to enable fast contact determination.Proxy-based collision response algorithm is proposed to compute surface contact point.Cutting force model based on piecewise contact transition model is proposed for dental drilling simulation during tooth preparation.Velocity-driven levels of detail hapUc rendering algorithm is proposed to maintain high update rate for complex scenes with a large number of triangles.Hapticvisual collocated dental training prototype is established using half-mirror solution.Typical dental operations have been realized Including dental caries exploration,detection of boundary within dental crose-section plane,and dental drilling during tooth preparation.The haptic rendering method is a fundamental technology to improve Immersion and interaction of virtual reality training systems,which is useful not only in dental training,but also in other surgical training systems.

  7. ProteinShader: illustrative rendering of macromolecules

    Directory of Open Access Journals (Sweden)

    Weber Joseph R

    2009-03-01

    Full Text Available Abstract Background Cartoon-style illustrative renderings of proteins can help clarify structural features that are obscured by space filling or balls and sticks style models, and recent advances in programmable graphics cards offer many new opportunities for improving illustrative renderings. Results The ProteinShader program, a new tool for macromolecular visualization, uses information from Protein Data Bank files to produce illustrative renderings of proteins that approximate what an artist might create by hand using pen and ink. A combination of Hermite and spherical linear interpolation is used to draw smooth, gradually rotating three-dimensional tubes and ribbons with a repeating pattern of texture coordinates, which allows the application of texture mapping, real-time halftoning, and smooth edge lines. This free platform-independent open-source program is written primarily in Java, but also makes extensive use of the OpenGL Shading Language to modify the graphics pipeline. Conclusion By programming to the graphics processor unit, ProteinShader is able to produce high quality images and illustrative rendering effects in real-time. The main feature that distinguishes ProteinShader from other free molecular visualization tools is its use of texture mapping techniques that allow two-dimensional images to be mapped onto the curved three-dimensional surfaces of ribbons and tubes with minimum distortion of the images.

  8. Rendering Visible: Painting and Sexuate Subjectivity

    Science.gov (United States)

    Daley, Linda

    2015-01-01

    In this essay, I examine Luce Irigaray's aesthetic of sexual difference, which she develops by extrapolating from Paul Klee's idea that the role of painting is to render the non-visible rather than represent the visible. This idea is the premise of her analyses of phenomenology and psychoanalysis and their respective contributions to understanding…

  9. Hierarchical linear regression models for conditional quantiles

    Institute of Scientific and Technical Information of China (English)

    TIAN Maozai; CHEN Gemai

    2006-01-01

    The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectively with the data with a hierarchical structure.In practice,the existence of such data hierarchies is neither accidental nor ignorable,it is a common phenomenon.To ignore this hierarchical data structure risks overlooking the importance of group effects,and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid.On the other hand,the hierarchical models take a hierarchical data structure into account and have also many applications in statistics,ranging from overdispersion to constructing min-max estimators.However,the hierarchical models are virtually the mean regression,therefore,they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates.Furthermore,the estimated coefficient vector (marginal effects)is sensitive to an outlier observation on the dependent variable.In this article,a new approach,which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models,is developed.On the theoretical front,we also consider the asymptotic properties of the new method,obtaining the simple conditions for an n1/2-convergence and an asymptotic normality.We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained.

  10. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  11. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  12. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...

  13. VITRAIL: Acquisition, Modeling, and Rendering of Stained Glass.

    Science.gov (United States)

    Thanikachalam, Niranjan; Baboulaz, Loic; Prandoni, Paolo; Trumpler, Stefan; Wolf, Sophie; Vetterli, Martin

    2016-10-01

    Stained glass windows are designed to reveal their powerful artistry under diverse and time-varying lighting conditions; virtual relighting of stained glass, therefore, represents an exceptional tool for the appreciation of this age old art form. However, as opposed to most other artifacts, stained glass windows are extremely difficult if not impossible to analyze using controlled illumination because of their size and position. In this paper, we present novel methods built upon image based priors to perform virtual relighting of stained glass artwork by acquiring the actual light transport properties of a given artifact. In a preprocessing step, we build a material-dependent dictionary for light transport by studying the scattering properties of glass samples in a laboratory setup. We can now use the dictionary to recover a light transport matrix in two ways: under controlled illuminations the dictionary constitutes a sparsifying basis for a compressive sensing acquisition, while in the case of uncontrolled illuminations the dictionary is used to perform sparse regularization. The proposed basis preserves volume impurities and we show that the retrieved light transport matrix is heterogeneous, as in the case of real world objects. We present the rendering results of several stained glass artifacts, including the Rose Window of the Cathedral of Lausanne, digitized using the presented methods.

  14. Light field rendering with omni-directional camera

    Science.gov (United States)

    Todoroki, Hiroshi; Saito, Hideo

    2003-06-01

    This paper presents an approach to capture visual appearance of a real environment such as an interior of a room. We propose the method for generating arbitrary viewpoint images by building light field with the omni-directional camera, which can capture the wide circumferences. Omni-directional camera used in this technique is a special camera with the hyperbolic mirror in the upper part of a camera, so that we can capture luminosity in the environment in the range of 360 degree of circumferences in one image. We apply the light field method, which is one technique of Image-Based-Rendering(IBR), for generating the arbitrary viewpoint images. The light field is a kind of the database that records the luminosity information in the object space. We employ the omni-directional camera for constructing the light field, so that we can collect many view direction images in the light field. Thus our method allows the user to explore the wide scene, that can acheive realistic representation of virtual enviroment. For demonstating the proposed method, we capture image sequence in our lab's interior environment with an omni-directional camera, and succesfully generate arbitray viewpoint images for virual tour of the environment.

  15. RAY TRACING RENDER MENGGUNAKAN FRAGMENT ANTI ALIASING

    Directory of Open Access Journals (Sweden)

    Febriliyan Samopa

    2008-07-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Rendering is generating surface and three-dimensional effects on an object displayed on a monitor screen. Ray tracing as a rendering method that traces ray for each image pixel has a drawback, that is, aliasing (jaggies effect. There are some methods for executing anti aliasing. One of those methods is OGSS (Ordered Grid Super Sampling. OGSS is able to perform aliasing well. However, this method requires more computation time since sampling of all pixels in the image will be increased. Fragment Anti Aliasing (FAA is a new alternative method that can cope with the drawback. FAA will check the image when performing rendering to a scene. Jaggies effect is only happened at curve and gradient object. Therefore, only this part of object that will experience sampling magnification. After this sampling magnification and the pixel values are computed, then downsample is performed to retrieve the original pixel values. Experimental results show that the software can implement ray tracing well in order to form images, and it can implement FAA and OGSS technique to perform anti aliasing. In general, rendering using FAA is faster than using OGSS

  16. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering and Image-Based Motion Blur

    DEFF Research Database (Denmark)

    Kraus, Martin

    2013-01-01

    While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively ...

  17. A Brief Introduction of the Achievements of Key Project Image-based Modeling and Rendering for Virtual Reality Applications

    Institute of Scientific and Technical Information of China (English)

    Jiaoying Shi; Zhanyi Hu; Enhua Wu; Qunsheng Peng

    2006-01-01

    @@ 1.Background The virtual reality (VR) technology is now at the frontier of modern information science.VR is based on computer graphics,computer vision,and other fresh air topics in today's computer technology.

  18. Fast Time-Varying Volume Rendering Using Time-Space Partition (TSP) Tree

    Science.gov (United States)

    Shen, Han-Wei; Chiang, Ling-Jen; Ma, Kwan-Liu

    1999-01-01

    We present a new, algorithm for rapid rendering of time-varying volumes. A new hierarchical data structure that is capable of capturing both the temporal and the spatial coherence is proposed. Conventional hierarchical data structures such as octrees are effective in characterizing the homogeneity of the field values existing in the spatial domain. However, when treating time merely as another dimension for a time-varying field, difficulties frequently arise due to the discrepancy between the field's spatial and temporal resolutions. In addition, treating spatial and temporal dimensions equally often prevents the possibility of detecting the coherence that is unique in the temporal domain. Using the proposed data structure, our algorithm can meet the following goals. First, both spatial and temporal coherence are identified and exploited for accelerating the rendering process. Second, our algorithm allows the user to supply the desired error tolerances at run time for the purpose of image-quality/rendering-speed trade-off. Third, the amount of data that are required to be loaded into main memory is reduced, and thus the I/O overhead is minimized. This low I/O overhead makes our algorithm suitable for out-of-core applications.

  19. Optimization techniques for computationally expensive rendering algorithms

    OpenAIRE

    Navarro Gil, Fernando; Gutiérrez Pérez, Diego; Serón Arbeloa, Francisco José

    2012-01-01

    Realistic rendering in computer graphics simulates the interactions of light and surfaces. While many accurate models for surface reflection and lighting, including solid surfaces and participating media have been described; most of them rely on intensive computation. Common practices such as adding constraints and assumptions can increase performance. However, they may compromise the quality of the resulting images or the variety of phenomena that can be accurately represented. In this thesi...

  20. Visualization of Medpor implants using surface rendering

    Institute of Scientific and Technical Information of China (English)

    WANG Meng; GUI Lai; LIU Xiao-jing

    2011-01-01

    Background The Medpor surgical implant is one of the easiest implants in clinical practice, especially in craniomaxillofacial surgery. It is often used as a bone substitute material for the repair of skull defects and facial deformities. The Medpor implant has several advantages but its use is limited because it is radiolucent in both direct radiography and conventional computed tomography, causing serious problems with visualization.Methods In this study, a new technique for visualizing Medpor implants was evaluated in 10 patients who had undergone facial reconstruction using the material. Continuous volume scans were made using a 16-channel tomographic scanner and 3D reconstruction software was used to create surface renderings. The threshold values for surface renderings of the implant ranged from -70 HU to -20 HU, with bone as the default.Results The shape of the implants and the spatial relationship between bone and implant could both be displayed.Conclusion Surface rendering can allow successful visualization of Medpor implants in the body.

  1. A Semi-automated Approach to Improve the Efficiency of Medical Imaging Segmentation for Haptic Rendering.

    Science.gov (United States)

    Banerjee, Pat; Hu, Mengqi; Kannan, Rahul; Krishnaswamy, Srinivasan

    2017-08-01

    The Sensimmer platform represents our ongoing research on simultaneous haptics and graphics rendering of 3D models. For simulation of medical and surgical procedures using Sensimmer, 3D models must be obtained from medical imaging data, such as magnetic resonance imaging (MRI) or computed tomography (CT). Image segmentation techniques are used to determine the anatomies of interest from the images. 3D models are obtained from segmentation and their triangle reduction is required for graphics and haptics rendering. This paper focuses on creating 3D models by automating the segmentation of CT images based on the pixel contrast for integrating the interface between Sensimmer and medical imaging devices, using the volumetric approach, Hough transform method, and manual centering method. Hence, automating the process has reduced the segmentation time by 56.35% while maintaining the same accuracy of the output at ±2 voxels.

  2. Technique for fast and efficient hierarchical clustering

    Science.gov (United States)

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  3. GPU Pro 4 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2013-01-01

    GPU Pro4: Advanced Rendering Techniques presents ready-to-use ideas and procedures that can help solve many of your day-to-day graphics programming challenges. Focusing on interactive media and games, the book covers up-to-date methods producing real-time graphics. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Sebastien St-Laurent have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book begins with discussions on the abi

  4. Haptic rendering foundations, algorithms, and applications

    CERN Document Server

    Lin, Ming C

    2008-01-01

    For a long time, human beings have dreamed of a virtual world where it is possible to interact with synthetic entities as if they were real. It has been shown that the ability to touch virtual objects increases the sense of presence in virtual environments. This book provides an authoritative overview of state-of-theart haptic rendering algorithms and their applications. The authors examine various approaches and techniques for designing touch-enabled interfaces for a number of applications, including medical training, model design, and maintainability analysis for virtual prototyping, scienti

  5. GPU PRO 3 Advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2012-01-01

    GPU Pro3, the third volume in the GPU Pro book series, offers practical tips and techniques for creating real-time graphics that are useful to beginners and seasoned game and graphics programmers alike. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Wessam Bahnassi, and Sebastien St-Laurent have once again brought together a high-quality collection of cutting-edge techniques for advanced GPU programming. With contributions by more than 50 experts, GPU Pro3: Advanced Rendering Techniques covers battle-tested tips and tricks for creating interesting geometry, realistic sha

  6. Defects of organization in rendering medical aid

    Directory of Open Access Journals (Sweden)

    Shavkat Islamov

    2010-09-01

    Full Text Available The defects of organization at the medical institution mean disturbance of rules, norms and order of rendering of medical aid. The number of organization defects in Uzbekistan increased from 20.42%, in 1999 to 25.46% in 2001 with gradual decrease to 19.9% in 2003 and 16.66%, in 2006 and gradual increase to 21.95% and 28.28% (P<0.05 in 2005 and 2008. Among the groups of essential defects of organization there were following: disturbance of transportation rules, lack of dispensary care, shortcomings in keeping medical documentation.

  7. A Multiresolution Image Cache for Volume Rendering

    Energy Technology Data Exchange (ETDEWEB)

    LaMar, E; Pascucci, V

    2003-02-27

    The authors discuss the techniques and implementation details of the shared-memory image caching system for volume visualization and iso-surface rendering. One of the goals of the system is to decouple image generation from image display. This is done by maintaining a set of impostors for interactive display while the production of the impostor imagery is performed by a set of parallel, background processes. The system introduces a caching basis that is free of the gap/overlap artifacts of earlier caching techniques. instead of placing impostors at fixed, pre-defined positions in world space, the technique is to adaptively place impostors relative to the camera viewpoint. The positions translate with the camera but stay aligned to the data; i.e., the positions translate, but do not rotate, with the camera. The viewing transformation is factored into a translation transformation and a rotation transformation. The impostor imagery is generated using just the translation transformation and visible impostors are displayed using just the rotation transformation. Displayed image quality is improved by increasing the number of impostors and the frequency that impostors are re-rendering is improved by decreasing the number of impostors.

  8. Rendering of 3D Dynamic Virtual Environments

    CERN Document Server

    Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco

    2011-01-01

    In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.

  9. Accelerating Image Based Scientific Applications using Commodity Video Graphics Adapters

    Directory of Open Access Journals (Sweden)

    Randy P. Broussard

    2009-06-01

    Full Text Available The processing power available in current video graphics cards is approaching super computer levels. State-of-the-art graphical processing units (GPU boast of computational performance in the range of 1.0-1.1 trillion floating point operations per second (1.0-1.1 Teraflops. Making this processing power accessible to the scientific community would benefit many fields of research. This research takes a relatively computationally expensive image-based iris segmentation algorithm and hosts it on a GPU using the High Level Shader Language which is part of DirectX 9.0. The selected segmentation algorithm uses basic image processing techniques such as image inversion, value squaring, thresholding, dilation, erosion and a computationally intensive local kurtosis (fourth central moment calculation. Strengths and limitations of the DirectX rendering pipeline are discussed. The primary source of the graphical processing power, the pixel or fragment shader, is discussed in detail. Impressive acceleration results were obtained. The iris segmentation algorithm was accelerated by a factor of 40 over the highly optimized C++ version hosted on the computer's central processing unit. Some parts of the algorithm ran at speeds that were over 100 times faster than their C++ counterpart. GPU programming details and HLSL code samples are presented as part of the acceleration discussion.

  10. RELATIVE PANORAMIC CAMERA POSITION ESTIMATION FOR IMAGE-BASED VIRTUAL REALITY NETWORKS IN INDOOR ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    M. Nakagawa

    2017-09-01

    Full Text Available Image-based virtual reality (VR is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  11. Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting

    Institute of Scientific and Technical Information of China (English)

    WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng

    2003-01-01

    To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.

  12. Photon Differential Splatting for Rendering Caustics

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Schjøth, Lars; Erleben, Kenny;

    2014-01-01

    We present a photon splatting technique which reduces noise and blur in the rendering of caustics. Blurring of illumination edges is an inherent problem in photon splatting, as each photon is unaware of its neighbours when being splatted. This means that the splat size is usually based...... on heuristics rather than knowledge of the local flux density. We use photon differentials to determine the size and shape of the splats such that we achieve adaptive anisotropic flux density estimation in photon splatting. As compared to previous work that uses photon differentials, we present the first method...... where no photons or beams or differentials need to be stored in a map. We also present improvements in the theory of photon differentials, which give more accurate results and a faster implementation. Our technique has good potential for GPU acceleration, and we limit the number of parameters requiring...

  13. Immersive volume rendering of blood vessels

    Science.gov (United States)

    Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.

    2012-03-01

    In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.

  14. Constructing And Rendering Vectorised Photographic Images

    Directory of Open Access Journals (Sweden)

    P. J. Willis

    2013-06-01

    Full Text Available We address the problem of representing captured images in the continuous mathematical space more usually associated with certain forms of drawn ('vector' images. Such an image is resolution-independent so can be used as a master for varying resolution-specific formats. We briefly describe the main features of a vectorising codec for photographic images, whose significance is that drawing programs can access images and image components as first-class vector objects. This paper focuses on the problem of rendering from the isochromic contour form of a vectorised image and demonstrates a new fill algorithm which could also be used in drawing generally. The fill method is described in terms of level set diffusion equations for clarity. Finally we show that image warping is both simplified and enhanced in the vector form and that we can demonstrate real histogram equalisation with genuinely rectangular histograms straightforwardly.

  15. Resolution-independent surface rendering using programmable graphics hardware

    Science.gov (United States)

    Loop, Charles T.; Blinn, James Frederick

    2008-12-16

    Surfaces defined by a Bezier tetrahedron, and in particular quadric surfaces, are rendered on programmable graphics hardware. Pixels are rendered through triangular sides of the tetrahedra and locations on the shapes, as well as surface normals for lighting evaluations, are computed using pixel shader computations. Additionally, vertex shaders are used to aid interpolation over a small number of values as input to the pixel shaders. Through this, rendering of the surfaces is performed independently of viewing resolution, allowing for advanced level-of-detail management. By individually rendering tetrahedrally-defined surfaces which together form complex shapes, the complex shapes can be rendered in their entirety.

  16. [The hierarchical clustering analysis of hyperspectral image based on probabilistic latent semantic analysis].

    Science.gov (United States)

    Yi, Wen-Bin; Shen, Li; Qi, Yin-Feng; Tang, Hong

    2011-09-01

    The paper introduces the Probabilistic Latent Semantic Analysis (PLSA) to the image clustering and an effective image clustering algorithm using the semantic information from PLSA is proposed which is used for hyperspectral images. Firstly, the ISODATA algorithm is used to obtain the initial clustering result of hyperspectral image and the clusters of the initial clustering result are considered as the visual words of the PLSA. Secondly, the object-oriented image segmentation algorithm is used to partition the hyperspectral image and segments with relatively pure pixels are regarded as documents in PLSA. Thirdly, a variety of identification methods which can estimate the best number of cluster centers is combined to get the number of latent semantic topics. Then the conditional distributions of visual words in topics and the mixtures of topics in different documents are estimated by using PLSA. Finally, the conditional probabilistic of latent semantic topics are distinguished using statistical pattern recognition method, the topic type for each visual in each document will be given and the clustering result of hyperspectral image are then achieved. Experimental results show the clusters of the proposed algorithm are better than K-MEANS and ISODATA in terms of object-oriented property and the clustering result is closer to the distribution of real spatial distribution of surface.

  17. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  18. Hierarchical auxetic mechanical metamaterials.

    Science.gov (United States)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N

    2015-02-11

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  19. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  20. Hierarchical Auxetic Mechanical Metamaterials

    Science.gov (United States)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.

    2015-02-01

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  1. Applied Bayesian Hierarchical Methods

    CERN Document Server

    Congdon, Peter D

    2010-01-01

    Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.

  2. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  3. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  4. Efficient and Effective Volume Visualization with Enhanced Isosurface Rendering

    CERN Document Server

    Yang, Fei; Tian, Jie

    2012-01-01

    Compared with full volume rendering, isosurface rendering has several well recognized advantages in efficiency and accuracy. However, standard isosurface rendering has some limitations in effectiveness. First, it uses a monotone colored approach and can only visualize the geometry features of an isosurface. The lack of the capability to illustrate the material property and the internal structures behind an isosurface has been a big limitation of this method in applications. Another limitation of isosurface rendering is the difficulty to reveal physically meaningful structures, which are hidden in one or multiple isosurfaces. As such, the application requirements of extract and recombine structures of interest can not be implemented effectively with isosurface rendering. In this work, we develop an enhanced isosurface rendering technique to improve the effectiveness while maintaining the performance efficiency of the standard isosurface rendering. First, an isosurface color enhancement method is proposed to il...

  5. Direct volume rendering methods for cell structures.

    Science.gov (United States)

    Martišek, Dalibor; Martišek, Karel

    2012-01-01

    The study of the complicated architecture of cell space structures is an important problem in biology and medical research. Optical cuts of cells produced by confocal microscopes enable two-dimensional (2D) and three-dimensional (3D) reconstructions of observed cells. This paper discuses new possibilities for direct volume rendering of these data. We often encounter 16 or more bit images in confocal microscopy of cells. Most of the information contained in these images is unsubstantial for the human vision. Therefore, it is necessary to use mathematical algorithms for visualization of such images. Present software tools as OpenGL or DirectX run quickly in graphic station with special graphic cards, run very unsatisfactory on PC without these cards and outputs are usually poor for real data. These tools are black boxes for a common user and make it impossible to correct and improve them. With the method proposed, more parameters of the environment can be set, making it possible to apply 3D filters to set the output image sharpness in relation to the noise. The quality of the output is incomparable to the earlier described methods and is worth increasing the computing time. We would like to offer mathematical methods of 3D scalar data visualization describing new algorithms that run on standard PCs very well.

  6. Approach for optimization of the color rendering index of light mixtures.

    Science.gov (United States)

    Lin, Ku Chin

    2010-07-01

    The general CIE color rendering index (CRI) of light is an important index to evaluate the quality of illumination. However, because of the complexity in measurement of the rendering ability under designated constraints, an approach for general mathematical formulation and global optimization of the rendering ability of light emitting diode (LED) light mixtures is difficult to develop. This study is mainly devoted to developing mathematical formulation and a numerical method for the CRI optimization. The method is developed based on the so-called complex method [Computer J.8, 42 (1965); G. V. Reklaitis et al., Engineering Optimization-Methods and Applications (Wiley, 1983)] with modifications. It is first applicable to 3-color light mixtures and then extended to a hierarchical and iterative structure for higher-order light mixtures. The optimization is studied under the constraints of bounded relative intensities of the light mixture, designated correlated color temperature (CCT), and the required approximate white of the light mixture. The problems of inconsistent constraints and solutions are addressed. The CRI is a complicated function of the relative intensities of the compound illuminators of the mixture. The proposed method requires taking no derivatives of the function and is very adequate for the optimization. This is demonstrated by simulation for RGBW LED light mixtures. The results show that global and unique convergence to the optimal within required tolerances for CRI and spatial dispersivity is always achieved.

  7. Adaptive color visualization for dichromats using a customized hierarchical palette

    Science.gov (United States)

    Rodríguez-Pardo, Carlos E.; Sharma, Gaurav

    2011-01-01

    We propose a user-centric methodology for displaying digital color documents, that optimizes color representations in an observer specific and adaptive fashion. We apply our framework to situations involving viewers with common dichromatic color vision deficiencies, who face challenges in perceiving information presented in color images and graphics designed for color normal individuals. For situations involving qualitative data visualization, we present a computationally efficient solution that combines a customized observer-specific hierarchical palette with "display time" selection of the number of colors to generate renderings with colors that are easily discriminated by the intended viewer. The palette design is accomplished via a clustering algorithm, that arranges colors in a hierarchical tree based on their perceived differences for the intended viewer. A desired number of highly discriminable colors are readily obtained from the hierarchical palette via a simple truncation. As an illustration, we demonstrate the application of the methodology to Ishihara style images.

  8. Image-Based Multiresolution Implicit Object Modeling

    Directory of Open Access Journals (Sweden)

    Sarti Augusto

    2002-01-01

    Full Text Available We discuss two image-based 3D modeling methods based on a multiresolution evolution of a volumetric function′s level set. In the former method, the role of the level set implosion is to fuse ("sew" and "stitch" together several partial reconstructions (depth maps into a closed model. In the later, the level set′s implosion is steered directly by the texture mismatch between views. Both solutions share the characteristic of operating in an adaptive multiresolution fashion, in order to boost up computational efficiency and robustness.

  9. Developing stereo image based robot control system

    Science.gov (United States)

    Suprijadi, Pambudi, I. R.; Woran, M.; Naa, C. F.; Srigutomo, W.

    2015-04-01

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  10. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  11. HDlive rendering images of the fetal stomach: a preliminary report.

    Science.gov (United States)

    Inubashiri, Eisuke; Abe, Kiyotaka; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko; Minami, Kunihiro; Nomura, Yasuhiro

    2015-01-01

    This study aimed to show reconstruction of the fetal stomach using the HDlive rendering mode in ultrasound. Seventeen healthy singleton fetuses at 18-34 weeks' gestational age were observed using the HDlive rendering mode of ultrasound in utero. In all of the fetuses, we identified specific spatial structures, including macroscopic anatomical features (e.g., the pyrous, cardia, fundus, and great curvature) of the fetal stomach, using the HDlive rendering mode. In particular, HDlive rendering images showed remarkably fine details that appeared as if they were being viewed under an endoscope, with visible rugal folds after 27 weeks' gestational age. Our study suggests that the HDlive rendering mode can be used as an additional method for evaluating the fetal stomach. The HDlive rendering mode shows detailed 3D structural images and anatomically realistic images of the fetal stomach. This technique may be effective in prenatal diagnosis for examining detailed information of fetal organs.

  12. Intelligent Image Based Computer Aided Education (IICAE)

    Science.gov (United States)

    David, Amos A.; Thiery, Odile; Crehange, Marion

    1989-03-01

    Artificial Intelligence (AI) has found its way into Computer Aided Education (CAE), and there are several systems constructed to put in evidence its interesting advantages. We believe that images (graphic or real) play an important role in learning. However, the use of images, outside their use as illustration, makes it necessary to have applications such as AI. We shall develop the application of AI in an image based CAE and briefly present the system under construction to put in evidence our concept. We shall also elaborate a methodology for constructing such a system. Futhermore we shall briefly present the pedagogical and psychological activities in a learning process. Under the pedagogical and psychological aspect of learning, we shall develop areas such as the importance of image in learning both as pedagogical objects as well as means for obtaining psychological information about the learner. We shall develop the learner's model, its use, what to build into it and how. Under the application of AI in an image based CAE, we shall develop the importance of AI in exploiting the knowledge base in the learning environment and its application as a means of implementing pedagogical strategies.

  13. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  14. Fast combinative volume rendering by indexed data structure

    Institute of Scientific and Technical Information of China (English)

    孙文武; 王文成; 吴恩华

    2001-01-01

    It is beneficial to study the interesting contents in a data set by combining and rendering variouscontents of the data. In this regard, an indexed data structure is proposed to facilitate the reorganization of data so that the contents of the data can be combined conveniently and only the selected contents in the data are processed for rendering. Based on the structure, the cells of different contents can be queued up easily so that the volume rendering can be conducted more accurately and quickly. Experimental results show that the indexed data structure is very efficient in improving combinative volume rendering.

  15. Hierarchical image segmentation for learning object priors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.; Li, Nan [TEMPLE UNIV.

    2010-11-10

    The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.

  16. Active-imaging-based underwater navigation

    Science.gov (United States)

    Monnin, David; Schmitt, Gwenaël.; Fischer, Colin; Laurenzis, Martin; Christnacher, Frank

    2015-10-01

    Global navigation satellite systems (GNSS) are widely used for the localization and the navigation of unmanned and remotely operated vehicles (ROV). In contrast to ground or aerial vehicles, GNSS cannot be employed for autonomous underwater vehicles (AUV) without the use of a communication link to the water surface, since satellite signals cannot be received underwater. However, underwater autonomous navigation is still possible using self-localization methods which determines the relative location of an AUV with respect to a reference location using inertial measurement units (IMU), depth sensors and even sometimes radar or sonar imaging. As an alternative or a complementary solution to common underwater reckoning techniques, we present the first results of a feasibility study of an active-imaging-based localization method which uses a range-gated active-imaging system and can yield radiometric and odometric information even in turbid water.

  17. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  18. Realistic Real-Time Outdoor Rendering in Augmented Reality

    Science.gov (United States)

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  19. Realistic real-time outdoor rendering in augmented reality.

    Science.gov (United States)

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  20. Method of producing hydrogen, and rendering a contaminated biomass inert

    Science.gov (United States)

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  1. Realistic real-time outdoor rendering in augmented reality.

    Directory of Open Access Journals (Sweden)

    Hoshang Kolivand

    Full Text Available Realistic rendering techniques of outdoor Augmented Reality (AR has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps. Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  2. 7 CFR 54.15 - Advance information concerning service rendered.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54.15... Service § 54.15 Advance information concerning service rendered. Upon request of any applicant, all or any... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED)...

  3. Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.

    Science.gov (United States)

    Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk

    2013-11-20

    Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance.

  4. Local and Global Illumination in the Volume Rendering Integral

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Chen, M

    2005-10-21

    This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.

  5. Research of global illumination algorithms rendering in glossy scene

    Institute of Scientific and Technical Information of China (English)

    BAI Shuangxue; ZHANG Qiang; ZHOU Dongsheng

    2012-01-01

    In computer graphic (CG), illumination rendering generated realistic effect at virtual scene is amazing. Not only plausible lighting effect is to show the relative position between of the objects, but also to reflect the material of visual appearance of the vir- tual objects. The diffuse-scene rendering reflectance credibility has gradually matured. Global illumination rendering method for the glossy material is still a challenge for the CG research. Because of the shiny materials is highly energy reflection between the com- plex light paths. Whether we trace glossy reflection paths, or use of one-reflection or multi-reflection approximate above complex il- lumination transmission is a difficult working. This paper we gather some commonly used global illumination algorithms recently year and its extension glossy scene improvements. And we introduce the limitation of classical algorithms rendering glossy scene and some extended solution. Finally, we will summarize the illumination rendering for specular scene, there are still some open prob- lems.

  6. Perception-based transparency optimization for direct volume rendering.

    Science.gov (United States)

    Chan, Ming-Yuen; Wu, Yingcai; Mak, Wai-Ho; Chen, Wei; Qu, Huamin

    2009-01-01

    The semi-transparent nature of direct volume rendered images is useful to depict layered structures in a volume. However, obtaining a semi-transparent result with the layers clearly revealed is difficult and may involve tedious adjustment on opacity and other rendering parameters. Furthermore, the visual quality of layers also depends on various perceptual factors. In this paper, we propose an auto-correction method for enhancing the perceived quality of the semi-transparent layers in direct volume rendered images. We introduce a suite of new measures based on psychological principles to evaluate the perceptual quality of transparent structures in the rendered images. By optimizing rendering parameters within an adaptive and intuitive user interaction process, the quality of the images is enhanced such that specific user requirements can be met. Experimental results on various datasets demonstrate the effectiveness and robustness of our method.

  7. A Volume Rendering Algorithm for Sequential 2D Medical Images

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠

    2002-01-01

    Volume rendering of 3D data sets composed of sequential 2D medical images has become an important branch in image processing and computer graphics.To help physicians fully understand deep-seated human organs and focuses(e.g.a tumour)as 3D structures.in this paper,we present a modified volume rendering algorithm to render volumetric data,Using this method.the projection images of structures of interest from different viewing directions can be obtained satisfactorily.By rotating the light source and the observer eyepoint,this method avoids rotates the whole volumetric data in main memory and thus reduces computational complexity and rendering time.Experiments on CT images suggest that the proposed method is useful and efficient for rendering 3D data sets.

  8. Topological Galleries: A High Level User Interface for Topology Controlled Volume Rendering

    Energy Technology Data Exchange (ETDEWEB)

    MacCarthy, Brian; Carr, Hamish; Weber, Gunther H.

    2011-06-30

    Existing topological interfaces to volume rendering are limited by their reliance on sophisticated knowledge of topology by the user. We extend previous work by describing topological galleries, an interface for novice users that is based on the design galleries approach. We report three contributions: an interface based on hierarchical thumbnail galleries to display the containment relationships between topologically identifiable features, the use of the pruning hierarchy instead of branch decomposition for contour tree simplification, and drag-and-drop transfer function assignment for individual components. Initial results suggest that this approach suffers from limitations due to rapid drop-off of feature size in the pruning hierarchy. We explore these limitations by providing statistics of feature size as function of depth in the pruning hierarchy of the contour tree.

  9. 基于图像技术的真实场景造型与编辑%Modeling and Editing Real Scenes with Image-Based Techniques

    Institute of Scientific and Technical Information of China (English)

    俞益洲

    2000-01-01

    @@ Image-based modeling and rendering techniques greatly advanced the level of photorealism in computer graphics. They were originally proposed to accelerate rendering with the ability to vary viewpoint only. My work in this area focused on capturing and modeling real scenes for novel visual interactions such as varying lighting condition and scene configuration in addition to viewpoint. This work can lead to Applications such as virtual navigation of a real scene, interaction with the scene, novel scene composition, interior lighting design, and augmented reality.

  10. Collaborative Hierarchical Sparse Modeling

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina C

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is done by solving an l_1-regularized linear regression problem, usually called Lasso. In this work we first combine the sparsity-inducing property of the Lasso model, at the individual feature level, with the block-sparsity property of the group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the hierarchical Lasso, which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level but not necessarily at the lower one. Signals then share the same active groups, or classes, but not necessarily the same active set. This is very well suited for applications such as source separation. An efficient optimization procedure, which guarantees convergence to the global opt...

  11. Hierarchical manifold learning.

    Science.gov (United States)

    Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Jo; Rueckert, Daniel

    2012-01-01

    We present a novel method of hierarchical manifold learning which aims to automatically discover regional variations within images. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate its utility in two very different settings: (1) to learn the regional correlations in motion within a sequence of time-resolved images of the thoracic cavity; (2) to find discriminative regions of 3D brain images in the classification of neurodegenerative disease,

  12. ISAR imaging based on sparse subbands fusion

    Science.gov (United States)

    Li, Gang; Tian, Biao; Xu, Shiyou; Chen, Zengping

    2015-12-01

    Data fusion using subbands, which can obtain a higher range resolution without altering the bandwidth, hardware, and sampling rate of the radar system, has attracted more and more attention in recent years. A method of ISAR imaging based on subbands fusion and high precision parameter estimation of geometrical theory of diffraction (GTD) model is presented in this paper. To resolve the incoherence problem in subbands data, a coherent processing method is adopted. Based on an all-pole model, the phase difference of pole and scattering coefficient between each sub-band is used to effectively estimate the incoherent components. After coherent processing, the high and low frequency sub-band data can be expressed as a uniform all-pole model. The gapped-data amplitude and phase estimation (GAPES) algorithm is used to fill up the gapped band. Finally, fusion data is gained by high precision parameter estimation of GTD-all-pole model with full-band data, such as scattering center number, scattering center type and amplitude. The experimental results of simulated data show the validity of the algorithm.

  13. Image-based modelling of organogenesis.

    Science.gov (United States)

    Iber, Dagmar; Karimaddini, Zahra; Ünal, Erkan

    2016-07-01

    One of the major challenges in biology concerns the integration of data across length and time scales into a consistent framework: how do macroscopic properties and functionalities arise from the molecular regulatory networks-and how can they change as a result of mutations? Morphogenesis provides an excellent model system to study how simple molecular networks robustly control complex processes on the macroscopic scale despite molecular noise, and how important functional variants can emerge from small genetic changes. Recent advancements in three-dimensional imaging technologies, computer algorithms and computer power now allow us to develop and analyse increasingly realistic models of biological control. Here, we present our pipeline for image-based modelling that includes the segmentation of images, the determination of displacement fields and the solution of systems of partial differential equations on the growing, embryonic domains. The development of suitable mathematical models, the data-based inference of parameter sets and the evaluation of competing models are still challenging, and current approaches are discussed.

  14. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  15. HDS: Hierarchical Data System

    Science.gov (United States)

    Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.

    2015-02-01

    The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023). HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

  16. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  17. Multiresolution maximum intensity volume rendering by morphological adjunction pyramids

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    We describe a multiresolution extension to maximum intensity projection (MIP) volume rendering, allowing progressive refinement and perfect reconstruction. The method makes use of morphological adjunction pyramids. The pyramidal analysis and synthesis operators are composed of morphological 3-D

  18. Multiresolution Maximum Intensity Volume Rendering by Morphological Adjunction Pyramids

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2001-01-01

    We describe a multiresolution extension to maximum intensity projection (MIP) volume rendering, allowing progressive refinement and perfect reconstruction. The method makes use of morphological adjunction pyramids. The pyramidal analysis and synthesis operators are composed of morphological 3-D

  19. Foggy Scene Rendering Based on Transmission Map Estimation

    Directory of Open Access Journals (Sweden)

    Fan Guo

    2014-01-01

    Full Text Available Realistic rendering of foggy scene is important in game development and virtual reality. Traditional methods have many parameters to control or require a long time to compute, and they are usually limited to depicting a homogeneous fog without considering the foggy scene with heterogeneous fog. In this paper, a new rendering method based on transmission map estimation is proposed. We first generate perlin noise image as the density distribution texture of heterogeneous fog. Then we estimate the transmission map using the Markov random field (MRF model and the bilateral filter. Finally, virtual foggy scene is realistically rendered with the generated perlin noise image and the transmission map according to the atmospheric scattering model. Experimental results show that the rendered results of our approach are quite satisfactory.

  20. Comparison of Morphological Pyramids for Multiresolution MIP Volume Rendering

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2002-01-01

    We recently proposed a multiresolution representation for maximum intensity projection (MIP) volume rendering based on morphological adjunction pyramids which allow progressive refinement and have the property of perfect reconstruction. In this algorithm the pyramidal analysis and synthesis

  1. Experiencing "Macbeth": From Text Rendering to Multicultural Performance.

    Science.gov (United States)

    Reisin, Gail

    1993-01-01

    Shows how one teacher used innovative methods in teaching William Shakespeare's "Macbeth." Outlines student assignments including text renderings, rewriting a scene from the play, and creating a multicultural scrapbook for the play. (HB)

  2. View compensated compression of volume rendered images for remote visualization.

    Science.gov (United States)

    Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S

    2009-07-01

    Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.

  3. Factors affecting extension workers in their rendering of effective ...

    African Journals Online (AJOL)

    Factors affecting extension workers in their rendering of effective service to pre ... the objective of achieving sustainable livelihoods for the poor and commonages. ... marketing and management to adequately service the land reform programs.

  4. does knowledge influence their attitude and comfort in rendering care?

    African Journals Online (AJOL)

    kemrilib

    Physicians and AIDS care: does knowledge influence their attitude and comfort in rendering ... experience, age and being a consultant or a senior resident influenced attitude, while male ..... having or not having children, prior instructions on ...

  5. Accelerating Monte Carlo Renderers by Ray Histogram Fusion

    Directory of Open Access Journals (Sweden)

    Mauricio Delbracio

    2015-03-01

    Full Text Available This paper details the recently introduced Ray Histogram Fusion (RHF filter for accelerating Monte Carlo renderers [M. Delbracio et al., Boosting Monte Carlo Rendering by Ray Histogram Fusion, ACM Transactions on Graphics, 33 (2014]. In this filter, each pixel in the image is characterized by the colors of the rays that reach its surface. Pixels are compared using a statistical distance on the associated ray color distributions. Based on this distance, it decides whether two pixels can share their rays or not. The RHF filter is consistent: as the number of samples increases, more evidence is required to average two pixels. The algorithm provides a significant gain in PSNR, or equivalently accelerates the rendering process by using many fewer Monte Carlo samples without observable bias. Since the RHF filter depends only on the Monte Carlo samples color values, it can be naturally combined with all rendering effects.

  6. A parallel architecture for interactively rendering scattering and refraction effects.

    Science.gov (United States)

    Bernabei, Daniele; Hakke-Patil, Ajit; Banterle, Francesco; Di Benedetto, Marco; Ganovelli, Fabio; Pattanaik, Sumanta; Scopigno, Roberto

    2012-01-01

    A new method for interactive rendering of complex lighting effects combines two algorithms. The first performs accurate ray tracing in heterogeneous refractive media to compute high-frequency phenomena. The second applies lattice-Boltzmann lighting to account for low-frequency multiple-scattering effects. The two algorithms execute in parallel on modern graphics hardware. This article includes a video animation of the authors' real-time algorithm rendering a variety of scenes.

  7. Wavelet subdivision methods gems for rendering curves and surfaces

    CERN Document Server

    Chui, Charles

    2010-01-01

    OVERVIEW Curve representation and drawing Free-form parametric curves From subdivision to basis functions Wavelet subdivision and editing Surface subdivision BASIS FUNCTIONS FOR CURVE REPRESENTATION Refinability and scaling functions Generation of smooth basis functions Cardinal B-splines Stable bases for integer-shift spaces Splines and polynomial reproduction CURVE SUBDIVISION SCHEMES Subdivision matrices and stencils B-spline subdivision schemes Closed curve rendering Open curve rendering BASIS FUNCTIONS GENERATED BY SUBDIVISION MATRICES Subdivision operators The up-sampling convolution ope

  8. Image based performance analysis of thermal imagers

    Science.gov (United States)

    Wegner, D.; Repasi, E.

    2016-05-01

    Due to advances in technology, modern thermal imagers resemble sophisticated image processing systems in functionality. Advanced signal and image processing tools enclosed into the camera body extend the basic image capturing capability of thermal cameras. This happens in order to enhance the display presentation of the captured scene or specific scene details. Usually, the implemented methods are proprietary company expertise, distributed without extensive documentation. This makes the comparison of thermal imagers especially from different companies a difficult task (or at least a very time consuming/expensive task - e.g. requiring the execution of a field trial and/or an observer trial). For example, a thermal camera equipped with turbulence mitigation capability stands for such a closed system. The Fraunhofer IOSB has started to build up a system for testing thermal imagers by image based methods in the lab environment. This will extend our capability of measuring the classical IR-system parameters (e.g. MTF, MTDP, etc.) in the lab. The system is set up around the IR- scene projector, which is necessary for the thermal display (projection) of an image sequence for the IR-camera under test. The same set of thermal test sequences might be presented to every unit under test. For turbulence mitigation tests, this could be e.g. the same turbulence sequence. During system tests, gradual variation of input parameters (e. g. thermal contrast) can be applied. First ideas of test scenes selection and how to assembly an imaging suite (a set of image sequences) for the analysis of imaging thermal systems containing such black boxes in the image forming path is discussed.

  9. A Sort-Last Rendering System over an Optical Backplane

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kirihata

    2005-06-01

    Full Text Available Sort-Last is a computer graphics technique for rendering extremely large data sets on clusters of computers. Sort-Last works by dividing the data set into even-sized chunks for parallel rendering and then composing the images to form the final result. Since sort-last rendering requires the movement of large amounts of image data among cluster nodes, the network interconnecting the nodes becomes a major bottleneck. In this paper, we describe a sort-last rendering system implemented on a cluster of computers whose nodes are connected by an all-optical switch. The rendering system introduces the notion of the Photonic Computing Engine, a computing system built dynamically by using the optical switch to create dedicated network connections among cluster nodes. The sort-last volume rendering algorithm was implemented on the Photonic Computing Engine, and its performance is evaluated. Prelimi- nary experiments show that performance is affected by the image composition time and average payload size. In an attempt to stabilize the performance of the system, we have designed a flow control mechanism that uses feedback messages to dynamically adjust the data flow rate within the computing engine.

  10. Remote volume rendering pipeline for mHealth applications

    Science.gov (United States)

    Gutenko, Ievgeniia; Petkov, Kaloian; Papadopoulos, Charilaos; Zhao, Xin; Park, Ji Hwan; Kaufman, Arie; Cha, Ronald

    2014-03-01

    We introduce a novel remote volume rendering pipeline for medical visualization targeted for mHealth (mobile health) applications. The necessity of such a pipeline stems from the large size of the medical imaging data produced by current CT and MRI scanners with respect to the complexity of the volumetric rendering algorithms. For example, the resolution of typical CT Angiography (CTA) data easily reaches 512^3 voxels and can exceed 6 gigabytes in size by spanning over the time domain while capturing a beating heart. This explosion in data size makes data transfers to mobile devices challenging, and even when the transfer problem is resolved the rendering performance of the device still remains a bottleneck. To deal with this issue, we propose a thin-client architecture, where the entirety of the data resides on a remote server where the image is rendered and then streamed to the client mobile device. We utilize the display and interaction capabilities of the mobile device, while performing interactive volume rendering on a server capable of handling large datasets. Specifically, upon user interaction the volume is rendered on the server and encoded into an H.264 video stream. H.264 is ubiquitously hardware accelerated, resulting in faster compression and lower power requirements. The choice of low-latency CPU- and GPU-based encoders is particularly important in enabling the interactive nature of our system. We demonstrate a prototype of our framework using various medical datasets on commodity tablet devices.

  11. Fast DRR splat rendering using common consumer graphics hardware.

    Science.gov (United States)

    Spoerk, Jakob; Bergmann, Helmar; Wanschitz, Felix; Dong, Shuo; Birkfellner, Wolfgang

    2007-11-01

    Digitally rendered radiographs (DRR) are a vital part of various medical image processing applications such as 2D/3D registration for patient pose determination in image-guided radiotherapy procedures. This paper presents a technique to accelerate DRR creation by using conventional graphics hardware for the rendering process. DRR computation itself is done by an efficient volume rendering method named wobbled splatting. For programming the graphics hardware, NVIDIAs C for Graphics (Cg) is used. The description of an algorithm used for rendering DRRs on the graphics hardware is presented, together with a benchmark comparing this technique to a CPU-based wobbled splatting program. Results show a reduction of rendering time by about 70%-90% depending on the amount of data. For instance, rendering a volume of 2 x 10(6) voxels is feasible at an update rate of 38 Hz compared to 6 Hz on a common Intel-based PC using the graphics processing unit (GPU) of a conventional graphics adapter. In addition, wobbled splatting using graphics hardware for DRR computation provides higher resolution DRRs with comparable image quality due to special processing characteristics of the GPU. We conclude that DRR generation on common graphics hardware using the freely available Cg environment is a major step toward 2D/3D registration in clinical routine.

  12. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  13. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  14. Efficient rendering and compression for full-parallax computer-generated holographic stereograms

    Science.gov (United States)

    Kartch, Daniel Aaron

    2000-10-01

    In the past decade, we have witnessed a quantum leap in rendering technology and a simultaneous increase in usage of computer generated images. Despite the advances made thus far, we are faced with an ever increasing desire for technology which can provide a more realistic, more immersive experience. One fledgling technology which shows great promise is the electronic holographic display. Holograms are capable of producing a fully three-dimensional image, exhibiting all the depth cues of a real scene, including motion parallax, binocular disparity, and focal effects. Furthermore, they can be viewed simultaneously by any number of users, without the aid of special headgear or position trackers. However, to date, they have been limited in use because of their computational intractability. This thesis deals with the complex task of computing a hologram for use with such a device. Specifically, we will focus on one particular type of hologram: the holographic stereogram. A holographic stereogram is created by generating a large set of two-dimensional images of a scene as seen from multiple camera points, and then converting them to a holographic interference pattern. It is closely related to the light fields or lumigraphs used in image-based rendering. Most previous algorithms have treated the problem of rendering these images as independent computations, ignoring a great deal of coherency which could be used to our advantage. We present a new computationally efficient algorithm which operates on the image set as a whole, rather than on its individual elements. Scene polygons are mapped by perspective projection into a four-dimensional space, where they are scan-converted into 4D color and depth buffers. We use a set of very simple data structures and basic operations to form an algorithm which will lend itself well to future hardware implementation, so as to drive a real-time holographic display. We also examined issues related to the compression of stereograms

  15. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  16. Adaptive image contrast enhancement algorithm for point-based rendering

    Science.gov (United States)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  17. Clustered deep shadow maps for integrated polyhedral and volume rendering

    KAUST Repository

    Bornik, Alexander

    2012-01-01

    This paper presents a hardware-accelerated approach for shadow computation in scenes containing both complex volumetric objects and polyhedral models. Our system is the first hardware accelerated complete implementation of deep shadow maps, which unifies the computation of volumetric and geometric shadows. Up to now such unified computation was limited to software-only rendering . Previous hardware accelerated techniques can handle only geometric or only volumetric scenes - both resulting in the loss of important properties of the original concept. Our approach supports interactive rendering of polyhedrally bounded volumetric objects on the GPU based on ray casting. The ray casting can be conveniently used for both the shadow map computation and the rendering. We show how anti-aliased high-quality shadows are feasible in scenes composed of multiple overlapping translucent objects, and how sparse scenes can be handled efficiently using clustered deep shadow maps. © 2012 Springer-Verlag.

  18. [A hybrid volume rendering method using general hardware].

    Science.gov (United States)

    Li, Bin; Tian, Lianfang; Chen, Ping; Mao, Zongyuan

    2008-06-01

    In order to improve the effect and efficiency of the reconstructed image after hybrid volume rendering of different kinds of volume data from medical sequential slices or polygonal models, we propose a hybrid volume rendering method based on Shear-Warp with economical hardware. First, the hybrid volume data are pre-processed by Z-Buffer method and RLE (Run-Length Encoded) data structure. Then, during the process of compositing intermediate image, a resampling method based on the dual-interpolation and the intermediate slice interpolation methods is used to improve the efficiency and the effect. Finally, the reconstructed image is rendered by the texture-mapping technology of OpenGL. Experiments demonstrate the good performance of the proposed method.

  19. Universal Rendering Mechanism Supporting Dual-Mode Presentation

    Institute of Scientific and Technical Information of China (English)

    徐鹏; 杨文军; 王克宏

    2003-01-01

    XML is a standard for the exchange of business data that is completely platform and vendor neutral. Because XML data comes in many forms, one of the most important technologies needed for XML applications is the ability to convert the data into visible renderings. This paper focuses on the rendering of XML/XSL documents into a readable and printable format by means of a platform-independent process that enables high-quality printing of the product. This paper introduces the core components in the data rendering engine, the X2P server and different levels of object abstraction. The design pattern and the complete formatting and representation of the XSL stylesheet into different types of output formats in the X2P server are also given. The results show that the X2P sever simultaneously constructs the formatting object tree and the area tree in a very efficient design that saves execution time and memory.

  20. Content Based Image Retrieval using Hierarchical and K-Means Clustering Techniques

    Directory of Open Access Journals (Sweden)

    V.S.V.S. Murthy

    2010-03-01

    Full Text Available In this paper we present an image retrieval system that takes an image as the input query and retrieves images based on image content. Content Based Image Retrieval is an approach for retrieving semantically-relevant images from an image database based on automatically-derived image features. The unique aspect of the system is the utilization of hierarchical and k-means clustering techniques. The proposed procedure consists of two stages. First, here we are going to filter most of the images in the hierarchical clustering and then apply the clustered images to KMeans, so that we can get better favored image results.

  1. Hierarchical partial order ranking.

    Science.gov (United States)

    Carlsen, Lars

    2008-09-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritization of polluted sites is given.

  2. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  3. Hierarchical Affinity Propagation

    CERN Document Server

    Givoni, Inmar; Frey, Brendan J

    2012-01-01

    Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...

  4. Optimisation by hierarchical search

    Science.gov (United States)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  5. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  6. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L; Bod, Rens; Christiansen, Morten H

    2012-11-22

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science.

  7. Efficient rendering of breaking waves using MPS method

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; ZHENG Yao; CHEN Chun; FUJIMOTO Tadahiro; CHIBA Norishige

    2006-01-01

    This paper proposes an approach for rendering breaking waves out of large-scale ofparticle-based simulation. Moving particle semi-implicit (MPS) is used to solve the governing equation, and 2D simulation is expanded to 3D representation by giving motion variation using fractional Brownian motion (fBm). The waterbody surface is reconstructed from the outlines of 2D simulation. The splashing effect is computed according to the properties of the particles. Realistic features of the wave are rendered on GPU, including the reflective and refractive effect and the effect of splash. Experiments showed that the proposed method can simulate large scale breaking waves efficiently.

  8. Beaming teaching application: recording techniques for spatial xylophone sound rendering

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophone...... played at student's location is required at teacher's site. This paper presents a comparison of different recording techniques for a spatial xylophone sound rendering. Directivity pattern of the xylophone was measured and spatial properties of the sound field created by a xylophone as a distributed sound...

  9. Chromium Renderserver: Scalable and Open Source Remote RenderingInfrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Brian; Ahern, Sean; Bethel, E. Wes; Brugger, Eric; Cook,Rich; Daniel, Jamison; Lewis, Ken; Owen, Jens; Southard, Dale

    2007-12-01

    Chromium Renderserver (CRRS) is software infrastructure thatprovides the ability for one or more users to run and view image outputfrom unmodified, interactive OpenGL and X11 applications on a remote,parallel computational platform equipped with graphics hardwareaccelerators via industry-standard Layer 7 network protocolsand clientviewers. The new contributions of this work include a solution to theproblem of synchronizing X11 and OpenGL command streams, remote deliveryof parallel hardware-accelerated rendering, and a performance analysis ofseveral different optimizations that are generally applicable to avariety of rendering architectures. CRRSis fully operational, Open Sourcesoftware.

  10. Depth of Field Effects for Interactive Direct Volume Rendering

    KAUST Repository

    Schott, Mathias

    2011-06-01

    In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).

  11. Morphological study of transpterional-insula approach using volume rendering.

    Science.gov (United States)

    Jia, Linpei; Su, Lue; Sun, Wei; Wang, Lina; Yao, Jihang; Li, Youqiong; Luo, Qi

    2012-11-01

    This study describes the measurements of inferior circular insular sulcus (ICIS) and the shortest distance from ICIS to the temporal horn and determines the position of the incision, which does less harm to the temporal stem in the transpterional-insula approach using volume-rendering technique. Results of the research showed that one-third point over the anterior side of ICIS may be the ideal penetration point during operation. And there is no difference between 2 hemispheres (P ICIS from other Chinese researches demonstrated that volume rendering is a reliable method in insular research that enables mass measurements.

  12. Associative Hierarchical Random Fields.

    Science.gov (United States)

    Ladický, L'ubor; Russell, Chris; Kohli, Pushmeet; Torr, Philip H S

    2014-06-01

    This paper makes two contributions: the first is the proposal of a new model-The associative hierarchical random field (AHRF), and a novel algorithm for its optimization; the second is the application of this model to the problem of semantic segmentation. Most methods for semantic segmentation are formulated as a labeling problem for variables that might correspond to either pixels or segments such as super-pixels. It is well known that the generation of super pixel segmentations is not unique. This has motivated many researchers to use multiple super pixel segmentations for problems such as semantic segmentation or single view reconstruction. These super-pixels have not yet been combined in a principled manner, this is a difficult problem, as they may overlap, or be nested in such a way that the segmentations form a segmentation tree. Our new hierarchical random field model allows information from all of the multiple segmentations to contribute to a global energy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalizes much of the previous work based on pixels or segments, and the resulting labelings can be viewed both as a detailed segmentation at the pixel level, or at the other extreme, as a segment selector that pieces together a solution like a jigsaw, selecting the best segments from different segmentations as pieces. We evaluate its performance on some of the most challenging data sets for object class segmentation, and show that this ability to perform inference using multiple overlapping segmentations leads to state-of-the-art results.

  13. Domino Tiling: A New Method of Real-Time Conforming Mesh Construction for Rendering Changeable Height Fields

    Institute of Scientific and Technical Information of China (English)

    Dorde M. Durdevié; Igor I. Tartalja

    2011-01-01

    In this paper we present a novel GPU-oriented method of creating an inherently continuous triangular mesh for tile-based rendering of regular height fields.The method is based on tiling data-independent semi-regular meshes of non-uniform structure,a technique that is quite different from other mesh tiling approaches.A complete,memory efficient set of mesh patterns is created by an off-line procedure and stored into the graphics adapter's memory at runtime.At rendering time,for each tile,one of the precomputed mesh patterns is selected for rendering.The selected mesh pattern fits the required level of details of the tile and ensures seamless connection with other adjacent mesh patterns,like in a game of dominoes.The scalability potential of the proposed method is demonstrated through quadtree hierarchical grouping of tiles.The efficiency is verified by experimental results on height fields for terrain representation,where the method achieves high frame rates and sustained triangle throughput on high resolution viewports with sub-pixel error tolerance.Frame rate sensitivity to real-time modifications of the height field is measured,and it is shown that the method is very tolerant and consequently well tailored for applications dealing with rapidly changeable phenomena represented by height fields.

  14. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    CERN Document Server

    Jelonek, M

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of modeling hierarchical linear equations and estimation based on MPlus software. I present my own model to illustrate the impact of different factors on school acceptation level.

  15. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  16. Light Field Rendering for Head Mounted Displays using Pixel Reprojection

    DEFF Research Database (Denmark)

    Hansen, Anne Juhler; Kraus, Martin; Klein, Jákup

    2017-01-01

    of the information of the different images is redundant, we use pixel reprojection from the corner cameras to compute the remaining images in the light field. We compare the reprojected images with directly rendered images in a user test. In most cases, the users were unable to distinguish the images. In extreme...

  17. An experiment on the color rendering of different light sources

    Science.gov (United States)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  18. Interacting with Stroke-Based Rendering on a Wall Display

    NARCIS (Netherlands)

    Grubert, Jens; Hanckock, Mark; Carpendale, Sheelagh; Tse, Edward; Isenberg, Tobias

    2007-01-01

    We introduce two new interaction techniques for creating and interacting with non-photorealistic images using stroke-based rendering. We provide bimanual control of a large interactive canvas through both remote pointing and direct touch. Remote pointing allows people to sit and interact at a distan

  19. Selection of plasters and renders for salt laden masonry substrates

    NARCIS (Netherlands)

    Groot, C.; Hees, R.P.J. van; Wijffels, T.J.

    2009-01-01

    The choice of a repair plaster or render by architects often appears to be the result of fortuitous circumstances, such as prior experience with a plaster or a recommendation by a producer. Seldom is the choice based on a sound assessment of the state of the building and the wall that is to be repai

  20. Depth-Dependent Halos : Illustrative Rendering of Dense Line Data

    NARCIS (Netherlands)

    Everts, Maarten H.; Bekker, Henk; Roerdink, Jos B.T.M.; Isenberg, Tobias

    2009-01-01

    We present a technique for the illustrative rendering of 3D line data at interactive frame rates. We create depth-dependent halos around lines to emphasize tight line bundles while less structured lines are de-emphasized. Moreover, the depth-dependent halos combined with depth cueing via line width

  1. Virtual Environment of Real Sport Hall and Analyzing Rendering Quality

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2015-02-01

    Full Text Available Here is presented virtual environment of a real sport hall created in Quest3D VR Edition. All analyzes of the rendering quality, techniques of interaction and performance of the system in real time are presented. We made critical analysis on all of these techniques on different machines and have excellent results.

  2. Interacting with Stroke-Based Rendering on a Wall Display

    NARCIS (Netherlands)

    Grubert, Jens; Hanckock, Mark; Carpendale, Sheelagh; Tse, Edward; Isenberg, Tobias

    2007-01-01

    We introduce two new interaction techniques for creating and interacting with non-photorealistic images using stroke-based rendering. We provide bimanual control of a large interactive canvas through both remote pointing and direct touch. Remote pointing allows people to sit and interact at a

  3. 7 CFR 54.1016 - Advance information concerning service rendered.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54..., Processing, and Packaging of Livestock and Poultry Products § 54.1016 Advance information concerning service... MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE...

  4. 7 CFR 53.17 - Advance information concerning service rendered.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 53.17... (CONTINUED) LIVESTOCK (GRADING, CERTIFICATION, AND STANDARDS) Regulations Service § 53.17 Advance information... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED)...

  5. Fast Rendering of Realistic Virtual Character in Game Scene

    Directory of Open Access Journals (Sweden)

    Mengzhao Yang

    2013-07-01

    Full Text Available Human skin is made up of multiple translucent layers and rendering of skin appearance usually acquire complex modeling and massive calculation. In some practical applications such as 3D game development, we not only approximate the realistic looking skin but also develop efficient method to implement easily for meeting needs of real-time rendering. In this study, we solve the problem of wrap lighting and introduce a surface details approximation method to give realistic rendering of virtual character. Our method considers that different thicknesses of geometry on the skin surface can result in different scattering degree of incident light and so pre-calculate the diffuse falloff into a look-up texture. Also, we notice that scattering is strongly color dependent and small bumps are common on the skin surface and so pre-soften the finer details on the skin surface according to the R/G/B channel. At last, we linearly interpolate the diffuse lighting with different scattering degree from the look-up texture sampled with the curvature and NdotL. Experiment results show that the proposed approach yields realistic virtual character and obtains high frames per second in real-time rendering.

  6. Democratizing rendering for multiple viewers in surround VR systems

    KAUST Repository

    Schulze, Jürgen P.

    2012-03-01

    We present a new approach for how multiple users\\' views can be rendered in a surround virtual environment without using special multi-view hardware. It is based on the idea that different parts of the screen are often viewed by different users, so that they can be rendered from their own view point, or at least from a point closer to their view point than traditionally expected. The vast majority of 3D virtual reality systems are designed for one head-tracked user, and a number of passive viewers. Only the head tracked user gets to see the correct view of the scene, everybody else sees a distorted image. We reduce this problem by algorithmically democratizing the rendering view point among all tracked users. Researchers have proposed solutions for multiple tracked users, but most of them require major changes to the display hardware of the VR system, such as additional projectors or custom VR glasses. Our approach does not require additional hardware, except the ability to track each participating user. We propose three versions of our multi-viewer algorithm. Each of them balances image distortion and frame rate in different ways, making them more or less suitable for certain application scenarios. Our most sophisticated algorithm renders each pixel from its own, optimized camera perspective, which depends on all tracked users\\' head positions and orientations. © 2012 IEEE.

  7. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    OpenAIRE

    Jelonek, Magdalena

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of m...

  8. Hierarchical fringe tracking

    CERN Document Server

    Petrov, Romain G; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stephane; Bresson, Yves; Benkhaldoum, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu

    2014-01-01

    The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups. The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by g...

  9. Onboard hierarchical network

    Science.gov (United States)

    Tunesi, Luca; Armbruster, Philippe

    2004-02-01

    The objective of this paper is to demonstrate a suitable hierarchical networking solution to improve capabilities and performances of space systems, with significant recurrent costs saving and more efficient design & manufacturing flows. Classically, a satellite can be split in two functional sub-systems: the platform and the payload complement. The platform is in charge of providing power, attitude & orbit control and up/down-link services, whereas the payload represents the scientific and/or operational instruments/transponders and embodies the objectives of the mission. One major possibility to improve the performance of payloads, by limiting the data return to pertinent information, is to process data on board thanks to a proper implementation of the payload data system. In this way, it is possible to share non-recurring development costs by exploiting a system that can be adopted by the majority of space missions. It is believed that the Modular and Scalable Payload Data System, under development by ESA, provides a suitable solution to fulfil a large range of future mission requirements. The backbone of the system is the standardised high data rate SpaceWire network http://www.ecss.nl/. As complement, a lower speed command and control bus connecting peripherals is required. For instance, at instrument level, there is a need for a "local" low complexity bus, which gives the possibility to command and control sensors and actuators. Moreover, most of the connections at sub-system level are related to discrete signals management or simple telemetry acquisitions, which can easily and efficiently be handled by a local bus. An on-board hierarchical network can therefore be defined by interconnecting high-speed links and local buses. Additionally, it is worth stressing another important aspect of the design process: Agencies and ESA in particular are frequently confronted with a big consortium of geographically spread companies located in different countries, each one

  10. Hierarchical Reverberation Mapping

    CERN Document Server

    Brewer, Brendon J

    2013-01-01

    Reverberation mapping (RM) is an important technique in studies of active galactic nuclei (AGN). The key idea of RM is to measure the time lag $\\tau$ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of $\\tau$ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass $M_{\\rm BH}$. A major difficulty with RM campaigns is the large amount of data needed to measure $\\tau$. Recently, Fine et al (2012) introduced a new approach to RM where the BLR light curve is sparsely sampled, but this is counteracted by observing a large sample of AGN, rather than a single system. The results are combined to infer properties of the sample of AGN. In this letter we implement this method using a hierarchical Bayesian model and contrast this with the results from the previous stacked cross-correlation technique. We find that our inferences are more precise and allow fo...

  11. Summary of Image-Based Pencil Simulation Rendering Technique%基于图像的铅笔画模拟绘制技术综述

    Institute of Scientific and Technical Information of China (English)

    王凌云; 潘齐欣

    2014-01-01

    铅笔画运用画笔在平面上表现出万物的形态、结构、色调、空间、位置、明暗,是造型艺术的基础,是科学、哲学、美学的世界。近年,随着计算机技术及软件技术的进步,铅笔画逐步走上了数字领域。从非真实感铅笔画绘制技术的研究现状出发,根据不同的分类方法分析目前铅笔画模拟绘制技术的优缺点,并对未来的研究方向进行展望。%Pencil drawing uses the brush to show the shape , structure, color , space , location , light and shade on the flat for ev-erything which is the basis of visual arts and the whole of science , philosophy and aesthetics in the world. In recent years, with the development of computer and software technology, Pencil drawing gradually grows into the digital realm. The paper analyzes the advantages and disadvantages from the different classification way and the research status of the NPR which are based on pen-cil drawing, then make a prediction about the future research.

  12. HIERARCHICAL PROBABILISTIC INFERENCE OF COSMIC SHEAR

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Michael D.; Dawson, William A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Hogg, David W. [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); Marshall, Philip J.; Bard, Deborah J. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Meyers, Joshua [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035 (United States); Lang, Dustin, E-mail: schneider42@llnl.gov [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2015-07-01

    Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the global shear inference, thereby rendering our algorithm computationally tractable for large surveys. With simple numerical examples we demonstrate the improvements in accuracy from our importance sampling approach, as well as the significance of the conditional distribution specification for the intrinsic galaxy properties when the data are generated from an unknown number of distinct galaxy populations with different morphological characteristics.

  13. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  14. Hierarchical clustering for graph visualization

    CERN Document Server

    Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi

    2012-01-01

    This paper describes a graph visualization methodology based on hierarchical maximal modularity clustering, with interactive and significant coarsening and refining possibilities. An application of this method to HIV epidemic analysis in Cuba is outlined.

  15. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  16. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  17. 9 CFR 315.1 - Carcasses and parts passed for cooking; rendering into lard or tallow.

    Science.gov (United States)

    2010-01-01

    ...; rendering into lard or tallow. 315.1 Section 315.1 Animals and Animal Products FOOD SAFETY AND INSPECTION... PARTS PASSED FOR COOKING § 315.1 Carcasses and parts passed for cooking; rendering into lard or tallow... subchapter or rendered into tallow, provided such rendering is done in the following manner: (a) When...

  18. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach.

    Science.gov (United States)

    Kothary, Pratik; Dou, Xuan; Fang, Yin; Gu, Zhuxiao; Leo, Sin-Yen; Jiang, Peng

    2017-02-01

    Here we report an unconventional colloidal lithography approach for fabricating a variety of periodic polymer nanostructures with tunable geometries and hydrophobic properties. Wafer-sized, double-layer, non-close-packed silica colloidal crystal embedded in a polymer matrix is first assembled by a scalable spin-coating technology. The unusual non-close-packed crystal structure combined with a thin polymer film separating the top and the bottom colloidal layers render great versatility in templating periodic nanostructures, including arrays of nanovoids, nanorings, and hierarchical nanovoids. These different geometries result in varied fractions of entrapped air in between the templated nanostructures, which in turn lead to different apparent water contact angles. Superhydrophobic surfaces with >150° water contact angles and <5° contact angle hysteresis are achieved on fluorosilane-modified polymer hierarchical nanovoid arrays with large fractions of entrapped air. The experimental contact angle measurements are complemented with theoretical predictions using the Cassie's model to gain insights into the fundamental microstructure-dewetting property relationships. The experimental and theoretical contact angles follow the same trends as determined by the unique hierarchical structures of the templated periodic arrays. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hierarchical architecture of active knits

    Science.gov (United States)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-12-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm.

  20. Advanced hierarchical distance sampling

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.

  1. Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments

    CERN Document Server

    Duriez, Christian; Kheddar, Abderrahmane; Andriot, Claude

    2008-01-01

    A new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are often simplified in up to date methods. They do not allow a "realistic" rendering of the subtleties of contact space physical phenomena (such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini's contact law and Coulomb's friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm. Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and s...

  2. Hybrid fur rendering: combining volumetric fur with explicit hair strands

    DEFF Research Database (Denmark)

    Andersen, Tobias Grønbeck; Falster, Viggo; Frisvad, Jeppe Revall

    2016-01-01

    Hair is typically modeled and rendered using either explicitly defined hair strand geometry or a volume texture of hair densities. Taken each on their own, these two hair representations have difficulties in the case of animal fur as it consists of very dense and thin undercoat hairs in combination...... with coarse guard hairs. Explicit hair strand geometry is not well-suited for the undercoat hairs, while volume textures are not well-suited for the guard hairs. To efficiently model and render both guard hairs and undercoat hairs, we present a hybrid technique that combines rasterization of explicitly...... defined guard hairs with ray marching of a prismatic shell volume with dynamic resolution. The latter is the key to practical combination of the two techniques, and it also enables a high degree of detail in the undercoat. We demonstrate that our hybrid technique creates a more detailed and soft fur...

  3. Chromium Renderserver: scalable and open remote rendering infrastructure.

    Science.gov (United States)

    Paul, Brian; Ahern, Sean; Bethel, E Wes; Brugger, Eric; Cook, Rich; Daniel, Jamison; Lewis, Ken; Owen, Jens; Southard, Dale

    2008-01-01

    Chromium Renderserver (CRRS) is software infrastructure that provides the ability for one or more users to run and view image output from unmodified, interactive OpenGL and X11 applications on a remote, parallel computational platform equipped with graphics hardware accelerators via industry-standard Layer 7 network protocols and client viewers. The new contributions of this work include a solution to the problem of synchronizing X11 and OpenGL command streams, remote delivery of parallel hardware accelerated rendering, and a performance analysis of several different optimizations that are generally applicable to a variety of rendering architectures. CRRS is fully operational, Open Source software. imagery and sending it to a remote viewer.

  4. Hybrid fur rendering: combining volumetric fur with explicit hair strands

    DEFF Research Database (Denmark)

    Andersen, Tobias Grønbeck; Falster, Viggo; Frisvad, Jeppe Revall

    2016-01-01

    Hair is typically modeled and rendered using either explicitly defined hair strand geometry or a volume texture of hair densities. Taken each on their own, these two hair representations have difficulties in the case of animal fur as it consists of very dense and thin undercoat hairs in combination...... with coarse guard hairs. Explicit hair strand geometry is not well-suited for the undercoat hairs, while volume textures are not well-suited for the guard hairs. To efficiently model and render both guard hairs and undercoat hairs, we present a hybrid technique that combines rasterization of explicitly...... defined guard hairs with ray marching of a prismatic shell volume with dynamic resolution. The latter is the key to practical combination of the two techniques, and it also enables a high degree of detail in the undercoat. We demonstrate that our hybrid technique creates a more detailed and soft fur...

  5. Tactile display for virtual 3D shape rendering

    CERN Document Server

    Mansutti, Alessandro; Bordegoni, Monica; Cugini, Umberto

    2017-01-01

    This book describes a novel system for the simultaneous visual and tactile rendering of product shapes which allows designers to simultaneously touch and see new product shapes during the conceptual phase of product development. This system offers important advantages, including potential cost and time savings, compared with the standard product design process in which digital 3D models and physical prototypes are often repeatedly modified until an optimal design is achieved. The system consists of a tactile display that is able to represent, within a real environment, the shape of a product. Designers can explore the rendered surface by touching curves lying on the product shape, selecting those curves that can be considered style features and evaluating their aesthetic quality. In order to physically represent these selected curves, a flexible surface is modeled by means of servo-actuated modules controlling a physical deforming strip. The tactile display is designed so as to be portable, low cost, modular,...

  6. Binaural technology for e.g. rendering auditory virtual environments

    DEFF Research Database (Denmark)

    Hammershøi, Dorte

    2008-01-01

    , helped mediate the understanding that if the transfer functions could be mastered, then important dimensions of the auditory percept could also be controlled. He early understood the potential of using the HRTFs and numerical sound transmission analysis programs for rendering auditory virtual...... environments. Jens Blauert participated in many European cooperation projects exploring  this field (and others), among other the SCATIS project addressing the auditory-tactile dimensions in the absence of visual information....

  7. Haptic Rendering Techniques for Non-Physical, Command Decision Support

    Science.gov (United States)

    2004-04-01

    tactile and haptic rendering techniques. BACKGROUND Usually visualizing battlefield implies maps, computer screens filled with information and perhaps 3...Traditional 2-D Screens 3-D stereo glasses HMD CAVE Audio Haptics Level 1, 2 3 …..Fusion - Estimates INTEL SATELLITE RAW DATA Transforms...sensory modes of data presentation Haptics Tactile 8-14 Virtual Lexicon Haptic feedback The sensation of weight or resistance in a virtual world. (from

  8. Rendering Optical Effects Based on Spectra Representation in Complex Scenes

    OpenAIRE

    Dong, Weiming

    2006-01-01

    http://www.springerlink.com/; Rendering the structural color of natural objects or modern industrial products in the 3D environment is not possible with RGB-based graphics platforms and software and very time consuming, even with the most efficient spectra representation based methods previously proposed. Our framework allows computing full spectra light object interactions only when it is needed, i.e. for the part of the scene that requires simulating special spectra sensitive phenomena. Ach...

  9. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas

    2011-01-01

    We present a novel approach to improving volume rendering by using synthesized textures in combination with a custom transfer function. First, we use existing knowledge to synthesize anisotropic solid textures to fit our volumetric data. As input to the synthesis method, we acquire high quality....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  10. Capturing, processing, and rendering real-world scenes

    Science.gov (United States)

    Nyland, Lars S.; Lastra, Anselmo A.; McAllister, David K.; Popescu, Voicu; McCue, Chris; Fuchs, Henry

    2000-12-01

    While photographs vividly capture a scene from a single viewpoint, it is our goal to capture a scene in such a way that a viewer can freely move to any viewpoint, just as he or she would in an actual scene. We have built a prototype system to quickly digitize a scene using a laser rangefinder and a high-resolution digital camera that accurately captures a panorama of high-resolution range and color information. With real-world scenes, we have provided data to fuel research in many area, including representation, registration, data fusion, polygonization, rendering, simplification, and reillumination. The real-world scene data can be used for many purposes, including immersive environments, immersive training, re-engineering and engineering verification, renovation, crime-scene and accident capture and reconstruction, archaeology and historic preservation, sports and entertainment, surveillance, remote tourism and remote sales. We will describe our acquisition system, the necessary processing to merge data from the multiple input devices and positions. We will also describe high quality rendering using the data we have collected. Issues about specific rendering accelerators and algorithms will also be presented. We will conclude by describing future uses and methods of collection for real- world scene data.

  11. Real-time rendering of optical effects using spatial convolution

    Science.gov (United States)

    Rokita, Przemyslaw

    1998-03-01

    Simulation of special effects such as: defocus effect, depth-of-field effect, raindrops or water film falling on the windshield, may be very useful in visual simulators and in all computer graphics applications that need realistic images of outdoor scenery. Those effects are especially important in rendering poor visibility conditions in flight and driving simulators, but can also be applied, for example, in composing computer graphics and video sequences- -i.e. in Augmented Reality systems. This paper proposes a new approach to the rendering of those optical effects by iterative adaptive filtering using spatial convolution. The advantage of this solution is that the adaptive convolution can be done in real-time by existing hardware. Optical effects mentioned above can be introduced into the image computed using conventional camera model by applying to the intensity of each pixel the convolution filter having an appropriate point spread function. The algorithms described in this paper can be easily implemented int the visualization pipeline--the final effect may be obtained by iterative filtering using a single hardware convolution filter or with the pipeline composed of identical 3 X 3 filters placed as the stages of this pipeline. Another advantage of the proposed solution is that the extension based on proposed algorithm can be added to the existing rendering systems as a final stage of the visualization pipeline.

  12. High Performance GPU-Based Fourier Volume Rendering.

    Science.gov (United States)

    Abdellah, Marwan; Eldeib, Ayman; Sharawi, Amr

    2015-01-01

    Fourier volume rendering (FVR) is a significant visualization technique that has been used widely in digital radiography. As a result of its (N (2)log⁡N) time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are (N (3)) computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU) became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU) on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA) technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.

  13. High Performance GPU-Based Fourier Volume Rendering

    Directory of Open Access Journals (Sweden)

    Marwan Abdellah

    2015-01-01

    Full Text Available Fourier volume rendering (FVR is a significant visualization technique that has been used widely in digital radiography. As a result of its O(N2log⁡N time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are O(N3 computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.

  14. Partition of biocides between water and inorganic phases of renders with organic binder

    DEFF Research Database (Denmark)

    Urbanczyk, Michal M; Bollmann, Ulla E; Bester, Kai

    2016-01-01

    , the partition of biocides between water and inorganic phases of render with organic binder was investigated. The partition constants of carbendazim, diuron, iodocarb, isoproturon, cybutryn (irgarol), octylisothiazolinone, terbutryn, and tebuconazole towards minerals typically used in renders, e.g. barite...... with render-water distribution constants of two artificially made renders showed that the distribution constants can be estimated based on partition constants of compounds for individual components of the render....

  15. Image-based object recognition in man, monkey and machine.

    Science.gov (United States)

    Tarr, M J; Bülthoff, H H

    1998-07-01

    Theories of visual object recognition must solve the problem of recognizing 3D objects given that perceivers only receive 2D patterns of light on their retinae. Recent findings from human psychophysics, neurophysiology and machine vision provide converging evidence for 'image-based' models in which objects are represented as collections of viewpoint-specific local features. This approach is contrasted with 'structural-description' models in which objects are represented as configurations of 3D volumes or parts. We then review recent behavioral results that address the biological plausibility of both approaches, a well as some of their computational advantages and limitations. We conclude that, although the image-based approach holds great promise, it has potential pitfalls that may be best overcome by including structural information. Thus, the most viable model of object recognition may be one that incorporates the most appealing aspects of both image-based and structural description theories.

  16. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    Science.gov (United States)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature

  17. Image-Based Modeling of Plants and Trees

    CERN Document Server

    Kang, Sing Bang

    2009-01-01

    Plants and trees are among the most complex natural objects. Much work has been done attempting to model them, with varying degrees of success. In this book, we review the various approaches in computer graphics, which we categorize as rule-based, image-based, and sketch-based methods. We describe our approaches for modeling plants and trees using images. Image-based approaches have the distinct advantage that the resulting model inherits the realistic shape and complexity of a real plant or tree. We use different techniques for modeling plants (with relatively large leaves) and trees (with re

  18. Hierarchical topic modeling with nested hierarchical Dirichlet process

    Institute of Scientific and Technical Information of China (English)

    Yi-qun DING; Shan-ping LI; Zhen ZHANG; Bin SHEN

    2009-01-01

    This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as welt as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more free-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.

  19. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  20. Image-based navigation for a robotized flexible endoscope

    NARCIS (Netherlands)

    van der Stap, N.; Slump, Cornelis H.; Broeders, Ivo Adriaan Maria Johannes; van der Heijden, Ferdinand; Luo, Xiongbiao; Reichl, Tobias; Mirota, Daniel; Soper, Timothy

    2014-01-01

    Robotizing flexible endoscopy enables image-based control of endoscopes. Especially during high-throughput procedures, such as a colonoscopy, navigation support algorithms could improve procedure turnaround and ergonomics for the endoscopist. In this study, we have developed and implemented a

  1. Image-based fingerprint verification system using LabVIEW

    Directory of Open Access Journals (Sweden)

    Sunil K. Singla

    2008-09-01

    Full Text Available Biometric-based identification/verification systems provide a solution to the security concerns in the modern world where machine is replacing human in every aspect of life. Fingerprints, because of their uniqueness, are the most widely used and highly accepted biometrics. Fingerprint biometric systems are either minutiae-based or pattern learning (image based. The minutiae-based algorithm depends upon the local discontinuities in the ridge flow pattern and are used when template size is important while image-based matching algorithm uses both the micro and macro feature of a fingerprint and is used if fast response is required. In the present paper an image-based fingerprint verification system is discussed. The proposed method uses a learning phase, which is not present in conventional image-based systems. The learning phase uses pseudo random sub-sampling, which reduces the number of comparisons needed in the matching stage. This system has been developed using LabVIEW (Laboratory Virtual Instrument Engineering Workbench toolbox version 6i. The availability of datalog files in LabVIEW makes it one of the most promising candidates for its usage as a database. Datalog files can access and manipulate data and complex data structures quickly and easily. It makes writing and reading much faster. After extensive experimentation involving a large number of samples and different learning sizes, high accuracy with learning image size of 100 100 and a threshold value of 700 (1000 being the perfect match has been achieved.

  2. Document Indexing for Image-Based Optical Information Systems.

    Science.gov (United States)

    Thiel, Thomas J.; And Others

    1991-01-01

    Discussion of image-based information retrieval systems focuses on indexing. Highlights include computerized information retrieval; multimedia optical systems; optical mass storage and personal computers; and a case study that describes an optical disk system which was developed to preserve, access, and disseminate military documents. (19…

  3. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    Purpose This paper aims to present that deliberate change is strongly associated with formal structures and top-down influence. Hierarchical configurations have been used to structure processes, overcome resistance and get things done. But is deliberate change also possible without formal...... reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  4. Static Correctness of Hierarchical Procedures

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff

    1990-01-01

    A system of hierarchical, fully recursive types in a truly imperative language allows program fragments written for small types to be reused for all larger types. To exploit this property to enable type-safe hierarchical procedures, it is necessary to impose a static requirement on procedure calls....... We introduce an example language and prove the existence of a sound requirement which preserves static correctness while allowing hierarchical procedures. This requirement is further shown to be optimal, in the sense that it imposes as few restrictions as possible. This establishes the theoretical...... basis for a general type hierarchy with static type checking, which enables first-order polymorphism combined with multiple inheritance and specialization in a language with assignments. We extend the results to include opaque types. An opaque version of a type is different from the original but has...

  5. A survey on hair modeling: styling, simulation, and rendering.

    Science.gov (United States)

    Ward, Kelly; Bertails, Florence; Kim, Tae-Yong; Marschner, Stephen R; Cani, Marie-Paule; Lin, Ming C

    2007-01-01

    Realistic hair modeling is a fundamental part of creating virtual humans in computer graphics. This paper surveys the state of the art in the major topics of hair modeling: hairstyling, hair simulation, and hair rendering. Because of the difficult, often unsolved problems that arise in all these areas, a broad diversity of approaches are used, each with strengths that make it appropriate for particular applications. We discuss each of these major topics in turn, presenting the unique challenges facing each area and describing solutions that have been presented over the years to handle these complex issues. Finally, we outline some of the remaining computational challenges in hair modeling.

  6. Software System for Vocal Rendering of Printed Documents

    Directory of Open Access Journals (Sweden)

    Marian DARDALA

    2008-01-01

    Full Text Available The objective of this paper is to present a software system architecture developed to render the printed documents in a vocal form. On the other hand, in the paper are described the software solutions that exist as software components and are necessary for documents processing as well as for multimedia device controlling used by the system. The usefulness of this system is for people with visual disabilities that can access the contents of documents without that they be printed in Braille system or to exist in an audio form.

  7. An example of quantum imaging: rendering an object undetectable

    CERN Document Server

    Ataman, Stefan

    2016-01-01

    In this paper we propose and analyse a Gedankenexperiment involving three non-linear crystals and two objects inserted in the idler beams. We show that, besides the behaviour that can be extrapolated from previous experiments involving two crystals and one object, we are able to predict a new effect: under certain circumstances, one of the objects can be rendered undetectable to any single detection rate on the signal photons with discarded idler photons. This effect could find applications in future developments of quantum imaging techniques.

  8. An example of quantum imaging: rendering an object undetectable

    Science.gov (United States)

    Ataman, Stefan

    2016-06-01

    In this paper we propose and analyse a Gedankenexperiment involving three non-linear crystals and two objects inserted in the idler beams. We show that, besides the behaviour that can be extrapolated from previous experiments involving two crystals and one object, we are able to predict a new effect: under certain circumstances, one of the objects can be rendered undetectable to any single detection rate on the signal photons with discarded idler photons. This effect could find applications in future developments of quantum imaging techniques.

  9. Horse-shoe lung-rediscovered via volume rendered images

    Directory of Open Access Journals (Sweden)

    Alpa Bharati

    2013-01-01

    Full Text Available Horseshoe lung, usually associated with pulmonary venolobar syndrome, is a rare congenital anomaly involving the fusion of the postero-basal segments of the right and left lungs across the midline. The fused segment or the isthmus lies posterior to the pericardium and anterior to the aorta.The associated pulmonary venolobar syndrome involves anomalous systemic arterial supply and anomlaous systemic venous drainage of the right lung. With the advent of MDCT imaging, we can diagnose this rare condition as well all its associated anomalies non-invasively. Volume-rendered techniques greatly simplify the complex anatomy and provide easy understanding of the same.

  10. Partitioning of biocides between water and inorganic phases of render

    DEFF Research Database (Denmark)

    Urbanczyk, Michal; Bollmann, Ulla E.; Bester, Kai

    The use of biocides as additives for building materials has gained importance in recent years. These biocides are, e.g., applied to renders and paints to prevent them from microbial spoilage. However, these biocides can leach out into the environment. In order to better understand this leaching...... compared. The partitioning constants for calcium carbonate varied between 0.1 (isoproturon) and 1.1 (iodocarb) and 84.6 (dichlorooctylisothiazolinone), respectively. The results for barite, kaolinite and mica were in a similar range and usually the compounds with high partitioning constants for one mineral...

  11. Practical rendering and computation with Direct3D 11

    CERN Document Server

    Zink, Jason; Hoxley, Jack

    2011-01-01

    Practical Rendering and Computation with Direct3D 11 packs in documentation and in-depth coverage of basic and high-level concepts related to using Direct 3D 11 and is a top pick for any serious programming collection. … perfect for a wide range of users. Any interested in computation and multicore models will find this packed with examples and technical applications.-Midwest Book Review, October 2011The authors have generously provided us with an optimal blend of concepts and philosophy, illustrative figures to clarify the more difficult points, and source code fragments to make the ideas con

  12. Structural integrity of hierarchical composites

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2012-01-01

    Full Text Available Interface mechanical problems are of paramount importance in engineering and materials science. Traditionally, due to the complexity of modelling their mechanical behaviour, interfaces are often treated as defects and their features are not explored. In this study, a different approach is illustrated, where the interfaces play an active role in the design of innovative hierarchical composites and are fundamental for their structural integrity. Numerical examples regarding cutting tools made of hierarchical cellular polycrystalline materials are proposed, showing that tailoring of interface properties at the different scales is the way to achieve superior mechanical responses that cannot be obtained using standard materials

  13. Seamless texture mapping algorithm for image-based three-dimensional reconstruction

    Science.gov (United States)

    Liu, Jiapeng; Liu, Bin; Fang, Tao; Huo, Hong; Zhao, Yuming

    2016-09-01

    Texture information plays an important role in rendering true objects, especially with the wide application of image-based three-dimensional (3-D) reconstruction and 3-D laser scanning. This paper proposes a seamless texture mapping algorithm to achieve a high-quality visual effect for 3-D reconstruction. At first, a series of image sets is produced by analyzing the visibility of triangular facets, the image sets are clustered and segmented into a number of optimal reference texture patches. Second, the generated texture patches are sequenced to create a rough texture map, then a weighting process is adopted to reduce the color discrepancies between adjacent patches. Finally, a multiresolution decomposition and fusion technique is used to generate the transition section and eliminate the boundary effect. Experiments show that the proposed algorithm is effective and practical for obtaining high-quality 3-D texture mapping for 3-D reconstruction. Compared with traditional methods, it maintains the texture clarity while eliminating the color seams, in addition, it also supports 3-D texture mapping for big data application.

  14. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    KAUST Repository

    Sicat, Ronell Barrera

    2014-12-31

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  15. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    Science.gov (United States)

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  16. Fast polyhedral cell sorting for interactive rendering of unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Combra, J; Klosowski, J T; Max, N; Silva, C T; Williams, P L

    1998-10-30

    Direct volume rendering based on projective methods works by projecting, in visibility order, the polyhedral cells of a mesh onto the image plane, and incrementally compositing the cell's color and opacity into the final image. Crucial to this method is the computation of a visibility ordering of the cells. If the mesh is ''well-behaved'' (acyclic and convex), then the MPVO method of Williams provides a very fast sorting algorithm; however, this method only computes an approximate ordering in general datasets, resulting in visual artifacts when rendered. A recent method of Silva et al. removed the assumption that the mesh is convex, by means of a sweep algorithm used in conjunction with the MPVO method; their algorithm is substantially faster than previous exact methods for general meshes. In this paper we propose a new technique, which we call BSP-XMPVO, which is based on a fast and simple way of using binary space partitions on the boundary elements of the mesh to augment the ordering produced by MPVO. Our results are shown to be orders of magnitude better than previous exact methods of sorting cells.

  17. Non-Photorealistic Rendering in Chinese Painting of Animals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A set of algorithms is proposed in this paper to automatically transform 3D animal models to Chinese painting style. Inspired by real painting process in Chinese painting of animals, we divide the whole rendering process into two parts: borderline stroke making and interior shading. In borderline stroke making process we first find 3D model silhouettes in real-time depending on the viewing direction of a user. After retrieving silhouette information from all model edges, a stroke linking mechanism is applied to link these independent edges into a long stroke. Finally we grow a plain thin silhouette line to a stylus stroke with various widths at each control point and a 2D brush model is combined with it to simulate a Chinese painting stroke. In the interior shading pipeline, three stages are used to convert a Gouraud-shading image to a Chinese painting style image: color quantization, ink diffusion and box filtering. The color quantization stage assigns all pixels in an image into four color levels and each level represents a color layer in a Chinese painting. Ink diffusion stage is used to transfer inks and water between different levels and to grow areas in an irregular way. The box filtering stage blurs sharp borders between different levels to embellish the appearance of final interior shading image. In addition to automatic rendering, an interactive Chinese painting system which is equipped with friendly input devices can be also combined to generate more artistic Chinese painting images manually.

  18. Protein and mineral characterisation of rendered meat and bone meal.

    Science.gov (United States)

    Buckley, M; Penkman, K E H; Wess, T J; Reaney, S; Collins, M J

    2012-10-01

    We report the characterisation of meat and bone meal (MBM) standards (Set B-EFPRA) derived from cattle, sheep, pig and chicken, each rendered at four different temperatures (133, 137, 141 and 145 °C). The standards, prepared for an EU programme STRATFEED (to develop new methodologies for the detection and quantification of illegal addition of mammalian tissues in feeding stuffs), have been widely circulated and used to assess a range of methods for identification of the species composition of MBM. The overall state of mineral alteration and protein preservation as a function of temperature was monitored using small angle X-ray diffraction (SAXS), amino acid composition and racemization analyses. Progressive increases in protein damage and mineral alteration in chicken and cattle standards was observed. In the case of sheep and pig, there was greater damage to the proteins and alteration of the minerals at the lowest treatment temperature (133 °C), suggesting that the thermal treatments must have been compromised in some way. This problem has probably impacted upon the numerous studies which tested methods against these heat treatments. We use protein mass spectrometric methods to explore if thermostable proteins could be used to identify rendered MBM. In more thermally altered samples, so-called 'thermostable' proteins such as osteocalcin which has been proposed as a ideal target to speciate MBM were no longer detectable, but the structural protein type I collagen could be used to differentiate all four species, even in the most thermally altered samples.

  19. Spatially Resolved Monitoring of Drying of Hierarchical Porous Organic Networks.

    Science.gov (United States)

    Velasco, Manuel Isaac; Silletta, Emilia V; Gomez, Cesar G; Strumia, Miriam C; Stapf, Siegfried; Monti, Gustavo Alberto; Mattea, Carlos; Acosta, Rodolfo H

    2016-03-01

    Evaporation kinetics of water confined in hierarchal polymeric porous media is studied by low field nuclear magnetic resonance (NMR). Systems synthesized with various degrees of cross-linker density render networks with similar pore sizes but different response when soaked with water. Polymeric networks with low percentage of cross-linker can undergo swelling, which affects the porosity as well as the drying kinetics. The drying process is monitored macroscopically by single-sided NMR, with spatial resolution of 100 μm, while microscopic information is obtained by measurements of spin-spin relaxation times (T2). Transition from a funicular to a pendular regime, where hydraulic connectivity is lost and the capillary flow cannot compensate for the surface evaporation, can be observed from inspection of the water content in different sample layers. Relaxation measurements indicate that even when the larger pore structures are depleted of water, capillary flow occurs through smaller voids.

  20. Image based 3D city modeling : Comparative study

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  1. Sensory Hierarchical Organization and Reading.

    Science.gov (United States)

    Skapof, Jerome

    The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…

  2. Memory Stacking in Hierarchical Networks.

    Science.gov (United States)

    Westö, Johan; May, Patrick J C; Tiitinen, Hannu

    2016-02-01

    Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns.

  3. ClipCard: Sharable, Searchable Visual Metadata Summaries on the Cloud to Render Big Data Actionable

    Science.gov (United States)

    Saripalli, P.; Davis, D.; Cunningham, R.

    2013-12-01

    Research firm IDC estimates that approximately 90 percent of the Enterprise Big Data go un-analyzed, as 'dark data' - an enormous corpus of undiscovered, untagged information residing on data warehouses, servers and Storage Area Networks (SAN). In the geosciences, these data range from unpublished model runs to vast survey data assets to raw sensor data. Many of these are now being collected instantaneously, at a greater volume and in new data formats. Not all of these data can be analyzed, nor processed in real time, and their features may not be well described at the time of collection. These dark data are a serious data management problem for science organizations of all types, especially ones with mandated or required data reporting and compliance requirements. Additionally, data curators and scientists are encouraged to quantify the impact of their data holdings as a way to measure research success. Deriving actionable insights is the foremost goal of Big Data Analytics (BDA), which is especially true with geoscience, given its direct impact on most of the pressing global issues. Clearly, there is a pressing need for innovative approaches to making dark data discoverable, measurable, and actionable. We report on ClipCard, a Cloud-based SaaS analytic platform for instant summarization, quick search, visualization and easy sharing of metadata summaries form the Dark Data at hierarchical levels of detail, thus rendering it 'white', i.e., actionable. We present a use case of the ClipCard platform, a cloud-based application which helps generate (abstracted) visual metadata summaries and meta-analytics for environmental data at hierarchical scales within and across big data containers. These summaries and analyses provide important new tools for managing big data and simplifying collaboration through easy to deploy sharing APIs. The ClipCard application solves a growing data management bottleneck by helping enterprises and large organizations to summarize, search

  4. Tailoring of the hierarchical structure within electrospun fibers due to supramolecular comb-coil block copolymers : polystyrene-block-poly(4-vinyl pyridine) plasticized by hydrogen bonded pentadecylphenol

    NARCIS (Netherlands)

    Ruotsalainen, Teemu; Turku, Jani; Hiekkataipale, Panu; Vainio, Ulla; Serimaa, Ritva; Brinke, Gerrit ten; Harlin, Ali; Ruokolainen, Janne; Ikkala, Olli

    2007-01-01

    Previously we demonstrated hierarchical self- assembly and mesoporosity in electrospun fibers using selected polystyrene- block- poly(4- vinylpyridine) (PS- b- P4VP) diblock copolymers with hydrogen- bonded 3- n- pentadecylphenol (PDP), which rendered distorted spherical P4VP(PDP)(1.0) domains

  5. Excellent color rendering indexes of multi-package white LEDs.

    Science.gov (United States)

    Oh, Ji Hye; Yang, Su Ji; Sung, Yeon-Goog; Do, Y R

    2012-08-27

    This study introduces multi-package white light-emitting diodes (LEDs) system with the ability to realize high luminous efficacy and an excellent color rendering index (CRI, R a) using the R B,M A B,M G B,M C B (R B,M A B,M G B,M denoted as a long-pass dichroic filter (LPDF)-capped, monochromatic red, amber and green phosphor converted-LED (pc-LED) pumped by a blue LED chip, and C B denoted as a cyan and blue mixed pc-LED pumped by a blue LED) system. The luminous efficacy and color rendering index (CRI) of multi-package white LED systems are compared while changing the concentration of the cyan phosphor used in the paste of a cyan-blue LED package and the driving current of individual LEDs in multi-package white LEDs at correlated color temperatures (CCTs) ranging from 6,500 K (cold white) to 2,700 K (warm white) using a set of eight CCTs as specified by the American National Standards Institute (ANSI) standard number C78.377-2008. A R B,M A B,M G B,M C B white LED system provides high luminous efficacy (≥ 96 lm/W) and a color rendering index (≥ 91) encompassing the complete CCT range. We also compare the optical properties of the R B,M A B,M G B,M C B system with those of the R B,M A B,M G B,M B and RAGB (red, amber, green, and blue semiconductor-type narrow-spectrum-band LEDs) systems. It can be expected that the cyan color added to a blue LED in multi-package white LEDs based on LPDF-capped, phosphor-converted monochromatic LEDs will meet the needs of the high-quality, highly efficient, full-color white LED lighting market in the near future.

  6. Automated image-based tracking and its application in ecology.

    Science.gov (United States)

    Dell, Anthony I; Bender, John A; Branson, Kristin; Couzin, Iain D; de Polavieja, Gonzalo G; Noldus, Lucas P J J; Pérez-Escudero, Alfonso; Perona, Pietro; Straw, Andrew D; Wikelski, Martin; Brose, Ulrich

    2014-07-01

    The behavior of individuals determines the strength and outcome of ecological interactions, which drive population, community, and ecosystem organization. Bio-logging, such as telemetry and animal-borne imaging, provides essential individual viewpoints, tracks, and life histories, but requires capture of individuals and is often impractical to scale. Recent developments in automated image-based tracking offers opportunities to remotely quantify and understand individual behavior at scales and resolutions not previously possible, providing an essential supplement to other tracking methodologies in ecology. Automated image-based tracking should continue to advance the field of ecology by enabling better understanding of the linkages between individual and higher-level ecological processes, via high-throughput quantitative analysis of complex ecological patterns and processes across scales, including analysis of environmental drivers.

  7. Image-Based Brachytherapy for the Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harkenrider, Matthew M., E-mail: mharkenrider@lumc.edu; Alite, Fiori; Silva, Scott R.; Small, William

    2015-07-15

    Cervical cancer is a disease that requires considerable multidisciplinary coordination of care and labor in order to maximize tumor control and survival while minimizing treatment-related toxicity. As with external beam radiation therapy, the use of advanced imaging and 3-dimensional treatment planning has generated a paradigm shift in the delivery of brachytherapy for the treatment of cervical cancer. The use of image-based brachytherapy, most commonly with magnetic resonance imaging (MRI), requires additional attention and effort by the treating physician to prescribe dose to the proper volume and account for adjacent organs at risk. This represents a dramatic change from the classic Manchester approach of orthogonal radiographic images and prescribing dose to point A. We reviewed the history and currently evolving data and recommendations for the clinical use of image-based brachytherapy with an emphasis on MRI-based brachytherapy.

  8. Deformation Measurements of Gabion Walls Using Image Based Modeling

    Directory of Open Access Journals (Sweden)

    Marek Fraštia

    2014-06-01

    Full Text Available The image based modeling finds use in applications where it is necessary to reconstructthe 3D surface of the observed object with a high level of detail. Previous experiments showrelatively high variability of the results depending on the camera type used, the processingsoftware, or the process evaluation. The authors tested the method of SFM (Structure fromMotion to determine the stability of gabion walls. The results of photogrammetricmeasurements were compared to precise geodetic point measurements.

  9. 9 CFR 319.703 - Rendered animal fat or mixture thereof.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Rendered animal fat or mixture thereof... INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Fats, Oils, Shortenings § 319.703 Rendered animal fat or mixture thereof. “Rendered Animal Fat,” or any mixture of...

  10. Liver 4DMRI: A retrospective image-based sorting method

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara, E-mail: chiara.paganelli@polimi.it [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133 (Italy); Summers, Paul [Division of Radiology, Istituto Europeo di Oncologia, Milano 20133 (Italy); Bellomi, Massimo [Division of Radiology, Istituto Europeo di Oncologia, Milano 20133, Italy and Department of Health Sciences, Università di Milano, Milano 20133 (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy and Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia 27100 (Italy)

    2015-08-15

    Purpose: Four-dimensional magnetic resonance imaging (4DMRI) is an emerging technique in radiotherapy treatment planning for organ motion quantification. In this paper, the authors present a novel 4DMRI retrospective image-based sorting method, providing reduced motion artifacts than using a standard monodimensional external respiratory surrogate. Methods: Serial interleaved 2D multislice MRI data were acquired from 24 liver cases (6 volunteers + 18 patients) to test the proposed 4DMRI sorting. Image similarity based on mutual information was applied to automatically identify a stable reference phase and sort the image sequence retrospectively, without the use of additional image or surrogate data to describe breathing motion. Results: The image-based 4DMRI provided a smoother liver profile than that obtained from standard resorting based on an external surrogate. Reduced motion artifacts were observed in image-based 4DMRI datasets with a fitting error of the liver profile measuring 1.2 ± 0.9 mm (median ± interquartile range) vs 2.1 ± 1.7 mm of the standard method. Conclusions: The authors present a novel methodology to derive a patient-specific 4DMRI model to describe organ motion due to breathing, with improved image quality in 4D reconstruction.

  11. Efficient Unbiased Rendering using Enlightened Local Path Sampling

    DEFF Research Database (Denmark)

    Kristensen, Anders Wang

    . The downside to using these algorithms is that they can be slow to converge. Due to the nature of Monte Carlo methods, the results are random variables subject to variance. This manifests itself as noise in the images, which can only be reduced by generating more samples. The reason these methods are slow...... is because of a lack of eeffective methods of importance sampling. Most global illumination algorithms are based on local path sampling, which is essentially a recipe for constructing random walks. Using this procedure paths are built based on information given explicitly as part of scene description......, such as the location of the light sources or cameras, or the re flection models at each point. In this work we explore new methods of importance sampling paths. Our idea is to analyze the scene before rendering and compute various statistics that we use to improve importance sampling. The first of these are adjoint...

  12. Real-time Flame Rendering with GPU and CUDA

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2011-02-01

    Full Text Available This paper proposes a method of flame simulation based on Lagrange process and chemical composition, which was non-grid and the problems associated with there grids were overcome. The turbulence movement of flame was described by Lagrange process and chemical composition was added into flame simulation which increased the authenticity of flame. For real-time applications, this paper simplified the EMST model. GPU-based particle system combined with OpenGL VBO and PBO unique technology was used to accelerate finally, the speed of vertex and pixel data interaction between CPU and GPU increased two orders of magnitude, frame rate of rendering increased by 30%, which achieved fast dynamic flame real-time simulation. For further real-time applications, this paper presented a strategy to implement flame simulation with CUDA on GPU, which achieved a speed up to 2.5 times the previous implementation.

  13. Latency in Distributed Acquisition and Rendering for Telepresence Systems.

    Science.gov (United States)

    Ohl, Stephan; Willert, Malte; Staadt, Oliver

    2015-12-01

    Telepresence systems use 3D techniques to create a more natural human-centered communication over long distances. This work concentrates on the analysis of latency in telepresence systems where acquisition and rendering are distributed. Keeping latency low is important to immerse users in the virtual environment. To better understand latency problems and to identify the source of such latency, we focus on the decomposition of system latency into sub-latencies. We contribute a model of latency and show how it can be used to estimate latencies in a complex telepresence dataflow network. To compare the estimates with real latencies in our prototype, we modify two common latency measurement methods. This presented methodology enables the developer to optimize the design, find implementation issues and gain deeper knowledge about specific sources of latency.

  14. Distributed Dimensonality-Based Rendering of LIDAR Point Clouds

    Science.gov (United States)

    Brédif, M.; Vallet, B.; Ferrand, B.

    2015-08-01

    Mobile Mapping Systems (MMS) are now commonly acquiring lidar scans of urban environments for an increasing number of applications such as 3D reconstruction and mapping, urban planning, urban furniture monitoring, practicability assessment for persons with reduced mobility (PRM)... MMS acquisitions are usually huge enough to incur a usability bottleneck for the increasing number of non-expert user that are not trained to process and visualize these huge datasets through specific softwares. A vast majority of their current need is for a simple 2D visualization that is both legible on screen and printable on a static 2D medium, while still conveying the understanding of the 3D scene and minimizing the disturbance of the lidar acquisition geometry (such as lidar shadows). The users that motivated this research are, by law, bound to precisely georeference underground networks for which they currently have schematics with no or poor absolute georeferencing. A solution that may fit their needs is thus a 2D visualization of the MMS dataset that they could easily interpret and on which they could accurately match features with their user datasets they would like to georeference. Our main contribution is two-fold. First, we propose a 3D point cloud stylization for 2D static visualization that leverages a Principal Component Analysis (PCA)-like local geometry analysis. By skipping the usual and error-prone estimation of a ground elevation, this rendering is thus robust to non-flat areas and has no hard-to-tune parameters such as height thresholds. Second, we implemented the corresponding rendering pipeline so that it can scale up to arbitrary large datasets by leveraging the Spark framework and its Resilient Distributed Dataset (RDD) and Dataframe abstractions.

  15. On-the-Fly Decompression and Rendering of Multiresolution Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, P; Cohen, J D

    2009-04-02

    We present a streaming geometry compression codec for multiresolution, uniformly-gridded, triangular terrain patches that supports very fast decompression. Our method is based on linear prediction and residual coding for lossless compression of the full-resolution data. As simplified patches on coarser levels in the hierarchy already incur some data loss, we optionally allow further quantization for more lossy compression. The quantization levels are adaptive on a per-patch basis, while still permitting seamless, adaptive tessellations of the terrain. Our geometry compression on such a hierarchy achieves compression ratios of 3:1 to 12:1. Our scheme is not only suitable for fast decompression on the CPU, but also for parallel decoding on the GPU with peak throughput over 2 billion triangles per second. Each terrain patch is independently decompressed on the fly from a variable-rate bitstream by a GPU geometry program with no branches or conditionals. Thus we can store the geometry compressed on the GPU, reducing storage and bandwidth requirements throughout the system. In our rendering approach, only compressed bitstreams and the decoded height values in the view-dependent 'cut' are explicitly stored on the GPU. Normal vectors are computed in a streaming fashion, and remaining geometry and texture coordinates, as well as mesh connectivity, are shared and re-used for all patches. We demonstrate and evaluate our algorithms on a small prototype system in which all compressed geometry fits in the GPU memory and decompression occurs on the fly every rendering frame without any cache maintenance.

  16. Technologies Render Views of Earth for Virtual Navigation

    Science.gov (United States)

    2012-01-01

    On a December night in 1995, 159 passengers and crewmembers died when American Airlines Flight 965 flew into the side of a mountain while in route to Cali, Colombia. A key factor in the tragedy: The pilots had lost situational awareness in the dark, unfamiliar terrain. They had no idea the plane was approaching a mountain until the ground proximity warning system sounded an alarm only seconds before impact. The accident was of the kind most common at the time CFIT, or controlled flight into terrain says Trey Arthur, research aerospace engineer in the Crew Systems and Aviation Operations Branch at NASA s Langley Research Center. In situations such as bad weather, fog, or nighttime flights, pilots would rely on airspeed, altitude, and other readings to get an accurate sense of location. Miscalculations and rapidly changing conditions could contribute to a fully functioning, in-control airplane flying into the ground. To improve aviation safety by enhancing pilots situational awareness even in poor visibility, NASA began exploring the possibilities of synthetic vision creating a graphical display of the outside terrain on a screen inside the cockpit. How do you display a mountain in the cockpit? You have to have a graphics-powered computer, a terrain database you can render, and an accurate navigation solution, says Arthur. In the mid-1990s, developing GPS technology offered a means for determining an aircraft s position in space with high accuracy, Arthur explains. As the necessary technologies to enable synthetic vision emerged, NASA turned to an industry partner to develop the terrain graphical engine and database for creating the virtual rendering of the outside environment.

  17. Hierarchical Prisoner's Dilemma in Hierarchical Public-Goods Game

    CERN Document Server

    Fujimoto, Yuma; Kaneko, Kunihiko

    2016-01-01

    The dilemma in cooperation is one of the major concerns in game theory. In a public-goods game, each individual pays a cost for cooperation, or to prevent defection, and receives a reward from the collected cost in a group. Thus, defection is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individual players also play games. To study such a multi-level game, we introduce a hierarchical public-goods (HPG) game in which two groups compete for finite resources by utilizing costs collected from individuals in each group. Analyzing this HPG game, we found a hierarchical prisoner's dilemma, in which groups choose the defection policy (say, armaments) as a Nash strategy to optimize each group's benefit, while cooperation optimizes the total benefit. On the other hand, for each individual within a group, refusing to pay the cost (say, tax) is a Nash strategy, which turns to be a cooperation policy for the group, thus leading to a hierarchical d...

  18. Hierarchical structure of biological systems

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961

  19. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  20. Intuitionistic fuzzy hierarchical clustering algorithms

    Institute of Scientific and Technical Information of China (English)

    Xu Zeshui

    2009-01-01

    Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a mem-bership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clus-tering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.

  1. Hierarchical Formation of Galactic Clusters

    CERN Document Server

    Elmegreen, B G

    2006-01-01

    Young stellar groupings and clusters have hierarchical patterns ranging from flocculent spiral arms and star complexes on the largest scale to OB associations, OB subgroups, small loose groups, clusters and cluster subclumps on the smallest scales. There is no obvious transition in morphology at the cluster boundary, suggesting that clusters are only the inner parts of the hierarchy where stars have had enough time to mix. The power-law cluster mass function follows from this hierarchical structure: n(M_cl) M_cl^-b for b~2. This value of b is independently required by the observation that the summed IMFs from many clusters in a galaxy equals approximately the IMF of each cluster.

  2. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  3. Hierarchical Cont-Bouchaud model

    CERN Document Server

    Paluch, Robert; Holyst, Janusz A

    2015-01-01

    We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent's interactions. The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-level, nested Erdos-Renyi random graph and individual decisions by agents according to Potts dynamics. This approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-Bouchaud model. In the second model we introduce a limited hierarchical Erdos-Renyi graph, where merging of clusters at a level h+1 involves only clusters that have merged at the previous level h and we use the original Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.

  4. Hierarchical Clustering and Active Galaxies

    CERN Document Server

    Hatziminaoglou, E; Manrique, A

    2000-01-01

    The growth of Super Massive Black Holes and the parallel development of activity in galactic nuclei are implemented in an analytic code of hierarchical clustering. The evolution of the luminosity function of quasars and AGN will be computed with special attention paid to the connection between quasars and Seyfert galaxies. One of the major interests of the model is the parallel study of quasar formation and evolution and the History of Star Formation.

  5. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  6. Treatment Protocols as Hierarchical Structures

    Science.gov (United States)

    Ben-Bassat, Moshe; Carlson, Richard W.; Puri, Vinod K.; Weil, Max Harry

    1978-01-01

    We view a treatment protocol as a hierarchical structure of therapeutic modules. The lowest level of this structure consists of individual therapeutic actions. Combinations of individual actions define higher level modules, which we call routines. Routines are designed to manage limited clinical problems, such as the routine for fluid loading to correct hypovolemia. Combinations of routines and additional actions, together with comments, questions, or precautions organized in a branching logic, in turn, define the treatment protocol for a given disorder. Adoption of this modular approach may facilitate the formulation of treatment protocols, since the physician is not required to prepare complex flowcharts. This hierarchical approach also allows protocols to be updated and modified in a flexible manner. By use of such a standard format, individual components may be fitted together to create protocols for multiple disorders. The technique is suited for computer implementation. We believe that this hierarchical approach may facilitate standarization of patient care as well as aid in clinical teaching. A protocol for acute pancreatitis is used to illustrate this technique.

  7. Applying BAT Evolutionary Optimization to Image-Based Visual Servoing

    Directory of Open Access Journals (Sweden)

    Marco Perez-Cisneros

    2015-01-01

    Full Text Available This paper presents a predictive control strategy for an image-based visual servoing scheme that employs evolutionary optimization. The visual control task is approached as a nonlinear optimization problem that naturally handles relevant visual servoing constraints such as workspace limitations and visibility restrictions. As the predictive scheme requires a reliable model, this paper uses a local model that is based on the visual interaction matrix and a global model that employs 3D trajectory data extracted from a quaternion-based interpolator. The work assumes a free-flying camera with 6-DOF simulation whose results support the discussion on the constraint handling and the image prediction scheme.

  8. The Yale Pharyngeal Residue Severity Rating Scale: An Anatomically Defined and Image-Based Tool.

    Science.gov (United States)

    Neubauer, Paul D; Rademaker, Alfred W; Leder, Steven B

    2015-10-01

    The Yale Pharyngeal Residue Severity Rating Scale was developed, standardized, and validated to provide reliable, anatomically defined, and image-based assessment of post-swallow pharyngeal residue severity as observed during fiberoptic endoscopic evaluation of swallowing (FEES). It is a five-point ordinal rating scale based on residue location (vallecula and pyriform sinus) and amount (none, trace, mild, moderate, and severe). Two expert judges reviewed a total of 261 FEES evaluations and selected a no residue exemplar and three exemplars each of trace, mild, moderate, and severe vallecula and pyriform sinus residue. Hard-copy color images of the no residue, 12 vallecula, and 12 pyriform sinus exemplars were randomized by residue location for hierarchical categorization by 20 raters with a mean of 8.3 years of experience (range 2-27 years) performing and interpreting FEES. Severity ratings for all images were performed by the same 20 raters, 2 weeks apart, and with the order of image presentations randomized. Intra-rater test-retest reliability, inter-rater reliability, and construct validity were determined by pooled multi-category multi-rater kappa statistics. Residue ratings were excellent for intra-rater reliability for vallecula (kappa = 0.957 ± 0.014) and pyriform sinus (kappa = 0.854 ± 0.021); very good to excellent for inter-rater reliability for vallecula (kappa = 0.868 ± 0.011) and pyriform sinus (kappa = 0.751 ± 0.011); and excellent for validity for vallecula (kappa = 0.951 ± 0.014) and pyriform sinus (kappa = 0.908 ± 0.017). Clinical uses include accurate classification of vallecula and pyriform sinus residue severity patterns as none, trace, mild, moderate, or severe for diagnostic purposes, determination of functional therapeutic change, and precise dissemination of shared information. Scientific uses include tracking outcome measures, demonstrating efficacy of interventions to reduce pharyngeal residue, investigating morbidity and mortality

  9. Age, Health and Attractiveness Perception of Virtual (Rendered) Human Hair.

    Science.gov (United States)

    Fink, Bernhard; Hufschmidt, Carla; Hirn, Thomas; Will, Susanne; McKelvey, Graham; Lankhof, John

    2016-01-01

    The social significance of physical appearance and beauty has been documented in many studies. It is known that even subtle manipulations of facial morphology and skin condition can alter people's perception of a person's age, health and attractiveness. While the variation in facial morphology and skin condition cues has been studied quite extensively, comparably little is known on the effect of hair on social perception. This has been partly caused by the technical difficulty of creating appropriate stimuli for investigations of people's response to systematic variation of certain hair characteristics, such as color and style, while keeping other features constant. Here, we present a modeling approach to the investigation of human hair perception using computer-generated, virtual (rendered) human hair. In three experiments, we manipulated hair diameter (Experiment 1), hair density (Experiment 2), and hair style (Experiment 3) of human (female) head hair and studied perceptions of age, health and attractiveness. Our results show that even subtle changes in these features have an impact on hair perception. We discuss our findings with reference to previous studies on condition-dependent quality cues in women that influence human social perception, thereby suggesting that hair is a salient feature of human physical appearance, which contributes to the perception of beauty.

  10. Moisture Transfer through Facades Covered with Organic Binder Renders

    Directory of Open Access Journals (Sweden)

    Carmen DICO

    2013-07-01

    Full Text Available Year after year we witness the negative effect of water over buildings, caused by direct or indirect actions. This situation is obvious in case of old, historical building, subjected to this aggression for a long period of time, but new buildings are also affected. Moisture in building materials causes not only structural damage, but also reduces the thermal insulation capacity of building components.Materials like plasters or paints have been used historically for a long period of time, fulfilling two basics functions: Decoration and Protection. The most acute demands are made on exterior plasters, as they, besides being an important decorative element for the facade, must perform two different functions simultaneously: protect the substrate against weathering and moisture without sealing, providing it a certain ability to “breathe” (Heilen, 2005. In order to accomplish this aim, the first step is to understand the hygrothermal behavior of coating and substrate and define the fundamental principles of moisture transfer; According to Künzel’s Facade Protection Theory, two material properties play the most important role: Water absorption and Vapor permeability.In the context of recently adoption (2009 of the “harmonized” European standard EN 15824 – „Specifications for external renders and internal plasters based on organic binders”, this paper deals extensively with the interaction of the two mentioned above properties for the coating materials, covered by EN 15824.

  11. WikiPrints: rendering enterprise Wiki content for printing

    Science.gov (United States)

    Berkner, Kathrin

    2010-02-01

    Wikis have become a tool of choice for collaborative, informative communication. In contrast to the immense Wikipedia, that serves as a reference web site and typically covers only one topic per web page, enterprise wikis are often used as project management tools and contain several closely related pages authored by members of one project. In that scenario it is useful to print closely related content for review or teaching purposes. In this paper we propose a novel technique for rendering enterprise wiki content for printing called WikiPrints, that creates a linearized version of wiki content formatted as a mixture between web layout and conventional document layout suitable for printing. Compared to existing print options for wiki content, Wikiprints automatically selects content from different wiki pages given user preferences and usage scenarios. Meta data such as content authors or time of content editing are considered. A preview of the linearized content is shown to the user and an interface for making manual formatting changes provided.

  12. Age, Health and Attractiveness Perception of Virtual (Rendered) Human Hair

    Science.gov (United States)

    Fink, Bernhard; Hufschmidt, Carla; Hirn, Thomas; Will, Susanne; McKelvey, Graham; Lankhof, John

    2016-01-01

    The social significance of physical appearance and beauty has been documented in many studies. It is known that even subtle manipulations of facial morphology and skin condition can alter people’s perception of a person’s age, health and attractiveness. While the variation in facial morphology and skin condition cues has been studied quite extensively, comparably little is known on the effect of hair on social perception. This has been partly caused by the technical difficulty of creating appropriate stimuli for investigations of people’s response to systematic variation of certain hair characteristics, such as color and style, while keeping other features constant. Here, we present a modeling approach to the investigation of human hair perception using computer-generated, virtual (rendered) human hair. In three experiments, we manipulated hair diameter (Experiment 1), hair density (Experiment 2), and hair style (Experiment 3) of human (female) head hair and studied perceptions of age, health and attractiveness. Our results show that even subtle changes in these features have an impact on hair perception. We discuss our findings with reference to previous studies on condition-dependent quality cues in women that influence human social perception, thereby suggesting that hair is a salient feature of human physical appearance, which contributes to the perception of beauty. PMID:28066276

  13. Differentiation renders susceptibility to excitotoxicity in HT22 neurons

    Institute of Scientific and Technical Information of China (English)

    Minchao He; Jun Liu; Shaowu Cheng; Yigang Xing; William Z Suo

    2013-01-01

    HT22 is an immortalized mouse hippocampal neuronal cell line that does not express cholinergic and glutamate receptors like mature hippocampal neurons in vivo. This in part prevents its use as a model for mature hippocampal neurons in memory-related studies. We now report that HT22 cells were appropriately induced to differentiate and possess properties similar to those of mature hippocampal neurons in vivo, such as becoming more glutamate-receptive and excitatory. Results showed that sensitivity of HT22 cells to glutamate-induced toxicity changed dramatically when comparing undifferentiated with differentiated cells, with the half-effective concentration for differentiated cells reducing approximately two orders of magnitude. Moreover, glutamate-induced toxicity in differentiated cells, but not undifferentiated cells, was inhibited by the N-methyl-D- aspartate receptor antagonists MK-801 and memantine. Evidently, differentiated HT22 cells expressed N-methyl-D-aspartate receptors, while undifferentiated cells did not. Our experimental findings indicated that differentiation is important for immortalized cell lines to render post-mitotic neuronal properties, and that differentiated HT22 neurons represent a better model of hippocampal neurons than undifferentiated cells.

  14. Image-based metrology of porous tissue engineering scaffolds

    Science.gov (United States)

    Rajagopalan, Srinivasan; Robb, Richard A.

    2006-03-01

    Tissue engineering is an interdisciplinary effort aimed at the repair and regeneration of biological tissues through the application and control of cells, porous scaffolds and growth factors. The regeneration of specific tissues guided by tissue analogous substrates is dependent on diverse scaffold architectural indices that can be derived quantitatively from the microCT and microMR images of the scaffolds. However, the randomness of pore-solid distributions in conventional stochastic scaffolds presents unique computational challenges. As a result, image-based characterization of scaffolds has been predominantly qualitative. In this paper, we discuss quantitative image-based techniques that can be used to compute the metrological indices of porous tissue engineering scaffolds. While bulk averaged quantities such as porosity and surface are derived directly from the optimal pore-solid delineations, the spatially distributed geometric indices are derived from the medial axis representations of the pore network. The computational framework proposed (to the best of our knowledge for the first time in tissue engineering) in this paper might have profound implications towards unraveling the symbiotic structure-function relationship of porous tissue engineering scaffolds.

  15. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  16. AUGUSTO'S Sundial: Image-Based Modeling for Reverse Engeneering Purposes

    Science.gov (United States)

    Baiocchi, V.; Barbarella, M.; Del Pizzo, S.; Giannone, F.; Troisi, S.; Piccaro, C.; Marcantonio, D.

    2017-02-01

    A photogrammetric survey of a unique archaeological site is reported in this paper. The survey was performed using both a panoramic image-based solution and by classical procedure. The panoramic image-based solution was carried out employing a commercial solution: the Trimble V10 Imaging Rover (IR). Such instrument is an integrated cameras system that captures 360 degrees digital panoramas, composed of 12 images, with a single push. The direct comparison of the point clouds obtained with traditional photogrammetric procedure and V10 stations, using the same GCP coordinates has been carried out in Cloud Compare, open source software that can provide the comparison between two point clouds supplied by all the main statistical data. The site is a portion of the dial plate of the "Horologium Augusti" inaugurated in 9 B.C.E. in the area of Campo Marzio and still present intact in the same position, in a cellar of a building in Rome, around 7 meter below the present ground level.

  17. A Method of Haptic Texture Rendering Color Image%彩色图像的纹理力/触觉渲染方法

    Institute of Scientific and Technical Information of China (English)

    李佳璐; 宋爱国; 张小瑞

    2011-01-01

    针对图像纹理力/触觉再现技术中用灰度变化表征纹理所导致的彩色图像在灰度变换后丢失纹理信息的缺点,用颜色变化表征纹理,提出彩色图像的纹理力/触觉渲染方法.该方法中,切向力的计算基于像素力场算法,法向力的计算基于惩罚算法,根据颜色和空间感的心理学效应提出由亮度和色调决定约束空间,合力通过手控器反馈给操作者.实验结果表明,文中方法能够有效地对彩色图像纹理进行力/触觉渲染.%In image-based haptic texture rendering methods, converting color an image to gray-scale in which the texture is defined as gray-scale variation usually leads to loss of texture information. In this paper, texture is defined as color variation and a method of haptic texture rendering color image is proposed. In the proposed method, lateral forces are computed by a pixel force field algorithm, normal forces are computed by a penalty-based haptic rendering method, and constraint space is determined by both value and hue according to color-space psychology effects. Resultant of forces is fed back to the users. Experimental results show the method is feasible to haptically texture render color images.

  18. Hierarchical Control for Smart Grids

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2011-01-01

    This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising...

  19. New light field camera based on physical based rendering tracing

    Science.gov (United States)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung

    2014-03-01

    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  20. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design

    DEFF Research Database (Denmark)

    Perez-Ramirez, Javier; Christensen, Claus H.; Egeblad, Kresten

    2008-01-01

    in these materials often imposes intracrystalline diffusion limitations, rendering low utilisation of the zeolite active volume in catalysed reactions. This critical review examines recent advances in the rapidly evolving area of zeolites with improved accessibility and molecular transport. Strategies to enhance...... the properties of the resulting materials and the catalytic function. We particularly dwell on the exciting field of hierarchical zeolites, which couple in a single material the catalytic power of micropores and the facilitated access and improved transport consequence of a complementary mesopore network...

  1. Design and Implementation of an Application. Programming Interface for Volume Rendering

    OpenAIRE

    Selldin, Håkan

    2002-01-01

    To efficiently examine volumetric data sets from CT or MRI scans good volume rendering applications are needed. This thesis describes the design and implementation of an application programming interface (API) to be used when developing volume-rendering applications. A complete application programming interface has been designed. The interface is designed so that it makes writing application programs containing volume rendering fast and easy. The interface also makes created application progr...

  2. Hierarchical Structures in Hypertext Learning Environments

    NARCIS (Netherlands)

    Bezdan, Eniko; Kester, Liesbeth; Kirschner, Paul A.

    2011-01-01

    Bezdan, E., Kester, L., & Kirschner, P. A. (2011, 9 September). Hierarchical Structures in Hypertext Learning Environments. Presentation for the visit of KU Leuven, Open University, Heerlen, The Netherlands.

  3. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach.

    Science.gov (United States)

    Jin, Jinshuang; Zheng, Xiao; Yan, YiJing

    2008-06-21

    A generalized quantum master equation theory that governs the exact, nonperturbative quantum dissipation and quantum transport is formulated in terms of hierarchically coupled equations of motion for an arbitrary electronic system in contact with electrodes under either a stationary or a nonstationary electrochemical potential bias. The theoretical construction starts with the influence functional in path integral, in which the electron creation and annihilation operators are Grassmann variables. Time derivatives on the influence functionals are then performed in a hierarchical manner. Both the multiple-frequency dispersion and the non-Markovian reservoir parametrization schemes are considered for the desired hierarchy construction. The resulting hierarchical equations of motion formalism is in principle exact and applicable to arbitrary electronic systems, including Coulomb interactions, under the influence of arbitrary time-dependent applied bias voltage and external fields. Both the conventional quantum master equation and the real-time diagrammatic formalism of Schon and co-workers can be readily obtained at well defined limits of the present theory. We also show that for a noninteracting electron system, the present hierarchical equations of motion formalism terminates at the second tier exactly, and the Landuer-Buttiker transport current expression is recovered. The present theory renders an exact and numerically tractable tool to evaluate various transient and stationary quantum transport properties of many-electron systems, together with the involving nonperturbative dissipative dynamics.

  4. Influence of rendering methods on yield and quality of chicken fat recovered from broiler skin

    Directory of Open Access Journals (Sweden)

    Liang-Kun Lin

    2017-06-01

    Full Text Available Objective In order to utilize fat from broiler byproducts efficiently, it is necessary to develop an appropriate rendering procedure and establish quality information for the rendered fat. A study was therefore undertaken to evaluate the influence of rendering methods on the amounts and general properties of the fat recovered from broiler skin. Methods The yield and quality of the broiler skin fat rendered through high and lower energy microwave rendering (3.6 W/g for 10 min and 2.4 W/g for 10 min for high power microwave rendering (HPMR and high power microwave rendering (LPMR, respectively, oven baking (OB, at 180°C for 40 min, and water cooking (WC, boiling for 40 min were compared. Results Microwave-rendered skin exhibited the highest yields and fat recovery rates, followed by OB, and WC fats (p<0.05. HPMR fat had the highest L*, a*, and b* values, whereas WC fat had the highest moisture content, acid values, and thiobarbituric acid (TBA values (p<0.05. There was no significant difference in the acid value, peroxide value, and TBA values between HPMR and LPMR fats. Conclusion Microwave rendering at a power level of 3.6 W/g for 10 min is suggested base on the yield and quality of chicken fat.

  5. Performance Assessment of Three Rendering Engines in 3D Computer Graphics Software

    Directory of Open Access Journals (Sweden)

    Žan Vidmar

    2015-03-01

    Full Text Available The aim of the research was the determination of testing conditions and visual and numerical evaluation of renderings made with three different rendering engines in Maya software, which is widely used for educational and computer art purposes. In the theoretical part the overview of light phenomena and their simulation in virtual space is presented. This is followed by a detailed presentation of the main rendering methods and the results and limitations of their applications to 3D objects. At the end of the theoretical part the importance of a proper testing scene and especially the role of Cornell box are explained. In the experimental part the terms and conditions as well as hardware and software used for the research are presented. This is followed by a description of the procedures, where we focused on the rendering quality and time, which enabled the comparison of settings of different render engines and determination of conditions for further rendering of testing scenes. The experimental part continued with rendering a variety of simple virtual scenes including Cornell box and virtual object with different materials and colours. Apart from visual evaluation, which was the starting point for comparison of renderings, a procedure for numerical estimation and colour deviations of renderings using the selected regions of interest in the final images is presented.

  6. Real-time volume rendering of digital medical images on an iOS device

    Science.gov (United States)

    Noon, Christian; Holub, Joseph; Winer, Eliot

    2013-03-01

    Performing high quality 3D visualizations on mobile devices, while tantalizingly close in many areas, is still a quite difficult task. This is especially true for 3D volume rendering of digital medical images. Allowing this would empower medical personnel a powerful tool to diagnose and treat patients and train the next generation of physicians. This research focuses on performing real time volume rendering of digital medical images on iOS devices using custom developed GPU shaders for orthogonal texture slicing. An interactive volume renderer was designed and developed with several new features including dynamic modification of render resolutions, an incremental render loop, a shader-based clipping algorithm to support OpenGL ES 2.0, and an internal backface culling algorithm for properly sorting rendered geometry with alpha blending. The application was developed using several application programming interfaces (APIs) such as OpenSceneGraph (OSG) as the primary graphics renderer coupled with iOS Cocoa Touch for user interaction, and DCMTK for DICOM I/O. The developed application rendered volume datasets over 450 slices up to 50-60 frames per second, depending on the specific model of the iOS device. All rendering is done locally on the device so no Internet connection is required.

  7. Dynamic Organization of Hierarchical Memories.

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2016-01-01

    In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a "dynamic categorization"; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity.

  8. Image-Based Synthesis of Chinese Landscape Painting

    Institute of Scientific and Technical Information of China (English)

    YU JinHui(于金辉); LUO GuoMing(罗国明); PENG QunSheng(彭群生)

    2003-01-01

    This paper describes a new framework for synthesizing Chinese landscape painting using an image-based approach. The framework involves two stages: a preprocessing phase, in which a few brush stroke texture primitivities (BSTP) are collected from samples of hand-made Chinese paintings, and the control picture is constructed to provide color IDs of mountains, and the on-line phases, in which the fog image is synthesized and mountains are "drawn" by mapping multiple layers of BSTP guided by the control picture. When more complex shading is needed, the shading picture is constructed and used during the BSTP mapping phase. Finally, the synthesized Chinese landscape paintings of a variety of styles are given and they look more close to the handmade work than those produced with previous modeling methods.

  9. Image-based temporal alignment of echocardiographic sequences

    Science.gov (United States)

    Danudibroto, Adriyana; Bersvendsen, Jørn; Mirea, Oana; Gerard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    Temporal alignment of echocardiographic sequences enables fair comparisons of multiple cardiac sequences by showing corresponding frames at given time points in the cardiac cycle. It is also essential for spatial registration of echo volumes where several acquisitions are combined for enhancement of image quality or forming larger field of view. In this study, three different image-based temporal alignment methods were investigated. First, a method based on dynamic time warping (DTW). Second, a spline-based method that optimized the similarity between temporal characteristic curves of the cardiac cycle using 1D cubic B-spline interpolation. Third, a method based on the spline-based method with piecewise modification. These methods were tested on in-vivo data sets of 19 echo sequences. For each sequence, the mitral valve opening (MVO) time was manually annotated. The results showed that the average MVO timing error for all methods are well under the time resolution of the sequences.

  10. Image based Monument Recognition using Graph based Visual Saliency

    DEFF Research Database (Denmark)

    Kalliatakis, Grigorios; Triantafyllidis, Georgios

    2013-01-01

    This article presents an image-based application aiming at simple image classification of well-known monuments in the area of Heraklion, Crete, Greece. This classification takes place by utilizing Graph Based Visual Saliency (GBVS) and employing Scale Invariant Feature Transform (SIFT) or Speeded...... Up Robust Features (SURF). For this purpose, images taken at various places of interest are being compared to an existing database containing images of these places at different angles and zoom. The time required for the matching progress in such application is an important element. To this goal......, the images have been previously processed according to the Graph Based Visual Saliency model in order to keep either SIFT or SURF features corresponding to the actual monuments while the background “noise” is minimized. The application is then able to classify these images, helping the user to better...

  11. Fusion Method for Remote Sensing Image Based on Fuzzy Integral

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2014-01-01

    Full Text Available This paper presents a kind of image fusion method based on fuzzy integral, integrated spectral information, and 2 single factor indexes of spatial resolution in order to greatly retain spectral information and spatial resolution information in fusion of multispectral and high-resolution remote sensing images. Firstly, wavelet decomposition is carried out to two images, respectively, to obtain wavelet decomposition coefficients of the two image and keep coefficient of low frequency of multispectral image, and then optimized fusion is carried out to high frequency part of the two images based on weighting coefficient to generate new fusion image. Finally, evaluation is carried out to the image after fusion with introduction of evaluation indexes of correlation coefficient, mean value of image, standard deviation, distortion degree, information entropy, and so forth. The test results show that this method integrated multispectral information and space high-resolution information in a better way, and it is an effective fusion method of remote sensing image.

  12. Clinical Application of Image-Based CFD for Cerebral Aneurysms.

    Science.gov (United States)

    Cebral, Jr; Mut, F; Sforza, D; Löhner, R; Scrivano, E; Lylyk, P; Putman, Cm

    2011-07-01

    During the last decade, the convergence of medical imaging and computational modeling technologies has enabled tremendous progress in the development and application of image-based computational fluid dynamics modeling of patient-specific blood flows. These techniques have been used for studying the basic mechanisms involved in the initiation and progression of vascular diseases, for studying possible ways to improve the diagnosis and evaluation of patients by incorporating hemodynamics information to the anatomical data typically available, and for the development of computational tools that can be used to improve surgical and endovascular treatment planning. However, before these technologies can have a significant impact on the routine clinical practice, it is still necessary to demonstrate the connection between the extra information provided by the models and the natural progression of vascular diseases and the outcome of interventions. This paper summarizes some of our contributions in this direction, focusing in particular on cerebral aneurysms.

  13. Incorporating privileged genetic information for fundus image based glaucoma detection.

    Science.gov (United States)

    Duan, Lixin; Xu, Yanwu; Li, Wen; Chen, Lin; Wing, Damon Wing Kee; Wong, Tien Yin; Liu, Jiang

    2014-01-01

    Visual features extracted from retinal fundus images have been increasingly used for glaucoma detection, as those images are generally easy to acquire. In recent years, genetic researchers have found that some single nucleic polymorphisms (SNPs) play important roles in the manifestation of glaucoma and also show superiority over fundus images for glaucoma detection. In this work, we propose to use the SNPs to form the so-called privileged information and deal with a practical problem where both fundus images and privileged genetic information exist for the training subjects, while the test objects only have fundus images. To solve this problem, we present an effective approach based on the learning using privileged information (LUPI) paradigm to train a predictive model for the image visual features. Extensive experiments demonstrate the usefulness of our approach in incorporating genetic information for fundus image based glaucoma detection.

  14. Optimization of an Image-Based Talking Head System

    Directory of Open Access Journals (Sweden)

    Kang Liu

    2009-01-01

    Full Text Available This paper presents an image-based talking head system, which includes two parts: analysis and synthesis. The audiovisual analysis part creates a face model of a recorded human subject, which is composed of a personalized 3D mask as well as a large database of mouth images and their related information. The synthesis part generates natural looking facial animations from phonetic transcripts of text. A critical issue of the synthesis is the unit selection which selects and concatenates these appropriate mouth images from the database such that they match the spoken words of the talking head. Selection is based on lip synchronization and the similarity of consecutive images. The unit selection is refined in this paper, and Pareto optimization is used to train the unit selection. Experimental results of subjective tests show that most people cannot distinguish our facial animations from real videos.

  15. Image-Based Geometric Modeling and Mesh Generation

    CERN Document Server

    2013-01-01

    As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...

  16. Experimental study of photo counting imaging based on APD

    Science.gov (United States)

    Qu, Huiming; Li, Yuan-yuan; Cao, Dan; Zheng, Qi; Ji, Zhong-Jie; Chen, Qian

    2012-10-01

    Photo counting imaging is a promising imaging method for very low-level-light condition and super high-speed imaging. An experimental setup with Geiger mode silicon avalanche photodiode single-photon counter was established in this study. This experimental setup achieved photon counting imaging through serial two-dimensional scanning mode of single APD. It extracts the extremely weak signal from the noise by scanning image, and then reconstructs the photon distribution image. The feasibility of the experiment platform was verified with many experiments. The resolution bar was scanned and imaged in different lighting condition. A Lena image was also scanned and imaged among several illumination conditions. The resolution ability and imaging quality are evaluated in different illumination surroundings. The imaging limited condition was concluded based on existing APD sensor. The experimental result indicates that the imaging based Geiger mode APD is an excellent candidate for very low level light imaging.

  17. ONLINE GRINDING WHEEL WEAR COMPENSATION BY IMAGE BASED MEASURING TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    WAN Daping; HU Dejin; WU Qi; ZHANG Yonghong

    2006-01-01

    Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evaluated by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 μm. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.

  18. Image-Based Learning Approach Applied to Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    J. C. Chimal-Eguía

    2012-06-01

    Full Text Available In this paper, a new learning approach based on time-series image information is presented. In order to implementthis new learning technique, a novel time-series input data representation is also defined. This input datarepresentation is based on information obtained by image axis division into boxes. The difference between this newinput data representation and the classical is that this technique is not time-dependent. This new information isimplemented in the new Image-Based Learning Approach (IBLA and by means of a probabilistic mechanism thislearning technique is applied to the interesting problem of time series forecasting. The experimental results indicatethat by using the methodology proposed in this article, it is possible to obtain better results than with the classicaltechniques such as artificial neuronal networks and support vector machines.

  19. Image Based Solution to Occlusion Problem for Multiple Robots Navigation

    Directory of Open Access Journals (Sweden)

    Taj Mohammad Khan

    2012-04-01

    Full Text Available In machine vision, occlusions problem is always a challenging issue in image based mapping and navigation tasks. This paper presents a multiple view vision based algorithm for the development of occlusion-free map of the indoor environment. The map is assumed to be utilized by the mobile robots within the workspace. It has wide range of applications, including mobile robot path planning and navigation, access control in restricted areas, and surveillance systems. We used wall mounted fixed camera system. After intensity adjustment and background subtraction of the synchronously captured images, the image registration was performed. We applied our algorithm on the registered images to resolve the occlusion problem. This technique works well even in the existence of total occlusion for a longer period.

  20. FULLY AUTOMATIC IMAGE-BASED REGISTRATION OF UNORGANIZED TLS DATA

    Directory of Open Access Journals (Sweden)

    M. Weinmann

    2012-09-01

    Full Text Available The estimation of the transformation parameters between different point clouds is still a crucial task as it is usually followed by scene reconstruction, object detection or object recognition. Therefore, the estimates should be as accurate as possible. Recent developments show that it is feasible to utilize both the measured range information and the reflectance information sampled as image, as 2D imagery provides additional information. In this paper, an image-based registration approach for TLS data is presented which consists of two major steps. In the first step, the order of the scans is calculated by checking the similarity of the respective reflectance images via the total number of SIFT correspondences between them. Subsequently, in the second step, for each SIFT correspondence the respective SIFT features are filtered with respect to their reliability concerning the range information and projected to 3D space. Combining the 3D points with 2D observations on a virtual plane yields 3D-to-2D correspondences from which the coarse transformation parameters can be estimated via a RANSAC-based registration scheme including the EPnP algorithm. After this coarse registration, the 3D points are again checked for consistency by using constraints based on the 3D distance, and, finally, the remaining 3D points are used for an ICP-based fine registration. Thus, the proposed methodology provides a fast, reliable, accurate and fully automatic image-based approach for the registration of unorganized point clouds without the need of a priori information about the order of the scans, the presence of regular surfaces or human interaction.

  1. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non-param...

  2. Discursive Hierarchical Patterning in Economics Cases

    Science.gov (United States)

    Lung, Jane

    2011-01-01

    This paper attempts to apply Lung's (2008) model of the discursive hierarchical patterning of cases to a closer and more specific study of Economics cases and proposes a model of the distinct discursive hierarchical patterning of the same. It examines a corpus of 150 Economics cases with a view to uncovering the patterns of discourse construction.…

  3. A Model of Hierarchical Key Assignment Scheme

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhigang; ZHAO Jing; XU Maozhi

    2006-01-01

    A model of the hierarchical key assignment scheme is approached in this paper, which can be used with any cryptography algorithm. Besides, the optimal dynamic control property of a hierarchical key assignment scheme will be defined in this paper. Also, our scheme model will meet this property.

  4. Galaxy formation through hierarchical clustering

    Science.gov (United States)

    White, Simon D. M.; Frenk, Carlos S.

    1991-01-01

    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  5. Groups possessing extensive hierarchical decompositions

    CERN Document Server

    Januszkiewicz, T; Leary, I J

    2009-01-01

    Kropholler's class of groups is the smallest class of groups which contains all finite groups and is closed under the following operator: whenever $G$ admits a finite-dimensional contractible $G$-CW-complex in which all stabilizer groups are in the class, then $G$ is itself in the class. Kropholler's class admits a hierarchical structure, i.e., a natural filtration indexed by the ordinals. For example, stage 0 of the hierarchy is the class of all finite groups, and stage 1 contains all groups of finite virtual cohomological dimension. We show that for each countable ordinal $\\alpha$, there is a countable group that is in Kropholler's class which does not appear until the $\\alpha+1$st stage of the hierarchy. Previously this was known only for $\\alpha= 0$, 1 and 2. The groups that we construct contain torsion. We also review the construction of a torsion-free group that lies in the third stage of the hierarchy.

  6. Quantum transport through hierarchical structures.

    Science.gov (United States)

    Boettcher, S; Varghese, C; Novotny, M A

    2011-04-01

    The transport of quantum electrons through hierarchical lattices is of interest because such lattices have some properties of both regular lattices and random systems. We calculate the electron transmission as a function of energy in the tight-binding approximation for two related Hanoi networks. HN3 is a Hanoi network with every site having three bonds. HN5 has additional bonds added to HN3 to make the average number of bonds per site equal to five. We present a renormalization group approach to solve the matrix equation involved in this quantum transport calculation. We observe band gaps in HN3, while no such band gaps are observed in linear networks or in HN5. We provide a detailed scaling analysis near the edges of these band gaps.

  7. Hierarchical networks of scientific journals

    CERN Document Server

    Palla, Gergely; Mones, Enys; Pollner, Péter; Vicsek, Tamás

    2015-01-01

    Scientific journals are the repositories of the gradually accumulating knowledge of mankind about the world surrounding us. Just as our knowledge is organised into classes ranging from major disciplines, subjects and fields to increasingly specific topics, journals can also be categorised into groups using various metrics. In addition to the set of topics characteristic for a journal, they can also be ranked regarding their relevance from the point of overall influence. One widespread measure is impact factor, but in the present paper we intend to reconstruct a much more detailed description by studying the hierarchical relations between the journals based on citation data. We use a measure related to the notion of m-reaching centrality and find a network which shows the level of influence of a journal from the point of the direction and efficiency with which information spreads through the network. We can also obtain an alternative network using a suitably modified nested hierarchy extraction method applied ...

  8. Adaptive Sampling in Hierarchical Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R

    2007-07-09

    We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.

  9. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model.

  10. 31 CFR 515.548 - Services rendered by Cuba to United States aircraft.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Services rendered by Cuba to United... REGULATIONS Licenses, Authorizations, and Statements of Licensing Policy § 515.548 Services rendered by Cuba to United States aircraft. Specific licenses are issued for payment to Cuba of charges for services...

  11. Frequency domain volume rendering by the wavelet X-ray transform

    NARCIS (Netherlands)

    Westenberg, Michel A.; Roerdink, Jos B.T.M.

    2000-01-01

    We describe a wavelet-based X-ray rendering method in the frequency domain with a smaller time complexity than wavelet splatting. Standard Fourier volume rendering is summarized and interpolation and accuracy issues are briefly discussed. We review the implementation of the fast wavelet transform in

  12. Evaluation of voxel-based rendering of high resolution surface descriptions

    DEFF Research Database (Denmark)

    Hammershøi, Dorte; Olesen, Søren Krarup; Markovic, Milos

    2014-01-01

    responses by having more “distinct” representations of the individual reflections. When rendered audible, such descriptions will lead to a sound quality that can best be described as “canned”. For the rendering of real rooms, as e.g. in "teletransporting", this problem may be addressed by using high...

  13. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Science.gov (United States)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-11-01

    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  14. A neural signature of hierarchical reinforcement learning.

    Science.gov (United States)

    Ribas-Fernandes, José J F; Solway, Alec; Diuk, Carlos; McGuire, Joseph T; Barto, Andrew G; Niv, Yael; Botvinick, Matthew M

    2011-07-28

    Human behavior displays hierarchical structure: simple actions cohere into subtask sequences, which work together to accomplish overall task goals. Although the neural substrates of such hierarchy have been the target of increasing research, they remain poorly understood. We propose that the computations supporting hierarchical behavior may relate to those in hierarchical reinforcement learning (HRL), a machine-learning framework that extends reinforcement-learning mechanisms into hierarchical domains. To test this, we leveraged a distinctive prediction arising from HRL. In ordinary reinforcement learning, reward prediction errors are computed when there is an unanticipated change in the prospects for accomplishing overall task goals. HRL entails that prediction errors should also occur in relation to task subgoals. In three neuroimaging studies we observed neural responses consistent with such subgoal-related reward prediction errors, within structures previously implicated in reinforcement learning. The results reported support the relevance of HRL to the neural processes underlying hierarchical behavior.

  15. Hierarchical Identity-Based Lossy Trapdoor Functions

    CERN Document Server

    Escala, Alex; Libert, Benoit; Rafols, Carla

    2012-01-01

    Lossy trapdoor functions, introduced by Peikert and Waters (STOC'08), have received a lot of attention in the last years, because of their wide range of applications in theoretical cryptography. The notion has been recently extended to the identity-based scenario by Bellare et al. (Eurocrypt'12). We provide one more step in this direction, by considering the notion of hierarchical identity-based lossy trapdoor functions (HIB-LTDFs). Hierarchical identity-based cryptography generalizes identitybased cryptography in the sense that identities are organized in a hierarchical way; a parent identity has more power than its descendants, because it can generate valid secret keys for them. Hierarchical identity-based cryptography has been proved very useful both for practical applications and to establish theoretical relations with other cryptographic primitives. In order to realize HIB-LTDFs, we first build a weakly secure hierarchical predicate encryption scheme. This scheme, which may be of independent interest, is...

  16. Hierarchically nanostructured materials for sustainable environmental applications

    Science.gov (United States)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  17. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  18. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...

  19. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    CERN Document Server

    Perotti, Juan Ignacio; Caldarelli, Guido

    2015-01-01

    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the {\\it hierarchical mutual information}, which is a generalization of the traditional mutual information, and allows to compare hierarchical partitions and hierarchical community structures. The {\\it normalized} version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here, the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies, and on the hierarchical ...

  20. Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks.

    Science.gov (United States)

    Selver, M Alper; Güzeliş, Cüneyt

    2009-01-01

    As being a tool that assigns optical parameters used in interactive visualization, Transfer Functions (TF) have important effects on the quality of volume rendered medical images. Unfortunately, finding accurate TFs is a tedious and time consuming task because of the trade off between using extensive search spaces and fulfilling the physician's expectations with interactive data exploration tools and interfaces. By addressing this problem, we introduce a semi-automatic method for initial generation of TFs. The proposed method uses a Self Generating Hierarchical Radial Basis Function Network to determine the lobes of a Volume Histogram Stack (VHS) which is introduced as a new domain by aligning the histograms of slices of a image series. The new self generating hierarchical design strategy allows the recognition of suppressed lobes corresponding to suppressed tissues and representation of the overlapping regions which are parts of the lobes but can not be represented by the Gaussian bases in VHS. Moreover, approximation with a minimum set of basis functions provides the possibility of selecting and adjusting suitable units to optimize the TF. Applications on different CT and MR data sets show enhanced rendering quality and reduced optimization time in abdominal studies.

  1. Next Generation Image-Based Phenotyping of Root System Architecture

    Science.gov (United States)

    Davis, T. W.; Shaw, N. M.; Cheng, H.; Larson, B. G.; Craft, E. J.; Shaff, J. E.; Schneider, D. J.; Piñeros, M. A.; Kochian, L. V.

    2016-12-01

    The development of the Plant Root Imaging and Data Acquisition (PRIDA) hardware/software system enables researchers to collect digital images, along with all the relevant experimental details, of a range of hydroponically grown agricultural crop roots for 2D and 3D trait analysis. Previous efforts of image-based root phenotyping focused on young cereals, such as rice; however, there is a growing need to measure both older and larger root systems, such as those of maize and sorghum, to improve our understanding of the underlying genetics that control favorable rooting traits for plant breeding programs to combat the agricultural risks presented by climate change. Therefore, a larger imaging apparatus has been prototyped for capturing 3D root architecture with an adaptive control system and innovative plant root growth media that retains three-dimensional root architectural features. New publicly available multi-platform software has been released with considerations for both high throughput (e.g., 3D imaging of a single root system in under ten minutes) and high portability (e.g., support for the Raspberry Pi computer). The software features unified data collection, management, exploration and preservation for continued trait and genetics analysis of root system architecture. The new system makes data acquisition efficient and includes features that address the needs of researchers and technicians, such as reduced imaging time, semi-automated camera calibration with uncertainty characterization, and safe storage of the critical experimental data.

  2. Multiview Visibility Estimation for Image-Based Modeling

    Institute of Scientific and Technical Information of China (English)

    Liu-Xin Zhang; Ming-Tao Pei; Yun-De Jia

    2011-01-01

    In this paper,we investigate the problem of determining regions in 3D scene visible to some given viewpoints when obstacles are present in the scene.We assume that the obstacles are composed of some opaque objects with closed surfaces.The problem is formulated in an implicit framework where the obstacles are represented by a level set function.The visible and invisible regions of the given viewpoints are determined through an efficient implicit ray tracing technique.As an extension of our approach,we apply the multiview visibility estimation to an image-based modeling technique.The unknown scene geometry and multiview visibility information are incorporated into a variational energy functional.By minimizing the energy functional,the true scene geometry as well as the accurate visibility information of the multiple views can be recovered from a number of scene images.This makes it feasible to handle the visibility problem of multiple views by our approach when the true scene geometry is unknown.

  3. Image-based modelling of skeletal muscle oxygenation.

    Science.gov (United States)

    Zeller-Plumhoff, B; Roose, T; Clough, G F; Schneider, P

    2017-02-01

    The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.

  4. An Imaging-Based Approach to Spinal Cord Infection.

    Science.gov (United States)

    Talbott, Jason F; Narvid, Jared; Chazen, J Levi; Chin, Cynthia T; Shah, Vinil

    2016-10-01

    Infections of the spinal cord, nerve roots, and surrounding meninges are uncommon, but highly significant given their potential for severe morbidity and even mortality. Prompt diagnosis can be lifesaving, as many spinal infections are treatable. Advances in imaging technology have now firmly established magnetic resonance imaging (MRI) as the gold standard for spinal cord imaging evaluation, enabling the depiction of infectious myelopathies with exquisite detail and contrast. In this article, we aim to provide an overview of MRI findings for spinal cord infections with special focus on imaging patterns of infection that are primarily confined to the spinal cord, spinal meninges, and spinal nerve roots. In this context, we describe and organize this review around 5 distinct patterns of transverse spinal abnormality that may be detected with MRI as follows: (1) extramedullary, (2) centromedullary, (3) eccentric, (4) frontal horn, and (5) irregular. We seek to classify the most common presentations for a wide variety of infectious agents within this image-based framework while realizing that significant overlap and variation exists, including some infections that remain occult with conventional imaging techniques.

  5. Infrared imaging based hyperventilation monitoring through respiration rate estimation

    Science.gov (United States)

    Basu, Anushree; Routray, Aurobinda; Mukherjee, Rashmi; Shit, Suprosanna

    2016-07-01

    A change in the skin temperature is used as an indicator of physical illness which can be detected through infrared thermography. Thermograms or thermal images can be used as an effective diagnostic tool for monitoring and diagnosis of various diseases. This paper describes an infrared thermography based approach for detecting hyperventilation caused due to stress and anxiety in human beings by computing their respiration rates. The work employs computer vision techniques for tracking the region of interest from thermal video to compute the breath rate. Experiments have been performed on 30 subjects. Corner feature extraction using Minimum Eigenvalue (Shi-Tomasi) algorithm and registration using Kanade Lucas-Tomasi algorithm has been used here. Thermal signature around the extracted region is detected and subsequently filtered through a band pass filter to compute the respiration profile of an individual. If the respiration profile shows unusual pattern and exceeds the threshold we conclude that the person is stressed and tending to hyperventilate. Results obtained are compared with standard contact based methods which have shown significant correlations. It is envisaged that the thermal image based approach not only will help in detecting hyperventilation but can assist in regular stress monitoring as it is non-invasive method.

  6. Space Group Debris Imaging Based on Sparse Sample

    Directory of Open Access Journals (Sweden)

    Zhu Jiang

    2016-02-01

    Full Text Available Space group debris imaging is difficult with sparse data in low Pulse Repetition Frequency (PRF spaceborne radar. To solve this problem in the narrow band system, we propose a method for space group debris imaging based on sparse samples. Due to the diversity of mass, density, and other factors, space group debris typically rotates at a high speed in different ways. We can obtain angular velocity through the autocorrelation function based on the diversity in the angular velocity. The scattering field usually presents strong sparsity, so we can utilize the corresponding measurement matrix to extract the data of different debris and then combine it using the sparse method to reconstruct the image. Furthermore, we can solve the Doppler ambiguity with the measurement matrix in low PRF systems and suppress some energy of other debris. Theoretical analysis confirms the validity of this methodology. Our simulation results demonstrate that the proposed method can achieve high-resolution Inverse Synthetic Aperture Radar (ISAR images of space group debris in low PRF systems.

  7. Image based quantitative reader for Lateral flow immunofluorescence assay.

    Science.gov (United States)

    Chowdhury, Kaushik Basak; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Fluorescence Lateral flow immunoassays (LFIA) have wide range of applications in point-of-care testing (POCT). An integrated, motion-free, accurate, reliable reader that performs automated quantitative analysis of LFIA is essential for POCT diagnosis. We demonstrate an image based quantitative method to read the lateral flow immunofluorescence test strips. The developed reader uses line laser diode module to illuminate the LFIA test strip having fluorescent dye. Fluorescence light coming from the region of interest (ROI) of the LFIA test strip was filtered using an emission filter and imaged using a camera following which images were processed in computer. A dedicated control program was developed that automated the entire process including illumination of the test strip using laser diode, capturing the ROI of the test strip, processing and analyzing the images and displaying of results. Reproducibility of the reader has been evaluated using few reference cartridges and HbA1c (Glycated haemoglobin) test cartridges. The proposed system can be upgraded to a compact reader for widespread testing of LFIA test strips.

  8. Image-based relative permeability upscaling from the pore scale

    Science.gov (United States)

    Norouzi Apourvari, Saeid; Arns, Christoph H.

    2016-09-01

    High resolution images acquired from X-ray μ-CT are able to map the internal structure of porous media on which multiphase flow properties can be computed. While the resolution of a few micrometers may be sufficient for capturing the pore space of many sandstones, most carbonates exhibit a large amount of microporosity; pores which are below the image resolution and are not resolved at specific resolution. Neglecting the effect of micropores on fluid flow and transport properties of these rocks can cause erroneous results in particular at partial saturations. Current image-based pore scale models typically only consider macropores for simulating fluid flow. In this paper, we quantify the effect of microporosity on the effective permeability of the wetting phase for heterogeneous model structures with varying amount of micro-to-macro porosity. A multi-scale numerical approach is proposed to couple an average effect of micropores with an explicit representation of macropores. The Brinkman equation is solved using a lattice Boltzmann formulation to facilitate the coupling of Darcy and Stokes equations in micropores and macropores, respectively. The results show good agreement between the fine scale solution and the results of the upscaled models in which microporous regions are homogenised. The paper analyses in particular the choice of the momentum sink parameter at low wetting phase saturations. It is shown that this parameter can be found using either a flux-based calculation of permeability of microporous regions or chosen purely on the basis of the effective permeability of these regions.

  9. Image based numerical simulation of hemodynamics in a intracranial aneurysm

    Science.gov (United States)

    Le, Trung; Ge, Liang; Sotiropoulos, Fotis; Kallmes, David; Cloft, Harry; Lewis, Debra; Dai, Daying; Ding, Yonghong; Kadirvel, Ramanathan

    2007-11-01

    Image-based numerical simulations of hemodynamics in a intracranial aneurysm are carried out. The numerical solver based on CURVIB (curvilinear grid/immersed boundary method) approach developed in Ge and Sotiropoulos, JCP 2007 is used to simulate the blood flow. A curvilinear grid system that gradually follows the curved geometry of artery wall and consists of approximately 5M grid nodes is constructed as the background grid system and the boundaries of the investigated artery and aneurysm are treated as immersed boundaries. The surface geometry of aneurysm wall is reconstructed from an angiography study of an aneurysm formed on the common carotid artery (CCA) of a rabbit and discretized with triangular meshes. At the inlet a physiological flow waveform is specified and direct numerical simulations are used to simulate the blood flow. Very rich vortical dynamics is observed within the aneurysm area, with a ring like vortex sheds from the proximal side of aneurysm, develops and impinge onto the distal side of the aneurysm as flow develops, and destructs into smaller vortices during later cardiac cycle. This work was supported in part by the University of Minnesota Supercomputing Institute.

  10. Infrared imaging-based combat casualty care system

    Science.gov (United States)

    Davidson, James E., Sr.

    1997-08-01

    A Small Business Innovative Research (SBIR) contract was recently awarded to a start up company for the development of an infrared (IR) image based combat casualty care system. The company, Medical Thermal Diagnostics, or MTD, is developing a light weight, hands free, energy efficient uncooled IR imaging system based upon a Texas Instruments design which will allow emergency medical treatment of wounded soldiers in complete darkness without any type of light enhancement equipment. The principal investigator for this effort, Dr. Gene Luther, DVM, Ph.D., Professor Emeritus, LSU School of Veterinary Medicine, will conduct the development and testing of this system with support from Thermalscan, Inc., a nondestructive testing company experienced in IR thermography applications. Initial research has been done with surgery on a cat for feasibility of the concept as well as forensic research on pigs as a close representation of human physiology to determine time of death. Further such studies will be done later as well as trauma studies. IR images of trauma injuries will be acquired by imaging emergency room patients to create an archive of emergency medical situations seen with an infrared imaging camera. This archived data will then be used to develop training material for medical personnel using the system. This system has potential beyond military applications. Firefighters and emergency medical technicians could directly benefit from the capability to triage and administer medical care to trauma victims in low or no light conditions.

  11. Image Based Authentication Using Persuasive Cued Click Points

    Directory of Open Access Journals (Sweden)

    Ankita R Karia

    2014-05-01

    Full Text Available User authentication is one of the most important procedures required to access secure and confidential data. Authentication of users is usually achieved through text-based passwords. Attackers through social engineering techniques easily obtain the text based password of a user. Apart from being vulnerable to social engineering attacks, text based passwords are either weak-and-memorable or secure-but-difficult-to-remember. Researchers of modern days have thus gone for alternative methods wherein graphical pictures are used as passwords. Image based authentication allows user to create graphical password which has advantages over text-based passwords. Graphical passwords have been designed to make passwords more memorable and easier for people to use. This paper focusses on creating a password by using a sequence of images such that one click-point per image contributes to password. Persuasive Technology is used to guide user’s choice in click-based graphical passwords, inspiring users to select more random and thus more difficult to guess click-points. Also to enhance the security, a user has to decide a sequence for the images used during registration, which has to be reproduced by him during login phase.

  12. Weight measurement using image-based pose analysis

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Kui Zhang; Ying Mu; Ning Yao; Robert J. Sclabassi; Mingui Sun

    2008-01-01

    Image-based gait analysis as a means of biometric identification has attracted much research attention.Most of the existing methods focus on human identification,posture analysis and movement tracking.There have been few investigations on measuring the carried load based on the carrier's gait characteristics by automatic image processing.Nevertheless,this measurement is very useful in a number of applications,such as the study of the carried load on the postural development of children and adolescence.In this paper,we inves-tigate how to automatically estimate the carried weight from a sequence of images.We present a method to extract human gait silhouette based on an observation that humans tend to minimize the energy during motion.We compute several angles of body leaning and deter-mine the relationship of the carried weight,the leaning angles and the centroid location according to a human kinetic study.Our weight determination method has been verified successfully by experiments.

  13. D Image Based Geometric Documentation of the Tower of Winds

    Science.gov (United States)

    Tryfona, M. S.; Georgopoulos, A.

    2016-06-01

    This paper describes and investigates the implementation of almost entirely image based contemporary techniques for the three dimensional geometric documentation of the Tower of the Winds in Athens, which is a unique and very special monument of the Roman era. These techniques and related algorithms were implemented using a well-known piece of commercial software with extreme caution in the selection of the various parameters. Problems related to data acquisition and processing, but also to the algorithms and to the software implementation are identified and discussed. The resulting point cloud has been georeferenced, i.e. referenced to a local Cartesian coordinate system through minimum geodetic measurements, and subsequently the surface, i.e. the mesh was created and finally the three dimensional textured model was produced. In this way, the geometric documentation drawings, i.e. the horizontal section plans, the vertical section plans and the elevations, which include orthophotos of the monument, can be produced at will from that 3D model, for the complete geometric documentation. Finally, a 3D tour of the Tower of the Winds has also been created for a more integrated view of the monument. The results are presented and are evaluated for their completeness, efficiency, accuracy and ease of production.

  14. A brief image-based prevention intervention for adolescents.

    Science.gov (United States)

    Werch, Chudley E Chad; Bian, Hui; Diclemente, Carlo C; Moore, Michelle J; Thombs, Dennis; Ames, Steven C; Huang, I-Chan; Pokorny, Steven

    2010-03-01

    The authors evaluated the efficacy of a brief image-based prevention intervention and assessed current drug use as a moderator of intervention effects. In a clinical trial, 416 high school-age adolescents were randomized to either the brief intervention or usual care control, with data collected at baseline and 3-month follow-up. The brief intervention consisted of a tailored in-person communication and a series of parent/guardian print materials based on the behavior-image model. Health behavior goal setting increased for participants receiving the brief intervention, with an effect size in the small range (d = 0.33). Overall effect sizes for cigarette smoking frequency and quantity and alcohol use frequency and quantity were small (ds = 0.16-0.21) and in favor of the brief intervention. However, adolescents reporting current substance use who received the brief intervention reduced their frequency and heavy use of alcohol, frequency and quantity of cigarette smoking, and reported fewer alcohol/drug problems, with larger effects ranging from small to approaching medium in size (ds = 0.32-0.43, ps goal setting and reduce substance use, particularly among drug-using older adolescents.

  15. Image-based characterization of foamed polymeric tissue scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Mather, Melissa L; Morgan, Stephen P; Crowe, John A [School of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); White, Lisa J; Shakesheff, Kevin M [School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Tai, Hongyun; Howdle, Steven M [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Kockenberger, Walter [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)], E-mail: john.crowe@nottingham.ac.uk

    2008-03-01

    Tissue scaffolds are integral to many regenerative medicine therapies, providing suitable environments for tissue regeneration. In order to assess their suitability, methods to routinely and reproducibly characterize scaffolds are needed. Scaffold structures are typically complex, and thus their characterization is far from trivial. The work presented in this paper is centred on the application of the principles of scaffold characterization outlined in guidelines developed by ASTM International. Specifically, this work demonstrates the capabilities of different imaging modalities and analysis techniques used to characterize scaffolds fabricated from poly(lactic-co-glycolic acid) using supercritical carbon dioxide. Three structurally different scaffolds were used. The scaffolds were imaged using: scanning electron microscopy, micro x-ray computed tomography, magnetic resonance imaging and terahertz pulsed imaging. In each case two-dimensional images were obtained from which scaffold properties were determined using image processing. The findings of this work highlight how the chosen imaging modality and image-processing technique can influence the results of scaffold characterization. It is concluded that in order to obtain useful results from image-based scaffold characterization, an imaging methodology providing sufficient contrast and resolution must be used along with robust image segmentation methods to allow intercomparison of results.

  16. Image-Based Delineation and Classification of Built Heritage Masonry

    Directory of Open Access Journals (Sweden)

    Noelia Oses

    2014-02-01

    Full Text Available Fundación Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.

  17. Ultra-realistic 3-D imaging based on colour holography

    Science.gov (United States)

    Bjelkhagen, H. I.

    2013-02-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  18. COMPANION ANIMALS SYMPOSIUM: Rendered ingredients significantly influence sustainability, quality, and safety of pet food.

    Science.gov (United States)

    Meeker, D L; Meisinger, J L

    2015-03-01

    The rendering industry collects and safely processes approximately 25 million t of animal byproducts each year in the United States. Rendering plants process a variety of raw materials from food animal production, principally offal from slaughterhouses, but include whole animals that die on farms or in transit and other materials such as bone, feathers, and blood. By recycling these byproducts into various protein, fat, and mineral products, including meat and bone meal, hydrolyzed feather meal, blood meal, and various types of animal fats and greases, the sustainability of food animal production is greatly enhanced. The rendering industry is conscious of its role in the prevention of disease and microbiological control and providing safe feed ingredients for livestock, poultry, aquaculture, and pets. The processing of otherwise low-value OM from the livestock production and meat processing industries through rendering drastically reduces the amount of waste. If not rendered, biological materials would be deposited in landfills, burned, buried, or inappropriately dumped with large amounts of carbon dioxide, ammonia, and other compounds polluting air and water. The majority of rendered protein products are used as animal feed. Rendered products are especially valuable to the livestock and pet food industries because of their high protein content, digestible AA levels (especially lysine), mineral availability (especially calcium and phosphorous), and relatively low cost in relation to their nutrient value. The use of these reclaimed and recycled materials in pet food is a much more sustainable model than using human food for pets.

  19. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  20. A Model for Slicing JAVA Programs Hierarchically

    Institute of Scientific and Technical Information of China (English)

    Bi-Xin Li; Xiao-Cong Fan; Jun Pang; Jian-Jun Zhao

    2004-01-01

    Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing Tool (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.

  1. Hierarchical analysis of acceptable use policies

    Directory of Open Access Journals (Sweden)

    P. A. Laughton

    2008-01-01

    Full Text Available Acceptable use policies (AUPs are vital tools for organizations to protect themselves and their employees from misuse of computer facilities provided. A well structured, thorough AUP is essential for any organization. It is impossible for an effective AUP to deal with every clause and remain readable. For this reason, some sections of an AUP carry more weight than others, denoting importance. The methodology used to develop the hierarchical analysis is a literature review, where various sources were consulted. This hierarchical approach to AUP analysis attempts to highlight important sections and clauses dealt with in an AUP. The emphasis of the hierarchal analysis is to prioritize the objectives of an AUP.

  2. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  3. Hyperspectral image-based methods for spectral diversity

    Science.gov (United States)

    Sotomayor, Alejandro; Medina, Ollantay; Chinea, J. D.; Manian, Vidya

    2015-05-01

    Hyperspectral images are an important tool to assess ecosystem biodiversity. To obtain more precise analysis of biodiversity indicators that agree with indicators obtained using field data, analysis of spectral diversity calculated from images have to be validated with field based diversity estimates. The plant species richness is one of the most important indicators of biodiversity. This indicator can be measured in hyperspectral images considering the Spectral Variation Hypothesis (SVH) which states that the spectral heterogeneity is related to spatial heterogeneity and thus to species richness. The goal of this research is to capture spectral heterogeneity from hyperspectral images for a terrestrial neo tropical forest site using Vector Quantization (VQ) method and then use the result for prediction of plant species richness. The results are compared with that of Hierarchical Agglomerative Clustering (HAC). The validation of the process index is done calculating the Pearson correlation coefficient between the Shannon entropy from actual field data and the Shannon entropy computed in the images. One of the advantages of developing more accurate analysis tools would be the extension of the analysis to larger zones. Multispectral image with a lower spatial resolution has been evaluated as a prospective tool for spectral diversity.

  4. Three-dimensional rendering of segmented object using matlab - biomed 2010.

    Science.gov (United States)

    Anderson, Jeffrey R; Barrett, Steven F

    2010-01-01

    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  5. Spatial sound rendering of a playing xylophone for the telepresence application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Hoffmann, Pablo F.

    2013-01-01

    xylophone sound rendering is proposed. The recorded signal is processed in order to define multiple virtual sources which are spatially distributed for the auditory width representation of the virtual xylophone. The results of the analyzed recording and rendering techniques are compared in terms...... played at the student's location is required at the teacher’s site. This paper presents a comparison of different recording techniques for a spatial xylophone sound rendering, focusing on the horizontal width of the xylophone auditory image. The directivity pattern of the xylophone was measured...

  6. TractRender: a new generalized 3D medical image visualization and output platform

    Science.gov (United States)

    Hwang, Darryl H.; Tsao, Sinchai; Gajawelli, Niharika; Law, Meng; Lepore, Natasha

    2015-01-01

    Diffusion MRI allows us not only voxelized diffusion characteristics but also the potential to delineate neuronal fiber path through tractography. There is a dearth of flexible open source tractography software programs for visualizing these complicated 3D structures. Moreover, rendering these structures using various shading, lighting, and representations will result in vastly different graphical feel. In addition, the ability to output these objects in various formats increases the utility of this platform. We have created TractRender that leverages openGL features through Matlab, allowing for maximum ease of use but still maintain the flexibility of custom scene rendering.

  7. Methods for Quantifying and Characterizing Errors in Pixel-Based 3D Rendering.

    Science.gov (United States)

    Hagedorn, John G; Terrill, Judith E; Peskin, Adele P; Filliben, James J

    2008-01-01

    We present methods for measuring errors in the rendering of three-dimensional points, line segments, and polygons in pixel-based computer graphics systems. We present error metrics for each of these three cases. These methods are applied to rendering with OpenGL on two common hardware platforms under several rendering conditions. Results are presented and differences in measured errors are analyzed and characterized. We discuss possible extensions of this error analysis approach to other aspects of the process of generating visual representations of synthetic scenes.

  8. Image meshing via hierarchical optimization

    Institute of Scientific and Technical Information of China (English)

    Hao XIE; Ruo-feng TONG‡

    2016-01-01

    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., defi nition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to fi nd a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to fi nd a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to fi ner ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  9. Image meshing via hierarchical optimization*

    Institute of Scientific and Technical Information of China (English)

    Hao XIE; Ruo-feng TONGS

    2016-01-01

    Vector graphic, as a kind of geometric representation of raster images, has many advantages, e.g., definition independence and editing facility. A popular way to convert raster images into vector graphics is image meshing, the aim of which is to find a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to find a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to finer ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

  10. Hierarchical Bayes Ensemble Kalman Filtering

    CERN Document Server

    Tsyrulnikov, Michael

    2015-01-01

    Ensemble Kalman filtering (EnKF), when applied to high-dimensional systems, suffers from an inevitably small affordable ensemble size, which results in poor estimates of the background error covariance matrix ${\\bf B}$. The common remedy is a kind of regularization, usually an ad-hoc spatial covariance localization (tapering) combined with artificial covariance inflation. Instead of using an ad-hoc regularization, we adopt the idea by Myrseth and Omre (2010) and explicitly admit that the ${\\bf B}$ matrix is unknown and random and estimate it along with the state (${\\bf x}$) in an optimal hierarchical Bayes analysis scheme. We separate forecast errors into predictability errors (i.e. forecast errors due to uncertainties in the initial data) and model errors (forecast errors due to imperfections in the forecast model) and include the two respective components ${\\bf P}$ and ${\\bf Q}$ of the ${\\bf B}$ matrix into the extended control vector $({\\bf x},{\\bf P},{\\bf Q})$. Similarly, we break the traditional backgrou...

  11. Intrinsically Hierarchical Nanoporous Polymers via Polymerization-Induced Microphase Separation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Michael B.; Van Horn, J. David; Wu, Fei; Hillmyer, Marc A.

    2017-05-17

    The synthesis of microporous polymers generally requires postpolymerization modification via hyper-cross-linking to trap the polymeric network in a state with high void volume. An alternative approach utilizes rigid, sterically demanding monomers to inhibit efficient packing, thus leading to a high degree of free volume between polymer side groups and main chains. Herein we combine polymers of intrinsic microporosity with polymerization-induced microphase separation (PIMS), a versatile methodology for the synthesis of nanostructured materials that can be rendered mesoporous. Copolymerization of various styrenic monomers with divinylbenzene in the presence of a poly(lactide) terminated with a chain-transfer agent (PLA-CTA) results in kinetic trapping of a microphase-separated state. Subsequent etching of PLA provides a bicontinuous mesoporous network. Using equilibrium and kinetic nitrogen sorption experiments as well as positron annihilation lifetime spectroscopy (PALS), we demonstrate that variations in the steric characteristics of the styrenic monomer impart the network with microporosity, resulting in hierarchically (meso and micro) porous materials. Additionally, structure–property relationships of the styrenic monomer with total surface area and pore volume indicate that the glass transition temperature (Tg) of the corresponding styrenic homopolymers provides a reasonable measure of the steric interactions and resultant microporosity in these systems. Finally, PALS provides insight into micro- and mesoscopic void volume differences between porous monoliths containing either tert-butyl or TMS-modified styrenic monomers compared to the parent, unmodified styrene.

  12. Ultrafast image-based dynamic light scattering for nanoparticle sizing

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu, E-mail: usst-caixs@163.com [Institute of Particle and Two-Phase Flow Measurement, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093 (China)

    2015-11-15

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.

  13. An Automatic Hierarchical Delay Analysis Tool

    Institute of Scientific and Technical Information of China (English)

    FaridMheir-El-Saadi; BozenaKaminska

    1994-01-01

    The performance analysis of VLSI integrated circuits(ICs) with flat tools is slow and even sometimes impossible to complete.Some hierarchical tools have been developed to speed up the analysis of these large ICs.However,these hierarchical tools suffer from a poor interaction with the CAD database and poorly automatized operations.We introduce a general hierarchical framework for performance analysis to solve these problems.The circuit analysis is automatic under the proposed framework.Information that has been automatically abstracted in the hierarchy is kept in database properties along with the topological information.A limited software implementation of the framework,PREDICT,has also been developed to analyze the delay performance.Experimental results show that hierarchical analysis CPU time and memory requirements are low if heuristics are used during the abstraction process.

  14. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  15. Generation of hierarchically correlated multivariate symbolic sequences

    CERN Document Server

    Tumminello, Mi; Mantegna, R N

    2008-01-01

    We introduce an algorithm to generate multivariate series of symbols from a finite alphabet with a given hierarchical structure of similarities. The target hierarchical structure of similarities is arbitrary, for instance the one obtained by some hierarchical clustering procedure as applied to an empirical matrix of Hamming distances. The algorithm can be interpreted as the finite alphabet equivalent of the recently introduced hierarchically nested factor model (M. Tumminello et al. EPL 78 (3) 30006 (2007)). The algorithm is based on a generating mechanism that is different from the one used in the mutation rate approach. We apply the proposed methodology for investigating the relationship between the bootstrap value associated with a node of a phylogeny and the probability of finding that node in the true phylogeny.

  16. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  17. HIERARCHICAL ORGANIZATION OF INFORMATION, IN RELATIONAL DATABASES

    Directory of Open Access Journals (Sweden)

    Demian Horia

    2008-05-01

    Full Text Available In this paper I will present different types of representation, of hierarchical information inside a relational database. I also will compare them to find the best organization for specific scenarios.

  18. Hierarchical Network Design Using Simulated Annealing

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Clausen, Jens

    2002-01-01

    The hierarchical network problem is the problem of finding the least cost network, with nodes divided into groups, edges connecting nodes in each groups and groups ordered in a hierarchy. The idea of hierarchical networks comes from telecommunication networks where hierarchies exist. Hierarchical...... networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub......-algorithm uses a construction algorithm to determine edges and route the demand. Performance for different versions of the algorithm are reported in terms of runtime and quality of the solutions. The algorithm is able to find solutions of reasonable quality in approximately 1 hour for networks with 100 nodes....

  19. When to Use Hierarchical Linear Modeling

    National Research Council Canada - National Science Library

    Veronika Huta

    2014-01-01

    Previous publications on hierarchical linear modeling (HLM) have provided guidance on how to perform the analysis, yet there is relatively little information on two questions that arise even before analysis...

  20. An introduction to hierarchical linear modeling

    National Research Council Canada - National Science Library

    Woltman, Heather; Feldstain, Andrea; MacKay, J. Christine; Rocchi, Meredith

    2012-01-01

    This tutorial aims to introduce Hierarchical Linear Modeling (HLM). A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis...

  1. Conservation Laws in the Hierarchical Model

    NARCIS (Netherlands)

    Beijeren, H. van; Gallavotti, G.; Knops, H.

    1974-01-01

    An exposition of the renormalization-group equations for the hierarchical model is given. Attention is drawn to some properties of the spin distribution functions which are conserved under the action of the renormalization group.

  2. Hierarchical DSE for multi-ASIP platforms

    DEFF Research Database (Denmark)

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak;

    2013-01-01

    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  3. Hierarchical organization versus self-organization

    OpenAIRE

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  4. Hierarchical decision making for flood risk reduction

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2013-01-01

    . In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...

  5. Hierarchical self-organization of tectonic plates

    OpenAIRE

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly chan...

  6. Angelic Hierarchical Planning: Optimal and Online Algorithms

    Science.gov (United States)

    2008-12-06

    restrict our attention to plans in I∗(Act, s0). Definition 2. ( Parr and Russell , 1998) A plan ah∗ is hierarchically optimal iff ah∗ = argmina∈I∗(Act,s0):T...Murdock, Dan Wu, and Fusun Yaman. SHOP2: An HTN planning system. JAIR, 20:379–404, 2003. Ronald Parr and Stuart Russell . Reinforcement Learning with...Angelic Hierarchical Planning: Optimal and Online Algorithms Bhaskara Marthi Stuart J. Russell Jason Wolfe Electrical Engineering and Computer

  7. Hierarchical Needs, Income Comparisons and Happiness Levels

    OpenAIRE

    Drakopoulos, Stavros

    2011-01-01

    The cornerstone of the hierarchical approach is that there are some basic human needs which must be satisfied before non-basic needs come into the picture. The hierarchical structure of needs implies that the satisfaction of primary needs provides substantial increases to individual happiness compared to the subsequent satisfaction of secondary needs. This idea can be combined with the concept of comparison income which means that individuals compare rewards with individuals with similar char...

  8. A point-based rendering approach for real-time interaction on mobile devices

    Institute of Scientific and Technical Information of China (English)

    LIANG XiaoHui; ZHAO QinPing; HE ZhiYing; XIE Ke; LIU YuBo

    2009-01-01

    Mobile device is an Important interactive platform. Due to the limitation of computation, memory, display area and energy, how to realize the efficient and real-time interaction of 3D models based on mobile devices is an important research topic. Considering features of mobile devices, this paper adopts remote rendering mode and point models, and then, proposes a transmission and rendering approach that could interact in real time. First, improved simplification algorithm based on MLS and display resolution of mobile devices is proposed. Then, a hierarchy selection of point models and a QoS transmission control strategy are given based on interest area of operator, interest degree of object in the virtual environment and rendering error. They can save the energy consumption. Finally, the rendering and interaction of point models are completed on mobile devices. The experiments show that our method is efficient.

  9. Three-dimensional CT angiography with volume rendering for the dignosis of multiple intracranial aneurysms

    Institute of Scientific and Technical Information of China (English)

    FANG Bing; LI Tie-lin; ZHANG Jian-min; DUAN Chuan-zhi; WANG Qiu-jing; ZAO Qing-ping

    2004-01-01

    Objective:To evaluate the importance of 3D-CTA with volume rendering for the diagnosis of multiple intracranial aneurysms. Methods: Axial source images were obtained by helical CT scanning and reconstruction of 3D-CTA images was done by volume rendering technique in conjunction with multiplanar reformation. Results: In the past one year,there were 10 patients diagnosed as having multiple intracranial aneurysms by 3D-CTA and altogether 24 aneurysms were visualized,including 10 small aneurysms(≤5mm.Three dimensional CT angiography with volume rendering demonstrated aneurysms very well and provided useful information concerning the site,shape,size and spatial relationship with the surrounding vessels and bone anatomy. Conclusion: Three-dimensional CT angiography with volume rendering is a quick,reliable,and relatively noninvasive method for diagnosing multiple intracranial aneurysms.It delineates detailed aneurysmal morphology,and provides useful information for planning microsurgical approaches.

  10. Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TerraMetrics proposes an SBIR Phase I R/R&D effort to develop a key 3D terrain-rendering technology that provides the basis for successful commercial deployment...

  11. Hybrid Rendering Architecture for Realtime and Photorealistic Simulation of Robot-Assisted Surgery.

    Science.gov (United States)

    Müller, Sebastijan; Bihlmaier, Andreas; Irgenfried, Stephan; Wörn, Heinz

    2016-01-01

    In this paper we present a method for combining realtime and non-realtime (photorealistic) rendering with open source software. Realtime rendering provides sufficient realism and is a good choice for most simulation and regression testing purposes in robot-assisted surgery. However, for proper end-to-end testing of the system, some computer vision algorithms require high fidelity images that capture more minute details of the real scene. One of the central practical obstacles to combining both worlds in a uniform way is creating models that are suitable for both kinds of rendering paradigms. We build a modeling pipeline using open source tools that builds on established, open standards for data exchange. The result is demonstrated through a unified model of the medical OpenHELP phantom used in the Gazebo robotics simulator, which can at the same time be rendered with more visual fidelity in the Cycles raytracer.

  12. Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The TerraBlocksTM 3D terrain data format and terrain-block-rendering methodology provides an enabling basis for successful commercial deployment of...

  13. Processing-in-Memory Enabled Graphics Processors for 3D Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chenhao; Song, Shuaiwen; Wang, Jing; Zhang, Weigong; Fu, Xin

    2017-02-06

    The performance of 3D rendering of Graphics Processing Unit that convents 3D vector stream into 2D frame with 3D image effects significantly impact users’ gaming experience on modern computer systems. Due to the high texture throughput in 3D rendering, main memory bandwidth becomes a critical obstacle for improving the overall rendering performance. 3D stacked memory systems such as Hybrid Memory Cube (HMC) provide opportunities to significantly overcome the memory wall by directly connecting logic controllers to DRAM dies. Based on the observation that texel fetches significantly impact off-chip memory traffic, we propose two architectural designs to enable Processing-In-Memory based GPU for efficient 3D rendering.

  14. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  15. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  16. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  17. Functionality and Performance Visualization of the Distributed High Quality Volume Renderer (HVR)

    KAUST Repository

    Shaheen, Sara

    2012-07-01

    Volume rendering systems are designed to provide means to enable scientists and a variety of experts to interactively explore volume data through 3D views of the volume. However, volume rendering techniques are computationally intensive tasks. Moreover, parallel distributed volume rendering systems and multi-threading architectures were suggested as natural solutions to provide an acceptable volume rendering performance for very large volume data sizes, such as Electron Microscopy data (EM). This in turn adds another level of complexity when developing and manipulating volume rendering systems. Given that distributed parallel volume rendering systems are among the most complex systems to develop, trace and debug, it is obvious that traditional debugging tools do not provide enough support. As a consequence, there is a great demand to provide tools that are able to facilitate the manipulation of such systems. This can be achieved by utilizing the power of compute graphics in designing visual representations that reflect how the system works and that visualize the current performance state of the system.The work presented is categorized within the field of software Visualization, where Visualization is used to serve visualizing and understanding various software. In this thesis, a number of visual representations that reflect a number of functionality and performance aspects of the distributed HVR, a high quality volume renderer system that uses various techniques to visualize large volume sizes interactively. This work is provided to visualize different stages of the parallel volume rendering pipeline of HVR. This is along with means of performance analysis through a number of flexible and dynamic visualizations that reflect the current state of the system and enables manipulation of them at runtime. Those visualization are aimed to facilitate debugging, understanding and analyzing the distributed HVR.

  18. The diagnostic contribution of CT volumetric rendering techniques in routine practice

    OpenAIRE

    Perandini Simone; Faccioli N; Zaccarella A; Re T; Mucelli R

    2010-01-01

    Computed tomography (CT) volumetric rendering techniques such as maximum intensity projection (MIP), minimum intensity projection (MinIP), shaded surface display (SSD), volume rendering (VR), and virtual endoscopy (VE) provide added diagnostic capabilities. The diagnostic value of such reconstruction techniques is well documented in literature. These techniques permit the exploration of fine anatomical detail that would be difficult to evaluate using axial reconstructions alone. Although thes...

  19. HIERARCHICAL OPTIMIZATION MODEL ON GEONETWORK

    Directory of Open Access Journals (Sweden)

    Z. Zha

    2012-07-01

    Full Text Available In existing construction experience of Spatial Data Infrastructure (SDI, GeoNetwork, as the geographical information integrated solution, is an effective way of building SDI. During GeoNetwork serving as an internet application, several shortcomings are exposed. The first one is that the time consuming of data loading has been considerately increasing with the growth of metadata count. Consequently, the efficiency of query and search service becomes lower. Another problem is that stability and robustness are both ruined since huge amount of metadata. The final flaw is that the requirements of multi-user concurrent accessing based on massive data are not effectively satisfied on the internet. A novel approach, Hierarchical Optimization Model (HOM, is presented to solve the incapability of GeoNetwork working with massive data in this paper. HOM optimizes the GeoNetwork from these aspects: internal procedure, external deployment strategies, etc. This model builds an efficient index for accessing huge metadata and supporting concurrent processes. In this way, the services based on GeoNetwork can maintain stable while running massive metadata. As an experiment, we deployed more than 30 GeoNetwork nodes, and harvest nearly 1.1 million metadata. From the contrast between the HOM-improved software and the original one, the model makes indexing and retrieval processes more quickly and keeps the speed stable on metadata amount increasing. It also shows stable on multi-user concurrent accessing to system services, the experiment achieved good results and proved that our optimization model is efficient and reliable.

  20. A learning-based approach for automated quality assessment of computer-rendered images

    Science.gov (United States)

    Zhang, Xi; Agam, Gady

    2012-01-01

    Computer generated images are common in numerous computer graphics applications such as games, modeling, and simulation. There is normally a tradeoff between the time allocated to the generation of each image frame and and the quality of the image, where better quality images require more processing time. Specifically, in the rendering of 3D objects, the surfaces of objects may be manipulated by subdividing them into smaller triangular patches and/or smoothing them so as to produce better looking renderings. Since unnecessary subdivision results in increased rendering time and unnecessary smoothing results in reduced details, there is a need to automatically determine the amount of necessary processing for producing good quality rendered images. In this paper we propose a novel supervised learning based methodology for automatically predicting the quality of rendered images of 3D objects. To perform the prediction we train on a data set which is labeled by human observers for quality. We are then able to predict the quality of renderings (not used in the training) with an average prediction error of roughly 20%. The proposed approach is compared to known techniques and is shown to produce better results.

  1. On-the-fly generation and rendering of infinite cities on the GPU

    KAUST Repository

    Steinberger, Markus

    2014-05-01

    In this paper, we present a new approach for shape-grammar-based generation and rendering of huge cities in real-time on the graphics processing unit (GPU). Traditional approaches rely on evaluating a shape grammar and storing the geometry produced as a preprocessing step. During rendering, the pregenerated data is then streamed to the GPU. By interweaving generation and rendering, we overcome the problems and limitations of streaming pregenerated data. Using our methods of visibility pruning and adaptive level of detail, we are able to dynamically generate only the geometry needed to render the current view in real-time directly on the GPU. We also present a robust and efficient way to dynamically update a scene\\'s derivation tree and geometry, enabling us to exploit frame-to-frame coherence. Our combined generation and rendering is significantly faster than all previous work. For detailed scenes, we are capable of generating geometry more rapidly than even just copying pregenerated data from main memory, enabling us to render cities with thousands of buildings at up to 100 frames per second, even with the camera moving at supersonic speed. © 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  2. Scene classification of infrared images based on texture feature

    Science.gov (United States)

    Zhang, Xiao; Bai, Tingzhu; Shang, Fei

    2008-12-01

    Scene Classification refers to as assigning a physical scene into one of a set of predefined categories. Utilizing the method texture feature is good for providing the approach to classify scenes. Texture can be considered to be repeating patterns of local variation of pixel intensities. And texture analysis is important in many applications of computer image analysis for classification or segmentation of images based on local spatial variations of intensity. Texture describes the structural information of images, so it provides another data to classify comparing to the spectrum. Now, infrared thermal imagers are used in different kinds of fields. Since infrared images of the objects reflect their own thermal radiation, there are some shortcomings of infrared images: the poor contrast between the objectives and background, the effects of blurs edges, much noise and so on. Because of these shortcomings, it is difficult to extract to the texture feature of infrared images. In this paper we have developed an infrared image texture feature-based algorithm to classify scenes of infrared images. This paper researches texture extraction using Gabor wavelet transform. The transformation of Gabor has excellent capability in analysis the frequency and direction of the partial district. Gabor wavelets is chosen for its biological relevance and technical properties In the first place, after introducing the Gabor wavelet transform and the texture analysis methods, the infrared images are extracted texture feature by Gabor wavelet transform. It is utilized the multi-scale property of Gabor filter. In the second place, we take multi-dimensional means and standard deviation with different scales and directions as texture parameters. The last stage is classification of scene texture parameters with least squares support vector machine (LS-SVM) algorithm. SVM is based on the principle of structural risk minimization (SRM). Compared with SVM, LS-SVM has overcome the shortcoming of

  3. [Study of Terahertz Amplitude Imaging Based on the Mean Absorption].

    Science.gov (United States)

    Zhang, Zeng-yan; Ji, Te; Xiao, Ti-qiao; Zhao, Hong-wei; Chen, Min; Yu, Xiao-han; Tong, Ya-jun; Zhu, Hua-chun; Peng, Wei-wei

    2015-12-01

    A new method of terahertz (THz) imaging based on the mean absorption is proposed. Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. THz pulse imaging emerges as a novel tool in many fields because of its low energy and non-ionizing character, such as material, chemical, biological medicine and food safety. A character of THz imaging technique is it can get large amount of information. How to extract the useful parameter from the large amount of information and reconstruct sample's image is a key technology in THz imaging. Some efforts have been done for advanced visualization methods to extract the information of interest from the raw data. Both time domain and frequency domain visualization methods can be applied to extract information on the physical properties of samples from THz imaging raw data. The process of extracting useful parameter from raw data of the new method based on the mean absorption was given in this article. This method relates to the sample absorption and thickness, it delivers good signal to noise ratio in the images, and the dispersion effects are cancelled. A paper with a "THz" shape hole was taken as the sample to do the experiment. Traditional THz amplitude imaging methods in time domain and frequency domain are used to achieve the sample's image, such as relative reduction of pulse maximum imaging method, relative power loss imaging method, and relative power loss at specific frequency imaging method. The sample's information that reflected by these methods and the characteristics of these methods are discussed. The method base on the mean absorption within a certain frequency is also used to reconstruct sample's image. The experimental results show that this new method can well reflect the true information of the sample. And it can achieve a clearer image than the other traditional THz amplitude imaging methods. All the experimental results and theoretical analyses indicate that

  4. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  5. Gamma Knife radiosurgery with CT image-based dose calculation.

    Science.gov (United States)

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Niranjan, Ajay; Kondziolka, Douglas; Flickinger, John; Lunsford, L Dade; Huq, M Saiful

    2015-11-08

    The Leksell GammaPlan software version 10 introduces a CT image-based segmentation tool for automatic skull definition and a convolution dose calculation algorithm for tissue inhomogeneity correction. The purpose of this work was to evaluate the impact of these new approaches on routine clinical Gamma Knife treatment planning. Sixty-five patients who underwent CT image-guided Gamma Knife radiosurgeries at the University of Pittsburgh Medical Center in recent years were retrospectively investigated. The diagnoses for these cases include trigeminal neuralgia, meningioma, acoustic neuroma, AVM, glioma, and benign and metastatic brain tumors. Dose calculations were performed for each patient with the same dose prescriptions and the same shot arrangements using three different approaches: 1) TMR 10 dose calculation with imaging skull definition; 2) convolution dose calculation with imaging skull definition; 3) TMR 10 dose calculation with conventional measurement-based skull definition. For each treatment matrix, the total treatment time, the target coverage index, the selectivity index, the gradient index, and a set of dose statistics parameters were compared between the three calculations. The dose statistics parameters investigated include the prescription isodose volume, the 12 Gy isodose volume, the minimum, maximum and mean doses on the treatment targets, and the critical structures under consideration. The difference between the convolution and the TMR 10 dose calculations for the 104 treatment matrices were found to vary with the patient anatomy, location of the treatment shots, and the tissue inhomogeneities around the treatment target. An average difference of 8.4% was observed for the total treatment times between the convolution and the TMR algorithms. The maximum differences in the treatment times, the prescription isodose volumes, the 12 Gy isodose volumes, the target coverage indices, the selectivity indices, and the gradient indices from the convolution

  6. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  8. Hierarchical models and chaotic spin glasses

    Science.gov (United States)

    Berker, A. Nihat; McKay, Susan R.

    1984-09-01

    Renormalization-group studies in position space have led to the discovery of hierarchical models which are exactly solvable, exhibiting nonclassical critical behavior at finite temperature. Position-space renormalization-group approximations that had been widely and successfully used are in fact alternatively applicable as exact solutions of hierarchical models, this realizability guaranteeing important physical requirements. For example, a hierarchized version of the Sierpiriski gasket is presented, corresponding to a renormalization-group approximation which has quantitatively yielded the multicritical phase diagrams of submonolayers on graphite. Hierarchical models are now being studied directly as a testing ground for new concepts. For example, with the introduction of frustration, chaotic renormalization-group trajectories were obtained for the first time. Thus, strong and weak correlations are randomly intermingled at successive length scales, and a new microscopic picture and mechanism for a spin glass emerges. An upper critical dimension occurs via a boundary crisis mechanism in cluster-hierarchical variants developed to have well-behaved susceptibilities.

  9. 3-D volume rendering visualization for calculated distributions of diesel spray; Diesel funmu kyodo suchi keisan kekka no sanjigen volume rendering hyoji

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, T.; Imanishi, H.; Nishida, K.; Yamashita, H.; Hiroyasu, H.; Kaneda, K. [Hiroshima University, Hiroshima (Japan)

    1997-10-01

    Three dimensional visualization technique based on volume rendering method has been developed in order to translate calculated results of diesel combustion simulation into realistically spray and flame images. This paper presents an overview of diesel combustion model which has been developed at Hiroshima University, a description of the three dimensional visualization technique, and some examples of spray and flame image generated by this visualization technique. 8 refs., 8 figs., 1 tab.

  10. Hierarchical storage and visualization of real-time 3D data

    Science.gov (United States)

    Parry, Mitchell; Hannigan, Brendan; Ribarsky, William; Shaw, Christopher D.; Faust, Nickolas L.

    2001-08-01

    In this paper 'real-time 3D data' refers to volumetric data that are acquired and used as they are produced. Large scale, real-time data are difficult to store and analyze, either visually or by some other means, within the time frames required. Yet this is often quite important to do when decision-makers must receive and quickly act on new information. An example is weather forecasting, where forecasters must act on information received on severe storm development and movement. To meet the real-time requirements crude heuristics are often used to gather information from the original data. This is in spite of the fact that better and better real-time data are becoming available, the full use of which could significantly improve decisions. The work reported here addresses these issues by providing comprehensive data acquisition, analysis, and storage components with time budgets for the data management of each component. These components are put into a global geospatial hierarchical structure. The volumetric data are placed into this global structure, and it is shown how levels of detail can be derived and used within this structure. A volumetric visualization procedure is developed that conforms to the hierarchical structure and uses the levels of detail. These general methods are focused on the specific case of the VGIS global hierarchical structure and rendering system,. The real-time data considered are from collections of time- dependent 3D Doppler radars although the methods described here apply more generally to time-dependent volumetric data. This paper reports on the design and construction of the above hierarchical structures and volumetric visualizations. It also reports result for the specific application of 3D Doppler radar displayed over photo textured terrain height fields. Results are presented results for the specific application of 3D Doppler radar displayed over photo textured terrain height fields. Results are presented for display of time

  11. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei

    2016-02-05

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant polymers as dual-function templates in the fabrication of hierarchical zeolites are demonstrated. First, the minimal intermolecular interactions of nonsurfactant polymers impose little interference on the crystallization of zeolites, favoring the formation of 3D continuous zeolite frameworks with a long-range order. Second, the mutual interpenetration of the polymer and the zeolite networks renders disordered but highly interconnected mesopores in zeolite crystals. These two factors allow for the synthesis of single-crystalline, mesoporous zeolites of varied compositions and framework types. A representative example, hierarchial aluminosilicate (meso-ZSM-5), has been carefully characterized. It has a unique branched fibrous structure, and far outperforms bulk aluminosilicate (ZSM-5) as a catalyst in two model reactions: conversion of methanol to aromatics and catalytic cracking of canola oil. Third, extra functional groups in the polymer template can be utilized to incorporate desired functionalities into hierarchical zeolites. Last and most importantly, polymer-based templates permit heterogeneous nucleation and growth of mesoporous zeolites on existing surfaces, forming a continuous zeolitic layer. In a proof-of-concept experiment, unprecedented core-shell-structured hierarchical zeolites are synthesized by coating mesoporous zeolites on the surfaces of bulk zeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Accurate non-invasive image-based cytotoxicity assays for cultured cells

    Directory of Open Access Journals (Sweden)

    Brouwer Jaap

    2010-06-01

    Full Text Available Abstract Background The CloneSelect™ Imager system is an image-based visualisation system for cell growth assessment. Traditionally cell proliferation is measured with the colorimetric MTT assay. Results Here we show that both the CloneSelect Imager and the MTT approach result in comparable EC50 values when assaying the cytotoxicity of cisplatin and oxaliplatin on various cell lines. However, the image-based technique was found non-invasive, considerably quicker and more accurate than the MTT assay. Conclusions This new image-based technique has the potential to replace the cumbersome MTT assay when fast, unbiased and high-throughput cytotoxicity assays are requested.

  13. Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.

    Science.gov (United States)

    Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz

    2015-01-01

    This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.

  14. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    Meifeng Dai; Jie Liu; Feng Zhu

    2014-10-01

    In this paper, we present trapping issues of weight-dependent walks on weighted hierarchical networks which are based on the classic scale-free hierarchical networks. Assuming that edge’s weight is used as local information by a random walker, we introduce a biased walk. The biased walk is that a walker, at each step, chooses one of its neighbours with a probability proportional to the weight of the edge. We focus on a particular case with the immobile trap positioned at the hub node which has the largest degree in the weighted hierarchical networks. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping issue. Let parameter (0 < < 1) be the weight factor. We show that the efficiency of the trapping process depends on the parameter a; the smaller the value of a, the more efficient is the trapping process.

  15. Improving broadcast channel rate using hierarchical modulation

    CERN Document Server

    Meric, Hugo; Arnal, Fabrice; Lesthievent, Guy; Boucheret, Marie-Laure

    2011-01-01

    We investigate the design of a broadcast system where the aim is to maximise the throughput. This task is usually challenging due to the channel variability. Forty years ago, Cover introduced and compared two schemes: time sharing and superposition coding. The second scheme was proved to be optimal for some channels. Modern satellite communications systems such as DVB-SH and DVB-S2 mainly rely on time sharing strategy to optimize throughput. They consider hierarchical modulation, a practical implementation of superposition coding, but only for unequal error protection or backward compatibility purposes. We propose in this article to combine time sharing and hierarchical modulation together and show how this scheme can improve the performance in terms of available rate. We present the gain on a simple channel modeling the broadcasting area of a satellite. Our work is applied to the DVB-SH standard, which considers hierarchical modulation as an optional feature.

  16. Incentive Mechanisms for Hierarchical Spectrum Markets

    CERN Document Server

    Iosifidis, George; Alpcan, Tansu; Koutsopoulos, Iordanis

    2011-01-01

    We study spectrum allocation mechanisms in hierarchical multi-layer markets which are expected to proliferate in the near future based on the current spectrum policy reform proposals. We consider a setting where a state agency sells spectrum to Primary Operators (POs) and in turn these resell it to Secondary Operators (SOs) through auctions. We show that these hierarchical markets do not result in a socially efficient spectrum allocation which is aimed by the agency, due to lack of coordination among the entities in different layers and the inherently selfish revenue-maximizing strategy of POs. In order to reconcile these opposing objectives, we propose an incentive mechanism which aligns the strategy and the actions of the POs with the objective of the agency, and thus it leads to system performance improvement in terms of social welfare. This pricing based mechanism constitutes a method for hierarchical market regulation and requires the feedback provision from SOs. A basic component of the proposed incenti...

  17. Hierarchical self-organization of tectonic plates

    CERN Document Server

    Morra, Gabriele; Müller, R Dietmar

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly changes from a weak hierarchy at 120-100 million years ago (Ma) towards a strong hierarchy, which peaked at 65-50, Ma subsequently relaxing back towards a minimum hierarchical structure. We suggest that this fluctuation reflects an alternation between top and bottom driven plate tectonics, revealing a previously undiscovered tectonic cyclicity at a timescale of 100 million years.

  18. Towards a sustainable manufacture of hierarchical zeolites.

    Science.gov (United States)

    Verboekend, Danny; Pérez-Ramírez, Javier

    2014-03-01

    Hierarchical zeolites have been established as a superior type of aluminosilicate catalysts compared to their conventional (purely microporous) counterparts. An impressive array of bottom-up and top-down approaches has been developed during the last decade to design and subsequently exploit these exciting materials catalytically. However, the sustainability of the developed synthetic methods has rarely been addressed. This paper highlights important criteria to ensure the ecological and economic viability of the manufacture of hierarchical zeolites. Moreover, by using base leaching as a promising case study, we verify a variety of approaches to increase reactor productivity, recycle waste streams, prevent the combustion of organic compounds, and minimize separation efforts. By reducing their synthetic footprint, hierarchical zeolites are positioned as an integral part of sustainable chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe...... an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to “information double-counting” and interaction omission. In this paper we focus on a relatively new set of models......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  20. Hierarchical Neural Network Structures for Phoneme Recognition

    CERN Document Server

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  1. Universal hierarchical behavior of citation networks

    CERN Document Server

    Mones, Enys; Vicsek, Tamás

    2014-01-01

    Many of the essential features of the evolution of scientific research are imprinted in the structure of citation networks. Connections in these networks imply information about the transfer of knowledge among papers, or in other words, edges describe the impact of papers on other publications. This inherent meaning of the edges infers that citation networks can exhibit hierarchical features, that is typical of networks based on decision-making. In this paper, we investigate the hierarchical structure of citation networks consisting of papers in the same field. We find that the majority of the networks follow a universal trend towards a highly hierarchical state, and i) the various fields display differences only concerning their phase in life (distance from the "birth" of a field) or ii) the characteristic time according to which they are approaching the stationary state. We also show by a simple argument that the alterations in the behavior are related to and can be understood by the degree of specializatio...

  2. Static and dynamic friction of hierarchical surfaces

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M.

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  3. Hierarchical control of electron-transfer

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis;

    1997-01-01

    In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...

  4. Genetic Algorithm for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2007-09-01

    Full Text Available Large scale wireless sensor networks (WSNs can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.

  5. DC Hierarchical Control System for Microgrid Applications

    OpenAIRE

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.; Huang, Lipei

    2013-01-01

    In order to enhance the DC side performance of AC-DC hybrid microgrid,a DC hierarchical control system is proposed in this paper.To meet the requirement of DC load sharing between the parallel power interfaces,droop method is adopted.Meanwhile,DC voltage secondary control is employed to restore the deviation in the DC bus voltage.The hierarchical control system is composed of two levels.DC voltage and AC current controllers are achieved in the primary control level.

  6. Hierarchical social networks and information flow

    Science.gov (United States)

    López, Luis; F. F. Mendes, Jose; Sanjuán, Miguel A. F.

    2002-12-01

    Using a simple model for the information flow on social networks, we show that the traditional hierarchical topologies frequently used by companies and organizations, are poorly designed in terms of efficiency. Moreover, we prove that this type of structures are the result of the individual aim of monopolizing as much information as possible within the network. As the information is an appropriate measurement of centrality, we conclude that this kind of topology is so attractive for leaders, because the global influence each actor has within the network is completely determined by the hierarchical level occupied.

  7. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  8. Hierarchic Models of Turbulence, Superfluidity and Superconductivity

    CERN Document Server

    Kaivarainen, A

    2000-01-01

    New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.

  9. Hierarchical Analysis of the Omega Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Paulson, Patrick R.

    2009-12-01

    Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.

  10. Rendering-oriented multiview video coding based on chrominance information reconstruction

    Science.gov (United States)

    Shao, Feng; Yu, Mei; Jiang, Gangyi; Zhang, Zhaoyang

    2010-05-01

    Three-dimensional (3-D) video systems are expected to be a next-generation visual application. Since multiview video for 3-D video systems is composed of color and associated depth information, its huge requirement for data storage and transmission is an important problem. We propose a rendering-oriented multiview video coding (MVC) method based on chrominance information reconstruction that incorporates the rendering technique into the MVC process. The proposed method discards certain chrominance information to reduce bitrates, and performs reasonable bitrate allocation between color and depth videos. At the decoder, a chrominance reconstruction algorithm is presented to achieve accurate reconstruction by warping the neighboring views and colorizing the luminance-only pixels. Experimental results show that the proposed method can save nearly 20% on bitrates against the results without discarding the chrominance information. Moreover, under a fixed bitrate budget, the proposed method can greatly improve the rendering quality.

  11. Frequency domain volume rendering by the wavelet X-ray transform.

    Science.gov (United States)

    Westenberg, M A; Roerdink, J M

    2000-01-01

    We describe a wavelet based X-ray rendering method in the frequency domain with a smaller time complexity than wavelet splatting. Standard Fourier volume rendering is summarized and interpolation and accuracy issues are briefly discussed. We review the implementation of the fast wavelet transform in the frequency domain. The wavelet X-ray transform is derived, and the corresponding Fourier-wavelet volume rendering algorithm (FWVR) is introduced, FWVR uses Haar or B-spline wavelets and linear or cubic spline interpolation. Various combinations are tested and compared with wavelet splatting (WS). We use medical MR and CT scan data, as well as a 3-D analytical phantom to assess the accuracy, time complexity, and memory cost of both FWVR and WS. The differences between both methods are enumerated.

  12. Evaluation and Improvement of the CIE Metameric and Colour Rendering Index

    Directory of Open Access Journals (Sweden)

    Radovan Slavuj

    2015-12-01

    Full Text Available All artificial light sources are intended to simulate daylight and its properties of color rendering or ability of colour discrimination. Two indices, defined by the CIE, are used to quantify quality of the artificial light sources. First is Color Rendering Index which quantifies ability of light sources to render colours and other is the Metemerism Index which describes metamerism potential of given light source. Calculation of both indices are defined by CIE and has been a subject of discussion and change in past. In this work particularly, the problem of sample number and type used in calculation is addressed here and evaluated. It is noticed that both indices depends on the choice and sample number and that they should be determined based on application.

  13. 3-D wavelet compression and progressive inverse wavelet synthesis rendering of concentric mosaic.

    Science.gov (United States)

    Luo, Lin; Wu, Yunnan; Li, Jin; Zhang, Ya-Qin

    2002-01-01

    Using an array of photo shots, the concentric mosaic offers a quick way to capture and model a realistic three-dimensional (3-D) environment. We compress the concentric mosaic image array with a 3-D wavelet transform and coding scheme. Our compression algorithm and bitstream syntax are designed to ensure that a local view rendering of the environment requires only a partial bitstream, thereby eliminating the need to decompress the entire compressed bitstream before rendering. By exploiting the ladder-like structure of the wavelet lifting scheme, the progressive inverse wavelet synthesis (PIWS) algorithm is proposed to maximally reduce the computational cost of selective data accesses on such wavelet compressed datasets. Experimental results show that the 3-D wavelet coder achieves high-compression performance. With the PIWS algorithm, a 3-D environment can be rendered in real time from a compressed dataset.

  14. Spatial sound rendering of a playing xylophone for the telepresence application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Hoffmann, Pablo F.

    2013-01-01

    and spatial properties of the sound field created by a xylophone as a distributed sound source were analyzed. Xylophone recordings were performed using different microphone configurations: one and two-channel recording setups are implemented. One-channel recording technique with binaural synthesis for spatial...... played at the student's location is required at the teacher’s site. This paper presents a comparison of different recording techniques for a spatial xylophone sound rendering, focusing on the horizontal width of the xylophone auditory image. The directivity pattern of the xylophone was measured...... xylophone sound rendering is proposed. The recorded signal is processed in order to define multiple virtual sources which are spatially distributed for the auditory width representation of the virtual xylophone. The results of the analyzed recording and rendering techniques are compared in terms...

  15. Physics Based Modeling and Rendering of Vegetation in the Thermal Infrared

    Science.gov (United States)

    Smith, J. A.; Ballard, J. R., Jr.

    1999-01-01

    We outline a procedure for rendering physically-based thermal infrared images of simple vegetation scenes. Our approach incorporates the biophysical processes that affect the temperature distribution of the elements within a scene. Computer graphics plays a key role in two respects. First, in computing the distribution of scene shaded and sunlit facets and, second, in the final image rendering once the temperatures of all the elements in the scene have been computed. We illustrate our approach for a simple corn scene where the three-dimensional geometry is constructed based on measured morphological attributes of the row crop. Statistical methods are used to construct a representation of the scene in agreement with the measured characteristics. Our results are quite good. The rendered images exhibit realistic behavior in directional properties as a function of view and sun angle. The root-mean-square error in measured versus predicted brightness temperatures for the scene was 2.1 deg C.

  16. Image-based spectral distortion correction for photon-counting x-ray detectors

    OpenAIRE

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT).

  17. Showing their true colors: a practical approach to volume rendering from serial sections

    Directory of Open Access Journals (Sweden)

    Metscher Brian D

    2010-04-01

    Full Text Available Abstract Background In comparison to more modern imaging methods, conventional light microscopy still offers a range of substantial advantages with regard to contrast options, accessible specimen size, and resolution. Currently, tomographic image data in particular is most commonly visualized in three dimensions using volume rendering. To date, this method has only very rarely been applied to image stacks taken from serial sections, whereas surface rendering is still the most prevalent method for presenting such data sets three-dimensionally. The aim of this study was to develop standard protocols for volume rendering of image stacks of serial sections, while retaining the benefits of light microscopy such as resolution and color information. Results Here we provide a set of protocols for acquiring high-resolution 3D images of diverse microscopic samples through volume rendering based on serial light microscopical sections using the 3D reconstruction software Amira (Visage Imaging Inc.. We overcome several technical obstacles and show that these renderings are comparable in quality and resolution to 3D visualizations using other methods. This practical approach for visualizing 3D micro-morphology in full color takes advantage of both the sub-micron resolution of light microscopy and the specificity of histological stains, by combining conventional histological sectioning techniques, digital image acquisition, three-dimensional image filtering, and 3D image manipulation and visualization technologies. Conclusions We show that this method can yield "true"-colored high-resolution 3D views of tissues as well as cellular and sub-cellular structures and thus represents a powerful tool for morphological, developmental, and comparative investigations. We conclude that the presented approach fills an important gap in the field of micro-anatomical 3D imaging and visualization methods by combining histological resolution and differentiation of details with

  18. ACCELERATION RENDERING METHOD ON RAY TRACING WITH ANGLE COMPARISON AND DISTANCE COMPARISON

    Directory of Open Access Journals (Sweden)

    Liliana liliana

    2007-01-01

    Full Text Available In computer graphics applications, to produce realistic images, a method that is often used is ray tracing. Ray tracing does not only model local illumination but also global illumination. Local illumination count ambient, diffuse and specular effects only, but global illumination also count mirroring and transparency. Local illumination count effects from the lamp(s but global illumination count effects from other object(s too. Objects that are usually modeled are primitive objects and mesh objects. The advantage of mesh modeling is various, interesting and real-like shape. Mesh contains many primitive objects like triangle or square (rare. A problem in mesh object modeling is long rendering time. It is because every ray must be checked with a lot of triangle of the mesh. Added by ray from other objects checking, the number of ray that traced will increase. It causes the increasing of rendering time. To solve this problem, in this research, new methods are developed to make the rendering process of mesh object faster. The new methods are angle comparison and distance comparison. These methods are used to reduce the number of ray checking. The rays predicted will not intersect with the mesh, are not checked weather the ray intersects the mesh. With angle comparison, if using small angle to compare, the rendering process will be fast. This method has disadvantage, if the shape of each triangle is big, some triangles will be corrupted. If the angle to compare is bigger, mesh corruption can be avoided but the rendering time will be longer than without comparison. With distance comparison, the rendering time is less than without comparison, and no triangle will be corrupted.

  19. Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    Science.gov (United States)

    Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi

    2016-04-01

    Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.

  20. Showing their true colors: a practical approach to volume rendering from serial sections.

    Science.gov (United States)

    Handschuh, Stephan; Schwaha, Thomas; Metscher, Brian D

    2010-04-21

    In comparison to more modern imaging methods, conventional light microscopy still offers a range of substantial advantages with regard to contrast options, accessible specimen size, and resolution. Currently, tomographic image data in particular is most commonly visualized in three dimensions using volume rendering. To date, this method has only very rarely been applied to image stacks taken from serial sections, whereas surface rendering is still the most prevalent method for presenting such data sets three-dimensionally. The aim of this study was to develop standard protocols for volume rendering of image stacks of serial sections, while retaining the benefits of light microscopy such as resolution and color information. Here we provide a set of protocols for acquiring high-resolution 3D images of diverse microscopic samples through volume rendering based on serial light microscopical sections using the 3D reconstruction software Amira (Visage Imaging Inc.). We overcome several technical obstacles and show that these renderings are comparable in quality and resolution to 3D visualizations using other methods. This practical approach for visualizing 3D micro-morphology in full color takes advantage of both the sub-micron resolution of light microscopy and the specificity of histological stains, by combining conventional histological sectioning techniques, digital image acquisition, three-dimensional image filtering, and 3D image manipulation and visualization technologies. We show that this method can yield "true"-colored high-resolution 3D views of tissues as well as cellular and sub-cellular structures and thus represents a powerful tool for morphological, developmental, and comparative investigations. We conclude that the presented approach fills an important gap in the field of micro-anatomical 3D imaging and visualization methods by combining histological resolution and differentiation of details with 3D rendering of whole tissue samples. We demonstrate the

  1. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kida, S [UC Davis School of Medicine, Sacramento, CA (United States); University of Tokyo Hospital, Bunkyo, Tokyo (Japan); Bal, M [Philips Healthcare (Netherlands); Kabus, S [Philips Research, Hamburg (Germany); Loo, B [Stanford University, Stanford, CA (United States); Keall, P [University of Sydney, Camperdown (Australia); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Stanford University, Stanford, CA (United States)

    2014-06-15

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (a surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based

  2. Mastering Mental Ray Rendering Techniques for 3D and CAD Professionals

    CERN Document Server

    O'Connor, Jennifer

    2010-01-01

    Proven techniques for using mental ray effectively. If you're a busy artist seeking high-end results for your 3D, design, or architecture renders using mental ray, this is the perfect book for you. It distills the highly technical nature of rendering into easy-to-follow steps and tutorials that you can apply immediately to your own projects. The book uses 3ds Max and 3ds Max Design to show the integration with mental ray, but users of any 3D or CAD software can learn valuable techniques for incorporating mental ray into their pipelines.: Takes you under the hood of mental ray, a stand-alone or

  3. User evaluation of eight led light sources with different special colour rendering indices R9

    DEFF Research Database (Denmark)

    Markvart, Jakob; Iversen, Anne; Logadottir, Asta

    2013-01-01

    In this study we evaluated the influence of the special colour rendering index R9 on subjective red colour perception and Caucasian skin appearance among untrained test subjects. The light sources tested are commercially available LED based light sources with similar correlated colour temperature...... and general colour rendering index, but with varying R9. It was found that the test subjects in general are more positive towards light sources with higher R9. The shift from a majority of negative responses to a majority of positive responses is found to occur at R9 values of ~20....

  4. USER EVALUATION OF EIGHT LED LIGHT SOURCES WITH DIFFERENTSPECIAL COLOUR RENDERING INDICES R9

    DEFF Research Database (Denmark)

    Markvart, Jakob; Iversen, Anne; Logadóttir, Ásta;

    2013-01-01

    In this study we evaluated the influence of the special colour rendering index R9 on subjective red colour perception and Caucasian skin appearance among untrained test subjects. The light sources tested are commercially available LED based light sources with similar correlated colour temperature...... and general colour rendering index, but with varying R9. It was found that the test subjects in general are more positive towards light sources with higher R9. The shift from a majority of negative responses to a majority of positive responses is found to occur at R9 values of ~20....

  5. Towards the Availability of the Distributed Cluster Rendering System: Automatic Modeling and Verification

    DEFF Research Database (Denmark)

    Wang, Kemin; Jiang, Zhengtao; Wang, Yongbin;

    2012-01-01

    , whenever the number of node-n and related parameters vary, we can create the PRISM model file rapidly and then we can use PRISM model checker to verify ralated system properties. At the end of this study, we analyzed and verified the availability distributions of the Distributed Cluster Rendering System......In this study, we proposed a Continuous Time Markov Chain Model towards the availability of n-node clusters of Distributed Rendering System. It's an infinite one, we formalized it, based on the model, we implemented a software, which can automatically model with PRISM language. With the tool...

  6. Color Temperature Tunable White-Light LED Cluster with Extrahigh Color Rendering Index

    OpenAIRE

    Minhao Zhang; Yu Chen; Guoxing He

    2014-01-01

    The correlated color temperature (CCT) tunable white-light LED cluster with extrahigh color rendering property has been found by simulation and fabricated, which consists of three WW LEDs (CCT = 3183 K), one red LED (634.1 nm), one green LED (513.9 nm), and one blue LED (456.2 nm). The experimental results show that this cluster can realize the CCT tunable white-lights with a color rendering index (CRI) above 93, special CRI R9 for strong red above 90, average value of the special CRIs of R9...

  7. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array

    Science.gov (United States)

    Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.

    2016-01-01

    Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging. PMID:27739472

  8. Direct volumetric rendering based on point primitives in OpenGL.

    Science.gov (United States)

    da Rosa, André Luiz Miranda; de Almeida Souza, Ilana; Yuuji Hira, Adilson; Zuffo, Marcelo Knörich

    2006-01-01

    The aim of this project is to present a renderization by software algorithm of acquired volumetric data. The algorithm was implemented in Java language and the LWJGL graphical library was used, allowing the volume renderization by software and thus preventing the necessity to acquire specific graphical boards for the 3D reconstruction. The considered algorithm creates a model in OpenGL, through point primitives, where each voxel becomes a point with the color values related to this pixel position in the corresponding images.

  9. DIRECT VOXEL-PROJECTION FOR VOLUMETRIC DATA RENDERING IN MEDICAL IMAGERY

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠; 郭玉红

    2002-01-01

    The volumetric rendering of 3-D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically useful. This paper proposed a direct voxel-projection algorithm to implement volumetric data rendering. Using this algorithm, arbitrary volume rotation, transparent and cutaway views are generated satisfactorily. Compared with the existing raytracing methods, it improves the projection image quality greatly. Some experimental results about real medical CT image data demonstrate the advantages and fidelity of the proposed algorithm.

  10. Digital representations of the real world how to capture, model, and render visual reality

    CERN Document Server

    Magnor, Marcus A; Sorkine-Hornung, Olga; Theobalt, Christian

    2015-01-01

    Create Genuine Visual Realism in Computer Graphics Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality explains how to portray visual worlds with a high degree of realism using the latest video acquisition technology, computer graphics methods, and computer vision algorithms. It explores the integration of new capture modalities, reconstruction approaches, and visual perception into the computer graphics pipeline.Understand the Entire Pipeline from Acquisition, Reconstruction, and Modeling to Realistic Rendering and ApplicationsThe book covers sensors fo

  11. A graphics pipeline for directtly rendering 3D scenes on web browsers

    OpenAIRE

    Pinto, Edgar Marchiel

    2009-01-01

    In this dissertation we propose a graphics pipeline, in the form of aWeb3D graphics library, for directly rendering 3D scenes on web browsers. This open sourceWeb3D graphics library is called Glypher3D. It is entirely written in JavaScript (together with the HTML5 canvas element) and aims at enabling the creation, manipulation and rendering of 3D contents within a browser, without the need of installing any type of web browser plug-ins or add-ons (i.e. it does not take advantag...

  12. Validation of a Smartphone Image-Based Dietary Assessment Method for Pregnant Women

    Science.gov (United States)

    Ashman, Amy M.; Collins, Clare E.; Brown, Leanne J.; Rae, Kym M.; Rollo, Megan E.

    2017-01-01

    Image-based dietary records could lower participant burden associated with traditional prospective methods of dietary assessment. They have been used in children, adolescents and adults, but have not been evaluated in pregnant women. The current study evaluated relative validity of the DietBytes image-based dietary assessment method for assessing energy and nutrient intakes. Pregnant women collected image-based dietary records (via a smartphone application) of all food, drinks and supplements consumed over three non-consecutive days. Intakes from the image-based method were compared to intakes collected from three 24-h recalls, taken on random days; once per week, in the weeks following the image-based record. Data were analyzed using nutrient analysis software. Agreement between methods was ascertained using Pearson correlations and Bland-Altman plots. Twenty-five women (27 recruited, one withdrew, one incomplete), median age 29 years, 15 primiparas, eight Aboriginal Australians, completed image-based records for analysis. Significant correlations between the two methods were observed for energy, macronutrients and fiber (r = 0.58–0.84, all p supplements in the analysis. Bland-Altman plots confirmed acceptable agreement with no systematic bias. The DietBytes method demonstrated acceptable relative validity for assessment of nutrient intakes of pregnant women. PMID:28106758

  13. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis.

    Science.gov (United States)

    Feng, Xi-Qiao; Gao, Xuefeng; Wu, Ziniu; Jiang, Lei; Zheng, Quan-Shui

    2007-04-24

    Water striders are a type of insect with the remarkable ability to stand effortlessly and walk quickly on water. This article reports the water repellency mechanism of water strider legs. Scanning electron microscope (SEM) observations reveal the uniquely hierarchical structure on the legs, consisting of numerous oriented needle-shaped microsetae with elaborate nanogrooves. The maximal supporting force of a single leg against water surprisingly reaches up to 152 dynes, about 15 times the total body weight of this insect. We theoretically demonstrate that the cooperation of nanogroove structures on the oriented microsetae, in conjunction with the wax on the leg, renders such water repellency. This finding might be helpful in the design of innovative miniature aquatic devices and nonwetting materials.

  14. Hierarchical machining materials and their performance

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Levashov, Evgeny

    2016-01-01

    as nanoparticles in the binder, or polycrystalline, aggregate-like reinforcements, also at several scale levels). Such materials can ensure better productivity, efficiency, and lower costs of drilling, cutting, grinding, and other technological processes. This article reviews the main groups of hierarchical...

  15. Hierarchical Optimization of Material and Structure

    DEFF Research Database (Denmark)

    Rodrigues, Helder C.; Guedes, Jose M.; Bendsøe, Martin P.

    2002-01-01

    This paper describes a hierarchical computational procedure for optimizing material distribution as well as the local material properties of mechanical elements. The local properties are designed using a topology design approach, leading to single scale microstructures, which may be restricted...... in various ways, based on design and manufacturing criteria. Implementation issues are also discussed and computational results illustrate the nature of the procedure....

  16. Hierarchical structure of nanofibers by bubbfil spinning

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2015-01-01

    Full Text Available A polymer bubble is easy to be broken under a small external force, various different fragments are formed, which can be produced to different morphologies of products including nanofibers and plate-like strip. Polyvinyl-alcohol/honey solution is used in the experiment to show hierarchical structure by the bubbfil spinning.

  17. Sharing the proceeds from a hierarchical venture

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Tvede, Mich;

    2017-01-01

    We consider the problem of distributing the proceeds generated from a joint venture in which the participating agents are hierarchically organized. We introduce and characterize a family of allocation rules where revenue ‘bubbles up’ in the hierarchy. The family is flexible enough to accommodate...

  18. Metal oxide nanostructures with hierarchical morphology

    Science.gov (United States)

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  19. Hierarchical Scaling in Systems of Natural Cities

    CERN Document Server

    Chen, Yanguang

    2016-01-01

    Hierarchies can be modeled by a set of exponential functions, from which we can derive a set of power laws indicative of scaling. These scaling laws are followed by many natural and social phenomena such as cities, earthquakes, and rivers. This paper is devoted to revealing the scaling patterns in systems of natural cities by reconstructing the hierarchy with cascade structure. The cities of America, Britain, France, and Germany are taken as examples to make empirical analyses. The hierarchical scaling relations can be well fitted to the data points within the scaling ranges of the size and area of the natural cities. The size-number and area-number scaling exponents are close to 1, and the allometric scaling exponent is slightly less than 1. The results suggest that natural cities follow hierarchical scaling laws and hierarchical conservation law. Zipf's law proved to be one of the indications of the hierarchical scaling, and the primate law of city-size distribution represents a local pattern and can be mer...

  20. Semiparametric Quantile Modelling of Hierarchical Data

    Institute of Scientific and Technical Information of China (English)

    Mao Zai TIAN; Man Lai TANG; Ping Shing CHAN

    2009-01-01

    The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biology, economics and education. However, it assumes the within-group errors to be independently and identically distributed (i.i.d.) and models at all levels to be linear. Most importantly, traditional hierarchical models (just like other ordinary mean regression methods) cannot characterize the entire conditional distribution of a dependent variable given a set of covariates and fail to yield robust estimators. In this article, we relax the aforementioned and normality assumptions, and develop a so-called Hierarchical Semiparametric Quantile Regression Models in which the within-group errors could be heteroscedastic and models at some levels are allowed to be nonparametric. We present the ideas with a 2-level model. The level-l model is specified as a nonparametric model whereas level-2 model is set as a parametric model. Under the proposed semiparametric setting the vector of partial derivatives of the nonparametric function in level-1 becomes the response variable vector in level 2. The proposed method allows us to model the fixed effects in the innermost level (i.e., level 2) as a function of the covariates instead of a constant effect. We outline some mild regularity conditions required for convergence and asymptotic normality for our estimators. We illustrate our methodology with a real hierarchical data set from a laboratory study and some simulation studies.

  1. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  2. Managing Clustered Data Using Hierarchical Linear Modeling

    Science.gov (United States)

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  3. Strategic games on a hierarchical network model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Among complex network models, the hierarchical network model is the one most close to such real networks as world trade web, metabolic network, WWW, actor network, and so on. It has not only the property of power-law degree distribution, but growth based on growth and preferential attachment, showing the scale-free degree distribution property. In this paper, we study the evolution of cooperation on a hierarchical network model, adopting the prisoner's dilemma (PD) game and snowdrift game (SG) as metaphors of the interplay between connected nodes. BA model provides a unifying framework for the emergence of cooperation. But interestingly, we found that on hierarchical model, there is no sign of cooperation for PD game, while the frequency of cooperation decreases as the common benefit decreases for SG. By comparing the scaling clustering coefficient properties of the hierarchical network model with that of BA model, we found that the former amplifies the effect of hubs. Considering different performances of PD game and SG on complex network, we also found that common benefit leads to cooperation in the evolution. Thus our study may shed light on the emergence of cooperation in both natural and social environments.

  4. Endogenous Effort Norms in Hierarchical Firms

    NARCIS (Netherlands)

    J. Tichem (Jan)

    2013-01-01

    markdownabstract__Abstract__ This paper studies how a three-layer hierarchical firm (principal-supervisor-agent) optimally creates effort norms for its employees. The key assumption is that effort norms are affected by the example of superiors. In equilibrium, norms are eroded as one moves down

  5. Complex Evaluation of Hierarchically-Network Systems

    CERN Document Server

    Polishchuk, Dmytro; Yadzhak, Mykhailo

    2016-01-01

    Methods of complex evaluation based on local, forecasting, aggregated, and interactive evaluation of the state, function quality, and interaction of complex system's objects on the all hierarchical levels is proposed. Examples of analysis of the structural elements of railway transport system are used for illustration of efficiency of proposed approach.

  6. A Hierarchical Grouping of Great Educators

    Science.gov (United States)

    Barker, Donald G.

    1977-01-01

    Great educators of history were categorized on the basis of their: aims of education, fundamental ideas, and educational theories. They were classed by Ward's method of hierarchical analysis into six groupings: Socrates, Ausonius, Jerome, Abelard; Quintilian, Origen, Melanchthon, Ascham, Loyola; Alciun, Comenius; Vittorino, Basedow, Pestalozzi,…

  7. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  8. Hierarchical fuzzy identification of MR damper

    Science.gov (United States)

    Wang, Hao; Hu, Haiyan

    2009-07-01

    Magneto-rheological (MR) dampers, recently, have found many successful applications in civil engineering and numerous area of mechanical engineering. When an MR damper is to be used for vibration suppression, an inevitable problem is to determine the input voltage so as to gain the desired restoring force determined from the control law. This is the so-called inverse problem of MR dampers and is always an obstacle in the application of MR dampers to vibration control. It is extremely difficult to get the inverse model of MR damper because MR dampers are highly nonlinear and hysteretic. When identifying the inverse model of MR damper with simple fuzzy system, there maybe exists curse of dimensionality of fuzzy system. Therefore, it will take much more time, and even the inverse model may not be identifiable. The paper presents two-layer hierarchical fuzzy system, that is, two-layer hierarchical ANFIS to deal with the curse of dimensionality of the fuzzy identification of MR damper and to identify the inverse model of MR damper. Data used for training the model are generated from numerical simulation of nonlinear differential equations. The numerical simulation proves that the proposed hierarchical fuzzy system can model the inverse model of MR damper much more quickly than simple fuzzy system without any reduction of identification precision. Such hierarchical ANFIS shows the higher priority for the complicated system, and can also be used in system identification and system control for the complicated system.

  9. Statistical theory of hierarchical avalanche ensemble

    OpenAIRE

    Olemskoi, Alexander I.

    1999-01-01

    The statistical ensemble of avalanche intensities is considered to investigate diffusion in ultrametric space of hierarchically subordinated avalanches. The stationary intensity distribution and the steady-state current are obtained. The critical avalanche intensity needed to initiate the global avalanche formation is calculated depending on noise intensity. The large time asymptotic for the probability of the global avalanche appearance is derived.

  10. Managing Clustered Data Using Hierarchical Linear Modeling

    Science.gov (United States)

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  11. Equivalence Checking of Hierarchical Combinational Circuits

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Hulgaard, Henrik; Andersen, Henrik Reif

    1999-01-01

    This paper presents a method for verifying that two hierarchical combinational circuits implement the same Boolean functions. The key new feature of the method is its ability to exploit the modularity of circuits to reuse results obtained from one part of the circuits in other parts. We demonstrate...... our method on large adder and multiplier circuits....

  12. Generic hierarchical engine for mask data preparation

    Science.gov (United States)

    Kalus, Christian K.; Roessl, Wolfgang; Schnitker, Uwe; Simecek, Michal

    2002-07-01

    Electronic layouts are usually flattened on their path from the hierarchical source downstream to the wafer. Mask data preparation has certainly been identified as a severe bottleneck since long. Data volumes are not only doubling every year along the ITRS roadmap. With the advent of optical proximity correction and phase-shifting masks data volumes are escalating up to non-manageable heights. Hierarchical treatment is one of the most powerful means to keep memory and CPU consumption in reasonable ranges. Only recently, however, has this technique acquired more public attention. Mask data preparation is the most critical area calling for a sound infrastructure to reduce the handling problem. Gaining more and more attention though, are other applications such as large area simulation and manufacturing rule checking (MRC). They all would profit from a generic engine capable to efficiently treat hierarchical data. In this paper we will present a generic engine for hierarchical treatment which solves the major problem, steady transitions along cell borders. Several alternatives exist how to walk through the hierarchy tree. They have, to date, not been thoroughly investigated. One is a bottom-up attempt to treat cells starting with the most elementary cells. The other one is a top-down approach which lends itself to creating a new hierarchy tree. In addition, since the variety, degree of hierarchy and quality of layouts extends over a wide range a generic engine has to take intelligent decisions when exploding the hierarchy tree. Several applications will be shown, in particular how far the limits can be pushed with the current hierarchical engine.

  13. Hierarchical organisation in perception of orientation.

    Science.gov (United States)

    Spinelli, D; Antonucci, G; Daini, R; Martelli, M L; Zoccolotti, P

    1999-01-01

    According to Rock [1990, in The Legacy of Solomon Asch (Hillsdale, NJ: Lawrence Erlbaum Associates)], hierarchical organisation of perception describes cases in which the orientation of an object is affected by the immediately surrounding elements in the visual field. Various experiments were performed to study the hierarchical organisation of orientation perception. In most of them the rod-and-frame-illusion (RFI: change of the apparent vertical measured on a central rod surrounded by a tilted frame) was measured in the presence/absence of a second inner frame. The first three experiments showed that, when the inner frame is vertical, the direction and size of the illusion are consistent with expectancies based on the hierarchical organisation hypothesis. An analysis of published and unpublished data collected on a large number of subjects showed that orientational hierarchical effects are independent from the absolute size of the RFI. In experiments 4 to 7 we examined the perceptual conditions of the inner stimulus (enclosure, orientation, and presence of luminance borders) critical for obtaining a hierarchical organisation effect. Although an inner vertical square was effective in reducing the illusion (experiment 3), an inner circle enclosing the rod was ineffective (experiment 4). This indicates that definite orientation is necessary to modulate the illusion. However, orientational information provided by a vertical or horizontal rectangle presented near the rod, but not enclosing it, did not modulate the RFI (experiment 5). This suggests that the presence of a figure with oriented contours enclosing the rod is critical. In experiments 6 and 7 we studied whether the presence of luminance borders is important or whether the inner upright square might be effective also if made of subjective contours. When the subjective contour figure was salient and the observers perceived it clearly, its effectiveness in modulating the RFI was comparable to that observed with

  14. Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells.

    Science.gov (United States)

    Ho, Cheng-Han; Lien, Der-Hsien; Chang, Hung-Chih; Lin, Chin-An; Kang, Chen-Fang; Hsing, Meng-Kai; Lai, Kun-Yu; He, Jr-Hau

    2012-12-07

    We experimentally and theoretically demonstrated the hierarchical structure of SiO(2) nanorod arrays/p-GaN microdomes as a light harvesting scheme for InGaN-based multiple quantum well solar cells. The combination of nano- and micro-structures leads to increased internal multiple reflection and provides an intermediate refractive index between air and GaN. Cells with the hierarchical structure exhibit improved short-circuit current densities and fill factors, rendering a 1.47 fold efficiency enhancement as compared to planar cells.

  15. Toward a Low-Cost System for High-Throughput Image-Based Phenotyping of Root System Architecture

    Science.gov (United States)

    Davis, T. W.; Schneider, D. J.; Cheng, H.; Shaw, N.; Kochian, L. V.; Shaff, J. E.

    2015-12-01

    Root system architecture is being studied more closely for improved nutrient acquisition, stress tolerance and carbon sequestration by relating the genetic material that corresponds to preferential physical features. This information can help direct plant breeders in addressing the growing concerns regarding the global demand on crops and fossil fuels. To help support this incentive comes a need to make high-throughput image-based phenotyping of plant roots, at the individual plant scale, simpler and more affordable. Our goal is to create an affordable and portable product for simple image collection, processing and management that will extend root phenotyping to institutions with limited funding (e.g., in developing countries). Thus, a new integrated system has been developed using the Raspberry Pi single-board computer. Similar to other 3D-based imaging platforms, the system utilizes a stationary camera to photograph a rotating crop root system (e.g., rice, maize or sorghum) that is suspended either in a gel or on a mesh (for hydroponics). In contrast, the new design takes advantage of powerful open-source hardware and software to reduce the system costs, simplify the imaging process, and manage the large datasets produced by the high-resolution photographs. A newly designed graphical user interface (GUI) unifies the system controls (e.g., adjusting camera and motor settings and orchestrating the motor motion with image capture), making it easier to accommodate a variety of experiments. During each imaging session, integral metadata necessary for reproducing experiment results are collected (e.g., plant type and age, growing conditions and treatments, camera settings) using hierarchical data format files. These metadata are searchable within the GUI and can be selected and extracted for further analysis. The GUI also supports an image previewer that performs limited image processing (e.g., thresholding and cropping). Root skeletonization, 3D reconstruction and

  16. Dynamic Resolution in GPU-Accelerated Volume Rendering to Autostereoscopic Multiview Lenticular Displays

    Directory of Open Access Journals (Sweden)

    Daniel Ruijters

    2008-09-01

    Full Text Available The generation of multiview stereoscopic images of large volume rendered data demands an enormous amount of calculations. We propose a method for hardware accelerated volume rendering of medical data sets to multiview lenticular displays, offering interactive manipulation throughout. The method is based on buffering GPU-accelerated direct volume rendered visualizations of the individual views from their respective focal spot positions, and composing the output signal for the multiview lenticular screen in a second pass. This compositing phase is facilitated by the fact that the view assignment per subpixel is static, and therefore can be precomputed. We decoupled the resolution of the individual views from the resolution of the composited signal, and adjust the resolution on-the-fly, depending on the available processing resources, in order to maintain interactive refresh rates. The optimal resolution for the volume rendered views is determined by means of an analysis of the lattice of the output signal for the lenticular screen in the Fourier domain.

  17. 31 CFR 545.514 - Payments for services rendered by the Taliban to aircraft.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Payments for services rendered by the Taliban to aircraft. 545.514 Section 545.514 Money and Finance: Treasury Regulations Relating to Money and..., or supply, directly or indirectly, of goods, software, technology, and services to ensure the safety...

  18. ADMINISTRATIVE REGULATION IN RENDERING CIVIL SERVICE IN THE SYSTEM OF LEGAL ENACTMENTS

    Directory of Open Access Journals (Sweden)

    Valeria V. Lich

    2013-01-01

    Full Text Available The article studies the place of administrative regulation in rendering civil service in the hierarchy of the Russian laws and regulations. The problem whether to consider administrative regulation in civil service as a departmental law, issued by federal authorities, or as a clarification to federal laws and an instruction on its execution, is discussed in the article.

  19. 27 CFR 19.983 - Spirits rendered unfit for beverage use in the production process.

    Science.gov (United States)

    2010-04-01

    ... beverage use in the production process. 19.983 Section 19.983 Alcohol, Tobacco Products and Firearms... the production process. Where spirits are rendered unfit for beverage use before removal from the production system, the proprietor shall enter into the production records, in addition to the quantity...

  20. Moisture transport properties of brick – comparison of exposed, impregnated and rendered brick

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Bjarløv, Søren Peter; Peuhkuri, Ruut

    2016-01-01

    In regards to internal insulation of preservation worthy brick façades, external moisture sources, such as wind-driven rain exposure, inevitably has an impact on moisture conditions within the masonry construction. Surface treatments, such as hydrophobation or render, may remedy the impacts...

  1. APEX (Air Pollution Exercise) Volume 9: Industrialist's Manual No. 5, Caesar's Rendering Plant.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Industrialist's Manual No. 5, Caesar's Rendering Plant is part of a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The first two sections,…

  2. 3D colour visualization of label images using volume rendering techniques.

    Science.gov (United States)

    Vandenhouten, R; Kottenhoff, R; Grebe, R

    1995-01-01

    Volume rendering methods for the visualization of 3D image data sets have been developed and collected in a C library. The core algorithm consists of a perspective ray casting technique for a natural and realistic view of the 3D scene. New edge operator shading methods are employed for a fast and information preserving representation of surfaces. Control parameters of the algorithm can be tuned to have either smoothed surfaces or a very detailed rendering of the geometrical structure. Different objects can be distinguished by different colours. Shadow ray tracing has been implemented to improve the realistic impression of the 3D image. For a simultaneous representation of objects in different depths, hiding each other, two types of transparency mode are used (wireframe and glass transparency). Single objects or groups of objects can be excluded from the rendering (peeling). Three orthogonal cutting planes or one arbitrarily placed cutting plane can be applied to the rendered objects in order to get additional information about inner structures, contours, and relative positions.

  3. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    the opacity of all pixels to avoid artifacts at the cost of physically less accurate but still plausible rendering results. The proposed filter is named “opaque image blur” and is based on a glow filter that is applied to the alpha channel. We present a highly efficient GPU-based pyramid algorithm...

  4. 3D-TV Rendering on a Multiprocessor System on a Chip

    NARCIS (Netherlands)

    Van Eijndhoven, J.T.J.; Li, X.

    2006-01-01

    This thesis focuses on the issue of mapping 3D-TV rendering applications to a multiprocessor platform. The target platform aims to address tomorrow's multi-media consumer market. The prototype chip, called Wasabi, contains a set of TriMedia processors that communicate viaa shared memory, fast messag

  5. Smooth, Interactive Rendering Techniques on Large-Scale, Geospatial Data in Flood Visualizations

    NARCIS (Netherlands)

    Kehl, C.; Tutenel, T.; Eisemann, E.

    2013-01-01

    Visualising large-scale geospatial data is a demanding challenge that finds applications in many fields, including climatology and hydrology. Due to the enormous data size, it is currently not possible to render full datasets interactively without significantly compromising quality (especially not w

  6. Real-time Terrain Rendering using Smooth Hardware Optimized Level of Detail

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Christensen, Niels Jørgen

    2003-01-01

    - also known as ’popping’, when reducing the geometry by exploiting the low-level hardware programmability in order to maintain interactive framerates. Terrain models are repolygonized in order to minimizing the visible error. Furthermore, the method minimizes CPU usage during rendering and requires...

  7. Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    OpenAIRE

    Menzel, Nicolas

    2012-01-01

    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because...

  8. Advanced Audiovisual Rendering, Gesture-Based Interaction and Distributed Delivery for Immersive and Interactive Media Services

    NARCIS (Netherlands)

    Niamut, O.A.; Kochale, A.; Ruiz Hidalgo, J.; Macq, J-F.; Kienast, G.

    2011-01-01

    The media industry is currently being pulled in the often-opposing directions of increased realism (high resolution, stereoscopic, large screen) and personalisation (selection and control of content, availability on many devices). A capture, production, delivery and rendering system capable of

  9. Psychophysical evaluations of various color rendering from LED-based architectural lighting

    Science.gov (United States)

    Thompson, Maria; O'Reilly, Una-May; Levin, Robert

    2007-09-01

    This paper reports a study on visual evaluation of colors under LED lighting operated by an energy-saving control strategy. Digitally controlled LED systems can produce various qualities of light, adjustable to users' requirements. In this context, a novel control concept inspired this research: strategic control of Red, Yellow, Green & Blue LEDs forming white light can further increase energy efficiency. The resulting (more efficient) light, however, would have decreased "color rendering" (ability of accurately reproduce colors). The notable point is that while reducing color rendering, color temperature and light levels can stay constant and hence the appearance of the modified light could stay the same, and only the colors of illuminated objects would change. But how spaces would be perceived under such light with changing color rendering is a key question. This research investigated the hypothesis that a significant range of color distortions would be unnoticeable under such dynamically controlled illumination, especially outside of users' main field of view. If successful, such control technique could be implemented for unoccupied spaces that would not tolerated dimming, and minimize peak hours energy waste, potentially enabling significant power reductions. Three incremental series of experiments were performed based on subjective assessment of colors under changing color rendering. Tests were carried out for central and peripheral vision, using laboratory booths (phase 1) and full scale architectural mockups (phase 2). Results confirmed the fundamental hypothesis, showing that the majority of subjects did not detect the color changes in their periphery while the same color changes were noticeable with direct observation.

  10. Photometric and Colorimeric Comparison of HDR and Spctrally Resolved Rendering Images

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Soreze, Thierry Silvio Claude; Thorseth, Anders

    2016-01-01

    used a scene similar to the cornel box (CUPCG, 1998) but with a spectrally controllable LED light source, neutral grey walls and a colour checker board for colorimetric assessments. The luminance value and colour information of the HDR camera and rendering images are used for the comparison...

  11. An improved scheduling algorithm for 3D cluster rendering with platform LSF

    Science.gov (United States)

    Xu, Wenli; Zhu, Yi; Zhang, Liping

    2013-10-01

    High-quality photorealistic rendering of 3D modeling needs powerful computing systems. On this demand highly efficient management of cluster resources develops fast to exert advantages. This paper is absorbed in the aim of how to improve the efficiency of 3D rendering tasks in cluster. It focuses research on a dynamic feedback load balance (DFLB) algorithm, the work principle of load sharing facility (LSF) and optimization of external scheduler plug-in. The algorithm can be applied into match and allocation phase of a scheduling cycle. Candidate hosts is prepared in sequence in match phase. And the scheduler makes allocation decisions for each job in allocation phase. With the dynamic mechanism, new weight is assigned to each candidate host for rearrangement. The most suitable one will be dispatched for rendering. A new plugin module of this algorithm has been designed and integrated into the internal scheduler. Simulation experiments demonstrate the ability of improved plugin module is superior to the default one for rendering tasks. It can help avoid load imbalance among servers, increase system throughput and improve system utilization.

  12. A general strategy to determine the congruence between a hierarchical and a non-hierarchical classification

    Directory of Open Access Journals (Sweden)

    Marín Ignacio

    2007-11-01

    Full Text Available Abstract Background Classification procedures are widely used in phylogenetic inference, the analysis of expression profiles, the study of biological networks, etc. Many algorithms have been proposed to establish the similarity between two different classifications of the same elements. However, methods to determine significant coincidences between hierarchical and non-hierarchical partitions are still poorly developed, in spite of the fact that the search for such coincidences is implicit in many analyses of massive data. Results We describe a novel strategy to compare a hierarchical and a dichotomic non-hierarchical classification of elements, in order to find clusters in a hierarchical tree in which elements of a given "flat" partition are overrepresented. The key improvement of our strategy respect to previous methods is using permutation analyses of ranked clusters to determine whether regions of the dendrograms present a significant enrichment. We show that this method is more sensitive than previously developed strategies and how it can be applied to several real cases, including microarray and interactome data. Particularly, we use it to compare a hierarchical representation of the yeast mitochondrial interactome and a catalogue of known mitochondrial protein complexes, demonstrating a high level of congruence between those two classifications. We also discuss extensions of this method to other cases which are conceptually related. Conclusion Our method is highly sensitive and outperforms previously described strategies. A PERL script that implements it is available at http://www.uv.es/~genomica/treetracker.

  13. Validation of Thermal Lethality against Salmonella enterica in Poultry Offal during Rendering.

    Science.gov (United States)

    Jones-Ibarra, Amie-Marie; Acuff, Gary R; Alvarado, Christine Z; Taylor, T Matthew

    2017-09-01

    Recent outbreaks of human disease following contact with companion animal foods cross-contaminated with enteric pathogens, such as Salmonella enterica, have resulted in increased concern regarding the microbiological safety of animal foods. Additionally, the U.S. Food and Drug Administration Food Safety Modernization Act and its implementing rules have stipulated the implementation of current good manufacturing practices and food safety preventive controls for livestock and companion animal foods. Animal foods and feeds are sometimes formulated to include thermally rendered animal by-product meals. The objective of this research was to determine the thermal inactivation of S. enterica in poultry offal during rendering at differing temperatures. Raw poultry offal was obtained from a commercial renderer and inoculated with a mixture of Salmonella serovars Senftenberg, Enteritidis, and Gallinarum (an avian pathogen) prior to being subjected to heating at 150, 155, or 160°F (65.5, 68.3, or 71.1°C) for up to 15 min. Following heat application, surviving Salmonella bacteria were enumerated. Mean D-values for the Salmonella cocktail at 150, 155, and 160°F were 0.254 ± 0.045, 0.172 ± 0.012, and 0.086 ± 0.004 min, respectively, indicative of increasing susceptibility to increased application of heat during processing. The mean thermal process constant (z-value) was 21.948 ± 3.87°F. Results indicate that a 7.0-log-cycle inactivation of Salmonella may be obtained from the cumulative lethality encountered during the heating come-up period and subsequent rendering of raw poultry offal at temperatures not less than 150°F. Current poultry rendering procedures are anticipated to be effective for achieving necessary pathogen control when completed under sanitary conditions.

  14. Using wesBench to Study the Rendering Performance of Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, Edward W

    2010-01-08

    Graphics operations consist of two broad operations. The first, which we refer to here as vertex operations, consists of transformation, lighting, primitive assembly, and so forth. The second, which we refer to as pixel or fragment operations, consist of rasterization, texturing, scissoring, blending, and fill. Overall GPU rendering performance is a function of throughput of both these interdependent stages: if one stage is slower than the other, the faster stage will be forced to run more slowly and overall rendering performance will be adversely affected. This relationship is commutative: if the later stage has a greater workload than the earlier stage, the earlier stage will be forced to 'slow down.' For example, a large triangle that covers many screen pixels will incur a very small amount of work in the vertex stage while at the same time incurring a relatively large amount of work in the fragment stage. Rendering performance of a scene consisting of many large-area triangles will be limited by throughput of the fragment stage, which will have relatively more work than the vertex stage. There are two main objectives for this document. First, we introduce a new graphics benchmark, wesBench, which is useful for measuring performance of both stages of the rendering pipeline under varying conditions. Second, we present its methodology for measuring performance and show results of several performance measurement studies aimed at producing better understanding of GPU rendering performance characteristics and limits under varying configurations. First, in Section 2, we explore the 'crossover' point between geometry and rasterization. Second, in Section 3, we explore additional performance characteristics, some of which are ill- or un-documented. Lastly, several appendices provide additional material concerning problems with the gfxbench benchmark, and details about the new wesBench graphics benchmark.

  15. Congenital inner ear malformation: three dimensional volume rendering image using MR CISS sequence

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Woon; Lee, In Sook; Kim, Hak Jin; Goh, Eui Kyung; Kim, Lee Suk [College of Medicine, Pusan National Univ., Pusan (Korea, Republic of)

    2003-10-01

    To evaluate three-dimensional volume-rendering of congenital inner-ear malformations using the MR CISS(Constructive Interference in Steady State) sequence. MR CISS images of 30 inner ears of 15 patients (M:F=10.5; mean age, 6.5years) in whom inner-ear malformation was suspected were obtained using a superconducting Magnetom Vision System (Simens, Erlangen, Germany), with TR/TE/FA parameters of 12.25 ms/5.9 ms/70.deg.. The images obtained were processed by means of the volume rendering technique at an advanced workstation (Voxtol 3.0.0; GE Systems, advanced workstation, volume analysis). The cochlea and three semicircular canals were morphologically evaluated. Volume-rendered images of 25 inner ears of 13 patients demonstrated cochlear anomalies in the form of incomplete partition (n=18), hypoplasia (n=2), and severe hypoplasia (n=5). For the superior semicircular canal, findings were normal in 15 ears, though common crus aplasia (n=6), hypoplasia (n=4), aplasia (n=3), and a short and broad shape (n=2) were also observed. The posterior semicircular canal of 13 ears was normal, but common crus aplasia (n=6), a short and broad shape (n=5), aplasia (n=4), hypoplasia (n=3) were also identified. Twelve lateral semicircular canals, were normal, but other images depicted a short and broad shape (n=7), a dilated crus (n=5), a broad shape (n=4), and aplasia (n=2). In 14 patients the anomalies were bilateral, and in seven, the same anomalies affected both ears. Three-dimensional volume rendering images of the inner ear depicted various morphological abnormalities of the cochlea and semicircular canals. At that locations, anomalies were more complicated and varied than in the cochlea. Three-dimensional volume rendering imaging using the MR CISS technique provides anatomical information regarding the membranous labyrinth, and we consider this useful in the evaluation of congenital inner ear malformations.

  16. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    Science.gov (United States)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  17. A hierarchical Bayesian-MAP approach to inverse problems in imaging

    Science.gov (United States)

    Raj, Raghu G.

    2016-07-01

    We present a novel approach to inverse problems in imaging based on a hierarchical Bayesian-MAP (HB-MAP) formulation. In this paper we specifically focus on the difficult and basic inverse problem of multi-sensor (tomographic) imaging wherein the source object of interest is viewed from multiple directions by independent sensors. Given the measurements recorded by these sensors, the problem is to reconstruct the image (of the object) with a high degree of fidelity. We employ a probabilistic graphical modeling extension of the compound Gaussian distribution as a global image prior into a hierarchical Bayesian inference procedure. Since the prior employed by our HB-MAP algorithm is general enough to subsume a wide class of priors including those typically employed in compressive sensing (CS) algorithms, HB-MAP algorithm offers a vehicle to extend the capabilities of current CS algorithms to include truly global priors. After rigorously deriving the regression algorithm for solving our inverse problem from first principles, we demonstrate the performance of the HB-MAP algorithm on Monte Carlo trials and on real empirical data (natural scenes). In all cases we find that our algorithm outperforms previous approaches in the literature including filtered back-projection and a variety of state-of-the-art CS algorithms. We conclude with directions of future research emanating from this work.

  18. On the geostatistical characterization of hierarchical media

    Science.gov (United States)

    Neuman, Shlomo P.; Riva, Monica; Guadagnini, Alberto

    2008-02-01

    The subsurface consists of porous and fractured materials exhibiting a hierarchical geologic structure, which gives rise to systematic and random spatial and directional variations in hydraulic and transport properties on a multiplicity of scales. Traditional geostatistical moment analysis allows one to infer the spatial covariance structure of such hierarchical, multiscale geologic materials on the basis of numerous measurements on a given support scale across a domain or "window" of a given length scale. The resultant sample variogram often appears to fit a stationary variogram model with constant variance (sill) and integral (spatial correlation) scale. In fact, some authors, who recognize that hierarchical sedimentary architecture and associated log hydraulic conductivity fields tend to be nonstationary, nevertheless associate them with stationary "exponential-like" transition probabilities and variograms, respectively, the latter being a consequence of the former. We propose that (1) the apparent ability of stationary spatial statistics to characterize the covariance structure of nonstationary hierarchical media is an artifact stemming from the finite size of the windows within which geologic and hydrologic variables are ubiquitously sampled, and (2) the artifact is eliminated upon characterizing the covariance structure of such media with the aid of truncated power variograms, which represent stationary random fields obtained upon sampling a nonstationary fractal over finite windows. To support our opinion, we note that truncated power variograms arise formally when a hierarchical medium is sampled jointly across all geologic categories and scales within a window; cite direct evidence that geostatistical parameters (variance and integral scale) inferred on the basis of traditional variograms vary systematically with support and window scales; demonstrate the ability of truncated power models to capture these variations in terms of a few scaling parameters

  19. Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform.

    Science.gov (United States)

    De Queiroz, Ricardo; Chou, Philip A

    2016-06-01

    In free-viewpoint video, there is a recent trend to represent scene objects as solids rather than using multiple depth maps. Point clouds have been used in computer graphics for a long time and with the recent possibility of real time capturing and rendering, point clouds have been favored over meshes in order to save computation. Each point in the cloud is associated with its 3D position and its color. We devise a method to compress the colors in point clouds which is based on a hierarchical transform and arithmetic coding. The transform is a hierarchical sub-band transform that resembles an adaptive variation of a Haar wavelet. The arithmetic encoding of the coefficients assumes Laplace distributions, one per sub-band. The Laplace parameter for each distribution is transmitted to the decoder using a custom method. The geometry of the point cloud is encoded using the well-established octtree scanning. Results show that the proposed solution performs comparably to the current state-of-the-art, in many occasions outperforming it, while being much more computationally efficient. We believe this work represents the state-of-the-art in intra-frame compression of point clouds for real-time 3D video.

  20. Role of clinical images based teaching as a supplement to conventional clinical teaching in dermatology

    Directory of Open Access Journals (Sweden)

    Gurumoorthy Rajesh Kumar

    2015-01-01

    Full Text Available Introduction : Clinical Dermatology is a visually oriented specialty, where visually oriented teaching is more important than it is in any other specialty. It is essential that students must have repeated exposure to common dermatological disorders in the limited hours of Dermatology clinical teaching. Aim: This study was conducted to assess the effect of clinical images based teaching as a supplement to the patient based clinical teaching in Dermatology, among final year MBBS students. Methods: A clinical batch comprising of 19 students was chosen for the study. Apart from the routine clinical teaching sessions, clinical images based teaching was conducted. This teaching method was evaluated using a retrospective pre-post questionnaire. Students′ performance was assessed using Photo Quiz and an Objective Structured Clinical Examination (OSCE. Feedback about the addition of images based class was collected from students. Results: A significant improvement was observed in the self-assessment scores following images based teaching. Mean OSCE score was 6.26/10, and that of Photo Quiz was 13.6/20. Conclusion : This Images based Dermatology teaching has proven to be an excellent supplement to routine clinical cases based teaching.