Directory of Open Access Journals (Sweden)
Linjun Fan
2014-01-01
Full Text Available This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA. Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service’s evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA is constructed based on finite state automata (FSA, which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average is the biggest influential factor, the noncomposition of atomic services (13.12% is the second biggest one, and the service version’s confusion (1.2% is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA.
Finite Population Correction for Two-Level Hierarchical Linear Models.
Lai, Mark H C; Kwok, Oi-Man; Hsiao, Yu-Yu; Cao, Qian
2017-03-16
The research literature has paid little attention to the issue of finite population at a higher level in hierarchical linear modeling. In this article, we propose a method to obtain finite-population-adjusted standard errors of Level-1 and Level-2 fixed effects in 2-level hierarchical linear models. When the finite population at Level-2 is incorrectly assumed as being infinite, the standard errors of the fixed effects are overestimated, resulting in lower statistical power and wider confidence intervals. The impact of ignoring finite population correction is illustrated by using both a real data example and a simulation study with a random intercept model and a random slope model. Simulation results indicated that the bias in the unadjusted fixed-effect standard errors was substantial when the Level-2 sample size exceeded 10% of the Level-2 population size; the bias increased with a larger intraclass correlation, a larger number of clusters, and a larger average cluster size. We also found that the proposed adjustment produced unbiased standard errors, particularly when the number of clusters was at least 30 and the average cluster size was at least 10. We encourage researchers to consider the characteristics of the target population for their studies and adjust for finite population when appropriate. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Directory of Open Access Journals (Sweden)
Michael Hammond
2008-06-01
Full Text Available Finite-state methods are finding ever increasing use among linguists as a way of modeling phonology and morphology and as a method for manipulating and modeling text. This paper describes a suite of very simple finite-state tools written by the author that can be used to investigate this area and that can be used for simple analysis.
Astionenko, I. O.; Litvinenko, O. I.; Osipova, N. V.; Tuluchenko, G. Ya.; Khomchenko, A. N.
2016-10-01
Recently the interpolation bases of the hierarchical type have been used for the problem solving of the approximation of multiple arguments functions (such as in the finite-element method). In this work the cognitive graphical method of constructing of the hierarchical form bases on the serendipity finite elements is suggested, which allowed to get the alternative bases on a biquadratic finite element from the serendipity family without internal knots' inclusion. The cognitive-graphic method allowed to improve the known interpolation procedure of Taylor and to get the modified elements with irregular arrangement of knots. The proposed procedures are universal and are spread in the area of finite-elements.
Hierarchical State Machines as Modular Horn Clauses
Directory of Open Access Journals (Sweden)
Pierre-Loïc Garoche
2016-07-01
Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.
On the development of hierarchical solution strategies for nonlinear finite element formulations
Padovan, J.; Lackney, J.
1984-01-01
This paper develops a hierarchical type solution scheme which can handle the field equations associated with nonlinear finite element simulations. The overall procedure possesses various levels of application namely degree of freedom, nodal, elemental, substructural as well as global. In particular iteration, updating, assembly and solution control occurs at the various hierarchical levels. Due to the manner of formulation, the degree of matrix inversion depends on the size of the various hierarchical partitioned groups. In this context, degree of freedom partitioning requires no inversion. To benchmark the overall scheme, the results of several numerical examples are presented.
Energy flow in plate assembles by hierarchical version of finite element method
DEFF Research Database (Denmark)
Wachulec, Marcin; Kirkegaard, Poul Henning
method has been proposed. In this paper a modified hierarchical version of finite element method is used for modelling of energy flow in plate assembles. The formulation includes description of in-plane forces so that planes lying in different planes can be modelled. Two examples considered are: L......-corner of two rectangular plates an a I-shaped plate girder made of five plates. Energy distribution among plates due to harmonic load is studied and the comparison of performance between the hierarchical and standard finite element formulation is presented....
Real-space renormalization yields finitely correlated states
Barthel, Thomas; Eisert, Jens
2010-01-01
Real-space renormalization approaches for quantum lattice systems generate certain hierarchical classes of states that are subsumed by the multi-scale entanglement renormalization ansatz (MERA). It is shown that, with the exception of one dimension, MERA states can be efficiently mapped to finitely-correlated states, also known as projected entangled pair states (PEPS), with a bond dimension independent of the system size. Hence, MERA states form an efficiently contractible class of PEPS and obey an area law for the entanglement entropy. It is shown further that there exist other efficiently contractible schemes violating the area law.
Learning Extended Finite State Machines
Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard
2014-01-01
We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.
Energy flow in plate assembles by hierarchical version of finite element method
DEFF Research Database (Denmark)
Wachulec, Marcin; Kirkegaard, Poul Henning
method has been proposed. In this paper a modified hierarchical version of finite element method is used for modelling of energy flow in plate assembles. The formulation includes description of in-plane forces so that planes lying in different planes can be modelled. Two examples considered are: L......The dynamic analysis of structures in medium and high frequencies are usually focused on frequency and spatial averages of energy of components, and not the displacement/velocity fields. This is especially true for structure-borne noise modelling. For the analysis of complicated structures......-corner of two rectangular plates an a I-shaped plate girder made of five plates. Energy distribution among plates due to harmonic load is studied and the comparison of performance between the hierarchical and standard finite element formulation is presented....
Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions
Energy Technology Data Exchange (ETDEWEB)
Carpenter, D.C.
1997-04-01
Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions.
Nonclassical properties and quantum resources of hierarchical photonic superposition states
Energy Technology Data Exchange (ETDEWEB)
Volkoff, T. J., E-mail: adidasty@gmail.com [University of California, Department of Chemistry (United States)
2015-11-15
We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.
Reachability problems for communicating finite state machines
Pachl, Jan
2012-01-01
The paper deals with the verification of reachability properties in a commonly used state transition model of communication protocols, which consists of finite state machines connected by potentially unbounded FIFO channels. Although simple reachability problems are undecidable for general protocols with unbounded channels, they are decidable for the protocols with the recognizable channel property. The decidability question is open for the protocols with the rational channel property.
Chemical Implementation of Finite-State Machines
Hjelmfelt, Allen; Weinberger, Edward D.; Ross, John
1992-01-01
With methods developed in a prior article on the chemical kinetic implementation of a McCulloch-Pitts neuron, connections among neurons, logic gates, and a clocking mechanism, we construct examples of clocked finite-state machines. These machines include a binary decoder, a binary adder, and a stack memory. An example of the operation of the binary adder is given, and the chemical concentrations corresponding to the state of each chemical neuron are followed in time. Using these methods, we can, in principle, construct a universal Turing machine, and these chemical networks inherit the halting problem
Energy Technology Data Exchange (ETDEWEB)
Giunta, G.; Belouettar, S. [Centre de Recherche Public Henri Tudor, 29, av. John F. Kennedy, L-1855, Luxembourg-Kirchberg, Luxembourg (Belgium)
2015-03-10
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigations show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.
Finite-state machines as elements in control systems.
Burgin, G. H.; Walsh, M. J.
1971-01-01
Demonstration that approximate solutions to certain classes of differential and difference equations can be expressed in form of finite state machines. Based on this result, a finite-state machine model of an adaptive gain changer in an aircraft stability augmentation system is developed. Results of simulated flights using the finite-state machine gain changer are presented.
A hierarchical updating method for finite element model of airbag buffer system under landing impact
Institute of Scientific and Technical Information of China (English)
He Huan; Chen Zhe; He Cheng; Ni Lei; Chen Guoping
2015-01-01
In this paper, we propose an impact finite element (FE) model for an airbag landing buf-fer system. First, an impact FE model has been formulated for a typical airbag landing buffer sys-tem. We use the independence of the structure FE model from the full impact FE model to develop a hierarchical updating scheme for the recovery module FE model and the airbag system FE model. Second, we define impact responses at key points to compare the computational and experimental results to resolve the inconsistency between the experimental data sampling frequency and experi-mental triggering. To determine the typical characteristics of the impact dynamics response of the airbag landing buffer system, we present the impact response confidence factors (IRCFs) to evalu-ate how consistent the computational and experiment results are. An error function is defined between the experimental and computational results at key points of the impact response (KPIR) to serve as a modified objective function. A radial basis function (RBF) is introduced to construct updating variables for a surrogate model for updating the objective function, thereby converting the FE model updating problem to a soluble optimization problem. Finally, the developed method has been validated using an experimental and computational study on the impact dynamics of a classic airbag landing buffer system.
A hierarchical updating method for finite element model of airbag buffer system under landing impact
Directory of Open Access Journals (Sweden)
He Huan
2015-12-01
Full Text Available In this paper, we propose an impact finite element (FE model for an airbag landing buffer system. First, an impact FE model has been formulated for a typical airbag landing buffer system. We use the independence of the structure FE model from the full impact FE model to develop a hierarchical updating scheme for the recovery module FE model and the airbag system FE model. Second, we define impact responses at key points to compare the computational and experimental results to resolve the inconsistency between the experimental data sampling frequency and experimental triggering. To determine the typical characteristics of the impact dynamics response of the airbag landing buffer system, we present the impact response confidence factors (IRCFs to evaluate how consistent the computational and experiment results are. An error function is defined between the experimental and computational results at key points of the impact response (KPIR to serve as a modified objective function. A radial basis function (RBF is introduced to construct updating variables for a surrogate model for updating the objective function, thereby converting the FE model updating problem to a soluble optimization problem. Finally, the developed method has been validated using an experimental and computational study on the impact dynamics of a classic airbag landing buffer system.
Modeling software with finite state machines a practical approach
Wagner, Ferdinand; Wagner, Thomas; Wolstenholme, Peter
2006-01-01
Modeling Software with Finite State Machines: A Practical Approach explains how to apply finite state machines to software development. It provides a critical analysis of using finite state machines as a foundation for executable specifications to reduce software development effort and improve quality. This book discusses the design of a state machine and of a system of state machines. It also presents a detailed analysis of development issues relating to behavior modeling with design examples and design rules for using finite state machines. This volume describes a coherent and well-tested fr
Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models.
Liu, Ziyue; Cappola, Anne R; Crofford, Leslie J; Guo, Wensheng
2014-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.
A hierarchical state space approach to affective dynamics
Lodewyckx, Tom; Tuerlinckx, Francis; Kuppens, Peter; Allen, Nicholas; Sheeber, Lisa
2010-01-01
Linear dynamical system theory is a broad theoretical framework that has been applied in various research areas such as engineering, econometrics and recently in psychology. It quantifies the relations between observed inputs and outputs that are connected through a set of latent state variables. State space models are used to investigate the dynamical properties of these latent quantities. These models are especially of interest in the study of emotion dynamics, with the system representing the evolving emotion components of an individual. However, for simultaneous modeling of individual and population differences, a hierarchical extension of the basic state space model is necessary. Therefore, we introduce a Bayesian hierarchical model with random effects for the system parameters. Further, we apply our model to data that were collected using the Oregon adolescent interaction task: 66 normal and 67 depressed adolescents engaged in a conflict interaction with their parents and second-to-second physiological and behavioral measures were obtained. System parameters in normal and depressed adolescents were compared, which led to interesting discussions in the light of findings in recent literature on the links between cardiovascular processes, emotion dynamics and depression. We illustrate that our approach is flexible and general: The model can be applied to any time series for multiple systems (where a system can represent any entity) and moreover, one is free to focus on whatever component of the versatile model. PMID:21516216
Hierarchical joint remote state preparation in noisy environment
Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban
2017-08-01
A novel scheme for quantum communication having substantial applications in practical life is designed and analyzed. Specifically, we have proposed a hierarchical counterpart of the joint remote state preparation (JRSP) protocol, where two senders can jointly and remotely prepare a quantum state. One sender has the information regarding amplitude, while the other one has the phase information of a quantum state to be jointly prepared at the receiver's port. However, there exists a hierarchy among the receivers, as far as powers to reconstruct the quantum state are concerned. A 5-qubit cluster state has been used here to perform the task. Further, it is established that the proposed scheme for hierarchical JRSP (HJRSP) is of enormous practical importance in critical situations involving defense and other sectors, where it is essential to ensure that an important decision/order that can severely affect a society or an organization is not taken by a single person, and once the order is issued, all the receivers do not possess an equal right to implement it. Further, the effect of different noise models (e.g., amplitude damping (AD), phase damping (PD), collective noise and Pauli noise models) on the HJRSP protocol proposed here is investigated. It is found that in AD and PD noise models a higher-power agent can reconstruct the quantum state to be remotely prepared with higher fidelity than that done by the lower-power agent(s). In contrast, the opposite may happen in the presence of collective noise models. We have also proposed a scheme for probabilistic HJRSP using a non-maximally entangled 5-qubit cluster state.
Active Learning of Nondeterministic Finite State Machines
Directory of Open Access Journals (Sweden)
Warawoot Pacharoen
2013-01-01
Full Text Available We consider the problem of learning nondeterministic finite state machines (NFSMs from systems where their internal structures are implicit and nondeterministic. Recently, an algorithm for inferring observable NFSMs (ONFSMs, which are the potentially learnable subclass of NFSMs, has been proposed based on the hypothesis that the complete testing assumption is satisfied. According to this assumption, with an input sequence (query, the complete set of all possible output sequences is given by the so-called Teacher, so the number of times for asking the same query is not taken into account in the algorithm. In this paper, we propose LNM*, a refined ONFSM learning algorithm that considers the amount for repeating the same query as one parameter. Unlike the previous work, our approach does not require all possible output sequences in one answer. Instead, it tries to observe the possible output sequences by asking the same query many times to the Teacher. We have proved that LNM* can infer the corresponding ONFSMs of the unknown systems when the number of tries for the same query is adequate to guarantee the complete testing assumption. Moreover, the proof shows that our algorithm will eventually terminate no matter whether the assumption is fulfilled or not. We also present the theoretical time complexity analysis of LNM*. In addition, experimental results demonstrate the practical efficiency of our approach.
Spatial Bayesian hierarchical modelling of extreme sea states
Clancy, Colm; O'Sullivan, John; Sweeney, Conor; Dias, Frédéric; Parnell, Andrew C.
2016-11-01
A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial process to more effectively capture the spatial variation of the extremes. The model is applied to a 34-year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of significant wave height are computed and compared against those from a model based on the commonly-used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing information on extremes which is more useful for practical applications.
Extending stability through hierarchical clusters in Echo State Networks
Directory of Open Access Journals (Sweden)
Sarah Jarvis
2010-07-01
Full Text Available Echo State Networks (ESN are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analysed the impact of reservoir substructures on stability in hierarchically clustered ESNs (HESN, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius.
Recurrent Artificial Neural Networks and Finite State Natural Language Processing.
Moisl, Hermann
It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…
Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model
Ellefsen, Karl J.; Smith, David
2016-01-01
Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.
Finite state verifiers with constant randomness
Say, A C Cem
2011-01-01
We give a new certificate-based characterization of $\\mathsf{NL}$, as the class of languages whose members have certificates that can be verified with small error in polynomial time by probabilistic finite automata (2pfa's) which have access to only a constant number of random bits. We obtain this result by demonstrating that verifiers which are restricted to have this property are equivalent in language recognition power to multihead finite automata. The cases where the verifier is restricted in different manners in its input and certificate head movements are also examined.
Finite-State Complexity and the Size of Transducers
Directory of Open Access Journals (Sweden)
Cristian Calude
2010-08-01
Full Text Available Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.
Modeling diurnal hormone profiles by hierarchical state space models.
Liu, Ziyue; Guo, Wensheng
2015-10-30
Adrenocorticotropic hormone (ACTH) diurnal patterns contain both smooth circadian rhythms and pulsatile activities. How to evaluate and compare them between different groups is a challenging statistical task. In particular, we are interested in testing (1) whether the smooth ACTH circadian rhythms in chronic fatigue syndrome and fibromyalgia patients differ from those in healthy controls and (2) whether the patterns of pulsatile activities are different. In this paper, a hierarchical state space model is proposed to extract these signals from noisy observations. The smooth circadian rhythms shared by a group of subjects are modeled by periodic smoothing splines. The subject level pulsatile activities are modeled by autoregressive processes. A functional random effect is adopted at the pair level to account for the matched pair design. Parameters are estimated by maximizing the marginal likelihood. Signals are extracted as posterior means. Computationally efficient Kalman filter algorithms are adopted for implementation. Application of the proposed model reveals that the smooth circadian rhythms are similar in the two groups but the pulsatile activities in patients are weaker than those in the healthy controls. Copyright © 2015 John Wiley & Sons, Ltd.
Hierarchical state-space estimation of leatherback turtle navigation ability.
Mills Flemming, Joanna; Jonsen, Ian D; Myers, Ransom A; Field, Christopher A
2010-12-28
Remotely sensed tracking technology has revealed remarkable migration patterns that were previously unknown; however, models to optimally use such data have developed more slowly. Here, we present a hierarchical Bayes state-space framework that allows us to combine tracking data from a collection of animals and make inferences at both individual and broader levels. We formulate models that allow the navigation ability of animals to be estimated and demonstrate how information can be combined over many animals to allow improved estimation. We also show how formal hypothesis testing regarding navigation ability can easily be accomplished in this framework. Using Argos satellite tracking data from 14 leatherback turtles, 7 males and 7 females, during their southward migration from Nova Scotia, Canada, we find that the circle of confusion (the radius around an animal's location within which it is unable to determine its location precisely) is approximately 96 km. This estimate suggests that the turtles' navigation does not need to be highly accurate, especially if they are able to use more reliable cues as they near their destination. Moreover, for the 14 turtles examined, there is little evidence to suggest that male and female navigation abilities differ. Because of the minimal assumptions made about the movement process, our approach can be used to estimate and compare navigation ability for many migratory species that are able to carry electronic tracking devices.
Finite-State Methodology in Natural Language Processing
Directory of Open Access Journals (Sweden)
Michal Korzycki
2001-01-01
Full Text Available Recent mathematical and algorithmic results in the field of finite-state technology, as well the increase in computing power, have constructed the base for a new approach in natural language processing. However the task of creating an appropriate model that would describe the phenomena of the natural language is still to be achieved. ln this paper I'm presenting some notions related to the finite-state modelling of syntax and morphology.
All-electron Kohn–Sham density functional theory on hierarchic finite element spaces
Energy Technology Data Exchange (ETDEWEB)
Schauer, Volker [Institute of Applied Mechanics (CE) Chair I, University of Stuttgart, 70550 Stuttgart, Pfaffenwaldring 7 (Germany); Linder, Christian, E-mail: linder@stanford.edu [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States)
2013-10-01
In this work, a real space formulation of the Kohn–Sham equations is developed, making use of the hierarchy of finite element spaces from different polynomial order. The focus is laid on all-electron calculations, having the highest requirement onto the basis set, which must be able to represent the orthogonal eigenfunctions as well as the electrostatic potential. A careful numerical analysis is performed, which points out the numerical intricacies originating from the singularity of the nuclei and the necessity for approximations in the numerical setting, with the ambition to enable solutions within a predefined accuracy. In this context the influence of counter-charges in the Poisson equation, the requirement of a finite domain size, numerical quadratures and the mesh refinement are examined as well as the representation of the electrostatic potential in a high order finite element space. The performance and accuracy of the method is demonstrated in computations on noble gases. In addition the finite element basis proves its flexibility in the calculation of the bond-length as well as the dipole moment of the carbon monoxide molecule.
Institute of Scientific and Technical Information of China (English)
诸德超; 邓忠民; 王荇卫
2001-01-01
In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This ethod is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.
Finite State Tables for general computer programming applications
Energy Technology Data Exchange (ETDEWEB)
Leininger, M.
1988-01-01
The Finite State Table is a computer programming technique which offers a faster and more compact alternative to traditional logical control structures such as the IF-THEN-ELSE statement. A basic description of this technique is presented. The application example is the creation of plot output from engineering analysis and design models generated by I-DEAS, a commercial software package used for solid modeling, finite element analysis, design and drafting.
Hierarchical fractal Weyl laws for chaotic resonance states in open mixed systems.
Körber, M J; Michler, M; Bäcker, A; Ketzmerick, R
2013-09-13
In open chaotic systems the number of long-lived resonance states obeys a fractal Weyl law, which depends on the fractal dimension of the chaotic saddle. We study the generic case of a mixed phase space with regular and chaotic dynamics. We find a hierarchy of fractal Weyl laws, one for each region of the hierarchical decomposition of the chaotic phase-space component. This is based on our observation of hierarchical resonance states localizing on these regions. Numerically this is verified for the standard map and a hierarchical model system.
Socio-economic applications of finite state mean field games
Gomes, Diogo A.
2014-10-06
In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments,which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems.
Efendiev, Yalchin R.
2015-06-05
In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.
A de Finetti representation for finite symmetric quantum states
König, R; Koenig, Robert; Renner, Renato
2004-01-01
Consider a symmetric quantum state on an n-fold product space, that is, the state is invariant under permutations of the n subsystems. We show that, conditioned on the outcomes of an informationally complete measurement applied to a number of subsystems, the state in the remaining subsystems is close to having product form. This immediately generalizes the so-called de Finetti representation to the case of finite symmetric quantum states.
POWER OPTIMIZATION OF FINITE STATE MACHINE BASED ON GENETIC ALGORITHM
Institute of Scientific and Technical Information of China (English)
Xia Yinshui; A.E.A. Almaini; Wu Xunwei
2003-01-01
Using state assignment to minimize power dissipation and area for finite state ma-chines is computationally hard. Most of published results show that the reduction of switchingactivity often trades with area penalty. In this paper, a new approach is proposed. Experimentalresults show a significant reduction of switching activity without area penalty compared withprevious publications.
Evolved Finite State Controller For Hybrid System
DEFF Research Database (Denmark)
Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik
2009-01-01
This paper presents an evolutionary methodology to automatically generate nite state automata (FSA) controllers to control hybrid systems. FSA controllers for a case study of two-tank system have been successfully obtained using the proposed evolutionary approach. Experimental results show...
Finite-State Approximation of Phrase-Structure Grammars
Pereira, F C N; Pereira, Fernando C. N.; Wright, Rebecca N.
1996-01-01
Phrase-structure grammars are effective models for important syntactic and semantic aspects of natural languages, but can be computationally too demanding for use as language models in real-time speech recognition. Therefore, finite-state models are used instead, even though they lack expressive power. To reconcile those two alternatives, we designed an algorithm to compute finite-state approximations of context-free grammars and context-free-equivalent augmented phrase-structure grammars. The approximation is exact for certain context-free grammars generating regular languages, including all left-linear and right-linear context-free grammars. The algorithm has been used to build finite-state language models for limited-domain speech recognition tasks.
Continuous time finite state mean field games
Gomes, Diogo A.
2013-04-23
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games. © 2013 Springer Science+Business Media New York.
Positive finite rank elementary operators and characterizing entanglement of states
Qi, Xiaofei
2010-01-01
In this paper, a class of indecomposable positive finite rank elementary operators are constructed. This allows us to give a simple necessary and sufficient criterion for separability of pure states in bipartite systems of any dimension in terms of two low rank positive elementary operators and get some new mixed entangled states that can not be detected by the positive partial transpose (PPT) criterion and the realignment criterion.
Positive finite rank elementary operators and characterizing entanglement of states
Energy Technology Data Exchange (ETDEWEB)
Qi Xiaofei [Department of Mathematics, Shanxi University, Taiyuan 030006 (China); Hou Jinchuan, E-mail: qixf1980@126.com, E-mail: jinchuanhou@yahoo.com.cn [Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024 (China)
2011-05-27
In this paper, some indecomposable positive finite rank elementary operators of order (n, n) are constructed. This allows us to give a simple necessary and sufficient criterion for the separability of pure states in bipartite systems of any dimension in terms of positive elementary operators of order (2, 2) and obtain some new mixed entangled states that cannot be detected by the positive partial transpose criterion and the realignment criterion.
Brown, Donald L.
2013-01-01
Direct numerical simulation (DNS) of fluid flow in porous media with many scales is often not feasible, and an effective or homogenized description is more desirable. To construct the homogenized equations, effective properties must be computed. Computation of effective properties for nonperiodic microstructures can be prohibitively expensive, as many local cell problems must be solved for different macroscopic points. In addition, the local problems may also be computationally expensive. When the microstructure varies slowly, we develop an efficient numerical method for two scales that achieves essentially the same accuracy as that for the full resolution solve of every local cell problem. In this method, we build a dense hierarchy of macroscopic grid points and a corresponding nested sequence of approximation spaces. Essentially, solutions computed in high accuracy approximation spaces at select points in the the hierarchy are used as corrections for the error of the lower accuracy approximation spaces at nearby macroscopic points. We give a brief overview of slowly varying media and formal Stokes homogenization in such domains. We present a general outline of the algorithm and list reasonable and easily verifiable assumptions on the PDEs, geometry, and approximation spaces. With these assumptions, we achieve the same accuracy as the full solve. To demonstrate the elements of the proof of the error estimate, we use a hierarchy of macro-grid points in [0, 1]2 and finite element (FE) approximation spaces in [0, 1]2. We apply this algorithm to Stokes equations in a slowly porous medium where the microstructure is obtained from a reference periodic domain by a known smooth map. Using the arbitrary Lagrange-Eulerian (ALE) formulation of the Stokes equations (cf. [G. P. Galdi and R. Rannacher, Fundamental Trends in Fluid-Structure Interaction, Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications 1, World Scientific, Singapore, 2010]), we obtain
Bistability of mixed states in a neural network storing hierarchical patterns
Toya, Kaname; Fukushima, Kunihiko; Kabashima, Yoshiyuki; Okada, Masato
2000-04-01
We discuss the properties of equilibrium states in an autoassociative memory model storing hierarchically correlated patterns (hereafter, hierarchical patterns). We will show that symmetric mixed states (hereafter, mixed states) are bistable on the associative memory model storing the hierarchical patterns in a region of the ferromagnetic phase. This means that the first-order transition occurs in this ferromagnetic phase. We treat these contents with a statistical mechanical method (SCSNA) and by computer simulation. Finally, we discuss a physiological implication of this model. Sugase et al (1999 Nature 400 869) analysed the time-course of the information carried by the firing of face-responsive neurons in the inferior temporal cortex. We also discuss the relation between the theoretical results and the physiological experiments of Sugase et al .
Artificial emotional model based on finite state machine
Institute of Scientific and Technical Information of China (English)
MENG Qing-mei; WU Wei-guo
2008-01-01
According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition function was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform.And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.
Communication of Spin Directions with Product States and Finite Measurements
Bagán, E; Muñoz-Tàpia, R
2001-01-01
Eigenstates of the total spin can be used to intrinsically encode a direction, which can later be decoded by means of a quantum measurement. We study the optimal strategy that can be adopted if only product states of N-spins are available; these states are likely to be the only ones that play a role in practical applications. We find that the best states are those with minimal eigenvalue, i.e., with completely antiparallel spins. We also give a prescription for constructing finite measurements for general encoding eigenstates.
Regularization independence of finite states in four dimensional quantized gravity
Ita, Eyo
2009-01-01
This is one of a series of works designed to address a major criticism concerning the mathematical rigor of the generalized Kodama states. The present paper analyzes the criterion for finiteness due to cancellation of the ultraviolet divergences stemming from the quantum Hamiltonian constraint, in the full theory. We argue that any reliable state must be independent of the regulating functions and parameters utilized to extract finite results. Using point-splitting regularization, we show that the results, typically regarded either as being purely formal or meaningless, are indeed mathematically rigorous and consistent with the axioms of field theory and regulator independence. Our analysis is carried out at the level of the quantum constraint solutions, and does not consider the algebra of constraints.
Optimal Differential Routing based on Finite State Machine Theory
M. S. Krishnamoorthy; Loy, James R.; McDonald, John F.
1999-01-01
Noise margins in high speed digital systems continue to erode. Full differential signal routing provides a mechanism for deferring these effects. This paper proposes a three stage routing process for solving the adjacent placement routing problem of differential signal pairs, and proves that it is optimal. The process views differential pairs as logical nets; routes the logical nets; then bifurcates the result to achieve a physical realization. Finite state machine theory provides the critica...
An autonomous DNA model for finite state automata.
Martinez-Perez, Israel M; Zimmermann, Karl-Heinz; Ignatova, Zoya
2009-01-01
In this paper we introduce an autonomous DNA model for finite state automata. This model called sticker automaton model is based on the hybridisation of single stranded DNA molecules (stickers) encoding transition rules and input data. The computation is carried out in an autonomous manner by one enzyme which allows us to determine whether a resulting double-stranded DNA molecule belongs to the automaton's language or not.
Employing finite-state machines in data integrity problems
Directory of Open Access Journals (Sweden)
Malikov Andrey
2016-01-01
Full Text Available This paper explores the issue of group integrity of tuple subsets regarding corporate integrity constraints in relational databases. A solution may be found by applying the finite-state machine theory to guarantee group integrity of data. We present a practical guide to coding such an automaton. After creating SQL queries to manipulate data and control its integrity for real data domains, we study the issue of query performance, determine the level of transaction isolation, and generate query plans.
Design methods for fault-tolerant finite state machines
Niranjan, Shailesh; Frenzel, James F.
1993-01-01
VLSI electronic circuits are increasingly being used in space-borne applications where high levels of radiation may induce faults, known as single event upsets. In this paper we review the classical methods of designing fault tolerant digital systems, with an emphasis on those methods which are particularly suitable for VLSI-implementation of finite state machines. Four methods are presented and will be compared in terms of design complexity, circuit size, and estimated circuit delay.
An evaluation of conflation accuracy using finite-state transducers
Galvez, Carmen; De-Moya-Anegón, Félix
2006-01-01
Purpose – To evaluate the accuracy of conflation methods based on Finite-State Transducers (FSTs). Design/methodology/approach – Incorrectly lemmatized and stemmed forms may lead to the retrieval of inappropriate documents. Experimental studies to date have focused on retrieval performance, but very few on conflation performance. The process of normalization we used involved a linguistic toolbox that allowed us to construct, through graphic interfaces, electronic dictionaries represented i...
Explaining finite state machine characteristics using variable structure control
Energy Technology Data Exchange (ETDEWEB)
Feddema, J.T.; Robinett, R.D.; Driessen, B.J.
1997-10-01
This paper describes how variable structure control can be used to describe the overall behavior of multiple autonomous robotic vehicles with simple finite state machine rules. The importance of this result is that it allows for the design of provably asymptotically stable group behaviors from a set of simple control laws and appropriate switching points with variable structure control. The ability to prove convergence to a goal is especially important for applications such as locating military targets or land mines.
Kalman Based Finite State Controller for Partially Observable Domains
Directory of Open Access Journals (Sweden)
H. Levent Akin
2008-11-01
Full Text Available A real world environment is often partially observable by the agents either because of noisy sensors or incomplete perception. Moreover, it has continuous state space in nature, and agents must decide on an action for each point in internal continuous belief space. Consequently, it is convenient to model this type of decisionmaking problems as Partially Observable Markov Decision Processes (POMDPs with continuous observation and state space. Most of the POMDP methods whether approximate or exact assume that the underlying world dynamics or POMDP parameters such as transition and observation probabilities are known. However, for many real world environments it is very difficult if not impossible to obtain such information. We assume that only the internal dynamics of the agent, such as the actuator noise, interpretation of the sensor suite, are known. Using these internal dynamics, our algorithm, namely Kalman Based Finite State Controller (KBFSC, constructs an internal world model over the continuous belief space, represented by a finite state automaton. Constructed automaton nodes are points of the continuous belief space sharing a common best action and a common uncertainty level. KBFSC deals with continuous Gaussian-based POMDPs. It makes use of Kalman Filter for belief state estimation, which also is an efficient method to prune unvisited segments of the belief space and can foresee the reachable belief points approximately calculating the horizon N policy. KBFSC does not use an "explore and update" approach in the value calculation as TD-learning. Therefore KBFSC does not have an extensive exploration-exploitation phase. Using the MDP case reward and the internal dynamics of the agent, KBFSC can automatically construct the finite state automaton (FSA representing the approximate optimal policy without the need for discretization of the state and observation space. Moreover, the policy always converges for POMDP problems.
Normality and Finite-state Dimension of Liouville numbers
Nandakumar, Satyadev
2012-01-01
Liouville numbers were the first class of real numbers which were proven to be transcendental. It is easy to construct non-normal Liouville numbers. Kano and Bugeaud have proved, using analytic techniques, that there are normal Liouville numbers. Here, for a given base k >= 2, we give two simple constructions of a Liouville number which is normal to the base k. The first construction is combinatorial, and is based on de Bruijn sequences. A real number in the unit interval is normal if and only if its finite-state dimension is 1. We generalize our construction to prove that for any rational r in the closed unit interval, there is a Liouville number with finite state dimension r. This refines Staiger's result that the set of Liouville numbers has constructive Hausdorff dimension zero, showing a new quantitative classification of Liouville numbers can be attained using finite-state dimension. In the second number-theoretic construction, we use an arithmetic property of numbers - the existence of primitive roots ...
Speech recognition algorithms based on weighted finite-state transducers
Hori, Takaaki
2013-01-01
This book introduces the theory, algorithms, and implementation techniques for efficient decoding in speech recognition mainly focusing on the Weighted Finite-State Transducer (WFST) approach. The decoding process for speech recognition is viewed as a search problem whose goal is to find a sequence of words that best matches an input speech signal. Since this process becomes computationally more expensive as the system vocabulary size increases, research has long been devoted to reducing the computational cost. Recently, the WFST approach has become an important state-of-the-art speech recogni
Three-boson bound states in finite volume with EFT
Kreuzer, S.; Hammer, H.-W.
2010-04-01
The universal properties of a three-boson system with large scattering length are well understood within the framework of Effective Field Theory. They include a geometric spectrum of shallow three-body bound states called “Efimov states” and log-periodic dependence of scattering observables on the scattering length. We investigate the modification of this spectrum in a finite cubic box using a partial wave expansion. The dependence of the binding energies on the box size is calculated for systems with positive and negative two-body scattering length. We compare the full results to results obtained using an expansion around the infinite volume binding energy. The renormalization of the Effective Field Theory in the finite volume is verified explicitly.
Schermelleh-Engel, Karin; Keith, Nina; Moosbrugger, Helfried; Hodapp, Volker
2004-01-01
An extension of latent state-trait (LST) theory to hierarchical LST models is presented. In hierarchical LST models, the covariances between 2 or more latent traits are explained by a general 3rd-order factor, and the covariances between latent state residuals pertaining to different traits measured on the same measurement occasion are explained…
STEADY-STATE HIERARCHICAL INTELLIGENT CONTROL OF LARGE-SCALE INDUSTRIAL PROCESSES
Institute of Scientific and Technical Information of China (English)
WAN Baiwu
2004-01-01
This paper considers the fourth stage of development of hierarchical control ofindustrial processes to the intelligent control and optimization stage, and reviews what theauthor and his Group have been investigating for the past decade in the on-line steady-state hierarchical intelligent control of large-scale industrial processes (LSIP)This papergives a definition of intelligent control of large-scale systems first, and then reviews the useof neural networks for identification and optimization, the use of expert systems to solvesome kinds of hierarchical multi-objective optimization problems by an intelligent decisionunit (ID), the use of fuzzy logic control, and the use of iterative learning controlSeveralimplementation examples are introducedThis paper reviews other main achievements ofthe Group alsoFinally this paper gives a perspective of future development.
Excited state correlations of the finite Heisenberg chain
Pozsgay, Balázs
2017-02-01
We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.
A New Method for Incremental Testing of Finite State Machines
Pedrosa, Lehilton Lelis Chaves; Moura, Arnaldo Vieira
2010-01-01
The automatic generation of test cases is an important issue for conformance testing of several critical systems. We present a new method for the derivation of test suites when the specification is modeled as a combined Finite State Machine (FSM). A combined FSM is obtained conjoining previously tested submachines with newly added states. This new concept is used to describe a fault model suitable for incremental testing of new systems, or for retesting modified implementations. For this fault model, only the newly added or modified states need to be tested, thereby considerably reducing the size of the test suites. The new method is a generalization of the well-known W-method and the G-method, but is scalable, and so it can be used to test FSMs with an arbitrarily large number of states.
Hierarchical Functional Modularity in the Resting-State Human Brain
Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien
2009-01-01
Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a mor
Finite current stationary states of random walks on one-dimensional lattices with aperiodic disorder
Miki, Hiroshi
2016-11-01
Stationary states of random walks with finite induced drift velocity on one-dimensional lattices with aperiodic disorder are investigated by scaling analysis. Three aperiodic sequences, the Thue-Morse (TM), the paperfolding (PF), and the Rudin-Shapiro (RS) sequences, are used to construct the aperiodic disorder. These are binary sequences, composed of two symbols A and B, and the ratio of the number of As to that of Bs converges to unity in the infinite sequence length limit, but their effects on diffusional behavior are different. For the TM model, the stationary distribution is extended, as in the case without current, and the drift velocity is independent of the system size. For the PF model and the RS model, as the system size increases, the hierarchical and fractal structure and the localized structure, respectively, are broken by a finite current and changed to an extended distribution if the system size becomes larger than a certain threshold value. Correspondingly, the drift velocity is saturated in a large system while in a small system it decreases as the system size increases.
Equation of state and QCD transition at finite temperature
Bazavov, A; Cheng, M; Christ, N H; DeTar, C; Ejiri, S; Gottlieb, Steven; Gupta, R; Heller, U M; Huebner, K; Jung, C; Karsch, F; Laermann, E; Levkova, L; Miao, C; Mawhinney, R D; Petreczky, P; Schmidt, C; Soltz, R A; Söldner, W; Sugar, R; Toussaint, D; Vranas, P
2009-01-01
We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nt=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a^2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nt=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an Appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we also incorporated an estimate of c...
Measuring finite quantum geometries via quasi-coherent states
Schneiderbauer, Lukas; Steinacker, Harold C.
2016-07-01
We develop a systematic approach to determine and measure numerically the geometry of generic quantum or ‘fuzzy’ geometries realized by a set of finite-dimensional Hermitian matrices. The method is designed to recover the semi-classical limit of quantized symplectic spaces embedded in {{{R}}}d including the well-known examples of fuzzy spaces, but it applies much more generally. The central tool is provided by quasi-coherent states, which are defined as ground states of Laplace- or Dirac operators corresponding to localized point branes in target space. The displacement energy of these quasi-coherent states is used to extract the local dimension and tangent space of the semi-classical geometry, and provides a measure for the quality and self-consistency of the semi-classical approximation. The method is discussed and tested with various examples, and implemented in an open-source Mathematica package.
Measuring finite Quantum Geometries via Quasi-Coherent States
Schneiderbauer, Lukas
2016-01-01
We develop a systematic approach to determine and measure numerically the geometry of generic quantum or "fuzzy" geometries realized by a set of finite-dimensional hermitian matrices. The method is designed to recover the semi-classical limit of quantized symplectic spaces embedded in $\\mathbb{R}^d$ including the well-known examples of fuzzy spaces, but it applies much more generally. The central tool is provided by quasi-coherent states, which are defined as ground states of Laplace- or Dirac operators corresponding to localized point branes in target space. The displacement energy of these quasi-coherent states is used to extract the local dimension and tangent space of the semi-classical geometry, and provides a measure for the quality and self-consistency of the semi-classical approximation. The method is discussed and tested with various examples, and implemented in an open-source Mathematica package.
Reachability for Finite-State Process Algebras Using Static Analysis
DEFF Research Database (Denmark)
Skrypnyuk, Nataliya; Nielson, Flemming
2011-01-01
In this work we present an algorithm for solving the reachability problem in finite systems that are modelled with process algebras. Our method uses Static Analysis, in particular, Data Flow Analysis, of the syntax of a process algebraic system with multi-way synchronisation. The results...... of the Data Flow Analysis are used in order to “cut off” some of the branches in the reachability analysis that are not important for determining, whether or not a state is reachable. In this way, it is possible for our reachability algorithm to avoid building large parts of the system altogether and still...
Logic synthesis for FPGA-based finite state machines
Barkalov, Alexander; Kolopienczyk, Malgorzata; Mielcarek, Kamil; Bazydlo, Grzegorz
2016-01-01
This book discusses control units represented by the model of a finite state machine (FSM). It contains various original methods and takes into account the peculiarities of field-programmable gate arrays (FPGA) chips and a FSM model. It shows that one of the peculiarities of FPGA chips is the existence of embedded memory blocks (EMB). The book is devoted to the solution of problems of logic synthesis and reduction of hardware amount in control units. The book will be interesting and useful for researchers and PhD students in the area of Electrical Engineering and Computer Science, as well as for designers of modern digital systems.
Putting encyclopaedia knowledge into structural form: finite state transducers approach.
Pajić, Vesna
2011-08-18
In biology and functional genomics in particular, understanding the dependence and interplay between different genome and ecological characteristics of organisms is a very challenging problem. There are some public databases which combine this kind of information, but there is still much more information about microbes and other organisms that reside in unstructured and semi-structured documents, such as encyclopaedias. In this paper we present a method for extracting information from semi-structured resources, such as encyclopaedias, based on finite state transducers, consisting of two clearly distinguished phases. The first phase strongly relies on the analysis of the document structure and it is used for locating records of data in the text. The second phase is based on the finite state transducers created for extracting the data, which can be modified so as to achieve the preferred efficiency and it is used for extracting the particular characteristic from the text. We show how the two phase method is applied to the text of the encyclopaedia "Systematic Bacteriology". A fully structured database with genotype and phenotype characteristics of organisms has been created from the encyclopaedia unstructured descriptions.
Steady-State Density Functional Theory for Finite Bias Conductances.
Stefanucci, G; Kurth, S
2015-12-09
In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.
The intersection of Finite State Automata and Definite Clause Grammars
Van Noord, G
1995-01-01
Bernard Lang defines parsing as the calculation of the intersection of a FSA (the input) and a CFG. Viewing the input for parsing as a FSA rather than as a string combines well with some approaches in speech understanding systems, in which parsing takes a word lattice as input (rather than a word string). Furthermore, certain techniques for robust parsing can be modelled as finite state transducers. In this paper we investigate how we can generalize this approach for unification grammars. In particular we will concentrate on how we might the calculation of the intersection of a FSA and a DCG. It is shown that existing parsing algorithms can be easily extended for FSA inputs. However, we also show that the termination properties change drastically: we show that it is undecidable whether the intersection of a FSA and a DCG is empty (even if the DCG is off-line parsable). Furthermore we discuss approaches to cope with the problem.
Enhancement of photonic density of states in finite graphene multilayers
DaSilva, Ashley M.; Chang, You-Chia; Norris, Ted; MacDonald, Allan H.
2013-11-01
We consider the optical properties of finite systems composed of a series of graphene sheets separated by thin dielectric layers. Because these systems respond as conductors to electric fields in the plane of the graphene sheets and as insulators to perpendicular electric fields, they can be expected to have properties similar to those of hyperbolic metamaterials. We show that under typical experimental conditions graphene/dielectric multilayers have enhanced Purcell factors, and enhanced photonic densities of states in both the terahertz (THz) and midinfrared (mid-IR) frequency range. These behaviors can be traced to the coupled plasmon modes of the multilayer graphene system. We show that these results can be obtained with just a few layers of graphene.
Improving the Timing of Extended Finite State Machines Via Catalyst
Directory of Open Access Journals (Sweden)
Shi-Yu Huang
2002-01-01
Full Text Available We propose a timing optimization technique for a complex finite state machine that consists of not only random logic but also data operators. In such a design, the timing critical path often forms a cycle and thus cannot be cut down easily by popular techniques such as pipelining or retiming. The proposed technique, based on the concept of catalyst, adds a functionally redundant block—which includes a piece of combinational logic and several other registers—to the circuits under consideration so that the timing critical paths are divided into stages. During this transformation, the circuit's functionality is not affected, while the speed is improved significantly. This technique has been successfully applied to an industrial application—a Built-In Self-Test (BIST circuit for static random access memories (SRAMs. The synthesis result indicates a 47% clock cycle time reduction.
Building hierarchical models of avian distributions for the State of Georgia
Howell, J.E.; Peterson, J.T.; Conroy, M.J.
2008-01-01
To predict the distributions of breeding birds in the state of Georgia, USA, we built hierarchical models consisting of 4 levels of nested mapping units of decreasing area: 90,000 ha, 3,600 ha, 144 ha, and 5.76 ha. We used the Partners in Flight database of point counts to generate presence and absence data at locations across the state of Georgia for 9 avian species: Acadian flycatcher (Empidonax virescens), brownheaded nuthatch (Sitta pusilla), Carolina wren (Thryothorus ludovicianus), indigo bunting (Passerina cyanea), northern cardinal (Cardinalis cardinalis), prairie warbler (Dendroica discolor), yellow-billed cuckoo (Coccyxus americanus), white-eyed vireo (Vireo griseus), and wood thrush (Hylocichla mustelina). At each location, we estimated hierarchical-level-specific habitat measurements using the Georgia GAP Analysis18 class land cover and other Geographic Information System sources. We created candidate, species-specific occupancy models based on previously reported relationships, and fit these using Markov chain Monte Carlo procedures implemented in OpenBugs. We then created a confidence model set for each species based on Akaike's Information Criterion. We found hierarchical habitat relationships for all species. Three-fold cross-validation estimates of model accuracy indicated an average overall correct classification rate of 60.5%. Comparisons with existing Georgia GAP Analysis models indicated that our models were more accurate overall. Our results provide guidance to wildlife scientists and managers seeking predict avian occurrence as a function of local and landscape-level habitat attributes.
Topological Numbers and Edge State of Hierarchical State in Rapidly Rotating Ultracold Atoms
Institute of Scientific and Technical Information of China (English)
ZHAO Bo; CHEN Zeng-Bing
2005-01-01
The effective theory for the hierarchical fractional quantum Hall (FQH) effect is proposed. We also derive the topological numbers K matrix and t vector and the general edge excitation from the effective theory. One can find that the two issues in rapidly rotating ultracold atoms are similar to those in electron FQH liquid.
Language Model Combination and Adaptation Using Weighted Finite State Transducers
Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.
2010-01-01
In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences
Rauterberg, M
1993-11-01
To support the human factors engineer in designing a good user interface, a method has been developed to analyse the empirical data of the interactive user behaviour traced in a finite discrete state space. The sequences of actions produced by the user contain valuable information about the mental model of this user, the individual problem solution strategies for a given task and the hierarchical structure of the task-subtasks relationships. The presented method, AMME, can analyse the action sequences and automatically generate (1) a net description of the task dependent model of the user, (2) a complete state transition matrix, and (3) various quantitative measures of the user's task solving process. The behavioural complexity of task-solving processes carried out by novices has been found to be significantly larger than the complexity of task-solving processes carried out by experts.
Series Expansions for Finite-State Markov Chains
Heidergott, Bernd; Hordijk, Arie; Uitert, van Miranda
2005-01-01
This paper provides series expansions of the stationary distribution of a finite Markov chain. This leads to an efficient numerical algorithm for computing the stationary distribution of a finite Markov chain. Numerical examples are given to illustrate the performance of the algorithm.
Comprehensive bidding strategies with genetic programming/finite state automata
Energy Technology Data Exchange (ETDEWEB)
Richter, C.W. Jr.; Sheble, G.B.; Ashlock, D.
1999-11-01
This research is an extension of the authors' previous work in double auctions aimed at developing bidding strategies for electric utilities which trade electricity competitively. The improvements detailed in this paper come from using data structures which combine genetic programming and finite state automata termed GP-Automata. The strategies developed by the method described here are adaptive--reacting to inputs--whereas the previously developed strategies were only suitable in the particular scenario for which they had been designed. The strategies encoded in the GP-Automata are tested in an auction simulator. The simulator pits them against other distribution companies (distcos) and generation companies (gencos), buying and selling power via double auctions implemented in regional commodity exchanges. The GP-Automata are evolved with a genetic algorithm so that they possess certain characteristics. In addition to designing successful bidding strategies (whose usage would result in higher profits) the resulting strategies can also be designed to imitate certain types of trading behaviors. The resulting strategies can be implemented directly in on-line trading, or can be used as realistic competitors in an off-line trading simulator.
Automated Finite State Workflow for Distributed Data Production
Hajdu, L.; Didenko, L.; Lauret, J.; Amol, J.; Betts, W.; Jang, H. J.; Noh, S. Y.
2016-10-01
In statistically hungry science domains, data deluges can be both a blessing and a curse. They allow the narrowing of statistical errors from known measurements, and open the door to new scientific opportunities as research programs mature. They are also a testament to the efficiency of experimental operations. However, growing data samples may need to be processed with little or no opportunity for huge increases in computing capacity. A standard strategy has thus been to share resources across multiple experiments at a given facility. Another has been to use middleware that “glues” resources across the world so they are able to locally run the experimental software stack (either natively or virtually). We describe a framework STAR has successfully used to reconstruct a ~400 TB dataset consisting of over 100,000 jobs submitted to a remote site in Korea from STAR's Tier 0 facility at the Brookhaven National Laboratory. The framework automates the full workflow, taking raw data files from tape and writing Physics-ready output back to tape without operator or remote site intervention. Through hardening we have demonstrated 97(±2)% efficiency, over a period of 7 months of operation. The high efficiency is attributed to finite state checking with retries to encourage resilience in the system over capricious and fallible infrastructure.
Synthesis Optimization for Finite State Machine Design in FPGAs
Directory of Open Access Journals (Sweden)
R.UMA
2012-12-01
Full Text Available Synthesis optimization plays a vital role in modern FPGAs in order to achieve high performance, in terms of resource utilization and reducing time consuming test process. Cell-based design techniques, such as standard-cells and FPGAs, together with versatile hardware synthesis are rudiments for a high productivity in ASIC design. As the capacity of FPGAs increases, synthesis tools and efficient synthesis methods for targeted device become more significant to efficiently exploit the resources and logic capacity.The synthesis tool provides the selection of different constraint to optimize the circuit. This paper present s the design and synthesis optimization constraints in FPGA for Finite state machine. The primary goal ofthis sequential logic design is to optimize the speed and area by choosing the proper options available inthe synthesis tool. More over the work focuses the design of FSM with more processes operates at a faster rate and the number of slices utilized in an FPGA is also reduced when compare to single process. Themodule functionality are described using Verilog HDL and performance issues like slice utilized,simulation time, percentage of logic utilization, level of logic are analyzed at 90 nm process technology using SPARTAN6 XC6SLX150 XILINX ISE12.1 tool.
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez
2015-01-01
This paper proposes a hierarchical control scheme which applies optimization method into DC microgrids in order to improve the system overall efficiency while considering the State-of-Charge (SoC) balancing at the same time. Primary droop controller, secondary voltage restoration controller...... and tertiary optimization tool formulate the complete hierarchical control system. Virtual resistances are taken as the decision variables for achieving the objective. simulation results are presented to verify the proposed approach....
Jing, Yuanyuan; Chen, Liping; Bai, Shuming; Shi, Qiang
2013-01-28
The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.
A Control-Oriented Notion of Finite State Approximation for Systems Over Finite Alphabets
Tarraf, Danielle C
2011-01-01
We consider the problem of approximating discrete-time plants with finite-valued sensors and actuators by deterministic finite memory systems for the purpose of certified-by-design controller synthesis. We propose a control-oriented notion of input/output approximation for these systems, building on ideas from classical robust control theory. We demonstrate the relevance of the proposed notion of approximation to the control synthesis problem, and we conclude with a discussion of its key features, their merits and limitations.
INFLUENCE OF THE SKELETON HIERARCHICAL ORGANIZATION ON ELECTRONIC STATE OF IONS IN BONE MATRIX
Directory of Open Access Journals (Sweden)
A. S. Avrunin
2016-01-01
Full Text Available The authors suggested the 3D-superlattice (3DSL model to describe the effect of coplanar assembly of the hydroxyapatite (HA nanocrystallites on local electronic state of ions in mineralized bone. This model is based on the main structural and functional relationships between adjacent levels of the hierarchical organization of bone tissue. In the framework of the 3DSL model the authors predicted the distinct assembly-to-crystal red shift of the unoccupied electronic states located near the bottom of the conduction band in HA and dependence of this shift on the ratio of the thickness of the hydrated layer to the crystallite size. To check these predictions the experimental X-ray absorption studies of native bone are performed near the Ca2р1/2,3/2-, P2р1/2,3/2- и O1s edges. Comparison of the measured spectra with the known spectra of the reference compounds has confirmed appearance of the distinct assembly-to-crystal red shift. The observed effect is the ground for development of new diagnostic methods for bone status and imaging changes in the local electronic structure of bone tissue by using ultrasoft X-ray absorption spectroscopy and measuring the assembly-tocrystal shifts. The experimental data analysis proved the applicability of the 3DSL model for better understanding of the hierarchical organization of bone at nanolevel.
Multimodal emotional state recognition using sequence-dependent deep hierarchical features.
Barros, Pablo; Jirak, Doreen; Weber, Cornelius; Wermter, Stefan
2015-12-01
Emotional state recognition has become an important topic for human-robot interaction in the past years. By determining emotion expressions, robots can identify important variables of human behavior and use these to communicate in a more human-like fashion and thereby extend the interaction possibilities. Human emotions are multimodal and spontaneous, which makes them hard to be recognized by robots. Each modality has its own restrictions and constraints which, together with the non-structured behavior of spontaneous expressions, create several difficulties for the approaches present in the literature, which are based on several explicit feature extraction techniques and manual modality fusion. Our model uses a hierarchical feature representation to deal with spontaneous emotions, and learns how to integrate multiple modalities for non-verbal emotion recognition, making it suitable to be used in an HRI scenario. Our experiments show that a significant improvement of recognition accuracy is achieved when we use hierarchical features and multimodal information, and our model improves the accuracy of state-of-the-art approaches from 82.5% reported in the literature to 91.3% for a benchmark dataset on spontaneous emotion expressions.
Efficient Generation of Random Bits from Finite State Markov Chains
Zhou, Hongchao
2010-01-01
The problem of random number generation from an uncorrelated random source (of unknown probability distribution) dates back to von Neumann's 1951 work. Elias (1972) generalized von Neumann's scheme and showed how to achieve optimal efficiency in unbiased random bits generation. Hence, a natural question is what if the sources are correlated? Both Elias and Samuelson proposed methods for generating unbiased random bits in the case of correlated sources (of unknown probability distribution), specifically, they considered finite Markov chains. However, their proposed methods are not efficient or have implementation difficulties. Blum (1986) devised an algorithm for efficiently generating random bits from degree-2 finite Markov chains in expected linear time, however, his beautiful method is still far from optimality on information-efficiency. In this paper, we generalize Blum's algorithm to arbitrary degree finite Markov chains and combine it with Elias's method for efficient generation of unbiased bits. As a re...
Nadeem, Khurram; Moore, Jeffrey E; Zhang, Ying; Chipman, Hugh
2016-07-01
Stochastic versions of Gompertz, Ricker, and various other dynamics models play a fundamental role in quantifying strength of density dependence and studying long-term dynamics of wildlife populations. These models are frequently estimated using time series of abundance estimates that are inevitably subject to observation error and missing data. This issue can be addressed with a state-space modeling framework that jointly estimates the observed data model and the underlying stochastic population dynamics (SPD) model. In cases where abundance data are from multiple locations with a smaller spatial resolution (e.g., from mark-recapture and distance sampling studies), models are conventionally fitted to spatially pooled estimates of yearly abundances. Here, we demonstrate that a spatial version of SPD models can be directly estimated from short time series of spatially referenced distance sampling data in a unified hierarchical state-space modeling framework that also allows for spatial variance (covariance) in population growth. We also show that a full range of likelihood based inference, including estimability diagnostics and model selection, is feasible in this class of models using a data cloning algorithm. We further show through simulation experiments that the hierarchical state-space framework introduced herein efficiently captures the underlying dynamical parameters and spatial abundance distribution. We apply our methodology by analyzing a time series of line-transect distance sampling data for fin whales (Balaenoptera physalus) off the U.S. west coast. Although there were only seven surveys conducted during the study time frame, 1991-2014, our analysis detected presence of strong density regulation and provided reliable estimates of fin whale densities. In summary, we show that the integrative framework developed herein allows ecologists to better infer key population characteristics such as presence of density regulation and spatial variability in a
Liu, Tianqing; Sun, Wei; Sun, Xiangyu; Ai, Hongru
2010-09-21
Condensed drops usually display a Wenzel state on a superhydrophobic surface (SHS) only with microrough architecture, while Cassie drops easily appear on a surface with micro-nano hierarchical roughness. The mechanism of this is not very clear. It is important to understand how the hierarchical structure affects the states of condensation drops so that a good SHS can be designed to achieve the highly efficient dropwise condensation. In this study, the interface free energy (IFE) of a local condensate, which comes from the growth and combination of numerous initial condensation nuclei, was calculated during its shape changes from the early flat shape to a Wenzel or Cassie state. The final state of a condensed drop was determined by whether the IFE continuously decreased or a minimum value existed. The calculation results indicate that the condensation drops on the surface only with microroughness display a Wenzel state because the IFE curve of a condensed drop first decreases and then increases, existing at a minimum value corresponding to a Wenzel drop. On a surface with proper hierarchical roughness, however, the interface energy curve of a condensed drop will continuously decline until reaching a Cassie state. Therefore, a condensed drop on a hierarchical roughness surface can spontaneously change into a Cassie state. Besides, the states and apparent contact angles of condensed drops on a SHS with different structural parameters published in the literature were calculated and compared with experimental observations. The results show that the calculated condensed drop states are well-coordinated with experimental clarifications. We can conclude that micro-nano hierarchical roughness is the key structural factor for sustaining condensed drops in a Cassie state on a SHS.
Using a satisfiability solver to identify deterministic finite state automata
Heule, M.J.H.; Verwer, S.
2009-01-01
We present an exact algorithm for identification of deterministic finite automata (DFA) which is based on satisfiability (SAT) solvers. Despite the size of the low level SAT representation, our approach seems to be competitive with alternative techniques. Our contributions are threefold: First, we p
Reachability for Finite-state Process Algebras Using Horn Clauses
DEFF Research Database (Denmark)
Skrypnyuk, Nataliya; Nielson, Flemming
2013-01-01
In this work we present an algorithm for solving the reachability problem in finite systems that are modelled with process algebras. Our method is based on Static Analysis, in particular, Data Flow Analysis, of the syntax of a process algebraic system with multi-way synchronisation. The results...
Towards a Formal Semantics for UML/MARTE State Machines Based on Hierarchical Timed Automata
Institute of Scientific and Technical Information of China (English)
Yu Zhou; Luciano Baresi; Matteo Rossi
2013-01-01
UML is a widely-used,general purpose modeling language.But its lack of a rigorous semantics forbids the thorough analysis of designed solution,and thus precludes the discovery of significant problems at design time.To bridge the gap,the paper investigates the underlying semantics of UML state machine diagrams,along with the time-related modeling elements of MARTE,the profile for modeling and analysis of real-time embedded systems,and proposes a formal operational semantics based on extended hierarchical timed automata.The approach is exemplified on a simple example taken from the automotive domain.Verification is accomplished by translating designed models into the input language of the UPPAAL model checker.
Discrete coherent states and probability distributions in finite-dimensional spaces
Energy Technology Data Exchange (ETDEWEB)
Galetti, D.; Marchiolli, M.A.
1995-06-01
Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well know results. (author). 20 refs, 2 figs.
The QCD equation of state at finite T and \\mu
Csikor, Ferenc; Fodor, Z; Katz, S D; Szabó, K K; Tóth, A I
2002-01-01
We calculate the pressure (p), the energy density (\\epsilon) and the baryon density (n_B) of QCD at finite temperatures (T) and chemical potentials (\\mu). The recently proposed overlap improving multi-parameter reweighting technique is used to determine observables at nonvanishing chemical potentials. Our results are obtained by studying n_f=2+1 dynamical staggered quarks with semi-realistic masses on N_t=4 lattices.
Lorentz Invariance at Finite Temperature and Its Effect on Production Rate and Equation of State
Institute of Scientific and Technical Information of China (English)
HE Lian-Yi; ZHUANG Peng-Fei
2004-01-01
The effect of Lorentz invariance breaking on the production rate and the equation of state at finite temperature is investigated in the frame of φ3 theory. The invariance breaking significantly changes the off-shell degree at high temperatures.
Jonsen, Ian D; Myers, Ransom A; James, Michael C
2006-09-01
1. Biological and statistical complexity are features common to most ecological data that hinder our ability to extract meaningful patterns using conventional tools. Recent work on implementing modern statistical methods for analysis of such ecological data has focused primarily on population dynamics but other types of data, such as animal movement pathways obtained from satellite telemetry, can also benefit from the application of modern statistical tools. 2. We develop a robust hierarchical state-space approach for analysis of multiple satellite telemetry pathways obtained via the Argos system. State-space models are time-series methods that allow unobserved states and biological parameters to be estimated from data observed with error. We show that the approach can reveal important patterns in complex, noisy data where conventional methods cannot. 3. Using the largest Atlantic satellite telemetry data set for critically endangered leatherback turtles, we show that the diel pattern in travel rates of these turtles changes over different phases of their migratory cycle. While foraging in northern waters the turtles show similar travel rates during day and night, but on their southward migration to tropical waters travel rates are markedly faster during the day. These patterns are generally consistent with diving data, and may be related to changes in foraging behaviour. Interestingly, individuals that migrate southward to breed generally show higher daytime travel rates than individuals that migrate southward in a non-breeding year. 4. Our approach is extremely flexible and can be applied to many ecological analyses that use complex, sequential data.
FINITE ELEMENT METHOD AS A BASIS FOR THE MODELING OF ROAD SURFACE STRESS-STRAIN STATE
2011-01-01
Problem statement. Despite the fact that rigid roads with asphalt concrete pavement widespread,their design and calculation provide for approximate data with some number of hidden factors. Thepresent paper proposes to use finite element method to model stress-strain state of rigid roads withasphalt concrete pavement.Results. The use of the finite element method enables one to construct the precise model ofstress-strain state of road pavement. The calculations performed on the basis of the mod...
Finite State Machine based Vending Machine Controller with Auto-Billing Features
2012-01-01
Nowadays, Vending Machines are well known among Japan, Malaysia and Singapore. The quantity of machines in these countries is on the top worldwide. This is due to the modern lifestyles which require fast food processing with high quality. This paper describes the designing of multi select machine using Finite State Machine Model with Auto-Billing Features. Finite State Machine (FSM) modelling is the most crucial part in developing proposed model as this reduces the hardware. In this paper th...
Finite element modelling of creep process - steady state stresses and strains
Directory of Open Access Journals (Sweden)
Sedmak Aleksandar S.
2014-01-01
Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.
On the conjugacy problem for finite-state automorphisms of regular rooted trees
Bondarenko, Ievgen V; Sidki, Said N; Zapata, Flavia R
2010-01-01
We study the conjugacy problem in the automorphism group $Aut(T)$ of a regular rooted tree $T$ and in its subgroup $FAut(T)$ of finite-state automorphisms. We show that under the contracting condition and the finiteness of what we call the orbit-signalizer, two finite-state automorphisms are conjugate in $Aut(T)$ if and only if they are conjugate in $FAut(T)$, and that this problem is decidable. We prove that both these conditions are satisfied by bounded automorphisms and establish that the (simultaneous) conjugacy problem in the group of bounded automata is decidable.
Institute of Scientific and Technical Information of China (English)
Meng Xiang-Guo; Wang Ji-Suo; Liu Tang-Kun
2008-01-01
In this paper a new class of finite-dimensional even and odd nonlinear pair coherent states(EONLPCSs),which can be realized via operating the superposed evolution operators D±(τ)on the state |q,0),is constructed,then their orthonormalized property,completeness relations and some nonclassical properties are discussed.It is shown that the finite-dimensional EONLPCSs possess normalization and completeness relations.Moreover,the finite-dimensional EONLPCSs exhibit remarkably different sub-Poissonian distributions and phase probability distributions for different values of parameters q,η and ξ.
Hierarchical approximate policy iteration with binary-tree state space decomposition.
Xu, Xin; Liu, Chunming; Yang, Simon X; Hu, Dewen
2011-12-01
In recent years, approximate policy iteration (API) has attracted increasing attention in reinforcement learning (RL), e.g., least-squares policy iteration (LSPI) and its kernelized version, the kernel-based LSPI algorithm. However, it remains difficult for API algorithms to obtain near-optimal policies for Markov decision processes (MDPs) with large or continuous state spaces. To address this problem, this paper presents a hierarchical API (HAPI) method with binary-tree state space decomposition for RL in a class of absorbing MDPs, which can be formulated as time-optimal learning control tasks. In the proposed method, after collecting samples adaptively in the state space of the original MDP, a learning-based decomposition strategy of sample sets was designed to implement the binary-tree state space decomposition process. Then, API algorithms were used on the sample subsets to approximate local optimal policies of sub-MDPs. The original MDP was decomposed into a binary-tree structure of absorbing sub-MDPs, constructed during the learning process, thus, local near-optimal policies were approximated by API algorithms with reduced complexity and higher precision. Furthermore, because of the improved quality of local policies, the combined global policy performed better than the near-optimal policy obtained by a single API algorithm in the original MDP. Three learning control problems, including path-tracking control of a real mobile robot, were studied to evaluate the performance of the HAPI method. With the same setting for basis function selection and sample collection, the proposed HAPI obtained better near-optimal policies than previous API methods such as LSPI and KLSPI.
Finite-size corrections to the density of states
Wörner, C. H.; Muñoz, E.
2012-09-01
The counting of states used in the well-known calculus of the density of states is revisited with emphasis on the error involved in the standard calculation. For pedagogical reasons, we restrict our treatment mainly to the two-dimensional case. This question is discussed in connection with the mathematical Gauss circle problem. It is shown that the typical error involved is negligible when the number of states tends to infinity.
Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.
2010-01-01
Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization
Evaluating a fish monitoring protocol using state-space hierarchical models
Russell, Robin E.; Schmetterling, David A.; Guy, Chris S.; Shepard, Bradley B.; McFarland, Robert; Skaar, Donald
2012-01-01
Using data collected from three river reaches in Montana, we evaluated our ability to detect population trends and predict fish future fish abundance. Data were collected as part of a long-term monitoring program conducted by Montana Fish, Wildlife and Parks to primarily estimate rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) abundance in numerous rivers across Montana. We used a hierarchical Bayesian mark-recapture model to estimate fish abundance over time in each of the three river reaches. We then fit a state-space Gompertz model to estimate current trends and future fish populations. Density dependent effects were detected in 1 of the 6 fish populations. Predictions of future fish populations displayed wide credible intervals. Our simulations indicated that given the observed variation in the abundance estimates, the probability of detecting a 30% decline in fish populations over a five-year period was less than 50%. We recommend a monitoring program that is closely tied to management objectives and reflects the precision necessary to make informed management decisions.
Javed, Muhammad Sufyan; Dai, Shuge; Wang, Mingjun; Guo, Donglin; Chen, Lin; Wang, Xue; Hu, Chenguo; Xi, Yi
2015-07-01
Molybdenum sulfide (MoS2) hierarchical nanospheres are synthesized using a hydrothermal method and characterized by X-ray powder diffraction, Brunauer-Emmett-Teller, scanning electron microscopy and transmission electron microscopy. The prepared MoS2 is used to fabricate solid state flexible supercapacitors which show excellent electrochemical performance such as high capacitance 368 F g-1 at a scan rate of 5 mV s-1 and high power density of 128 W kg-1 at energy density of 5.42 Wh kg-1. The fabricated supercapacitor presents good characteristics such as lightweight, low cast, portability, high flexibility, and long term cycling stability by retaining 96.5% after 5000 cycles at constant discharge current of 0.8 mA. Electrochemical impedance spectroscopy (EIS) results reveal low resistance and suggest that MoS2 nanospheres would be a promising candidate for supercapacitors. Three charged supercapacitors connected in series can light 8 red color commercial light emitting diodes (LEDs) for 2 min, demonstrating its capability as a good storage device.
Examples of bosonic de Finetti states over finite dimensional Hilbert spaces
Gottlieb, A D
2005-01-01
According to the Quantum de Finetti Theorem, locally normal infinite particle states with Bose-Einstein symmetry can be represented as mixtures of infinite tensor powers of vector states. This note presents examples of infinite-particle states with Bose-Einstein symmetry that arise as limits of Gibbs ensembles on finite dimensional spaces, and displays their de Finetti representations. We consider Gibbs ensembles for systems of bosons in a finite dimensional setting and discover limits as the number of particles tends to infinity, provided the temperature is scaled in proportion to particle number.
Extreme fluctuations and the finite lifetime of the turbulent state.
Goldenfeld, Nigel; Guttenberg, Nicholas; Gioia, Gustavo
2010-03-01
We argue that the transition to turbulence is controlled by large amplitude events that follow extreme distribution theory. The theory suggests an explanation for recent observations of the turbulent state lifetime which exhibit superexponential scaling behavior with Reynolds number.
Steady-state properties of a finite system driven by a chemical-potential gradient
DEFF Research Database (Denmark)
Andersen, Jørgen Vitting; Mouritsen, Ole G.
1990-01-01
A two-dimensional lattice-gas model with repulsive interactions periodically infinite in one dimension and finite in the other is driven into a mass-transporting steady state by asymmetric chemical potentials applied at the open edges. By computer-simulation techniques the steady-state current...
Coherent States for generalized oscillator with finite-dimensional Hilbert space
Borzov, Vadim V.; Damaskinsky, Eugene V.
2006-01-01
The construction of oscillator-like systems connected with the given set of orthogonal polynomials and coherent states for such systems developed by authors is extended to the case of the systems with finite-dimensional state space. As example we consider the generalized oscillator connected with Krawtchouk polynomials.
Quantum state discrimination bounds for finite sample size
Audenaert, Koenraad M R; Verstraete, Frank
2012-01-01
In the problem of quantum state discrimination, one has to determine by measurements the state of a quantum system, based on the a priori side information that the true state is one of two given and completely known states, rho or sigma. In general, it is not possible to decide the identity of the true state with certainty, and the optimal measurement strategy depends on whether the two possible errors (mistaking rho for sigma, or the other way around) are treated as of equal importance or not. Recent results on the quantum Chernoff and Hoeffding bounds show that, if several copies of the system are available then the optimal error probabilities decay exponentially in the number of copies, and the decay rate is given by a certain statistical distance between rho and sigma (the Chernoff distance and the Hoeffding distances, respectively). While these results provide a complete solution for the asymptotic problem, they are not completely satisfying from a practical point of view. Indeed, in realistic scenarios ...
Approximating Context-Free Grammars with a Finite-State Calculus
Grimley-Evans, E
1997-01-01
Although adequate models of human language for syntactic analysis and semantic interpretation are of at least context-free complexity, for applications such as speech processing in which speed is important finite-state models are often preferred. These requirements may be reconciled by using the more complex grammar to automatically derive a finite-state approximation which can then be used as a filter to guide speech recognition or to reject many hypotheses at an early stage of processing. A method is presented here for calculating such finite-state approximations from context-free grammars. It is essentially different from the algorithm introduced by Pereira and Wright (1991; 1996), is faster in some cases, and has the advantage of being open-ended and adaptable.
Reward Dinamis dalam Skenario Adaptif Menggunakan Metode Finite State Machine pada Game Edukasi
Directory of Open Access Journals (Sweden)
Hanny Haryanto
2016-07-01
Full Text Available Dalam game edukasi, pengalaman bermain memegang peranan penting dalam usaha penyampaian materi. Skenario game adalah inti dari penyajian pengalaman tersebut. Salah satu bagian dari skenario adalah sistem reward yang berfungsi untuk menjaga motivasi dan pengalaman pemain selama bermain game. Reward adalah bagian vital dalam skenario pada game yang berpengaruh terhadap pengalaman bermain, namun permasalahan yang terjadi adalah reward yang monoton, mudah ditebak sehingga pengalaman yang disajikan kepada pemain menjadi tidak personal. Penelitian ini menggunakan agen cerdas berbasis Finite State Machine untuk mengembangkan reward dinamis sebagai salah satu elemen dalam skenario adaptif untuk memberikan pengalaman personal kepada pemain. Penelitian ini membahas tentang pengembangan agen cerdas menggunakan metode Finite State Machine dalam membentuk reward dinamis yang diimplementasikan dalam game edukasi dengan genre Role Playing Game (RPG. Kata kunci—game edukasi, reward, skenario adaptif, finite state machine.
Exact stabilization of entangled states in finite time by dissipative quantum circuits
Johnson, Peter D.; Ticozzi, Francesco; Viola, Lorenza
2017-07-01
Open quantum systems evolving according to discrete-time dynamics are capable, unlike continuous-time counterparts, to converge to a stable equilibrium in finite time with zero error. We consider dissipative quantum circuits consisting of sequences of quantum channels subject to specified quasi-locality constraints, and determine conditions under which stabilization of a pure multipartite entangled state of interest may be exactly achieved in finite time. Special emphasis is devoted to characterizing scenarios where finite-time stabilization may be achieved robustly with respect to the order of the applied quantum maps, as suitable for unsupervised control architectures. We show that if a decomposition of the physical Hilbert space into virtual subsystems is found, which is compatible with the locality constraint and relative to which the target state factorizes, then robust stabilization may be achieved by independently cooling each component. We further show that if the same condition holds for a scalable class of pure states, a continuous-time quasi-local Markov semigroup ensuring rapid mixing can be obtained. Somewhat surprisingly, we find that the commutativity of the canonical parent Hamiltonian one may associate to the target state does not directly relate to its finite-time stabilizability properties, although in all cases where we can guarantee robust stabilization, a (possibly noncanonical) commuting parent Hamiltonian may be found. Aside from graph states, quantum states amenable to finite-time robust stabilization include a class of universal resource states displaying two-dimensional symmetry-protected topological order, along with tensor network states obtained by generalizing a construction due to Bravyi and Vyalyi [Quantum Inf. Comput. 5, 187 (2005)]. Extensions to representative classes of mixed graph-product and thermal states are also discussed.
The feature on the posterior conditional probability of finite state Markov channel
Institute of Scientific and Technical Information of China (English)
MU Li-hua; SHEN Ji-hong; YUAN Yan-hua
2005-01-01
The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel input is independently and identically distributed. On the contrary, Markov property of posterior condition probability isn' t kept if the input isn't independently and identically distributed and a numerical example is utilized to explain this case. The properties of posterior condition probability will aid the study of the numerical calculated recurrence formula of finite state Markov channel capacity.
On the convergence of finite state mean-field games through Γ-convergence
Ferreira, Rita C.
2014-10-01
In this study, we consider the long-term convergence (trend toward an equilibrium) of finite state mean-field games using Γ-convergence. Our techniques are based on the observation that an important class of mean-field games can be viewed as the Euler-Lagrange equation of a suitable functional. Therefore, using a scaling argument, one can convert a long-term convergence problem into a Γ-convergence problem. Our results generalize previous results related to long-term convergence for finite state problems. © 2014 Elsevier Inc.
Boundary states and finite size effects in sine-Gordon model with Neumann boundary condition
Bajnok, Z; Takács, G
2001-01-01
The sine-Gordon model with Neumann boundary condition is investigated. Using the bootstrap principle the spectrum of boundary bound states is established. Somewhat surprisingly it is found that Coleman-Thun diagrams and bound state creation may coexist. A framework to describe finite size effects in boundary integrable theories is developed and used together with the truncated conformal space approach to confirm the bound states and reflection factors derived by bootstrap.
Equation of State and the Finite Temperature Transition in QCD
Gupta, Rajan
2009-01-01
This talk provides a summary of the results obtained by the HotQCD collaboration on the equation of state and the crossover transition in 2+1 flavor QCD. We investigate bulk thermodynamic quantities - energy density, pressure, entropy density, and the speed of sound over the temperature range 140 < T < 540 MeV. These results have been obtained on lattices of temporal size N_tau = 6 and 8 and with two improved staggered fermion actions, asqtad and p4. Our most extensive results are with masses of the two degenerate light quarks set at m_l = 0.1 m_s corresponding to the Goldstone pion mass m_pi between 220-260 MeV. In these simulations, the strange quark mass is tuned to its physical value and constant values of m_l/m_s define lines of constant physics. We also summarize the current state of results on observables sensitive to the chiral and deconfining physics -- the light and strange quark number susceptibilities, the chiral condensate and its susceptibility, and the renormalized Polyakov loop. Our resu...
Como, Giacomo
2010-01-01
A single-letter characterization is provided for the capacity region of finite-state multiple-access channels, when the channel state process is an independent and identically distributed sequence, the transmitters have access to partial (quantized) state information, and complete channel state information is available at the receiver. The partial channel state information is assumed to be asymmetric at the encoders. As a main contribution, a tight converse coding theorem is presented. The difficulties associated with the case when the channel state has memory are discussed and connections to decentralized stochastic control theory are presented.
Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas
2017-02-01
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally
Ruess, Jakob
2015-12-28
Many stochastic models of biochemical reaction networks contain some chemical species for which the number of molecules that are present in the system can only be finite (for instance due to conservation laws), but also other species that can be present in arbitrarily large amounts. The prime example of such networks are models of gene expression, which typically contain a small and finite number of possible states for the promoter but an infinite number of possible states for the amount of mRNA and protein. One of the main approaches to analyze such models is through the use of equations for the time evolution of moments of the chemical species. Recently, a new approach based on conditional moments of the species with infinite state space given all the different possible states of the finite species has been proposed. It was argued that this approach allows one to capture more details about the full underlying probability distribution with a smaller number of equations. Here, I show that the result that less moments provide more information can only stem from an unnecessarily complicated description of the system in the classical formulation. The foundation of this argument will be the derivation of moment equations that describe the complete probability distribution over the finite state space but only low-order moments over the infinite state space. I will show that the number of equations that is needed is always less than what was previously claimed and always less than the number of conditional moment equations up to the same order. To support these arguments, a symbolic algorithm is provided that can be used to derive minimal systems of unconditional moment equations for models with partially finite state space.
Ruess, Jakob
2015-12-01
Many stochastic models of biochemical reaction networks contain some chemical species for which the number of molecules that are present in the system can only be finite (for instance due to conservation laws), but also other species that can be present in arbitrarily large amounts. The prime example of such networks are models of gene expression, which typically contain a small and finite number of possible states for the promoter but an infinite number of possible states for the amount of mRNA and protein. One of the main approaches to analyze such models is through the use of equations for the time evolution of moments of the chemical species. Recently, a new approach based on conditional moments of the species with infinite state space given all the different possible states of the finite species has been proposed. It was argued that this approach allows one to capture more details about the full underlying probability distribution with a smaller number of equations. Here, I show that the result that less moments provide more information can only stem from an unnecessarily complicated description of the system in the classical formulation. The foundation of this argument will be the derivation of moment equations that describe the complete probability distribution over the finite state space but only low-order moments over the infinite state space. I will show that the number of equations that is needed is always less than what was previously claimed and always less than the number of conditional moment equations up to the same order. To support these arguments, a symbolic algorithm is provided that can be used to derive minimal systems of unconditional moment equations for models with partially finite state space.
Electronic states in crystals of finite size quantum confinement of bloch waves
Ren, Shang Yuan
2017-01-01
This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...
Quantum-optical states in finite-dimensional Hilbert space; 1, General formalism
Miranowicz, A; Imoto, N; Miranowicz, Adam; Leonski, Wieslaw; Imoto, Nobuyuki
2001-01-01
The interest in quantum-optical states confined in finite-dimensional Hilbert spaces has recently been stimulated by the progress in quantum computing, quantum-optical state preparation and measurement techniques, in particular, by the development of the discrete quantum-state tomography. In the first part of our review we present two essentially different approaches to define harmonic oscillator states in the finite-dimensional Hilbert spaces. One of them is related to the truncation scheme of Pegg, Phillips and Barnett [Phys. Rev. Lett. 81, 1604 (1998)] -- the so-called quantum scissors device. The second method corresponds to the truncation scheme of Leo\\'nski and Tana\\'s [Phys. Rev. A 49, R20 (1994)]. We propose some new definitions of the states related to these truncation schemes and find their explicit forms in the Fock representation. We discuss finite-dimensional generalizations of coherent states, phase coherent states, displaced number states, Schr\\"odinger cats, and squeezed vacuum. We show some i...
Finite State Machine Analysis of Remote Sensor Data
Energy Technology Data Exchange (ETDEWEB)
Barbson, John M.
1999-07-12
The use of unattended monitoring systems for monitoring the status of high value assets and processes has proven to be less costly and less intrusive than the on-site inspections which they are intended to replace. However, these systems present a classic information overload problem to anyone trying to analyze the resulting sensor data. These data are typically so voluminous and contain information at such a low level that the significance of any single reading (e.g., a door open event) is not obvious. Sophisticated, automated techniques are needed to extract expected patterns in the data and isolate and characterize the remaining patterns that are due to undeclared activities. This paper describes a data analysis engine that runs a state machine model of each facility and its sensor suite. It analyzes the raw sensor data, converting and combining the inputs from many sensors into operator domain level information. It compares the resulting activities against a set of activities declared by an inspector or operator, and then presents the differences in a form comprehensible to an inspector. Although the current analysis engine was written with international nuclear material safeguards, nonproliferation, and transparency in mind, since there is no information about any particular facility in the software, there is no reason why it cannot be applied anywhere it is important to verify processes are occurring as expected, to detect intrusion into a secured area, or to detect the diversion of valuable assets.
Nuclear equation of state and finite nucleon volumes
Rożynek, Jacek
2015-01-01
It is shown how the Equation of State (EoS) depends on nucleon properties inside Nuclear Matter (NM). We propose to benefit from the concept of enthalpy in order to include volume corrections to the nucleon rest energy, which are proportional to pressure and absent in a standard Relativistic Mean Field (RMF) with point-like nucleons. As a result, the nucleon mass can decrease inside NM, making the model nonlinear and the EoS softer. The course of the EoS in our RMF model agrees with a semi-empirical estimate and is close to the results obtained from extensive DBHF calculations with a Bonn A potential, which produce an EoS stiff enough to describe neutron star properties (mass--radius constraint), especially the masses of PSR J1614_2230 and PSR J0348_0432, known as the most massive ($\\sim 2 M_\\odot$) neutron stars. The presented model has proper saturation properties, including a good value of compressibility.
Evolved finite state controller for hybrid system in reduced search space
DEFF Research Database (Denmark)
Dupuis, Jean-Francois; Fan, Zhun
2009-01-01
This paper presents an evolutionary methodology to automatically generate finite state automata (FSA) controllers to control hybrid systems. The proposed approach reduces the search space using an invariant analysis of the system. FSA controllers for a case study of two-tank system have been...
Finite temperature quantum correlations in su(2)(c) quark states and quantum spin models
Hamieh, S; Tawfik, A
2005-01-01
The entanglement at finite temperatures is analyzed by using thermal models for colored quarks making tip the hadron physical states. We have found that these quantum correlations entirely vanish at T-c >= m(q)/ln(1.5). For temperatures larger than T-c the correlations are classical. We have also wo
Comparing an evolved finite state controller for hybrid system to a lookahead design
DEFF Research Database (Denmark)
Dupuis, Jean-Francois; Fan, Zhun
2010-01-01
This paper presents a comparison of an evolutionary methodology for evolving finite state controller to the lookahead controller for hybrid system. To illustrate the advantages and disadvantages of both controllers two case studies, namely a two-tanks system and a single-input double-output DC...
Light Fermion Finite Mass Effects in Non-relativistic Bound States
Eiras, D; Eiras, Dolors; Soto, Joan
2000-01-01
We present analytic expressions for the vacuum polarization effects due to a light fermion with finite mass in the binding energy and in the wave function at the origin of QED and (weak coupling) QCD non-relativistic bound states. Applications to exotic atoms, \\Upsilon (1s) and t\\bar{t} production near threshold are briefly discussed.
A finite state and data-oriented method for grapheme to phoneme conversion
Bouma, G.
2000-01-01
A finite-state method, based on leftmost longest-match replacement, is presented for segmenting words into graphemes, and for converting graphemes into phonemes. A small set of hand-crafted conversion rules for Dutch achieves a phoneme accuracy of over 93%. The accuracy of the system is further impr
An Evolution Strategy for the Induction of Fuzzy Finite-State Automata
Institute of Scientific and Technical Information of China (English)
WAN Min; MO Zhi-wen
2005-01-01
This paper presents an evolution strategy to induce fuzzy finite-state automata from examples of fuzzy languages .The coding, fitness function of a generated automaton and corresponding mutation operators are given respectively. The application example given at last shows the effectiveness of the proposed evolution strategy for automata induction.
Low-level finite state control of knee joint in paraplegic standing
Mulder, A.J.; Veltink, P.H.; Boom, H.B.K.; Zilvold, G.
1992-01-01
Low-level finite state (locked-unlocked) control is compared with open-loop stimulation of the knee extensor muscles in functional electrical stimulation (FES) induced paraplegic standing. The parameters were: duration of standing, relative torque loss in knee extensor muscles, knee angle stability,
Protecting a quantum state from environmental noise by an incompatible finite-time measurement
Brasil, Carlos Alexandre; Napolitano, Reginaldo de Jesus
2011-01-01
We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still prot...
On rational solution of the state equation of a finite automaton
Directory of Open Access Journals (Sweden)
R. Chaudhuri
1988-01-01
Full Text Available We prove that the necessary and sufficient condition for the state equation of a finite automaton M to have a rational solution is that the lexicographical Gödel numbers of the strings belonging to each of the end-sets of M form an ultimately periodic set. A method of determining the existence of a rational solution of the state equation is also given.
Some properties of asymmetric Hopfield neural networks with finite time of transition between states
Suleimenov, Ibragim; Mun, Grigoriy; Panchenko, Sergey; Pak, Ivan
2016-11-01
There were implemented samples of asymmetric Hopfield neural networks which have finite time of transition from one state to another. It was shown that in such systems, various oscillation modes could occur. It was revealed that the oscillation of the output signal of certain neuron could be treated as extra logical variable, which describes the state of the neuron. Asymmetric Hopfield neural networks are described in terms of ternary logic. Such logic may be employed in image recognition procedure.
Finite-key analysis of a practical decoy-state high-dimensional quantum key distribution
Bao, Haize; Bao, Wansu; Wang, Yang; Zhou, Chun; Chen, Ruike
2016-05-01
Compared with two-level quantum key distribution (QKD), high-dimensional QKD enables two distant parties to share a secret key at a higher rate. We provide a finite-key security analysis for the recently proposed practical high-dimensional decoy-state QKD protocol based on time-energy entanglement. We employ two methods to estimate the statistical fluctuation of the postselection probability and give a tighter bound on the secure-key capacity. By numerical evaluation, we show the finite-key effect on the secure-key capacity in different conditions. Moreover, our approach could be used to optimize parameters in practical implementations of high-dimensional QKD.
Finite-Time Consensus with a Time-Varying Reference State and Switching Topology
Directory of Open Access Journals (Sweden)
Jian-Yong Wang
2017-01-01
Full Text Available The finite-time consensus problem in the networks of multiple mobile agents is comprehensively investigated. In order to resolve this problem, a novel nonlinear information exchange protocol is proposed. The proposed protocol ensures that the states of the agents are converged to a weighted-average consensus in finite time if the communication topology is a weighted directed graph with a spanning tree and each strongly connected component is detail-balanced. Furthermore, the proposed protocol is also able to solve the finite-time consensus problem of networks with a switching topology. Finally, computer simulations are presented to demonstrate and validate the effectiveness of the theoretical analysis under the proposed protocol.
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method.
Fisher information of a squeezed-state interferometer with a finite photon-number resolution
Liu, P; Yang, W; Jin, G R; Sun, C P
2016-01-01
Squeezed-state interferometry plays an important role in quantum-enhanced optical phase estimation, as it allows the estimation precision to be improved up to the Heisenberg limit by using ideal photon-number-resolving detectors at the output ports. Here we show that for each individual $N$% -photon component of the phase-matched coherent $\\otimes $ squeezed vacuum input state, the classical Fisher information always saturates the quantum Fisher information. Moreover, the total Fisher information is the sum of the contributions from each individual $N$-photon components, where the largest $N$ is limited by the finite number resolution of available photon counters. Based on this observation, we provide approximate formula that quantifies the amount of lost information due to the finite photon number resolution, e.g., given the mean photon number $\\bar{n}$ in the input state, $96$ percent of the Heisenberg limit can be achieved with the number resolution $\\gtrsim 5\\bar{n}$.
Finite State Machine based Vending Machine Controller with Auto-Billing Features
Directory of Open Access Journals (Sweden)
Ana Monga
2012-04-01
Full Text Available Nowadays, Vending Machines are well known among Japan, Malaysia and Singapore. The quantity of machines in these countries is on the top worldwide. This is due to the modern lifestyles which require fast food processing with high quality. This paper describes the designing of multi select machine using Finite State Machine Model with Auto-Billing Features. Finite State Machine (FSM modelling is the most crucial part in developing proposed model as this reduces the hardware. In this paper the process of four state (user Selection, Waiting for money insertion, product delivery and servicing has been modelled using MEALY Machine Model. The proposed model is tested using Spartan 3 development board and its performance is compared with CMOS based machine.
Finite State Machine based Vending Machine Controller with Auto-Billing Features
Directory of Open Access Journals (Sweden)
Balwinder Singh
2012-05-01
Full Text Available Nowadays, Vending Machines are well known among Japan, Malaysia and Singapore. The quantity of machines in these countries is on the top worldwide. This is due to the modern lifestyles which require fast food processing with high quality. This paper describes the designing of multi select machine using Finite State Machine Model with Auto-Billing Features. Finite State Machine (FSM modelling is the most crucial part in developing proposed model as this reduces the hardware. In this paper the process of four state (user Selection, Waiting for money insertion, product delivery and servicing has been modelled using MEALY Machine Model. The proposed model is tested using Spartan 3 development board and its performance is compared with CMOS based machine.
Finite State Machine based Vending Machine Controller with Auto-Billing Features
Monga, Ana; 10.5121/vlsic.2012.3202
2012-01-01
Nowadays, Vending Machines are well known among Japan, Malaysia and Singapore. The quantity of machines in these countries is on the top worldwide. This is due to the modern lifestyles which require fast food processing with high quality. This paper describes the designing of multi select machine using Finite State Machine Model with Auto-Billing Features. Finite State Machine (FSM) modelling is the most crucial part in developing proposed model as this reduces the hardware. In this paper the process of four state (user Selection, Waiting for money insertion, product delivery and servicing) has been modelled using MEALY Machine Model. The proposed model is tested using Spartan 3 development board and its performance is compared with CMOS based machine.
Song, Linze; Shi, Qiang
2015-11-21
Based on recent findings in the hierarchical equations of motion (HEOM) for correlated initial state [Y. Tanimura, J. Chem. Phys. 141, 044114 (2014)], we propose a new stochastic method to obtain the initial conditions for the real time HEOM propagation, which can be used further to calculate the equilibrium correlation functions and symmetrized correlation functions. The new method is derived through stochastic unraveling of the imaginary time influence functional, where a set of stochastic imaginary time HEOM are obtained. The validity of the new method is demonstrated using numerical examples including the spin-Boson model, and the Holstein model with undamped harmonic oscillator modes.
First Passage Moments of Finite-State Semi-Markov Processes
Energy Technology Data Exchange (ETDEWEB)
Warr, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cordeiro, James [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States)
2014-03-31
In this paper, we discuss the computation of first-passage moments of a regular time-homogeneous semi-Markov process (SMP) with a finite state space to certain of its states that possess the property of universal accessibility (UA). A UA state is one which is accessible from any other state of the SMP, but which may or may not connect back to one or more other states. An important characteristic of UA is that it is the state-level version of the oft-invoked process-level property of irreducibility. We adapt existing results for irreducible SMPs to the derivation of an analytical matrix expression for the first passage moments to a single UA state of the SMP. In addition, consistent point estimators for these first passage moments, together with relevant R code, are provided.
Oflazer, K
1995-01-01
Error-tolerant recognition enables the recognition of strings that deviate mildly from any string in the regular set recognized by the underlying finite state recognizer. Such recognition has applications in error-tolerant morphological processing, spelling correction, and approximate string matching in information retrieval. After a description of the concepts and algorithms involved, we give examples from two applications: In the context of morphological analysis, error-tolerant recognition allows misspelled input word forms to be corrected, and morphologically analyzed concurrently. We present an application of this to error-tolerant analysis of agglutinative morphology of Turkish words. The algorithm can be applied to morphological analysis of any language whose morphology is fully captured by a single (and possibly very large) finite state transducer, regardless of the word formation processes and morphographemic phenomena involved. In the context of spelling correction, error-tolerant recognition can be...
Guo, Qiang
2006-01-01
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Software needs to be adequately tested in order to increase the confidence that the system being developed is reliable. However, testing is a complicated and expensive process. Formal specification based models such as finite state machines have been widely used in system modelling and testing. In this PhD thesis, we primarily investigate fault detection and identification when testing from f...
Energy Technology Data Exchange (ETDEWEB)
Feddema, J.T.; Robinett, R.D.; Driessen, B.J.
1998-03-10
This paper discusses how phase plane analysis can be used to describe the overall behavior of single and multiple autonomous robotic vehicles with finite state machine rules. The importance of this result is that one can begin to design provably asymptotically stable group behaviors from a set of simple control laws and appropriate switching points with decentralized variable structure control. The ability to prove asymptotically stable group behavior is especially important for applications such as locating military targets or land mines.
Directory of Open Access Journals (Sweden)
Xiaowei Li
2017-01-01
Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.
Huang, Xuezhen; Liu, Hewei; Zhang, Xi; Jiang, Hongrui
2015-12-23
Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, work leads to an areal capacitance of 62.4 mF·cm(-2) and a volumetric capacitance of 10.4 F·cm(-3), exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated.
Low-level finite state control of knee joint in paraplegic standing.
Mulder, A J; Veltink, P H; Boom, H B; Zilvold, G
1992-01-01
Low-level finite state (locked-unlocked) control is compared with open-loop stimulation of the knee extensor muscles in functional electrical stimulation (FES) induced paraplegic standing. The parameters were: duration of standing, relative torque loss in knee extensor muscles, knee angle stability, average stimulus output and average arm effort during standing. To investigate the impact of external mechanical conditions on controller performance, experiments were performed both under the condition of a freely moving ankle joint and of a mechanically stabilized ankle joint. Finite state control resulted in a 2.5 to 12 times increase of standing duration or in a 1.5 to 5 times decrease of relative torque loss in comparison with open-loop stimulation. Finite state control induced a limit cycle oscillation in the knee joint. Average maximum knee flexion was 6.2 degrees without ankle bracing, and half that value with ankle bracing. Average arm support was 13.9 and 7.5% of the body weight without and with ankle bracing respectively.
DESIGNING A FINITE STATE MACHINE SIMULATOR TO DETECT LOOPS FOR ALICE DETECTOR CONTROL SYSTEM
Yogatama, Bobbi Winema
2017-01-01
This paper present the design and implementation of a Finite State Machine simulator to provoke loops in ALICE Detector Control System (DCS). Loops in a Finite State Machine can be very harmful for the control system and need to be prevented. One way to prevent loops is to simulate the designed Finite State Machine using a simulator that can detect all of the possible conditions that can provoke loops. Further correction can then be made after the loops are detected in the control system. The proposed simulator is able to get the structure of any unknown FSM, get every datapoint elements that are associated with the FSM, and find every possible datapoint combinations that can provoke loops in the FSM. At the end of the project, we tested the simulator on a sample FSM with loops and a real FSM that belongs to the ALICE PHOton Spectrometer (PHOS). The testing results indicate that the simulator is able to detect every possible condition that can cause loops in the FSM.
Finite size effects on the helical edge states on the Lieb lattice
Rui, Chen; Bin, Zhou
2016-06-01
For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin-orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of the Higher Education of China (Grant No. 20134208110001).
Wang, Chong; Qiu, Zhi-Ping
2014-04-01
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters. [Figure not available: see fulltext.
On controlling the electronic states of shallow donors using a finite-size metal gate
Energy Technology Data Exchange (ETDEWEB)
Levchuk, E. A., E-mail: liauchuk@bsu.by; Makarenko, L. F. [Belarusian State University (Belarus)
2016-01-15
The effect of an external electric field on the states of a shallow donor near a semiconductor surface is numerically simulated. A disk-shaped metal gate is considered as an electric-field source. The wavefunctions and energies of bound states are determined by the finite-element method. The critical characteristics of electron relocation between the donor and gate are determined for various gate diameters and boundary conditions, taking into account dielectric mismatch. The empirical dependences of these characteristics on the geometrical parameters and semiconductor properties are obtained. A simple trial function is proposed, which can be used to calculate the critical parameters using the Ritz variational method.
Relations between work and entropy production for general information-driven, finite-state engines
Merhav, Neri
2017-02-01
We consider a system model of a general finite-state machine (ratchet) that simultaneously interacts with three kinds of reservoirs: a heat reservoir, a work reservoir, and an information reservoir, the latter being taken to be a running digital tape whose symbols interact sequentially with the machine. As has been shown in earlier work, this finite-state machine can act as a demon (with memory), which creates a net flow of energy from the heat reservoir into the work reservoir (thus extracting useful work) at the price of increasing the entropy of the information reservoir. Under very few assumptions, we propose a simple derivation of a family of inequalities that relate the work extraction with the entropy production. These inequalities can be seen as either upper bounds on the extractable work or as lower bounds on the entropy production, depending on the point of view. Many of these bounds are relatively easy to calculate and they are tight in the sense that equality can be approached arbitrarily closely. In their basic forms, these inequalities are applicable to any finite number of cycles (and not only asymptotically), and for a general input information sequence (possibly correlated), which is not necessarily assumed even stationary. Several known results are obtained as special cases.
Finite-State Mean-Field Games, Crowd Motion Problems, and its Numerical Methods
Machado Velho, Roberto
2017-09-10
In this dissertation, we present two research projects, namely finite-state mean-field games and the Hughes model for the motion of crowds. In the first part, we describe finite-state mean-field games and some applications to socio-economic sciences. Examples include paradigm shifts in the scientific community and the consumer choice behavior in a free market. The corresponding finite-state mean-field game models are hyperbolic systems of partial differential equations, for which we propose and validate a new numerical method. Next, we consider the dual formulation to two-state mean-field games, and we discuss numerical methods for these problems. We then depict different computational experiments, exhibiting a variety of behaviors, including shock formation, lack of invertibility, and monotonicity loss. We conclude the first part of this dissertation with an investigation of the shock structure for two-state problems. In the second part, we consider a model for the movement of crowds proposed by R. Hughes in [56] and describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an Eikonal equation with Dirichlet or Neumann data. We first establish a priori estimates for the solutions. Next, we consider radial solutions, and we identify a shock formation mechanism. Subsequently, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. We also propose a new numerical method for the solution of Fokker-Planck equations and then to systems of PDEs composed by a Fokker-Planck equation and a potential type equation. Finally, we illustrate the use of the numerical method both to the Hughes model and mean-field games. We also depict cases such as the evacuation of a room and the movement of persons around Kaaba (Saudi Arabia).
Form the density-of-states method to finite density quantum field theory
Langfeld, Kurt
2016-01-01
During the last 40 years, Monte Carlo calculations based upon Importance Sampling have matured into the most widely employed method for determinig first principle results in QCD. Nevertheless, Importance Sampling leads to spectacular failures in situations in which certain rare configurations play a non-secondary role as it is the case for Yang-Mills theories near a first order phase transition or quantum field theories at finite matter density when studied with the re-weighting method. The density-of-states method in its LLR formulation has the potential to solve such overlap or sign problems by means of an exponential error suppression. We here introduce the LLR approach and its generalisation to complex action systems. Applications include U(1), SU(2) and SU(3) gauge theories as well as the Z3 spin model at finite densities and heavy-dense QCD.
Ahn, Kuk-Hyun; Palmer, Richard; Steinschneider, Scott
2017-01-01
This study presents a regional, probabilistic framework for seasonal forecasts of extreme low summer flows in the northeastern United States conditioned on antecedent climate and hydrologic conditions. The model is developed to explore three innovations in hierarchical modeling for seasonal forecasting at ungaged sites: (1) predictive climate teleconnections are inferred directly from ocean fields instead of predefined climate indices, (2) a parsimonious modeling structure is introduced to allow climate teleconnections to vary spatially across streamflow gages, and (3) climate teleconnections and antecedent hydrologic conditions are considered jointly for regional forecast development. The proposed model is developed and calibrated in a hierarchical Bayesian framework to pool regional information across sites and enhance regionalization skill. The model is validated in a cross-validation framework along with five simpler nested formulations to test specific hypotheses embedded in the full model structure. Results indicate that each of the three innovations improve out-of-sample summer low-flow forecasts, with the greatest benefits derived from the spatially heterogeneous effect of climate teleconnections. We conclude with a discussion of possible model improvements from a better representation of antecedent hydrologic conditions at ungaged sites.
Static Object Detection Based on a Dual Background Model and a Finite-State Machine
Directory of Open Access Journals (Sweden)
Heras Evangelio Rubén
2011-01-01
Full Text Available Detecting static objects in video sequences has a high relevance in many surveillance applications, such as the detection of abandoned objects in public areas. In this paper, we present a system for the detection of static objects in crowded scenes. Based on the detection of two background models learning at different rates, pixels are classified with the help of a finite-state machine. The background is modelled by two mixtures of Gaussians with identical parameters except for the learning rate. The state machine provides the meaning for the interpretation of the results obtained from background subtraction; it can be implemented as a look-up table with negligible computational cost and it can be easily extended. Due to the definition of the states in the state machine, the system can be used either full automatically or interactively, making it extremely suitable for real-life surveillance applications. The system was successfully validated with several public datasets.
Real-space renormalization yields finite correlations.
Barthel, Thomas; Kliesch, Martin; Eisert, Jens
2010-07-02
Real-space renormalization approaches for quantum lattice systems generate certain hierarchical classes of states that are subsumed by the multiscale entanglement renormalization Ansatz (MERA). It is shown that, with the exception of one spatial dimension, MERA states are actually states with finite correlations, i.e., projected entangled pair states (PEPS) with a bond dimension independent of the system size. Hence, real-space renormalization generates states which can be encoded with local effective degrees of freedom, and MERA states form an efficiently contractible class of PEPS that obey the area law for the entanglement entropy. It is further pointed out that there exist other efficiently contractible schemes violating the area law.
Cheng, Yongliang; Huang, Liang; Xiao, Xu; Yao, Bin; Hu, Zhimi; Li, Tianqi; Liu, Kang; Zhou, Jun
2016-09-01
The development of portable electronics strongly requires flexible, lightweight, and inexpensive energy-storage devices with high power density, long cycling stability, and high reliability. In this work, we prepare a flexible solid-state electrochemical capacitor using cross-linked hierarchical porous carbon network as electrode material via electrospinning and carbonization process. This device can reversibly deliver a maximum energy density of 10.18 W h/kg with excellent cycling stability which achieves 95% capacitance retention after 20000 charge/discharge cycles. Moreover, it also demonstrates outstanding mechanical flexibility and excellent capacitance retention even when the device is repeatedly bended 10000 cycles under 90°. All of these results suggest its promising perspective in flexible energy storage device.
Sojoudi, Alireza; Goodyear, Bradley G
2016-12-01
Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A finite state machine read-out chip for integrated surface acoustic wave sensors
Rakshit, Sambarta; Iliadis, Agis A.
2015-01-01
A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.
Analytic State Space Model for an Unsteady Finite-Span Wing
Izraelevitz, Jacob; Zhu, Qiang; Triantafyllou, Michael
2015-11-01
Real-time control of unsteady flows, such as force control in flapping wings, requires simple wake models that easily translate into robust control designs. We analytically derive a state-space model for the unsteady trailing vortex system behind a finite aspect-ratio flapping wing. Contrary to prior models, the downwash and lift distributions over the span can be arbitrary, including tip effects. The wake vorticity is assumed to be a fully unsteady distribution, with the exception of quasi-steady (no rollup) geometry. Each discretization along the span has one to four states to represent the local unsteady wake-induced downwash, lift, and circulation. The model supports independently time-varying velocity, heave, and twist along the span. We validate this state-space model through comparison with existing analytic solutions for elliptic wings and an unsteady inviscid panel method.
The Capacity of Finite-State Channels in the High-Noise Regime
Pfister, Henry D
2010-01-01
This paper considers the derivative of the entropy rate of a hidden Markov process with respect to the observation probabilities. The main result is a compact formula for the derivative that can be evaluated easily using Monte Carlo methods. It is applied to the problem of computing the capacity of a finite-state channel (FSC) and, in the high-noise regime, the formula has a simple closed-form expression that enables series expansion of the capacity of a FSC. This expansion is evaluated for a binary-symmetric channel under a (0,1) run-length limited constraint and an intersymbol-interference channel with Gaussian noise.
Flexible architecture of data acquisition firmware based on multi-behaviors finite state machine
Arpaia, Pasquale; Cimmino, Pasquale
2016-11-01
A flexible firmware architecture for different kinds of data acquisition systems, ranging from high-precision bench instruments to low-cost wireless transducers networks, is presented. The key component is a multi-behaviors finite state machine, easily configurable to both low- and high-performance requirements, to diverse operating systems, as well as to on-line and batch measurement algorithms. The proposed solution was validated experimentally on three case studies with data acquisition architectures: (i) concentrated, in a high-precision instrument for magnetic measurements at CERN, (ii) decentralized, for telemedicine remote monitoring of patients at home, and (iii) distributed, for remote monitoring of building's energy loss.
Symmetry breaking in noncommutative finite temperature λphi4 theory with a nonuniform ground state
Hernández, J. M.; Ramírez, C.; Sánchez, M.
2014-05-01
We consider the CJT effective action at finite temperature for a noncommutative real scalar field theory, with noncommutativity among space and time variables. We study the solutions of a stripe type nonuniform background, which depends on space and time. The analysis in the first approximation shows that such solutions appear in the planar limit, but also under normal anisotropic noncommutativity. Further we show that the transition from the uniform ordered phase to the non uniform one is first order and that the critical temperature depends on the nonuniformity of the ground state.
An Elgamal Encryption Scheme of Fibonacci Q-Matrix and Finite State Machine
Directory of Open Access Journals (Sweden)
B. Ravi Kumar
2015-12-01
Full Text Available Cryptography is the science of writing messages in unknown form using mathematical models. In Cryptography, several ciphers were introduced for the encryption schemes. Recent research focusing on designing various mathematical models in such a way that tracing the inverse of the designed mathematical models is infeasible for the eve droppers. In the present work, the ELGamal encryption scheme is executed using the generator of a cyclic group formed by the points on choosing elliptic curve, finite state machines and key matrices obtained from the Fibonacci sequences.
Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min
2017-10-06
Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO4/Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.
Finite nuclear size and Lamb shift of p-wave atomic states
Milstein, A I; Terekhov, I S
2003-01-01
We consider corrections to the Lamb shift of p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotop shift related to FNS. It is shown that the structure of the corrections is qualitatively different from that for s-wave states. The perturbation theory expansion for the relative correction for a $p_{1/2}$-state starts from $\\alpha\\ln(1/Z\\alpha)$-term, while for $s_{1/2}$-states it starts from $Z\\alpha^2$ term. Here $\\alpha$ is the fine structure constant and $Z$ is the nuclear charge. In the present work we calculate the $\\alpha$-terms for $2p$-states, the result for $2p_{1/2}$-state reads $(8\\alpha/9\\pi)[\\ln(1/(Z\\alpha)^2)+0.710]$. Even more interesting are $p_{3/2}$-states. In this case the ``correction'' is by several orders of magnitude larger than the ``leading'' FNS shift.
Characteristic distribution of finite-time Lyapunov exponents for chimera states.
Botha, André E
2016-07-04
Our fascination with chimera states stems partially from the somewhat paradoxical, yet fundamental trait of identical, and identically coupled, oscillators to split into spatially separated, coherently and incoherently oscillating groups. While the list of systems for which various types of chimeras have already been detected continues to grow, there is a corresponding increase in the number of mathematical analyses aimed at elucidating the fundamental reasons for this surprising behaviour. Based on the model systems, there are strong indications that chimera states may generally be ubiquitous in naturally occurring systems containing large numbers of coupled oscillators - certain biological systems and high-Tc superconducting materials, for example. In this work we suggest a new way of detecting and characterising chimera states. Specifically, it is shown that the probability densities of finite-time Lyapunov exponents, corresponding to chimera states, have a definite characteristic shape. Such distributions could be used as signatures of chimera states, particularly in systems for which the phases of all the oscillators cannot be measured directly. For such cases, we suggest that chimera states could perhaps be detected by reconstructing the characteristic distribution via standard embedding techniques, thus making it possible to detect chimera states in systems where they could otherwise exist unnoticed.
Data Structure Analysis to Represent Basic Models of Finite State Automation
Directory of Open Access Journals (Sweden)
V. V. Gurenko
2015-01-01
Full Text Available Complex system engineering based on the automaton models requires a reasoned data structure selection to implement them. The problem of automaton representation and data structure selection to be used in it has been understudied. Arbitrary data structure selection for automaton model software implementation leads to unnecessary computational burden and reduces the developed system efficiency. This article proposes an approach to the reasoned selection of data structures to represent finite algoristic automaton basic models and gives practical considerations based on it.Static and dynamic data structures are proposed for three main ways to assign Mealy and Moore automatons: a transition table, a matrix of coupling and a transition graph. A thirddimensional array, a rectangular matrix and a matrix of lists are the static structures. Dynamic structures are list-oriented structures: two-level and three-level Ayliff vectors and a multi-linked list. These structures allow us to store all required information about finite state automaton model components - characteristic set cardinalities and data of transition and output functions.A criterion system is proposed for data structure comparative evaluation in virtue of algorithmic features of automata theory problems. The criteria focused on capacitive and time computational complexity of operations performed in tasks such as equivalent automaton conversions, proving of automaton equivalence and isomorphism, and automaton minimization.A data structure comparative analysis based on the criterion system has done for both static and dynamic type. The analysis showed advantages of the third-dimensional array, matrix and two-level Ayliff vector. These are structures that assign automaton by transition table. For these structures an experiment was done to measure the execution time of automation operations included in criterion system.The analysis of experiment results showed that a dynamic structure - two
Korayem, M H; Nekoo, S R
2015-01-01
This article investigates finite-time optimal and suboptimal controls for time-varying systems with state and control nonlinearities. The state-dependent Riccati equation (SDRE) controller was the main framework. A finite-time constraint imposed on the equation changes it to a differential equation, known as the state-dependent differential Riccati equation (SDDRE) and this equation was applied to the problem reported in this study that provides general formulation and stability analysis. The following four solution methods were developed for solving the SDDRE; backward integration, state transition matrix (STM) and the Lyapunov based method. In the Lyapunov approach, both positive and negative definite solutions to related SDRE were used to provide suboptimal gain for the SDDRE. Finite-time suboptimal control is applied for robotic manipulator, as finite-time constraint strongly decreases state error and operation time. General state-dependent coefficient (SDC) parameterizations for rigid and flexible joint arms (prismatic or revolute joints) are introduced. By including nonlinear control inputs in the formulation, the actuator׳s limits can be inserted directly to the state-space equation of a manipulator. A finite-time SDRE was implemented on a 6R manipulator both in theory and experimentally. And a reduced 3R arm was modeled and tested as a flexible joint robot (FJR). Evaluations of load carrying capacity and operation time were investigated to assess the capability of this approach, both of which showed significant improvement.
Collective phenomena and non-finite state computation in a human social system.
DeDeo, Simon
2013-01-01
We investigate the computational structure of a paradigmatic example of distributed social interaction: that of the open-source Wikipedia community. We examine the statistical properties of its cooperative behavior, and perform model selection to determine whether this aspect of the system can be described by a finite-state process, or whether reference to an effectively unbounded resource allows for a more parsimonious description. We find strong evidence, in a majority of the most-edited pages, in favor of a collective-state model, where the probability of a "revert" action declines as the square root of the number of non-revert actions seen since the last revert. We provide evidence that the emergence of this social counter is driven by collective interaction effects, rather than properties of individual users.
Levitation of Extended States in a Random Magnetic Field with a Finite Mean
Institute of Scientific and Technical Information of China (English)
LIU Wen-Sheng; LEI Xiao-Lin
2004-01-01
We study the localization properties of electrons in a two-dimensional system in a random magnetic field B(r) = Bo + δB(r) with the average Bo and the amplitude of the magnetic field fluctuations δB. The localization length of the system is calculated by using the finite-size scaling method combined with the transfer-matrix technique.Inthe case of weak δB, we find that the random magnetic field system is equivalent to the integer quantum Hall effect system, namely, the energy band splits into a series of disorder broadened Landau bands, at the centers of which states are extended with the localization length exponent v = 2.34 ± 0.02. With increasing δB, the extended states float up in energy, which is similar to the levitation scenario proposed for the integer quantum Hall effect.
Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan
2017-02-01
We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.
Directory of Open Access Journals (Sweden)
Makoto Ito
2015-11-01
Full Text Available Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the "win-stay, lose-switch" strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS, the dorsomedial striatum (DMS, and the ventral striatum (VS identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum.
Calculation of Equation of State of QCD at Finite Chemical Potential and Temperature
Institute of Scientific and Technical Information of China (English)
QIAO Qing-Peng; ZONG Hong-Shi; TANG Jian; HOU Feng-Yao; LI Xue-Qian; SUN Wei-Min; L(U) Xiao-Fu
2008-01-01
In this paper, using path integral techniques we derive a model-independent formula for the pressure density (μ, T) (or equivalently the partition function) of Quantum Chromodynamics (QCD), which gives the equation of state (EOS) of QCD at finite chemical potential and temperature. In this formula the pressure density (μ, T) consists of two terms: the first term (μ,T) T=0) is a #-independent (but T-dependent) constant; the second term is totally determined by G[μ, T] (p ωn) (the dressed quark propagator at finite μ and finite T), which contains all the nontrivial μ-dependence. Then, in the framework of the rainbow-ladder approximation of the Dyson-Schwinger (DS) approach and under the approximation of neglecting the μ-dependence of the dressed gluon propagator, we show that G[μ, T] (p, ωn) can be obtained from G[T] (p, ωn) (the dressed quark propagator at μ = 0) by the substitution ωn →ωn + iμ. This result facilitates numerical calculations considerably. By this result, once G[T](p, ωn) is known, one can determine the EOS of QCD under the above approximations (up to the additive term (μ, T)[T=0). Finally, a comparison of the present EOS of QCD and the EOS obtained in the previous literatures in the framework of the rainbow-ladder approximation of the DS approach is given. It is found that the EOS given in the previous literatures does not satisfy the thermodynamic relation p(μ, T) = T.
Systems of Systems Modeled by a Hierarchical Part-Whole State-Based Formalism
Directory of Open Access Journals (Sweden)
Luca Pazzi
2013-11-01
Full Text Available The paper presents an explicit state-based modeling approach aimed at modeling Systems of Systems behavior. The approach allows to specify and verify incrementally safety and liveness rules without using model checking techniques. The state-based approach allows moreover to use the system behavior directly as an interface, greatly improving the effectiveness of the recursive composition needed when assembling Systems of Systems. Such systems are, at the same time, both parts and wholes, thus giving a formal characterization to the notion of Holon.
Silveira, Marise Fagundes; Freire, Rafael Silveira; Nepomuceno, Marcela Oliveira; Martins, Andréa Maria Eleutério de Barros Lima; Marcopito, Luiz Francisco
2015-11-01
This is a cross-sectional population-based study (n = 763) conducted in the north of the State of Minas Gerais, which aimed to investigate the prevalence of tooth decay among adolescents and to identify the potential determinants of same. Probability sampling by conglomerates in multiple stages was used. Trained and calibrated professionals performed the data collection by means of intraoral examination and interviews in the previously selected households. In the analysis of the determinant factor for the presence of tooth decay, hierarchical binary logistic regression models were used. The prevalence of tooth decay, decayed, missing and filled teeth were 71.3%, 36.5%, 55.6% and 16%, respectively. The following averages were observed: DMFT (3.4 teeth), number of decayed (0.8 teeth), restored (2.4 teeth) and missing (0.2 teeth). The incidence of tooth decay was higher among adolescents who stated they were black/indigenous/brown (OR = 1.76), lived in crowded households (OR = 2.4), did not regularly visit or had never been to a dentist (OR = 1.9), used public or philanthropic services (OR = 1,8), had smoking habits (OR = 4.1), consumed alcohol (OR = 1.8), perceived their oral health negatively (OR = 5.9 and OR = 1.9) and had toothac in the last six months (OR = 2.0).
Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming
2017-08-01
Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.
Danaila, Ionut; Hecht, Frédéric
2009-01-01
to appear in J. Computational Physics; Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorith...
Danaila, Ionut; Hecht, Frédéric
2010-01-01
Numerical computations of stationary states of fast-rotating Bose-Einstein condensates re- quire high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric con- trol, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex sta...
Danaila, Ionut; Hecht, Frédéric
2010-01-01
to appear in J. Computational Physics; Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorith...
Local density of optical states in the band gap of a finite photonic crysta
Yeganegi, Elahe; Mosk, Allard P; Vos, Willem L
2014-01-01
We study the local density of states (LDOS) in a finite photonic crystal, in particular in the frequency range of the band gap. We propose a new point of view on the band gap, which we consider to be the result of vacuum fluctuations in free space that tunnel in the forbidden range in the crystal. As a result, we arrive at a model for the LDOS that is in two major items modified compared to the well-known expression for infinite crystals. Firstly, we modify the Dirac delta functions to become Lorentzians with a width set by the crystal size. Secondly, building on characterization of the fields versus frequency and position we calculated the fields in the band gap. We start from the fields at the band edges, interpolated in space and position, and incorporating the exponential damping in the band gap. We compare our proposed model to exact calculations in one dimension using the transfer matrix method and find very good agreement. Notably, we find that in finite crystals, the LDOS depends on frequency, on posi...
Hierarchical Model-Based Activity Recognition With Automatic Low-Level State Discovery
Directory of Open Access Journals (Sweden)
Justin Muncaster
2007-09-01
Full Text Available Activity recognition in video streams is increasingly important for both the computer vision and artificial intelligence communities. Activity recognition has many applications in security and video surveillance. Ultimately in such applications one wishes to recognize complex activities, which can be viewed as combination of simple activities. In this paper, we present a general framework of a Dlevel dynamic Bayesian network to perform complex activity recognition. The levels of the network are constrained to enforce state hierarchy while the Dth level models the duration of simplest event. Moreover, in this paper we propose to use the deterministic annealing clustering method to automatically define the simple activities, which corresponds to the low level states of observable levels in a Dynamic Bayesian Networks. We used real data sets for experiments. The experimental results show the effectiveness of our proposed method.
Directory of Open Access Journals (Sweden)
R.S. Khakimov
2016-09-01
Full Text Available On the one hand, the state system of the Golden Horde inherits a number of features from the former political culture of the Turkic states. On the other hand, it brings fundamental changes that determine the characteristics of the Eurasian empire. We introduce the concept of zero-point of history to explain periodization of Tatar history. In the history, the smooth flow of events breaks near the bifurcation point, when society enters into an unstable phase and a radical dismantling of social structures begins. Elements of the past remain as invariants. But they find themselves in the new assembly, which cannot be reduced to the same combinations of social elements. This is essentially new historical phase, in which one coordinate system of space-time is replaced by another and history launches a new countdown. The Golden Horde is the pinnacle of a nomadic civilization. Its prosperity was based on metallurgy, agriculture, and trade. Moreover, its main export was corn. Hundreds of cities and seaports were built in the Golden Horde, which distinguishes it from the Great Steppe. At the same time, despite the increase in sedentary population, the Golden Horde civilization retained its nomadic mentality. Chinese or European models of governance were basically impossible due to the presence of nomadic economy: it was necessary to control precisely the clans occupying certain territories. Clans were able to ensure both the collection of taxes from the mobile population and training of soldiers for the army. The clan system gave stability in the conditions of semi-nomadic life, while also allowing to control the sedentary population. The Golden Horde was a highly developed State with a strong financial system, with the state apparatus divided into two parts, one of which was associated with control of the nomadic population, and the other with the sedentary one. Territory, state structures, traditions, and political culture of the Golden Horde became the
Finite State Machine Based Evaluation Model for Web Service Reliability Analysis
M, Thirumaran; Abarna, S; P, Lakshmi
2011-01-01
Now-a-days they are very much considering about the changes to be done at shorter time since the reaction time needs are decreasing every moment. Business Logic Evaluation Model (BLEM) are the proposed solution targeting business logic automation and facilitating business experts to write sophisticated business rules and complex calculations without costly custom programming. BLEM is powerful enough to handle service manageability issues by analyzing and evaluating the computability and traceability and other criteria of modified business logic at run time. The web service and QOS grows expensively based on the reliability of the service. Hence the service provider of today things that reliability is the major factor and any problem in the reliability of the service should overcome then and there in order to achieve the expected level of reliability. In our paper we propose business logic evaluation model for web service reliability analysis using Finite State Machine (FSM) where FSM will be extended to analy...
An efficient inplementation of boolean functions and finite state machines as self-timed circuits
Energy Technology Data Exchange (ETDEWEB)
David, I.; Ginosar, R.; Yoeli, M. (Technion-Israel Institute of Technology, Haifa (IL))
1989-12-01
Self-timed logic provides a method for designing logic circuits such that their correct behavior depends neither on the speed of their components nor on the delay along the communication wires. General synthesis methods for efficiently implementing self-timed combinational logic (CL) and finite state machines (FSM) are presented. The resulting CL is shown to require less gates than other proposed methods. The FSM is implemented by interconnectng a CL module with a self-timed master-slave register. The FSM synthesis method is also compared with other approaches. A formal system of behavioral sequential constraints is presented for each of the systems, and their behavior is proven correct. Thus, the synthesized CLs and FSMs can serve as correct-by-construction building blocks for self-timed silicon system compilation.
Directory of Open Access Journals (Sweden)
Kunal Pathak
2016-09-01
Full Text Available The calcium signaling plays a crucial role in expansion and contraction of cardiac myocytes. This calcium signaling is achieved by calcium diffusion, buffering mechanisms and influx in cardiac myocytes. The various calcium distribution patterns required for achieving calcium signaling in myocytes are still not well understood. In this paper an attempt has been made to develop a model of calcium distribution in myocytes incorporating diffusion of calcium, point source and excess buffer approximation. The model has been developed for a two dimensional unsteady state case. Appropriate boundary conditions and initial condition have been framed. The finite element method has been employed to obtain the solution. The numerical results have been used to study the effect of buffers and source amplitude on calcium distribution in myocytes.
Selected Operations, Algorithms, and Applications of n-Tape Weighted Finite-State Machines
Kempe, André
2011-01-01
A weighted finite-state machine with n tapes (n-WFSM) defines a rational relation on n strings. It is a generalization of weighted acceptors (one tape) and transducers (two tapes). After recalling some basic definitions about n-ary weighted rational relations and n-WFSMs, we summarize some central operations on these relations and machines, such as join and auto-intersection. Unfortunately, due to Post's Correspondence Problem, a fully general join or auto-intersection algorithm cannot exist. We recall a restricted algorithm for a class of n-WFSMs. Through a series of practical applications, we finally investigate the augmented descriptive power of n-WFSMs and their join, compared to classical transducers and their composition. Some applications are not feasible with the latter. The series includes: the morphological analysis of Semitic languages, the preservation of intermediate results in transducer cascades, the induction of morphological rules from corpora, the alignment of lexicon entries, the automatic ...
Steady-state entanglement of cavity arrays in finite-bandwidth squeezed reservoirs
Zippilli, Stefano
2014-01-01
When two chains of quantum systems are driven at their ends by a two-mode squeezed reservoir, they approach a steady state characterized by the formation of many entangled pairs. Each pair is made of one element of the first and one of the second chain. This effect has been already predicted under the assumption of broadband squeezing. Here we investigate the situation of finite-bandwidth reservoirs. This is done by modeling the driving bath as the output field of a non-degenerate parametric oscillator. The resulting non-Markovian dynamics is studied within the theoretical framework of cascade open quantum systems. It is shown that the formation of pair-entangled structures occurs as long as the normal-mode splitting of the arrays does not overcome the squeezing bandwidth of the reservoir.
Directory of Open Access Journals (Sweden)
M. Beyreuther
2011-02-01
Full Text Available Automatic earthquake detection and classification is required for efficient analysis of large seismic datasets. Such techniques are particularly important now because access to measures of ground motion is nearly unlimited and the target waveforms (earthquakes are often hard to detect and classify. Here, we propose to use models from speech synthesis which extend the double stochastic models from speech recognition by integrating a more realistic duration of the target waveforms. The method, which has general applicability, is applied to earthquake detection and classification. First, we generate characteristic functions from the time-series. The Hidden semi-Markov Models are estimated from the characteristic functions and Weighted Finite-State Transducers are constructed for the classification. We test our scheme on one month of continuous seismic data, which corresponds to 370 151 classifications, showing that incorporating the time dependency explicitly in the models significantly improves the results compared to Hidden Markov Models.
Modelling and simulation for table tennis referee regulation based on finite state machine.
Cui, Jianjiang; Liu, Zixuan; Xu, Long
2017-10-01
As referee's decisions are made artificially in traditional table tennis matches, many factors in a match, such as fatigue and subjective tendency, may lead to unjust decision. Based on finite state machine (FSM), this paper presents a model for table tennis referee regulation to substitute manual decisions. In this model, the trajectory of the ball is recorded through a binocular visual system while the complete rules extracted from the International Table Tennis Federation (ITTF) rules are described based on FSM. The final decision for the competition is made based on expert system theory. Simulation result shows that the proposed model has high accuracy, and can be generalised to other similar games such as badminton, volleyball, etc.
The QCD equation of state at finite density from analytical continuation
Gunther, J; Borsanyi, S; Fodor, Z; Katz, S D; Pasztor, A; Ratti, C
2016-01-01
We determine the equation of state of QCD at finite chemical potential, to order $(\\mu_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the $(T,~\\mu_B)$ plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around $\\mu_B=0$ from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions.
Ma, Wujun; Chen, Shaohua; Yang, Shengyuan; Chen, Wenping; Cheng, Yanhua; Guo, Yiwei; Peng, Shengjie; Ramakrishna, Seeram; Zhu, Meifang
2016-02-01
Towards rapid development of lightweight, flexible, and even wearable electronics, a highly efficient energy-storage device is required for their energy supply management. Graphene fiber-based supercapacitor is considered as one of the promising candidates because of the remarkable mechanical and electrical properties of graphene fibers. However, supercapacitors based on bare graphene fibers generally suffer a low capacitance, which certainly restricts their potentially wide applications. In this work, hierarchically structured MnO2 nanowire/graphene hybrid fibers are fabricated through a simple, scalable wet-spinning method. The hybrid fibers form mesoporous structure with large specific surface area of 139.9 m2 g-1. The mass loading of MnO2 can be as high as 40 wt%. Due to the synergistic effect between MnO2 nanowires and graphene, the main pseudocapacitance of MnO2 and the electric double-layer capacitance of graphene are improved simultaneously. In view of the practical demonstration, a highly flexible solid-state supercapacitor is fabricated by twisting of two MnO2/graphene fibers coated by polyvinyl alcohol/H3PO4 electrolyte. The supercapacitor exhibits a high volumetric capacitance (66.1 F cm-3, normalized by the total volume of two fiber electrodes), excellent cycling stability (96% capacitance retention over 10,000 cycles), high energy and power density (5.8 mWh cm-3 and 0.51 W cm-3, respectively).
Coates, Peter S.; Halstead, Brian J.; Blomberg, Erik J.; Brussee, Brianne; Howe, Kristy B.; Wiechman, Lief; Tebbenkamp, Joel; Reese, Kerry P.; Gardner, Scott C.; Casazza, Michael L.
2014-01-01
rate (i.e., finite rate of change, λ) and specific demographic parameters that explain sources of variation in λ within different subpopulations would be valuable for making conservation and management decisions for this DPS. During 2003–12, agencies and universities collaborated to conduct extensive monitoring of sage-grouse populations within the Bi-State DPS. Data regarding lek attendance, movement, and survival of sage-grouse across multiple life stages were documented. Specifically, sage-grouse from nearly all subpopulations were marked and tracked across multiple seasons using radio-telemetry techniques. A hierarchical integrated population modeling (IPM) approach was used to derive demographic parameters for the Bi-State DPS using the large amount of data collected over a 10-year period. This modeling approach allows integration of multiple data sources to inform population growth rates and population vital rates for the Bi-State DPS overall, as well as for individual subpopulations. These models are more informative than other models because they integrate inputs of demographic data (for example, survival and fecundity rates) and survey data (for example, lek observations). The findings here will help characterize population growth rates within the Bi-State DPS.
Condensed states of interacting bosons in a large but finite box
Shimizu, A; Shimizu, Akira; Inoue, Jun-ichi
1998-01-01
We study the condensation of interacting bosons confined in a large but finite box, by taking account of quantum fluctuations of all modes (including k=0) of the bosons. We first propose a new variational form |N,y> of the wavefunction of the ground state that has a definite number of interacting bosons. We then identify a ``natural coordinate'' b_0 of the interacting bosons, by which many physical properties can be simply described. We then analyze a gedanken experiment: at t=0 a small hole is made in the box, so that a small leakage flux J of the bosons is induced. We evaluate the time evolution of the reduced density operator of the bosons in the box, in the early time stage for which Jt at t of various N at t > 0. The latter state can also be represented as the phase-randomized mixture (PRM) of the ``number-phase squeezed states'' (NPSSs) of b_0. We also study order parameters according to a few typical definitions. We show that the off-diagonal long-range order does not distinguish |N,y>, the NPSS and ...
Entanglement manipulation of multipartite pure states with finite rounds of classical communication
de Vicente, J. I.; Spee, C.; Sauerwein, D.; Kraus, B.
2017-01-01
We studied pure state transformations using local operations assisted by finitely many rounds of classical communication (LOCCIN) [C. Spee, J. I. de Vicente, D. Sauerwein, and B. Kraus [Phys. Rev. Lett. (to be published)], arXiv:1606.04418]. Here, we present the details of some of the proofs and generalize the construction of examples of state transformations via LOCCIN which require a probabilistic step. However, we also present explicit examples of SLOCC classes where any separable transformation can be realized by a protocol in which each step is deterministic (all-det-LOCCIN). Such transformations can be considered as natural generalizations of bipartite transformations. Furthermore, we provide examples of pure state transformations which are possible via separable transformations, but not via LOCCIN. We also analyze an interesting genuinely multipartite effect which we call locking or unlocking the power of other parties. This means that one party can prevent or enable the implementation of LOCC transformations by other parties. Moreover, we investigate the maximally entangled set restricted to LOCCIN and show how easily computable bounds on some entanglement measures can be derived by restricting to LOCCIN.
Hierarchical Structure from the Self-Assembly of Giant Gemini Surfactants in Condensed State
Su, Hao; Wang, Zhao; Li, Yiwen; Cheng, Stephen
2013-03-01
In the past a few years, a new class of amphiphiles with both asymmetrical shapes and interactions named ``shape amphiphiles'' has been significantly intensified. Recently, a new kind of shape amphiphiles called ``Giant Gemini Surfactants'' consisting of two hydrophilic carboxylic acid-functionalized polyhedral oligomeric silsesquioxane (APOSS) heads and two hydrophobic polystyrene (PS) tails covalently linked via rigid spacers (p-phenylene versus biphenylene) has been successful behavior of giant gemini surfactants. We currently continue to investigate the spacer effects on the self-assembly behaviors of giant gemini surfactants in condensed state by utilizing DCS, SAXS and TEM. Preliminary results showed that giant gemini surfactants with different spacers have diverse phase behaviors. As we use the same 3.2k PS chains, the giant gemini surfactant with p-phenylene spacer showed double gyroid morphology, while the one with biphenylene spacer revealed cylindrical morphology. This study expands the scope of giant gemini surfactants and contributes a lot to the basic physical principles in self-assembly behavior.
Hwang, Daesub; Jo, Seong Mu; Kim, Dong Young; Armel, Vanessa; MacFarlane, Douglas R; Jang, Sung-Yeon
2011-05-01
High-performance, room-temperature (RT), solid-state dye-sensitized solar cells (DSSCs) were fabricated using hierarchically structured TiO₂ nanofiber (HS-NF) electrodes and plastic crystal (PC)-based solid-state electrolytes. The electrospun HS-NF photoelectrodes possessed a unique morphology in which submicrometer-scale core fibers are interconnected and the nanorods are dendrited onto the fibers. This nanorod-in-nanofiber morphology yielded porosity at both the mesopore and macropore level. The macropores, steming from the interfiber space, afforded high pore volumes to facilitate the infiltration of the PC electrolytes, whereas the mesoporous nanorod dendrites offered high surface area for enhanced dye loading. The solid-state DSSCs using HS-NFs (DSSC-NF) demonstrated improved power conversion efficiency (PCE) compared to conventional TiO₂ nanoparticle (NP) based DSSCs (DSSC-NP). The improved performance (>2-fold) of the DSSC-NFs was due to the reduced internal series resistance (R(s)) and the enhanced charge recombination lifetime (τ(r)) determined by electrochemical impedance spectroscopy and intensity modulated photocurrent/photovoltage spectroscopy. The easy penetration of the PC electrolytes into HS-NF layers via the macropores reduces R(s) significantly, improving the fill factor (FF) of the resulting DSSC-NFs. The τ(r) difference between the DSSC-NF and DSSC-NP in the PC electrolytes was extraordinary (~14 times) compared to reported results in conventional organic liquid electrolytes. The optimized PCE of DSSC-NF using the PC electrolytes was 6.54, 7.69, and 7.93% at the light intensity of 100, 50, and 30 mW cm⁻², respectively, with increased charge collection efficiency (>40%). This is the best performing RT solid-state DSSC using a PC electrolyte. Considering the fact that most reported quasi-solid state or nonvolatile electrolytes require higher iodine contents for efficient ion transport, our HS-NFs are a promising morphology for such
A finite state model for respiratory motion analysis in image guided radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Wu Huanmei [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Sharp, Gregory C [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Salzberg, Betty [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Kaeli, David [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)
2004-12-07
Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.
Li, Xin; Yu, Jiaguo; Jaroniec, Mietek
2016-05-01
As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.
Song, Hairong; Ferrer, Emilio
2009-01-01
This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…
Berg, Melanie D.; Label, Kenneth A.; Kim, Hak; Phan, Anthony; Seidleck, Christina
2014-01-01
Finite state-machines (FSMs) are used to control operational flow in application specific integrated circuits (ASICs) and field programmable gate array (FPGA) devices. Because of their ease of interpretation, FSMs simplify the design and verification process and consequently are significant components in a synchronous design.
FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET.
N Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash
2016-01-01
Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.
Perez-Diaz, Jose Luis; Garcia-Prada, Juan Carlos
2007-10-01
The force between a magnetic dipole and a finite superconductor in the Meissner state (H
Automated Transformation of Distributed Software Architectural Models to Finite State Process
Directory of Open Access Journals (Sweden)
Omid Bushehrian,
2010-12-01
Full Text Available Software Performance Engineering (SPE represents the collection of software engineering activities with the purpose of identification, prediction and also improvement of software performance parameters in the early stages of software development life cycle. Various models such as queuing networks, layered queues, Petri Nets and Stochastic Process Algebras are suggested for modeling distributed systems. Particular ability of a model is the prediction and estimation of non-functional characteristic of one system before it has been made. The main problem is a method by which we can easily transform architectural software models into formal simulate able models.In this paper a method for automatic transformation of UML deployment and sequence diagrams into FSP(finite state process model is presented, so that we can analyze the resulting model through discrete event simulation tools from the performance perspective. In the proposed transformation algorithm, different aspects of a software system such as: communication model of software objects, synchronization and physical deployment of objects are considered.
Formal Reasoning About Finite-State Discrete-Time Markov Chains in HOL
Institute of Scientific and Technical Information of China (English)
Liya Liu; Osman Hasan; Sofiène Tahar
2013-01-01
Markov chains are extensively used in modeling different aspects of engineering and scientific systems,such as performance of algorithms and reliability of systems.Different techniques have been developed for analyzing Markovian models,for example,Markov Chain Monte Carlo based simulation,Markov Analyzer,and more recently probabilistic modelchecking.However,these techniques either do not guarantee accurate analysis or are not scalable.Higher-order-logic theorem proving is a formal method that has the ability to overcome the above mentioned limitations.However,it is not mature enough to handle all sorts of Markovian models.In this paper,we propose a formalization of Discrete-Time Markov Chain (DTMC) that facilitates formal reasoning about time-homogeneous finite-state discrete-time Markov chain.In particular,we provide a formal verification on some of its important properties,such as joint probabilities,Chapman-Kolmogorov equation,reversibility property,using higher-order logic.To demonstrate the usefulness of our work,we analyze two applications:a simplified binary communication channel and the Automatic Mail Quality Measurement protocol.
Finite-temperature time-dependent variation with multiple Davydov states.
Wang, Lu; Fujihashi, Yuta; Chen, Lipeng; Zhao, Yang
2017-03-28
The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare calculated real-time quantum dynamics of the spin-boson model with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.
Fox, Zachary; Neuert, Gregor; Munsky, Brian
2016-08-01
Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.
A wide-range programmable frequency synthesizer based on a finite state machine filter
Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.
2013-11-01
In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.
Probing the finite density equation of state of QCD via resummed perturbation theory
Mogliacci, Sylvain
2014-01-01
In this Ph.D. thesis, the primary goal is to present a recent investigation of the finite density thermodynamics of hot and dense quark-gluon plasma. As we are interested in a temperature regime, in which naive perturbation theory is known to lose its predictive power, we clearly need to use a refined approach. To this end, we adopt a resummed perturbation theory point of view and employ two different frameworks. We first use hard-thermal-loop perturbation theory (HLTpt) at leading order to obtain the pressure for nonvanishing quark chemical potentials, and next, inspired by dimensional reduction, resum the known four-loop weak coupling expansion for the quantity. We present and analyze our findings for various cumulants of conserved charges. This provides us with information, through correlations and fluctuations, on the degrees of freedom effectively present in the quark-gluon plasma right above the deconfinement transition. Moreover, we compare our results with state-of-the-art lattice Monte Carlo simulati...
FAULT TOLERANCE FOR TWO WHEEL MOBILE ROBOT USING FSM (FINITE STATE MACHINE
Directory of Open Access Journals (Sweden)
Chan Shi Jing
2017-02-01
Full Text Available Fault Tolerance (FT enables system to continue operating despite in the event of failures. Therefore, FT serves as a backup component or procedure that can immediately play its role to minimize any service lost. FT exists in many forms, where it can either be in the software form or hardware form or both hardware and software form. Fault Tolerance is an umbrella term for fault detection, fault isolation, fault identification and fault solving. To better visualize the fault detection and isolation process, a two wheel robot is used in this study to represent the complex system. The aim of this research is to construct and design a Fault Tolerance algorithm considered to speed up the fault isolation procedure and it might identify multiple fault with the same static fault signature. The Finite State Machine (FSM model, a wide library of reusable model for the fault tolerant is used in this study to solve the fault in actuator or in the sensor by resetting and adjusting it to the correct position. Using the system sensors or actuators, the technique used is able to recognize the fault from its data. This FSM method is capable to avoid, replace, reset and recover any possible faults occurred in the system, offering an innovative solution to identify and solve a fault immediately.
The Degrees of Freedom of the Compound MIMO Broadcast Channels with Finite States
Maddah-Ali, Mohammad Ali
2009-01-01
Multiple-antenna broadcast channels with $M$ transmit antennas and $K$ single-antenna receivers is considered, where the channel of receiver $r$ takes one of the $J_r$ finite values. It is assumed that the channel states of each receiver are randomly selected from $\\mathcal{R}^{M\\times 1}$. It is shown that no matter what $J_r$ is, the degrees of freedom (DoF) of $\\frac{MK}{M+K-1}$ is achievable. The achievable scheme relies on the idea of interference alignment at receivers, without exploiting the possibility of cooperation among transmit antennas. It is proven that if $J_r \\geq M$, $r=1,...,K$, this scheme achieves the optimal DoF. This results implies that when the uncertainty of the base station about the channel realization is considerable, the system loses the gain of cooperation. However, it still benefits from the gain of interference alignment. In fact, in this case, the compound broadcast channel is treated as a compound X channel. Moreover, it is shown that when the base station knows the channel s...
Ryan, Deirdre A.; Langdon, H. Scott; Beggs, John H.; Steich, David J.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method.
Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi
Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.
Finite Element Method Study on Stress State in Soil Induced by Agricultural Traffic
Directory of Open Access Journals (Sweden)
Adrian Molnar-Irimie
2016-11-01
Full Text Available In general, when a tyre is running on a deformable soil, the soil compaction will occur not only on surface layers, but also on soil profile, in deeper layers. This leads to a series of negative effects not only on physical and mechanical properties of soil, but also influences the crops growth and the crop yield. For these reasons, currently are needed solutions to reduce soil compaction, caused mainly by agricultural implements passing on the soil surface in order to aply the specific crop production technologies. From our simulation we can draw the following conclusions: the soil stresses decreased with depth; the soil displacements magnitude increased with soil water content due to lower friction forces between soil particles (water acts like a lubricant between soil particles; decreasing rate for soil displacement is influenced by load magnitude and tyre inflation pressure; the soil particles moved in vertical plain from the top to the bottom, but also in horizontal direction, from the center to the edge in cross section and in longitudinal direction; the dimensions of the geometric shape of the mentioned soil volume is influenced by load and tyre inflation pressure. In this paper the agricultural traffic and its influence on stress state in soil, it was used a software application based on Finite Element Method, that has been proved to be a useful tool for soil compaction assessment in order to find the right decisions for a proper field traffic management.
Avendaño, Carlos; Briceño, Alexander; Méndez, Franklin J; Brito, Joaquín L; González, Gema; Cañizales, Edgar; Atencio, Reinaldo; Dieudonné, Philippe
2013-02-28
Novel MoO(2)/C nano/microcomposites were prepared via a bottom-up approach by hydrothermal carbonization of a solution of glucose as a carbon precursor in the presence of polyoxometalates (POMs: phosphomolybdic acid [H(3)PMo(12)O(40)] and ammonium heptamolybdate tetrahydrate [(NH(4))(6)Mo(7)O(24)]·4H(2)O). The structural characterization by FT-IR, XRPD, SEM and TEM analyses revealed the controlled formation of hierarchical MoO(2)/C composites with different morphologies: strawberry-like, based on carbon microspheres decorated with MoO(2) nanoparticles; MoO(2)/C core-shell composites; and irregular aggregates in combination with ring-like microstructures bearing amorphous Mo species. These composites can be fine-tuned by varying reaction time, glucose/POM ratio and type of POM precursor. Subsequent transformations in the solid state through calcinations of MoO(2)/C core-shell composites in air lead to hollow nanostructured molybdenum trioxide microspheres together with nanorods and plate microcrystals or cauliflower-like composites (MoO(2)/C). In addition, the MoO(2)/C composite undergoes a morphology evolution to urchin-like composites when it is calcined under nitrogen atmosphere (MoO(2)/C-N(2)). The MoO(2)/C strawberry-like and MoO(2)/C-N(2) composites were transformed into Mo carbide and nitride supported on carbon microspheres (Mo(2)C/C, MoN/C, and MoN/C-N(2)). These phases were tested as precursors in thiophene hydrodesulphurization (HDS) at 400 °C, observing the following trend in relation to the thiophene steady-state conversion: MoN/C-N(2) > MoN/C > Mo(2)C/C > MoO(2)/C-N(2) > MoO(2)/C. According to these conversion values, a direct correlation was observed between higher HDS activity and decreasing crystal size as estimated from the Scherrer equation. These results suggest that such composites represent interesting and promising precursors for HDS catalysts, where the activity and stability can be modified either by chemical or structural changes of the
Xu, Yong; Lu, Renquan; Shi, Peng; Li, Hongyi; Xie, Shengli
2016-12-15
This paper considers finite-time distributed state estimation for discrete-time nonlinear systems over sensor networks. The Round-Robin protocol is introduced to overcome the channel capacity constraint among sensor nodes, and the multiplicative noise is employed to model the channel fading. In order to improve the performance of the estimator under the situation, where the transmission resources are limited, fading channels with different stochastic properties are used in each round by allocating the resources. Sufficient conditions of the average stochastic finite-time boundedness and the average stochastic finite-time stability for the estimation error system are derived on the basis of the periodic system analysis method and Lyapunov approach, respectively. According to the linear matrix inequality approach, the estimator gains are designed. Finally, the effectiveness of the developed results are illustrated by a numerical example.
Barnes, Brian C.; Spear, Carrie E.; Leiter, Ken W.; Becker, Richard; Knap, Jaroslaw; Lísal, Martin; Brennan, John K.
2017-01-01
In order to progress towards a materials-by-design capability, we present work on a challenge in continuum-scale modeling: the direct incorporation of complex physical processes in the constitutive evaluation. In this work, we use an adaptive scale-bridging computational framework executing in parallel in a heterogeneous computational environment to couple a fine-scale, particle-based model computing the equation of state (EOS) to the constitutive response in a finite-element multi-physics simulation. The EOS is obtained from high fidelity materials simulations performed via dissipative particle dynamics (DPD) methods. This scale-bridging framework is progress towards an innovation infrastructure that will be of great utility for systems in which essential aspects of material response are too complex to capture by closed form material models. The design, implementation, and performance of the scale-bridging framework are discussed. Also presented is a proof-of-concept Taylor anvil impact test of non-reacting 1,3,5-trinitrohexahydro-s-triazine (RDX).
Parallel hierarchical radiosity rendering
Energy Technology Data Exchange (ETDEWEB)
Carter, M.
1993-07-01
In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.
Steady-state solution of the PTC thermistor problem using a quadratic spline finite element method
Directory of Open Access Journals (Sweden)
Bahadir A. R.
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
Energy Technology Data Exchange (ETDEWEB)
Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)
2015-05-15
This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.
Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J.; Katzgraber, Helmut G.
2016-09-01
We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.
Shen, Bo; Wang, Zidong; Liu, Xiaohui
2011-01-01
In this paper, new synchronization and state estimation problems are considered for an array of coupled discrete time-varying stochastic complex networks over a finite horizon. A novel concept of bounded H(∞) synchronization is proposed to handle the time-varying nature of the complex networks. Such a concept captures the transient behavior of the time-varying complex network over a finite horizon, where the degree of bounded synchronization is quantified in terms of the H(∞)-norm. A general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. By utilizing a time-varying real-valued function and the Kronecker product, criteria are established that ensure the bounded H(∞) synchronization in terms of a set of recursive linear matrix inequalities (RLMIs), where the RLMIs can be computed recursively by employing available MATLAB toolboxes. The bounded H(∞) state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, over a finite horizon, the dynamics of the estimation error is guaranteed to be bounded with a given disturbance attenuation level. Again, an RLMI approach is developed for the state estimation problem. Finally, two simulation examples are exploited to show the effectiveness of the results derived in this paper.
Pathak, Jyotsana; Rawat, Kamla; Aswal, V K; Bohidar, H B
2014-09-25
= 1.7 ± 0.1 and (ii) I(q) = IOZ(0)/(1 + q(2)ξcoac(2)) with ξcoac = 1.6 ± 0.2 nm, a value close to the persistence length of gelatin chain (lp ≈ 2 nm). Phase transition from one equilibrium state to another, i.e., phase I to II, was hierarchical in the charge state of the protein-protein complex. Within the same charge state, transition from phase I to III and from phase II to IV was thermally activated. The aforesaid mechanisms are captured in a unique ζ-T phase diagram.
Bled, F.; Royle, J. Andrew; Cam, E.
2011-01-01
Invasive species are regularly claimed as the second threat to biodiversity. To apply a relevant response to the potential consequences associated with invasions (e.g., emphasize management efforts to prevent new colonization or to eradicate the species in places where it has already settled), it is essential to understand invasion mechanisms and dynamics. Quantifying and understanding what influences rates of spatial spread is a key research area for invasion theory. In this paper, we develop a model to account for occupancy dynamics of an invasive species. Our model extends existing models to accommodate several elements of invasive processes; we chose the framework of hierarchical modeling to assess site occupancy status during an invasion. First, we explicitly accounted for spatial structure and how distance among sites and position relative to one another affect the invasion spread. In particular, we accounted for the possibility of directional propagation and provided a way of estimating the direction of this possible spread. Second, we considered the influence of local density on site occupancy. Third, we decided to split the colonization process into two subprocesses, initial colonization and recolonization, which may be ground-breaking because these subprocesses may exhibit different relationships with environmental variations (such as density variation) or colonization history (e.g., initial colonization might facilitate further colonization events). Finally, our model incorporates imperfection in detection, which might be a source of substantial bias in estimating population parameters. We focused on the case of the Eurasian Collared-Dove (Streptopelia decaocto) and its invasion of the United States since its introduction in the early 1980s, using data from the North American BBS (Breeding Bird Survey). The Eurasian Collared-Dove is one of the most successful invasive species, at least among terrestrial vertebrates. Our model provided estimation of the
General finite-size effects for zero-entropy states in one-dimensional quantum integrable models
Eliëns, Sebas; Caux, Jean-Sébastien
2016-12-01
We present a general derivation of the spectrum of excitations for gapless states of zero entropy density in Bethe ansatz solvable models. Our formalism is valid for an arbitrary choice of bare energy function which is relevant to situations where the Hamiltonian for time evolution differs from the Hamiltonian in a (generalized) Gibbs ensemble, i.e. out of equilibrium. The energy of particle and hole excitations, as measured with the time-evolution Hamiltonian, is shown to include additional contributions stemming from the shifts of the Fermi points that may now have finite energy. The finite-size effects are also derived and the connection with conformal field theory discussed. The critical exponents can still be obtained from the finite-size spectrum, however the velocity occurring here differs from the one in the constant Casimir term. The derivation highlights the importance of the phase shifts at the Fermi points for the critical exponents of asymptotes of correlations. We generalize certain results known for the ground state and discuss the relation to the dressed charge (matrix). Finally, we discuss the finite-size corrections in the presence of an additional particle or hole, which are important for dynamical correlation functions.
Energy Technology Data Exchange (ETDEWEB)
Du, Liang; Yang, Yi; Harley, Ronald Gordon; Habetler, Thomas G.; He, Dawei
2016-08-09
A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the power or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.
Bailey, Harry E.; Beam, Richard M.
1991-01-01
Finite-difference approximations for steady-state compressible Navier-Stokes equations, whose two spatial dimensions are written in generalized curvilinear coordinates and strong conservation-law form, are presently solved by means of Newton's method in order to obtain a lifting-airfoil flow field under subsonic and transonnic conditions. In addition to ascertaining the computational requirements of an initial guess ensuring convergence and the degree of computational efficiency obtainable via the approximate Newton method's freezing of the Jacobian matrices, attention is given to the need for auxiliary methods assessing the temporal stability of steady-state solutions. It is demonstrated that nonunique solutions of the finite-difference equations are obtainable by Newton's method in conjunction with a continuation method.
Energy Technology Data Exchange (ETDEWEB)
Zhu Jiuyun (Department of Physics, Hunan Normal University, Hunan 410006 (China)); Kuang Leman (Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071 (China) Department of Physics and Institute of Physics, Hunan Normal University, Hunan 410081 (China))
1994-10-03
The even and odd coherent states (CSs) of a finite-dimensional Hilbert space harmonic oscillator (FDHSHO) are constructed and some properties of these states are studied. Their quadrature squeezing and amplitude-squared squeezing are investigated in detail. It is shown that, while the squeezing behaviour of the even and odd CSs of the FDHSHO approaches that of the even and odd CSs of the usual harmonic oscillator as the dimension of the Hilbert space tends to infinity, this behaviour is nontrivally different if the dimension of the Hilbert space is finite. In the latter case, it is found that the even and odd CSs exhibit both amplitude-squared squeezing and quadrature squeezing. ((orig.))
Look-Back and Look-Ahead in the Conversion of Hidden Markov Models into Finite State Transducers
Kempe, A
1999-01-01
This paper describes the conversion of a Hidden Markov Model into a finite state transducer that closely approximates the behavior of the stochastic model. In some cases the transducer is equivalent to the HMM. This conversion is especially advantageous for part-of-speech tagging because the resulting transducer can be composed with other transducers that encode correction rules for the most frequent tagging errors. The speed of tagging is also improved. The described methods have been implemented and successfully tested.
Groups possessing extensive hierarchical decompositions
Januszkiewicz, T; Leary, I J
2009-01-01
Kropholler's class of groups is the smallest class of groups which contains all finite groups and is closed under the following operator: whenever $G$ admits a finite-dimensional contractible $G$-CW-complex in which all stabilizer groups are in the class, then $G$ is itself in the class. Kropholler's class admits a hierarchical structure, i.e., a natural filtration indexed by the ordinals. For example, stage 0 of the hierarchy is the class of all finite groups, and stage 1 contains all groups of finite virtual cohomological dimension. We show that for each countable ordinal $\\alpha$, there is a countable group that is in Kropholler's class which does not appear until the $\\alpha+1$st stage of the hierarchy. Previously this was known only for $\\alpha= 0$, 1 and 2. The groups that we construct contain torsion. We also review the construction of a torsion-free group that lies in the third stage of the hierarchy.
Equation of state for QCD at finite temperature and density. Resummation versus lattice data
Energy Technology Data Exchange (ETDEWEB)
Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Haque, Najmul; Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India); Strickland, Michael [Department of Physics, Kent State University, Kent, Ohio 44242 (United States); Su, Nan [Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld (Germany)
2016-01-22
The perturbative series for finite-temperature field theories has very poor convergence properties and one needs a way to reorganize it. In this talk, I review two ways of reorganizing the perturbative series for field theories at finite temperature and chemical potential, namely hard-thermal-loop perturbation theory (HTLpt) and dimensional reduction (DR). I will present results for the pressure, trace anomaly, speed of sound, and the quark susceptibilities from a 3-loop HTLpt calculation and for the quark susceptibilities using DR at four loops. A careful comparison with available lattice data shows good agreement for a number of physical quantities.
Equation of State for QCD at finite temperature and density. Resummation versus lattice data
Andersen, Jens O; Mustafa, Munshi G; Strickland, Michael; Su, Nan
2016-01-01
The perturbative series for finite-temperature field theories has very poor convergence properties and one needs a way to reorganize it. In this talk, I review two ways of reorganizing the perturbative series for field theories at finite temperature and chemical potential, namely hard-thermal-loop perturbation theory (HTLpt) and dimensional reduction (DR). I will present results for the pressure, trace anomaly, speed of sound and the quark susceptibilities from a 3-loop HTLpt calculation and for the quark susceptibilities using DR at four loops. A careful comparison with available lattice data shows good agreement for a number of physical quantities.
Development of a finite state machine for the automates operation of the LLRF control at FLASH
Energy Technology Data Exchange (ETDEWEB)
Brandt, A.
2007-07-15
The entry of digital signal processors in modern control systems not only allows for extended diagnostics compared to analog systems but also for sophisticated and tricky extensions of the control algorithms. With modern DSP- and FPGA-technology, the processing speed of digital systems is no longer inferior to analog systems in many applications. A higher degree of digitalization leads to an increased complexity of the systems and hence to higher requirements on their operators. The focus of research and development in the field of high frequency control has changed in the last few years and moved towards the direction of software development and complexity management. In the presented thesis, a frame for an automation concept of modern high frequency control systems is developed. The developed automation is based on the concept of finite state machines (FSM), which is established in industry for years. A flexible framework was developed, in which procedures communicate using standardized interfaces and can be exchanged easily. With that, the developer of high frequency control components as well as the operator on shift shall be empowered to improve and adapt the automation to changed conditions without special programming skills required. Along the automation concept a number of algorithms addressing various problems were developed which satisfy the needs of modern high frequency control systems. Among the developed and successfully tested algorithms are the calibration of incident and reflected wave of resonators without antennas, the fast adaptive compensation of repetitive errors, the robust estimation of the phase advance in the control loop and the latency adjustment for the rejection of instabilities caused by passband modes. During the development of the resonator theory, high value was set on the usability of the equation in algorithms for high frequency control. The usage of the common nomenclature of control theory emphasizes the underlying mathematical
Kim, HyunJin; Choi, Kang-Il
2016-01-01
This paper proposes a pipelined non-deterministic finite automaton (NFA)-based string matching scheme using field programmable gate array (FPGA) implementation. The characteristics of the NFA such as shared common prefixes and no failure transitions are considered in the proposed scheme. In the implementation of the automaton-based string matching using an FPGA, each state transition is implemented with a look-up table (LUT) for the combinational logic circuit between registers. In addition, multiple state transitions between stages can be performed in a pipelined fashion. In this paper, it is proposed that multiple one-to-one state transitions, called merged state transitions, can be performed with an LUT. By cutting down the number of used LUTs for implementing state transitions, the hardware overhead of combinational logic circuits is greatly reduced in the proposed pipelined NFA-based string matching scheme.
On the Use of a Mixed Gaussian/Finite-Element Basis Set for the Calculation of Rydberg States
Thuemmel, Helmar T.; Langhoff, Stephen (Technical Monitor)
1996-01-01
Configuration-interaction studies are reported for the Rydberg states of the helium atom using mixed Gaussian/finite-element (GTO/FE) one particle basis sets. Standard Gaussian valence basis sets are employed, like those, used extensively in quantum chemistry calculations. It is shown that the term values for high-lying Rydberg states of the helium atom can be obtained accurately (within 1 cm -1), even for a small GTO set, by augmenting the n-particle space with configurations, where orthonormalized interpolation polynomials are singly occupied.
Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven
2005-01-01
as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe....
Ultimate Limit State Design Of Sheet Pile Walls By Finite Elements And Nonlinear Programming
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven
2005-01-01
as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe...
Energy Technology Data Exchange (ETDEWEB)
Sial, S. [Lahore Univ. of Management Sciences (Pakistan). Dept. of Mathematics
2005-07-01
The application of a Sobolev gradient method for finding vortices in s-wave superconductors via minimization of their Landau-Ginzburg energies is demonstrated in a finite element setting. It is seen that the method is highly efficient while at the same time retaining the simplicity of the steepest descent algorithm. (Author)
Finite element models for the steady state analysis of moving loads
Kok, A.W.M.
2000-01-01
The analysis of structures subjected to fast moving loads is a subject of growing interest in railway and pavement engineering. The applications of transient analyses using finite element models, however, are still very limited. The faster a load moves the more elements we need to model the structu
FINITE ELEMENT FOR STRESS-STRAIN STATE MODELING OF TWO-LAYERED AXIALLY SYMMETRIC SHELLS
Directory of Open Access Journals (Sweden)
K. S. Kurochka
2015-07-01
Full Text Available Subject of Research. Computation of composite material designs requires application of numerical methods. The finiteelement method usage is connected with surface approximation problems. Application of volumetric and laminar elements leads to systems with large sizes and a great amount of computation. The objective of this paper is to present an equivalent two-layer mathematical model for evaluation of displacements and stresses of cross-ply laminated cone shells subjected to uniformly distributed load. An axially symmetric element for shell problems is described. Method. Axially symmetric finite element is proposed to be applied in calculations with use of correlation for the inner work of each layer separately. It gives the possibility to take into account geometric and physical nonlinearities and non-uniformity in the layers of the shell. Discrete mathematical model is created on the base of the finite-element method with the use of possible motions principle and Kirchhoff–Love assumptions. Hermite element is chosen as a finite one. Cone shell deflection is considered as the quantity sought for. Main Results. One-layered and two-layered cone shells have been considered for proposed mathematical model verification with known analytical and numerical analytical solutions, respectively. The axial displacements of the two-layered cone are measured with an error not exceeding 5.4 % for the number of finite elements equal to 30. The proposed mathematical model requires fewer nodes to define the finite element meshing of the system and much less computation time. Thereby time for finding solution decreases considerably. Practical Relevance. Proposed model is applicable for computation of multilayered designs under axially symmetric loads: composite high-pressure bottles, cylinder shaped fiberglass pipes, reservoirs for explosives and flammable materials, oil and gas storage tanks.
Generation of hierarchically correlated multivariate symbolic sequences
Tumminello, Mi; Mantegna, R N
2008-01-01
We introduce an algorithm to generate multivariate series of symbols from a finite alphabet with a given hierarchical structure of similarities. The target hierarchical structure of similarities is arbitrary, for instance the one obtained by some hierarchical clustering procedure as applied to an empirical matrix of Hamming distances. The algorithm can be interpreted as the finite alphabet equivalent of the recently introduced hierarchically nested factor model (M. Tumminello et al. EPL 78 (3) 30006 (2007)). The algorithm is based on a generating mechanism that is different from the one used in the mutation rate approach. We apply the proposed methodology for investigating the relationship between the bootstrap value associated with a node of a phylogeny and the probability of finding that node in the true phylogeny.
Albrecht, Joachim; Brück, Sebastian; Stahl, Claudia; Ruoß, Stephen
2016-11-01
We use quantitative magneto-optical microscopy to investigate the influence of finite temperatures on the critical state of thin YBCO films. In particular, temperature and time dependence of supercurrents in inhomogeneous and anisotropic films are analyzed to extract the role of temperature on the supercurrents themselves and the influence of thermally activated relaxation. We find that inhomogeneities and anisotropies of the current density distribution correspond to a different temperature dependence of local supercurrents. In addition, the thermally activated decay of supercurrents can be used to extract local vortex pinning energies. With these results the modification of vortex pinning introduced by substrate structures is studied. In summary the local investigation of supercurrent densities allows the full description of the vortex pinning landscape with respect to pinning forces and energies in superconducting films with complex properties under the influence of finite temperatures.
Directory of Open Access Journals (Sweden)
Latifi Mohammed
2012-04-01
Full Text Available Abstract Background Effective fixation of fracture requires careful selection of a suitable implant to provide stability and durability. Implant with a feature of locking plate (LP has been used widely for treating distal fractures in femur because of its favourable clinical outcome, but its potential in fixing proximal fractures in the subtrochancteric region has yet to be explored. Therefore, this comparative study was undertaken to demonstrate the merits of the LP implant in treating the subtrochancteric fracture by comparing its performance limits against those obtained with the more traditional implants; angle blade plate (ABP and dynamic condylar screw plate (DCSP. Materials and Methods Nine standard composite femurs were acquired, divided into three groups and fixed with LP (n = 3, ABP (n = 3 and DCSP (n = 3. The fracture was modeled by a 20 mm gap created at the subtrochanteric region to experimentally study the biomechanical response of each implant under both static and dynamic axial loading paradigms. To confirm the experimental findings and to understand the critical interactions at the boundaries, the synthetic femur/implant systems were numerically analyzed by constructing hierarchical finite element models with nonlinear hyperelastic properties. The predictions from the analyses were then compared against the experimental measurements to demonstrate the validity of each numeric model, and to characterize the internal load distribution in the femur and load bearing properties of each implant. Results The average measurements indicated that the constructs with ABP, DCPS and LP respectively had overall stiffness values of 70.9, 110.2 and 131.4 N/mm, and exhibited reversible deformations of 12.4, 4.9 and 4.1 mm when the applied dynamic load was 400 N and plastic deformations of 11.3, 2.4 and 1.4 mm when the load was 1000 N. The corresponding peak cyclic loads to failure were 1100, 1167 and 1600 N. The errors
Leutheuser, Heike; Schuldhaus, Dominik; Eskofier, Bjoern M
2013-01-01
Insufficient physical activity is the 4th leading risk factor for mortality. Methods for assessing the individual daily life activity (DLA) are of major interest in order to monitor the current health status and to provide feedback about the individual quality of life. The conventional assessment of DLAs with self-reports induces problems like reliability, validity, and sensitivity. The assessment of DLAs with small and light-weight wearable sensors (e.g. inertial measurement units) provides a reliable and objective method. State-of-the-art human physical activity classification systems differ in e.g. the number and kind of sensors, the performed activities, and the sampling rate. Hence, it is difficult to compare newly proposed classification algorithms to existing approaches in literature and no commonly used dataset exists. We generated a publicly available benchmark dataset for the classification of DLAs. Inertial data were recorded with four sensor nodes, each consisting of a triaxial accelerometer and a triaxial gyroscope, placed on wrist, hip, chest, and ankle. Further, we developed a novel, hierarchical, multi-sensor based classification system for the distinction of a large set of DLAs. Our hierarchical classification system reached an overall mean classification rate of 89.6% and was diligently compared to existing state-of-the-art algorithms using our benchmark dataset. For future research, the dataset can be used in the evaluation process of new classification algorithms and could speed up the process of getting the best performing and most appropriate DLA classification system.
Eizenberg-Magar, Inbal; Rimer, Jacob; Zaretsky, Irina; Lara-Astiaso, David; Reich-Zeliger, Shlomit; Friedman, Nir
2017-08-01
During cell differentiation, progenitor cells integrate signals from their environment that guide their development into specialized phenotypes. The ways by which cells respond to complex signal combinations remain difficult to analyze and model. To gain additional insight into signal integration, we systematically mapped the response of CD4(+) T cells to a large number of input cytokine combinations that drive their differentiation. We find that, in response to varied input combinations, cells differentiate into a continuum of cell fates as opposed to a limited number of discrete phenotypes. Input cytokines hierarchically influence the cell population, with TGFβ being most dominant followed by IL-6 and IL-4. Mathematical modeling explains these results using additive signal integration within hierarchical groups of input cytokine combinations and correctly predicts cell population response to new input conditions. These findings suggest that complex cellular responses can be effectively described using a segmented linear approach, providing a framework for prediction of cellular responses to new cytokine combinations and doses, with implications to fine-tuned immunotherapies.
Ikeda, Tatsushi; Tanimura, Yoshitaka
2017-07-01
Photoisomerization in a system with multiple electronic states and anharmonic potential surfaces in a dissipative environment is investigated using a rigorous numerical method employing quantum hierarchical Fokker-Planck equations (QHFPEs) for multi-state systems. We have developed a computer code incorporating QHFPE for general-purpose computing on graphics processing units that can treat multi-state systems in phase space with any strength of diabatic coupling of electronic states under non-perturbative and non-Markovian system-bath interactions. This approach facilitates the calculation of both linear and nonlinear spectra. We computed Wigner distributions for excited, ground, and coherent states. We then investigated excited state dynamics involving transitions among these states by analyzing linear absorption and transient absorption processes and multi-dimensional electronic spectra with various values of heat bath parameters. Our results provide predictions for spectroscopic measurements of photoisomerization dynamics. The motion of excitation and ground state wavepackets and their coherence involved in the photoisomerization were observed as the profiles of positive and negative peaks of two-dimensional spectra.
Quark-hadron phase structure and QCD equations of state in vanishing and finite magnetic field
Tawfik, Abdel Nasser; Hussein, M T
2016-01-01
In characterizing the quark-hadron phase structure, determining various thermodynamic quantities and investigating their temperature dependencies on vanishing and finite magnetic field, SU(3) Polyakov linear-sigma model (PLSM) is utilized. The dependence of the chiral order-parameter on vanishing and finite magnetic field is calculated in mean-field approximation. In a wide range of temperatures and magnetic field strengths, the thermodynamic observables including trace anomaly, speed of sound squared, entropy density, specific heat and magnetization are presented. An excellent agreement is found when these are confronted to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous result that the transition temperature is reduced with magnetic field. Furthermore, the temperature dependence of magnetization verifies the conclusion that the QCD matter has paramagnetic properties near and far above the critical temperature. The excellent agreement with recent lattice ...
Directory of Open Access Journals (Sweden)
Ali Ghaffari
2014-01-01
Full Text Available The main objective of this paper is to propose an optimal finite duration treatment method for cancer. A mathematical model is proposed to show the interactions between healthy and cancerous cells in the human body. To extend the existing models, the effect of vaccine therapy and chemotherapy are also added to the model. The equilibrium points and the related local stability are derived and discussed. It is shown that the dynamics of the cancer model must be changed and modified for finite treatment duration. Therefore, the vaccine therapy is used to change the parameters of the system and the chemotherapy is applied for pushing the system to the domain of attraction of the healthy state. For optimal chemotherapy, an optimal control is used based on state dependent Riccati equation (SDRE. It is shown that, in spite of eliminating the treatment, the system approaches the healthy state conditions. The results show that the development of optimal vaccine-chemotherapy protocols for removing tumor cells would be an appropriate strategy in cancer treatment. Also, the present study states that a proper treatment method not only reduces the population of the cancer cells but also changes the dynamics of the cancer.
Shorikov, A. F.
2016-12-01
In this article we consider a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding linear or nonlinear discrete-time recurrent vector relations and its control system consist from two levels: basic level (control level I) that is dominating level and auxiliary level (control level II) that is subordinate level. Both levels have different criterions of functioning and united by information and control connections which defined in advance. In this article we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks vectors. For this problem we propose a mathematical model in the form of two-level hierarchical minimax program control problem of the final states of this system with incomplete information and the general scheme for its solving.
Yadav, Umesh K.
2017-07-01
Combined effects of correlated electron hopping, electron correlations and orbital magnetic field are studied on ground state properties of spinless Falicov-Kimball model (FKM). Results are obtained for finite size triangular lattice with periodic boundary conditions using numerical diagonalization and Monte-Carlo simulation techniques. It is found that the ground state configurations of electrons strongly depend on correlated electron hopping, onsite Coulomb interaction and orbital magnetic field. Several interesting configurations e.g. regular, segregated, axial and diagonal striped and hexagonal phases are found with change in correlated hopping and magnetic field. Study of density of states reveals that magnetic field induces a metal to insulator transition accompanied by segregated phase to an ordered phase. These results are applicable to the systems of recent interest like GdI2, NaTiO2 and MgV2O4 and can also be seen experimentally in cold atomic set up.
Bound states in the 3d Ising model and implications for QCD at finite temperature and density
Caselle, M; Provero, P; Zarembo, K
2002-01-01
We study the spectrum of bound states of the three dimensional Ising model in the (h,beta) plane near the critical point. We show the existence of an unbinding line, defined as the boundary of the region where bound states exist. Numerical evidence suggests that this line coincides with the beta=beta_c axis. When the 3D Ising model is considered as an effective description of hot QCD at finite density, we conjecture the correspondence between the unbinding line and the line that separates the quark-gluon plasma phase from the superconducting phase. The bound states of the Ising model are conjectured to correspond to the diquarks of the latter phase of QCD.
Wen, Guoguang; Yu, Yongguang; Peng, Zhaoxia; Rahmani, Ahmed
2016-06-01
This paper investigates the consensus tracking problem for nonlinear multi-agent systems with a time-varying reference state. The consensus reference is taken as a virtual leader, whose output is only its position information that is available to only a subset of a group of followers. The dynamics of each follower consists of two terms: nonlinear inherent dynamics and a simple communication protocol relying only on the position of its neighbours. In this paper, the consensus tracking problem is respectively considered under fixed and switching communication topologies. Some corresponding sufficient conditions are obtained to guarantee the states of followers can converge to the state of the virtual leader in finite time. Rigorous proofs are given by using graph theory, matrix theory, and Lyapunov theory. Simulations are presented to illustrate the theoretical analysis.
On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs
Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.
Lugo, Jorge; Sosa, Victor
1999-10-01
The repulsion force between a cylindrical superconductor in the Meissner state and a small permanent magnet was calculated under the assumption that the superconductor was formed by a continuous array of dipoles distributed in the finite volume of the sample. After summing up the dipole-dipole interactions with the magnet, we obtained analytical expressions for the levitation force as a function of the superconductor-magnet distance, radius and thickness of the sample. We analyzed two configurations, with the magnet in a horizontal or vertical orientation.
Finite element simulation of steady state and transient forced convection in superfluid helium
Bottura, L
1999-01-01
The solution of transient mass, momentum and energy balances in superfluid helium are discussed by means of a finite element algorithm. A simple linearization procedure is used for the non- linear pseudo-diffusion term in the energy balance arising because of the unique counterflow heat transport mechanism in superfluid helium. The linearization algorithm is analyzed for accuracy order and stability. The reliability of the algorithm devised is shown in practical tests, comparing the numerical solutions with experimental data available in the literature. (18 refs).
Finite Element Treatment of Vortex States in 3D Cubic Superconductors in a Tilted Magnetic Field
Peng, Lin; Cai, Chuanbing
2017-03-01
The time-dependent Ginzburg-Landau equations have been solved numerically by a finite element analysis for superconducting samples with a cubic shape in a tilted magnetic field. We obtain different vortex patterns as a function of the external magnetic field. With a magnetic field not parallel to the x- or y-axis, the vortices attempt to change their orientation accordingly. Our analysis of the corresponding changes in the magnetic response in different directions can provide information not only about vorticity but also about the three-dimensional vortex arrangement, even about the very subtle changes for the superconducting samples with a cubic shape in a tilted magnetic field.
Institute of Scientific and Technical Information of China (English)
Muhammad Ashfaq Ahmad; Lin Jie; Qian Yan; Ma Zhi-Min; Ma Ai-Qun; Liu Shu-Tian
2007-01-01
This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coherent states do exhibit strong amplitude-squared squeezing effects in comparison with the generalized even coherent states.
Energy Technology Data Exchange (ETDEWEB)
Praveen, E., E-mail: svmstaya@gmail.com; Satyanarayana, S. V. M., E-mail: svmstaya@gmail.com [Department of Physics, Pondicherry University, Puducherry-605014 (India)
2014-04-24
Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.
Liu, Mingkai; Miao, Yue-E; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi
2013-08-21
A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as "bridges" connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g(-1)) than the GNR-CNT hybrid (195 F g(-1)) and neat PANI (283 F g(-1)) at a discharge current density of 0.5 A g(-1). At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.
Equilibrium states of a test particle coupled to finite-size heat baths.
Wei, Qun; Smith, S Taylor; Onofrio, Roberto
2009-03-01
We report on numerical simulations of the dynamics of a test particle coupled to competing Boltzmann heat baths of finite size. After discussing some features of the single bath case, we show that the presence of two heat baths further constrains the conditions necessary for the test particle to thermalize with the heat baths. We find that thermalization is a spectral property in which the oscillators of the bath with frequencies in the range of the test particle characteristic frequency determine its degree of thermalization. We also find an unexpected frequency shift of the test particle response with respect to the spectra of the two heat baths. Finally, we discuss implications of our results for the study of high-frequency nanomechanical resonators through cold damping cooling techniques and for engineering reservoirs capable of mitigating the back action on a mechanical system.
Sato, Sota; Yamasaki, Takashi; Isobe, Hiroyuki
2014-06-10
A supramolecular combination of carbon nanotube and fullerene, so-called a peapod, has attracted much interest, not solely because of its physical properties but also for its unique assembled structures of carbonaceous entities. However, the detailed structural information available was not sufficient for in-depth understanding of its structural chemistry or for exploratory research inspired by novel physical phenomena, mainly because of the severely inhomogeneous nature of currently available carbon nanotubes. We herein report solid-state structures of a molecular peapod. This structure, solved with a belt-persistent finite carbon nanotube molecule at the atomic level by synchrotron X-ray diffraction, revealed the presence of a smooth, inflection-free Hirshfeld surface inside the tube, and the smoothness permitted dynamic motion of the C60 guest molecule even in the solid state. This precise structural information may inspire the molecular design of carbonaceous machines assembled purely through van der Waals contacts between two neutral molecules.
Density of States FFA analysis of SU(3) lattice gauge theory at a finite density of color sources
Giuliani, Mario; Gattringer, Christof
2017-10-01
We present a Density of States calculation with the Functional Fit Approach (DoS FFA) in SU(3) lattice gauge theory with a finite density of static color sources. The DoS FFA uses a parameterized density of states and determines the parameters of the density by fitting data from restricted Monte Carlo simulations with an analytically known function. We discuss the implementation of DoS FFA and the results for a qualitative picture of the phase diagram in a model which is a further step towards implementing DoS FFA in full QCD. We determine the curvature κ in the μ-T phase diagram and find a value close to the results published for full QCD.
Indian Academy of Sciences (India)
S H Patil; K D Sen
2012-01-01
Using dimensional analyses, the scaling properties of the Heisenberg uncertainty relationship as well as the various information theoretical uncertainty-like relationships are derived for the bound states corresponding to the superposition of the power potential of the form () = + $^{n_{i}}, where , , , are parameters, in the free state as well as in the additional presence of a spherical penetrable boundary wall located at radius The uncertainty product and all other net information measures are shown here to depend only on the parameters [] defined by the ratios /$^{(n_{i}+2)/(n+2)}$. Introduction of a finite potential, V at the radial distance ≥ results in a complete set of scaling parameters given by [, 1, 2], where 1 is given by 1/(n+2) and 2 = V/()2/(+2).
Directory of Open Access Journals (Sweden)
German S Fox-Rabinovich, Kenji Yamamoto, Ben D Beake, Iosif S Gershman, Anatoly I Kovalev, Stephen C Veldhuis, Myram H Aguirre, Goulnara Dosbaeva and Jose L Endrino
2012-01-01
Full Text Available Adaptive wear-resistant coatings produced by physical vapor deposition (PVD are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a nanoscale surface layers of protective tribofilms generated during friction and (b an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality
Phase conjugate of quantum states in finite-dimensional Hilbert space
Zhou, X F; Guo, G C; Zhou, Xiang-Fa; Zhang, Yong-Sheng; Guo, Guang-Can
2006-01-01
We show that, for $N$ parallel input states, an anti-linear map with respect to a specific basis is essentially a classical operator. We also consider the information contained in phase-conjugate pairs $|\\phi > |\\phi^*>$, and prove that there is more information about a quantum state encoded in phase-conjugate pairs than in parallel pairs.
Nonlocally-induced (quasirelativistic) bound states: Harmonic confinement and the finite well
Garbaczewski, Piotr
2014-01-01
Nonlocal Hamiltonian-type operators, like e.g. fractional and quasirelativistic, seem to be instrumental for a conceptual broadening of current quantum paradigms. However physically relevant properties of related quantum systems have not yet received due (and scientifically undisputable) coverage in the literature. In the present paper we address Schr\\"{o}dinger-type eigenvalue problems for $H=T+V$, where a kinetic term $T=T_m$ is a quasirelativistic energy operator $T_m = \\sqrt{-\\hbar ^2c^2 \\Delta + m^2c^4} - mc^2$ of mass $m\\in (0,\\infty)$ particle. A potential $V$ we assume to refer to the harmonic confinement or finite well of an arbitrary depth. We analyze spectral solutions of the pertinent nonlocal quantum systems with a focus on their $m$-dependence. Extremal mass $m$ regimes for eigenvalues and eigenfunctions of $H$ are investigated: (i) $m\\ll 1$ spectral affinity ("closeness") with the Cauchy-eigenvalue problem ($T_m \\sim T_0=\\hbar c |\
Statistical learning and the challenge of syntax: Beyond finite state automata
Elman, Jeff
2003-10-01
Over the past decade, it has been clear that even very young infants are sensitive to the statistical structure of language input presented to them, and use the distributional regularities to induce simple grammars. But can such statistically-driven learning also explain the acquisition of more complex grammar, particularly when the grammar includes recursion? Recent claims (e.g., Hauser, Chomsky, and Fitch, 2002) have suggested that the answer is no, and that at least recursion must be an innate capacity of the human language acquisition device. In this talk evidence will be presented that indicates that, in fact, statistically-driven learning (embodied in recurrent neural networks) can indeed enable the learning of complex grammatical patterns, including those that involve recursion. When the results are generalized to idealized machines, it is found that the networks are at least equivalent to Push Down Automata. Perhaps more interestingly, with limited and finite resources (such as are presumed to exist in the human brain) these systems demonstrate patterns of performance that resemble those in humans.
Finite element analysis of ion transport in solid state nuclear waste form materials
Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.
2017-09-01
Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.
Spin-spiral states in undoped manganites: role of finite Hund's rule coupling.
Kumar, Sanjeev; van den Brink, Jeroen; Kampf, Arno P
2010-01-08
The experimental observation of multiferroic behavior in perovskite manganites with a spiral spin structure requires a clarification of the origin of these magnetic states and their relation to ferroelectricity. We show that spin-spiral phases with a diagonal wave vector and also an E-type phase exist for intermediate value of Hund's rule and the Jahn-Teller coupling in the orbitally ordered and insulating state of the standard two-band model Hamiltonian for manganites. Our results support the spin-current mechanism for ferroelectricity and present an alternative view to earlier conclusions where frustrating superexchange couplings were crucial to obtaining spin-spiral states.
Dressed coherent states in finite quantum systems: A cooperative game theory approach
Vourdas, A.
2017-01-01
A quantum system with variables in Z(d) is considered. Coherent density matrices and coherent projectors of rank n are introduced, and their properties (e.g., the resolution of the identity) are discussed. Cooperative game theory and in particular the Shapley methodology, is used to renormalize coherent states, into a particular type of coherent density matrices (dressed coherent states). The Q-function of a Hermitian operator, is then renormalized into a physical analogue of the Shapley values. Both the Q-function and the Shapley values, are used to study the relocation of a Hamiltonian in phase space as the coupling constant varies, and its effect on the ground state of the system. The formalism is also generalized for any total set of states, for which we have no resolution of the identity. The dressing formalism leads to density matrices that resolve the identity, and makes them practically useful.
Finite-size corrections to Fermi's Golden rule II: Quasi-stationary composite states
Ishikawa, Kenzo
2016-01-01
Many-body states described by a Schr\\"{o}dinger equation include states of overlapping waves of non-vanishing interaction energies. These peculiar states formed in many-body transitions remain in asymptotic regions, and lead a new component to the transition probability. The probability is computed rigorously following the von Neumann's fundamental principle of quantum mechanics with an S-matrix that is defined with normalized functions, instead of plane waves. That includes the intriguing correction term to the Fermi's golden rule, in which a visible energy is smaller than the initial energy, and reveals macroscopic quantum phenomena for light particles. Processes in Quantum Electrodynamics are analyzed and the sizable corrections are found in the dilute systems. The results suggest that these states play important roles in natural phenomena, and the verification in laboratory would be possible with recent advanced technology.
Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory
Energy Technology Data Exchange (ETDEWEB)
Klymenko, M. V. [Department of Chemistry, University of Liège, B4000 Liège (Belgium); Klein, M. [The Fritz Haber Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Levine, R. D. [The Fritz Haber Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States); Remacle, F., E-mail: fremacle@ulg.ac.be [Department of Chemistry, University of Liège, B4000 Liège (Belgium); The Fritz Haber Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2016-07-14
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states corresponds to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.
Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory
Klymenko, M. V.; Klein, M.; Levine, R. D.; Remacle, F.
2016-07-01
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states corresponds to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.
A methodology for stochastic analysis of share prices as Markov chains with finite states.
Mettle, Felix Okoe; Quaye, Enoch Nii Boi; Laryea, Ravenhill Adjetey
2014-01-01
Price volatilities make stock investments risky, leaving investors in critical position when uncertain decision is made. To improve investor evaluation confidence on exchange markets, while not using time series methodology, we specify equity price change as a stochastic process assumed to possess Markov dependency with respective state transition probabilities matrices following the identified state pace (i.e. decrease, stable or increase). We established that identified states communicate, and that the chains are aperiodic and ergodic thus possessing limiting distributions. We developed a methodology for determining expected mean return time for stock price increases and also establish criteria for improving investment decision based on highest transition probabilities, lowest mean return time and highest limiting distributions. We further developed an R algorithm for running the methodology introduced. The established methodology is applied to selected equities from Ghana Stock Exchange weekly trading data.
Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments.
Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy
2015-03-01
The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY4(1)4, for the fp-RFDR pulse sequence employed in 2D (1)H/(1)H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY4(1)2, XY4(1)3, XY4(1)4, and XY8(1)4 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T(10)T(2,±2), T(1,±1)T(2,±1), etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY4(1)4 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp
Peterson, T. J.; Western, A. W.; Thyer, M. A.; Frost, A. J.
2015-12-01
Hydrology has implicitly assumed that catchments are infinitely resilient to droughts and floods. No matter the magnitude of the climatic disturbance, almost all hydrological models simulate full recovery and hence assume infinite resilience. Recent research shows that catchments can undergo fundamental change during major droughts and this change in behavior is not captured by rainfall-runoff models. To date, the field of hydrological resilience has relied on theoretical deterministic models or vague resilience concepts, with the identification of catchments with multiple steady states (henceforth, attractors) remaining elusive. This is primarily due to the challenges stochastic forcing introduces into quantifying disturbance and recovery, and because resilience theory does not adequately address stochastic forcing. Drawing from recent hydrological resilience theory on catchment disturbance and recovery, a data-driven hidden Markov model is proposed for identifying recovery to a different hydrological state following major climatic disturbances. Application to selected unregulated catchments within Victoria, Australia, shows that after the Millennium Drought (~1995-2010) some catchments are yet to recover and have persisted within a functionally different hydrological state compared to that prior to the drought. Conversely, some catchments fully recovered at the cessation of the drought. This provides the first known field evidence that some catchments may have multiple attractors. Additionally, catchments are shown to differ in their resistance to the drought, with some catchments switching to a drought state at the commencement of the meteorological drought while other catchments taking ~10 years to switch to a hydrological drought state. In addition to separating hydrological droughts from meteorological droughts, this research provides a pathway for quantifying catchment resilience and resistance to climatic disturbances.
Hotta, Chisa; Nishimoto, Satoshi; Shibata, Naokazu
2013-03-01
The grand canonical numerical analysis recently developed for quantum many-body systems on a finite cluster [C. Hotta and N. Shibata, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.86.041108 86, 041108(R) (2012)] is the technique to efficiently obtain the physical quantities in an applied field. There, the observables are the continuous and real functions of fields, mimicking their thermodynamic limit, even when a small cluster is adopted. We develop a theory to explain the mechanism of this analysis based on the deformation of the Hamiltonian. The deformation spatially scales down the energy unit from the system center toward zero at the open edge sites, which introduces the renormalization of the energy levels in a way reminiscent of Wilson's numerical renormalization group. However, compared to Wilson's case, our deformation generates a number of far well-localized edge states near the chemical potential level, which are connected via a very small quantum fluctuation in k space with the “bulk” states which spread at the center of the system. As a response to the applied field, the particles on the cluster are self-organized to tune the particle number of the bulk states to their thermodynamic limit by using the “edges” as a buffer. We demonstrate the present analysis in two-dimensional quantum spin systems on square and triangular lattices, and determine the smooth magnetization curve with a clear (1)/(3) plateau structure in the latter.
Sagisaka, Keisuke; Nara, Jun; Bowler, David
2017-04-12
We investigate the influence of slab thickness on the electronic structure of the Si(1 0 0)- p([Formula: see text]) surface in density functional theory (DFT) calculations, considering both density of states and band structure. Our calculations, with slab thicknesses of up to 78 atomic layers, reveal that the slab thickness profoundly affects the surface band structure, particularly the dangling bond states of the silicon dimers near the Fermi level. We find that, to precisely reproduce the surface bands, the slab thickness needs to be large enough to completely converge the bulk bands in the slab. In the case of the Si(1 0 0) surface, the dispersion features of the surface bands, such as the band shape and width, converge when the slab thickness is larger than 30 layers. Complete convergence of both the surface and bulk bands in the slab is only achieved when the slab thickness is greater than 60 layers.
DEFF Research Database (Denmark)
Thomadsen, Tommy
2005-01-01
of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...
Hierarchical Prisoner's Dilemma in Hierarchical Public-Goods Game
Fujimoto, Yuma; Kaneko, Kunihiko
2016-01-01
The dilemma in cooperation is one of the major concerns in game theory. In a public-goods game, each individual pays a cost for cooperation, or to prevent defection, and receives a reward from the collected cost in a group. Thus, defection is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individual players also play games. To study such a multi-level game, we introduce a hierarchical public-goods (HPG) game in which two groups compete for finite resources by utilizing costs collected from individuals in each group. Analyzing this HPG game, we found a hierarchical prisoner's dilemma, in which groups choose the defection policy (say, armaments) as a Nash strategy to optimize each group's benefit, while cooperation optimizes the total benefit. On the other hand, for each individual within a group, refusing to pay the cost (say, tax) is a Nash strategy, which turns to be a cooperation policy for the group, thus leading to a hierarchical d...
The finite volume spectrum of excited states from lattice QCD simulations
Bulava, John; Jhang, You-Cyuan; Lenkner, David; Morningstar, Colin J; Foley, Justin; Juge, Keisuke J; Wong, Chik Him
2014-01-01
We present results for the spectrum of excited mesons obtained from temporal correlations of spatially-extended single-hadron and multi-hadron operators computed in lattice QCD. The stochastic LapH algorithm is implemented on anisotropic, dynamical lattices for isovectors for pions of mass $390$ MeV. A large correlation matrix with single-particle and two-particle probe operators is diagonalized to identify resonances. The masses of excited states in the $I=1, S=0, T_{1u}^+$ channel as well as the mixing of single and multi-particle probe operators are presented.
Hot QCD equation of state and quark-gluon plasma-- finite quark chemical potential
Chandra, Vinod
2008-01-01
We explore the relevance of a hot QCD equation of state of $O[g^6\\ln(1/g)]$, which has been obtained\\cite{avrn} for non-vanishing quark-chemical potentials to heavy ion collisions. Employing a method proposed in a recent paper \\cite{chandra1}, we use the EOS to determine a host of thermodynamic quantities, the energy density, specific heat, entropy dnesity, and the temperature dependence of screening lengths, with the behaviour of QGP at RHIC and LHC in mind. We also investigate the sensitivity of these observables to the quark chemical potential.
Deuteron D-state probability from finite size effects in muonic deuterium
Kelkar, N G
2016-01-01
Recent analyses of the Lamb shift data in muonic deuterium ($\\mu^- d$) have shown that precision atomic spectroscopy determines a more accurate radius of the deuteron than scattering experiments do. This precision can be used to determine the D-state probability, $P_D$, in deuteron accurately. To demonstrate the method, we evaluate the nuclear structure corrections of order $\\alpha^4$ within a few body formalism for the $\\mu^- p n$ system in muonic deuterium using different values of $P_D$ and find $P_D$ close to 2\\% to be most favoured by the $\\mu^-d$ data.
Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes.
Soh, Harold; Demiris, Yiannis
2015-03-01
Successful biological systems adapt to change. In this paper, we are principally concerned with adaptive systems that operate in environments where data arrives sequentially and is multivariate in nature, for example, sensory streams in robotic systems. We contribute two reservoir inspired methods: 1) the online echostate Gaussian process (OESGP) and 2) its infinite variant, the online infinite echostate Gaussian process (OIESGP) Both algorithms are iterative fixed-budget methods that learn from noisy time series. In particular, the OESGP combines the echo-state network with Bayesian online learning for Gaussian processes. Extending this to infinite reservoirs yields the OIESGP, which uses a novel recursive kernel with automatic relevance determination that enables spatial and temporal feature weighting. When fused with stochastic natural gradient descent, the kernel hyperparameters are iteratively adapted to better model the target system. Furthermore, insights into the underlying system can be gleamed from inspection of the resulting hyperparameters. Experiments on noisy benchmark problems (one-step prediction and system identification) demonstrate that our methods yield high accuracies relative to state-of-the-art methods, and standard kernels with sliding windows, particularly on problems with irrelevant dimensions. In addition, we describe two case studies in robotic learning-by-demonstration involving the Nao humanoid robot and the Assistive Robot Transport for Youngsters (ARTY) smart wheelchair.
Hierarchical Multiagent Reinforcement Learning
2004-01-25
In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In
Directory of Open Access Journals (Sweden)
David J. Gotcher
2001-09-01
Full Text Available The paper presents the research which examines and endeavors to account for variation in the economic attainments of immigrants to the United States from Latin America, through the use of Hierarchical Linear Modeling. When analyzing this variation, researchers typically choose between two competing explanations. Human capital theory contends that variation in economic attainment is a product of different characteristics of individuals. Social capital theory contends that variation in economic attainment is a product of differences in characteristics of the societies from which the workers come. The author's central thesis is that we need not choose between human and social capital theories, that we can rely on both theoretical approaches, that it is an empirical and not a theoretical question how much variation can be explained by one set of factors versus the other. The real problem then is to build an appropriate methodology that allows us to partition the variation in economic attainments, identifying how much is explained by individual and how much by group characteristics. Using a multi-level modeling technique, this research presents such a methodology.
Kim, Dong-Min; Cho, Seong Je; Cho, Chul-Ho; Kim, Kwang Bok; Kim, Min-Yeong; Shim, Yoon-Bo
2016-05-15
Poly(terthiophene benzoic acid) (pTBA) layered-AuZn alloy oxide (AuZnOx) deposited on the screen printed carbon electrode (pTBA/AuZnOx/SPCE) was prepared to create a disposable all-solid-state pH sensor at first. Further, FAD-glucose oxidase (GOx) was immobilized onto the pTBA/AuZnOx/SPCE to fabricate a glucose sensor. The characterizations of the sensor probe reveal that AuZnOx forms a homogeneous hierarchical structure, and that the polymerized pTBA layer on the alloy oxide surface captures GOx covalently. The benzoic acid group of pTBA coated on the probe layer synergetically improved the pH response of the alloy oxide and provide chemical binding sites to enzyme, which resulted in a Nernstian behavior (59.2 ± 0.5 mV/pH) in the pH range of 2-13. The experimental parameters affecting the glucose analysis were studied in terms of pH, temperature, humidity, and interferences. The sensor exhibited a fast response time <1s and a dynamic range between 30 and 500 mg/dL glucose with a detection limit of 17.23 ± 0.32 mg/dL. The reliabilities of the disposable pH and glucose sensors were examined for biological samples.
Sathar, Shameer; Trew, Mark L.; Du, Peng; O’ Grady, Greg; Cheng, Leo K.
2014-01-01
Gastrointestinal motility is coordinated by slow waves (SWs) generated by the interstitial cells of Cajal (ICC). Experimental studies have shown that SWs spontaneously activate at different intrinsic frequencies in isolated tissue, whereas in intact tissues they are entrained to a single frequency. Gastric pacing has been used in an attempt to improve motility in disorders such as gastroparesis by modulating entrainment, but the optimal methods of pacing are currently unknown. Computational models can aid in the interpretation of complex in-vivo recordings and help to determine optical pacing strategies. However, previous computational models of SW entrainment are limited to the intrinsic pacing frequency as the primary determinant of the conduction velocity, and are not able to accurately represent the effects of external stimuli and electrical anisotropies. In this paper, we present a novel computationally efficient method for modelling SW propagation through the ICC network while accounting for conductivity parameters and fiber orientations. The method successfully reproduced experimental recordings of entrainment following gastric transection and the effects of gastric pacing on SW activity. It provides a reliable new tool for investigating gastric electrophysiology in normal and diseased states, and to guide and focus future experimental studies. PMID:24276722
DEFF Research Database (Denmark)
Thomadsen, Tommy
2005-01-01
Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...
Equation of state of a quark-Polyakov loop-meson mixture in the PNJL model at finite temperature
Torres-Rincon, Juan M
2016-01-01
Recent consensus on the $N_f=2+1$ equation of state at vanishing chemical potential from different lattice-QCD groups has spoiled the previous agreement with the outcome from the mean-field Polyakov-Nambu-Jona-Lasinio model. In this letter we review the thermodynamics of the PNJL model introducing two important aspects needed to describe the pressure computed in the lattice QCD. First, we consider the thermodynamics of the model beyond the mean-field approach to include pseudoscalar and scalar mesonic-like fluctuations into the grand-canonical potential. This accounts for the hadronic pressure of the system below the critical temperature. On the other hand we also implement the back reaction of quarks into the Polyakov-loop effective potential bringing a reduction of the pressure above $T_c$ from the Stefan-Boltzmann limit. We get a good agreement with lattice-QCD data at low and moderate temperatures, opening the door to a straightforward extension to finite chemical potential.
Mullen, Gary L
2013-01-01
Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and each chapter is self contained and peer reviewed. The first part of the book traces the history of finite fields through the eighteenth and nineteenth centuries. The second part presents theoretical properties of finite fields, covering polynomials,
2005-01-01
This self-paced narrated tutorial covers the following about Finite Automata: Uses, Examples, Alphabet, strings, concatenation, powers of an alphabet, Languages (automata and formal languages), Deterministic finite automata (DFA) SW4600 Automata, Formal Specification and Run-time Verification
Associative Hierarchical Random Fields.
Ladický, L'ubor; Russell, Chris; Kohli, Pushmeet; Torr, Philip H S
2014-06-01
This paper makes two contributions: the first is the proposal of a new model-The associative hierarchical random field (AHRF), and a novel algorithm for its optimization; the second is the application of this model to the problem of semantic segmentation. Most methods for semantic segmentation are formulated as a labeling problem for variables that might correspond to either pixels or segments such as super-pixels. It is well known that the generation of super pixel segmentations is not unique. This has motivated many researchers to use multiple super pixel segmentations for problems such as semantic segmentation or single view reconstruction. These super-pixels have not yet been combined in a principled manner, this is a difficult problem, as they may overlap, or be nested in such a way that the segmentations form a segmentation tree. Our new hierarchical random field model allows information from all of the multiple segmentations to contribute to a global energy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalizes much of the previous work based on pixels or segments, and the resulting labelings can be viewed both as a detailed segmentation at the pixel level, or at the other extreme, as a segment selector that pieces together a solution like a jigsaw, selecting the best segments from different segmentations as pieces. We evaluate its performance on some of the most challenging data sets for object class segmentation, and show that this ability to perform inference using multiple overlapping segmentations leads to state-of-the-art results.
Hierarchical cooperative control for multiagent systems with switching directed topologies.
Hu, Jianqiang; Cao, Jinde
2015-10-01
The hierarchical cooperative control problem is concerned for a two-layer networked multiagent system under switching directed topologies. The group cooperative objective is to achieve finite-time formation control for the upper layer of leaders and containment control for the lower layer of followers. Two kinds of cooperative strategies, including centralized-distributed control and distributed-distributed control, are proposed for two types of switching laws: 1) random switching law with the dwell time and 2) Markov switching law with stationary distribution. Utilizing the state transition matrix methods and matrix measure techniques, some sufficient conditions are derived for asymptotical containment control and exponential almost sure containment control, respectively. Finally, some numerical examples are provided to demonstrate the effectiveness of the proposed control schemes.
Hierarchical models and chaotic spin glasses
Berker, A. Nihat; McKay, Susan R.
1984-09-01
Renormalization-group studies in position space have led to the discovery of hierarchical models which are exactly solvable, exhibiting nonclassical critical behavior at finite temperature. Position-space renormalization-group approximations that had been widely and successfully used are in fact alternatively applicable as exact solutions of hierarchical models, this realizability guaranteeing important physical requirements. For example, a hierarchized version of the Sierpiriski gasket is presented, corresponding to a renormalization-group approximation which has quantitatively yielded the multicritical phase diagrams of submonolayers on graphite. Hierarchical models are now being studied directly as a testing ground for new concepts. For example, with the introduction of frustration, chaotic renormalization-group trajectories were obtained for the first time. Thus, strong and weak correlations are randomly intermingled at successive length scales, and a new microscopic picture and mechanism for a spin glass emerges. An upper critical dimension occurs via a boundary crisis mechanism in cluster-hierarchical variants developed to have well-behaved susceptibilities.
Adaptive Sampling in Hierarchical Simulation
Energy Technology Data Exchange (ETDEWEB)
Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R
2007-07-09
We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.
Multicollinearity in hierarchical linear models.
Yu, Han; Jiang, Shanhe; Land, Kenneth C
2015-09-01
This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model.
Multipartite geometric entanglement in finite size XY model
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
The Emergence of Hierarchical Structure in Human Language
Directory of Open Access Journals (Sweden)
Shigeru eMiyagawa
2013-02-01
Full Text Available We propose a novel account for the emergence of human language syntax. Like many evolutionary innovations, language arose from the adventitious combination of two pre-existing, simpler systems that had been evolved for other functional tasks. The first system, Type E(xpression, is found in birdsong, where it marks territory, mating availability, and similar ‘expressive’ functions. The second system, Type L(exical, has been suggestively found in non-human primate calls and in honeybee waggle dances, where it demarcates predicates with one or more ‘arguments,’ such as combinations of calls in monkeys or compass headings set to sun position in honeybees. We show that human language syntax is composed of two layers that parallel these two independently evolved systems: an E layer resembling the Type E system of birdsong and an L layer providing words. The existence of the E and L layers can be confirmed using standard linguistic methodology. Each layer, E and L, when considered separately, are characterizable as finite state systems, as observed in several non-human species. When the two systems are put together they interact, yielding the unbounded, non-finite state, hierarchical structure that serves as the hallmark of ful
Hierarchical structure of biological systems
Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M
2014-01-01
A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961
Miller, R.E.
1977-01-01
A steady-state simulation model was applied to the shallow hydrothermal system in the East Mesa area of Imperial Valley, Calif. The steady-state equations of flow and heat transport were solved by use of a Galerkin, finite-element method. A solution was obtained by iterating between the temperature and pressure equations, using updated densities and viscosities. Temperature and pressure were obtained for each node, and corresponding head values were calculated. The simulated temperature and pressure patterns correlated well with the observed patterns. Additional data, mainly from test drilling, would be required for construction of a similar model of the deep hydrothermal system.
Energy Technology Data Exchange (ETDEWEB)
Sial, S [Department of Mathematics, Lahore University of Management Sciences, Opposite Sector U, DHA, Lahore Cantt. 54792 (Pakistan)
2005-05-01
The application of a Sobolev gradient method for finding vortices in s-wave superconductors via minimization of their Landau-Ginzburg energies is demonstrated in a finite element setting. It is seen that the method is highly efficient while at the same time retaining the simplicity of the steepest descent algorithm.
Axisymmetric finite element (FE) method was developed using a commercial computer program to simulate cone penetration process in layered granular soil. Soil was considered as a non-linear elastic plastic material which was modeled using variable elastic parameters of Young’s Modulus and Poisson’s r...
Hybrid Steepest-Descent Methods for Triple Hierarchical Variational Inequalities
Directory of Open Access Journals (Sweden)
L. C. Ceng
2015-01-01
Full Text Available We introduce and analyze a relaxed iterative algorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method, and Mann’s iteration method. We prove that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inclusions, and the solution set of general system of variational inequalities (GSVI, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm for solving a hierarchical variational inequality problem with constraints of finitely many GMEPs, finitely many variational inclusions, and the GSVI. The results obtained in this paper improve and extend the corresponding results announced by many others.
Lin, Zhi; Zhang, Qinghai
2017-09-01
We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.
Snyder, R. E.
1971-01-01
A cylindrical finite element suitable for the linear stability analysis of cylindrical shells is developed. Energy principles and variational methods lead to a problem formulation which lends itself to physical interpretations of the governing matrices of the finite element. By properly grouping the terms which result from taking the second variation of the potential energy of the element, it is possible to identify three distinct types of matrices. The first matrix is the conventional stiffness matrix; the second is an initial stress stiffness matrix; and the third is an initial displacement stiffness matrix. With the assumption of linearity, the buckling problem is stated in terms of the classical linear real eigenvalue equation. This problem formulation was programmed on the CDC 6600 series computer. The computer program is used to analyze the buckling of a variety of structures. Columns, arches, flat plates and curved panels with and without cutouts are considered.
Micromechanics of hierarchical materials
DEFF Research Database (Denmark)
Mishnaevsky, Leon, Jr.
2012-01-01
A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...
Hierarchical auxetic mechanical metamaterials.
Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N
2015-02-11
Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-12-05
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Hierarchical Auxetic Mechanical Metamaterials
Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.
2015-02-01
Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.
Applied Bayesian Hierarchical Methods
Congdon, Peter D
2010-01-01
Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.
Programming with Hierarchical Maps
DEFF Research Database (Denmark)
Ørbæk, Peter
This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....
Catalysis with hierarchical zeolites
DEFF Research Database (Denmark)
Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten
2011-01-01
Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...
Geometrical Underpinning of Finite Dimensional Hilbert space
Revzen, M
2011-01-01
Finite geometry is employed to underpin operators in finite, d, dimensional Hilbert space. The central role of Hilbert space operators that form mutual unbiased bases (MUB) states projectors is exhibited. Interrelation among them revealed through their (finite) dual affine plane geometry (DAPG) underpinning is studied. Transcription to (finite) affine plane geometry (APG) is given and utilized for their interpretation.
Geometrical Underpinning of Finite Dimensional Hilbert space
Revzen, M.
2011-01-01
Finite geometry is employed to underpin operators in finite, d, dimensional Hilbert space. The central role of mutual unbiased bases (MUB) states projectors is exhibited. Interrelation among operators in Hilbert space, revealed through their (finite) dual affine plane geometry (DAPG) underpinning is studied. Transcription to (finite) affine plane geometry (APG) is given and utilized for their interpretation.
First-passage phenomena in hierarchical networks
Tavani, Flavia
2016-01-01
In this paper we study Markov processes and related first passage problems on a class of weighted, modular graphs which generalize the Dyson hierarchical model. In these networks, the coupling strength between two nodes depends on their distance and is modulated by a parameter $\\sigma$. We find that, in the thermodynamic limit, ergodicity is lost and the "distant" nodes can not be reached. Moreover, for finite-sized systems, there exists a threshold value for $\\sigma$ such that, when $\\sigma$ is relatively large, the inhomogeneity of the coupling pattern prevails and "distant" nodes are hardly reached. The same analysis is carried on also for generic hierarchical graphs, where interactions are meant to involve $p$-plets ($p>2$) of nodes, finding that ergodicity is still broken in the thermodynamic limit, but no threshold value for $\\sigma$ is evidenced, ultimately due to a slow growth of the network diameter with the size.
有限状态机原理在 OA 系统中的运用%Finite State Machine Principle Application in OA System
Institute of Scientific and Technical Information of China (English)
赵英
2012-01-01
The article researchs workflow design ideas and methods of OA system, and expounds finite state machine principle. The paper describes state machine workflow model's design and implementation in OA system, which base on holiday examination and approval process of OA system. The workflow characteristics and finite state machine modeling method and realization strategies in OA system are the main contents.% 研究办公自动化系统(OA)中工作流的设计思路和方法。阐述有限状态机的基本原理，以一个 OA 系统中的假期审批流程为例，来描述 OA 系统中状态机工作流模型的设计和实现。主要研究了 OA 系统中工作流的特点、有限状态机建模方法和实现策略。
Advanced finite element technologies
Wriggers, Peter
2016-01-01
The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.
Faustov, R. N.; Martynenko, A. P.; Martynenko, G. A.; Sorokin, V. V.
2014-06-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα)5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
Faustov, R N; Martynenko, G A; Sorokin, V V
2014-01-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order $\\alpha(Z\\alpha)^5$ to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
Chambers, Jeffrey A.
1994-01-01
Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.
Dynamic Organization of Hierarchical Memories.
Kurikawa, Tomoki; Kaneko, Kunihiko
2016-01-01
In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a "dynamic categorization"; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity.
Universal hierarchical behavior of citation networks
Mones, Enys; Vicsek, Tamás
2014-01-01
Many of the essential features of the evolution of scientific research are imprinted in the structure of citation networks. Connections in these networks imply information about the transfer of knowledge among papers, or in other words, edges describe the impact of papers on other publications. This inherent meaning of the edges infers that citation networks can exhibit hierarchical features, that is typical of networks based on decision-making. In this paper, we investigate the hierarchical structure of citation networks consisting of papers in the same field. We find that the majority of the networks follow a universal trend towards a highly hierarchical state, and i) the various fields display differences only concerning their phase in life (distance from the "birth" of a field) or ii) the characteristic time according to which they are approaching the stationary state. We also show by a simple argument that the alterations in the behavior are related to and can be understood by the degree of specializatio...
Monteiro, Felipe R.
2016-01-01
The extensive use of digital controllers demands a growing effort to prevent design errors that appear due to finite-word length (FWL) effects. However, there is still a gap, regarding verification tools and methodologies to check implementation aspects of control systems. Thus, the present paper describes an approach, which employs bounded model checking (BMC) techniques, to verify fixed-point digital controllers represented by state-space equations. The experimental results demonstrate the ...
Neutrosophic Hierarchical Clustering Algoritms
Directory of Open Access Journals (Sweden)
Rıdvan Şahin
2014-03-01
Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.
On the geostatistical characterization of hierarchical media
Neuman, Shlomo P.; Riva, Monica; Guadagnini, Alberto
2008-02-01
The subsurface consists of porous and fractured materials exhibiting a hierarchical geologic structure, which gives rise to systematic and random spatial and directional variations in hydraulic and transport properties on a multiplicity of scales. Traditional geostatistical moment analysis allows one to infer the spatial covariance structure of such hierarchical, multiscale geologic materials on the basis of numerous measurements on a given support scale across a domain or "window" of a given length scale. The resultant sample variogram often appears to fit a stationary variogram model with constant variance (sill) and integral (spatial correlation) scale. In fact, some authors, who recognize that hierarchical sedimentary architecture and associated log hydraulic conductivity fields tend to be nonstationary, nevertheless associate them with stationary "exponential-like" transition probabilities and variograms, respectively, the latter being a consequence of the former. We propose that (1) the apparent ability of stationary spatial statistics to characterize the covariance structure of nonstationary hierarchical media is an artifact stemming from the finite size of the windows within which geologic and hydrologic variables are ubiquitously sampled, and (2) the artifact is eliminated upon characterizing the covariance structure of such media with the aid of truncated power variograms, which represent stationary random fields obtained upon sampling a nonstationary fractal over finite windows. To support our opinion, we note that truncated power variograms arise formally when a hierarchical medium is sampled jointly across all geologic categories and scales within a window; cite direct evidence that geostatistical parameters (variance and integral scale) inferred on the basis of traditional variograms vary systematically with support and window scales; demonstrate the ability of truncated power models to capture these variations in terms of a few scaling parameters
Disturbance observer based hierarchical control of coaxial-rotor UAV.
Mokhtari, M Rida; Cherki, Brahim; Braham, Amal Choukchou
2017-03-01
This paper propose an hierarchical controller based on a new disturbance observer with finite time convergence (FTDO) to solve the path tracking of a small coaxial-rotor-typs Unmanned Aerial Vehicles (UAVs) despite of unknown aerodynamic efforts. The hierarchical control technique is used to separate the flight control problem into an inner loop that controls attitude and an outer loop that controls the thrust force acting on the vehicle. The new disturbance observer with finite time convergence is intergated to online estimate the unknown uncertainties and disturbances and to actively compensate them in finite time.The analysis further extends to the design of a control law that takes the disturbance estimation procedure into account. Numerical simulations are carried out to demonstrate the efficiency of the proposed control strategy.
Radon Transform in Finite Dimensional Hilbert Space
Revzen, M.
2012-01-01
Novel analysis of finite dimensional Hilbert space is outlined. The approach bypasses general, inherent, difficulties present in handling angular variables in finite dimensional problems: The finite dimensional, d, Hilbert space operators are underpinned with finite geometry which provide intuitive perspective to the physical operators. The analysis emphasizes a central role for projectors of mutual unbiased bases (MUB) states, extending thereby their use in finite dimensional quantum mechani...
Yamasaki, Hayata; Soeda, Akihito; Murao, Mio
2017-09-01
We introduce and analyze graph-associated entanglement cost, a generalization of the entanglement cost of quantum states to multipartite settings. We identify a necessary and sufficient condition for any multipartite entangled state to be constructible when quantum communication between the multiple parties is restricted to a quantum network represented by a tree. The condition for exact state construction is expressed in terms of the Schmidt ranks of the state defined with respect to edges of the tree. We also study approximate state construction and provide a second-order asymptotic analysis.
Complex Evaluation of Hierarchically-Network Systems
Polishchuk, Dmytro; Yadzhak, Mykhailo
2016-01-01
Methods of complex evaluation based on local, forecasting, aggregated, and interactive evaluation of the state, function quality, and interaction of complex system's objects on the all hierarchical levels is proposed. Examples of analysis of the structural elements of railway transport system are used for illustration of efficiency of proposed approach.
Statistical theory of hierarchical avalanche ensemble
Olemskoi, Alexander I.
1999-01-01
The statistical ensemble of avalanche intensities is considered to investigate diffusion in ultrametric space of hierarchically subordinated avalanches. The stationary intensity distribution and the steady-state current are obtained. The critical avalanche intensity needed to initiate the global avalanche formation is calculated depending on noise intensity. The large time asymptotic for the probability of the global avalanche appearance is derived.
Restuccia, A; Taylor, J G
1992-01-01
This is the first complete account of the construction and finiteness analysis of multi-loop scattering amplitudes for superstrings, and of the guarantee that for certain superstrings (in particular the heterotic one), the symmetries of the theory in the embedding space-time are those of the super-poincaré group SP10 and that the multi-loop amplitudes are each finite. The book attempts to be self-contained in its analysis, although it draws on the works of many researchers. It also presents the first complete field theory for such superstrings. As such it demonstrates that gravity can be quant
Hierarchical Porous Structures
Energy Technology Data Exchange (ETDEWEB)
Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-07
Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.
Peterson, Michael
2009-03-01
The fractional quantum Hall effect (FQHE) in the second orbital Landau level at even-denominator filling factor 5/2 remains mysterious and is currently motivating many scientists not only because of its connection to a possible implementation of a fault tolerant topological quantum computer (Das Sarma et al., PRL 94, 166802(2005)). In this work, we theoretically consider the effect of the quasi-two-dimensional nature of the experimental fractional quantum Hall systems on a number of FQHE states in the lowest three orbital Landau levels. Our primary result is that the finite width of the quasi-two-dimensional systems produce a physical environment sufficient to stabilize the Moore-Read Pfaffian state thought to describe the FQHE at filling factor 5/2. This conclusion is based on exact calculations performed in the spherical and torus geometries, studying wave function overlap and ground state degeneracy. Furthermore, our results open the possibility of creating optimal experimental systems where the 5/2 FQHE state would more likely be described by the Moore-Read Pfaffian. We also discuss the role of the three-body interaction Hamiltonian that produces the Moore-Read Pfaffian as an exact ground state and particle-hole symmetry in the FQHE at 5/2. We acknowledge support from Microsoft Project Q. Work done in collaboration with Sankar Das Sarma, Thierry Jolicoeur, and Kwon Park.
Sharada, Shaama Mallikarjun; Bell, Alexis T; Head-Gordon, Martin
2014-04-28
The cost of calculating nuclear hessians, either analytically or by finite difference methods, during the course of quantum chemical analyses can be prohibitive for systems containing hundreds of atoms. In many applications, though, only a few eigenvalues and eigenvectors, and not the full hessian, are required. For instance, the lowest one or two eigenvalues of the full hessian are sufficient to characterize a stationary point as a minimum or a transition state (TS), respectively. We describe here a method that can eliminate the need for hessian calculations for both the characterization of stationary points as well as searches for saddle points. A finite differences implementation of the Davidson method that uses only first derivatives of the energy to calculate the lowest eigenvalues and eigenvectors of the hessian is discussed. This method can be implemented in conjunction with geometry optimization methods such as partitioned-rational function optimization (P-RFO) to characterize stationary points on the potential energy surface. With equal ease, it can be combined with interpolation methods that determine TS guess structures, such as the freezing string method, to generate approximate hessian matrices in lieu of full hessians as input to P-RFO for TS optimization. This approach is shown to achieve significant cost savings relative to exact hessian calculation when applied to both stationary point characterization as well as TS optimization. The basic reason is that the present approach scales one power of system size lower since the rate of convergence is approximately independent of the size of the system. Therefore, the finite-difference Davidson method is a viable alternative to full hessian calculation for stationary point characterization and TS search particularly when analytical hessians are not available or require substantial computational effort.
Self-assembled biomimetic superhydrophobic hierarchical arrays.
Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng
2013-09-01
Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.
Incentive Mechanisms for Hierarchical Spectrum Markets
Iosifidis, George; Alpcan, Tansu; Koutsopoulos, Iordanis
2011-01-01
We study spectrum allocation mechanisms in hierarchical multi-layer markets which are expected to proliferate in the near future based on the current spectrum policy reform proposals. We consider a setting where a state agency sells spectrum to Primary Operators (POs) and in turn these resell it to Secondary Operators (SOs) through auctions. We show that these hierarchical markets do not result in a socially efficient spectrum allocation which is aimed by the agency, due to lack of coordination among the entities in different layers and the inherently selfish revenue-maximizing strategy of POs. In order to reconcile these opposing objectives, we propose an incentive mechanism which aligns the strategy and the actions of the POs with the objective of the agency, and thus it leads to system performance improvement in terms of social welfare. This pricing based mechanism constitutes a method for hierarchical market regulation and requires the feedback provision from SOs. A basic component of the proposed incenti...
Constructing Finite Automata with Invertibility by Transformation Method
Institute of Scientific and Technical Information of China (English)
TAO Renji; CHEN Shihua
2000-01-01
Ra, Pb transformations were successfully applied to establish invertibility theory for linear and quasi-linear finite automata over finite fields. In a previous paper, the authors generalized Ra, Rb transformations to deal with nonlinear memory finite automata, and gave sufficient conditions for weak inverse and for weakly invertible memory finite automata and inversion processes concerned;methods by transformation to generate a kind of nonlinear memory finite automata satisfying one of these sufficient conditions were also given.This paper extends the concepts, methods and results to general finite automata, in which states consist of finite input history, finite output history and finite "inner state" history.
Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard
2014-01-01
Bi$_{2}$Te$_{3}$ and Bi$_{2}$Se$_{3}$ are well known 3D-topological insulators. Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as channel material for TI-based field effect transistors. While such a transistor offers superior terminal characteristics, they suffer from an inherent zero band gap problem. The absence of a band gap for the surface states prevents an easy turn-...
Directory of Open Access Journals (Sweden)
N. D. Chainov
2015-01-01
Full Text Available The paper considers a developed computational model to study a stress-strain state of the assembly unit components of a medium-speed diesel engine of new generation, type CH26.5/31, which comprises a cylinder head, a sleeve, a gasket, a block, two mounting studs and four power studs.The developed three-dimensional finite element model presented in this article allows us to take into consideration all the components that make up a gas joint, regardless of their geometric complexity. Its use enables us to estimate the cylinder head - gasket - sleeve tightness of sealing when applying the mounting, temperature, and gas loads, to define the stress and strain components of parts, as well as to study the gasket condition, including pressure distribution across its surface.Based on the results obtained in the study the finite element model of the cylinder head was modified considering a more detailed description of its geometry, thus reducing the principal tensile stresses.
Effects of finite laser pulse width on two-dimensional electronic spectroscopy
Leng, Xuan; Yue, Shuai; Weng, Yu-Xiang; Song, Kai; Shi, Qiang
2017-01-01
We combine the hierarchical equations of motion method and the equation-of-motion phase-matching approach to calculate two-dimensional electronic spectra of model systems. When the laser pulse is short enough, the current method reproduces the results based on third-order response function calculations in the impulsive limit. Finite laser pulse width is found to affect both the peak positions and shapes, as well as the time evolution of diagonal and cross peaks. Simulations of the two-color two-dimensional electronic spectra also show that, to observe quantum beats in the diagonal and cross peaks, it is necessary to excite the related excitonic states simultaneously.
Directory of Open Access Journals (Sweden)
Ming Hsu Tsai
2011-01-01
Full Text Available A corotational finite element method combined with floating frame method and a numerical procedure is proposed to investigate large steady-state deformation and infinitesimal-free vibrationaround the steady-state deformation of a rotating-inclined Euler beam at constant angular velocity. The element nodal forces are derived using the consistent second-order linearization of the nonlinear beam theory, the d'Alembert principle, and the virtual work principle in a current inertia element coordinates, which is coincident with a rotating element coordinate system constructed at the current configuration of the beam element. The governing equations for linear vibration are obtained by the first-order Taylor series expansion of the equation of motion at the position of steady-state deformation. Numerical examples are studied to demonstrate the accuracy and efficiency of the proposed method and to investigate the steady-state deformation and natural frequency of the rotating beam with different inclined angle, angular velocities, radius of the hub, and slenderness ratios.
Kitano, Haruhisa; Yamaguchi, Ayami; Takahashi, Yusaku; Kakehi, Daiki; Ayukawa, Shin-ya
2017-07-01
We study the microwave-induced phase switches from the finite voltage state for the underdamped intrinsic Josephson junctions (IJJs) made of Bi2Sr2CaCu2Oy (Bi2212). We observe the resonant double-peak structure in the switching current distribution at low temperatures. This feature is successfully explained by a quantum mechanical model where the strong microwave field effectively suppresses the potential barrier for the phase escape from a potential well and the macroscopic quantum tunneling (MQT) is resonantly enhanced. The detailed analyses considering the effects of multiple phase retrapping processes after the phase escape strongly suggest that the intense microwave field suppresses the energy-level spacing in the potential well, by effectively decreasing the fluctuation-free critical current and the Josephson plasma frequency. This effect also reduces the number of photons required for the multiphoton transition between the ground and the first excited states, making it possible to observe the energy level quantization in the MQT state. The temperature dependence of the resonance peak emerging in the switching rate clearly demonstrates that the quantized energy state can be survived up to ~10 K, which is much higher than a crossover temperature predicted by the conventional Caldeira-Leggett theory.
Li, Gaofeng; Cong, Yuan; Zhang, Chuanxiang; Tao, Haijun; Sun, Yueming; Wang, Yuqiao
2017-10-01
The hierarchical nanosheet-based Ni3S2 microspheres directly grew on Ni foam using a two-step hydrothermal method. The microsphere with a diameter of ∼1 microns and a rough surface was well connected to each other without any binders to provide a larger specific surface area, shorter ion/electron diffusion paths, richer electroactive sites as a supercapacitor electrode. As a three-electrode supercapacitor, it delivers a high specific capacity of 981.8 F g‑1 at 2 A g‑1, an excellent rate capability of 436.4 F g‑1 at 12 A g‑1, and a good cycling stability of 950.9 F g‑1 with 96.9% retention after 1000 cycles at 2 A g‑1. Furthermore, an asymmetric supercapacitor based on Ni3S2-microsphere as a positive electrode and active carbon as a negative electrode shows a high energy density of 29.4 Wh kg‑1 at 324.5 W kg‑1 and a high power density of 3197.6 W kg‑1 at 15.1 Wh kg‑1. This work demonstrates that nanosheet-based Ni3S2 microspheres coated Ni foam can be an effective electrode for a real supercapacitor.
Collaborative Hierarchical Sparse Modeling
Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina C
2010-01-01
Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is done by solving an l_1-regularized linear regression problem, usually called Lasso. In this work we first combine the sparsity-inducing property of the Lasso model, at the individual feature level, with the block-sparsity property of the group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the hierarchical Lasso, which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level but not necessarily at the lower one. Signals then share the same active groups, or classes, but not necessarily the same active set. This is very well suited for applications such as source separation. An efficient optimization procedure, which guarantees convergence to the global opt...
Yakovenko, Victor M.; Goan, Hsi-Sheng
1996-12-01
This paper reviews recent developments in the theory of the quantum Hall effect (QHE) in the magnetic-field-induced spin-density-wave (FISDW) state of the quasi-one-dimensional organic conductors (TMTSF)2X. The origin and the basic features of the FISDW are reviewed. The QHE in the pinned FISDW state is derived in several simple, transparent ways, including the edge states formulation of the problem. The temperature dependence of the Hall conductivity is found to be the same as the temperature dependence of the Fröhlich current. It is shown that, when the FISDW is free to move, it produces an additional contribution to the Hall conductivity that nullifies the total Hall effect. The paper is written on mathematically simple level, emphasizes physical meaning over sophisticated mathematical technique, and uses inductive, rather than deductive, reasoning.
Hierarchical manifold learning.
Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Jo; Rueckert, Daniel
2012-01-01
We present a novel method of hierarchical manifold learning which aims to automatically discover regional variations within images. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate its utility in two very different settings: (1) to learn the regional correlations in motion within a sequence of time-resolved images of the thoracic cavity; (2) to find discriminative regions of 3D brain images in the classification of neurodegenerative disease,
Hierarchically Structured Electrospun Fibers
Directory of Open Access Journals (Sweden)
Nicole E. Zander
2013-01-01
Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.
Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.
2015-02-01
The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023). HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).
Hierarchical video summarization
Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.
1998-12-01
We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.
Mohammed, H. E. Abu-Sei'leek
2011-01-01
A non-relativistic microscopic mean field theory of finite nuclei is investigated where the nucleus is described as a collection of nucleons and delta resonances. The ground state properties of 90Zr nucleus have been investigated at equilibrium and large amplitude compression using a realistic effective baryon-baryon Hamiltonian based on Reid Soft Core (RSC) potential. The sensitivity of the ground state properties is studied, such as binding energy, nuclear radius, radial density distribution, and single particle energies to the degree of compression. It is found that the most of increasing in the nuclear energy generated under compression is used to create the massive Δ particles. For 90Zr nucleus under compression at 2.5 times density of the normal nuclear density, the excited nucleons to Δ's are increased sharply up to 14% of the total number of constituents. This result is consistent with the values extracted from relativistic heavy-ion collisions. The single particle energy levels are calculated and their behaviors under compression are examined too. A good agreement between results with effective Hamiltonian and the phenomenological shell model for the low lying single-particle spectra is obtained. A considerable reduction in compressibility for the nucleus, and softening of the equation of state with the inclusion of the Δ's in the nuclear dynamics are suggested by the results.
Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik
2010-03-01
We present very accurate quantum mechanical calculations of the three lowest S-states [1s22s2(S10), 1s22p2(S10), and 1s22s3s(S10)] of the two stable isotopes of the boron ion, B10+ and B11+. At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10 000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading α2 relativistic corrections (α is the fine structure constant; α =1/c, where c is the speed of light) and the α3 quantum electrodynamics (QED) correction. We also estimated the α4 QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm-1.
Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik
2010-03-21
We present very accurate quantum mechanical calculations of the three lowest S-states [1s(2)2s(2)((1)S(0)), 1s(2)2p(2)((1)S(0)), and 1s(2)2s3s((1)S(0))] of the two stable isotopes of the boron ion, (10)B(+) and (11)B(+). At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10,000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading alpha(2) relativistic corrections (alpha is the fine structure constant; alpha=1/c, where c is the speed of light) and the alpha(3) quantum electrodynamics (QED) correction. We also estimated the alpha(4) QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm(-1).
Huang, Huang
2009-01-01
In this paper, we consider the delay-sensitive power and transmission threshold control design in S-ALOHA network with FSMC fading channels. The random access system consists of an access point with K competing users, each has access to the local channel state information (CSI) and queue state information (QSI) as well as the common feedback (ACK/NAK/Collision) from the access point. We seek to derive the delay-optimal control policy (composed of threshold and power control). The optimization problem belongs to the memoryless policy K-agent infinite horizon decentralized Markov decision process (DEC-MDP), and finding the optimal policy is shown to be computationally intractable. To obtain a feasible and low complexity solution, we recast the optimization problem into two subproblems, namely the power control and the threshold control problem. For a given threshold control policy, the power control problem is decomposed into a reduced state MDP for single user so that the overall complexity is O(NJ), where N a...
Finite-size effects for percolation on Apollonian networks.
Auto, Daniel M; Moreira, André A; Herrmann, Hans J; Andrade, José S
2008-12-01
We study the percolation problem on the Apollonian network model. The Apollonian networks display many interesting properties commonly observed in real network systems, such as small-world behavior, scale-free distribution, and a hierarchical structure. By taking advantage of the deterministic hierarchical construction of these networks, we use the real-space renormalization-group technique to write exact iterative equations that relate percolation network properties at different scales. More precisely, our results indicate that the percolation probability and average mass of the percolating cluster approach the thermodynamic limit logarithmically. We suggest that such ultraslow convergence might be a property of hierarchical networks. Since real complex systems are certainly finite and very commonly hierarchical, we believe that taking into account finite-size effects in real-network systems is of fundamental importance.
Li, Dong; Yin, Jianhua; Dong, Liang; Lakes, Roderic S.
2017-02-01
Two-dimensional hierarchical re-entrant honeycomb structures were designed and the mechanical behaviors of the structures were studied using a finite element method. Hierarchical re-entrant structure of order n (n ≥ 1) was constructed by replacing each vertex of a lower order (n - 1) hierarchical re-entrant structure with a smaller re-entrant hexagon with identical strut aspect ratio. The Poisson’s ratio and energy absorption capacity of re-entrant structures of different hierarchical orders were studied under different compression velocities. The results showed that the Poisson’s ratio of the first and second order hierarchical structures can reach -1.36 and -1.33 with appropriate aspect ratio, 13.8% and 12.1% lower than that of the zeroth order hierarchical structure. The energy absorption capacity of the three models increased with an increasing compression velocity; the second order hierarchical structure exhibited the highest rate of increase in energy absorption capacity with an increasing compression velocity. The plateau stresses of the first and second order hierarchical structures were slightly lower than that of the zeroth order hierarchical structure; however the second order hierarchical structure exhibited the highest energy absorption capacity at high compression velocity (60 m s-1).
Institute of Scientific and Technical Information of China (English)
王成江; 李红艳; 范开明; 张铂雅; 李光
2012-01-01
The state evaluation of power transmission line is the important basis for the development of maintenance plans. The current state evaluation of power transmission line is not flexible and inconvenient to operate in actual application because the fixed weights set by rules are applied. A new state evaluation method for power transmission line is studied. In this method, a hierarchical model of state evaluation for transmission line is built first; and then according to the requirement of Delphi method,58 experts in the field of power transmission are asked to give the orders of the importance of 8 components and 57 criteria in the hierarchical evaluation model. Beside that, the weight coefficients of elements involved in the order given by experts are counted and calculated layer by layer with the Delphi method. At last, the same evaluation standard is used to grade 2 power transmission lines; and the comprehensive status evaluation of the line is gained according to the new weight coefficients. The evaluation results show that the evaluation method is more effective and more scientific.%输电线路的状态评价是制定检修计划的重要依据.现有的输电线路状态评价多是套用规程规定的固定权重,这在实际运用时难免数据僵硬、不便操作.本文研究了一种新的输电线路状态评价方法.在建立输电线路层次评价模型的基础上,按照Delphi法的要求,请58位输电领域的专家对层次评价模型中的8个线路单元和57个状态量分别进行了重要性排序,然后应用Delphi方法逐层统计计算专家排序中涉及到的不同元素的权重系数,最后,采用同一量度对2条输电线路进行打分,利用新的权重系数进行线路状态的综合评价,评价结果显示该评价方法更具有有效性和科学性.
Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network.
Balaguer, Jan; Spiers, Hugo; Hassabis, Demis; Summerfield, Christopher
2016-05-18
Planning allows actions to be structured in pursuit of a future goal. However, in natural environments, planning over multiple possible future states incurs prohibitive computational costs. To represent plans efficiently, states can be clustered hierarchically into "contexts". For example, representing a journey through a subway network as a succession of individual states (stations) is more costly than encoding a sequence of contexts (lines) and context switches (line changes). Here, using functional brain imaging, we asked humans to perform a planning task in a virtual subway network. Behavioral analyses revealed that humans executed a hierarchically organized plan. Brain activity in the dorsomedial prefrontal cortex and premotor cortex scaled with the cost of hierarchical plan representation and unique neural signals in these regions signaled contexts and context switches. These results suggest that humans represent hierarchical plans using a network of caudal prefrontal structures. VIDEO ABSTRACT.
DEFF Research Database (Denmark)
Hobolth, Asger; Stone, Eric
2009-01-01
computational finance to human genetics and genomics. A common theme among these diverse applications is the need to simulate sample paths of a CTMC conditional on realized data that is discretely observed. Here we present a general solution to this sampling problem when the CTMC is defined on a discrete...... approaches: (1) modified rejection sampling, (2) direct sampling, and (3) uniformization. We then give analytical results for the complexity and efficiency of each method in terms of the instantaneous transition rate matrix Q of the CTMC, its beginning and ending states, and the length of sampling time T...
Steady-state time-periodic finite element analysis of a brushless DC motor drive considering motion
Directory of Open Access Journals (Sweden)
Jagieła Mariusz
2015-09-01
Full Text Available This paper aims at providing a framework for comprehensive steady-state time-domain analysis of rotating machines considering motion. The steady-state waveforms of electromagnetic and circuit quantities are computed via iterative solution of the nonlinear field-circuit-and-motion problem with constraints of time periodicity. The cases with forced speed and forced load torque are considered. A comparison of execution times with a conventional time-stepping transient model is carried out for two different machines. The numerical stability of a time-periodic model with forced speed is shown to be worse than that of traditional transient time-stepping one, although the model converges within a reasonable number of iterations. This is not the case if forced load via equation of mechanical balance is accounted for. To ensure convergence of the iterative process the physical equation of motion is replaced by the fixed-point equation. In this way the model delivers time-periodic solutions regarding not only the electromagnetic quantities but also the rotational speed.
Detecting Hierarchical Structure in Networks
DEFF Research Database (Denmark)
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;
2012-01-01
a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....
Context updates are hierarchical
Directory of Open Access Journals (Sweden)
Anton Karl Ingason
2016-10-01
Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.
Energy Technology Data Exchange (ETDEWEB)
Javaux, Denis
2002-02-01
This paper describes a method for predicting the errors that may appear when human operators or users interact with systems behaving as finite state systems. The method is a generalization of a method used for predicting errors when interacting with autopilot modes on modern, highly computerized airliners [Proc 17th Digital Avionics Sys Conf (DASC) (1998); Proc 10th Int Symp Aviat Psychol (1999)]. A cognitive model based on spreading activation networks is used for predicting the user's model of the system and its impact on the production of errors. The model strongly posits the importance of implicit learning in user-system interaction and its possible detrimental influence on users' knowledge of the system. An experiment conducted with Airbus Industrie and a major European airline on pilots' knowledge of autopilot behavior on the A340-200/300 confirms the model predictions, and in particular the impact of the frequencies with which specific state transitions and contexts are experienced.
Interframe hierarchical vector quantization using hashing-based reorganized codebook
Choo, Chang Y.; Cheng, Che H.; Nasrabadi, Nasser M.
1995-12-01
Real-time multimedia communication over PSTN (Public Switched Telephone Network) or wireless channel requires video signals to be encoded at the bit rate well below 64 kbits/second. Most of the current works on such very low bit rate video coding are based on H.261 or H.263 scheme. The H.263 encoding scheme, for example, consists mainly of motion estimation and compensation, discrete cosine transform, and run and variable/fixed length coding. Vector quantization (VQ) is an efficient and alternative scheme for coding at very low bit rate. One such VQ code applied to video coding is interframe hierarchical vector quantization (IHVQ). One problem of IHVQ, and VQ in general, is the computational complexity due to codebook search. A number of techniques have been proposed to reduce the search time which include tree-structured VQ, finite-state VQ, cache VQ, and hashing based codebook reorganization. In this paper, we present an IHVQ code with a hashing based scheme to reorganize the codebook so that codebook search time, and thus encoding time, can be significantly reduced. We applied the algorithm to the same test environment as in H.263 and evaluated coding performance. It turned out that the performance of the proposed scheme is significantly better than that of IHVQ without hashed codebook. Also, the performance of the proposed scheme was comparable to and often better than that of the H.263, due mainly to hashing based reorganized codebook.
Energy Technology Data Exchange (ETDEWEB)
Atakishiyev, Natig M [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Klimyk, Anatoliy U [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Wolf, Kurt Bernardo [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)
2004-05-28
The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra su{sub q}(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x{sub s} = 1/2 [2s]{sub q}, s element of {l_brace}-j, -j+1, ..., j{r_brace}, and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schroedinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q {yields} 1 we recover the finite oscillator Lie algebra, the N = 2j {yields} {infinity} limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.
Atakishiyev, Natig M.; Klimyk, Anatoliy U.; Wolf, Kurt Bernardo
2004-05-01
The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra suq(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x_s={\\case12}[2s]_q, s\\in\\{-j,-j+1,\\ldots,j\\} , and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schrödinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q rarr 1 we recover the finite oscillator Lie algebra, the N = 2j rarr infin limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.
Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley
2017-09-01
Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented
The state space finite element method for Stokes flow in rectangular cavity%矩形空腔内Stokes流的状态空间有限元法
Institute of Scientific and Technical Information of China (English)
孟俊苗; 邓子辰; 王艳
2014-01-01
Based on the Hellinger-Reissner variational principle ,the Hamilton canonical equation of the plane incompressible Stokes flow was derived from the equilibrium equations ,continuity conditions and the force boundary conditions .By the separation of variables ,the general finite element method was em-ployed in x direction and was derived by the state space control method .In addition ,the precise integra-tion method for the exponential matrix was employed in the calculation .The effectiveness of the state space finite element method is demonstrated by analyzing and comparing the simulation example in case of a single-lid driven cavity with free surface side walls .The study of this paper is to introduce the idea of the semi-analytical method into the low Reynolds number flow problems ,and lay a foundation of further study on the Stokes flow with complex boundary in the Hamiltonian system .%基于 Hellinger-Reissner二类变分原理，从平面Stokes流问题的平衡方程、连续性要求和边界条件出发，得到相应的Hamilton函数，建立Hamilton正则方程后，采用分离变量法对场变量进行离散求解：在 x方向采用有限元插值，在 y方向采用状态空间法给出控制坐标方向的解析解。计算过程中的指数矩阵均采用精细积分法求解，使得本文算法具有高效率、高精度、对步长不敏感的优点。通过对侧边自由液面边界条件的单板驱动矩形空腔Stokes流问题的求解，得到与文献相同的结果，从而验证了本文方法的有效性。本文旨在将弹性力学状态空间有限元法的思想引入到低雷诺数流体力学中，为 Hamilton体系下研究复杂边界Stokes流问题提供新的途径。
Saavedra, Sebastian
2012-07-01
The mathematical model that has been recognized to have the more accurate approximation to the physical laws govern subsurface hydrocarbon flow in reservoirs is the Compositional Model. The features of this model are adequate to describe not only the performance of a multiphase system but also to represent the transport of chemical species in a porous medium. Its importance relies not only on its current relevance to simulate petroleum extraction processes, such as, Primary, Secondary, and Enhanced Oil Recovery Process (EOR) processes but also, in the recent years, carbon dioxide (CO2) sequestration. The purpose of this study is to investigate the subsurface compositional flow under isothermal conditions for several oil well cases. While simultaneously addressing computational implementation finesses to contribute to the efficiency of the algorithm. This study provides the theoretical framework and computational implementation subtleties of an IMplicit Pressure Explicit Composition (IMPEC)-Volume-balance (VB), two-phase, equation-of-state, approach to model isothermal compositional flow based on the finite difference scheme. The developed model neglects capillary effects and diffusion. From the phase equilibrium premise, the model accounts for volumetric performances of the phases, compressibility of the phases, and composition-dependent viscosities. The Equation of State (EoS) employed to approximate the hydrocarbons behaviour is the Peng Robinson Equation of State (PR-EOS). Various numerical examples were simulated. The numerical results captured the complex physics involved, i.e., compositional, gravitational, phase-splitting, viscosity and relative permeability effects. Regarding the numerical scheme, a phase-volumetric-flux estimation eases the calculation of phase velocities by naturally fitting to phase-upstream-upwinding. And contributes to a faster computation and an efficient programming development.
Semantic Image Segmentation with Contextual Hierarchical Models.
Seyedhosseini, Mojtaba; Tasdizen, Tolga
2016-05-01
Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).
Hierarchical Overlapping Clustering of Network Data Using Cut Metrics
Gama, Fernando; Ribeiro, Alejandro
2016-01-01
A novel method to obtain hierarchical and overlapping clusters from network data -i.e., a set of nodes endowed with pairwise dissimilarities- is presented. The introduced method is hierarchical in the sense that it outputs a nested collection of groupings of the node set depending on the resolution or degree of similarity desired, and it is overlapping since it allows nodes to belong to more than one group. Our construction is rooted on the facts that a hierarchical (non-overlapping) clustering of a network can be equivalently represented by a finite ultrametric space and that a convex combination of ultrametrics results in a cut metric. By applying a hierarchical (non-overlapping) clustering method to multiple dithered versions of a given network and then convexly combining the resulting ultrametrics, we obtain a cut metric associated to the network of interest. We then show how to extract a hierarchical overlapping clustering structure from the aforementioned cut metric. Furthermore, the so-called overlappi...
APPLICATION OF HIERARCHICAL REINFORCEMENT LEARNING IN ENGINEERING DOMAIN
Institute of Scientific and Technical Information of China (English)
WEI LI; Qingtai YE; Changming ZHU
2005-01-01
The slow convergence rate of reinforcement learning algorithms limits their wider application.In engineering domains, hierarchical reinforcement learning is developed to perform actions temporally according to prior knowledge. This system can converge fast due to reduced state space.There is a test of elevator group control to show the power of the new system. Two conventional group control algorithms are adopted as prior knowledge. Performance indicates that hierarchical reinforcement learning can reduce the learning time dramatically.
Some Results of the Cartesian Composition of Fuzzy Finite State Machines%模糊有限状态机笛卡尔合成的一些结果
Institute of Scientific and Technical Information of China (English)
杨京开
2012-01-01
In this paper, some properties of the cartesian composition of fuzzy finite state machines are discussed utilizing algebraic techniques, the cartesian composition of fuzzy finite state machines satisfy commutative law and associative law in the sense of strong isomorphism are obtained, the similar properties between the cartesian composition of fuzzy finite state machines and the factors in subsystem (strong subsystem), free subset, basis and so on are discussed, a decomposition theorem for the cartesian composition of fuzzy finite state machines in terms of primary submachines is given, the admissible relation of the cartesian composition of fuzzy finite state machines under the projection mapping is the factors's admissible relations is proved.%讨论了模糊有限状态机的笛卡尔合成的一些性质,得到了模糊有限状态机的笛卡尔合成在强同构意义下满足交换律,结合律,讨论了模糊有限状态机的笛卡尔合成与其因子在子系统(强子系统),自由子集,基等方面的相似的结构性质,给出了模糊有限状态机的笛卡尔合成的准素子机分解,证明了模糊有限状态机的笛卡尔合成的容许关系的投影是其因子的容许关系.
Hierarchical Codebook Design for Massive MIMO
Directory of Open Access Journals (Sweden)
Xin Su
2015-02-01
Full Text Available The Research of Massive MIMO is an emerging area, since the more antennas the transmitters or receivers equipped with, the higher spectral efficiency and link reliability the system can provide. Due to the limited feedback channel, precoding and codebook design are important to exploit the performance of massive MIMO. To improve the precoding performance, we propose a novel hierarchical codebook with the Fourier-based perturbation matrices as the subcodebook and the Kerdock codebook as the main codebook, which could reduce storage and search complexity due to the finite a lphabet. Moreover, t o f urther r educe t he search complexity and feedback overhead without noticeable performance degradation, we use an adaptive selection algorithm to decide whether to use the subcodebook. Simulation results show that the proposed codebook has remarkable performance gain compared to the conventional Kerdock codebook, without significant increase in feedback overhead and search complexity.
Hierarchical partial order ranking.
Carlsen, Lars
2008-09-01
Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritization of polluted sites is given.
Trees and Hierarchical Structures
Haeseler, Arndt
1990-01-01
The "raison d'etre" of hierarchical dustering theory stems from one basic phe nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.
Hierarchical Affinity Propagation
Givoni, Inmar; Frey, Brendan J
2012-01-01
Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...
Optimisation by hierarchical search
Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias
2015-03-01
Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.
How hierarchical is language use?
Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.
2012-01-01
It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157
How hierarchical is language use?
Frank, Stefan L; Bod, Rens; Christiansen, Morten H
2012-11-22
It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science.
Padovan, J.; Lackney, J.
1986-01-01
The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.
Modesto, Leonardo
2013-01-01
We hereby present a class of multidimensional higher derivative theories of gravity that realizes an ultraviolet completion of Einstein general relativity. This class is marked by a "non-polynomal" entire function (form factor), which averts extra degrees of freedom (including ghosts) and improves the high energy behavior of the loop amplitudes. By power counting arguments, it is proved that the theory is super-renormalizable in any dimension, i.e. only one-loop divergences survive. Furthermore, in odd dimensions there are no counter terms for pure gravity and the theory turns out to be "finite." Finally, considering the infinite tower of massive states coming from dimensional reduction, quantum gravity is finite in even dimension as well.
Integration of geometric modeling and advanced finite element preprocessing
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Shahrbaf, Shirin; vanNoort, Richard; Mirzakouchaki, Behnam; Ghassemieh, Elaheh; Martin, Nicolas
2013-08-01
The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8GPa, 4GPa, 8GPa, 18.3GPa and 40GPa; the four lower values are representative of currently used cementing lutes and 40GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown
Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus
Jelonek, M
2006-01-01
The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of modeling hierarchical linear equations and estimation based on MPlus software. I present my own model to illustrate the impact of different factors on school acceptation level.
Object tracking with hierarchical multiview learning
Yang, Jun; Zhang, Shunli; Zhang, Li
2016-09-01
Building a robust appearance model is useful to improve tracking performance. We propose a hierarchical multiview learning framework to construct the appearance model, which has two layers for tracking. On the top layer, two different views of features, grayscale value and histogram of oriented gradients, are adopted for representation under the cotraining framework. On the bottom layer, for each view of each feature, three different random subspaces are generated to represent the appearance from multiple views. For each random view submodel, the least squares support vector machine is employed to improve the discriminability for concrete and efficient realization. These two layers are combined to construct the final appearance model for tracking. The proposed hierarchical model assembles two types of multiview learning strategies, in which the appearance can be described more accurately and robustly. Experimental results in the benchmark dataset demonstrate that the proposed method can achieve better performance than many existing state-of-the-art algorithms.
On a Result for Finite Markov Chains
Kulathinal, Sangita; Ghosh, Lagnojita
2006-01-01
In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…
Directory of Open Access Journals (Sweden)
Lu-Chuan Ceng
2014-01-01
Full Text Available We introduce and analyze a hybrid iterative algorithm by virtue of Korpelevich's extragradient method, viscosity approximation method, hybrid steepest-descent method, and averaged mapping approach to the gradient-projection algorithm. It is proven that under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inequality problems (VIPs, the solution set of general system of variational inequalities (GSVI, and the set of minimizers of convex minimization problem (CMP, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm to solve a hierarchical fixed point problem with constraints of finitely many GMEPs, finitely many VIPs, GSVI, and CMP. The results obtained in this paper improve and extend the corresponding results announced by many others.
Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus
Jelonek, Magdalena
2006-01-01
The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of m...
Hierarchical Bayes Ensemble Kalman Filtering
Tsyrulnikov, Michael
2015-01-01
Ensemble Kalman filtering (EnKF), when applied to high-dimensional systems, suffers from an inevitably small affordable ensemble size, which results in poor estimates of the background error covariance matrix ${\\bf B}$. The common remedy is a kind of regularization, usually an ad-hoc spatial covariance localization (tapering) combined with artificial covariance inflation. Instead of using an ad-hoc regularization, we adopt the idea by Myrseth and Omre (2010) and explicitly admit that the ${\\bf B}$ matrix is unknown and random and estimate it along with the state (${\\bf x}$) in an optimal hierarchical Bayes analysis scheme. We separate forecast errors into predictability errors (i.e. forecast errors due to uncertainties in the initial data) and model errors (forecast errors due to imperfections in the forecast model) and include the two respective components ${\\bf P}$ and ${\\bf Q}$ of the ${\\bf B}$ matrix into the extended control vector $({\\bf x},{\\bf P},{\\bf Q})$. Similarly, we break the traditional backgrou...
Petrov, Romain G; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stephane; Bresson, Yves; Benkhaldoum, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu
2014-01-01
The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups. The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by g...
Tunesi, Luca; Armbruster, Philippe
2004-02-01
The objective of this paper is to demonstrate a suitable hierarchical networking solution to improve capabilities and performances of space systems, with significant recurrent costs saving and more efficient design & manufacturing flows. Classically, a satellite can be split in two functional sub-systems: the platform and the payload complement. The platform is in charge of providing power, attitude & orbit control and up/down-link services, whereas the payload represents the scientific and/or operational instruments/transponders and embodies the objectives of the mission. One major possibility to improve the performance of payloads, by limiting the data return to pertinent information, is to process data on board thanks to a proper implementation of the payload data system. In this way, it is possible to share non-recurring development costs by exploiting a system that can be adopted by the majority of space missions. It is believed that the Modular and Scalable Payload Data System, under development by ESA, provides a suitable solution to fulfil a large range of future mission requirements. The backbone of the system is the standardised high data rate SpaceWire network http://www.ecss.nl/. As complement, a lower speed command and control bus connecting peripherals is required. For instance, at instrument level, there is a need for a "local" low complexity bus, which gives the possibility to command and control sensors and actuators. Moreover, most of the connections at sub-system level are related to discrete signals management or simple telemetry acquisitions, which can easily and efficiently be handled by a local bus. An on-board hierarchical network can therefore be defined by interconnecting high-speed links and local buses. Additionally, it is worth stressing another important aspect of the design process: Agencies and ESA in particular are frequently confronted with a big consortium of geographically spread companies located in different countries, each one
Hierarchical Reverberation Mapping
Brewer, Brendon J
2013-01-01
Reverberation mapping (RM) is an important technique in studies of active galactic nuclei (AGN). The key idea of RM is to measure the time lag $\\tau$ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of $\\tau$ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass $M_{\\rm BH}$. A major difficulty with RM campaigns is the large amount of data needed to measure $\\tau$. Recently, Fine et al (2012) introduced a new approach to RM where the BLR light curve is sparsely sampled, but this is counteracted by observing a large sample of AGN, rather than a single system. The results are combined to infer properties of the sample of AGN. In this letter we implement this method using a hierarchical Bayesian model and contrast this with the results from the previous stacked cross-correlation technique. We find that our inferences are more precise and allow fo...
Hierarchical robust nonlinear switching control design for propulsion systems
Leonessa, Alexander
1999-09-01
The desire for developing an integrated control system- design methodology for advanced propulsion systems has led to significant activity in modeling and control of flow compression systems in recent years. In this dissertation we develop a novel hierarchical switching control framework for addressing the compressor aerodynamic instabilities of rotating stall and surge. The proposed control framework accounts for the coupling between higher-order modes while explicitly addressing actuator rate saturation constraints and system modeling uncertainty. To develop a hierarchical nonlinear switching control framework, first we develop generalized Lyapunov and invariant set theorems for nonlinear dynamical systems wherein all regularity assumptions on the Lyapunov function and the system dynamics are removed. In particular, local and global stability theorems are given using lower semicontinuous Lyapunov functions. Furthermore, generalized invariant set theorems are derived wherein system trajectories converge to a union of largest invariant sets contained in intersections over finite intervals of the closure of generalized Lyapunov level surfaces. The proposed results provide transparent generalizations to standard Lyapunov and invariant set theorems. Using the generalized Lyapunov and invariant set theorems, a nonlinear control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving system equilibria is developed. Specifically, using equilibria- dependent Lyapunov functions, a hierarchical nonlinear control strategy is developed that stabilizes a given nonlinear system by stabilizing a collection of nonlinear controlled subsystems. The switching nonlinear controller architecture is designed based on a generalized lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized system equilibria. The proposed framework provides a
Hierarchical materials: Background and perspectives
DEFF Research Database (Denmark)
2016-01-01
Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...
Hierarchical clustering for graph visualization
Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi
2012-01-01
This paper describes a graph visualization methodology based on hierarchical maximal modularity clustering, with interactive and significant coarsening and refining possibilities. An application of this method to HIV epidemic analysis in Cuba is outlined.
Direct hierarchical assembly of nanoparticles
Xu, Ting; Zhao, Yue; Thorkelsson, Kari
2014-07-22
The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.
Functional annotation of hierarchical modularity.
Directory of Open Access Journals (Sweden)
Kanchana Padmanabhan
Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our
SORM applied to hierarchical parallel system
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2006-01-01
The old hierarchical stochastic load combination model of Ferry Borges and Castanheta and the corresponding problem of determining the distribution of the extreme random load effect is the inspiration to this paper. The evaluation of the distribution function of the extreme value by use of a part......The old hierarchical stochastic load combination model of Ferry Borges and Castanheta and the corresponding problem of determining the distribution of the extreme random load effect is the inspiration to this paper. The evaluation of the distribution function of the extreme value by use...... of a particular first order reliability method (FORM) was first described in a celebrated paper by Rackwitz and Fiessler more than a quarter of a century ago. The method has become known as the Rackwitz-Fiessler algorithm. The original RF-algorithm as applied to a hierarchical random variable model...... is recapitulated so that a simple but quite effective accuracy improving calculation can be explained. A limit state curvature correction factor on the probability approximation is obtained from the final stop results of the RF-algorithm. This correction factor is based on Breitung’s asymptotic formula for second...
Safety simulation technology based on finite state machine%基于有限状态机的安全性仿真技术
Institute of Scientific and Technical Information of China (English)
王蓓; 赵廷弟; 焦健
2011-01-01
为了研究系统中事故的动态变化机理,探索事故发展过程中的运动行为,制定正确的应急控制措施,提出了基于有限状态机理论的安全性建模仿真方法.结合Simulink/Stateflow工具开发了面向事故机理与应急过程的建模仿真平台,实现了系统的机理模型、安全状态控制模型以及应急操作模型的有效融合.该平台能实现对人-机-环境综合系统进行动态仿真,为明确事故的动态变化过程和制定应急控制措施提供依据.通过对某舰船舱室事故过程的仿真实例,验证了该方法的有效性和合理性.%The safety modeling and simulation method based on finite state machine theory was proposed to research the dynamic change mechanism of the accident in system, as well as explore the movement during the accident evolution and establish exact emergency treatment. The modeling and simulation platform for accident mechanism and control process was developed in the environment of Simulink/Stateflow. The combination of system mechanism model, safety state control model and emergency treatment model can be achieved in this platform. Therefore the dynamic simulation for such systems that integrated with human-machine and environment can be implemented in an effective way. Then the simulation results can be obtained, which provide reference for the precise identification of the accident process and the establishment of exact control treatment. Finally the accident simulation example was given, which proved the validity and rationality of this proposed method.
Hierarchical architecture of active knits
Abel, Julianna; Luntz, Jonathan; Brei, Diann
2013-12-01
Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm.
Advanced hierarchical distance sampling
Royle, Andy
2016-01-01
In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.
Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates
Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.
2015-01-01
There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303
A Catalog of Self-Affine Hierarchical Entropy Functions
Directory of Open Access Journals (Sweden)
John Kieffer
2011-11-01
Full Text Available For fixed k ≥ 2 and fixed data alphabet of cardinality m, the hierarchical type class of a data string of length n = kj for some j ≥ 1 is formed by permuting the string in all possible ways under permutations arising from the isomorphisms of the unique finite rooted tree of depth j which has n leaves and k children for each non-leaf vertex. Suppose the data strings in a hierarchical type class are losslessly encoded via binary codewords of minimal length. A hierarchical entropy function is a function on the set of m-dimensional probability distributions which describes the asymptotic compression rate performance of this lossless encoding scheme as the data length n is allowed to grow without bound. We determine infinitely many hierarchical entropy functions which are each self-affine. For each such function, an explicit iterated function system is found such that the graph of the function is the attractor of the system.
Energy Technology Data Exchange (ETDEWEB)
Zain-ul-abdein, Muhammad [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 (France); Nelias, Daniel, E-mail: daniel.nelias@insa-lyon.f [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 (France); Jullien, Jean-Francois [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 (France); Boitout, Frederic; Dischert, Luc; Noe, Xavier [ESI Group Le Recamier 70, rue Robert 69458 Lyon Cedex 06 (France)
2011-01-15
Aircraft industry makes extensive use of aluminium alloy AA 6056-T4 in the fabrication of fuselage panels using laser beam welding technique. Since high temperatures are involved in the manufacturing process, the precipitation/dissolution occurrences are expected as solid state phase transformations. These transformations are likely to affect the residual distortion and stress states of the component. The present work investigates the effect of metallurgical phase transformations upon the residual stresses and distortions induced by laser beam welding in a T-joint configuration using the finite element method. Two separate models were studied using different finite element codes, where the first one describes a thermo-mechanical analysis using Abaqus; while the second one discusses a thermo-metallo-mechanical analysis using Sysweld. A comparative analysis of experimentally validated finite element models has been performed and the residual stress states with and without the metallurgical phase transformations are predicted. The results show that the inclusion of phase transformations has a negligible effect on predicted distortions, which are in agreement with the experimental data, but an effect on predicted residual stresses, although the experimentally measured residual stresses are not available to support the analyses.
Hierarchical states in the Compositional Interchange Format
Directory of Open Access Journals (Sweden)
H. Beohar
2010-08-01
Full Text Available CIF is a language designed for two purposes, namely as a specification language for hybrid systems and as an interchange format for allowing model transformations between other languages for hybrid systems. To facilitate the top-down development of a hybrid system and also to be able to express models more succinctly in the CIF formalism, we need a mechanism for stepwise refinement. In this paper, we add the notion of hierarchy to a subset of the CIF language, which we call hCIF. The semantic domain of the CIF formalism is a hybrid transition system, constructed using structural operational semantics. The goal of this paper is to present a semantics for hierarchy in such a way that only the SOS rules for atomic entities in hCIF are redesigned in comparison to CIF. Furthermore, to be able to reuse existing tools like simulators of the CIF language, a procedure to eliminate hierarchy from an automaton is given.
Hierarchical states in the Compositional Interchange Format
Beohar, H; van Beek, D A; Cuijpers, P J L; 10.4204/EPTCS.32.4
2010-01-01
CIF is a language designed for two purposes, namely as a specification language for hybrid systems and as an interchange format for allowing model transformations between other languages for hybrid systems. To facilitate the top-down development of a hybrid system and also to be able to express models more succinctly in the CIF formalism, we need a mechanism for stepwise refinement. In this paper, we add the notion of hierarchy to a subset of the CIF language, which we call hCIF. The semantic domain of the CIF formalism is a hybrid transition system, constructed using structural operational semantics. The goal of this paper is to present a semantics for hierarchy in such a way that only the SOS rules for atomic entities in hCIF are redesigned in comparison to CIF. Furthermore, to be able to reuse existing tools like simulators of the CIF language, a procedure to eliminate hierarchy from an automaton is given.
Electronic Properties in a Hierarchical Multilayer Structure
Institute of Scientific and Technical Information of China (English)
ZHU Chen-Ping; XIONG Shi-Jie
2001-01-01
We investigate electronic properties of a hierarchical multilayer structure consisting of stacking of barriers and wells. The structure is formed in a sequence of generations, each of which is constructed with the same pattern but with the previous generation as the basic building blocks. We calculate the transmission spectrum which shows the multifractal behavior for systems with large generation index. From the analysis of the average resistivity and the multifractal structure of the wavefunctions, we show that there exist different types of states exhibiting extended, localized and intermediate characteristics. The degree of localization is sensitive to the variation of the structural parameters.Suggestion of the possible experimental realization is discussed.
An introduction to hierarchical linear modeling
Directory of Open Access Journals (Sweden)
Heather Woltman
2012-02-01
Full Text Available This tutorial aims to introduce Hierarchical Linear Modeling (HLM. A simple explanation of HLM is provided that describes when to use this statistical technique and identifies key factors to consider before conducting this analysis. The first section of the tutorial defines HLM, clarifies its purpose, and states its advantages. The second section explains the mathematical theory, equations, and conditions underlying HLM. HLM hypothesis testing is performed in the third section. Finally, the fourth section provides a practical example of running HLM, with which readers can follow along. Throughout this tutorial, emphasis is placed on providing a straightforward overview of the basic principles of HLM.
Hierarchical topic modeling with nested hierarchical Dirichlet process
Institute of Scientific and Technical Information of China (English)
Yi-qun DING; Shan-ping LI; Zhen ZHANG; Bin SHEN
2009-01-01
This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as welt as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more free-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.
A Hierarchical Bayesian Model for Crowd Emotions
Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias
2016-01-01
Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366
A hierarchical model of temporal perception.
Pöppel, E
1997-05-01
Temporal perception comprises subjective phenomena such as simultaneity, successiveness, temporal order, subjective present, temporal continuity and subjective duration. These elementary temporal experiences are hierarchically related to each other. Functional system states with a duration of 30 ms are implemented by neuronal oscillations and they provide a mechanism to define successiveness. These system states are also responsible for the identification of basic events. For a sequential representation of several events time tags are allocated, resulting in an ordinal representation of such events. A mechanism of temporal integration binds successive events into perceptual units of 3 s duration. Such temporal integration, which is automatic and presemantic, is also operative in movement control and other cognitive activities. Because of the omnipresence of this integration mechanism it is used for a pragmatic definition of the subjective present. Temporal continuity is the result of a semantic connection between successive integration intervals. Subjective duration is known to depend on mental load and attentional demand, high load resulting in long time estimates. In the hierarchical model proposed, system states of 30 ms and integration intervals of 3 s, together with a memory store, provide an explanatory neuro-cognitive machinery for differential subjective duration.
Kim, Junghoe; Calhoun, Vince D; Shim, Eunsoo; Lee, Jong-Hwan
2016-01-01
Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was
Hierarchical structures in fully developed turbulence
Liu, Li
Analysis of the probability density functions (PDFs) of the velocity increment dvl and of their deformation is used to reveal the statistical structure of the intermittent energy cascade dynamics of turbulence. By analyzing a series of turbulent data sets including that of an experiment of fully developed low temperature helium turbulent gas flow (Belin, Tabeling, & Willaime, Physica D 93, 52, 1996), of a three-dimensional isotropic Navier-Stokes simulation with a resolution of 2563 (Cao, Chen, & She, Phys. Rev. Lett. 76, 3711, 1996) and of a GOY shell model simulation (Leveque & She, Phys. Rev. E 55, 1997) of a very big sample size (up to 5 billions), the validity of the Hierarchical Structure model (She & Leveque, Phys. Rev. Lett. 72, 366, 1994) for the inertial-range is firmly demonstrated. Furthermore, it is shown that parameters in the Hierarchical Structure model can be reliably measured and used to characterize the cascade process. The physical interpretations of the parameters then allow to describe differential changes in different turbulent systems so as to address non-universal features of turbulent systems. It is proposed that the above study provides a framework for the study of non-homogeneous turbulence. A convergence study of moments and scaling exponents is also carried out with detailed analysis of effects of finite statistical sample size. A quantity Pmin is introduced to characterize the resolution of a PDF, and hence the sample size. The fact that any reported scaling exponent depends on the PDF resolution suggests that the validation (or rejection) of a model of turbulence needs to carry out a resolution dependence analysis on its scaling prediction.
Institute of Scientific and Technical Information of China (English)
邢卫国; 林继铿; 文福拴; 倪以信; 吴复立; 舒立平; 程卫生; 舒乃秋; 陈允平
2001-01-01
The Three Gorges Power Market (TGPM) will be the first cross-region power market in China. A vital problem is how to design an appropriate bulk power market structure. Based on international experiences on power market designs and the current situations of China's power industry, the hierarchical structure for China's power markets is first discussed. There are basically three alternatives, i.e., the state-province (or city) two-layer structure, the state-region two-layer structure and the state-region-province (or city) three-layer structure. It is suggested that the state-region-province (or city) three-layer structure be adopted at the initial stage of the restructuring. While this stage，the regional power markets should be reinforced progressively and the final structure should be the state-region two-layer model. Based on this proposal, the structure and market participants of TGPM are next suggested.%中国电力工业正面临着重大的市场化改革，跨大区的三峡电力市场建设势在必行。由于三峡电力市场的跨大区性质，及考虑到未来中国电力市场的建设，电力市场的层次结构是一个十分重要、值得探讨的问题。文中首先提出了三峡电力市场的设计原则，进而借鉴国际电力市场设计和运行的经验教训，依据中国电力工业的现状和可能的发展趋势，分析了未来中国电力市场架构的3种可能性：一是国家和省市两级电力市场；二是国家和大区两级电力市场；三是国家、大区和省市三级电力市场。建议在逐步建立国家电力市场并在相当长的一段时间内采用国家—大区—省市三级电力市场的同时，应发展和加强大区的电力市场，最终过渡到国家—大区两级电力市场。在此基础上，进一步讨论了三峡电力市场的结构和市场参与者。
Deliberate change without hierarchical influence?
DEFF Research Database (Denmark)
Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm
2017-01-01
Purpose This paper aims to present that deliberate change is strongly associated with formal structures and top-down influence. Hierarchical configurations have been used to structure processes, overcome resistance and get things done. But is deliberate change also possible without formal...... reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...
Static Correctness of Hierarchical Procedures
DEFF Research Database (Denmark)
Schwartzbach, Michael Ignatieff
1990-01-01
A system of hierarchical, fully recursive types in a truly imperative language allows program fragments written for small types to be reused for all larger types. To exploit this property to enable type-safe hierarchical procedures, it is necessary to impose a static requirement on procedure calls....... We introduce an example language and prove the existence of a sound requirement which preserves static correctness while allowing hierarchical procedures. This requirement is further shown to be optimal, in the sense that it imposes as few restrictions as possible. This establishes the theoretical...... basis for a general type hierarchy with static type checking, which enables first-order polymorphism combined with multiple inheritance and specialization in a language with assignments. We extend the results to include opaque types. An opaque version of a type is different from the original but has...
Barnes, Brian; Leiter, Kenneth; Becker, Richard; Knap, Jaroslaw; Brennan, John
As part of a multiscale modeling effort, we present progress on a challenge in continuum-scale modeling: the direct incorporation of complex molecular-level processes in the constitutive evaluation. In this initial phase of the research we use a concurrent scale-bridging approach, with a hierarchical multiscale framework running in parallel to couple a particle-based model (the ''lower scale'') computing the equation of state (EOS) to the constitutive response in a finite-element multi-physics simulation (the ''upper scale''). The lower scale simulations of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) use a force-matched coarse-grain model and dissipative particle dynamics methods, and the upper scale simulation is of a Taylor anvil impact experiment. Results emphasize use of adaptive sampling (via dynamic kriging) that accelerates time to solution, and its comparison to fully ''on the fly'' runs. Work towards inclusion of a fully reactive EOS is also discussed.
Structural integrity of hierarchical composites
Directory of Open Access Journals (Sweden)
Marco Paggi
2012-01-01
Full Text Available Interface mechanical problems are of paramount importance in engineering and materials science. Traditionally, due to the complexity of modelling their mechanical behaviour, interfaces are often treated as defects and their features are not explored. In this study, a different approach is illustrated, where the interfaces play an active role in the design of innovative hierarchical composites and are fundamental for their structural integrity. Numerical examples regarding cutting tools made of hierarchical cellular polycrystalline materials are proposed, showing that tailoring of interface properties at the different scales is the way to achieve superior mechanical responses that cannot be obtained using standard materials
Directory of Open Access Journals (Sweden)
Lu-Chuan Ceng
2014-01-01
Full Text Available We introduce and analyze a hybrid iterative algorithm by combining Korpelevich's extragradient method, the hybrid steepest-descent method, and the averaged mapping approach to the gradient-projection algorithm. It is proven that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of finitely many nonexpansive mappings, the solution set of a generalized mixed equilibrium problem (GMEP, the solution set of finitely many variational inclusions, and the solution set of a convex minimization problem (CMP, which is also a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm to solving a hierarchical variational inequality problem with constraints of the GMEP, the CMP, and finitely many variational inclusions.
A Hierarchical Bayes Ensemble Kalman Filter
Tsyrulnikov, Michael; Rakitko, Alexander
2017-01-01
A new ensemble filter that allows for the uncertainty in the prior distribution is proposed and tested. The filter relies on the conditional Gaussian distribution of the state given the model-error and predictability-error covariance matrices. The latter are treated as random matrices and updated in a hierarchical Bayes scheme along with the state. The (hyper)prior distribution of the covariance matrices is assumed to be inverse Wishart. The new Hierarchical Bayes Ensemble Filter (HBEF) assimilates ensemble members as generalized observations and allows ordinary observations to influence the covariances. The actual probability distribution of the ensemble members is allowed to be different from the true one. An approximation that leads to a practicable analysis algorithm is proposed. The new filter is studied in numerical experiments with a doubly stochastic one-variable model of "truth". The model permits the assessment of the variance of the truth and the true filtering error variance at each time instance. The HBEF is shown to outperform the EnKF and the HEnKF by Myrseth and Omre (2010) in a wide range of filtering regimes in terms of performance of its primary and secondary filters.
基于VHDL的MTM总线主模块有限状态机设计%Design of MTM bus master module＇s finite state machine based on VHDL
Institute of Scientific and Technical Information of China (English)
王超; 白忠臣; 李世雄; 秦水介
2012-01-01
To describe the State transition of the core unit of MTMobus briefly and rigorously, while reducing the power consumption of FPGA chip, improve the stability of the system, the finite state machine with ＂single process＂ type by VHDL language on the basic of analyzing MTM-bus architecture and finite state machine model of the main module are designed, at the same time,using the circumstance of Quartus/l to implement the compilation of Language code and the timing simulation, functional simulation ; the correctness and effectiveness of this finite state machine design is proved by the analysis of simulation waveforms.%为了能够更简洁严谨地描述MTM总线的主模块有限状态机的状态转换，同时减少FPGA芯片功耗，提高系统稳定性．文中在分析MTM总线结构和主模块有限状态机模型的基础上，基于VHDL语言采用“单进程”式对该有限状态机进行了设计。并在Quartus II开发软件中实现了对语言代码的编译及程序的时序仿真和功能仿真；通过对仿真波形图的分析验证了该状态机设计的正确性和有效性。
Quiney, HM; Glushkov, VN; Wilson, S
2002-01-01
Using basis sets of distributed s-type Gaussian functions with positions and exponents optimized so as to support Hartree-Fock total energies with an accuracy approaching the sub-muHartree level, Dirac-Hartree-Fock-Coulomb calculations are reported for the ground states of the H-2, LiH, and BH molec
Sensory Hierarchical Organization and Reading.
Skapof, Jerome
The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…
Memory Stacking in Hierarchical Networks.
Westö, Johan; May, Patrick J C; Tiitinen, Hannu
2016-02-01
Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns.
The development of hydrological forecasting system based on finite state machines%基于有限状态机的水情测报系统的开发
Institute of Scientific and Technical Information of China (English)
刘伟; 王健健; 王江燕
2015-01-01
In order to make the system more reliable hydrological forecasting ,the finite state machine theory was applied to hydrological forecasting system.Discusses the basic concepts of finite state machines and classi-fication,combining hydrological forecasting system using finite state machines,detailing the hydrological fore-casting system developed membrane keyboard part.Hydrological forecasting system for the needs of the mem-brane keyboard module,the establishment of its state machine model is divided into two clicks and a long strike.Making hydrological forecasting system ensuring low power consumption ,but also be able to promptly respond to the user’s keyboard,and the ability to achieve independence between the keyboard and the collec-tion,storage,transmission data interoperable,independently of each other.Practice has proved that the finite state machine based on hydrological forecasting system,stable and reliable,responsive,with good engineering value.%为了使得水情测报系统更加可靠，将有限状态机理论适用于水情测报系统中。论述了有限状态机的基本概念和分类，结合水情测报系统应用有限状态机，详细介绍了水情测报系统薄膜键盘开发部分。针对水情测报系统中薄膜键盘模块的需要，建立其状态机模型，分为单击和长击两种。使得水情测报系统在保证低功耗的同时，也能够及时响应用户的键盘操作，并且能够实现键盘操作与采集、存储、发送数据操作之间互相独立，互不影响。实践证明基于有限状态机的水情测报系统，性能稳定可靠，响应及时，具有很好的工程应用价值。
Finite Discrete Gabor Analysis
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...
Finite Random Domino Automaton
Bialecki, Mariusz
2012-01-01
Finite version of Random Domino Automaton (FRDA) - recently proposed a toy model of earthquakes - is investigated. Respective set of equations describing stationary state of the FRDA is derived and compared with infinite case. It is shown that for the system of big size, these equations are coincident with RDA equations. We demonstrate a non-existence of exact equations for size N bigger then 4 and propose appropriate approximations, the quality of which is studied in examples obtained within Markov chains framework. We derive several exact formulas describing properties of the automaton, including time aspects. In particular, a way to achieve a quasi-periodic like behaviour of RDA is presented. Thus, based on the same microscopic rule - which produces exponential and inverse-power like distributions - we extend applicability of the model to quasi-periodic phenomena.
Finite temperature reservoir engineering and entanglement dynamics
Fedortchenko, S.; Keller, A.; Coudreau, T.; Milman, P.
2014-01-01
We propose experimental methods to engineer reservoirs at arbitrary temperature which are feasible with current technology. Our results generalize to mixed states the possibility of quantum state engineering through controlled decoherence. Finite temperature engineered reservoirs can lead to the experimental observation of thermal entanglement --the appearance and increase of entanglement with temperature-- to the study of the dependence of finite time disentanglement and revival with tempera...
Enhancing The Hyperpolarizabilities Of Finite Polyenes
Beratan, David N.
1992-01-01
Improved strategy for exploiting unusual optical properties to enhance molecular hyperpolarizabilities by introducing "defect" quantum-mechanical states and produce molecules switched photochemically or electrochemically between states characterized by different second molecular hyperpolarizabilities. Strategy, conjugation and/or substitution defects, electrically neutral or charged dopant orimpurity atoms or groups thereof, incorporated into finite polyene. Defects in finite polyenes alter second molecular hyperpolarizabilities. Transient large second hyperpolarizabilities attainable in molecules of structure II.
Quantum channels with a finite memory
Bowen, G; Bowen, Garry; Mancini, Stefano
2004-01-01
In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, the channel is asymptotically noiseless.
Le Hardy, D.; Favennec, Y.; Rousseau, B.
2016-08-01
The 2D radiative transfer equation coupled with specular reflection boundary conditions is solved using finite element schemes. Both Discontinuous Galerkin and Streamline-Upwind Petrov-Galerkin variational formulations are fully developed. These two schemes are validated step-by-step for all involved operators (transport, scattering, reflection) using analytical formulations. Numerical comparisons of the two schemes, in terms of convergence rate, reveal that the quadratic SUPG scheme proves efficient for solving such problems. This comparison constitutes the main issue of the paper. Moreover, the solution process is accelerated using block SOR-type iterative methods, for which the determination of the optimal parameter is found in a very cheap way.
Automatic Hierarchical Color Image Classification
Directory of Open Access Journals (Sweden)
Jing Huang
2003-02-01
Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.
Intuitionistic fuzzy hierarchical clustering algorithms
Institute of Scientific and Technical Information of China (English)
Xu Zeshui
2009-01-01
Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a mem-bership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clus-tering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.
Hierarchical Formation of Galactic Clusters
Elmegreen, B G
2006-01-01
Young stellar groupings and clusters have hierarchical patterns ranging from flocculent spiral arms and star complexes on the largest scale to OB associations, OB subgroups, small loose groups, clusters and cluster subclumps on the smallest scales. There is no obvious transition in morphology at the cluster boundary, suggesting that clusters are only the inner parts of the hierarchy where stars have had enough time to mix. The power-law cluster mass function follows from this hierarchical structure: n(M_cl) M_cl^-b for b~2. This value of b is independently required by the observation that the summed IMFs from many clusters in a galaxy equals approximately the IMF of each cluster.
Hierarchical matrices algorithms and analysis
Hackbusch, Wolfgang
2015-01-01
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...
Hierarchical Cont-Bouchaud model
Paluch, Robert; Holyst, Janusz A
2015-01-01
We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent's interactions. The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-level, nested Erdos-Renyi random graph and individual decisions by agents according to Potts dynamics. This approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-Bouchaud model. In the second model we introduce a limited hierarchical Erdos-Renyi graph, where merging of clusters at a level h+1 involves only clusters that have merged at the previous level h and we use the original Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.
Hierarchical Clustering and Active Galaxies
Hatziminaoglou, E; Manrique, A
2000-01-01
The growth of Super Massive Black Holes and the parallel development of activity in galactic nuclei are implemented in an analytic code of hierarchical clustering. The evolution of the luminosity function of quasars and AGN will be computed with special attention paid to the connection between quasars and Seyfert galaxies. One of the major interests of the model is the parallel study of quasar formation and evolution and the History of Star Formation.
Hybrid and hierarchical composite materials
Kim, Chang-Soo; Sano, Tomoko
2015-01-01
This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous and detailed examples and over 150 illustrations. In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.
Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
Zuliang Lu
2011-01-01
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...
Treatment Protocols as Hierarchical Structures
Ben-Bassat, Moshe; Carlson, Richard W.; Puri, Vinod K.; Weil, Max Harry
1978-01-01
We view a treatment protocol as a hierarchical structure of therapeutic modules. The lowest level of this structure consists of individual therapeutic actions. Combinations of individual actions define higher level modules, which we call routines. Routines are designed to manage limited clinical problems, such as the routine for fluid loading to correct hypovolemia. Combinations of routines and additional actions, together with comments, questions, or precautions organized in a branching logic, in turn, define the treatment protocol for a given disorder. Adoption of this modular approach may facilitate the formulation of treatment protocols, since the physician is not required to prepare complex flowcharts. This hierarchical approach also allows protocols to be updated and modified in a flexible manner. By use of such a standard format, individual components may be fitted together to create protocols for multiple disorders. The technique is suited for computer implementation. We believe that this hierarchical approach may facilitate standarization of patient care as well as aid in clinical teaching. A protocol for acute pancreatitis is used to illustrate this technique.
Institute of Scientific and Technical Information of China (English)
孙鹏; 谭玉玺; 汤磊
2015-01-01
In order to improve the simulation model development efficiency and reduce the maintenance cost of simulation model, according to requirements of the formalized modeling of model rules,the visual expression model of entity behavior rule model based on the finite state machine is put forward. And then this paper designs the visual modeling tool framework of rules based on the finite state machine and conducts a theoretical exploration on the realization of visualization model rules for engineering.%为提升仿真模型开发效率，降低仿真模型的维护成本，从模型规则可视化建模需求入手，提出了基于有限状态机的实体模型行为规则形式化表达模型，并对基于有限状态机的模型规则可视化建模工具框架进行了设计，对模型规则可视化建模的工程实现进行了理论上的探索。
Finite Size Vertex Correction to the Strong Decay of ηc and χc States and a Determination of αs(mc)
Institute of Scientific and Technical Information of China (English)
平荣刚; 姜焕清; 邹冰松
2002-01-01
We calculate the correction to the two-gluon decay width due to the finite extension of the vertex function. We obtain the corrected factor to the zero-range vertex γ=1.32,γ=1.45,γ=1.26 forηc,χc0,andχc2,respectively. With the decay width Г(ηc → 2g) we extract the value αs(mc) = 0.28 ± 0.05 which agrees with that calculated from the same correction to the process Г( J/ψ → 3g). This correction to the process Г(ηc → 2g) is not as large as that to the process Г(J/ψ → 3g).
Young, Frederic; Siegel, Edward
Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!
Simple Finite Jordan Pseudoalgebras
Directory of Open Access Journals (Sweden)
Pavel Kolesnikov
2009-01-01
Full Text Available We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h and H = U(h # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h by automorphisms. We construct an analogue of the Tits-Kantor-Koecher construction for finite Jordan pseudoalgebras and describe all simple ones.
Simple Finite Jordan Pseudoalgebras
Kolesnikov, Pavel
2009-01-01
We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We construct an analogue of the Tits-Kantor-Koecher construction for finite Jordan pseudoalgebras and describe all simple ones.
Power Efficient Hierarchical Scheduling for DSP Transformations
Directory of Open Access Journals (Sweden)
P. K. Merakos
2002-01-01
Full Text Available In this paper, the problem of scheduling the computation of partial products in transformational Digital Signal Processing (DSP algorithms, aiming at the minimization of the switching activity in data and address buses, is addressed. The problem is stated as a hierarchical scheduling problem. Two different optimization algorithms, which are based on the Travelling Salesman Problem (TSP, are defined. The proposed optimization algorithms are independent on the target architecture and can be adapted to take into account it. Experimental results obtained from the application of the proposed algorithms in various widely used DSP transformations, like Discrete Cosine Transform (DCT and Discrete Fourier Transform (DFT, show that significant switching activity savings in data and address buses can be achieved, resulting in corresponding power savings. In addition, the differences between the two proposed methods are underlined, providing envisage for their suitable selection for implementation, in particular transformational algorithms and architectures.
Image Segmentation Using Hierarchical Merge Tree
Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga
2016-10-01
This paper investigates one of the most fundamental computer vision problems: image segmentation. We propose a supervised hierarchical approach to object-independent image segmentation. Starting with over-segmenting superpixels, we use a tree structure to represent the hierarchy of region merging, by which we reduce the problem of segmenting image regions to finding a set of label assignment to tree nodes. We formulate the tree structure as a constrained conditional model to associate region merging with likelihoods predicted using an ensemble boundary classifier. Final segmentations can then be inferred by finding globally optimal solutions to the model efficiently. We also present an iterative training and testing algorithm that generates various tree structures and combines them to emphasize accurate boundaries by segmentation accumulation. Experiment results and comparisons with other very recent methods on six public data sets demonstrate that our approach achieves the state-of-the-art region accuracy and is very competitive in image segmentation without semantic priors.
Hierarchical image segmentation for learning object priors
Energy Technology Data Exchange (ETDEWEB)
Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.; Li, Nan [TEMPLE UNIV.
2010-11-10
The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.
Finite Unification: phenomenology
Energy Technology Data Exchange (ETDEWEB)
Heinemeyer, S; Ma, E; Mondragon, M; Zoupanos, G, E-mail: sven.heinemeyer@cern.ch, E-mail: ma@phyun8.ucr.edu, E-mail: myriarn@fisica.unam.mx, E-mail: george.zoupanos@cern.ch
2010-11-01
We study the phenomenological implications of Finite Unified Theories (FUTs). In particular we look at the predictions for the lightest Higgs mass and the s-spectra of two all-loop finite models with SU(5) as gauge group. We also consider a two-loop finite model with gauge group SU(3){sup 3}, which is finite if and only if there are exactly three generations. In this latter model we concetrate here only on the predictions for the third generation of quark masses.
Bathe, Klaus-Jürgen
2015-01-01
Finite element procedures are now an important and frequently indispensable part of engineering analyses and scientific investigations. This book focuses on finite element procedures that are very useful and are widely employed. Formulations for the linear and nonlinear analyses of solids and structures, fluids, and multiphysics problems are presented, appropriate finite elements are discussed, and solution techniques for the governing finite element equations are given. The book presents general, reliable, and effective procedures that are fundamental and can be expected to be in use for a long time. The given procedures form also the foundations of recent developments in the field.
Finite Symplectic Matrix Groups
2011-01-01
The finite subgroups of GL(m, Q) are those subgroups that fix a full lattice in Q^m together with some positive definite symmetric form. A subgroup of GL(m, Q) is called symplectic, if it fixes a nondegenerate skewsymmetric form. Such groups only exist if m is even. A symplectic subgroup of GL(2n, Q) is called maximal finite symplectic if it is not properly contained in some finite symplectic subgroup of GL(2n, Q). This thesis classifies all conjugacy classes of maximal finite symplectic subg...
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The scaled boundary finite element method(SBFEM) is a semi-analytical numerical method,which models an analysis domain by a small number of large-sized subdomains and discretises subdomain boundaries only.In a subdomain,all fields of state variables including displacement,stress,velocity and acceleration are semi-analytical,and the kinetic energy,strain energy and energy error are all integrated semi-analytically.These advantages are taken in this study to develop a posteriori h-hierarchical adaptive SBFEM for transient elastodynamic problems using a mesh refinement procedure which subdivides subdomains.Because only a small number of subdomains are subdivided,mesh refinement is very simple and efficient,and mesh mapping to transfer state variables from an old mesh to a new one is also very simple but accurate.Two 2D examples with stress wave propagation were modelled.The results show that the developed method is capable of capturing propagation of steep stress regions and calculating accurate dynamic responses,using only a fraction of degrees of freedom required by adaptive finite element method.
Conformal Data from Finite Entanglement Scaling
Stojevic, Vid; McCulloch, I P; Tagliacozzo, L; Verstraete, Frank
2014-01-01
In this paper we apply the formalism of translation invariant (continuous) matrix product states in the thermodynamic limit to $(1+1)$ dimensional critical models. Finite bond dimension bounds the entanglement entropy and introduces an effective finite correlation length, so that the state is perturbed away from criticality. The assumption that the scaling hypothesis holds for this kind of perturbation is known in the literature as finite entanglement scaling. We provide further evidence for the validity of finite entanglement scaling and based on this formulate a scaling algorithm to estimate the central charge and critical exponents of the conformally invariant field theories describing the critical models under investigation. The algorithm is applied to three exemplary models; the cMPS version to the non-relativistic Lieb-Liniger model and the relativistic massless boson, and MPS version to the one-dimensional quantum Ising model at the critical point. Another new aspect to our approach is that we directly...
Compositional Finite-Time Stability analysis of nonlinear systems
DEFF Research Database (Denmark)
Tabatabaeipour, Mojtaba; Blanke, Mogens
2014-01-01
for the system but with bounded disturbance. Sufficient conditions for finite-time stability and finite-time boundedness of nonlinear systems as well as a computational method based on sum of squares programming to check the conditions are given. The problem of finite-time stability for a system that consists......This paper, investigates finite-time stability and finite-time boundedness for nonlinear systems with polynomial vector fields. Finite-time stability requires the states of the system to remain a given bounded set in a finite-time interval and finite-time boundedness considers the same problem...... of an interconnection of subsystems is also considered and we show how to decompose the problem into subproblems for each subsystem with coupling constraints. A solution to the problem using sum of squares programming and dual decomposition is presented. The method is demonstrated through some examples....
Sman, van der R.G.M.
2006-01-01
In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Finite state machine modeling and its applications in embedded design%有限状态机建模在嵌入式按键设计中的应用
Institute of Scientific and Technical Information of China (English)
何剑宇; 刘兢兢
2012-01-01
In order to make the code of embedded software more reliable, and to enhance the maintainability of the program, the theory of finite state machine is applied in embedded design. This paper discusses the finite state machine and its principle, introduced the state machine programming in embedded systems and characteristics of the practical application; then prepared by the stale machine implementations of the key interface, that reduce the complexity of the system and improve the quality and reliability of the software.%为了使嵌入式软件代码更加可靠,增强程序的可维护性,将有限状态机理论应用于嵌入式设计中.论述了有限状态机的基本结构和它的基本原理,介绍了有限状态机建模在嵌入式系统中实际应用现状.针对一种实际按键模块的需要,利用有限状态机的嵌入式设计建立了系统模型.采用状态机实现方法编写了按键接口程序,实现了2个按键的状态机模型设计.系统的调试结果验证了模型的正确性和可靠性,具有一定的工程价值.
Three particles in a finite volume
Polejaeva, Kathryn
2012-01-01
Within the non-relativistic potential scattering theory, we derive a generalized version of the L\\"uscher formula, which includes three-particle inelastic channels. Faddeev equations in a finite volume are discussed in detail. It is proved that, even in the presence of the three-particle intermediate states, the discrete spectrum in a finite box is determined by the infinite-volume elements of the scattering S-matrix up to corrections, exponentially suppressed at large volumes.
Distances in Finite Spaces from Noncommutative Geometry
Iochum, B; Martinetti, P
2001-01-01
Following the general principles of noncommutative geometry, it is possible to define a metric on the space of pure states of the noncommutative algebra generated by the coordinates. This metric generalizes the usual Riemannian one. We investigate some general properties of this metric in the finite commutative case which corresponds to a metric on a finite set, and also give some examples of computations in both commutative and noncommutative cases.
Hierarchical Control for Smart Grids
DEFF Research Database (Denmark)
Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob
2011-01-01
This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the ﬂexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising...
On finitely recursive programs
Baselice, Sabrina; Criscuolo, Giovanni
2009-01-01
Disjunctive finitary programs are a class of logic programs admitting function symbols and hence infinite domains. They have very good computational properties, for example ground queries are decidable while in the general case the stable model semantics is highly undecidable. In this paper we prove that a larger class of programs, called finitely recursive programs, preserves most of the good properties of finitary programs under the stable model semantics, namely: (i) finitely recursive programs enjoy a compactness property; (ii) inconsistency checking and skeptical reasoning are semidecidable; (iii) skeptical resolution is complete for normal finitely recursive programs. Moreover, we show how to check inconsistency and answer skeptical queries using finite subsets of the ground program instantiation. We achieve this by extending the splitting sequence theorem by Lifschitz and Turner: We prove that if the input program P is finitely recursive, then the partial stable models determined by any smooth splittin...
Hierarchical Structures in Hypertext Learning Environments
Bezdan, Eniko; Kester, Liesbeth; Kirschner, Paul A.
2011-01-01
Bezdan, E., Kester, L., & Kirschner, P. A. (2011, 9 September). Hierarchical Structures in Hypertext Learning Environments. Presentation for the visit of KU Leuven, Open University, Heerlen, The Netherlands.
Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.
2017-09-01
Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called ;Equal Load Sharing (ELS); hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a ;Hierarchical Load Sharing; criterion.
EXPLICIT BOUNDS OF EIGENVALUES FOR STIFFNESS MATRICES BY QUADRATIC HIERARCHICAL BASIS METHOD
Institute of Scientific and Technical Information of China (English)
Sang Dong KIM; Byeong Chun SHIN
2003-01-01
The bounds for the eigenvalues of the stiffness matrices in the finite element discretization corresponding to Lu := -u" with zero boundary conditions by quadratic hierarchical basis are shown explicitly. The condition number of the resulting system behaves like O(1/h)where h is the mesh size. We also analyze a main diagonal preconditioner of the stiffness matrix which reduces the condition number of the preconditioned system to O(1).
Hierarchical multi-scale modeling of texture induced plastic anisotropy in sheet forming
Gawad, J.; van Bael, Albert; Eyckens, P.; Samaey, G.; Van Houtte, P.; Roose, D.
2013-01-01
In this paper we present a Hierarchical Multi-Scale (HMS) model of coupled evolutions of crystallographic texture and plastic anisotropy in plastic forming of polycrystalline metallic alloys. The model exploits the Finite Element formulation to describe the macroscopic deformation of the material. Anisotropy of the plastic properties is derived from a physics-based polycrystalline plasticity micro-scale model by means of virtual experiments. The homogenized micro-scale stress response given b...
Cooperative mechanism of self-regulation in hierarchical living systems
Lubashevsky, I A
1998-01-01
We study the problem of how a ``living'' system complex in structure can respond perfectly to local changes in the environment. Such a system is assumed to consist of a distributed ``living'' medium and a hierarchical ``supplying'' network that provides this medium with ``nutritious'' products. Because of the hierarchical organization each element of the supplying network has to behave in a self-consistent way for the system can adapt to changes in the environment. We propose a cooperative mechanism of self-regulation by which the system as a whole can react perfectly. This mechanism is based on an individual response of each element to the corresponding small piece of the information on the state of the ``living'' medium. The conservation of flux through the supplying network gives rise to a certain processing of information and the self-consistent behavior of the elements, leading to the perfect self-regulation. The corresponding equations governing the ``living'' medium state are obtained.
Envisioning the Infinite by Projecting Finite Properties
Ely, Robert
2011-01-01
We analyze interviews with 24 post-secondary students as they reason about infinite processes in the context of the tricky Tennis Ball Problem. By metaphorically projecting various properties from the finite states such as counting and indexing, participants envisioned widely varying final states for the infinite process. Depending on which…
Sundholm, Dage; Olsen, Jeppe
1993-04-01
The atomic quadrupole moments Qzz of Be(2s2p;3P2), Al(3p;2P3/2), In(5p;2P3/2), Ne(2p53s3P2), Ar(3p54s;3P2), Kr(4p55s;3P2), and Xe(5p56s;3P2) have been calculated using a finite-element multiconfiguration Hartree-Fock method. The obtained Qzz(Be) of 2.265 a.u. agrees with previously calculated values. The calculated Qzz(Al) and Qzz(In) of 2.579 and 3.165 a.u. are in good agreement with the experimental values of 2.53(15) a.u. and 2.94(10) a.u. A large s-d polarization contribution to the Qzz of the rare gases is found in the present calculations. The correlation contributions from double (D), triple (T), and quadruple (Q) excitations to the Qzz of the rare gases alternate; the total DTQ correlation contribution is negligibly small for Ne, Ar, and Kr, while the DTQ correlation contribution to the Qzz(Xe) is 25% of the final Qzz. The final values are Qzz(Ne)=-0.0506 a.u., Qzz(Ar)=-0.0553 a.u., Qzz(Kr)=+0.0601 a.u., and Qzz(Xe)=+0.4505 a.u., as compared to the experimental values of -0.048(5) a.u., -0.042(4) a.u., +0.046(5) a.u., and +0.30(3) a.u. for Ne, Ar, Kr, and Xe, respectively.
Hierarchical structure of biological systems: A bioengineering approach
Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M.
2013-01-01
A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and function...
Update Legal Documents Using Hierarchical Ranking Models and Word Clustering
Pham, Minh Quang Nhat; Nguyen, Minh Le; Shimazu, Akira
2010-01-01
Our research addresses the task of updating legal documents when newinformation emerges. In this paper, we employ a hierarchical ranking model tothe task of updating legal documents. Word clustering features are incorporatedto the ranking models to exploit semantic relations between words. Experimentalresults on legal data built from the United States Code show that the hierarchicalranking model with word clustering outperforms baseline methods using VectorSpace Model, and word cluster-based ...
Energy Technology Data Exchange (ETDEWEB)
Burnett, G.C.
2000-04-28
Until recently, attempts to update Finite Element Models (FEM) of large structures based upon recording structural motions were mostly ad hoc, requiring a large amount of engineering experience and skill. Studies have been undertaken at LLNL to use state-space based signal processing techniques to locate the existence and type of model mismatches common in FEM. Two different methods (Gauss-Newton gradient search and extended Kalman filter) have been explored, and the progress made in each type of algorithm as well as the results from several simulated and one actual building model will be discussed. The algorithms will be examined in detail, and the computer programs written to implement the algorithms will be documented.
Linux multi-touch screen driven design based on Finite state%基于有限状态机的Linux多点触摸屏驱动设计
Institute of Scientific and Technical Information of China (English)
刘斌
2012-01-01
本文通过对linux多点触摸屏驱动的研究将有限状态机原理应用到多点触摸屏驱动之中，解决了由于硬件原因造成触摸屏触控点抖动及Qte／Android触摸屏手势判断不准的问题。%Based on the linux multi-point touch screen driver of the finite state machine theory being applied to the touch screen driver to solve the causes of the hardware, touch screen and touch point jitter Qte / Android touchscreen gestures are not allowed to determine the problem.
Nimon, Kim
2012-01-01
Using state achievement data that are openly accessible, this paper demonstrates the application of hierarchical linear modeling within the context of career technical education research. Three prominent approaches to analyzing clustered data (i.e., modeling aggregated data, modeling disaggregated data, modeling hierarchical data) are discussed…
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Introduction to finite geometries
Kárteszi, F
1976-01-01
North-Holland Texts in Advanced Mathematics: Introduction to Finite Geometries focuses on the advancements in finite geometries, including mapping and combinatorics. The manuscript first offers information on the basic concepts on finite geometries and Galois geometries. Discussions focus on linear mapping of a given quadrangle onto another given quadrangle; point configurations of order 2 on a Galois plane of even order; canonical equation of curves of the second order on the Galois planes of even order; and set of collineations mapping a Galois plane onto itself. The text then ponders on geo
Stochastic Dynamics through Hierarchically Embedded Markov Chains
Vasconcelos, Vítor V.; Santos, Fernando P.; Santos, Francisco C.; Pacheco, Jorge M.
2017-02-01
Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects—such as mutations in evolutionary dynamics and a random exploration of choices in social systems—including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.
A Hierarchical Algorithm for Integrated Scheduling and Control With Applications to Power Systems
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Dinesen, Peter Juhler; Jørgensen, John Bagterp
2016-01-01
The contribution of this paper is a hierarchical algorithm for integrated scheduling and control via model predictive control of hybrid systems. The controlled system is a linear system composed of continuous control, state, and output variables. Binary variables occur as scheduling decisions...... portfolio case study show that the hierarchical algorithm reduces the computation to solve the OCP by several orders of magnitude. The improvement in computation time is achieved without a significant increase in the overall cost of operation....
Directory of Open Access Journals (Sweden)
Kofjač Davorin
2015-08-01
Full Text Available Background and Purpose: In a complex strictly hierarchical organizational structure, undesired oscillations may occur, which have not yet been adequately addressed. Therefore, parameter values, which define fluctuations and transitions from one state to another, need to be optimized to prevent oscillations and to keep parameter values between lower and upper bounds. The objective was to develop a simulation model of hierarchical organizational structure as a web application to help in solving the aforementioned problem.
Hierarchical Training Mode for Market Demand Oriented Outstanding Seed Industry Talents
Institute of Scientific and Technical Information of China (English)
Xuechun; WANG; Hongni; WANG; Shishun; TAO
2014-01-01
This paper analyzed the trend of seed industry development in-depth and studied changes in quantity and quality of demands for seed industry talents. To adapt to " breeding,propagating and selling" integration and internationalized trend of seed industry,it stated that hierarchical training mode is an ideal mode for training outstanding seed industry talents. Finally,it elaborated specific objectives and requirements of the hierarchical training mode,i. e. undergraduate- master- doctor.
Discovering hierarchical structure in normal relational data
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten
2014-01-01
Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non-param...
Discursive Hierarchical Patterning in Economics Cases
Lung, Jane
2011-01-01
This paper attempts to apply Lung's (2008) model of the discursive hierarchical patterning of cases to a closer and more specific study of Economics cases and proposes a model of the distinct discursive hierarchical patterning of the same. It examines a corpus of 150 Economics cases with a view to uncovering the patterns of discourse construction.…
A Model of Hierarchical Key Assignment Scheme
Institute of Scientific and Technical Information of China (English)
ZHANG Zhigang; ZHAO Jing; XU Maozhi
2006-01-01
A model of the hierarchical key assignment scheme is approached in this paper, which can be used with any cryptography algorithm. Besides, the optimal dynamic control property of a hierarchical key assignment scheme will be defined in this paper. Also, our scheme model will meet this property.
Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report
Energy Technology Data Exchange (ETDEWEB)
Siefert, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bochev, Pavel Blagoveston [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kramer, Richard Michael Jack [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.
Energy Technology Data Exchange (ETDEWEB)
Barnich, Glenn [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Troessaert, Cédric [Centro de Estudios Científicos (CECs),Arturo Prat 514, Valdivia (Chile)
2016-03-24
The action of finite BMS and Weyl transformations on the gravitational data at null infinity is worked out in three and four dimensions in the case of an arbitrary conformal factor for the boundary metric induced on Scri.
Guichon, P A M; Thomas, A W
1996-01-01
We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.
Galaxy formation through hierarchical clustering
White, Simon D. M.; Frenk, Carlos S.
1991-01-01
Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.
Quantum transport through hierarchical structures.
Boettcher, S; Varghese, C; Novotny, M A
2011-04-01
The transport of quantum electrons through hierarchical lattices is of interest because such lattices have some properties of both regular lattices and random systems. We calculate the electron transmission as a function of energy in the tight-binding approximation for two related Hanoi networks. HN3 is a Hanoi network with every site having three bonds. HN5 has additional bonds added to HN3 to make the average number of bonds per site equal to five. We present a renormalization group approach to solve the matrix equation involved in this quantum transport calculation. We observe band gaps in HN3, while no such band gaps are observed in linear networks or in HN5. We provide a detailed scaling analysis near the edges of these band gaps.
Hierarchical networks of scientific journals
Palla, Gergely; Mones, Enys; Pollner, Péter; Vicsek, Tamás
2015-01-01
Scientific journals are the repositories of the gradually accumulating knowledge of mankind about the world surrounding us. Just as our knowledge is organised into classes ranging from major disciplines, subjects and fields to increasingly specific topics, journals can also be categorised into groups using various metrics. In addition to the set of topics characteristic for a journal, they can also be ranked regarding their relevance from the point of overall influence. One widespread measure is impact factor, but in the present paper we intend to reconstruct a much more detailed description by studying the hierarchical relations between the journals based on citation data. We use a measure related to the notion of m-reaching centrality and find a network which shows the level of influence of a journal from the point of the direction and efficiency with which information spreads through the network. We can also obtain an alternative network using a suitably modified nested hierarchy extraction method applied ...
Time-integration methods for finite element discretisations of the second-order Maxwell equation
Sármány, D.; Botchev, M.A.; Vegt, van der J.J.W.
2012-01-01
This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method DG-FEM) and the $H(\\mathrm{curl})$-conforming FEM. For the spatial discretisation, hierarchic $H(\\mathrm{curl})$-conf
Control of intelligent lower limb prosthesis based on finite-state machine%基于有限状态机的智能下肢假肢控制
Institute of Scientific and Technical Information of China (English)
王蒙; 陈玲玲; 耿艳利; 杨鹏
2012-01-01
BACKGROUND: The knee damping of traditional lower limb prosthesis cannot be changed when the walking state is changing. Traditional prosthesis with limited operating range cannot follow the sound leg.OBJECTIVE: To achieve real-time tracking and pace following of limb prosthesis to healthy limb based on the control of intelligent lower limb prosthesis by finite-state machine.METHODS: The intelligent lower limb prosthesis adopted a four-bar linkage with a fixed pneumatic cylinder, and finite-state machine controlling method was in use. It sensed the current gait event, triggered the gait transition state, and adjusted the gait patterns to get the export action of the gait planning.RESULTS AND CONCLUSION: The results showed that the intelligent lower limb prosthesis could identify the gait and the walking speed. Different controlling strategies could be exported from the controller, and it controlled the stepper motor to adjust the size of the knee damping. The prosthetic limb side could track the health limb side on real time and follow the walking speed.%背景:传统的下肢假肢行走状态改变时膝关节阻尼不能随之改变,假肢跟随性差,变化范围小.目的:基于有限状态机的智能下肢假肢控制方法,实现假肢侧对健肢侧的实时跟踪和步速跟随.方法:智能下肢假肢采用带固定式气缸阻尼器的四连杆机构,采用有限状态机的控制方法,感知当前的步态事件,触发步态状态的转变,调整对应的步态模式,得到步态规划的输出动作.结果与结论:实验结果表明,智能下肢假肢能够进行步速识别和步态识别,控制器输出不同的控制策略,控制步进电机调整膝关节阻尼的大小,假肢侧能够对健肢侧进行实时跟踪和步速跟随.