Bayesian nonparametric hierarchical modeling.
Dunson, David B
2009-04-01
In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.
Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.
2013-10-01
The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.
DEFF Research Database (Denmark)
Kristensen, Anders Ringgaard; Søllested, Thomas Algot
2004-01-01
improvements. The biological model of the replacement model is described in a previous paper and in this paper the optimization model is described. The model is developed as a prototype for use under practical conditions. The application of the model is demonstrated using data from two commercial Danish sow......Recent methodological improvements in replacement models comprising multi-level hierarchical Markov processes and Bayesian updating have hardly been implemented in any replacement model and the aim of this study is to present a sow replacement model that really uses these methodological...... herds. It is concluded that the Bayesian updating technique and the hierarchical structure decrease the size of the state space dramatically. Since parameter estimates vary considerably among herds it is concluded that decision support concerning sow replacement only makes sense with parameters...
Demeter, R M; Kristensen, A R; Dijkstra, J; Oude Lansink, A G J M; Meuwissen, M P M; van Arendonk, J A M
2011-12-01
Herd optimization models that determine economically optimal insemination and replacement decisions are valuable research tools to study various aspects of farming systems. The aim of this study was to develop a herd optimization and simulation model for dairy cattle. The model determines economically optimal insemination and replacement decisions for individual cows and simulates whole-herd results that follow from optimal decisions. The optimization problem was formulated as a multi-level hierarchic Markov process, and a state space model with Bayesian updating was applied to model variation in milk yield. Methodological developments were incorporated in 2 main aspects. First, we introduced an additional level to the model hierarchy to obtain a more tractable and efficient structure. Second, we included a recently developed cattle feed intake model. In addition to methodological developments, new parameters were used in the state space model and other biological functions. Results were generated for Dutch farming conditions, and outcomes were in line with actual herd performance in the Netherlands. Optimal culling decisions were sensitive to variation in milk yield but insensitive to energy requirements for maintenance and feed intake capacity. We anticipate that the model will be applied in research and extension. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hierarchical Bayesian Models of Subtask Learning
Anglim, Jeromy; Wynton, Sarah K. A.
2015-01-01
The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…
Bayesian optimization for materials science
Packwood, Daniel
2017-01-01
This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...
Bayesian disease mapping: hierarchical modeling in spatial epidemiology
National Research Council Canada - National Science Library
Lawson, Andrew
2013-01-01
.... Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications...
Demeter, R.M.; Kristensen, A.R.; Dijkstra, J.; Oude Lansink, A.G.J.M.; Meuwissen, M.P.M.; Arendonk, van J.A.M.
2011-01-01
Herd optimization models that determine economically optimal insemination and replacement decisions are valuable research tools to study various aspects of farming systems. The aim of this study was to develop a herd optimization and simulation model for dairy cattle. The model determines
Bayesian hierarchical modelling of North Atlantic windiness
Vanem, E.; Breivik, O. N.
2013-03-01
Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.
Bayesian hierarchical modelling of North Atlantic windiness
Directory of Open Access Journals (Sweden)
E. Vanem
2013-03-01
Full Text Available Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.
Hierarchical Bayesian Modeling of Fluid-Induced Seismicity
Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.
2017-11-01
In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.
Fully probabilistic design of hierarchical Bayesian models
Czech Academy of Sciences Publication Activity Database
Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine
2016-01-01
Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf
Inferring on the Intentions of Others by Hierarchical Bayesian Learning
Diaconescu, Andreea O.; Mathys, Christoph; Weber, Lilian A. E.; Daunizeau, Jean; Kasper, Lars; Lomakina, Ekaterina I.; Fehr, Ernst; Stephan, Klaas E.
2014-01-01
Inferring on others' (potentially time-varying) intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to “player” or “adviser” roles) interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI) scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i) employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition. PMID:25187943
Hierarchical Bayesian sparse image reconstruction with application to MRFM.
Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves
2009-09-01
This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.
Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models
Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.
2017-12-01
Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream
Bayesian hierarchical model for large-scale covariance matrix estimation.
Zhu, Dongxiao; Hero, Alfred O
2007-12-01
Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.
A Bayesian hierarchical approach to comparative audit for carotid surgery.
Kuhan, G; Marshall, E C; Abidia, A F; Chetter, I C; McCollum, P T
2002-12-01
the aim of this study was to illustrate how a Bayesian hierarchical modelling approach can aid the reliable comparison of outcome rates between surgeons. retrospective analysis of prospective and retrospective data. binary outcome data (death/stroke within 30 days), together with information on 15 possible risk factors specific for CEA were available on 836 CEAs performed by four vascular surgeons from 1992-99. The median patient age was 68 (range 38-86) years and 60% were men. the model was developed using the WinBUGS software. After adjusting for patient-level risk factors, a cross-validatory approach was adopted to identify "divergent" performance. A ranking exercise was also carried out. the overall observed 30-day stroke/death rate was 3.9% (33/836). The model found diabetes, stroke and heart disease to be significant risk factors. There was no significant difference between the predicted and observed outcome rates for any surgeon (Bayesian p -value>0.05). Each surgeon had a median rank of 3 with associated 95% CI 1.0-5.0, despite the variability of observed stroke/death rate from 2.9-4.4%. After risk adjustment, there was very little residual between-surgeon variability in outcome rate. Bayesian hierarchical models can help to accurately quantify the uncertainty associated with surgeons' performance and rank.
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.
Testing adaptive toolbox models: a Bayesian hierarchical approach.
Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan
2013-01-01
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.
Prediction of road accidents: A Bayesian hierarchical approach
DEFF Research Database (Denmark)
Deublein, Markus; Schubert, Matthias; Adey, Bryan T.
2013-01-01
the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link......In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson......-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...
Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method
Tsai, F. T. C.; Elshall, A. S.
2014-12-01
Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies
Introduction to Hierarchical Bayesian Modeling for Ecological Data
Parent, Eric
2012-01-01
Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a
Bayesian optimization for computationally extensive probability distributions.
Tamura, Ryo; Hukushima, Koji
2018-01-01
An efficient method for finding a better maximizer of computationally extensive probability distributions is proposed on the basis of a Bayesian optimization technique. A key idea of the proposed method is to use extreme values of acquisition functions by Gaussian processes for the next training phase, which should be located near a local maximum or a global maximum of the probability distribution. Our Bayesian optimization technique is applied to the posterior distribution in the effective physical model estimation, which is a computationally extensive probability distribution. Even when the number of sampling points on the posterior distributions is fixed to be small, the Bayesian optimization provides a better maximizer of the posterior distributions in comparison to those by the random search method, the steepest descent method, or the Monte Carlo method. Furthermore, the Bayesian optimization improves the results efficiently by combining the steepest descent method and thus it is a powerful tool to search for a better maximizer of computationally extensive probability distributions.
Sampling-free Bayesian inversion with adaptive hierarchical tensor representations
Eigel, Martin; Marschall, Manuel; Schneider, Reinhold
2018-03-01
A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.
Prediction of road accidents: A Bayesian hierarchical approach.
Deublein, Markus; Schubert, Matthias; Adey, Bryan T; Köhler, Jochen; Faber, Michael H
2013-03-01
In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models. Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions of the model response variables, conditional on the values of the risk indicating variables. The methodology is illustrated through a case study using data of the Austrian rural motorway network. In the case study, on randomly selected road segments the methodology is used to produce a model to predict the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link between two Austrian cities. It is shown that the proposed methodology can be used to develop models to estimate the occurrence of road accidents for any
UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE
Energy Technology Data Exchange (ETDEWEB)
Sanders, N. E.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Betancourt, M., E-mail: nsanders@cfa.harvard.edu [Department of Statistics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2015-02-10
Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.
UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE
International Nuclear Information System (INIS)
Sanders, N. E.; Soderberg, A. M.; Betancourt, M.
2015-01-01
Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST
Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.
Houpt, Joseph W; Bittner, Jennifer L
2018-05-10
Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bayesian Hierarchical Random Effects Models in Forensic Science
Directory of Open Access Journals (Sweden)
Colin G. G. Aitken
2018-04-01
Full Text Available Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.
Bayesian Hierarchical Random Effects Models in Forensic Science.
Aitken, Colin G G
2018-01-01
Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios) was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.
Optimal Detection under the Restricted Bayesian Criterion
Directory of Open Access Journals (Sweden)
Shujun Liu
2017-07-01
Full Text Available This paper aims to find a suitable decision rule for a binary composite hypothesis-testing problem with a partial or coarse prior distribution. To alleviate the negative impact of the information uncertainty, a constraint is considered that the maximum conditional risk cannot be greater than a predefined value. Therefore, the objective of this paper becomes to find the optimal decision rule to minimize the Bayes risk under the constraint. By applying the Lagrange duality, the constrained optimization problem is transformed to an unconstrained optimization problem. In doing so, the restricted Bayesian decision rule is obtained as a classical Bayesian decision rule corresponding to a modified prior distribution. Based on this transformation, the optimal restricted Bayesian decision rule is analyzed and the corresponding algorithm is developed. Furthermore, the relation between the Bayes risk and the predefined value of the constraint is also discussed. The Bayes risk obtained via the restricted Bayesian decision rule is a strictly decreasing and convex function of the constraint on the maximum conditional risk. Finally, the numerical results including a detection example are presented and agree with the theoretical results.
A novel Bayesian hierarchical model for road safety hotspot prediction.
Fawcett, Lee; Thorpe, Neil; Matthews, Joseph; Kremer, Karsten
2017-02-01
In this paper, we propose a Bayesian hierarchical model for predicting accident counts in future years at sites within a pool of potential road safety hotspots. The aim is to inform road safety practitioners of the location of likely future hotspots to enable a proactive, rather than reactive, approach to road safety scheme implementation. A feature of our model is the ability to rank sites according to their potential to exceed, in some future time period, a threshold accident count which may be used as a criterion for scheme implementation. Our model specification enables the classical empirical Bayes formulation - commonly used in before-and-after studies, wherein accident counts from a single before period are used to estimate counterfactual counts in the after period - to be extended to incorporate counts from multiple time periods. This allows site-specific variations in historical accident counts (e.g. locally-observed trends) to offset estimates of safety generated by a global accident prediction model (APM), which itself is used to help account for the effects of global trend and regression-to-mean (RTM). The Bayesian posterior predictive distribution is exploited to formulate predictions and to properly quantify our uncertainty in these predictions. The main contributions of our model include (i) the ability to allow accident counts from multiple time-points to inform predictions, with counts in more recent years lending more weight to predictions than counts from time-points further in the past; (ii) where appropriate, the ability to offset global estimates of trend by variations in accident counts observed locally, at a site-specific level; and (iii) the ability to account for unknown/unobserved site-specific factors which may affect accident counts. We illustrate our model with an application to accident counts at 734 potential hotspots in the German city of Halle; we also propose some simple diagnostics to validate the predictive capability of our
A Bayesian hierarchical model for demand curve analysis.
Ho, Yen-Yi; Nhu Vo, Tien; Chu, Haitao; Luo, Xianghua; Le, Chap T
2018-07-01
Drug self-administration experiments are a frequently used approach to assessing the abuse liability and reinforcing property of a compound. It has been used to assess the abuse liabilities of various substances such as psychomotor stimulants and hallucinogens, food, nicotine, and alcohol. The demand curve generated from a self-administration study describes how demand of a drug or non-drug reinforcer varies as a function of price. With the approval of the 2009 Family Smoking Prevention and Tobacco Control Act, demand curve analysis provides crucial evidence to inform the US Food and Drug Administration's policy on tobacco regulation, because it produces several important quantitative measurements to assess the reinforcing strength of nicotine. The conventional approach popularly used to analyze the demand curve data is individual-specific non-linear least square regression. The non-linear least square approach sets out to minimize the residual sum of squares for each subject in the dataset; however, this one-subject-at-a-time approach does not allow for the estimation of between- and within-subject variability in a unified model framework. In this paper, we review the existing approaches to analyze the demand curve data, non-linear least square regression, and the mixed effects regression and propose a new Bayesian hierarchical model. We conduct simulation analyses to compare the performance of these three approaches and illustrate the proposed approaches in a case study of nicotine self-administration in rats. We present simulation results and discuss the benefits of using the proposed approaches.
Efficient hierarchical trans-dimensional Bayesian inversion of magnetotelluric data
Xiang, Enming; Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dong, Hao; Ren, Zhengyong
2018-06-01
This paper develops an efficient hierarchical trans-dimensional (trans-D) Bayesian algorithm to invert magnetotelluric (MT) data for subsurface geoelectrical structure, with unknown geophysical model parameterization (the number of conductivity-layer interfaces) and data-error models parameterized by an auto-regressive (AR) process to account for potential error correlations. The reversible-jump Markov-chain Monte Carlo algorithm, which adds/removes interfaces and AR parameters in birth/death steps, is applied to sample the trans-D posterior probability density for model parameterization, model parameters, error variance and AR parameters, accounting for the uncertainties of model dimension and data-error statistics in the uncertainty estimates of the conductivity profile. To provide efficient sampling over the multiple subspaces of different dimensions, advanced proposal schemes are applied. Parameter perturbations are carried out in principal-component space, defined by eigen-decomposition of the unit-lag model covariance matrix, to minimize the effect of inter-parameter correlations and provide effective perturbation directions and length scales. Parameters of new layers in birth steps are proposed from the prior, instead of focused distributions centred at existing values, to improve birth acceptance rates. Parallel tempering, based on a series of parallel interacting Markov chains with successively relaxed likelihoods, is applied to improve chain mixing over model dimensions. The trans-D inversion is applied in a simulation study to examine the resolution of model structure according to the data information content. The inversion is also applied to a measured MT data set from south-central Australia.
Sparse Event Modeling with Hierarchical Bayesian Kernel Methods
2016-01-05
SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function
Bayesian disease mapping: hierarchical modeling in spatial epidemiology
National Research Council Canada - National Science Library
Lawson, Andrew
2013-01-01
Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas...
Machine learning a Bayesian and optimization perspective
Theodoridis, Sergios
2015-01-01
This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as shor...
A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China.
Directory of Open Access Journals (Sweden)
Xiongqing Zhang
Full Text Available Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.Hook. plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF. Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc. on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.
Using hierarchical Bayesian methods to examine the tools of decision-making
Michael D. Lee; Benjamin R. Newell
2011-01-01
Hierarchical Bayesian methods offer a principled and comprehensive way to relate psychological models to data. Here we use them to model the patterns of information search, stopping and deciding in a simulated binary comparison judgment task. The simulation involves 20 subjects making 100 forced choice comparisons about the relative magnitudes of two objects (which of two German cities has more inhabitants). Two worked-examples show how hierarchical models can be developed to account for and ...
Optimized Bayesian dynamic advising theory and algorithms
Karny, Miroslav
2006-01-01
Written by one of the world's leading groups in the area of Bayesian identification, control, and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising. Starting from abstract ideas and formulations, and culminating in detailed algorithms, the book comprises a unified treatment of an important problem of the design of advisory systems supporting supervisors of complex processes. It introduces the theoretical and algorithmic basis of developed advising, relying on novel and powerful combination black-box modelling by dynamic mixture models
Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno
2016-01-01
Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.
Directory of Open Access Journals (Sweden)
Moritz eBoos
2016-05-01
Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.
Czech Academy of Sciences Publication Activity Database
Suparta, W.; Gusrizal, G.; Kudela, Karel; Isa, Z.
2017-01-01
Roč. 28, č. 3 (2017), s. 357-370 ISSN 1017-0839 R&D Projects: GA MŠk EF15_003/0000481 Institutional support: RVO:61389005 Keywords : trapped particle * spatio-temporal * hierarchical Bayesian * forecasting Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 0.752, year: 2016
Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.
2011-01-01
This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint
DEFF Research Database (Denmark)
Kristensen, Anders Ringgaard; Søllested, Thomas Algot
2004-01-01
that really uses all these methodological improvements. In this paper, the biological model describing the performance and feed intake of sows is presented. In particular, estimation of herd specific parameters is emphasized. The optimization model is described in a subsequent paper......Several replacement models have been presented in literature. In other applicational areas like dairy cow replacement, various methodological improvements like hierarchical Markov processes and Bayesian updating have been implemented, but not in sow models. Furthermore, there are methodological...... improvements like multi-level hierarchical Markov processes with decisions on multiple time scales, efficient methods for parameter estimations at herd level and standard software that has been hardly implemented at all in any replacement model. The aim of this study is to present a sow replacement model...
Optimization of Hierarchical System for Data Acquisition
Directory of Open Access Journals (Sweden)
V. Novotny
2011-04-01
Full Text Available Television broadcasting over IP networks (IPTV is one of a number of network applications that are except of media distribution also interested in data acquisition from group of information resources of variable size. IP-TV uses Real-time Transport Protocol (RTP protocol for media streaming and RTP Control Protocol (RTCP protocol for session quality feedback. Other applications, for example sensor networks, have data acquisition as the main task. Current solutions have mostly problem with scalability - how to collect and process information from large amount of end nodes quickly and effectively? The article deals with optimization of hierarchical system of data acquisition. Problem is mathematically described, delay minima are searched and results are proved by simulations.
Optimization of Hierarchically Scheduled Heterogeneous Embedded Systems
DEFF Research Database (Denmark)
Pop, Traian; Pop, Paul; Eles, Petru
2005-01-01
We present an approach to the analysis and optimization of heterogeneous distributed embedded systems. The systems are heterogeneous not only in terms of hardware components, but also in terms of communication protocols and scheduling policies. When several scheduling policies share a resource......, they are organized in a hierarchy. In this paper, we address design problems that are characteristic to such hierarchically scheduled systems: assignment of scheduling policies to tasks, mapping of tasks to hardware components, and the scheduling of the activities. We present algorithms for solving these problems....... Our heuristics are able to find schedulable implementations under limited resources, achieving an efficient utilization of the system. The developed algorithms are evaluated using extensive experiments and a real-life example....
Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon
2017-12-01
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.
Directory of Open Access Journals (Sweden)
Fidel Ernesto Castro Morales
2016-03-01
Full Text Available Abstract Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.
Bayesian emulation for optimization in multi-step portfolio decisions
Irie, Kaoru; West, Mike
2016-01-01
We discuss the Bayesian emulation approach to computational solution of multi-step portfolio studies in financial time series. "Bayesian emulation for decisions" involves mapping the technical structure of a decision analysis problem to that of Bayesian inference in a purely synthetic "emulating" statistical model. This provides access to standard posterior analytic, simulation and optimization methods that yield indirect solutions of the decision problem. We develop this in time series portf...
Yi Huang; Francesca Dominici; Michelle Bell
2004-01-01
In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP ...
Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models
International Nuclear Information System (INIS)
Andrade, A.R.; Teixeira, P.F.
2015-01-01
Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a Hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated components between consecutive track sections, namely for the deterioration rates and the initial qualities parameters. HBM are developed for both quality indicators, conducting an extensive comparison between candidate models and a sensitivity analysis on prior distributions. HBM is applied to provide an overall assessment of the degradation of railway track geometry, for the main Portuguese railway line Lisbon–Oporto. - Highlights: • Rail track geometry degradation is analysed using Hierarchical Bayesian models. • A Gibbs sampling strategy is put forward to estimate the HBM. • Model comparison and sensitivity analysis find the most suitable model. • We applied the most suitable model to all the segments of the main Portuguese line. • Tackling spatial correlations using CAR structures lead to a better model fit
Hierarchical Bayesian Analysis of Biased Beliefs and Distributional Other-Regarding Preferences
Directory of Open Access Journals (Sweden)
Jeroen Weesie
2013-02-01
Full Text Available This study investigates the relationship between an actor’s beliefs about others’ other-regarding (social preferences and her own other-regarding preferences, using an “avant-garde” hierarchical Bayesian method. We estimate two distributional other-regarding preference parameters, α and β, of actors using incentivized choice data in binary Dictator Games. Simultaneously, we estimate the distribution of actors’ beliefs about others α and β, conditional on actors’ own α and β, with incentivized belief elicitation. We demonstrate the benefits of the Bayesian method compared to it’s hierarchical frequentist counterparts. Results show a positive association between an actor’s own (α; β and her beliefs about average(α; β in the population. The association between own preferences and the variance in beliefs about others’ preferences in the population, however, is curvilinear for α and insignificant for β. These results are partially consistent with the cone effect [1,2] which is described in detail below. Because in the Bayesian-Nash equilibrium concept, beliefs and own preferences are assumed to be independent, these results cast doubt on the application of the Bayesian-Nash equilibrium concept to experimental data.
Optimal Bayesian Experimental Design for Combustion Kinetics
Huan, Xun
2011-01-04
Experimental diagnostics play an essential role in the development and refinement of chemical kinetic models, whether for the combustion of common complex hydrocarbons or of emerging alternative fuels. Questions of experimental design—e.g., which variables or species to interrogate, at what resolution and under what conditions—are extremely important in this context, particularly when experimental resources are limited. This paper attempts to answer such questions in a rigorous and systematic way. We propose a Bayesian framework for optimal experimental design with nonlinear simulation-based models. While the framework is broadly applicable, we use it to infer rate parameters in a combustion system with detailed kinetics. The framework introduces a utility function that reflects the expected information gain from a particular experiment. Straightforward evaluation (and maximization) of this utility function requires Monte Carlo sampling, which is infeasible with computationally intensive models. Instead, we construct a polynomial surrogate for the dependence of experimental observables on model parameters and design conditions, with the help of dimension-adaptive sparse quadrature. Results demonstrate the efficiency and accuracy of the surrogate, as well as the considerable effectiveness of the experimental design framework in choosing informative experimental conditions.
Bayesian Optimization in High Dimensions via Random Embeddings
Wang, Z.; Zoghi, M.; Hutter, F.; Matheson, D.; de Freitas, N.; Rossi, F.
2013-01-01
Bayesian optimization techniques have been successfully applied to robotics, planning, sensor placement, recommendation, advertising, intelligent user interfaces and automatic algorithm configuration. Despite these successes, the approach is restricted to problems of moderate dimension, and several
Optimal Experimental Design for Large-Scale Bayesian Inverse Problems
Ghattas, Omar
2014-01-01
We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation
Fast Bayesian optimal experimental design and its applications
Long, Quan
2015-01-01
We summarize our Laplace method and multilevel method of accelerating the computation of the expected information gain in a Bayesian Optimal Experimental Design (OED). Laplace method is a widely-used method to approximate an integration
Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms
2017-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CONTINUOUS SEARCH ALGORITHMS by...to 09-22-2017 4. TITLE AND SUBTITLE SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CON- TINUOUS SEARCH ALGORITHMS 5. FUNDING NUMBERS 6...simple search and rescue acts to prosecuting aerial/surface/submersible targets on mission. This research looks at varying the known discrete and
Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.
Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis
2016-08-01
Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.
Directory of Open Access Journals (Sweden)
Ross H Johnstone
2017-03-01
Full Text Available Dose-response (or ‘concentration-effect’ relationships commonly occur in biological and pharmacological systems and are well characterised by Hill curves. These curves are described by an equation with two parameters: the inhibitory concentration 50% (IC50; and the Hill coefficient. Typically just the ‘best fit’ parameter values are reported in the literature. Here we introduce a Python-based software tool, PyHillFit , and describe the underlying Bayesian inference methods that it uses, to infer probability distributions for these parameters as well as the level of experimental observation noise. The tool also allows for hierarchical fitting, characterising the effect of inter-experiment variability. We demonstrate the use of the tool on a recently published dataset on multiple ion channel inhibition by multiple drug compounds. We compare the maximum likelihood, Bayesian and hierarchical Bayesian approaches. We then show how uncertainty in dose-response inputs can be characterised and propagated into a cardiac action potential simulation to give a probability distribution on model outputs.
Sahai, Swupnil
This thesis includes three parts. The overarching theme is how to analyze structured hierarchical data, with applications to astronomy and sociology. The first part discusses how expectation propagation can be used to parallelize the computation when fitting big hierarchical bayesian models. This methodology is then used to fit a novel, nonlinear mixture model to ultraviolet radiation from various regions of the observable universe. The second part discusses how the Stan probabilistic programming language can be used to numerically integrate terms in a hierarchical bayesian model. This technique is demonstrated on supernovae data to significantly speed up convergence to the posterior distribution compared to a previous study that used a Gibbs-type sampler. The third part builds a formal latent kernel representation for aggregate relational data as a way to more robustly estimate the mixing characteristics of agents in a network. In particular, the framework is applied to sociology surveys to estimate, as a function of ego age, the age and sex composition of the personal networks of individuals in the United States.
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
Directory of Open Access Journals (Sweden)
Hea-Jung Kim
2017-06-01
Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.
A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk
Directory of Open Access Journals (Sweden)
Lewei Duan
2013-01-01
Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.
Wiecki, Thomas V; Sofer, Imri; Frank, Michael J
2013-01-01
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python
Directory of Open Access Journals (Sweden)
Thomas V Wiecki
2013-08-01
Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs
A Bayesian Optimal Design for Sequential Accelerated Degradation Testing
Directory of Open Access Journals (Sweden)
Xiaoyang Li
2017-07-01
Full Text Available When optimizing an accelerated degradation testing (ADT plan, the initial values of unknown model parameters must be pre-specified. However, it is usually difficult to obtain the exact values, since many uncertainties are embedded in these parameters. Bayesian ADT optimal design was presented to address this problem by using prior distributions to capture these uncertainties. Nevertheless, when the difference between a prior distribution and actual situation is large, the existing Bayesian optimal design might cause some over-testing or under-testing issues. For example, the implemented ADT following the optimal ADT plan consumes too much testing resources or few accelerated degradation data are obtained during the ADT. To overcome these obstacles, a Bayesian sequential step-down-stress ADT design is proposed in this article. During the sequential ADT, the test under the highest stress level is firstly conducted based on the initial prior information to quickly generate degradation data. Then, the data collected under higher stress levels are employed to construct the prior distributions for the test design under lower stress levels by using the Bayesian inference. In the process of optimization, the inverse Gaussian (IG process is assumed to describe the degradation paths, and the Bayesian D-optimality is selected as the optimal objective. A case study on an electrical connector’s ADT plan is provided to illustrate the application of the proposed Bayesian sequential ADT design method. Compared with the results from a typical static Bayesian ADT plan, the proposed design could guarantee more stable and precise estimations of different reliability measures.
Shao, Kan; Allen, Bruce C; Wheeler, Matthew W
2017-10-01
Human variability is a very important factor considered in human health risk assessment for protecting sensitive populations from chemical exposure. Traditionally, to account for this variability, an interhuman uncertainty factor is applied to lower the exposure limit. However, using a fixed uncertainty factor rather than probabilistically accounting for human variability can hardly support probabilistic risk assessment advocated by a number of researchers; new methods are needed to probabilistically quantify human population variability. We propose a Bayesian hierarchical model to quantify variability among different populations. This approach jointly characterizes the distribution of risk at background exposure and the sensitivity of response to exposure, which are commonly represented by model parameters. We demonstrate, through both an application to real data and a simulation study, that using the proposed hierarchical structure adequately characterizes variability across different populations. © 2016 Society for Risk Analysis.
Yau, Christopher; Holmes, Chris
2011-07-01
We propose a hierarchical Bayesian nonparametric mixture model for clustering when some of the covariates are assumed to be of varying relevance to the clustering problem. This can be thought of as an issue in variable selection for unsupervised learning. We demonstrate that by defining a hierarchical population based nonparametric prior on the cluster locations scaled by the inverse covariance matrices of the likelihood we arrive at a 'sparsity prior' representation which admits a conditionally conjugate prior. This allows us to perform full Gibbs sampling to obtain posterior distributions over parameters of interest including an explicit measure of each covariate's relevance and a distribution over the number of potential clusters present in the data. This also allows for individual cluster specific variable selection. We demonstrate improved inference on a number of canonical problems.
Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.
2012-01-01
Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225
Prion Amplification and Hierarchical Bayesian Modeling Refine Detection of Prion Infection
Wyckoff, A. Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J.; Pulford, Bruce; Wild, Margaret; Antolin, Michael; Vercauteren, Kurt; Zabel, Mark
2015-02-01
Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.
Prion amplification and hierarchical Bayesian modeling refine detection of prion infection.
Wyckoff, A Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J; Pulford, Bruce; Wild, Margaret; Antolin, Michael; VerCauteren, Kurt; Zabel, Mark
2015-02-10
Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.
Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon
2018-01-01
Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.
International Nuclear Information System (INIS)
Brown, Kristen A.; Harlim, John
2013-01-01
In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the deterministic piecewise linear interpolation scheme and the ordinary kriging scheme in interpolating irregularly spaced raw data to regularly spaced processed data and the importance of dynamical constraint (through MSM) in filtering the processed data on a numerically stiff state estimation problem. In particular, we test this approach on a two-layer quasi-geostrophic model in a two-dimensional domain with a small radius of deformation to mimic ocean turbulence. Our numerical results suggest that the dynamical constraint becomes important when the observation noise variance is large. Second, we find that the filtered estimates with ordinary kriging are superior to those with linear interpolation when observation networks are not too sparse; such robust results are found from numerical simulations with many randomly simulated irregularly spaced observation networks, various observation time intervals, and observation error variances. Third, when the observation network is very sparse, we find that both the kriging and linear interpolations are comparable
Rahpeyma, Sahar
2018-04-17
Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.
A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.
Directory of Open Access Journals (Sweden)
Guillaume Bal
Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.
Directory of Open Access Journals (Sweden)
David Lunn
Full Text Available The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be combined to infer variations in the parasite's basic reproductive ratio across experimental groups, enabling us to make predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to be used more widely in experimental ecology.
Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter
2017-02-01
It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.
Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.
Directory of Open Access Journals (Sweden)
Ta-Chien Chan
Full Text Available BACKGROUND: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty. METHODS AND FINDINGS: Based on the Bayesian posterior probability of influenza-like illness (ILI visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006-2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1-2 days prior to the rise of ILI visits. CONCLUSIONS: This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.; Andrade Serra, De P.J.; Zanten, van J.H.
2013-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. We exhibit a prior on intensities which both leads to a computationally feasible method and enjoys desirable theoretical optimality properties. The prior we use is
Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization
Gelman, Andrew; Lee, Daniel; Guo, Jiqiang
2015-01-01
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Tools to estimate PM2.5 mass have expanded in recent years, and now include: 1) stationary monitor readings, 2) Community Multi-Scale Air Quality (CMAQ) model estimates, 3) Hierarchical Bayesian (HB) estimates from combined stationary monitor readings and CMAQ model output; and, ...
Ross, Michelle; Wakefield, Jon
2015-10-01
Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.
Coley, Rebecca Yates; Browna, Elizabeth R.
2016-01-01
Inconsistent results in recent HIV prevention trials of pre-exposure prophylactic interventions may be due to heterogeneity in risk among study participants. Intervention effectiveness is most commonly estimated with the Cox model, which compares event times between populations. When heterogeneity is present, this population-level measure underestimates intervention effectiveness for individuals who are at risk. We propose a likelihood-based Bayesian hierarchical model that estimates the individual-level effectiveness of candidate interventions by accounting for heterogeneity in risk with a compound Poisson-distributed frailty term. This model reflects the mechanisms of HIV risk and allows that some participants are not exposed to HIV and, therefore, have no risk of seroconversion during the study. We assess model performance via simulation and apply the model to data from an HIV prevention trial. PMID:26869051
Galliano, Frédéric
2018-05-01
This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.
A hierarchical bayesian approach to ecological count data: a flexible tool for ecologists.
Directory of Open Access Journals (Sweden)
James A Fordyce
Full Text Available Many ecological studies use the analysis of count data to arrive at biologically meaningful inferences. Here, we introduce a hierarchical bayesian approach to count data. This approach has the advantage over traditional approaches in that it directly estimates the parameters of interest at both the individual-level and population-level, appropriately models uncertainty, and allows for comparisons among models, including those that exceed the complexity of many traditional approaches, such as ANOVA or non-parametric analogs. As an example, we apply this method to oviposition preference data for butterflies in the genus Lycaeides. Using this method, we estimate the parameters that describe preference for each population, compare the preference hierarchies among populations, and explore various models that group populations that share the same preference hierarchy.
TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED
International Nuclear Information System (INIS)
Mandel, Kaisey S.; Friedman, Andrew S.; Kirshner, Robert P.; Wood-Vasey, W. Michael
2009-01-01
We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHK s SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are σ(M J ) = 0.17 ± 0.03, σ(M H ) = 0.11 ± 0.03, and σ(M Ks ) = 0.19 ± 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms -1 is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.
Target distribution in cooperative combat based on Bayesian optimization algorithm
Institute of Scientific and Technical Information of China (English)
Shi Zhifu; Zhang An; Wang Anli
2006-01-01
Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best.
Ruggeri, Fabrizio
2016-05-12
In this work we develop a Bayesian setting to infer unknown parameters in initial-boundary value problems related to linear parabolic partial differential equations. We realistically assume that the boundary data are noisy, for a given prescribed initial condition. We show how to derive the joint likelihood function for the forward problem, given some measurements of the solution field subject to Gaussian noise. Given Gaussian priors for the time-dependent Dirichlet boundary values, we analytically marginalize the joint likelihood using the linearity of the equation. Our hierarchical Bayesian approach is fully implemented in an example that involves the heat equation. In this example, the thermal diffusivity is the unknown parameter. We assume that the thermal diffusivity parameter can be modeled a priori through a lognormal random variable or by means of a space-dependent stationary lognormal random field. Synthetic data are used to test the inference. We exploit the behavior of the non-normalized log posterior distribution of the thermal diffusivity. Then, we use the Laplace method to obtain an approximated Gaussian posterior and therefore avoid costly Markov Chain Monte Carlo computations. Expected information gains and predictive posterior densities for observable quantities are numerically estimated using Laplace approximation for different experimental setups.
Hierarchical Bayesian inference of the initial mass function in composite stellar populations
Dries, M.; Trager, S. C.; Koopmans, L. V. E.; Popping, G.; Somerville, R. S.
2018-03-01
The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework, we use a parametrized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding ˜75.
Directory of Open Access Journals (Sweden)
J. P. Werner
2015-03-01
Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.
Feeney, Stephen M.; Mortlock, Daniel J.; Dalmasso, Niccolò
2018-05-01
Estimates of the Hubble constant, H0, from the local distance ladder and from the cosmic microwave background (CMB) are discrepant at the ˜3σ level, indicating a potential issue with the standard Λ cold dark matter (ΛCDM) cosmology. A probabilistic (i.e. Bayesian) interpretation of this tension requires a model comparison calculation, which in turn depends strongly on the tails of the H0 likelihoods. Evaluating the tails of the local H0 likelihood requires the use of non-Gaussian distributions to faithfully represent anchor likelihoods and outliers, and simultaneous fitting of the complete distance-ladder data set to ensure correct uncertainty propagation. We have hence developed a Bayesian hierarchical model of the full distance ladder that does not rely on Gaussian distributions and allows outliers to be modelled without arbitrary data cuts. Marginalizing over the full ˜3000-parameter joint posterior distribution, we find H0 = (72.72 ± 1.67) km s-1 Mpc-1 when applied to the outlier-cleaned Riess et al. data, and (73.15 ± 1.78) km s-1 Mpc-1 with supernova outliers reintroduced (the pre-cut Cepheid data set is not available). Using our precise evaluation of the tails of the H0 likelihood, we apply Bayesian model comparison to assess the evidence for deviation from ΛCDM given the distance-ladder and CMB data. The odds against ΛCDM are at worst ˜10:1 when considering the Planck 2015 XIII data, regardless of outlier treatment, considerably less dramatic than naïvely implied by the 2.8σ discrepancy. These odds become ˜60:1 when an approximation to the more-discrepant Planck Intermediate XLVI likelihood is included.
Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.
2009-01-01
The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.
Classical-Equivalent Bayesian Portfolio Optimization for Electricity Generation Planning
Directory of Open Access Journals (Sweden)
Hellinton H. Takada
2018-01-01
Full Text Available There are several electricity generation technologies based on different sources such as wind, biomass, gas, coal, and so on. The consideration of the uncertainties associated with the future costs of such technologies is crucial for planning purposes. In the literature, the allocation of resources in the available technologies has been solved as a mean-variance optimization problem assuming knowledge of the expected values and the covariance matrix of the costs. However, in practice, they are not exactly known parameters. Consequently, the obtained optimal allocations from the mean-variance optimization are not robust to possible estimation errors of such parameters. Additionally, it is usual to have electricity generation technology specialists participating in the planning processes and, obviously, the consideration of useful prior information based on their previous experience is of utmost importance. The Bayesian models consider not only the uncertainty in the parameters, but also the prior information from the specialists. In this paper, we introduce the classical-equivalent Bayesian mean-variance optimization to solve the electricity generation planning problem using both improper and proper prior distributions for the parameters. In order to illustrate our approach, we present an application comparing the classical-equivalent Bayesian with the naive mean-variance optimal portfolios.
Hierarchical optimal control of large-scale nonlinear chemical processes.
Ramezani, Mohammad Hossein; Sadati, Nasser
2009-01-01
In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.
Optimization of inspection and replacement period by using Bayesian statistics
International Nuclear Information System (INIS)
Kasai, Masao; Watanabe, Yasushi; Kusakari, Yoshiyuki; Notoya, Junichi
2006-01-01
This study describes the formulations to optimize the time interval of inspections and/or replacements of equipment/parts taking into account the probability density functions (PDF) for failure rates and parameters of failure distribution functions (FDF) and evaluates the optimized results of these time intervals using our formulations by comparing with those using only representative values of failure rates and the parameters of FDF instead of using these PDFs. The PDFs are obtained with Bayesian method and the representative values are obtained with likelihood estimation method. However, any significant difference is not observed between both optimized results within our preliminary calculations. (author)
Optimizing Nuclear Reaction Analysis (NRA) using Bayesian Experimental Design
International Nuclear Information System (INIS)
Toussaint, Udo von; Schwarz-Selinger, Thomas; Gori, Silvio
2008-01-01
Nuclear Reaction Analysis with 3 He holds the promise to measure Deuterium depth profiles up to large depths. However, the extraction of the depth profile from the measured data is an ill-posed inversion problem. Here we demonstrate how Bayesian Experimental Design can be used to optimize the number of measurements as well as the measurement energies to maximize the information gain. Comparison of the inversion properties of the optimized design with standard settings reveals huge possible gains. Application of the posterior sampling method allows to optimize the experimental settings interactively during the measurement process.
Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A; Valdés-Hernández, Pedro A; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A
2017-01-01
The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods
Fast Bayesian optimal experimental design and its applications
Long, Quan
2015-01-07
We summarize our Laplace method and multilevel method of accelerating the computation of the expected information gain in a Bayesian Optimal Experimental Design (OED). Laplace method is a widely-used method to approximate an integration in statistics. We analyze this method in the context of optimal Bayesian experimental design and extend this method from the classical scenario, where a single dominant mode of the parameters can be completely-determined by the experiment, to the scenarios where a non-informative parametric manifold exists. We show that by carrying out this approximation the estimation of the expected Kullback-Leibler divergence can be significantly accelerated. While Laplace method requires a concentration of measure, multi-level Monte Carlo method can be used to tackle the problem when there is a lack of measure concentration. We show some initial results on this approach. The developed methodologies have been applied to various sensor deployment problems, e.g., impedance tomography and seismic source inversion.
Optimization of Hierarchical Modulation for Use of Scalable Media
Directory of Open Access Journals (Sweden)
Heneghan Conor
2010-01-01
Full Text Available This paper studies the Hierarchical Modulation, a transmission strategy of the approaching scalable multimedia over frequency-selective fading channel for improving the perceptible quality. An optimization strategy for Hierarchical Modulation and convolutional encoding, which can achieve the target bit error rates with minimum global signal-to-noise ratio in a single-user scenario, is suggested. This strategy allows applications to make a free choice of relationship between Higher Priority (HP and Lower Priority (LP stream delivery. The similar optimization can be used in multiuser scenario. An image transport task and a transport task of an H.264/MPEG4 AVC video embedding both QVGA and VGA resolutions are simulated as the implementation example of this optimization strategy, and demonstrate savings in SNR and improvement in Peak Signal-to-Noise Ratio (PSNR for the particular examples shown.
Optimal soil venting design using Bayesian Decision analysis
Kaluarachchi, J. J.; Wijedasa, A. H.
1994-01-01
Remediation of hydrocarbon-contaminated sites can be costly and the design process becomes complex in the presence of parameter uncertainty. Classical decision theory related to remediation design requires the parameter uncertainties to be stipulated in terms of statistical estimates based on site observations. In the absence of detailed data on parameter uncertainty, classical decision theory provides little contribution in designing a risk-based optimal design strategy. Bayesian decision th...
Izquierdo, K.; Lekic, V.; Montesi, L.
2017-12-01
Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (information about the overall density distribution of celestial bodies even when there is no other geophysical data available.
Application of hierarchical Bayesian unmixing models in river sediment source apportionment
Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice
2016-04-01
Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling
Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.
2017-12-01
In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.
Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede
2017-10-01
Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.
Epigenetic change detection and pattern recognition via Bayesian hierarchical hidden Markov models.
Wang, Xinlei; Zang, Miao; Xiao, Guanghua
2013-06-15
Epigenetics is the study of changes to the genome that can switch genes on or off and determine which proteins are transcribed without altering the DNA sequence. Recently, epigenetic changes have been linked to the development and progression of disease such as psychiatric disorders. High-throughput epigenetic experiments have enabled researchers to measure genome-wide epigenetic profiles and yield data consisting of intensity ratios of immunoprecipitation versus reference samples. The intensity ratios can provide a view of genomic regions where protein binding occur under one experimental condition and further allow us to detect epigenetic alterations through comparison between two different conditions. However, such experiments can be expensive, with only a few replicates available. Moreover, epigenetic data are often spatially correlated with high noise levels. In this paper, we develop a Bayesian hierarchical model, combined with hidden Markov processes with four states for modeling spatial dependence, to detect genomic sites with epigenetic changes from two-sample experiments with paired internal control. One attractive feature of the proposed method is that the four states of the hidden Markov process have well-defined biological meanings and allow us to directly call the change patterns based on the corresponding posterior probabilities. In contrast, none of existing methods can offer this advantage. In addition, the proposed method offers great power in statistical inference by spatial smoothing (via hidden Markov modeling) and information pooling (via hierarchical modeling). Both simulation studies and real data analysis in a cocaine addiction study illustrate the reliability and success of this method. Copyright © 2012 John Wiley & Sons, Ltd.
How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach.
Horn, Sebastian S; Pachur, Thorsten; Mata, Rui
2015-01-01
The recognition heuristic (RH) is a simple strategy for probabilistic inference according to which recognized objects are judged to score higher on a criterion than unrecognized objects. In this article, a hierarchical Bayesian extension of the multinomial r-model is applied to measure use of the RH on the individual participant level and to re-evaluate differences between younger and older adults' strategy reliance across environments. Further, it is explored how individual r-model parameters relate to alternative measures of the use of recognition and other knowledge, such as adherence rates and indices from signal-detection theory (SDT). Both younger and older adults used the RH substantially more often in an environment with high than low recognition validity, reflecting adaptivity in strategy use across environments. In extension of previous analyses (based on adherence rates), hierarchical modeling revealed that in an environment with low recognition validity, (a) older adults had a stronger tendency than younger adults to rely on the RH and (b) variability in RH use between individuals was larger than in an environment with high recognition validity; variability did not differ between age groups. Further, the r-model parameters correlated moderately with an SDT measure expressing how well people can discriminate cases where the RH leads to a correct vs. incorrect inference; this suggests that the r-model and the SDT measures may offer complementary insights into the use of recognition in decision making. In conclusion, younger and older adults are largely adaptive in their application of the RH, but cognitive aging may be associated with an increased tendency to rely on this strategy. Copyright © 2014 Elsevier B.V. All rights reserved.
Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas
2017-02-01
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally
Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum
Weitzel, Nils; Hense, Andreas; Ohlwein, Christian
2017-04-01
Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were
Hierarchical Control for Optimal and Distributed Operation of Microgrid Systems
DEFF Research Database (Denmark)
Meng, Lexuan
manages the power flow with external grids, while the economic and optimal operation of MGs is not guaranteed by applying the existing schemes. Accordingly, this project dedicates to the study of real-time optimization methods for MGs, including the review of optimization algorithms, system level...... mathematical modeling, and the implementation of real-time optimization into existing hierarchical control schemes. Efficiency enhancement in DC MGs and optimal unbalance compensation in AC MGs are taken as the optimization objectives in this project. Necessary system dynamic modeling and stability analysis......, a discrete-time domain modeling method is proposed to establish an accurate system level model. Taking into account the different sampling times of real world plant, digital controller and communication devices, the system is modeled with these three parts separately, and with full consideration...
Optimal execution in high-frequency trading with Bayesian learning
Du, Bian; Zhu, Hongliang; Zhao, Jingdong
2016-11-01
We consider optimal trading strategies in which traders submit bid and ask quotes to maximize the expected quadratic utility of total terminal wealth in a limit order book. The trader's bid and ask quotes will be changed by the Poisson arrival of market orders. Meanwhile, the trader may update his estimate of other traders' target sizes and directions by Bayesian learning. The solution of optimal execution in the limit order book is a two-step procedure. First, we model an inactive trading with no limit order in the market. The dealer simply holds dollars and shares of stocks until terminal time. Second, he calibrates his bid and ask quotes to the limit order book. The optimal solutions are given by dynamic programming and in fact they are globally optimal. We also give numerical simulation to the value function and optimal quotes at the last part of the article.
Bayesian optimal experimental design for the Shock-tube experiment
International Nuclear Information System (INIS)
Terejanu, G; Bryant, C M; Miki, K
2013-01-01
The sequential optimal experimental design formulated as an information-theoretic sensitivity analysis is applied to the ignition delay problem using real experimental. The optimal design is obtained by maximizing the statistical dependence between the model parameters and observables, which is quantified in this study using mutual information. This is naturally posed in the Bayesian framework. The study shows that by monitoring the information gain after each measurement update, one can design a stopping criteria for the experimental process which gives a minimal set of experiments to efficiently learn the Arrhenius parameters.
Kim, Daesang; El Gharamti, Iman; Hantouche, Mireille; Elwardani, Ahmed Elsaid; Farooq, Aamir; Bisetti, Fabrizio; Knio, Omar
2017-01-01
We developed a novel two-step hierarchical method for the Bayesian inference of the rate parameters of a target reaction from time-resolved concentration measurements in shock tubes. The method was applied to the calibration of the parameters
International Nuclear Information System (INIS)
Kelly, Brandon C.; Goodman, Alyssa A.; Shetty, Rahul; Stutz, Amelia M.; Launhardt, Ralf; Kauffmann, Jens
2012-01-01
We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index β. The traditional non-hierarchical approaches, typically based on χ 2 minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and β even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the χ 2 fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and β are weakly positively correlated—in contradiction with the χ 2 fits, which indicate a T-β anti-correlation from the same data set. Additionally, in comparison to the χ 2 fits the Bayesian SED parameter estimates exhibit a reduced range in values.
Czech Academy of Sciences Publication Activity Database
Górecki, J.; Hofert, M.; Holeňa, Martin
2016-01-01
Roč. 46, č. 1 (2016), s. 21-59 ISSN 0925-9902 R&D Projects: GA ČR GA13-17187S Grant - others:Slezská univerzita v Opavě(CZ) SGS/21/2014 Institutional support: RVO:67985807 Keywords : Copula * Hierarchical archimedean copula * Copula estimation * Structure determination * Kendall’s tau * Bayesian classification Subject RIV: IN - Informatics, Computer Science Impact factor: 1.294, year: 2016
Combining information from multiple flood projections in a hierarchical Bayesian framework
Le Vine, Nataliya
2016-04-01
This study demonstrates, in the context of flood frequency analysis, the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach explicitly accommodates shared multimodel discrepancy as well as the probabilistic nature of the flood estimates, and treats the available models as a sample from a hypothetical complete (but unobserved) set of models. The methodology is applied to flood estimates from multiple hydrological projections (the Future Flows Hydrology data set) for 135 catchments in the UK. The advantages of the approach are shown to be: (1) to ensure adequate "baseline" with which to compare future changes; (2) to reduce flood estimate uncertainty; (3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; (4) to diminish the importance of model consistency when model biases are large; and (5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.
Merging information from multi-model flood projections in a hierarchical Bayesian framework
Le Vine, Nataliya
2016-04-01
Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.
Commeau, Natalie; Cornu, Marie; Albert, Isabelle; Denis, Jean-Baptiste; Parent, Eric
2012-03-01
Assessing within-batch and between-batch variability is of major interest for risk assessors and risk managers in the context of microbiological contamination of food. For example, the ratio between the within-batch variability and the between-batch variability has a large impact on the results of a sampling plan. Here, we designed hierarchical Bayesian models to represent such variability. Compatible priors were built mathematically to obtain sound model comparisons. A numeric criterion is proposed to assess the contamination structure comparing the ability of the models to replicate grouped data at the batch level using a posterior predictive loss approach. Models were applied to two case studies: contamination by Listeria monocytogenes of pork breast used to produce diced bacon and contamination by the same microorganism on cold smoked salmon at the end of the process. In the first case study, a contamination structure clearly exists and is located at the batch level, that is, between batches variability is relatively strong, whereas in the second a structure also exists but is less marked. © 2012 Society for Risk Analysis.
Hierarchical Bayesian Spatio Temporal Model Comparison on the Earth Trapped Particle Forecast
International Nuclear Information System (INIS)
Suparta, Wayan; Gusrizal
2014-01-01
We compared two hierarchical Bayesian spatio temporal (HBST) results, Gaussian process (GP) and autoregressive (AR) models, on the Earth trapped particle forecast. Two models were employed on the South Atlantic Anomaly (SAA) region. Electron of >30 keV (mep0e1) from National Oceanic and Atmospheric Administration (NOAA) 15-18 satellites data was chosen as the particle modeled. We used two weeks data to perform the model fitting on a 5°x5° grid of longitude and latitude, and 31 August 2007 was set as the date of forecast. Three statistical validations were performed on the data, i.e. the root mean square error (RMSE), mean absolute percentage error (MAPE) and bias (BIAS). The statistical analysis showed that GP model performed better than AR with the average of RMSE = 0.38 and 0.63, MAPE = 11.98 and 17.30, and BIAS = 0.32 and 0.24, for GP and AR, respectively. Visual validation on both models with the NOAA map's also confirmed the superior of the GP than the AR. The variance of log flux minimum = 0.09 and 1.09, log flux maximum = 1.15 and 1.35, and in successively represents GP and AR
Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.
2017-12-01
We compare gridded extreme precipitation return levels obtained using spatial Bayesian hierarchical modeling (BHM) with their respective counterparts from a traditional regional frequency analysis (RFA) using the same set of extreme precipitation data. Our study area is the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two thirds of Oregon's population and 20 of the 25 most populous cities in the state. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams and extreme precipitation estimates are required to support risk informed hydrologic analyses as part of the USACE Dam Safety Program. Our intent is to profile for the USACE an alternate methodology to an RFA that was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. We analyze 24-hour annual precipitation maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme precipitation by return level. Our BHM modeling analysis involved application of leave-one-out cross validation (LOO-CV), which not only supported model selection but also a comprehensive assessment of location specific model performance. The LOO-CV results will provide a basis for the BHM RFA comparison.
A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures.
Tanner, Martin A.; Peng, Fengchun; Jacobs, Robert A.
1997-03-01
There does not exist a statistical model that shows good performance on all tasks. Consequently, the model selection problem is unavoidable; investigators must decide which model is best at summarizing the data for each task of interest. This article presents an approach to the model selection problem in hierarchical mixtures-of-experts architectures. These architectures combine aspects of generalized linear models with those of finite mixture models in order to perform tasks via a recursive "divide-and-conquer" strategy. Markov chain Monte Carlo methodology is used to estimate the distribution of the architectures' parameters. One part of our approach to model selection attempts to estimate the worth of each component of an architecture so that relatively unused components can be pruned from the architecture's structure. A second part of this approach uses a Bayesian hypothesis testing procedure in order to differentiate inputs that carry useful information from nuisance inputs. Simulation results suggest that the approach presented here adheres to the dictum of Occam's razor; simple architectures that are adequate for summarizing the data are favored over more complex structures. Copyright 1997 Elsevier Science Ltd. All Rights Reserved.
Okada, Kensuke; Vandekerckhove, Joachim; Lee, Michael D
2018-02-01
People often interact with environments that can provide only a finite number of items as resources. Eventually a book contains no more chapters, there are no more albums available from a band, and every Pokémon has been caught. When interacting with these sorts of environments, people either actively choose to quit collecting new items, or they are forced to quit when the items are exhausted. Modeling the distribution of how many items people collect before they quit involves untangling these two possibilities, We propose that censored geometric models are a useful basic technique for modeling the quitting distribution, and, show how, by implementing these models in a hierarchical and latent-mixture framework through Bayesian methods, they can be extended to capture the additional features of specific situations. We demonstrate this approach by developing and testing a series of models in two case studies involving real-world data. One case study deals with people choosing jokes from a recommender system, and the other deals with people completing items in a personality survey.
A bayesian hierarchical model for classification with selection of functional predictors.
Zhu, Hongxiao; Vannucci, Marina; Cox, Dennis D
2010-06-01
In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample-related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.
Directory of Open Access Journals (Sweden)
Eils Roland
2006-06-01
Full Text Available Abstract Background The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. Results A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. Conclusion This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.
Mapping brucellosis increases relative to elk density using hierarchical Bayesian models
Cross, Paul C.; Heisey, Dennis M.; Scurlock, Brandon M.; Edwards, William H.; Brennan, Angela; Ebinger, Michael R.
2010-01-01
The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus) in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km2; range = [95–10237]). The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.
Mapping brucellosis increases relative to elk density using hierarchical Bayesian models.
Directory of Open Access Journals (Sweden)
Paul C Cross
Full Text Available The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km(2; range = [95-10237]. The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.
Directory of Open Access Journals (Sweden)
Santosh Jatrana
Full Text Available The aim of this paper was to see whether all-cause and cause-specific mortality rates vary between Asian ethnic subgroups, and whether overseas born Asian subgroup mortality rate ratios varied by nativity and duration of residence. We used hierarchical Bayesian methods to allow for sparse data in the analysis of linked census-mortality data for 25-75 year old New Zealanders. We found directly standardised posterior all-cause and cardiovascular mortality rates were highest for the Indian ethnic group, significantly so when compared with those of Chinese ethnicity. In contrast, cancer mortality rates were lowest for ethnic Indians. Asian overseas born subgroups have about 70% of the mortality rate of their New Zealand born Asian counterparts, a result that showed little variation by Asian subgroup or cause of death. Within the overseas born population, all-cause mortality rates for migrants living 0-9 years in New Zealand were about 60% of the mortality rate of those living more than 25 years in New Zealand regardless of ethnicity. The corresponding figure for cardiovascular mortality rates was 50%. However, while Chinese cancer mortality rates increased with duration of residence, Indian and Other Asian cancer mortality rates did not. Future research on the mechanisms of worsening of health with increased time spent in the host country is required to improve the understanding of the process, and would assist the policy-makers and health planners.
Subjective value of risky foods for individual domestic chicks: a hierarchical Bayesian model.
Kawamori, Ai; Matsushima, Toshiya
2010-05-01
For animals to decide which prey to attack, the gain and delay of the food item must be integrated in a value function. However, the subjective value is not obtained by expected profitability when it is accompanied by risk. To estimate the subjective value, we examined choices in a cross-shaped maze with two colored feeders in domestic chicks. When tested by a reversal in food amount or delay, chicks changed choices similarly in both conditions (experiment 1). We therefore examined risk sensitivity for amount and delay (experiment 2) by supplying one feeder with food of fixed profitability and the alternative feeder with high- or low-profitability food at equal probability. Profitability varied in amount (groups 1 and 2 at high and low variance) or in delay (group 3). To find the equilibrium, the amount (groups 1 and 2) or delay (group 3) of the food in the fixed feeder was adjusted in a total of 18 blocks. The Markov chain Monte Carlo method was applied to a hierarchical Bayesian model to estimate the subjective value. Chicks undervalued the variable feeder in group 1 and were indifferent in group 2 but overvalued the variable feeder in group 3 at a population level. Re-examination without the titration procedure (experiment 3) suggested that the subjective value was not absolute for each option. When the delay was varied, the variable option was often given a paradoxically high value depending on fixed alternative. Therefore, the basic assumption of the uniquely determined value function might be questioned.
A Bayesian hierarchical model with novel prior specifications for estimating HIV testing rates.
An, Qian; Kang, Jian; Song, Ruiguang; Hall, H Irene
2016-04-30
Human immunodeficiency virus (HIV) infection is a severe infectious disease actively spreading globally, and acquired immunodeficiency syndrome (AIDS) is an advanced stage of HIV infection. The HIV testing rate, that is, the probability that an AIDS-free HIV infected person seeks a test for HIV during a particular time interval, given no previous positive test has been obtained prior to the start of the time, is an important parameter for public health. In this paper, we propose a Bayesian hierarchical model with two levels of hierarchy to estimate the HIV testing rate using annual AIDS and AIDS-free HIV diagnoses data. At level one, we model the latent number of HIV infections for each year using a Poisson distribution with the intensity parameter representing the HIV incidence rate. At level two, the annual numbers of AIDS and AIDS-free HIV diagnosed cases and all undiagnosed cases stratified by the HIV infections at different years are modeled using a multinomial distribution with parameters including the HIV testing rate. We propose a new class of priors for the HIV incidence rate and HIV testing rate taking into account the temporal dependence of these parameters to improve the estimation accuracy. We develop an efficient posterior computation algorithm based on the adaptive rejection metropolis sampling technique. We demonstrate our model using simulation studies and the analysis of the national HIV surveillance data in the USA. Copyright © 2015 John Wiley & Sons, Ltd.
Cruz-Marcelo, Alejandro; Ensor, Katherine B.; Rosner, Gary L.
2011-01-01
The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material. PMID:21765566
Optimal inference with suboptimal models: Addiction and active Bayesian inference
Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl
2015-01-01
When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321
Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur
2018-03-01
Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.
Optimization of plasma diagnostics using Bayesian probability theory
International Nuclear Information System (INIS)
Dreier, H.; Dinklage, A.; Hirsch, M.; Kornejew, P.; Fischer, R.
2006-01-01
The diagnostic set-up for Wendelstein 7-X, a magnetic fusion device presently under construction, is currently in the design process to optimize the outcome under given technical constraints. Compared to traditional design approaches, Bayesian Experimental Design (BED) allows to optimize with respect to physical motivated design criterions. It aims to find the optimal design by maximizing an expected utility function that quantifies the goals of the experiment. The expectation marginalizes over the uncertain physical parameters and the possible values of future data. The approach presented here bases on maximization of an information measure (Kullback-Leibler entropy). As an example, the optimization of an infrared multichannel interferometer is shown in detail. Design aspects like the impact of technical restrictions are discussed
Hierarchical Swarm Model: A New Approach to Optimization
Directory of Open Access Journals (Sweden)
Hanning Chen
2010-01-01
Full Text Available This paper presents a novel optimization model called hierarchical swarm optimization (HSO, which simulates the natural hierarchical complex system from where more complex intelligence can emerge for complex problems solving. This proposed model is intended to suggest ways that the performance of HSO-based algorithms on complex optimization problems can be significantly improved. This performance improvement is obtained by constructing the HSO hierarchies, which means that an agent in a higher level swarm can be composed of swarms of other agents from lower level and different swarms of different levels evolve on different spatiotemporal scale. A novel optimization algorithm (named PS2O, based on the HSO model, is instantiated and tested to illustrate the ideas of HSO model clearly. Experiments were conducted on a set of 17 benchmark optimization problems including both continuous and discrete cases. The results demonstrate remarkable performance of the PS2O algorithm on all chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms.
Jiménez, José; García, Emilio J; Llaneza, Luis; Palacios, Vicente; González, Luis Mariano; García-Domínguez, Francisco; Múñoz-Igualada, Jaime; López-Bao, José Vicente
2016-08-01
In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population
A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins
Gronewold, A.; Alameddine, I.; Anderson, R. M.
2009-12-01
Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United
Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model
Mukhopadhyay, S.; Arumugam, S.
2017-12-01
Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior
Directory of Open Access Journals (Sweden)
Takebayashi Naoki
2007-07-01
Full Text Available Abstract Background Although testing for simultaneous divergence (vicariance across different population-pairs that span the same barrier to gene flow is of central importance to evolutionary biology, researchers often equate the gene tree and population/species tree thereby ignoring stochastic coalescent variance in their conclusions of temporal incongruence. In contrast to other available phylogeographic software packages, msBayes is the only one that analyses data from multiple species/population pairs under a hierarchical model. Results msBayes employs approximate Bayesian computation (ABC under a hierarchical coalescent model to test for simultaneous divergence (TSD in multiple co-distributed population-pairs. Simultaneous isolation is tested by estimating three hyper-parameters that characterize the degree of variability in divergence times across co-distributed population pairs while allowing for variation in various within population-pair demographic parameters (sub-parameters that can affect the coalescent. msBayes is a software package consisting of several C and R programs that are run with a Perl "front-end". Conclusion The method reasonably distinguishes simultaneous isolation from temporal incongruence in the divergence of co-distributed population pairs, even with sparse sampling of individuals. Because the estimate step is decoupled from the simulation step, one can rapidly evaluate different ABC acceptance/rejection conditions and the choice of summary statistics. Given the complex and idiosyncratic nature of testing multi-species biogeographic hypotheses, we envision msBayes as a powerful and flexible tool for tackling a wide array of difficult research questions that use population genetic data from multiple co-distributed species. The msBayes pipeline is available for download at http://msbayes.sourceforge.net/ under an open source license (GNU Public License. The msBayes pipeline is comprised of several C and R programs that
Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe
2013-01-01
Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2) to 30 cm(2), whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.
Directory of Open Access Journals (Sweden)
Rasheda Arman Chowdhury
Full Text Available Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG or Magneto-EncephaloGraphy (MEG signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i brain activity may be modeled using cortical parcels and (ii brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM and the Hierarchical Bayesian (HB source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2 to 30 cm(2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.
International Nuclear Information System (INIS)
Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J.
2014-01-01
We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10 3 km s –1 ) –1 for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A V extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances
Optimal projection of observations in a Bayesian setting
Giraldi, Loic
2018-03-18
Optimal dimensionality reduction methods are proposed for the Bayesian inference of a Gaussian linear model with additive noise in presence of overabundant data. Three different optimal projections of the observations are proposed based on information theory: the projection that minimizes the Kullback–Leibler divergence between the posterior distributions of the original and the projected models, the one that minimizes the expected Kullback–Leibler divergence between the same distributions, and the one that maximizes the mutual information between the parameter of interest and the projected observations. The first two optimization problems are formulated as the determination of an optimal subspace and therefore the solution is computed using Riemannian optimization algorithms on the Grassmann manifold. Regarding the maximization of the mutual information, it is shown that there exists an optimal subspace that minimizes the entropy of the posterior distribution of the reduced model; a basis of the subspace can be computed as the solution to a generalized eigenvalue problem; an a priori error estimate on the mutual information is available for this particular solution; and that the dimensionality of the subspace to exactly conserve the mutual information between the input and the output of the models is less than the number of parameters to be inferred. Numerical applications to linear and nonlinear models are used to assess the efficiency of the proposed approaches, and to highlight their advantages compared to standard approaches based on the principal component analysis of the observations.
Optimal Experimental Design for Large-Scale Bayesian Inverse Problems
Ghattas, Omar
2014-01-06
We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate expressions. The control parameters are the initial mixture composition and the temperature. The approach is based on first building a polynomial based surrogate model for the observables relevant to the shock tube experiments. Based on these surrogates, a novel MAP based approach is used to estimate the expected information gain in the proposed experiments, and to select the best experimental set-ups yielding the optimal expected information gains. The validity of the approach is tested using synthetic data generated by sampling the PC surrogate. We finally outline a methodology for validation using actual laboratory experiments, and extending experimental design methodology to the cases where the control parameters are noisy.
A Bayesian-optimized spline representation of the electrocardiogram
International Nuclear Information System (INIS)
Guilak, F G; McNames, J
2013-01-01
We introduce an implementation of a novel spline framework for parametrically representing electrocardiogram (ECG) waveforms. This implementation enables a flexible means to study ECG structure in large databases. Our algorithm allows researchers to identify key points in the waveform and optimally locate them in long-term recordings with minimal manual effort, thereby permitting analysis of trends in the points themselves or in metrics derived from their locations. In the work described here we estimate the location of a number of commonly-used characteristic points of the ECG signal, defined as the onsets, peaks, and offsets of the P, QRS, T, and R′ waves. The algorithm applies Bayesian optimization to a linear spline representation of the ECG waveform. The location of the knots—which are the endpoints of the piecewise linear segments used in the spline representation of the signal—serve as the estimate of the waveform’s characteristic points. We obtained prior information of knot times, amplitudes, and curvature from a large manually-annotated training dataset and used the priors to optimize a Bayesian figure of merit based on estimated knot locations. In cases where morphologies vary or are subject to noise, the algorithm relies more heavily on the estimated priors for its estimate of knot locations. We compared optimized knot locations from our algorithm to two sets of manual annotations on a prospective test data set comprising 200 beats from 20 subjects not in the training set. Mean errors of characteristic point locations were less than four milliseconds, and standard deviations of errors compared favorably against reference values. This framework can easily be adapted to include additional points of interest in the ECG signal or for other biomedical detection problems on quasi-periodic signals. (paper)
Designing Nanostructures for Phonon Transport via Bayesian Optimization
Directory of Open Access Journals (Sweden)
Shenghong Ju
2017-05-01
Full Text Available We demonstrate optimization of thermal conductance across nanostructures by developing a method combining atomistic Green’s function and Bayesian optimization. With an aim to minimize and maximize the interfacial thermal conductance (ITC across Si-Si and Si-Ge interfaces by means of the Si/Ge composite interfacial structure, the method identifies the optimal structures from calculations of only a few percent of the entire candidates (over 60 000 structures. The obtained optimal interfacial structures are nonintuitive and impacting: the minimum ITC structure is an aperiodic superlattice that realizes 50% reduction from the best periodic superlattice. The physical mechanism of the minimum ITC can be understood in terms of the crossover of the two effects on phonon transport: as the layer thickness in the superlattice increases, the impact of Fabry-Pérot interference increases, and the rate of reflection at the layer interfaces decreases. An aperiodic superlattice with spatial variation in the layer thickness has a degree of freedom to realize optimal balance between the above two competing mechanisms. Furthermore, the spatial variation enables weakening the impact of constructive phonon interference relative to that of destructive interference. The present work shows the effectiveness and advantage of material informatics in designing nanostructures to control heat conduction, which can be extended to other nanostructures and properties.
User-customized brain computer interfaces using Bayesian optimization
Bashashati, Hossein; Ward, Rabab K.; Bashashati, Ali
2016-04-01
Objective. The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject’s brain characteristics. Approach. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. Main Results. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Significance. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.
User-customized brain computer interfaces using Bayesian optimization.
Bashashati, Hossein; Ward, Rabab K; Bashashati, Ali
2016-04-01
The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject's brain characteristics. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.
Rupa, Chandra; Mujumdar, Pradeep
2016-04-01
In urban areas, quantification of extreme precipitation is important in the design of storm water drains and other infrastructure. Intensity Duration Frequency (IDF) relationships are generally used to obtain design return level for a given duration and return period. Due to lack of availability of extreme precipitation data for sufficiently large number of years, estimating the probability of extreme events is difficult. Typically, a single station data is used to obtain the design return levels for various durations and return periods, which are used in the design of urban infrastructure for the entire city. In an urban setting, the spatial variation of precipitation can be high; the precipitation amounts and patterns often vary within short distances of less than 5 km. Therefore it is crucial to study the uncertainties in the spatial variation of return levels for various durations. In this work, the extreme precipitation is modeled spatially using the Bayesian hierarchical analysis and the spatial variation of return levels is studied. The analysis is carried out with Block Maxima approach for defining the extreme precipitation, using Generalized Extreme Value (GEV) distribution for Bangalore city, Karnataka state, India. Daily data for nineteen stations in and around Bangalore city is considered in the study. The analysis is carried out for summer maxima (March - May), monsoon maxima (June - September) and the annual maxima rainfall. In the hierarchical analysis, the statistical model is specified in three layers. The data layer models the block maxima, pooling the extreme precipitation from all the stations. In the process layer, the latent spatial process characterized by geographical and climatological covariates (lat-lon, elevation, mean temperature etc.) which drives the extreme precipitation is modeled and in the prior level, the prior distributions that govern the latent process are modeled. Markov Chain Monte Carlo (MCMC) algorithm (Metropolis Hastings
Local Approximation and Hierarchical Methods for Stochastic Optimization
Cheng, Bolong
In this thesis, we present local and hierarchical approximation methods for two classes of stochastic optimization problems: optimal learning and Markov decision processes. For the optimal learning problem class, we introduce a locally linear model with radial basis function for estimating the posterior mean of the unknown objective function. The method uses a compact representation of the function which avoids storing the entire history, as is typically required by nonparametric methods. We derive a knowledge gradient policy with the locally parametric model, which maximizes the expected value of information. We show the policy is asymptotically optimal in theory, and experimental works suggests that the method can reliably find the optimal solution on a range of test functions. For the Markov decision processes problem class, we are motivated by an application where we want to co-optimize a battery for multiple revenue, in particular energy arbitrage and frequency regulation. The nature of this problem requires the battery to make charging and discharging decisions at different time scales while accounting for the stochastic information such as load demand, electricity prices, and regulation signals. Computing the exact optimal policy becomes intractable due to the large state space and the number of time steps. We propose two methods to circumvent the computation bottleneck. First, we propose a nested MDP model that structure the co-optimization problem into smaller sub-problems with reduced state space. This new model allows us to understand how the battery behaves down to the two-second dynamics (that of the frequency regulation market). Second, we introduce a low-rank value function approximation for backward dynamic programming. This new method only requires computing the exact value function for a small subset of the state space and approximate the entire value function via low-rank matrix completion. We test these methods on historical price data from the
Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization
Directory of Open Access Journals (Sweden)
Lianbo Ma
2014-01-01
Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
Hierarchical artificial bee colony algorithm for RFID network planning optimization.
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
Fast Bayesian Optimal Experimental Design for Seismic Source Inversion
Long, Quan; Motamed, Mohammad; Tempone, Raul
2016-01-01
We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.
Simulation-based optimal Bayesian experimental design for nonlinear systems
Huan, Xun
2013-01-01
The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets of experiments that provide the most information about targeted sets of parameters.Our framework employs a Bayesian statistical setting, which provides a foundation for inference from noisy, indirect, and incomplete data, and a natural mechanism for incorporating heterogeneous sources of information. An objective function is constructed from information theoretic measures, reflecting expected information gain from proposed combinations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo sampling method are used to evaluate the expected information gain. Stochastic approximation algorithms are then used to make optimization feasible in computationally intensive and high-dimensional settings. These algorithms are demonstrated on model problems and on nonlinear parameter inference problems arising in detailed combustion kinetics. © 2012 Elsevier Inc.
Fast Bayesian optimal experimental design for seismic source inversion
Long, Quan
2015-07-01
We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.
Fast Bayesian Optimal Experimental Design for Seismic Source Inversion
Long, Quan
2016-01-06
We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.
International Nuclear Information System (INIS)
Byun, Hyunsuk; Lee, Chul-Yong
2017-01-01
Generally, consumers use electricity without considering the source the electricity was generated from. Since different energy sources exert varying effects on society, it is necessary to analyze consumers’ latent preference for electricity generation sources. The present study estimates Korean consumers’ marginal utility and an appropriate generation mix is derived using the hierarchical Bayesian logit model in a discrete choice experiment. The results show that consumers consider the danger posed by the source of electricity as the most important factor among the effects of electricity generation sources. Additionally, Korean consumers wish to reduce the contribution of nuclear power from the existing 32–11%, and increase that of renewable energy from the existing 4–32%. - Highlights: • We derive an electricity mix reflecting Korean consumers’ latent preferences. • We use the discrete choice experiment and hierarchical Bayesian logit model. • The danger posed by the generation source is the most important attribute. • The consumers wish to increase the renewable energy proportion from 4.3% to 32.8%. • Korea's cost-oriented energy supply policy and consumers’ preference differ markedly.
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
A Bayesian Sampler for Optimization of Protein Domain Hierarchies
2014-01-01
Abstract The process of identifying and modeling functionally divergent subgroups for a specific protein domain class and arranging these subgroups hierarchically has, thus far, largely been done via manual curation. How to accomplish this automatically and optimally is an unsolved statistical and algorithmic problem that is addressed here via Markov chain Monte Carlo sampling. Taking as input a (typically very large) multiple-sequence alignment, the sampler creates and optimizes a hierarchy by adding and deleting leaf nodes, by moving nodes and subtrees up and down the hierarchy, by inserting or deleting internal nodes, and by redefining the sequences and conserved patterns associated with each node. All such operations are based on a probability distribution that models the conserved and divergent patterns defining each subgroup. When we view these patterns as sequence determinants of protein function, each node or subtree in such a hierarchy corresponds to a subgroup of sequences with similar biological properties. The sampler can be applied either de novo or to an existing hierarchy. When applied to 60 protein domains from multiple starting points in this way, it converged on similar solutions with nearly identical log-likelihood ratio scores, suggesting that it typically finds the optimal peak in the posterior probability distribution. Similarities and differences between independently generated, nearly optimal hierarchies for a given domain help distinguish robust from statistically uncertain features. Thus, a future application of the sampler is to provide confidence measures for various features of a domain hierarchy. PMID:24494927
Bayesian optimal experimental design for priors of compact support
Long, Quan
2016-01-08
In this study, we optimize the experimental setup computationally by optimal experimental design (OED) in a Bayesian framework. We approximate the posterior probability density functions (pdf) using truncated Gaussian distributions in order to account for the bounded domain of the uniform prior pdf of the parameters. The underlying Gaussian distribution is obtained in the spirit of the Laplace method, more precisely, the mode is chosen as the maximum a posteriori (MAP) estimate, and the covariance is chosen as the negative inverse of the Hessian of the misfit function at the MAP estimate. The model related entities are obtained from a polynomial surrogate. The optimality, quantified by the information gain measures, can be estimated efficiently by a rejection sampling algorithm against the underlying Gaussian probability distribution, rather than against the true posterior. This approach offers a significant error reduction when the magnitude of the invariants of the posterior covariance are comparable to the size of the bounded domain of the prior. We demonstrate the accuracy and superior computational efficiency of our method for shock-tube experiments aiming to measure the model parameters of a key reaction which is part of the complex kinetic network describing the hydrocarbon oxidation. In the experiments, the initial temperature and fuel concentration are optimized with respect to the expected information gain in the estimation of the parameters of the target reaction rate. We show that the expected information gain surface can change its shape dramatically according to the level of noise introduced into the synthetic data. The information that can be extracted from the data saturates as a logarithmic function of the number of experiments, and few experiments are needed when they are conducted at the optimal experimental design conditions.
An analysis of the costs of treating schizophrenia in Spain: a hierarchical Bayesian approach.
Vázquez-Polo, Francisco-Jose; Negrín, Miguel; Cabasés, Juan M; Sánchez, Eduardo; Haro, Joseph M; Salvador-Carulla, Luis
2005-09-01
Health care decisions should incorporate cost of illness and treatment data, particularly for disorders such as schizophrenia with a high morbidity rate and a disproportionately low allocation of resources. Previous cost of illness analyses may have disregarded geographical aspects relevant for resource consumption and unit cost calculation. To compare the utilisation of resources and the care costs of schizophrenic patients in four mental-health districts in Spain (in Madrid, Catalonia, Navarra and Andalusia), and to analyse factors that determine the costs and the differences between areas. A treated prevalence bottom-up three year follow-up design was used for obtaining data concerning socio-demography, clinical evolution and the utilisation of services. 1997 reference prices were updated for years 1998-2000 in euros. We propose two different scenarios, varying in the prices applied. In the first (Scenario 0) the reference prices are those obtained for a single geographic area, and so the cost variations are only due to differences in the use of resources. In the second situation (Scenario 1), we analyse the variations in resource utilisation at different levels, using the prices applicable to each healthcare area. Bayesian hierarchical models are used to discuss the factors that determine such costs and the differences between geographic areas. In scenario 0, the estimated mean cost was 4918.948 euros for the first year. In scenario 1 the highest cost was in Gava (Catalonia) and the lowest in Loja (Andalusia). Mean costs were respectively 4547.24 and 2473.98 euros. With respect to the evolution of costs over time, we observed an increase during the second year and a reduction during the third year. Geographical differences appeared in follow-up costs. The variables related to lower treatment costs were: residence in the family household, higher patient age and being in work. On the contrary, the number of relapses is directly related to higher treatment costs
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki; Long, Quan; Scavino, Marco; Tempone, Raul
2015-01-01
Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki
2015-01-07
Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.
Finding the optimal Bayesian network given a constraint graph
Directory of Open Access Journals (Sweden)
Jacob M. Schreiber
2017-07-01
Full Text Available Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior knowledge, including global orderings, super-structures, and constraint rules. While super-structures and constraint rules are flexible in terms of what prior knowledge they can encode, they achieve savings in memory and computational time simply by avoiding considering invalid graphs. We introduce the concept of a “constraint graph” as an intuitive method for incorporating rich prior knowledge into the structure learning task. We describe how this graph can be used to reduce the memory cost and computational time required to find the optimal graph subject to the encoded constraints, beyond merely eliminating invalid graphs. In particular, we show that a constraint graph can break the structure learning task into independent subproblems even in the presence of cyclic prior knowledge. These subproblems are well suited to being solved in parallel on a single machine or distributed across many machines without excessive communication cost.
Kaplan, David; Lee, Chansoon
2018-01-01
This article provides a review of Bayesian model averaging as a means of optimizing the predictive performance of common statistical models applied to large-scale educational assessments. The Bayesian framework recognizes that in addition to parameter uncertainty, there is uncertainty in the choice of models themselves. A Bayesian approach to addressing the problem of model uncertainty is the method of Bayesian model averaging. Bayesian model averaging searches the space of possible models for a set of submodels that satisfy certain scientific principles and then averages the coefficients across these submodels weighted by each model's posterior model probability (PMP). Using the weighted coefficients for prediction has been shown to yield optimal predictive performance according to certain scoring rules. We demonstrate the utility of Bayesian model averaging for prediction in education research with three examples: Bayesian regression analysis, Bayesian logistic regression, and a recently developed approach for Bayesian structural equation modeling. In each case, the model-averaged estimates are shown to yield better prediction of the outcome of interest than any submodel based on predictive coverage and the log-score rule. Implications for the design of large-scale assessments when the goal is optimal prediction in a policy context are discussed.
Sparse Estimation Using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand; Manchón, Carles Navarro; Badiu, Mihai Alin
2015-01-01
In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued m......In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex...... error, and robustness in low and medium signal-to-noise ratio regimes....
Iterative optimization of performance libraries by hierarchical division of codes
International Nuclear Information System (INIS)
Donadio, S.
2007-09-01
The increasing complexity of hardware features incorporated in modern processors makes high performance code generation very challenging. Library generators such as ATLAS, FFTW and SPIRAL overcome this issue by empirically searching in the space of possible program versions for the one that performs the best. This thesis explores fully automatic solution to adapt a compute-intensive application to the target architecture. By mimicking complex sequences of transformations useful to optimize real codes, we show that generative programming is a practical tool to implement a new hierarchical compilation approach for the generation of high performance code relying on the use of state-of-the-art compilers. As opposed to ATLAS, this approach is not application-dependant but can be applied to fairly generic loop structures. Our approach relies on the decomposition of the original loop nest into simpler kernels. These kernels are much simpler to optimize and furthermore, using such codes makes the performance trade off problem much simpler to express and to solve. Finally, we propose a new approach for the generation of performance libraries based on this decomposition method. We show that our method generates high-performance libraries, in particular for BLAS. (author)
Large-Scale Optimization for Bayesian Inference in Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Willcox, Karen [MIT; Marzouk, Youssef [MIT
2013-11-12
The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to
Khazraee, S Hadi; Johnson, Valen; Lord, Dominique
2018-08-01
The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients
Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration
Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim
2015-04-01
In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.
Directory of Open Access Journals (Sweden)
W David Walter
Full Text Available Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include Eurasian badgers (Meles meles, brushtail possum (Trichosurus vulpecula, and white-tailed deer (Odocoileus virginianus. Risk-assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but research on M. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and surrounding habitats (i.e., soil type, habitat type. Bayesian hierarchical analyses identified deer prevalence and proportion of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovis identified that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial assessment of potential environmental factors that could be incorporated into additional modeling efforts as more knowledge of deer herd
Yu, Jiyang; Silva, Jose; Califano, Andrea
2016-01-15
Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives. Indeed, rigorous statistical analysis of high-throughput FG screening data remains challenging, particularly when integrative analyses are used to combine multiple sh/sgRNAs targeting the same gene in the library. We use large RNAi and CRISPR repositories that are publicly available to evaluate a novel meta-analysis approach for FG screens via Bayesian hierarchical modeling, Screening Bayesian Evaluation and Analysis Method (ScreenBEAM). Results from our analysis show that the proposed strategy, which seamlessly combines all available data, robustly outperforms classical algorithms developed for microarray data sets as well as recent approaches designed for next generation sequencing technologies. Remarkably, the ScreenBEAM algorithm works well even when the quality of FG screens is relatively low, which accounts for about 80-95% of the public datasets. R package and source code are available at: https://github.com/jyyu/ScreenBEAM. ac2248@columbia.edu, jose.silva@mssm.edu, yujiyang@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.
2014-10-01
Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.
Aksoy, Ozan; Weesie, Jeroen
2014-05-01
In this paper, using a within-subjects design, we estimate the utility weights that subjects attach to the outcome of their interaction partners in four decision situations: (1) binary Dictator Games (DG), second player's role in the sequential Prisoner's Dilemma (PD) after the first player (2) cooperated and (3) defected, and (4) first player's role in the sequential Prisoner's Dilemma game. We find that the average weights in these four decision situations have the following order: (1)>(2)>(4)>(3). Moreover, the average weight is positive in (1) but negative in (2), (3), and (4). Our findings indicate the existence of strong negative and small positive reciprocity for the average subject, but there is also high interpersonal variation in the weights in these four nodes. We conclude that the PD frame makes subjects more competitive than the DG frame. Using hierarchical Bayesian modeling, we simultaneously analyze beliefs of subjects about others' utility weights in the same four decision situations. We compare several alternative theoretical models on beliefs, e.g., rational beliefs (Bayesian-Nash equilibrium) and a consensus model. Our results on beliefs strongly support the consensus effect and refute rational beliefs: there is a strong relationship between own preferences and beliefs and this relationship is relatively stable across the four decision situations. Copyright © 2014 Elsevier Inc. All rights reserved.
Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604
Directory of Open Access Journals (Sweden)
Ram K Raghavan
Full Text Available This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.
Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.
2017-09-01
application of statistical inference. Even when human forecasters leverage their professional experience, which is often gained through long periods of... application throughout statistics and Bayesian data analysis. The multivariate form of 2( , ) (e.g., Figure 12) is similarly analytically...data (i.e., no systematic manipulations with analytical functions), it is common in the statistical literature to apply mathematical transformations
Malekmohammadi, Bahram; Tayebzadeh Moghadam, Negar
2018-04-13
Environmental risk assessment (ERA) is a commonly used, effective tool applied to reduce adverse effects of environmental risk factors. In this study, ERA was investigated using the Bayesian network (BN) model based on a hierarchical structure of variables in an influence diagram (ID). ID facilitated ranking of the different alternatives under uncertainty that were then used to evaluate comparisons of the different risk factors. BN was used to present a new model for ERA applicable to complicated development projects such as dam construction. The methodology was applied to the Gabric Dam, in southern Iran. The main environmental risk factors in the region, presented by the Gabric Dam, were identified based on the Delphi technique and specific features of the study area. These included the following: flood, water pollution, earthquake, changes in land use, erosion and sedimentation, effects on the population, and ecosensitivity. These risk factors were then categorized based on results from the output decision node of the BN, including expected utility values for risk factors in the decision node. ERA was performed for the Gabric Dam using the analytical hierarchy process (AHP) method to compare results of BN modeling with those of conventional methods. Results determined that a BN-based hierarchical structure to ERA present acceptable and reasonable risk assessment prioritization in proposing suitable solutions to reduce environmental risks and can be used as a powerful decision support system for evaluating environmental risks.
Fast Bayesian optimal experimental design for seismic source inversion
Long, Quan; Motamed, Mohammad; Tempone, Raul
2015-01-01
of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected
Directory of Open Access Journals (Sweden)
Thomas J Rodhouse
Full Text Available Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas] population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones" with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity--a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.
Global Optimization Employing Gaussian Process-Based Bayesian Surrogates
Directory of Open Access Journals (Sweden)
Roland Preuss
2018-03-01
Full Text Available The simulation of complex physics models may lead to enormous computer running times. Since the simulations are expensive it is necessary to exploit the computational budget in the best possible manner. If for a few input parameter settings an output data set has been acquired, one could be interested in taking these data as a basis for finding an extremum and possibly an input parameter set for further computer simulations to determine it—a task which belongs to the realm of global optimization. Within the Bayesian framework we utilize Gaussian processes for the creation of a surrogate model function adjusted self-consistently via hyperparameters to represent the data. Although the probability distribution of the hyperparameters may be widely spread over phase space, we make the assumption that only the use of their expectation values is sufficient. While this shortcut facilitates a quickly accessible surrogate, it is somewhat justified by the fact that we are not interested in a full representation of the model by the surrogate but to reveal its maximum. To accomplish this the surrogate is fed to a utility function whose extremum determines the new parameter set for the next data point to obtain. Moreover, we propose to alternate between two utility functions—expected improvement and maximum variance—in order to avoid the drawbacks of each. Subsequent data points are drawn from the model function until the procedure either remains in the points found or the surrogate model does not change with the iteration. The procedure is applied to mock data in one and two dimensions in order to demonstrate proof of principle of the proposed approach.
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Huang, Can
2018-01-01
–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki
2015-05-12
Experimental design can be vital when experiments are resource-exhaustive and time-consuming. In this work, we carry out experimental design in the Bayesian framework. To measure the amount of information that can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data about the model parameters. One of the major difficulties in evaluating the expected information gain is that it naturally involves nested integration over a possibly high dimensional domain. We use the Multilevel Monte Carlo (MLMC) method to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, MLMC can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the MLMC method imposes fewer assumptions, such as the asymptotic concentration of posterior measures, required for instance by the Laplace approximation (LA). We test the MLMC method using two numerical examples. The first example is the design of sensor deployment for a Darcy flow problem governed by a one-dimensional Poisson equation. We place the sensors in the locations where the pressure is measured, and we model the conductivity field as a piecewise constant random vector with two parameters. The second one is chemical Enhanced Oil Recovery (EOR) core flooding experiment assuming homogeneous permeability. We measure the cumulative oil recovery, from a horizontal core flooded by water, surfactant and polymer, for different injection rates. The model parameters consist of the endpoint relative permeabilities, the residual saturations and the relative permeability exponents for the three phases: water, oil and
Yasmirullah, Septia Devi Prihastuti; Iriawan, Nur; Sipayung, Feronika Rosalinda
2017-11-01
The success of regional economic establishment could be measured by economic growth. Since the Act No. 32 of 2004 has been implemented, unbalance economic among the regency in Indonesia is increasing. This condition is contrary different with the government goal to build society welfare through the economic activity development in each region. This research aims to examine economic growth through the distribution of bank credits to each Indonesia's regency. The data analyzed in this research is hierarchically structured data which follow normal distribution in first level. Two modeling approaches are employed in this research, a global-one level Bayesian approach and two-level hierarchical Bayesian approach. The result shows that hierarchical Bayesian has succeeded to demonstrate a better estimation than a global-one level Bayesian. It proves that the different economic growth in each province is significantly influenced by the variations of micro level characteristics in each province. These variations are significantly affected by cities and province characteristics in second level.
Wheeler, David C.; Hickson, DeMarc A.; Waller, Lance A.
2010-01-01
Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model fit and influence for both individual observations and groups of observations in a Bayesian framework. We use visualization of the local DIC and differences in local DIC between models to assist in model selection and to visualize the global and local impacts of adding covariates or model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993 using a range of linear model specifications, from global effects only to spatially varying coefficient models, and a set of covariates related to sexual behavior. Results of applying the diagnostic visualization approach include more refined model selection and greater understanding of the models as applied to the data. PMID:21243121
Lin, Yi-Shin; Heinke, Dietmar; Humphreys, Glyn W
2015-04-01
In this study, we applied Bayesian-based distributional analyses to examine the shapes of response time (RT) distributions in three visual search paradigms, which varied in task difficulty. In further analyses we investigated two common observations in visual search-the effects of display size and of variations in search efficiency across different task conditions-following a design that had been used in previous studies (Palmer, Horowitz, Torralba, & Wolfe, Journal of Experimental Psychology: Human Perception and Performance, 37, 58-71, 2011; Wolfe, Palmer, & Horowitz, Vision Research, 50, 1304-1311, 2010) in which parameters of the response distributions were measured. Our study showed that the distributional parameters in an experimental condition can be reliably estimated by moderate sample sizes when Monte Carlo simulation techniques are applied. More importantly, by analyzing trial RTs, we were able to extract paradigm-dependent shape changes in the RT distributions that could be accounted for by using the EZ2 diffusion model. The study showed that Bayesian-based RT distribution analyses can provide an important means to investigate the underlying cognitive processes in search, including stimulus grouping and the bottom-up guidance of attention.
Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model
International Nuclear Information System (INIS)
Ellefsen, Karl J.; Smith, David B.
2016-01-01
Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples. - Highlights: • We evaluate a clustering procedure by applying it to geochemical data. • The procedure generates a hierarchy of clusters. • Different levels of the hierarchy show geochemical processes at different spatial scales. • The clustering method is Bayesian finite mixture modeling. • Model parameters are estimated with Hamiltonian Monte Carlo sampling.
Energy Technology Data Exchange (ETDEWEB)
Nash, Stephen G.
2013-11-11
The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for
Tauber, Sean; Navarro, Daniel J; Perfors, Amy; Steyvers, Mark
2017-07-01
Recent debates in the psychological literature have raised questions about the assumptions that underpin Bayesian models of cognition and what inferences they license about human cognition. In this paper we revisit this topic, arguing that there are 2 qualitatively different ways in which a Bayesian model could be constructed. The most common approach uses a Bayesian model as a normative standard upon which to license a claim about optimality. In the alternative approach, a descriptive Bayesian model need not correspond to any claim that the underlying cognition is optimal or rational, and is used solely as a tool for instantiating a substantive psychological theory. We present 3 case studies in which these 2 perspectives lead to different computational models and license different conclusions about human cognition. We demonstrate how the descriptive Bayesian approach can be used to answer different sorts of questions than the optimal approach, especially when combined with principled tools for model evaluation and model selection. More generally we argue for the importance of making a clear distinction between the 2 perspectives. Considerable confusion results when descriptive models and optimal models are conflated, and if Bayesians are to avoid contributing to this confusion it is important to avoid making normative claims when none are intended. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hensman, James; Lawrence, Neil D; Rattray, Magnus
2013-08-20
Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.
An Evolutionary Approach for Optimizing Hierarchical Multi-Agent System Organization
Shen, Zhiqi; Yu, Ling; Yu, Han
2014-01-01
It has been widely recognized that the performance of a multi-agent system is highly affected by its organization. A large scale system may have billions of possible ways of organization, which makes it impractical to find an optimal choice of organization using exhaustive search methods. In this paper, we propose a genetic algorithm aided optimization scheme for designing hierarchical structures of multi-agent systems. We introduce a novel algorithm, called the hierarchical genetic algorithm...
Walter, W. David; Smith, Rick; Vanderklok, Mike; VerCauterren, Kurt C.
2014-01-01
Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include Eurasian badgers (Meles meles), brushtail possum (Trichosurus vulpecula), and white-tailed deer (Odocoileus virginianus). Risk-assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but research onM. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and surrounding habitats (i.e., soil type, habitat type). Bayesian hierarchical analyses identified deer prevalence and proportion of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovisidentified that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial assessment of potential environmental factors that could be incorporated into additional modeling efforts as more knowledge of deer herd
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.N.; Serra, P.; van Zanten, H.
2015-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. To motivate our results we start by analyzing count data coming from a call center which we model as a Poisson process. This analysis is carried out using a certain
A Bayesian look at the optimal track labelling problem
Aoki, E.H.; Boers, Y.; Svensson, L.; Mandal, Pranab K.; Bagchi, Arunabha
In multi-target tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature, but its exact mathematical formulation, in terms of Bayesian statistics, has not been yet looked at in detail. Doing so, however, may help us to understand how (and when)
Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization
Energy Technology Data Exchange (ETDEWEB)
Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp
2009-04-15
Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.
Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization
International Nuclear Information System (INIS)
Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji
2009-01-01
Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets
Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method
Zhang, Xiangnan
2018-03-01
A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.
Discrete and Continuous Optimization Based on Hierarchical Artificial Bee Colony Optimizer
Directory of Open Access Journals (Sweden)
Lianbo Ma
2014-01-01
Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC, to tackle complex high-dimensional problems. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operator is applied to enhance the global search ability between species. Experiments are conducted on a set of 20 continuous and discrete benchmark problems. The experimental results demonstrate remarkable performance of the HABC algorithm when compared with other six evolutionary algorithms.
Directory of Open Access Journals (Sweden)
Zhensheng Wang
2017-02-01
Full Text Available The spatial variation of geographical phenomena is a classical problem in spatial data analysis and can provide insight into underlying processes. Traditional exploratory methods mostly depend on the planar distance assumption, but many spatial phenomena are constrained to a subset of Euclidean space. In this study, we apply a method based on a hierarchical Bayesian model to analyse the spatial variation of network-constrained phenomena represented by a link attribute in conjunction with two experiments based on a simplified hypothetical network and a complex road network in Shenzhen that includes 4212 urban facility points of interest (POIs for leisure activities. Then, the methods named local indicators of network-constrained clusters (LINCS are applied to explore local spatial patterns in the given network space. The proposed method is designed for phenomena that are represented by attribute values of network links and is capable of removing part of random variability resulting from small-sample estimation. The effects of spatial dependence and the base distribution are also considered in the proposed method, which could be applied in the fields of urban planning and safety research.
Ishigami, Hideaki
2016-01-01
Relative age effect (RAE) in sports has been well documented. Recent studies investigate the effect of birthplace in addition to the RAE. The first objective of this study was to show the magnitude of the RAE in two major professional sports in Japan, baseball and soccer. Second, we examined the birthplace effect and compared its magnitude with that of the RAE. The effect sizes were estimated using a Bayesian hierarchical Poisson model with the number of players as dependent variable. The RAEs were 9.0% and 7.7% per month for soccer and baseball, respectively. These estimates imply that children born in the first month of a school year have about three times greater chance of becoming a professional player than those born in the last month of the year. Over half of the difference in likelihoods of becoming a professional player between birthplaces was accounted for by weather conditions, with the likelihood decreasing by 1% per snow day. An effect of population size was not detected in the data. By investigating different samples, we demonstrated that using quarterly data leads to underestimation and that the age range of sampled athletes should be set carefully.
Directory of Open Access Journals (Sweden)
Ali Reza Soltanian
2016-08-01
Full Text Available Background Adolescence is one of the most important periods in the course of human evolution and the prevalence of mental disorders among adolescence in different regions of Iran, especially in southern Iran. Objectives This study was conducted to determine the prevalence of mental disorders among high school students in Bushehr province, south of Iran. Methods In this cross-sectional study, 286 high school students were recruited by a multi-stage random sampling in Bushehr province in 2015. A general health questionnaire (GHQ-28 was used to assess mental disorders. The small area method, under the hierarchical Bayesian approach, was used to determine the prevalence of mental disorders and data analysis. Results From 286 questionnaires only 182 were completely filed and evaluated (the response rate was 70.5%. Of the students, 58.79% and 41.21% were male and female, respectively. Of all students, the prevalence of mental disorders in Bushehr, Dayyer, Deylam, Kangan, Dashtestan, Tangestan, Genaveh, and Dashty were 0.48, 0.42, 0.45, 0.52, 0.41, 0.47, 0.42, and 0.43, respectively. Conclusions Based on this study, the prevalence of mental disorders among adolescents was increasing in Bushehr Province counties. The lack of a national policy in this way is a serious obstacle to mental health and wellbeing access.
Bušs, Ginters
2009-01-01
Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag (ADL) model is chosen. The results show that a sharp economic slowdown changes the optimal prior in two directions. First, it changes the structure of the optimal weight prior, setting smaller weight on the lagged dependent variable compared to varia...
Directory of Open Access Journals (Sweden)
Kofjač Davorin
2015-08-01
Full Text Available Background and Purpose: In a complex strictly hierarchical organizational structure, undesired oscillations may occur, which have not yet been adequately addressed. Therefore, parameter values, which define fluctuations and transitions from one state to another, need to be optimized to prevent oscillations and to keep parameter values between lower and upper bounds. The objective was to develop a simulation model of hierarchical organizational structure as a web application to help in solving the aforementioned problem.
Optimal projection of observations in a Bayesian setting
Giraldi, Loic; Le Maî tre, Olivier P.; Hoteit, Ibrahim; Knio, Omar
2018-01-01
, and the one that maximizes the mutual information between the parameter of interest and the projected observations. The first two optimization problems are formulated as the determination of an optimal subspace and therefore the solution is computed using
Directory of Open Access Journals (Sweden)
Salvador Dura-Bernal
Full Text Available Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance. Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom
Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng
2017-06-01
Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Mario A Pardo
Full Text Available We inferred the population densities of blue whales (Balaenoptera musculus and short-beaked common dolphins (Delphinus delphis in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT. Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge. Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more
Burn, Robert W; Underwood, Fiona M; Blanc, Julian
2011-01-01
Elephant poaching and the ivory trade remain high on the agenda at meetings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Well-informed debates require robust estimates of trends, the spatial distribution of poaching, and drivers of poaching. We present an analysis of trends and drivers of an indicator of elephant poaching of all elephant species. The site-based monitoring system known as Monitoring the Illegal Killing of Elephants (MIKE), set up by the 10(th) Conference of the Parties of CITES in 1997, produces carcass encounter data reported mainly by anti-poaching patrols. Data analyzed were site by year totals of 6,337 carcasses from 66 sites in Africa and Asia from 2002-2009. Analysis of these observational data is a serious challenge to traditional statistical methods because of the opportunistic and non-random nature of patrols, and the heterogeneity across sites. Adopting a bayesian hierarchical modeling approach, we used the proportion of carcasses that were illegally killed (PIKE) as a poaching index, to estimate the trend and the effects of site- and country-level factors associated with poaching. Important drivers of illegal killing that emerged at country level were poor governance and low levels of human development, and at site level, forest cover and area of the site in regions where human population density is low. After a drop from 2002, PIKE remained fairly constant from 2003 until 2006, after which it increased until 2008. The results for 2009 indicate a decline. Sites with PIKE ranging from the lowest to the highest were identified. The results of the analysis provide a sound information base for scientific evidence-based decision making in the CITES process.
Directory of Open Access Journals (Sweden)
Robert W Burn
Full Text Available Elephant poaching and the ivory trade remain high on the agenda at meetings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES. Well-informed debates require robust estimates of trends, the spatial distribution of poaching, and drivers of poaching. We present an analysis of trends and drivers of an indicator of elephant poaching of all elephant species. The site-based monitoring system known as Monitoring the Illegal Killing of Elephants (MIKE, set up by the 10(th Conference of the Parties of CITES in 1997, produces carcass encounter data reported mainly by anti-poaching patrols. Data analyzed were site by year totals of 6,337 carcasses from 66 sites in Africa and Asia from 2002-2009. Analysis of these observational data is a serious challenge to traditional statistical methods because of the opportunistic and non-random nature of patrols, and the heterogeneity across sites. Adopting a bayesian hierarchical modeling approach, we used the proportion of carcasses that were illegally killed (PIKE as a poaching index, to estimate the trend and the effects of site- and country-level factors associated with poaching. Important drivers of illegal killing that emerged at country level were poor governance and low levels of human development, and at site level, forest cover and area of the site in regions where human population density is low. After a drop from 2002, PIKE remained fairly constant from 2003 until 2006, after which it increased until 2008. The results for 2009 indicate a decline. Sites with PIKE ranging from the lowest to the highest were identified. The results of the analysis provide a sound information base for scientific evidence-based decision making in the CITES process.
Directory of Open Access Journals (Sweden)
Jack Giovanini
Full Text Available As human demand for ecosystem products increases, management intervention may become more frequent after environmental disturbances. Evaluations of ecological responses to cumulative effects of management interventions and natural disturbances provide critical decision-support tools for managers who strive to balance environmental conservation and economic development. We conducted an experiment to evaluate the effects of salvage logging on avian community composition in lodgepole pine (Pinus contorta forests affected by beetle outbreaks in Oregon, USA, 1996-1998. Treatments consisted of the removal of lodgepole pine snags only, and live trees were not harvested. We used a bayesian hierarchical model to quantify occupancy dynamics for 27 breeding species, while accounting for variation in the detection process. We examined how magnitude and precision of treatment effects varied when incorporating prior information from a separate intervention study that occurred in a similar ecological system. Regardless of which prior we evaluated, we found no evidence that the harvest treatment had a negative impact on species richness, with an estimated average of 0.2-2.2 more species in harvested stands than unharvested stands. Estimated average similarity between control and treatment stands ranged from 0.82-0.87 (1 indicating complete similarity between a pair of stands and suggested that treatment stands did not contain novel assemblies of species responding to the harvesting prescription. Estimated treatment effects were positive for twenty-four (90% of the species, although the credible intervals contained 0 in all cases. These results suggest that, unlike most post-fire salvage logging prescriptions, selective harvesting after beetle outbreaks may meet multiple management objectives, including the maintenance of avian community richness comparable to what is found in unharvested stands. Our results provide managers with prescription alternatives to
Hierarchical models and iterative optimization of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)
2016-06-08
A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.
Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.
Patri, Jean-François; Diard, Julien; Perrier, Pascal
2015-12-01
The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.
Directory of Open Access Journals (Sweden)
Xia Lei
2010-12-01
Full Text Available General multi-objective optimization methods are hard to obtain prior information, how to utilize prior information has been a challenge. This paper analyzes the characteristics of Bayesian decision-making based on maximum entropy principle and prior information, especially in case that how to effectively improve decision-making reliability in deficiency of reference samples. The paper exhibits effectiveness of the proposed method using the real application of multi-frequency offset estimation in distributed multiple-input multiple-output system. The simulation results demonstrate Bayesian decision-making based on prior information has better global searching capability when sampling data is deficient.
Application of the Naive Bayesian Classifier to optimize treatment decisions
International Nuclear Information System (INIS)
Kazmierska, Joanna; Malicki, Julian
2008-01-01
Background and purpose: To study the accuracy, specificity and sensitivity of the Naive Bayesian Classifier (NBC) in the assessment of individual risk of cancer relapse or progression after radiotherapy (RT). Materials and methods: Data of 142 brain tumour patients irradiated from 2000 to 2005 were analyzed. Ninety-six attributes related to disease, patient and treatment were chosen. Attributes in binary form consisted of the training set for NBC learning. NBC calculated an individual conditional probability of being assigned to: relapse or progression (1), or no relapse or progression (0) group. Accuracy, attribute selection and quality of classifier were determined by comparison with actual treatment results, leave-one-out and cross validation methods, respectively. Clinical setting test utilized data of 35 patients. Treatment results at classification were unknown and were compared with classification results after 3 months. Results: High classification accuracy (84%), specificity (0.87) and sensitivity (0.80) were achieved, both for classifier training and in progressive clinical evaluation. Conclusions: NBC is a useful tool to support the assessment of individual risk of relapse or progression in patients diagnosed with brain tumour undergoing RT postoperatively
Simulation-based optimal Bayesian experimental design for nonlinear systems
Huan, Xun; Marzouk, Youssef M.
2013-01-01
The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical
Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing
2017-07-19
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.
Ensemble-based hierarchical multi-objective production optimization of smart wells
Fonseca, R.M.; Leeuwenburgh, O.; Hof, P.M.J. Van den; Jansen, J.D.
2014-01-01
In an earlier study, two hierarchical multiobjective methods were suggested to include short-term targets in life-cycle production optimization. However, this earlier study has two limitations: (1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access
Ensemble-based hierarchical multi-objective production optimization of smart wells
Fonseca, R.M.; Leeuwenburgh, O.; Van den Hof, P.M.J.; Jansen, J.D.
2014-01-01
In an earlier study two hierarchical multi-objective methods were suggested to include short-term targets in life-cycle production optimization. However this earlier study has two limitations: 1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access
Hierarchical approach to optimization of parallel matrix multiplication on large-scale platforms
Hasanov, Khalid; Quintin, Jean-Noë l; Lastovetsky, Alexey
2014-01-01
-scale parallelism in mind. Indeed, while in 1990s a system with few hundred cores was considered a powerful supercomputer, modern top supercomputers have millions of cores. In this paper, we present a hierarchical approach to optimization of message-passing parallel
Energy Technology Data Exchange (ETDEWEB)
Guais, J. C.
1975-09-01
The large scale system represented by a gaseous diffusion plant model, and its hierarchical mathematical structure are the reasons for a decomposition method, minimizing the total cost of enrichment. This procedure has been used for years in the optimization problems of the french projects.
International Nuclear Information System (INIS)
Guais, J.C.
1975-01-01
The large scale system represented by a gaseous diffusion plant model, and its hierarchical mathematical structure are the reasons for a decomposition method, minimizing the total cost of enrichment. This procedure has been used for years in the optimization problems of the french projects [fr
Applied Bayesian hierarchical methods
National Research Council Canada - National Science Library
Congdon, P
2010-01-01
... . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Posterior Inference from Bayes Formula . . . . . . . . . . . . 1.3 Markov Chain Monte Carlo Sampling in Relation to Monte Carlo Methods: Obtaining Posterior...
Applied Bayesian hierarchical methods
National Research Council Canada - National Science Library
Congdon, P
2010-01-01
.... It also incorporates BayesX code, which is particularly useful in nonlinear regression. To demonstrate MCMC sampling from first principles, the author includes worked examples using the R package...
BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints.
Zhou, Heng; Lee, J Jack; Yuan, Ying
2017-09-20
We propose a flexible Bayesian optimal phase II (BOP2) design that is capable of handling simple (e.g., binary) and complicated (e.g., ordinal, nested, and co-primary) endpoints under a unified framework. We use a Dirichlet-multinomial model to accommodate different types of endpoints. At each interim, the go/no-go decision is made by evaluating a set of posterior probabilities of the events of interest, which is optimized to maximize power or minimize the number of patients under the null hypothesis. Unlike other existing Bayesian designs, the BOP2 design explicitly controls the type I error rate, thereby bridging the gap between Bayesian designs and frequentist designs. In addition, the stopping boundary of the BOP2 design can be enumerated prior to the onset of the trial. These features make the BOP2 design accessible to a wide range of users and regulatory agencies and particularly easy to implement in practice. Simulation studies show that the BOP2 design has favorable operating characteristics with higher power and lower risk of incorrectly terminating the trial than some existing Bayesian phase II designs. The software to implement the BOP2 design is freely available at www.trialdesign.org. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Ghosh, Sujit K
2010-01-01
Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.
Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction
Directory of Open Access Journals (Sweden)
Jenessa Lancaster
2018-02-01
Full Text Available Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years we trained support vector machines to (i distinguish between young (<22 years and old (>50 years brains (classification and (ii predict chronological age (regression. We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years. Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm. For predicting chronological age, a mean absolute error (MAE of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm. This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian
Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong
2017-06-01
In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.
A reward optimization method based on action subrewards in hierarchical reinforcement learning.
Fu, Yuchen; Liu, Quan; Ling, Xionghong; Cui, Zhiming
2014-01-01
Reinforcement learning (RL) is one kind of interactive learning methods. Its main characteristics are "trial and error" and "related reward." A hierarchical reinforcement learning method based on action subrewards is proposed to solve the problem of "curse of dimensionality," which means that the states space will grow exponentially in the number of features and low convergence speed. The method can reduce state spaces greatly and choose actions with favorable purpose and efficiency so as to optimize reward function and enhance convergence speed. Apply it to the online learning in Tetris game, and the experiment result shows that the convergence speed of this algorithm can be enhanced evidently based on the new method which combines hierarchical reinforcement learning algorithm and action subrewards. The "curse of dimensionality" problem is also solved to a certain extent with hierarchical method. All the performance with different parameters is compared and analyzed as well.
International Nuclear Information System (INIS)
Wong, Ka In; Wong, Pak Kin
2017-01-01
Highlights: • A new calibration method is proposed for dual-injection engines under biofuel blends. • Sparse Bayesian extreme learning machine and flower pollination algorithm are employed in the proposed method. • An SI engine is retrofitted for operating under dual-injection strategy. • The proposed method is verified experimentally under the two idle speed conditions. • Comparison with other machine learning methods and optimization algorithms is conducted. - Abstract: Although many combinations of biofuel blends are available in the market, it is more beneficial to vary the ratio of biofuel blends at different engine operating conditions for optimal engine performance. Dual-injection engines have the potential to implement such function. However, while optimal engine calibration is critical for achieving high performance, the use of two injection systems, together with other modern engine technologies, leads the calibration of the dual-injection engines to a very complicated task. Traditional trial-and-error-based calibration approach can no longer be adopted as it would be time-, fuel- and labor-consuming. Therefore, a new and fast calibration method based on sparse Bayesian extreme learning machine (SBELM) and metaheuristic optimization is proposed to optimize the dual-injection engines operating with biofuels. A dual-injection spark-ignition engine fueled with ethanol and gasoline is employed for demonstration purpose. The engine response for various parameters is firstly acquired, and an engine model is then constructed using SBELM. With the engine model, the optimal engine settings are determined based on recently proposed metaheuristic optimization methods. Experimental results validate the optimal settings obtained with the proposed methodology, indicating that the use of machine learning and metaheuristic optimization for dual-injection engine calibration is effective and promising.
Zhang, Z.; Wang, Peng
2012-01-01
In this paper, we show that by varying the voltages during two-step anodization the morphology of the hierarchical top-layer/bottom-tube TiO 2 (TiO 2 NTs) can be finely tuned between nanoring/nanotube, nanopore/nanotube, and nanohole-nanocave/nanotube morphologies. This allows us to optimize the photoelectrochemical (PEC) water splitting performance on the hierarchical TiO 2 NTs. The optimized photocurrent density and photoconversion efficiency in this study, occurring on the nanopore/nanotube TiO 2 NTs, were 1.59 mA cm -2 at 1.23 V vs. RHE and 0.84% respectively, which are the highest values ever reported on pristine TiO 2 materials under illumination of AM 1.5G. Our findings contribute to further improvement of the energy conversion efficiency of TiO 2-based devices.
Zhang, Z.
2012-02-10
In this paper, we show that by varying the voltages during two-step anodization the morphology of the hierarchical top-layer/bottom-tube TiO 2 (TiO 2 NTs) can be finely tuned between nanoring/nanotube, nanopore/nanotube, and nanohole-nanocave/nanotube morphologies. This allows us to optimize the photoelectrochemical (PEC) water splitting performance on the hierarchical TiO 2 NTs. The optimized photocurrent density and photoconversion efficiency in this study, occurring on the nanopore/nanotube TiO 2 NTs, were 1.59 mA cm -2 at 1.23 V vs. RHE and 0.84% respectively, which are the highest values ever reported on pristine TiO 2 materials under illumination of AM 1.5G. Our findings contribute to further improvement of the energy conversion efficiency of TiO 2-based devices.
A Bayesian optimal design for degradation tests based on the inverse Gaussian process
Energy Technology Data Exchange (ETDEWEB)
Peng, Weiwen; Liu, Yu; Li, Yan Feng; Zhu, Shun Peng; Huang, Hong Zhong [University of Electronic Science and Technology of China, Chengdu (China)
2014-10-15
The inverse Gaussian process is recently introduced as an attractive and flexible stochastic process for degradation modeling. This process has been demonstrated as a valuable complement for models that are developed on the basis of the Wiener and gamma processes. We investigate the optimal design of the degradation tests on the basis of the inverse Gaussian process. In addition to an optimal design with pre-estimated planning values of model parameters, we also address the issue of uncertainty in the planning values by using the Bayesian method. An average pre-posterior variance of reliability is used as the optimization criterion. A trade-off between sample size and number of degradation observations is investigated in the degradation test planning. The effects of priors on the optimal designs and on the value of prior information are also investigated and quantified. The degradation test planning of a GaAs Laser device is performed to demonstrate the proposed method.
International Nuclear Information System (INIS)
Procaccia, H.; Cordier, R.; Muller, S.
1994-07-01
Statistical decision theory could be a alternative for the optimization of preventive maintenance periodicity. In effect, this theory concerns the situation in which a decision maker has to make a choice between a set of reasonable decisions, and where the loss associated to a given decision depends on a probabilistic risk, called state of nature. In the case of maintenance optimization, the decisions to be analyzed are different periodicities proposed by the experts, given the observed feedback experience, the states of nature are the associated failure probabilities, and the losses are the expectations of the induced cost of maintenance and of consequences of the failures. As failure probabilities concern rare events, at the ultimate state of RCM analysis (failure of sub-component), and as expected foreseeable behaviour of equipment has to be evaluated by experts, Bayesian approach is successfully used to compute states of nature. In Bayesian decision theory, a prior distribution for failure probabilities is modeled from expert knowledge, and is combined with few stochastic information provided by feedback experience, giving a posterior distribution of failure probabilities. The optimized decision is the decision that minimizes the expected loss over the posterior distribution. This methodology has been applied to inspection and maintenance optimization of cylinders of diesel generator engines of 900 MW nuclear plants. In these plants, auxiliary electric power is supplied by 2 redundant diesel generators which are tested every 2 weeks during about 1 hour. Until now, during yearly refueling of each plant, one endoscopic inspection of diesel cylinders is performed, and every 5 operating years, all cylinders are replaced. RCM has shown that cylinder failures could be critical. So Bayesian decision theory has been applied, taking into account expert opinions, and possibility of aging when maintenance periodicity is extended. (authors). 8 refs., 5 figs., 1 tab
International Nuclear Information System (INIS)
Zheng, Xiaoyu; Ishikawa, Jun; Sugiyama, Tomoyuki; Maryyama, Yu
2017-01-01
Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents
Energy Technology Data Exchange (ETDEWEB)
Zheng, Xiaoyu; Ishikawa, Jun; Sugiyama, Tomoyuki; Maryyama, Yu [Nuclear Safety Research Center, Japan Atomic Energy Agency, Ibaraki (Japan)
2017-03-15
Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.
International Nuclear Information System (INIS)
Yuan, Tao; Bae, Suk Joo; Zhu, Xiaoyan
2016-01-01
Motivated by the two-phase degradation phenomena observed in light displays (e.g., plasma display panels (PDPs), organic light emitting diodes (OLEDs)), this study proposes a new degradation-based burn-in testing plan for display products exhibiting two-phase degradation patterns. The primary focus of the burn-in test in this study is to eliminate the initial rapid degradation phase, while the major purpose of traditional burn-in tests is to detect and eliminate early failures from weak units. A hierarchical Bayesian bi-exponential model is used to capture two-phase degradation patterns of the burn-in population. Mission reliability and total cost are introduced as planning criteria. The proposed burn-in approach accounts for unit-to-unit variability within the burn-in population, and uncertainty concerning the model parameters, mainly in the hierarchical Bayesian framework. Available pre-burn-in data is conveniently incorporated into the burn-in decision-making procedure. A practical example of PDP degradation data is used to illustrate the proposed methodology. The proposed method is compared to other approaches such as the maximum likelihood method or the change-point regression. - Highlights: • We propose a degradation-based burn-in test for products with two-phase degradation. • Mission reliability and total cost are used as planning criteria. • The proposed burn-in approach is built within the hierarchical Bayesian framework. • A practical example was used to illustrate the proposed methodology.
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez
2015-01-01
This paper proposes a hierarchical control scheme which applies optimization method into DC microgrids in order to improve the system overall efficiency while considering the State-of-Charge (SoC) balancing at the same time. Primary droop controller, secondary voltage restoration controller...... and tertiary optimization tool formulate the complete hierarchical control system. Virtual resistances are taken as the decision variables for achieving the objective. simulation results are presented to verify the proposed approach....
Electricity Purchase Optimization Decision Based on Data Mining and Bayesian Game
Directory of Open Access Journals (Sweden)
Yajing Gao
2018-04-01
Full Text Available The openness of the electricity retail market results in the power retailers facing fierce competition in the market. This article aims to analyze the electricity purchase optimization decision-making of each power retailer with the background of the big data era. First, in order to guide the power retailer to make a purchase of electricity, this paper considers the users’ historical electricity consumption data and a comprehensive consideration of multiple factors, then uses the wavelet neural network (WNN model based on “meteorological similarity day (MSD” to forecast the user load demand. Second, in order to guide the quotation of the power retailer, this paper considers the multiple factors affecting the electricity price to cluster the sample set, and establishes a Genetic algorithm- back propagation (GA-BP neural network model based on fuzzy clustering (FC to predict the short-term market clearing price (MCP. Thirdly, based on Sealed-bid Auction (SA in game theory, a Bayesian Game Model (BGM of the power retailer’s bidding strategy is constructed, and the optimal bidding strategy is obtained by obtaining the Bayesian Nash Equilibrium (BNE under different probability distributions. Finally, a practical example is proposed to prove that the model and method can provide an effective reference for the decision-making optimization of the sales company.
Hierarchical approach to optimization of parallel matrix multiplication on large-scale platforms
Hasanov, Khalid
2014-03-04
© 2014, Springer Science+Business Media New York. Many state-of-the-art parallel algorithms, which are widely used in scientific applications executed on high-end computing systems, were designed in the twentieth century with relatively small-scale parallelism in mind. Indeed, while in 1990s a system with few hundred cores was considered a powerful supercomputer, modern top supercomputers have millions of cores. In this paper, we present a hierarchical approach to optimization of message-passing parallel algorithms for execution on large-scale distributed-memory systems. The idea is to reduce the communication cost by introducing hierarchy and hence more parallelism in the communication scheme. We apply this approach to SUMMA, the state-of-the-art parallel algorithm for matrix–matrix multiplication, and demonstrate both theoretically and experimentally that the modified Hierarchical SUMMA significantly improves the communication cost and the overall performance on large-scale platforms.
Kim, Daesang
2017-06-22
We developed a novel two-step hierarchical method for the Bayesian inference of the rate parameters of a target reaction from time-resolved concentration measurements in shock tubes. The method was applied to the calibration of the parameters of the reaction of hydroxyl with 2-methylfuran, which is studied experimentally via absorption measurements of the OH radical\\'s concentration following shock-heating. In the first step of the approach, each shock tube experiment is treated independently to infer the posterior distribution of the rate constant and error hyper-parameter that best explains the OH signal. In the second step, these posterior distributions are sampled to calibrate the parameters appearing in the Arrhenius reaction model for the rate constant. Furthermore, the second step is modified and repeated in order to explore alternative rate constant models and to assess the effect of uncertainties in the reflected shock\\'s temperature. Comparisons of the estimates obtained via the proposed methodology against the common least squares approach are presented. The relative merits of the novel Bayesian framework are highlighted, especially with respect to the opportunity to utilize the posterior distributions of the parameters in future uncertainty quantification studies.
Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah
2015-01-01
The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.
Hao, Haijing
2013-01-01
Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…
An improved hierarchical A * algorithm in the optimization of parking lots
Wang, Yong; Wu, Junjuan; Wang, Ying
2017-08-01
In the parking lot parking path optimization, the traditional evaluation index is the shortest distance as the best index and it does not consider the actual road conditions. Now, the introduction of a more practical evaluation index can not only simplify the hardware design of the boot system but also save the software overhead. Firstly, we establish the parking lot network graph RPCDV mathematical model and all nodes in the network is divided into two layers which were constructed using different evaluation function base on the improved hierarchical A * algorithm which improves the time optimal path search efficiency and search precision of the evaluation index. The final results show that for different sections of the program attribute parameter algorithm always faster the time to find the optimal path.
Directory of Open Access Journals (Sweden)
Thang Diep Thanh
2017-12-01
Full Text Available In environmental uncertainties, the power flow problem in islanded microgrid (MG becomes complex and non-trivial. The optimal power flow (OPL problem is described in this paper by using the energy balance between the power generation and load demand. The paper also presents the hierarchical control structure which consists of primary, secondary, tertiary, and emergency controls. Clearly, optimal power flow (OPL which implements a distributed tertiary control in hierarchical control. MG consists of diesel engine generator (DEG, wind turbine generator (WTG, and photovoltaic (PV power. In the control system considered, operation planning is realized based on profiles such that the MG, load, wind and photovoltaic power must be forecasted in short-period, meanwhile the dispatch source (i.e., DEG needs to be scheduled. The aim of the control problem is to find the dispatch output power by minimizing the total cost of energy that leads to the Hamilton-Jacobi-Bellman equation. Experimental results are presented, showing the effectiveness of optimal control such that the generation allows demand profile.
Location optimization of solar plants by an integrated hierarchical DEA PCA approach
International Nuclear Information System (INIS)
Azadeh, A.; Ghaderi, S.F.; Maghsoudi, A.
2008-01-01
Unique features of renewable energies such as solar energy has caused increasing demands for such resources. In order to use solar energy as a natural resource, environmental circumstances and geographical location related to solar intensity must be considered. Different factors may affect on the selection of a suitable location for solar plants. These factors must be considered concurrently for optimum location identification of solar plants. This article presents an integrated hierarchical approach for location of solar plants by data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT). Furthermore, an integrated hierarchical DEA approach incorporating the most relevant parameters of solar plants is introduced. Moreover, 2 multivariable methods namely, PCA and NT are used to validate the results of DEA model. The prescribed approach is tested for 25 different cities in Iran with 6 different regions within each city. This is the first study that considers an integrated hierarchical DEA approach for geographical location optimization of solar plants. Implementation of the proposed approach would enable the energy policy makers to select the best-possible location for construction of a solar power plant with lowest possible costs
Swinburne, Thomas D.; Perez, Danny
2018-05-01
A massively parallel method to build large transition rate matrices from temperature-accelerated molecular dynamics trajectories is presented. Bayesian Markov model analysis is used to estimate the expected residence time in the known state space, providing crucial uncertainty quantification for higher-scale simulation schemes such as kinetic Monte Carlo or cluster dynamics. The estimators are additionally used to optimize where exploration is performed and the degree of temperature acceleration on the fly, giving an autonomous, optimal procedure to explore the state space of complex systems. The method is tested against exactly solvable models and used to explore the dynamics of C15 interstitial defects in iron. Our uncertainty quantification scheme allows for accurate modeling of the evolution of these defects over timescales of several seconds.
Study on Optimization of I and C Architecture for Research Reactors Using Bayesian Networks
Energy Technology Data Exchange (ETDEWEB)
Rahman, Khaili Ur; Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of)
2013-07-01
The optimization in terms of redundancy of modules and components in Instrumentation and Control (I and C) architecture is based on cost and availability assuming regulatory requirements are satisfied. The motive of this study is to find an optimized I and C architecture, either in hybrid formation, fully digital or analog, with respect to system availability and relative cost of architecture. The cost of research reactors I and C systems is prone to have effect on marketing competitiveness. As a demonstrative example, the reactor protection system of research reactors is selected. The four cases with different architecture formation were developed with single and double redundancy of bi-stable modules, coincidence processor module, and safety or protection circuit actuation logic. The architecture configurations are transformed to reliability block diagram (RBD) based on logical operation and function of modules. A Bayesian Network (BN) model is constructed from RBD to assess availability. The cost estimation was proposed and reliability cost index RI was suggested.
Bayesian Optimization Under Mixed Constraints with A Slack-Variable Augmented Lagrangian
Energy Technology Data Exchange (ETDEWEB)
Picheny, Victor; Gramacy, Robert B.; Wild, Stefan M.; Le Digabel, Sebastien
2016-12-05
An augmented Lagrangian (AL) can convert a constrained optimization problem into a sequence of simpler (e.g., unconstrained) problems, which are then usually solved with local solvers. Recently, surrogate-based Bayesian optimization (BO) sub-solvers have been successfully deployed in the AL framework for a more global search in the presence of inequality constraints; however, a drawback was that expected improvement (EI) evaluations relied on Monte Carlo. Here we introduce an alternative slack variable AL, and show that in this formulation the EI may be evaluated with library routines. The slack variables furthermore facilitate equality as well as inequality constraints, and mixtures thereof. We show our new slack “ALBO” compares favorably to the original. Its superiority over conventional alternatives is reinforced on several mixed constraint examples.
Study on Optimization of I and C Architecture for Research Reactors Using Bayesian Networks
International Nuclear Information System (INIS)
Rahman, Khaili Ur; Shin, Jinsoo; Heo, Gyunyoung
2013-01-01
The optimization in terms of redundancy of modules and components in Instrumentation and Control (I and C) architecture is based on cost and availability assuming regulatory requirements are satisfied. The motive of this study is to find an optimized I and C architecture, either in hybrid formation, fully digital or analog, with respect to system availability and relative cost of architecture. The cost of research reactors I and C systems is prone to have effect on marketing competitiveness. As a demonstrative example, the reactor protection system of research reactors is selected. The four cases with different architecture formation were developed with single and double redundancy of bi-stable modules, coincidence processor module, and safety or protection circuit actuation logic. The architecture configurations are transformed to reliability block diagram (RBD) based on logical operation and function of modules. A Bayesian Network (BN) model is constructed from RBD to assess availability. The cost estimation was proposed and reliability cost index RI was suggested
Throwing out the Bayesian baby with the optimal bathwater: response to Endress (2013).
Frank, Michael C
2013-09-01
A recent probabilistic model unified findings on sequential generalization ("rule learning") via independently-motivated principles of generalization (Frank & Tenenbaum, 2011). Endress critiques this work, arguing that learners do not prefer more specific hypotheses (a central assumption of the model), that "common-sense psychology" provides an adequate explanation of rule learning, and that Bayesian models imply incorrect optimality claims but can be fit to any pattern of data. Endress's response raises useful points about the importance of mechanistic explanation, but the specific critiques of our work are not supported. More broadly, I argue that Endress undervalues the importance of formal models. Although probabilistic models must meet a high standard to be used as evidence for optimality claims, they nevertheless provide a powerful framework for describing cognition. Copyright © 2013 Elsevier B.V. All rights reserved.
Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design
Leube, P. C.; Geiges, A.; Nowak, W.
2012-02-01
Incorporating hydro(geo)logical data, such as head and tracer data, into stochastic models of (subsurface) flow and transport helps to reduce prediction uncertainty. Because of financial limitations for investigation campaigns, information needs toward modeling or prediction goals should be satisfied efficiently and rationally. Optimal design techniques find the best one among a set of investigation strategies. They optimize the expected impact of data on prediction confidence or related objectives prior to data collection. We introduce a new optimal design method, called PreDIA(gnosis) (Preposterior Data Impact Assessor). PreDIA derives the relevant probability distributions and measures of data utility within a fully Bayesian, generalized, flexible, and accurate framework. It extends the bootstrap filter (BF) and related frameworks to optimal design by marginalizing utility measures over the yet unknown data values. PreDIA is a strictly formal information-processing scheme free of linearizations. It works with arbitrary simulation tools, provides full flexibility concerning measurement types (linear, nonlinear, direct, indirect), allows for any desired task-driven formulations, and can account for various sources of uncertainty (e.g., heterogeneity, geostatistical assumptions, boundary conditions, measurement values, model structure uncertainty, a large class of model errors) via Bayesian geostatistics and model averaging. Existing methods fail to simultaneously provide these crucial advantages, which our method buys at relatively higher-computational costs. We demonstrate the applicability and advantages of PreDIA over conventional linearized methods in a synthetic example of subsurface transport. In the example, we show that informative data is often invisible for linearized methods that confuse zero correlation with statistical independence. Hence, PreDIA will often lead to substantially better sampling designs. Finally, we extend our example to specifically
A new software for deformation source optimization, the Bayesian Earthquake Analysis Tool (BEAT)
Vasyura-Bathke, H.; Dutta, R.; Jonsson, S.; Mai, P. M.
2017-12-01
Modern studies of crustal deformation and the related source estimation, including magmatic and tectonic sources, increasingly use non-linear optimization strategies to estimate geometric and/or kinematic source parameters and often consider both jointly, geodetic and seismic data. Bayesian inference is increasingly being used for estimating posterior distributions of deformation source model parameters, given measured/estimated/assumed data and model uncertainties. For instance, some studies consider uncertainties of a layered medium and propagate these into source parameter uncertainties, while others use informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed to efficiently explore the high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational burden of these methods is high and estimation codes are rarely made available along with the published results. Even if the codes are accessible, it is usually challenging to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in deformation source estimations, we undertook the effort of developing BEAT, a python package that comprises all the above-mentioned features in one single programing environment. The package builds on the pyrocko seismological toolbox (www.pyrocko.org), and uses the pymc3 module for Bayesian statistical model fitting. BEAT is an open-source package (https://github.com/hvasbath/beat), and we encourage and solicit contributions to the project. Here, we
International Nuclear Information System (INIS)
Boonchuay, Chanwit; Ongsakul, Weerakorn
2011-01-01
In this paper, an optimal risky bidding strategy for a generating company (GenCo) by self-organising hierarchical particle swarm optimisation with time-varying acceleration coefficients (SPSO-TVAC) is proposed. A significant risk index based on mean-standard deviation ratio (MSR) is maximised to provide the optimal bid prices and quantities. The Monte Carlo (MC) method is employed to simulate rivals' behaviour in competitive environment. Non-convex operating cost functions of thermal generating units and minimum up/down time constraints are taken into account. The proposed bidding strategy is implemented in a multi-hourly trading in a uniform price spot market and compared to other particle swarm optimisation (PSO). Test results indicate that the proposed SPSO-TVAC approach can provide a higher MSR than the other PSO methods. It is potentially applicable to risk management of profit variation of GenCo in spot market.
Ross, Cody T; Winterhalder, Bruce
2016-01-01
We conduct a revaluation of the Thornhill and Fincher research project on parasites using finely-resolved geographic data on parasite prevalence, individual-level sociocultural data, and multilevel Bayesian modeling. In contrast to the evolutionary psychological mechanisms linking parasites to human behavior and cultural characteristics proposed by Thornhill and Fincher, we offer an alternative hypothesis that structural racism and differential access to sanitation systems drive both variation in parasite prevalence and differential behaviors and cultural characteristics. We adopt a Bayesian framework to estimate parasite prevalence rates in 51 districts in eight Latin American countries using the disease status of 170,220 individuals tested for infection with the intestinal roundworm Ascaris lumbricoides (Hürlimann et al., []: PLoS Negl Trop Dis 5:e1404). We then use district-level estimates of parasite prevalence and individual-level social data from 5,558 individuals in the same 51 districts (Latinobarómetro, 2008) to assess claims of causal associations between parasite prevalence and sociocultural characteristics. We find, contrary to Thornhill and Fincher, that parasite prevalence is positively associated with preferences for democracy, negatively associated with preferences for collectivism, and not associated with violent crime rates or gender inequality. A positive association between parasite prevalence and religiosity, as in Fincher and Thornhill (: Behav Brain Sci 35:61-79), and a negative association between parasite prevalence and achieved education, as predicted by Eppig et al. (: Proc R S B: Biol Sci 277:3801-3808), become negative and unreliable when reasonable controls are included in the model. We find support for all predictions derived from our hypothesis linking structural racism to both parasite prevalence and cultural outcomes. We conclude that best practices in biocultural modeling require examining more than one hypothesis, retaining
A Hybrid Optimization Method for Solving Bayesian Inverse Problems under Uncertainty.
Directory of Open Access Journals (Sweden)
Kai Zhang
Full Text Available In this paper, we investigate the application of a new method, the Finite Difference and Stochastic Gradient (Hybrid method, for history matching in reservoir models. History matching is one of the processes of solving an inverse problem by calibrating reservoir models to dynamic behaviour of the reservoir in which an objective function is formulated based on a Bayesian approach for optimization. The goal of history matching is to identify the minimum value of an objective function that expresses the misfit between the predicted and measured data of a reservoir. To address the optimization problem, we present a novel application using a combination of the stochastic gradient and finite difference methods for solving inverse problems. The optimization is constrained by a linear equation that contains the reservoir parameters. We reformulate the reservoir model's parameters and dynamic data by operating the objective function, the approximate gradient of which can guarantee convergence. At each iteration step, we obtain the relatively 'important' elements of the gradient, which are subsequently substituted by the values from the Finite Difference method through comparing the magnitude of the components of the stochastic gradient, which forms a new gradient, and we subsequently iterate with the new gradient. Through the application of the Hybrid method, we efficiently and accurately optimize the objective function. We present a number numerical simulations in this paper that show that the method is accurate and computationally efficient.
Bayesian Spatial Design of Optimal Deep Tubewell Locations in Matlab, Bangladesh.
Warren, Joshua L; Perez-Heydrich, Carolina; Yunus, Mohammad
2013-09-01
We introduce a method for statistically identifying the optimal locations of deep tubewells (dtws) to be installed in Matlab, Bangladesh. Dtw installations serve to mitigate exposure to naturally occurring arsenic found at groundwater depths less than 200 meters, a serious environmental health threat for the population of Bangladesh. We introduce an objective function, which incorporates both arsenic level and nearest town population size, to identify optimal locations for dtw placement. Assuming complete knowledge of the arsenic surface, we then demonstrate how minimizing the objective function over a domain favors dtws placed in areas with high arsenic values and close to largely populated regions. Given only a partial realization of the arsenic surface over a domain, we use a Bayesian spatial statistical model to predict the full arsenic surface and estimate the optimal dtw locations. The uncertainty associated with these estimated locations is correctly characterized as well. The new method is applied to a dataset from a village in Matlab and the estimated optimal locations are analyzed along with their respective 95% credible regions.
Gerbino, Martina; Lattanzi, Massimiliano; Mena, Olga; Freese, Katherine
2017-12-01
We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass Mν and on the mass fractions fν,i =mi /Mν (where the index i = 1 , 2 , 3 indicates the three mass eigenstates) carried by each of the mass eigenstates mi, after marginalizing over the (unknown) neutrino mass ordering, either normal ordering (NH) or inverted ordering (IH). The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameterhtype, which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyperparameter itself. Current cosmic microwave background (CMB) measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO) measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4 : 3 from Planck temperature and large-scale polarization in combination with BAO (3 : 2 if small-scale polarization is also included). Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE) and BAO surveys (DESI) may determine the neutrino mass hierarchy at a high statistical
Directory of Open Access Journals (Sweden)
Yi Wang
2016-12-01
Full Text Available With the levels of confidence and system complexity, interval forecasts and entropy analysis can deliver more information than point forecasts. In this paper, we take receivers’ demands as our starting point, use the trade-off model between accuracy and informativeness as the criterion to construct the optimal confidence interval, derive the theoretical formula of the optimal confidence interval and propose a practical and efficient algorithm based on entropy theory and complexity theory. In order to improve the estimation precision of the error distribution, the point prediction errors are STRATIFIED according to prices and the complexity of the system; the corresponding prediction error samples are obtained by the prices stratification; and the error distributions are estimated by the kernel function method and the stability of the system. In a stable and orderly environment for price forecasting, we obtain point prediction error samples by the weighted local region and RBF (Radial basis function neural network methods, forecast the intervals of the soybean meal and non-GMO (Genetically Modified Organism soybean continuous futures closing prices and implement unconditional coverage, independence and conditional coverage tests for the simulation results. The empirical results are compared from various interval evaluation indicators, different levels of noise, several target confidence levels and different point prediction methods. The analysis shows that the optimal interval construction method is better than the equal probability method and the shortest interval method and has good anti-noise ability with the reduction of system entropy; the hierarchical estimation error method can obtain higher accuracy and better interval estimation than the non-hierarchical method in a stable system.
Bayesian methods for data analysis
Carlin, Bradley P.
2009-01-01
Approaches for statistical inference Introduction Motivating Vignettes Defining the Approaches The Bayes-Frequentist Controversy Some Basic Bayesian Models The Bayes approach Introduction Prior Distributions Bayesian Inference Hierarchical Modeling Model Assessment Nonparametric Methods Bayesian computation Introduction Asymptotic Methods Noniterative Monte Carlo Methods Markov Chain Monte Carlo Methods Model criticism and selection Bayesian Modeling Bayesian Robustness Model Assessment Bayes Factors via Marginal Density Estimation Bayes Factors
Kaufman, Jay S; MacLehose, Richard F; Torrone, Elizabeth A; Savitz, David A
2011-04-19
Previous research has documented heterogeneity in the effects of maternal education on adverse birth outcomes by nativity and Hispanic subgroup in the United States. In this article, we considered the risk of preterm birth (PTB) using 9 years of vital statistics birth data from New York City. We employed finer categorizations of exposure than used previously and estimated the risk dose-response across the range of education by nativity and ethnicity. Using Bayesian random effects logistic regression models with restricted quadratic spline terms for years of completed maternal education, we calculated and plotted the estimated posterior probabilities of PTB (gestational age education by ethnic and nativity subgroups adjusted for only maternal age, as well as with more extensive covariate adjustments. We then estimated the posterior risk difference between native and foreign born mothers by ethnicity over the continuous range of education exposures. The risk of PTB varied substantially by education, nativity and ethnicity. Native born groups showed higher absolute risk of PTB and declining risk associated with higher levels of education beyond about 10 years, as did foreign-born Puerto Ricans. For most other foreign born groups, however, risk of PTB was flatter across the education range. For Mexicans, Central Americans, Dominicans, South Americans and "Others", the protective effect of foreign birth diminished progressively across the educational range. Only for Puerto Ricans was there no nativity advantage for the foreign born, although small numbers of foreign born Cubans limited precision of estimates for that group. Using flexible Bayesian regression models with random effects allowed us to estimate absolute risks without strong modeling assumptions. Risk comparisons for any sub-groups at any exposure level were simple to calculate. Shrinkage of posterior estimates through the use of random effects allowed for finer categorization of exposures without
International Nuclear Information System (INIS)
Toman, Blaza; Nelson, Michael A.; Lippa, Katrice A.
2016-01-01
Chemical purity assessment using quantitative "1H-nuclear magnetic resonance spectroscopy is a method based on ratio references of mass and signal intensity of the analyte species to that of chemical standards of known purity. As such, it is an example of a calculation using a known measurement equation with multiple inputs. Though multiple samples are often analyzed during purity evaluations in order to assess measurement repeatability, the uncertainty evaluation must also account for contributions from inputs to the measurement equation. Furthermore, there may be other uncertainty components inherent in the experimental design, such as independent implementation of multiple calibration standards. As such, the uncertainty evaluation is not purely bottom up (based on the measurement equation) or top down (based on the experimental design), but inherently contains elements of both. This hybrid form of uncertainty analysis is readily implemented with Bayesian statistical analysis. In this article we describe this type of analysis in detail and illustrate it using data from an evaluation of chemical purity and its uncertainty for a folic acid material. (authors)
Faurby, Søren; Svenning, Jens-Christian
2015-03-01
Across large clades, two problems are generally encountered in the estimation of species-level phylogenies: (a) the number of taxa involved is generally so high that computation-intensive approaches cannot readily be utilized and (b) even for clades that have received intense study (e.g., mammals), attention has been centered on relatively few selected species, and most taxa must therefore be positioned on the basis of very limited genetic data. Here, we describe a new heuristic-hierarchical Bayesian approach and use it to construct a species-level phylogeny for all extant and late Quaternary extinct mammals. In this approach, species with large quantities of genetic data are placed nearly freely in the mammalian phylogeny according to these data, whereas the placement of species with lower quantities of data is performed with steadily stricter restrictions for decreasing data quantities. The advantages of the proposed method include (a) an improved ability to incorporate phylogenetic uncertainty in downstream analyses based on the resulting phylogeny, (b) a reduced potential for long-branch attraction or other types of errors that place low-data taxa far from their true position, while maintaining minimal restrictions for better-studied taxa, and (c) likely improved placement of low-data taxa due to the use of closer outgroups. Copyright © 2014 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Julie Vercelloni
Full Text Available Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.
Enhanced fuzzy-connective-based hierarchical aggregation network using particle swarm optimization
Wang, Fang-Fang; Su, Chao-Ton
2014-11-01
The fuzzy-connective-based aggregation network is similar to the human decision-making process. It is capable of aggregating and propagating degrees of satisfaction of a set of criteria in a hierarchical manner. Its interpreting ability and transparency make it especially desirable. To enhance its effectiveness and further applicability, a learning approach is successfully developed based on particle swarm optimization to determine the weights and parameters of the connectives in the network. By experimenting on eight datasets with different characteristics and conducting further statistical tests, it has been found to outperform the gradient- and genetic algorithm-based learning approaches proposed in the literature; furthermore, it is capable of generating more accurate estimates. The present approach retains the original benefits of fuzzy-connective-based aggregation networks and is widely applicable. The characteristics of the learning approaches are also discussed and summarized, providing better understanding of the similarities and differences among these three approaches.
Directory of Open Access Journals (Sweden)
M. Hekrdla
2011-01-01
Full Text Available We address the issue of the parametric performance of the Hierarchical-Decode-and-Forward (HDF strategy in a wireless 2-way relay channel. Promising HDF, representing the concept of wireless network coding, performs well with a pre-coding strategy that requires Channel State Information (CSI on the transceiver side. Assuming a practical case when CSI is available only on the receiver side and the channel conditions do not allow adaptive strategies, the parametrization causes significant HDF performance degradation for some modulation alphabets. Alphabets that are robust to the parametrization (denoted Uniformly Most Powerful (UMP have already been proposed restricting on the class of non-linear multi-dimensional frequency modulations. In this work, we focus on the general design of unrestricted UMP alphabets. We formulate an optimization problem which is solved by standard non-linear convex constrained optimization algorithms, particularly by Nelder-Mead global optimization search, which is further refined by the local interior-pointsmethod.
Directory of Open Access Journals (Sweden)
Devaraj Jayachandran
Full Text Available 6-Mercaptopurine (6-MP is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN through enzymatic reaction involving thiopurine methyltransferase (TPMT. Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP's widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient's ability to metabolize the drug instead of the traditional standard-dose-for-all approach.
Jayachandran, Devaraj; Laínez-Aguirre, José; Rundell, Ann; Vik, Terry; Hannemann, Robert; Reklaitis, Gintaras; Ramkrishna, Doraiswami
2015-01-01
6-Mercaptopurine (6-MP) is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN) through enzymatic reaction involving thiopurine methyltransferase (TPMT). Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP’s widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype) plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient’s ability to metabolize the drug instead of the traditional standard-dose-for-all approach. PMID:26226448
Davis, A. D.; Huan, X.; Heimbach, P.; Marzouk, Y.
2017-12-01
Borehole data are essential for calibrating ice sheet models. However, field expeditions for acquiring borehole data are often time-consuming, expensive, and dangerous. It is thus essential to plan the best sampling locations that maximize the value of data while minimizing costs and risks. We present an uncertainty quantification (UQ) workflow based on rigorous probability framework to achieve these objectives. First, we employ an optimal experimental design (OED) procedure to compute borehole locations that yield the highest expected information gain. We take into account practical considerations of location accessibility (e.g., proximity to research sites, terrain, and ice velocity may affect feasibility of drilling) and robustness (e.g., real-time constraints such as weather may force researchers to drill at sub-optimal locations near those originally planned), by incorporating a penalty reflecting accessibility as well as sensitivity to deviations from the optimal locations. Next, we extract vertical temperature profiles from these boreholes and formulate a Bayesian inverse problem to reconstruct past surface temperatures. Using a model of temperature advection/diffusion, the top boundary condition (corresponding to surface temperatures) is calibrated via efficient Markov chain Monte Carlo (MCMC). The overall procedure can then be iterated to choose new optimal borehole locations for the next expeditions.Through this work, we demonstrate powerful UQ methods for designing experiments, calibrating models, making predictions, and assessing sensitivity--all performed under an uncertain environment. We develop a theoretical framework as well as practical software within an intuitive workflow, and illustrate their usefulness for combining data and models for environmental and climate research.
Safety constraints applied to an adaptive Bayesian condition-based maintenance optimization model
International Nuclear Information System (INIS)
Flage, Roger; Coit, David W.; Luxhøj, James T.; Aven, Terje
2012-01-01
A model is described that determines an optimal inspection and maintenance scheme for a deteriorating unit with a stochastic degradation process with independent and stationary increments and for which the parameters are uncertain. This model and resulting maintenance plans offers some distinct benefits compared to prior research because the uncertainty of the degradation process is accommodated by a Bayesian approach and two new safety constraints have been applied to the problem: (1) with a given subjective probability (degree of belief), the limiting relative frequency of one or more failures during a fixed time interval is bounded; or (2) the subjective probability of one or more failures during a fixed time interval is bounded. In the model, the parameter(s) of a condition-based inspection scheduling function and a preventive replacement threshold are jointly optimized upon each replacement and inspection such as to minimize the expected long run cost per unit of time, but also considering one of the specified safety constraints. A numerical example is included to illustrate the effect of imposing each of the two different safety constraints.
Application of Bayesian statistical decision theory for a maintenance optimization problem
International Nuclear Information System (INIS)
Procaccia, H.; Cordier, R.; Muller, S.
1997-01-01
Reliability-centered maintenance (RCM) is a rational approach that can be used to identify the equipment of facilities that may turn out to be critical with respect to safety, to availability, or to maintenance costs. Is is dor these critical pieces of equipment alone that a corrective (one waits for a failure) or preventive (the type and frequency are specified) maintenance policy is established. But this approach has limitations: - when there is little operating feedback and it concerns rare events affecting a piece of equipment judged critical on a priori grounds (how is it possible, in this case, to decide whether or not it is critical, since there is conflict between the gravity of the potential failure and its frequency?); - when the aim is propose an optimal maintenance frequency for a critical piece of equipment - changing the maintenance frequency hitherto applied may cause a significant drift in the observed reliability of the equipment, an aspect not generally taken into account in the RCM approach. In these two situations, expert judgments can be combined with the available operating feedback (Bayesian approach) and the combination of risk of failure and economic consequences taken into account (statistical decision theory) to achieve a true optimization of maintenance policy choices. This paper presents an application on the maintenance of diesel generator component
Directory of Open Access Journals (Sweden)
Guiyang Xin
2015-09-01
Full Text Available This paper presents a novel hexapod robot, hereafter named PH-Robot, with three degrees of freedom (3-DOF parallel leg mechanisms based on the concept of an integrated limb mechanism (ILM for the integration of legged locomotion and arm manipulation. The kinematic model plays an important role in the parametric optimal design and motion planning of robots. However, models of parallel mechanisms are often difficult to obtain because of the implicit relationship between the motions of actuated joints and the motion of a moving platform. In order to derive the kinematic equations of the proposed hexapod robot, an extended hierarchical kinematic modelling method is proposed. According to the kinematic model, the geometrical parameters of the leg are optimized utilizing a comprehensive objective function that considers both dexterity and payload. PH-Robot has distinct advantages in accuracy and load ability over a robot with serial leg mechanisms through the former's comparison of performance indices. The reachable workspace of the leg verifies its ability to walk and manipulate. The results of the trajectory tracking experiment demonstrate the correctness of the kinematic model of the hexapod robot.
Directory of Open Access Journals (Sweden)
Martina Gerbino
2017-12-01
Full Text Available We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass MÎ½ and on the mass fractions fÎ½,i=mi/MÎ½ (where the index i=1,2,3 indicates the three mass eigenstates carried by each of the mass eigenstates mi, after marginalizing over the (unknown neutrino mass ordering, either normal ordering (NH or inverted ordering (IH. The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameter htype, which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyperparameter itself. Current cosmic microwave background (CMB measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4:3 from Planck temperature and large-scale polarization in combination with BAO (3:2 if small-scale polarization is also included. Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE and BAO surveys (DESI may determine the neutrino mass hierarchy at a high
Swallow, Ben; Buckland, Stephen T; King, Ruth; Toms, Mike P
2016-03-01
The development of methods for dealing with continuous data with a spike at zero has lagged behind those for overdispersed or zero-inflated count data. We consider longitudinal ecological data corresponding to an annual average of 26 weekly maximum counts of birds, and are hence effectively continuous, bounded below by zero but also with a discrete mass at zero. We develop a Bayesian hierarchical Tweedie regression model that can directly accommodate the excess number of zeros common to this type of data, whilst accounting for both spatial and temporal correlation. Implementation of the model is conducted in a Markov chain Monte Carlo (MCMC) framework, using reversible jump MCMC to explore uncertainty across both parameter and model spaces. This regression modelling framework is very flexible and removes the need to make strong assumptions about mean-variance relationships a priori. It can also directly account for the spike at zero, whilst being easily applicable to other types of data and other model formulations. Whilst a correlative study such as this cannot prove causation, our results suggest that an increase in an avian predator may have led to an overall decrease in the number of one of its prey species visiting garden feeding stations in the United Kingdom. This may reflect a change in behaviour of house sparrows to avoid feeding stations frequented by sparrowhawks, or a reduction in house sparrow population size as a result of sparrowhawk increase. © 2015 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Robust Bayesian Approach to an Optimal Replacement Policy for Gas Pipelines
Directory of Open Access Journals (Sweden)
José Pablo Arias-Nicolás
2015-06-01
Full Text Available In the paper, we address Bayesian sensitivity issues when integrating experts’ judgments with available historical data in a case study about strategies for the preventive maintenance of low-pressure cast iron pipelines in an urban gas distribution network. We are interested in replacement priorities, as determined by the failure rates of pipelines deployed under different conditions. We relax the assumptions, made in previous papers, about the prior distributions on the failure rates and study changes in replacement priorities under different choices of generalized moment-constrained classes of priors. We focus on the set of non-dominated actions, and among them, we propose the least sensitive action as the optimal choice to rank different classes of pipelines, providing a sound approach to the sensitivity problem. Moreover, we are also interested in determining which classes have a failure rate exceeding a given acceptable value, considered as the threshold determining no need for replacement. Graphical tools are introduced to help decisionmakers to determine if pipelines are to be replaced and the corresponding priorities.
Zeng, Xueqiang; Luo, Gang
2017-12-01
Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.
Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.
2018-05-01
The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.
The use of hierarchical clustering for the design of optimized monitoring networks
Soares, Joana; Makar, Paul Andrew; Aklilu, Yayne; Akingunola, Ayodeji
2018-05-01
Associativity analysis is a powerful tool to deal with large-scale datasets by clustering the data on the basis of (dis)similarity and can be used to assess the efficacy and design of air quality monitoring networks. We describe here our use of Kolmogorov-Zurbenko filtering and hierarchical clustering of NO2 and SO2 passive and continuous monitoring data to analyse and optimize air quality networks for these species in the province of Alberta, Canada. The methodology applied in this study assesses dissimilarity between monitoring station time series based on two metrics: 1 - R, R being the Pearson correlation coefficient, and the Euclidean distance; we find that both should be used in evaluating monitoring site similarity. We have combined the analytic power of hierarchical clustering with the spatial information provided by deterministic air quality model results, using the gridded time series of model output as potential station locations, as a proxy for assessing monitoring network design and for network optimization. We demonstrate that clustering results depend on the air contaminant analysed, reflecting the difference in the respective emission sources of SO2 and NO2 in the region under study. Our work shows that much of the signal identifying the sources of NO2 and SO2 emissions resides in shorter timescales (hourly to daily) due to short-term variation of concentrations and that longer-term averages in data collection may lose the information needed to identify local sources. However, the methodology identifies stations mainly influenced by seasonality, if larger timescales (weekly to monthly) are considered. We have performed the first dissimilarity analysis based on gridded air quality model output and have shown that the methodology is capable of generating maps of subregions within which a single station will represent the entire subregion, to a given level of dissimilarity. We have also shown that our approach is capable of identifying different
Vargas-Hernandez, Rodrigo A.; v Krems, Roman
2017-04-01
We examine the application of kernel methods of machine learning for constructing potential energy surfaces (PES) of polyatomic molecules. In particular, we illustrate the application of Bayesian optimization with Gaussian processes as an efficient method for sampling the configuration space of polyatomic molecules. Bayesian optimization relies on two key components: a prior over an objective function and a mechanism for sampling the configuration space. We use Gaussian processes to model the objective function and various acquisition functions commonly used in computer science to quantify the accuracy of sampling. The PES is obtained through an iterative process of adding ab initio points at the locations maximizing the acquisition function and re-trainig the Gaussian process with new points added. We sample different PESs with one or many acquisition functions and show how the acquisition functions affect the construction of the PESs.
Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Ghattas, Omar [The University of Texas at Austin
2013-10-15
The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUARO Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.
Directory of Open Access Journals (Sweden)
Salah Bouktif
Full Text Available Prediction and classification techniques have been well studied by machine learning researchers and developed for several real-word problems. However, the level of acceptance and success of prediction models are still below expectation due to some difficulties such as the low performance of prediction models when they are applied in different environments. Such a problem has been addressed by many researchers, mainly from the machine learning community. A second problem, principally raised by model users in different communities, such as managers, economists, engineers, biologists, and medical practitioners, etc., is the prediction models' interpretability. The latter is the ability of a model to explain its predictions and exhibit the causality relationships between the inputs and the outputs. In the case of classification, a successful way to alleviate the low performance is to use ensemble classiers. It is an intuitive strategy to activate collaboration between different classifiers towards a better performance than individual classier. Unfortunately, ensemble classifiers method do not take into account the interpretability of the final classification outcome. It even worsens the original interpretability of the individual classifiers. In this paper we propose a novel implementation of classifiers combination approach that does not only promote the overall performance but also preserves the interpretability of the resulting model. We propose a solution based on Ant Colony Optimization and tailored for the case of Bayesian classifiers. We validate our proposed solution with case studies from medical domain namely, heart disease and Cardiotography-based predictions, problems where interpretability is critical to make appropriate clinical decisions.The datasets, Prediction Models and software tool together with supplementary materials are available at http://faculty.uaeu.ac.ae/salahb/ACO4BC.htm.
Directory of Open Access Journals (Sweden)
R. Latha
Full Text Available Nowadays, Wireless Body Area Network (WBAN is emerging very fast and so many new methods and algorithms are coming up for finding the optimal path for disseminating emergency messages. Ant Colony Optimization (ACO is one of the cultural algorithms for solving many hard problems such as Travelling Salesman Problem (TSP. ACO is a natural behaviour of ants, which work stochastically with the help of pheromone trails deposited in the shortest route to find their food. This optimization procedure involves adapting, positive feedback and inherent parallelism. Each ant will deposit certain amount of pheromone in the tour construction it makes searching for food. This type of communication is known as stigmetric communication. In addition, if a dense WBAN environment prevails, such as hospital, i.e. in the environment of overlapping WBAN, game formulation was introduced for analyzing the mixed strategy behaviour of WBAN. In this paper, the ant colony optimization approach to the travelling salesman problem was applied to the WBAN to determine the shortest route for sending emergency message to the doctor via sensor nodes; and also a static Bayesian game formulation with mixed strategy was analysed to enhance the network lifetime. Whenever the patient needs any critical care or any other medical issue arises, emergency messages will be created by the WBAN and sent to the doctor's destination. All the modes of communication were realized in a simulation environment using OMNet++. The authors investigated a balanced model of emergency message dissemination and network lifetime in WBAN using ACO and Bayesian game formulation. Keywords: Wireless body area network, Ant colony optimization, Bayesian game model, Sensor network, Message latency, Network lifetime
Giacoppo, Daniele; Gargiulo, Giuseppe; Aruta, Patrizia; Capranzano, Piera; Tamburino, Corrado
2015-01-01
Study question What is the most safe and effective interventional treatment for coronary in-stent restenosis? Methods In a hierarchical Bayesian network meta-analysis, PubMed, Embase, Scopus, Cochrane Library, Web of Science, ScienceDirect, and major scientific websites were screened up to 10 August 2015. Randomised controlled trials of patients with any type of coronary in-stent restenosis (either of bare metal stents or drug eluting stents; and either first or recurrent instances) were included. Trials including multiple treatments at the same time in the same group or comparing variants of the same intervention were excluded. Primary endpoints were target lesion revascularisation and late lumen loss, both at six to 12 months. The main analysis was complemented by network subanalyses, standard pairwise comparisons, and subgroup and sensitivity analyses. Study answer and limitations Twenty four trials (4880 patients), including seven interventional treatments, were identified. Compared with plain balloons, bare metal stents, brachytherapy, rotational atherectomy, and cutting balloons, drug coated balloons and drug eluting stents were associated with a reduced risk of target lesion revascularisation and major adverse cardiac events, and with reduced late lumen loss. Treatment ranking indicated that drug eluting stents had the highest probability (61.4%) of being the most effective for target lesion vascularisation; drug coated balloons were similarly indicated as the most effective treatment for late lumen loss (probability 70.3%). The comparative efficacy of drug coated balloons and drug eluting stents was similar for target lesion revascularisation (summary odds ratio 1.10, 95% credible interval 0.59 to 2.01) and late lumen loss reduction (mean difference in minimum lumen diameter 0.04 mm, 95% credible interval −0.20 to 0.10). Risks of death, myocardial infarction, and stent thrombosis were comparable across all treatments, but these analyses were limited by a
Directory of Open Access Journals (Sweden)
Jonathan Bearak, PhD
2018-04-01
Full Text Available Summary: Background: Estimates of pregnancy incidence by intention status and outcome indicate how effectively women and couples are able to fulfil their childbearing aspirations, and can be used to monitor the impact of family-planning programmes. We estimate global, regional, and subregional pregnancy rates by intention status and outcome for 1990–2014. Methods: We developed a Bayesian hierarchical time series model whereby the unintended pregnancy rate is a function of the distribution of women across subgroups defined by marital status and contraceptive need and use, and of the risk of unintended pregnancy in each subgroup. Data included numbers of births and of women estimated by the UN Population Division, recently published abortion incidence estimates, and findings from surveys of women on the percentage of births or pregnancies that were unintended. Some 298 datapoints on the intention status of births or pregnancies were obtained for 105 countries. Findings: Worldwide, an estimated 44% (90% uncertainty interval [UI] 42–48 of pregnancies were unintended in 2010–14. The unintended pregnancy rate declined by 30% (90% UI 21–39 in developed regions, from 64 (59–81 per 1000 women aged 15–44 years in 1990–94 to 45 (42–56 in 2010–14. In developing regions, the unintended pregnancy rate fell 16% (90% UI 5–24, from 77 (74–88 per 1000 women aged 15–44 years to 65 (62–76. Whereas the decline in the unintended pregnancy rate in developed regions coincided with a declining abortion rate, the decline in developing regions coincided with a declining unintended birth rate. In 2010–14, 59% (90% UI 54–65 of unintended pregnancies ended in abortion in developed regions, as did 55% (52–60 of unintended pregnancies in developing regions. Interpretation: The unintended pregnancy rate remains substantially higher in developing regions than in developed regions. Sexual and reproductive health services are needed to help women
Directory of Open Access Journals (Sweden)
Maowei He
2014-01-01
Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC, for multilevel threshold image segmentation, which employs a pool of optimal foraging strategies to extend the classical artificial bee colony framework to a cooperative and hierarchical fashion. In the proposed hierarchical model, the higher-level species incorporates the enhanced information exchange mechanism based on crossover operator to enhance the global search ability between species. In the bottom level, with the divide-and-conquer approach, each subpopulation runs the original ABC method in parallel to part-dimensional optimum, which can be aggregated into a complete solution for the upper level. The experimental results for comparing HABC with several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm. Furthermore, we applied the HABC to the multilevel image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the performance superiority of the proposed algorithm.
Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J
2017-06-01
In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision
Directory of Open Access Journals (Sweden)
Marco Scutari
2017-03-01
Full Text Available It is well known in the literature that the problem of learning the structure of Bayesian networks is very hard to tackle: Its computational complexity is super-exponential in the number of nodes in the worst case and polynomial in most real-world scenarios. Efficient implementations of score-based structure learning benefit from past and current research in optimization theory, which can be adapted to the task by using the network score as the objective function to maximize. This is not true for approaches based on conditional independence tests, called constraint-based learning algorithms. The only optimization in widespread use, backtracking, leverages the symmetries implied by the definitions of neighborhood and Markov blanket. In this paper we illustrate how backtracking is implemented in recent versions of the bnlearn R package, and how it degrades the stability of Bayesian network structure learning for little gain in terms of speed. As an alternative, we describe a software architecture and framework that can be used to parallelize constraint-based structure learning algorithms (also implemented in bnlearn and we demonstrate its performance using four reference networks and two real-world data sets from genetics and systems biology. We show that on modern multi-core or multiprocessor hardware parallel implementations are preferable over backtracking, which was developed when single-processor machines were the norm.
Forecasting the 2012 and 2014 Elections Using Bayesian Prediction and Optimization
Directory of Open Access Journals (Sweden)
Steven E. Rigdon
2015-04-01
Full Text Available This article presents a data-driven Bayesian model used to predict the state-by-state winners in the Senate and presidential elections in 2012 and 2014. The Bayesian model takes into account the proportions of polled subjects who favor each candidate and the proportion who are undecided, and produces a posterior probability that each candidate will win each state. From this, a dynamic programming algorithm is used to compute the probability mass functions for the number of electoral votes that each presidential candidate receives and the number of Senate seats that each party receives. On the final day before the 2012 election, the model gave a probability of (essentially one that President Obama would be reelected, and that the Democrats would retain control of the U.S. Senate. In 2014, the model gave a final probability of .99 that the Republicans would take control of the Senate.
Optimization of Bayesian Emission tomographic reconstruction for region of interest quantitation
International Nuclear Information System (INIS)
Qi, Jinyi
2003-01-01
Region of interest (ROI) quantitation is an important task in emission tomography (e.g., positron emission tomography and single photon emission computed tomography). It is essential for exploring clinical factors such as tumor activity, growth rate, and the efficacy of therapeutic interventions. Bayesian methods based on the maximum a posteriori principle (or called penalized maximum likelihood methods) have been developed for emission image reconstructions to deal with the low signal to noise ratio of the emission data. Similar to the filter cut-off frequency in the filtered backprojection method, the smoothing parameter of the image prior in Bayesian reconstruction controls the resolution and noise trade-off and hence affects ROI quantitation. In this paper we present an approach for choosing the optimum smoothing parameter in Bayesian reconstruction for ROI quantitation. Bayesian reconstructions are difficult to analyze because the resolution and noise properties are nonlinear and object-dependent. Building on the recent progress on deriving the approximate expressions for the local impulse response function and the covariance matrix, we derived simplied theoretical expressions for the bias, the variance, and the ensemble mean squared error (EMSE) of the ROI quantitation. One problem in evaluating ROI quantitation is that the truth is often required for calculating the bias. This is overcome by using ensemble distribution of the activity inside the ROI and computing the average EMSE. The resulting expressions allow fast evaluation of the image quality for different smoothing parameters. The optimum smoothing parameter of the image prior can then be selected to minimize the EMSE
Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao
2015-11-01
Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.
International Nuclear Information System (INIS)
Orozco-Monteagudo, Maykel; Taboada-Crispi, Alberto; Gutierrez-Hernandez, Liliana
2008-01-01
This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.
Kaiser, Marcus; Hilgetag, Claus C.
2010-01-01
An essential requirement for the representation of functional patterns in complex neural networks, such as the mammalian cerebral cortex, is the existence of stable regimes of network activation, typically arising from a limited parameter range. In this range of limited sustained activity (LSA), the activity of neural populations in the network persists between the extremes of either quickly dying out or activating the whole network. Hierarchical modular networks were previously found to show...
Mehrian, Mohammad; Guyot, Yann; Papantoniou, Ioannis; Olofsson, Simon; Sonnaert, Maarten; Misener, Ruth; Geris, Liesbet
2018-03-01
In regenerative medicine, computer models describing bioreactor processes can assist in designing optimal process conditions leading to robust and economically viable products. In this study, we started from a (3D) mechanistic model describing the growth of neotissue, comprised of cells, and extracellular matrix, in a perfusion bioreactor set-up influenced by the scaffold geometry, flow-induced shear stress, and a number of metabolic factors. Subsequently, we applied model reduction by reformulating the problem from a set of partial differential equations into a set of ordinary differential equations. Comparing the reduced model results to the mechanistic model results and to dedicated experimental results assesses the reduction step quality. The obtained homogenized model is 10 5 fold faster than the 3D version, allowing the application of rigorous optimization techniques. Bayesian optimization was applied to find the medium refreshment regime in terms of frequency and percentage of medium replaced that would maximize neotissue growth kinetics during 21 days of culture. The simulation results indicated that maximum neotissue growth will occur for a high frequency and medium replacement percentage, a finding that is corroborated by reports in the literature. This study demonstrates an in silico strategy for bioprocess optimization paying particular attention to the reduction of the associated computational cost. © 2017 Wiley Periodicals, Inc.
Improved Bayesian optimization algorithm with fast convergence%一种快速收敛的改进贝叶斯优化算法
Institute of Scientific and Technical Information of China (English)
王翔; 郑建国; 张超群; 刘荣辉
2011-01-01
针对贝叶斯优化算法(BOA)中学习贝叶斯网络结构时间复杂度较高的问题,提出了一种可以快速收敛的基于K2的贝叶斯优化算法(K2-BOA).为了提升收敛速度,在学习贝叶斯网络结构的步骤中进行了2处改进:首先,随机生成n个变量的拓扑排序,加大了算法的随机性;其次,在排序的基础上利用K2算法学习贝叶斯网络结构,减少了整个算法的时问复杂度.针对3个标准Benchmark函数的仿真实验表明:采用K2-BOA算法和BOA算法解决简单分解函数问题时,寻找到最优值的适应度函数评价次数几乎相同,但是每次迭代K2-BOA算法运行速度提升明显;当解决比较复杂的6阶双极欺骗函数问题时,K2-BOA算法无论是运行时间还是适应度函数评价次数,都远小于BOA算法.%K2-Bayesian optimization algorithm (BOA) with fast convergence was proposed to enhance the convergence rate figuring out the problem that the time complexity of learning Bayesian networks was high in the Bayesian optimization algorithm. There were two improvements in learning Bayesian network of the new algorithm: the topological sort of n variables was randomly generated for increasing the randomness of the algorithm, and on the basis of the sort K2 algorithm was used to learn Bayesian network structure to reduce the time complexity of the new algorithm. The simulation results for three benchmark functions show two conclusions. Firstly, when 3-deceptive function and trap-5 function are solved, the number of fitness function evaluation of K2-Bayesian optimization algorithm is almost the same as that of Bayesian optimization algorithm; however the running time of K2-Bayesian optimization algorithm is less than that of Bayesian optimization algorithm. Secondly, when 6-bipolar function is solved, the number of fitness function evaluation and the running time of K2-Bayesian optimization algorithm are much better than those of Bayesian optimization algorithm.
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.
Lehikoinen, Annukka; Luoma, Emilia; Mäntyniemi, Samu; Kuikka, Sakari
2013-02-19
Oil transport has greatly increased in the Gulf of Finland over the years, and risks of an oil accident occurring have risen. Thus, an effective oil combating strategy is needed. We developed a Bayesian Network (BN) to examine the recovery efficiency and optimal disposition of the Finnish oil combating vessels in the Gulf of Finland (GoF), Eastern Baltic Sea. Four alternative home harbors, five accident points, and ten oil combating vessels were included in the model to find the optimal disposition policy that would maximize the recovery efficiency. With this composition, the placement of the oil combating vessels seems not to have a significant effect on the recovery efficiency. The process seems to be strongly controlled by certain random factors independent of human action, e.g. wave height and stranding time of the oil. Therefore, the success of oil combating is rather uncertain, so it is also important to develop activities that aim for preventing accidents. We found that the model developed is suitable for this type of multidecision optimization. The methodology, results, and practices are further discussed.
Optimization of workflow scheduling in Utility Management System with hierarchical neural network
Directory of Open Access Journals (Sweden)
Srdjan Vukmirovic
2011-08-01
Full Text Available Grid computing could be the future computing paradigm for enterprise applications, one of its benefits being that it can be used for executing large scale applications. Utility Management Systems execute very large numbers of workflows with very high resource requirements. This paper proposes architecture for a new scheduling mechanism that dynamically executes a scheduling algorithm using feedback about the current status Grid nodes. Two Artificial Neural Networks were created in order to solve the scheduling problem. A case study is created for the Meter Data Management system with measurements from the Smart Metering system for the city of Novi Sad, Serbia. Performance tests show that significant improvement of overall execution time can be achieved by Hierarchical Artificial Neural Networks.
Energy Technology Data Exchange (ETDEWEB)
Gorentla Venkata, Manjunath [ORNL; Shamis, Pavel [ORNL; Graham, Richard L [ORNL; Ladd, Joshua S [ORNL; Sampath, Rahul S [ORNL
2013-01-01
Many scientific simulations, using the Message Passing Interface (MPI) programming model, are sensitive to the performance and scalability of reduction collective operations such as MPI Allreduce and MPI Reduce. These operations are the most widely used abstractions to perform mathematical operations over all processes that are part of the simulation. In this work, we propose a hierarchical design to implement the reduction operations on multicore systems. This design aims to improve the efficiency of reductions by 1) tailoring the algorithms and customizing the implementations for various communication mechanisms in the system 2) providing the ability to configure the depth of hierarchy to match the system architecture, and 3) providing the ability to independently progress each of this hierarchy. Using this design, we implement MPI Allreduce and MPI Reduce operations (and its nonblocking variants MPI Iallreduce and MPI Ireduce) for all message sizes, and evaluate on multiple architectures including InfiniBand and Cray XT5. We leverage and enhance our existing infrastructure, Cheetah, which is a framework for implementing hierarchical collective operations to implement these reductions. The experimental results show that the Cheetah reduction operations outperform the production-grade MPI implementations such as Open MPI default, Cray MPI, and MVAPICH2, demonstrating its efficiency, flexibility and portability. On Infini- Band systems, with a microbenchmark, a 512-process Cheetah nonblocking Allreduce and Reduce achieves a speedup of 23x and 10x, respectively, compared to the default Open MPI reductions. The blocking variants of the reduction operations also show similar performance benefits. A 512-process nonblocking Cheetah Allreduce achieves a speedup of 3x, compared to the default MVAPICH2 Allreduce implementation. On a Cray XT5 system, a 6144-process Cheetah Allreduce outperforms the Cray MPI by 145%. The evaluation with an application kernel, Conjugate
Hierarchical Winner-Take-All Particle Swarm Optimization Social Network for Neural Model Fitting
Coventry, Brandon S.; Parthasarathy, Aravindakshan; Sommer, Alexandra L.; Bartlett, Edward L.
2016-01-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models. PMID:27726048
Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.
Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L
2017-02-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.
Leube, Philipp; Geiges, Andreas; Nowak, Wolfgang
2010-05-01
Incorporating hydrogeological data, such as head and tracer data, into stochastic models of subsurface flow and transport helps to reduce prediction uncertainty. Considering limited financial resources available for the data acquisition campaign, information needs towards the prediction goal should be satisfied in a efficient and task-specific manner. For finding the best one among a set of design candidates, an objective function is commonly evaluated, which measures the expected impact of data on prediction confidence, prior to their collection. An appropriate approach to this task should be stochastically rigorous, master non-linear dependencies between data, parameters and model predictions, and allow for a wide variety of different data types. Existing methods fail to fulfill all these requirements simultaneously. For this reason, we introduce a new method, denoted as CLUE (Cross-bred Likelihood Uncertainty Estimator), that derives the essential distributions and measures of data utility within a generalized, flexible and accurate framework. The method makes use of Bayesian GLUE (Generalized Likelihood Uncertainty Estimator) and extends it to an optimal design method by marginalizing over the yet unknown data values. Operating in a purely Bayesian Monte-Carlo framework, CLUE is a strictly formal information processing scheme free of linearizations. It provides full flexibility associated with the type of measurements (linear, non-linear, direct, indirect) and accounts for almost arbitrary sources of uncertainty (e.g. heterogeneity, geostatistical assumptions, boundary conditions, model concepts) via stochastic simulation and Bayesian model averaging. This helps to minimize the strength and impact of possible subjective prior assumptions, that would be hard to defend prior to data collection. Our study focuses on evaluating two different uncertainty measures: (i) expected conditional variance and (ii) expected relative entropy of a given prediction goal. The
Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.
2018-04-01
Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.
Hosseini, Marjan; Kerachian, Reza
2017-09-01
This paper presents a new methodology for analyzing the spatiotemporal variability of water table levels and redesigning a groundwater level monitoring network (GLMN) using the Bayesian Maximum Entropy (BME) technique and a multi-criteria decision-making approach based on ordered weighted averaging (OWA). The spatial sampling is determined using a hexagonal gridding pattern and a new method, which is proposed to assign a removal priority number to each pre-existing station. To design temporal sampling, a new approach is also applied to consider uncertainty caused by lack of information. In this approach, different time lag values are tested by regarding another source of information, which is simulation result of a numerical groundwater flow model. Furthermore, to incorporate the existing uncertainties in available monitoring data, the flexibility of the BME interpolation technique is taken into account in applying soft data and improving the accuracy of the calculations. To examine the methodology, it is applied to the Dehgolan plain in northwestern Iran. Based on the results, a configuration of 33 monitoring stations for a regular hexagonal grid of side length 3600 m is proposed, in which the time lag between samples is equal to 5 weeks. Since the variance estimation errors of the BME method are almost identical for redesigned and existing networks, the redesigned monitoring network is more cost-effective and efficient than the existing monitoring network with 52 stations and monthly sampling frequency.
Energy Technology Data Exchange (ETDEWEB)
Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL
2008-01-01
Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.
Directory of Open Access Journals (Sweden)
Fatemeh Zare Baghiabad
2017-09-01
Full Text Available Accuracy in estimating the needed effort for software development caused software effort estimation to be a challenging issue. Beside estimation of total effort, determining the effort elapsed in each software development step is very important because any mistakes in enterprise resource planning can lead to project failure. In this paper, a Bayesian belief network was proposed based on effective components and software development process. In this model, the feedback loops are considered between development steps provided that the return rates are different for each project. Different return rates help us determine the percentages of the elapsed effort in each software development step, distinctively. Moreover, the error measurement resulted from optimized effort estimation and the optimal coefficients to modify the model are sought. The results of the comparison between the proposed model and other models showed that the model has the capability to highly accurately estimate the total effort (with the marginal error of about 0.114 and to estimate the effort elapsed in each software development step.
A Laplace method for under-determined Bayesian optimal experimental designs
Long, Quan
2014-12-17
In Long et al. (2013), a new method based on the Laplace approximation was developed to accelerate the estimation of the post-experimental expected information gains (Kullback–Leibler divergence) in model parameters and predictive quantities of interest in the Bayesian framework. A closed-form asymptotic approximation of the inner integral and the order of the corresponding dominant error term were obtained in the cases where the parameters are determined by the experiment. In this work, we extend that method to the general case where the model parameters cannot be determined completely by the data from the proposed experiments. We carry out the Laplace approximations in the directions orthogonal to the null space of the Jacobian matrix of the data model with respect to the parameters, so that the information gain can be reduced to an integration against the marginal density of the transformed parameters that are not determined by the experiments. Furthermore, the expected information gain can be approximated by an integration over the prior, where the integrand is a function of the posterior covariance matrix projected over the aforementioned orthogonal directions. To deal with the issue of dimensionality in a complex problem, we use either Monte Carlo sampling or sparse quadratures for the integration over the prior probability density function, depending on the regularity of the integrand function. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear under-determined test cases. They include the designs of the scalar parameter in a one dimensional cubic polynomial function with two unidentifiable parameters forming a linear manifold, and the boundary source locations for impedance tomography in a square domain, where the unknown parameter is the conductivity, which is represented as a random field.
The Bayesian statistical decision theory applied to the optimization of generating set maintenance
International Nuclear Information System (INIS)
Procaccia, H.; Cordier, R.; Muller, S.
1994-11-01
The difficulty in RCM methodology is the allocation of a new periodicity of preventive maintenance on one equipment when a critical failure has been identified: until now this new allocation has been based on the engineer's judgment, and one must wait for a full cycle of feedback experience before to validate it. Statistical decision theory could be a more rational alternative for the optimization of preventive maintenance periodicity. This methodology has been applied to inspection and maintenance optimization of cylinders of diesel generator engines of 900 MW nuclear plants, and has shown that previous preventive maintenance periodicity can be extended. (authors). 8 refs., 5 figs
Maeda, Shin-ichi
2014-01-01
Dropout is one of the key techniques to prevent the learning from overfitting. It is explained that dropout works as a kind of modified L2 regularization. Here, we shed light on the dropout from Bayesian standpoint. Bayesian interpretation enables us to optimize the dropout rate, which is beneficial for learning of weight parameters and prediction after learning. The experiment result also encourages the optimization of the dropout.
Directory of Open Access Journals (Sweden)
Jian Chen
2018-02-01
Full Text Available In this paper, a hierarchical optimal operation strategy for a hybrid energy storage system (HESS is proposed, which is suitable to be utilized in distribution networks (DNs with high photovoltaic (PV penetration to achieve PV power smoothing, voltage regulation and price arbitrage. Firstly, a fuzzy-logic based variable step-size control strategy for an ultracapacitor (UC with the improvement of the lifetime of UC and tracking performance is adopted to smooth PV power fluctuations. The impact of PV forecasting errors is eliminated by adjusting the UC power in real time. Secondly, a coordinated control strategy, which includes centralized and local controls, is proposed for lithium-ion batteries. The centralized control is structured to determine the optimal battery unit for voltage regulation or price arbitrage according to lithium-ion battery performance indices. A modified lithium-ion battery aging model with better accuracy is proposed and the coupling relationship between the lifetime and the effective capacity is also considered. Additionally, the local control of the selected lithium-ion battery unit determines the charging/discharging power. A case study is used to validate the operation strategy and the results show that the lifetime equilibrium among different lithium-ion battery units can be achieved using the proposed strategy.
Zhang, Dezhi; Li, Shuangyan; Qin, Jin
2014-01-01
This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.
Directory of Open Access Journals (Sweden)
Dezhi Zhang
2014-01-01
Full Text Available This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users’ demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators’ service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.
Zhang, Dezhi; Li, Shuangyan
2014-01-01
This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209
Optimal coupling of heat and electricity systems: A stochastic hierarchical approach
DEFF Research Database (Denmark)
Mitridati, Lesia Marie-Jeanne Mariane; Pinson, Pierre
2016-01-01
modelled using a finite set of scenarios. This model takes advantage of existing market structures and provides a decision-making tool for heat system operators. The proposed model is implemented in a case study and results are discussed to show the benefits and applicability of this approach....... penetration of CHPs and wind. The objective of this optimization problem is to minimize the heat production cost, subject to constraints describing day-ahead electricity market clearing scenarios. Uncertainties concerning wind power production, electricity demand and rival participants offers are efficiently...
Optimizing data access for wind farm control over hierarchical communication networks
DEFF Research Database (Denmark)
Madsen, Jacob Theilgaard; Findrik, Mislav; Madsen, Tatiana Kozlova
2016-01-01
delays and also by the choice of the time instances at which sensor information is accessed. In order to optimize the latter, we introduce an information quality metric and a mathematical model based on Markov chains, which are compared performance-wise to a heuristic approach for finding this parameter......In this paper we investigate a centralized wind farm controller which runs periodically. The controller attempts to reduce the damage a wind turbine sustains during operation by estimating fatigue based on the wind turbine state. The investigation focuses on the impact of information access...
Bisetti, Fabrizio
2016-01-12
The analysis of reactive systems in combustion science and technology relies on detailed models comprising many chemical reactions that describe the conversion of fuel and oxidizer into products and the formation of pollutants. Shock-tube experiments are a convenient setting for measuring the rate parameters of individual reactions. The temperature, pressure, and concentration of reactants are chosen to maximize the sensitivity of the measured quantities to the rate parameter of the target reaction. In this study, we optimize the experimental setup computationally by optimal experimental design (OED) in a Bayesian framework. We approximate the posterior probability density functions (pdf) using truncated Gaussian distributions in order to account for the bounded domain of the uniform prior pdf of the parameters. The underlying Gaussian distribution is obtained in the spirit of the Laplace method, more precisely, the mode is chosen as the maximum a posteriori (MAP) estimate, and the covariance is chosen as the negative inverse of the Hessian of the misfit function at the MAP estimate. The model related entities are obtained from a polynomial surrogate. The optimality, quantified by the information gain measures, can be estimated efficiently by a rejection sampling algorithm against the underlying Gaussian probability distribution, rather than against the true posterior. This approach offers a significant error reduction when the magnitude of the invariants of the posterior covariance are comparable to the size of the bounded domain of the prior. We demonstrate the accuracy and superior computational efficiency of our method for shock-tube experiments aiming to measure the model parameters of a key reaction which is part of the complex kinetic network describing the hydrocarbon oxidation. In the experiments, the initial temperature and fuel concentration are optimized with respect to the expected information gain in the estimation of the parameters of the target
Najibi, N.; Lu, M.; Devineni, N.
2017-12-01
Long duration floods cause substantial damages and prolonged interruptions to water resource facilities and critical infrastructure. We present a novel generalized statistical and physical based model for flood duration with a deeper understanding of dynamically coupled nexus of the land surface wetness, effective atmospheric circulation and moisture transport/release. We applied the model on large reservoirs in the Missouri River Basin. The results indicate that the flood duration is not only a function of available moisture in the air, but also the antecedent condition of the blocking system of atmospheric pressure, resulting in enhanced moisture convergence, as well as the effectiveness of moisture condensation process leading to release. Quantifying these dynamics with a two-layer climate informed Bayesian multilevel model, we explain more than 80% variations in flood duration. The model considers the complex interaction between moisture transport, synoptic-to-large-scale atmospheric circulation pattern, and the antecedent wetness condition in the basin. Our findings suggest that synergy between a large low-pressure blocking system and a higher rate of divergent wind often triggers a long duration flood, and the prerequisite for moisture supply to trigger such event is moderate, which is more associated with magnitude than duration. In turn, this condition causes an extremely long duration flood if the surface wetness rate advancing to the flood event was already increased.
Directory of Open Access Journals (Sweden)
Sharon Chiang
2017-12-01
Full Text Available We develop an integrative Bayesian predictive modeling framework that identifies individual pathological brain states based on the selection of fluoro-deoxyglucose positron emission tomography (PET imaging biomarkers and evaluates the association of those states with a clinical outcome. We consider data from a study on temporal lobe epilepsy (TLE patients who subsequently underwent anterior temporal lobe resection. Our modeling framework looks at the observed profiles of regional glucose metabolism in PET as the phenotypic manifestation of a latent individual pathologic state, which is assumed to vary across the population. The modeling strategy we adopt allows the identification of patient subgroups characterized by latent pathologies differentially associated to the clinical outcome of interest. It also identifies imaging biomarkers characterizing the pathological states of the subjects. In the data application, we identify a subgroup of TLE patients at high risk for post-surgical seizure recurrence after anterior temporal lobe resection, together with a set of discriminatory brain regions that can be used to distinguish the latent subgroups. We show that the proposed method achieves high cross-validated accuracy in predicting post-surgical seizure recurrence.
Schwarz, L.K.; Runge, M.C.
2009-01-01
Age estimation of individuals is often an integral part of species management research, and a number of ageestimation techniques are commonly employed. Often, the error in these techniques is not quantified or accounted for in other analyses, particularly in growth curve models used to describe physiological responses to environment and human impacts. Also, noninvasive, quick, and inexpensive methods to estimate age are needed. This research aims to provide two Bayesian methods to (i) incorporate age uncertainty into an age-length Schnute growth model and (ii) produce a method from the growth model to estimate age from length. The methods are then employed for Florida manatee (Trichechus manatus) carcasses. After quantifying the uncertainty in the aging technique (counts of ear bone growth layers), we fit age-length data to the Schnute growth model separately by sex and season. Independent prior information about population age structure and the results of the Schnute model are then combined to estimate age from length. Results describing the age-length relationship agree with our understanding of manatee biology. The new methods allow us to estimate age, with quantified uncertainty, for 98% of collected carcasses: 36% from ear bones, 62% from length.
Detecting Hierarchical Structure in Networks
DEFF Research Database (Denmark)
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard
2012-01-01
Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....
Bayesian modeling using WinBUGS
Ntzoufras, Ioannis
2009-01-01
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...
Bayesian inference with ecological applications
Link, William A
2009-01-01
This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analyt...
Ma, Yingzhao; Hong, Yang; Chen, Yang; Yang, Yuan; Tang, Guoqiang; Yao, Yunjun; Long, Di; Li, Changmin; Han, Zhongying; Liu, Ronghua
2018-01-01
Accurate estimation of precipitation from satellites at high spatiotemporal scales over the Tibetan Plateau (TP) remains a challenge. In this study, we proposed a general framework for blending multiple satellite precipitation data using the dynamic Bayesian model averaging (BMA) algorithm. The blended experiment was performed at a daily 0.25° grid scale for 2007-2012 among Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT and 3B42V7, Climate Prediction Center MORPHing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). First, the BMA weights were optimized using the expectation-maximization (EM) method for each member on each day at 200 calibrated sites and then interpolated to the entire plateau using the ordinary kriging (OK) approach. Thus, the merging data were produced by weighted sums of the individuals over the plateau. The dynamic BMA approach showed better performance with a smaller root-mean-square error (RMSE) of 6.77 mm/day, higher correlation coefficient of 0.592, and closer Euclid value of 0.833, compared to the individuals at 15 validated sites. Moreover, BMA has proven to be more robust in terms of seasonality, topography, and other parameters than traditional ensemble methods including simple model averaging (SMA) and one-outlier removed (OOR). Error analysis between BMA and the state-of-the-art IMERG in the summer of 2014 further proved that the performance of BMA was superior with respect to multisatellite precipitation data merging. This study demonstrates that BMA provides a new solution for blending multiple satellite data in regions with limited gauges.
Cortical hierarchies perform Bayesian causal inference in multisensory perception.
Directory of Open Access Journals (Sweden)
Tim Rohe
2015-02-01
Full Text Available To form a veridical percept of the environment, the brain needs to integrate sensory signals from a common source but segregate those from independent sources. Thus, perception inherently relies on solving the "causal inference problem." Behaviorally, humans solve this problem optimally as predicted by Bayesian Causal Inference; yet, the underlying neural mechanisms are unexplored. Combining psychophysics, Bayesian modeling, functional magnetic resonance imaging (fMRI, and multivariate decoding in an audiovisual spatial localization task, we demonstrate that Bayesian Causal Inference is performed by a hierarchy of multisensory processes in the human brain. At the bottom of the hierarchy, in auditory and visual areas, location is represented on the basis that the two signals are generated by independent sources (= segregation. At the next stage, in posterior intraparietal sulcus, location is estimated under the assumption that the two signals are from a common source (= forced fusion. Only at the top of the hierarchy, in anterior intraparietal sulcus, the uncertainty about the causal structure of the world is taken into account and sensory signals are combined as predicted by Bayesian Causal Inference. Characterizing the computational operations of signal interactions reveals the hierarchical nature of multisensory perception in human neocortex. It unravels how the brain accomplishes Bayesian Causal Inference, a statistical computation fundamental for perception and cognition. Our results demonstrate how the brain combines information in the face of uncertainty about the underlying causal structure of the world.
Eigenvector Subset Selection Using Bayesian Optimization Algorithm%基于贝叶斯优化算法的脸面特征向量子集选择
Institute of Scientific and Technical Information of China (English)
郭卫锋; 林亚平; 罗光平
2002-01-01
Eigenvector subset selection is the key to face recognition. In this paper ,we propose ESS-BOA, a newrandomized, population-based evolutionary algorithm which deals with the Eigenvector Subset Selection (ESS)prob-lem on face recognition application. In ESS-BOA ,the ESS problem, stated as a search problem ,uses the BayesianOptimization Algorithm (BOA) as searching engine and the distance degree as the object function to select eigenvec-tor. Experimental results show that ESS-BOA outperforms the traditional the eigenface selection algorithm.
Bayesian models: A statistical primer for ecologists
Hobbs, N. Thompson; Hooten, Mevin B.
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models
International Nuclear Information System (INIS)
Procaccia, H.; Lannoy, A.; Clarotti, C.A.
1997-01-01
The optimization of preventive maintenance of aging materials can be well modelled through the application of the two-parameters Weibull law. Unfortunately there is no theoretical model describing the aging of components implied in emergency interventions which may fail in very moment of demand. These components are relevant to the safety of Nuclear Power Plants and the main problem with them is the optimization of the maintenance and the test schedule. Indeed the effect of any test is twofold, namely: the test reveals failures which otherwise would occur when the Power Plant would need urgent intervention but at the same time it causes the aging process to step up. The aging process is suspected to affect certain safeguard equipment, but it does not exist a theoretical model of component aging in function of demands. Sections 2.1 and 2.2 of the paper are devoted to the description of a Bayesian model of discrete aging, deriving the likelihood function of the model (data modelling) and to selecting 'the best prior' (Analyst knowledge) that can be associated to the likelihood, respectively. The aspects of numerical integration relative to assessing the predictive reliability of the aging components are discussed in Section 2.3. Section 3 reports a Reliability Centered Maintenance application of the model to cylinders of emergency electrical generators of the NPP nuclear sectors. These components are subjected to an annual endoscopic checking and to a systematical replacement at every 5 years. The statistical Bayesian decision theory was applied to determine an optimal period of cylinder replacement based on the aging model presented in this paper. It is shown that the optimal value is between 10 to 12 years. (author)
Wang, Jinrong; Qiao, Jinliang; Wang, Jianfeng; Zhu, Ying; Jiang, Lei
2015-05-06
Due to hierarchical organization of micro- and nanostructures, natural nacre exhibits extraordinary strength and toughness, and thus provides a superior model for the design and fabrication of high-performance artificial composite materials. Although great progress has been made in constructing layered composites by alternately stacking hard inorganic platelets and soft polymers, the real issue is that the excellent strength of these composites was obtained at the sacrifice of toughness. In this work, inspired by the layered aragonite microplatelets/chitin nanofibers-protein structure of natural nacre, alumina microplatelets-graphene oxide nanosheets-poly(vinyl alcohol) (Al2O3/GO-PVA) artificial nacre is successfully constructed through layer-by-layer bottom-up assembly, in which Al2O3 and GO-PVA act as "bricks" and "mortar", respectively. The artificial nacre has hierarchical "brick-and-mortar" structure and exhibits excellent strength (143 ± 13 MPa) and toughness (9.2 ± 2.7 MJ/m(3)), which are superior to those of natural nacre (80-135 MPa, 1.8 MJ/m(3)). It was demonstrated that the multiscale hierarchical structure of ultrathin GO nanosheets and submicrometer-thick Al2O3 platelets can deal with the conflict between strength and toughness, thus leading to the excellent mechanical properties that cannot be obtained using only one size of platelet. We strongly believe that the work presented here provides a creative strategy for designing and developing new composites with excellent strength and toughness.
Lu, Xuekun; Taiwo, Oluwadamilola O.; Bertei, Antonio; Li, Tao; Li, Kang; Brett, Dan J. L.; Shearing, Paul R.
2017-11-01
Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2-3 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.
Robust bayesian analysis of an autoregressive model with ...
African Journals Online (AJOL)
In this work, robust Bayesian analysis of the Bayesian estimation of an autoregressive model with exponential innovations is performed. Using a Bayesian robustness methodology, we show that, using a suitable generalized quadratic loss, we obtain optimal Bayesian estimators of the parameters corresponding to the ...
Background:Bilevel optimization has been recognized as a 2-player Stackelberg game where players are represented as leaders and followers and each pursue their own set of objectives. Hierarchical optimization problems, which are a generalization of bilevel, are especially difficu...
Institute of Scientific and Technical Information of China (English)
Concha Bielza; Juan A.Fernández del Pozo; Pedro Larra(n)aga
2013-01-01
Parameter setting for evolutionary algorithms is still an important issue in evolutionary computation.There are two main approaches to parameter setting:parameter tuning and parameter control.In this paper,we introduce self-adaptive parameter control of a genetic algorithm based on Bayesian network learning and simulation.The nodes of this Bayesian network are genetic algorithm parameters to be controlled.Its structure captures probabilistic conditional (in)dependence relationships between the parameters.They are learned from the best individuals,i.e.,the best configurations of the genetic algorithm.Individuals are evaluated by running the genetic algorithm for the respective parameter configuration.Since all these runs are time-consuming tasks,each genetic algorithm uses a small-sized population and is stopped before convergence.In this way promising individuals should not be lost.Experiments with an optimal search problem for simultaneous row and column orderings yield the same optima as state-of-the-art methods but with a sharp reduction in computational time.Moreover,our approach can cope with as yet unsolved high-dimensional problems.
Lesaffre, Emmanuel
2012-01-01
The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd
ZHOU, Lin
1996-01-01
In this paper I consider social choices under uncertainty. I prove that any social choice rule that satisfies independence of irrelevant alternatives, translation invariance, and weak anonymity is consistent with ex post Bayesian utilitarianism
Bayesian theory and applications
Dellaportas, Petros; Polson, Nicholas G; Stephens, David A
2013-01-01
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and devel...
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
Multiview Bayesian Correlated Component Analysis
DEFF Research Database (Denmark)
Kamronn, Simon Due; Poulsen, Andreas Trier; Hansen, Lars Kai
2015-01-01
are identical. Here we propose a hierarchical probabilistic model that can infer the level of universality in such multiview data, from completely unrelated representations, corresponding to canonical correlation analysis, to identical representations as in correlated component analysis. This new model, which...... we denote Bayesian correlated component analysis, evaluates favorably against three relevant algorithms in simulated data. A well-established benchmark EEG data set is used to further validate the new model and infer the variability of spatial representations across multiple subjects....
International Nuclear Information System (INIS)
Marzouk, Youssef M.; Ghoniem, Ahmed F.
2005-01-01
A number of complex physical problems can be approached through N-body simulation, from fluid flow at high Reynolds number to gravitational astrophysics and molecular dynamics. In all these applications, direct summation is prohibitively expensive for large N and thus hierarchical methods are employed for fast summation. This work introduces new algorithms, based on k-means clustering, for partitioning parallel hierarchical N-body interactions. We demonstrate that the number of particle-cluster interactions and the order at which they are performed are directly affected by partition geometry. Weighted k-means partitions minimize the sum of clusters' second moments and create well-localized domains, and thus reduce the computational cost of N-body approximations by enabling the use of lower-order approximations and fewer cells. We also introduce compatible techniques for dynamic load balancing, including adaptive scaling of cluster volumes and adaptive redistribution of cluster centroids. We demonstrate the performance of these algorithms by constructing a parallel treecode for vortex particle simulations, based on the serial variable-order Cartesian code developed by Lindsay and Krasny [Journal of Computational Physics 172 (2) (2001) 879-907]. The method is applied to vortex simulations of a transverse jet. Results show outstanding parallel efficiencies even at high concurrencies, with velocity evaluation errors maintained at or below their serial values; on a realistic distribution of 1.2 million vortex particles, we observe a parallel efficiency of 98% on 1024 processors. Excellent load balance is achieved even in the face of several obstacles, such as an irregular, time-evolving particle distribution containing a range of length scales and the continual introduction of new vortex particles throughout the domain. Moreover, results suggest that k-means yields a more efficient partition of the domain than a global oct-tree
Estimating mental states of a depressed person with bayesian networks
Klein, Michel C.A.; Modena, Gabriele
2013-01-01
In this work in progress paper we present an approach based on Bayesian Networks to model the relationship between mental states and empirical observations in a depressed person. We encode relationships and domain expertise as a Hierarchical Bayesian Network. Mental states are represented as latent
Rigaux, Clémence; Denis, Jean-Baptiste; Albert, Isabelle; Carlin, Frédéric
2013-02-01
Predicting microbial survival requires reference parameters for each micro-organism of concern. When data are abundant and publicly available, a meta-analysis is a useful approach for assessment of these parameters, which can be performed with hierarchical Bayesian modeling. Geobacillus stearothermophilus is a major agent of microbial spoilage of canned foods and is therefore a persistent problem in the food industry. The thermal inactivation parameters of G. stearothermophilus (D(ref), i.e.the decimal reduction time D at the reference temperature 121.1°C and pH 7.0, z(T) and z(pH)) were estimated from a large set of 430 D values mainly collected from scientific literature. Between-study variability hypotheses on the inactivation parameters D(ref), z(T) and z(pH) were explored, using three different hierarchical Bayesian models. Parameter estimations were made using Bayesian inference and the models were compared with a graphical and a Bayesian criterion. Results show the necessity to account for random effects associated with between-study variability. Assuming variability on D(ref), z(T) and z(pH), the resulting distributions for D(ref), z(T) and z(pH) led to a mean of 3.3 min for D(ref) (95% Credible Interval CI=[0.8; 9.6]), to a mean of 9.1°C for z(T) (CI=[5.4; 13.1]) and to a mean of 4.3 pH units for z(pH) (CI=[2.9; 6.3]), in the range pH 3 to pH 7.5. Results are also given separating variability and uncertainty in these distributions, as well as adjusted parametric distributions to facilitate further use of these results in aqueous canned foods such as canned vegetables. Copyright © 2012 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
E. A. Smith
2013-05-01
Full Text Available In the first two parts of this study we have presented a performance analysis of our new Cloud Dynamics and Radiation Database (CDRD satellite precipitation retrieval algorithm on various convective and stratiform rainfall case studies verified with precision radar ground truth data, and an exposition of the algorithm's detailed design in conjunction with a proof-of-concept analysis vis-à-vis its theoretical underpinnings. In this third part of the study, we present the underlying analysis used to identify what we refer to as the optimal metrological and geophysical tags, which are the optimally effective atmospheric and geographic parameters that are used to refine the selection of candidate microphysical profiles used for the Bayesian retrieval. These tags enable extending beyond the conventional Cloud Radiation Database (CRD algorithm by invoking meteorological-geophysical guidance, drawn from a simulated database, which affect and are in congruence with the observed precipitation states. This is guidance beyond the restrictive control provided by only simulated radiative transfer equation (RTE model-derived database brightness temperature (TB vector proximity information in seeking to relate physically consistent precipitation profile solutions to individual satellite-observed TB vectors. The first two parts of the study have rigorously demonstrated that the optimal tags effectively mitigate against solution ambiguity, where use of only a CRD framework (TB guidance only leads to pervasive non-uniqueness problems in finding rainfall solutions. Alternatively, a CDRD framework (TB + tag guidance mitigates against non-uniqueness problems through improved constraints. It remains to show how these optimal tags are identified. By use of three statistical analysis procedures applied to a database from 120 North American atmospheric simulations of precipitating storms (independent of the 60 simulations for the European-Mediterranean basin region
Optimized Bayesian algorithm for distributed scheduling problems%分布协同Bayesian优化方法求解调度问题
Institute of Scientific and Technical Information of China (English)
羌磊; 肖田元
2005-01-01
针对BOA(Bayesian Optimization Algorithm)求解实际调度优化问题速度较慢的缺点,提出一类基于强化学习协调的分布BOA求解算法.首先将BOA优化算法与协同进化机制相结合,构建分布并行的系统结构,然后给出基于强化学习的混合决策算法,将强化学习对优化解的先验概率估计与BOA后验概率估计相结合,增强局部控制器之间的协同性,提高算法的优化搜索能力.给出的算例仿真结果表明,所提算法在优化性能上比典型BOA算法平均提高了2.2%,收敛性能平均提高了11.4%.
Li, Jing; He, Li; Fan, Xing; Chen, Yizhong; Lu, Hongwei
2017-08-01
This study presents a synergic optimization of control for greenhouse gas (GHG) emissions and system cost in integrated municipal solid waste (MSW) management on a basis of bi-level programming. The bi-level programming is formulated by integrating minimizations of GHG emissions at the leader level and system cost at the follower level into a general MSW framework. Different from traditional single- or multi-objective approaches, the proposed bi-level programming is capable of not only addressing the tradeoffs but also dealing with the leader-follower relationship between different decision makers, who have dissimilar perspectives interests. GHG emission control is placed at the leader level could emphasize the significant environmental concern in MSW management. A bi-level decision-making process based on satisfactory degree is then suitable for solving highly nonlinear problems with computationally effectiveness. The capabilities and effectiveness of the proposed bi-level programming are illustrated by an application of a MSW management problem in Canada. Results show that the obtained optimal management strategy can bring considerable revenues, approximately from 76 to 97 million dollars. Considering control of GHG emissions, it would give priority to the development of the recycling facility throughout the whole period, especially in latter periods. In terms of capacity, the existing landfill is enough in the future 30 years without development of new landfills, while expansion to the composting and recycling facilities should be paid more attention.
Directory of Open Access Journals (Sweden)
Akemi Gálvez
2014-01-01
for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.
Doing bayesian data analysis a tutorial with R and BUGS
Kruschke, John K
2011-01-01
There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. The text delivers comprehensive coverage of all
Bayesian Decision Theoretical Framework for Clustering
Chen, Mo
2011-01-01
In this thesis, we establish a novel probabilistic framework for the data clustering problem from the perspective of Bayesian decision theory. The Bayesian decision theory view justifies the important questions: what is a cluster and what a clustering algorithm should optimize. We prove that the spectral clustering (to be specific, the…
Robust Bayesian detection of unmodelled bursts
International Nuclear Information System (INIS)
Searle, Antony C; Sutton, Patrick J; Tinto, Massimo; Woan, Graham
2008-01-01
We develop a Bayesian treatment of the problem of detecting unmodelled gravitational wave bursts using the new global network of interferometric detectors. We also compare this Bayesian treatment with existing coherent methods, and demonstrate that the existing methods make implicit assumptions on the distribution of signals that make them sub-optimal for realistic signal populations
A Bayesian foundation for individual learning under uncertainty
Directory of Open Access Journals (Sweden)
Christoph eMathys
2011-05-01
Full Text Available Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty. The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next higher level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i are analytical and extremely efficient, enabling real-time learning, (ii have a natural interpretation in terms of RL, and (iii contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty. These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability
A bayesian foundation for individual learning under uncertainty.
Mathys, Christoph; Daunizeau, Jean; Friston, Karl J; Stephan, Klaas E
2011-01-01
Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL) and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty). The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next highest level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean-field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i) are analytical and extremely efficient, enabling real-time learning, (ii) have a natural interpretation in terms of RL, and (iii) contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty). These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability theory.
12th Brazilian Meeting on Bayesian Statistics
Louzada, Francisco; Rifo, Laura; Stern, Julio; Lauretto, Marcelo
2015-01-01
Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesia...
Bessiere, Pierre; Ahuactzin, Juan Manuel; Mekhnacha, Kamel
2013-01-01
Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean
DEFF Research Database (Denmark)
Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...
Modelling dependable systems using hybrid Bayesian networks
International Nuclear Information System (INIS)
Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter
2008-01-01
A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems
Introduction to Bayesian statistics
Bolstad, William M
2017-01-01
There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...
Empirical Bayesian inference and model uncertainty
International Nuclear Information System (INIS)
Poern, K.
1994-01-01
This paper presents a hierarchical or multistage empirical Bayesian approach for the estimation of uncertainty concerning the intensity of a homogeneous Poisson process. A class of contaminated gamma distributions is considered to describe the uncertainty concerning the intensity. These distributions in turn are defined through a set of secondary parameters, the knowledge of which is also described and updated via Bayes formula. This two-stage Bayesian approach is an example where the modeling uncertainty is treated in a comprehensive way. Each contaminated gamma distributions, represented by a point in the 3D space of secondary parameters, can be considered as a specific model of the uncertainty about the Poisson intensity. Then, by the empirical Bayesian method each individual model is assigned a posterior probability
Bayesian Inference Methods for Sparse Channel Estimation
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand
2013-01-01
This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...
Bayesian artificial intelligence
Korb, Kevin B
2010-01-01
Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente
Bayesian artificial intelligence
Korb, Kevin B
2003-01-01
As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.
Bayesian data analysis in population ecology: motivations, methods, and benefits
Dorazio, Robert
2016-01-01
During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.
Learning with hierarchical-deep models.
Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio
2013-08-01
We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.
Yuan, Ying; MacKinnon, David P.
2009-01-01
This article proposes Bayesian analysis of mediation effects. Compared to conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian mediation analysis, inference is straightforward and exact, which makes it appealing for studies with small samples. Third, the Bayesian approach is conceptua...
Marsman, M.; Wagenmakers, E.-J.
2017-01-01
We illustrate the Bayesian approach to data analysis using the newly developed statistical software program JASP. With JASP, researchers are able to take advantage of the benefits that the Bayesian framework has to offer in terms of parameter estimation and hypothesis testing. The Bayesian
A Bayesian perspective on some replacement strategies
International Nuclear Information System (INIS)
Mazzuchi, Thomas A.; Soyer, Refik
1996-01-01
In this paper we present a Bayesian decision theoretic approach for determining optimal replacement strategies. This approach enables us to formally incorporate, express, and update our uncertainty when determining optimal replacement strategies. We develop relevant expressions for both the block replacement protocol with minimal repair and the age replacement protocol and illustrate the use of our approach with real data
A Bayesian Panel Data Approach to Explaining Market Beta Dynamics
R. Bauer (Rob); M.M.J.E. Cosemans (Mathijs); R. Frehen (Rik); P.C. Schotman (Peter)
2008-01-01
markdownabstractWe characterize the process that drives the market betas of individual stocks by setting up a hierarchical Bayesian panel data model that allows a flexible specification for beta. We show that combining the parametric relationship between betas and conditioning variables specified by
Optimisation by hierarchical search
Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias
2015-03-01
Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.
An introduction to Bayesian statistics in health psychology.
Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske
2017-09-01
The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.
Uncertainty in perception and the Hierarchical Gaussian Filter
Directory of Open Access Journals (Sweden)
Christoph Daniel Mathys
2014-11-01
Full Text Available In its full sense, perception rests on an agent’s model of how its sensory input comes about and the inferences it draws based on this model. These inferences are necessarily uncertain. Here, we illustrate how the hierarchical Gaussian filter (HGF offers a principled and generic way to deal with the several forms that uncertainty in perception takes. The HGF is a recent derivation of one-step update equations from Bayesian principles that rests on a hierarchical generative model of the environment and its (instability. It is computationally highly efficient, allows for online estimates of hidden states, and has found numerous applications to experimental data from human subjects. In this paper, we generalize previous descriptions of the HGF and its account of perceptual uncertainty. First, we explicitly formulate the extension of the HGF’s hierarchy to any number of levels; second, we discuss how various forms of uncertainty are accommodated by the minimization of variational free energy as encoded in the update equations; third, we combine the HGF with decision models and demonstrate the inversion of this combination; finally, we report a simulation study that compared four optimization methods for inverting the HGF/decision model combination at different noise levels. These four methods (Nelder-Mead simplex algorithm, Gaussian process-based global optimization, variational Bayes and Markov chain Monte Carlo sampling all performed well even under considerable noise, with variational Bayes offering the best combination of efficiency and informativeness of inference. Our results demonstrate that the HGF provides a principled, flexible, and efficient - but at the same time intuitive - framework for the resolution of perceptual uncertainty in behaving agents.
Correct Bayesian and frequentist intervals are similar
International Nuclear Information System (INIS)
Atwood, C.L.
1986-01-01
This paper argues that Bayesians and frequentists will normally reach numerically similar conclusions, when dealing with vague data or sparse data. It is shown that both statistical methodologies can deal reasonably with vague data. With sparse data, in many important practical cases Bayesian interval estimates and frequentist confidence intervals are approximately equal, although with discrete data the frequentist intervals are somewhat longer. This is not to say that the two methodologies are equally easy to use: The construction of a frequentist confidence interval may require new theoretical development. Bayesians methods typically require numerical integration, perhaps over many variables. Also, Bayesian can easily fall into the trap of over-optimism about their amount of prior knowledge. But in cases where both intervals are found correctly, the two intervals are usually not very different. (orig.)
Directory of Open Access Journals (Sweden)
N. Eckert
2008-10-01
Full Text Available For snow avalanches, passive defense structures are generally designed by considering high return period events. In this paper, taking inspiration from other natural hazards, an alternative method based on the maximization of the economic benefit of the defense structure is proposed. A general Bayesian framework is described first. Special attention is given to the problem of taking the poor local information into account in the decision-making process. Therefore, simplifying assumptions are made. The avalanche hazard is represented by a Peak Over Threshold (POT model. The influence of the dam is quantified in terms of runout distance reduction with a simple relation derived from small-scale experiments using granular media. The costs corresponding to dam construction and the damage to the element at risk are roughly evaluated for each dam height-hazard value pair, with damage evaluation corresponding to the maximal expected loss. Both the classical and the Bayesian risk functions can then be computed analytically. The results are illustrated with a case study from the French avalanche database. A sensitivity analysis is performed and modelling assumptions are discussed in addition to possible further developments.
Deep Learning and Bayesian Methods
Directory of Open Access Journals (Sweden)
Prosper Harrison B.
2017-01-01
Full Text Available A revolution is underway in which deep neural networks are routinely used to solve diffcult problems such as face recognition and natural language understanding. Particle physicists have taken notice and have started to deploy these methods, achieving results that suggest a potentially significant shift in how data might be analyzed in the not too distant future. We discuss a few recent developments in the application of deep neural networks and then indulge in speculation about how such methods might be used to automate certain aspects of data analysis in particle physics. Next, the connection to Bayesian methods is discussed and the paper ends with thoughts on a significant practical issue, namely, how, from a Bayesian perspective, one might optimize the construction of deep neural networks.
Kang, Hakmook; Ombao, Hernando; Fonnesbeck, Christopher; Ding, Zhaohua; Morgan, Victoria L.
2017-01-01
DTI that could potentially enhance estimation of resting-state functional connectivity (FC) between brain regions. To overcome this limitation, we develop a Bayesian hierarchical spatiotemporal model that incorporates structural connectivity (SC
Risk Based Maintenance of Offshore Wind Turbines Using Bayesian Networks
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
This paper presents how Bayesian networks can be used to make optimal decisions for repairs of offshore wind turbines. The Bayesian network is an efficient tool for updating a deterioration model whenever new information becomes available from inspections/monitoring. The optimal decision is found...... such that the preventive maintenance effort is balanced against the costs to corrective maintenance including indirect costs to reduced production. The basis for the optimization is the risk based Bayesian decision theory. The method is demonstrated through an application example....
Using Alien Coins to Test Whether Simple Inference Is Bayesian
Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D.
2016-01-01
Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…
Bayesian model ensembling using meta-trained recurrent neural networks
Ambrogioni, L.; Berezutskaya, Y.; Gü ç lü , U.; Borne, E.W.P. van den; Gü ç lü tü rk, Y.; Gerven, M.A.J. van; Maris, E.G.G.
2017-01-01
In this paper we demonstrate that a recurrent neural network meta-trained on an ensemble of arbitrary classification tasks can be used as an approximation of the Bayes optimal classifier. This result is obtained by relying on the framework of e-free approximate Bayesian inference, where the Bayesian
Understanding Computational Bayesian Statistics
Bolstad, William M
2011-01-01
A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistic
Bayesian statistics an introduction
Lee, Peter M
2012-01-01
Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as wel
Hierarchical decision making for flood risk reduction
DEFF Research Database (Denmark)
Custer, Rocco; Nishijima, Kazuyoshi
2013-01-01
. In current practice, structures are often optimized individually without considering benefits of having a hierarchy of protection structures. It is here argued, that the joint consideration of hierarchically integrated protection structures is beneficial. A hierarchical decision model is utilized to analyze...... and compare the benefit of large upstream protection structures and local downstream protection structures in regard to epistemic uncertainty parameters. Results suggest that epistemic uncertainty influences the outcome of the decision model and that, depending on the magnitude of epistemic uncertainty...
Hierarchical Nanoceramics for Industrial Process Sensors
Energy Technology Data Exchange (ETDEWEB)
Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang
2011-07-15
This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.
Comparing hierarchical models via the marginalized deviance information criterion.
Quintero, Adrian; Lesaffre, Emmanuel
2018-07-20
Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.
Calibration of Automatically Generated Items Using Bayesian Hierarchical Modeling.
Johnson, Matthew S.; Sinharay, Sandip
For complex educational assessments, there is an increasing use of "item families," which are groups of related items. However, calibration or scoring for such an assessment requires fitting models that take into account the dependence structure inherent among the items that belong to the same item family. C. Glas and W. van der Linden…
The application of a hierarchical Bayesian spatiotemporal model for ...
Indian Academy of Sciences (India)
Process (GP) model by using the Gibbs sampling method. The result for ... good indicator of the HBST method. The statistical ... summary and discussion of future works are given .... spatiotemporal package in R language (R core team. 2013).
Testing adaptive toolbox models: a Bayesian hierarchical approach
Scheibehenne, B.; Rieskamp, J.; Wagenmakers, E.-J.
2013-01-01
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often
Hierarchical Bayesian parameter estimation for cumulative prospect theory
Nilsson, H.; Rieskamp, J.; Wagenmakers, E.-J.
2011-01-01
Cumulative prospect theory (CPT Tversky & Kahneman, 1992) has provided one of the most influential accounts of how people make decisions under risk. CPT is a formal model with parameters that quantify psychological processes such as loss aversion, subjective values of gains and losses, and
Yuan, Ying; MacKinnon, David P.
2009-01-01
In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…
Kleibergen, F.R.; Kleijn, R.; Paap, R.
2000-01-01
We propose a novel Bayesian test under a (noninformative) Jeffreys'priorspecification. We check whether the fixed scalar value of the so-calledBayesian Score Statistic (BSS) under the null hypothesis is aplausiblerealization from its known and standardized distribution under thealternative. Unlike
von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo
2014-06-01
Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.
Space Shuttle RTOS Bayesian Network
Morris, A. Terry; Beling, Peter A.
2001-01-01
With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores
Bayesian Averaging is Well-Temperated
DEFF Research Database (Denmark)
Hansen, Lars Kai
2000-01-01
Bayesian predictions are stochastic just like predictions of any other inference scheme that generalize from a finite sample. While a simple variational argument shows that Bayes averaging is generalization optimal given that the prior matches the teacher parameter distribution the situation is l...
Comparison between Fisherian and Bayesian approach to ...
African Journals Online (AJOL)
... of its simplicity and optimality properties is normally used for two group cases. However, Bayesian approach is found to be better than Fisher's approach because of its low misclassification error rate. Keywords: variance-covariance matrices, centroids, prior probability, mahalanobis distance, probability of misclassification ...
A Bayesian Approach to Interactive Retrieval
Tague, Jean M.
1973-01-01
A probabilistic model for interactive retrieval is presented. Bayesian statistical decision theory principles are applied: use of prior and sample information about the relationship of document descriptions to query relevance; maximization of expected value of a utility function, to the problem of optimally restructuring search strategies in an…
What are hierarchical models and how do we analyze them?
Royle, Andy
2016-01-01
In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)
Introduction to applied Bayesian statistics and estimation for social scientists
Lynch, Scott M
2007-01-01
""Introduction to Applied Bayesian Statistics and Estimation for Social Scientists"" covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.The first part of the book provides a detailed
Bayesian ensemble refinement by replica simulations and reweighting
Hummer, Gerhard; Köfinger, Jürgen
2015-12-01
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Directory of Open Access Journals (Sweden)
Kang Su Cho
Full Text Available To investigate whether skin-to-stone distance (SSD, which remains controversial in patients with ureter stones, can be a predicting factor for one session success following extracorporeal shock wave lithotripsy (ESWL in patients with upper ureter stones.We retrospectively reviewed the medical records of 1,519 patients who underwent their first ESWL between January 2005 and December 2013. Among these patients, 492 had upper ureter stones that measured 4-20 mm and were eligible for our analyses. Maximal stone length, mean stone density (HU, and SSD were determined on pretreatment non-contrast computed tomography (NCCT. For subgroup analyses, patients were divided into four groups. Group 1 consisted of patients with SSD<25th percentile, group 2 consisted of patients with SSD in the 25th to 50th percentile, group 3 patients had SSD in the 50th to 75th percentile, and group 4 patients had SSD≥75th percentile.In analyses of group 2 patients versus others, there were no statistical differences in mean age, stone length and density. However, the one session success rate in group 2 was higher than other groups (77.9% vs. 67.0%; P = 0.032. The multivariate logistic regression model revealed that shorter stone length, lower stone density, and the group 2 SSD were positive predictors for successful outcomes in ESWL. Using the Bayesian model-averaging approach, longer stone length, lower stone density, and group 2 SSD can be also positive predictors for successful outcomes following ESWL.Our data indicate that a group 2 SSD of approximately 10 cm is a positive predictor for success following ESWL.
Albert, Jim
2009-01-01
There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry. Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The earl
A Hierarchical Dispatch Structure for Distribution Network Pricing
Yuan, Zhao; Hesamzadeh, Mohammad Reza
2015-01-01
This paper presents a hierarchical dispatch structure for efficient distribution network pricing. The dispatch coordination problem in the context of hierarchical network operators are addressed. We formulate decentralized generation dispatch into a bilevel optimization problem in which main network operator and the connected distribution network operator optimize their costs in two levels. By using Karush-Kuhn-Tucker conditions and Fortuny-Amat McCarl linearization, the bilevel optimization ...
Bayesian data analysis for newcomers.
Kruschke, John K; Liddell, Torrin M
2018-02-01
This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.
Stability of glassy hierarchical networks
Zamani, M.; Camargo-Forero, L.; Vicsek, T.
2018-02-01
The structure of interactions in most animal and human societies can be best represented by complex hierarchical networks. In order to maintain close-to-optimal function both stability and adaptability are necessary. Here we investigate the stability of hierarchical networks that emerge from the simulations of an organization type with an efficiency function reminiscent of the Hamiltonian of spin glasses. Using this quantitative approach we find a number of expected (from everyday observations) and highly non-trivial results for the obtained locally optimal networks, including, for example: (i) stability increases with growing efficiency and level of hierarchy; (ii) the same perturbation results in a larger change for more efficient states; (iii) networks with a lower level of hierarchy become more efficient after perturbation; (iv) due to the huge number of possible optimal states only a small fraction of them exhibit resilience and, finally, (v) ‘attacks’ targeting the nodes selectively (regarding their position in the hierarchy) can result in paradoxical outcomes.
Noncausal Bayesian Vector Autoregression
DEFF Research Database (Denmark)
Lanne, Markku; Luoto, Jani
We propose a Bayesian inferential procedure for the noncausal vector autoregressive (VAR) model that is capable of capturing nonlinearities and incorporating effects of missing variables. In particular, we devise a fast and reliable posterior simulator that yields the predictive distribution...
Statistics: a Bayesian perspective
National Research Council Canada - National Science Library
Berry, Donald A
1996-01-01
...: it is the only introductory textbook based on Bayesian ideas, it combines concepts and methods, it presents statistics as a means of integrating data into the significant process, it develops ideas...
Fox, Gerardus J.A.; van den Berg, Stéphanie Martine; Veldkamp, Bernard P.; Irwing, P.; Booth, T.; Hughes, D.
2015-01-01
In educational and psychological studies, psychometric methods are involved in the measurement of constructs, and in constructing and validating measurement instruments. Assessment results are typically used to measure student proficiency levels and test characteristics. Recently, Bayesian item
Bayesian estimation in homodyne interferometry
International Nuclear Information System (INIS)
Olivares, Stefano; Paris, Matteo G A
2009-01-01
We address phase-shift estimation by means of squeezed vacuum probe and homodyne detection. We analyse Bayesian estimator, which is known to asymptotically saturate the classical Cramer-Rao bound to the variance, and discuss convergence looking at the a posteriori distribution as the number of measurements increases. We also suggest two feasible adaptive methods, acting on the squeezing parameter and/or the homodyne local oscillator phase, which allow us to optimize homodyne detection and approach the ultimate bound to precision imposed by the quantum Cramer-Rao theorem. The performances of our two-step methods are investigated by means of Monte Carlo simulated experiments with a small number of homodyne data, thus giving a quantitative meaning to the notion of asymptotic optimality.
Bayesian Networks An Introduction
Koski, Timo
2009-01-01
Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include:.: An introduction to Dirichlet Distribution, Exponential Families and their applications.; A detailed description of learni
Discriminative Bayesian Dictionary Learning for Classification.
Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal
2016-12-01
We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.
Compromise decision support problems for hierarchical design involving uncertainty
Vadde, S.; Allen, J. K.; Mistree, F.
1994-08-01
In this paper an extension to the traditional compromise Decision Support Problem (DSP) formulation is presented. Bayesian statistics is used in the formulation to model uncertainties associated with the information being used. In an earlier paper a compromise DSP that accounts for uncertainty using fuzzy set theory was introduced. The Bayesian Decision Support Problem is described in this paper. The method for hierarchical design is demonstrated by using this formulation to design a portal frame. The results are discussed and comparisons are made with those obtained using the fuzzy DSP. Finally, the efficacy of incorporating Bayesian statistics into the traditional compromise DSP formulation is discussed and some pending research issues are described. Our emphasis in this paper is on the method rather than the results per se.
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Bayesian Group Bridge for Bi-level Variable Selection.
Mallick, Himel; Yi, Nengjun
2017-06-01
A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic variables can be divided into multiple groups, with variables in the same group being mechanistically related or statistically correlated. As an alternative to frequentist group variable selection methods, BAGB incorporates structural information among predictors through a group-wise shrinkage prior. Posterior computation proceeds via an efficient MCMC algorithm. In addition to the usual ease-of-interpretation of hierarchical linear models, the Bayesian formulation produces valid standard errors, a feature that is notably absent in the frequentist framework. Empirical evidence of the attractiveness of the method is illustrated by extensive Monte Carlo simulations and real data analysis. Finally, several extensions of this new approach are presented, providing a unified framework for bi-level variable selection in general models with flexible penalties.
Bayesian approach and application to operation safety
International Nuclear Information System (INIS)
Procaccia, H.; Suhner, M.Ch.
2003-01-01
The management of industrial risks requires the development of statistical and probabilistic analyses which use all the available convenient information in order to compensate the insufficient experience feedback in a domain where accidents and incidents remain too scarce to perform a classical statistical frequency analysis. The Bayesian decision approach is well adapted to this problem because it integrates both the expertise and the experience feedback. The domain of knowledge is widen, the forecasting study becomes possible and the decisions-remedial actions are strengthen thanks to risk-cost-benefit optimization analyzes. This book presents the bases of the Bayesian approach and its concrete applications in various industrial domains. After a mathematical presentation of the industrial operation safety concepts and of the Bayesian approach principles, this book treats of some of the problems that can be solved thanks to this approach: softwares reliability, controls linked with the equipments warranty, dynamical updating of databases, expertise modeling and weighting, Bayesian optimization in the domains of maintenance, quality control, tests and design of new equipments. A synthesis of the mathematical formulae used in this approach is given in conclusion. (J.S.)
Catalysis with hierarchical zeolites
DEFF Research Database (Denmark)
Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten
2011-01-01
Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...
DEFF Research Database (Denmark)
Thomadsen, Tommy
2005-01-01
Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... with changing and increasing demands. Two-layer networks consist of one backbone network, which interconnects cluster networks. The clusters consist of nodes and links, which connect the nodes. One node in each cluster is a hub node, and the backbone interconnects the hub nodes of each cluster and thus...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks...
Micromechanics of hierarchical materials
DEFF Research Database (Denmark)
Mishnaevsky, Leon, Jr.
2012-01-01
A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...
Programming with Hierarchical Maps
DEFF Research Database (Denmark)
Ørbæk, Peter
This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-12-05
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-01-01
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Bayesian networks with examples in R
Scutari, Marco
2014-01-01
Introduction. The Discrete Case: Multinomial Bayesian Networks. The Continuous Case: Gaussian Bayesian Networks. More Complex Cases. Theory and Algorithms for Bayesian Networks. Real-World Applications of Bayesian Networks. Appendices. Bibliography.
Bayesian methods in reliability
Sander, P.; Badoux, R.
1991-11-01
The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.
Bootstrap prediction and Bayesian prediction under misspecified models
Fushiki, Tadayoshi
2005-01-01
We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...
CSIR Research Space (South Africa)
Rosman, Benjamin
2016-02-01
Full Text Available Keywords Policy Reuse · Reinforcement Learning · Online Learning · Online Bandits · Transfer Learning · Bayesian Optimisation · Bayesian Decision Theory. 1 Introduction As robots and software agents are becoming more ubiquitous in many applications.... The agent has access to a library of policies (pi1, pi2 and pi3), and has previously experienced a set of task instances (τ1, τ2, τ3, τ4), as well as samples of the utilities of the library policies on these instances (the black dots indicate the means...
Static and dynamic friction of hierarchical surfaces.
Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M
2016-12-01
Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.
Parallel hierarchical radiosity rendering
Energy Technology Data Exchange (ETDEWEB)
Carter, Michael [Iowa State Univ., Ames, IA (United States)
1993-07-01
In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.
Bayesian methods for hackers probabilistic programming and Bayesian inference
Davidson-Pilon, Cameron
2016-01-01
Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...
Bayesian logistic regression analysis
Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.
2012-01-01
In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an
Korattikara, A.; Rathod, V.; Murphy, K.; Welling, M.; Cortes, C.; Lawrence, N.D.; Lee, D.D.; Sugiyama, M.; Garnett, R.
2015-01-01
We consider the problem of Bayesian parameter estimation for deep neural networks, which is important in problem settings where we may have little data, and/ or where we need accurate posterior predictive densities p(y|x, D), e.g., for applications involving bandits or active learning. One simple
Bayesian Geostatistical Design
DEFF Research Database (Denmark)
Diggle, Peter; Lophaven, Søren Nymand
2006-01-01
locations to, or deletion of locations from, an existing design, and prospective design, which consists of choosing positions for a new set of sampling locations. We propose a Bayesian design criterion which focuses on the goal of efficient spatial prediction whilst allowing for the fact that model...
Bayesian statistical inference
Directory of Open Access Journals (Sweden)
Bruno De Finetti
2017-04-01
Full Text Available This work was translated into English and published in the volume: Bruno De Finetti, Induction and Probability, Biblioteca di Statistica, eds. P. Monari, D. Cocchi, Clueb, Bologna, 1993.Bayesian statistical Inference is one of the last fundamental philosophical papers in which we can find the essential De Finetti's approach to the statistical inference.
DEFF Research Database (Denmark)
Hartelius, Karsten; Carstensen, Jens Michael
2003-01-01
A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...
Bayesian Independent Component Analysis
DEFF Research Database (Denmark)
Winther, Ole; Petersen, Kaare Brandt
2007-01-01
In this paper we present an empirical Bayesian framework for independent component analysis. The framework provides estimates of the sources, the mixing matrix and the noise parameters, and is flexible with respect to choice of source prior and the number of sources and sensors. Inside the engine...
Bayesian Exponential Smoothing.
Forbes, C.S.; Snyder, R.D.; Shami, R.S.
2000-01-01
In this paper, a Bayesian version of the exponential smoothing method of forecasting is proposed. The approach is based on a state space model containing only a single source of error for each time interval. This model allows us to improve current practices surrounding exponential smoothing by providing both point predictions and measures of the uncertainty surrounding them.
Heuristics as Bayesian inference under extreme priors.
Parpart, Paula; Jones, Matt; Love, Bradley C
2018-05-01
Simple heuristics are often regarded as tractable decision strategies because they ignore a great deal of information in the input data. One puzzle is why heuristics can outperform full-information models, such as linear regression, which make full use of the available information. These "less-is-more" effects, in which a relatively simpler model outperforms a more complex model, are prevalent throughout cognitive science, and are frequently argued to demonstrate an inherent advantage of simplifying computation or ignoring information. In contrast, we show at the computational level (where algorithmic restrictions are set aside) that it is never optimal to discard information. Through a formal Bayesian analysis, we prove that popular heuristics, such as tallying and take-the-best, are formally equivalent to Bayesian inference under the limit of infinitely strong priors. Varying the strength of the prior yields a continuum of Bayesian models with the heuristics at one end and ordinary regression at the other. Critically, intermediate models perform better across all our simulations, suggesting that down-weighting information with the appropriate prior is preferable to entirely ignoring it. Rather than because of their simplicity, our analyses suggest heuristics perform well because they implement strong priors that approximate the actual structure of the environment. We end by considering how new heuristics could be derived by infinitely strengthening the priors of other Bayesian models. These formal results have implications for work in psychology, machine learning and economics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Approximate Bayesian evaluations of measurement uncertainty
Possolo, Antonio; Bodnar, Olha
2018-04-01
The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.
Neutrosophic Hierarchical Clustering Algoritms
Directory of Open Access Journals (Sweden)
Rıdvan Şahin
2014-03-01
Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.
Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...
Hierarchical modeling of active materials
International Nuclear Information System (INIS)
Taya, Minoru
2003-01-01
Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)
Fast and accurate Bayesian model criticism and conflict diagnostics using R-INLA
Ferkingstad, Egil; Held, Leonhard; Rue, Haavard
2017-01-01
. Usually, a Bayesian hierarchical model incorporates a grouping of the individual data points, as, for example, with individuals in repeated measurement data. In such cases, the following question arises: Are any of the groups “outliers,” or in conflict
Can natural selection encode Bayesian priors?
Ramírez, Juan Camilo; Marshall, James A R
2017-08-07
The evolutionary success of many organisms depends on their ability to make decisions based on estimates of the state of their environment (e.g., predation risk) from uncertain information. These decision problems have optimal solutions and individuals in nature are expected to evolve the behavioural mechanisms to make decisions as if using the optimal solutions. Bayesian inference is the optimal method to produce estimates from uncertain data, thus natural selection is expected to favour individuals with the behavioural mechanisms to make decisions as if they were computing Bayesian estimates in typically-experienced environments, although this does not necessarily imply that favoured decision-makers do perform Bayesian computations exactly. Each individual should evolve to behave as if updating a prior estimate of the unknown environment variable to a posterior estimate as it collects evidence. The prior estimate represents the decision-maker's default belief regarding the environment variable, i.e., the individual's default 'worldview' of the environment. This default belief has been hypothesised to be shaped by natural selection and represent the environment experienced by the individual's ancestors. We present an evolutionary model to explore how accurately Bayesian prior estimates can be encoded genetically and shaped by natural selection when decision-makers learn from uncertain information. The model simulates the evolution of a population of individuals that are required to estimate the probability of an event. Every individual has a prior estimate of this probability and collects noisy cues from the environment in order to update its prior belief to a Bayesian posterior estimate with the evidence gained. The prior is inherited and passed on to offspring. Fitness increases with the accuracy of the posterior estimates produced. Simulations show that prior estimates become accurate over evolutionary time. In addition to these 'Bayesian' individuals, we also
Fast and accurate Bayesian model criticism and conflict diagnostics using R-INLA
Ferkingstad, Egil
2017-10-16
Bayesian hierarchical models are increasingly popular for realistic modelling and analysis of complex data. This trend is accompanied by the need for flexible, general and computationally efficient methods for model criticism and conflict detection. Usually, a Bayesian hierarchical model incorporates a grouping of the individual data points, as, for example, with individuals in repeated measurement data. In such cases, the following question arises: Are any of the groups “outliers,” or in conflict with the remaining groups? Existing general approaches aiming to answer such questions tend to be extremely computationally demanding when model fitting is based on Markov chain Monte Carlo. We show how group-level model criticism and conflict detection can be carried out quickly and accurately through integrated nested Laplace approximations (INLA). The new method is implemented as a part of the open-source R-INLA package for Bayesian computing (http://r-inla.org).
Nonlinear and non-Gaussian Bayesian based handwriting beautification
Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua
2013-03-01
A framework is proposed in this paper to effectively and efficiently beautify handwriting by means of a novel nonlinear and non-Gaussian Bayesian algorithm. In the proposed framework, format and size of handwriting image are firstly normalized, and then typeface in computer system is applied to optimize vision effect of handwriting. The Bayesian statistics is exploited to characterize the handwriting beautification process as a Bayesian dynamic model. The model parameters to translate, rotate and scale typeface in computer system are controlled by state equation, and the matching optimization between handwriting and transformed typeface is employed by measurement equation. Finally, the new typeface, which is transformed from the original one and gains the best nonlinear and non-Gaussian optimization, is the beautification result of handwriting. Experimental results demonstrate the proposed framework provides a creative handwriting beautification methodology to improve visual acceptance.
Bayesian modeling of ChIP-chip data using latent variables.
Wu, Mingqi
2009-10-26
BACKGROUND: The ChIP-chip technology has been used in a wide range of biomedical studies, such as identification of human transcription factor binding sites, investigation of DNA methylation, and investigation of histone modifications in animals and plants. Various methods have been proposed in the literature for analyzing the ChIP-chip data, such as the sliding window methods, the hidden Markov model-based methods, and Bayesian methods. Although, due to the integrated consideration of uncertainty of the models and model parameters, Bayesian methods can potentially work better than the other two classes of methods, the existing Bayesian methods do not perform satisfactorily. They usually require multiple replicates or some extra experimental information to parametrize the model, and long CPU time due to involving of MCMC simulations. RESULTS: In this paper, we propose a Bayesian latent model for the ChIP-chip data. The new model mainly differs from the existing Bayesian models, such as the joint deconvolution model, the hierarchical gamma mixture model, and the Bayesian hierarchical model, in two respects. Firstly, it works on the difference between the averaged treatment and control samples. This enables the use of a simple model for the data, which avoids the probe-specific effect and the sample (control/treatment) effect. As a consequence, this enables an efficient MCMC simulation of the posterior distribution of the model, and also makes the model more robust to the outliers. Secondly, it models the neighboring dependence of probes by introducing a latent indicator vector. A truncated Poisson prior distribution is assumed for the latent indicator variable, with the rationale being justified at length. CONCLUSION: The Bayesian latent method is successfully applied to real and ten simulated datasets, with comparisons with some of the existing Bayesian methods, hidden Markov model methods, and sliding window methods. The numerical results indicate that the
Hierarchical wave functions revisited
International Nuclear Information System (INIS)
Li Dingping.
1997-11-01
We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)
Hierarchical Porous Structures
Energy Technology Data Exchange (ETDEWEB)
Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-07
Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.
Directory of Open Access Journals (Sweden)
Daniel Sofron
2015-05-01
Full Text Available This paper is focused on the hierarchical perspective, one of the methods for representing space that was used before the discovery of the Renaissance linear perspective. The hierarchical perspective has a more or less pronounced scientific character and its study offers us a clear image of the way the representatives of the cultures that developed it used to perceive the sensitive reality. This type of perspective is an original method of representing three-dimensional space on a flat surface, which characterises the art of Ancient Egypt and much of the art of the Middle Ages, being identified in the Eastern European Byzantine art, as well as in the Western European Pre-Romanesque and Romanesque art. At the same time, the hierarchical perspective is also present in naive painting and infantile drawing. Reminiscences of this method can be recognised also in the works of some precursors of the Italian Renaissance. The hierarchical perspective can be viewed as a subjective ranking criterion, according to which the elements are visually represented by taking into account their relevance within the image while perception is ignored. This paper aims to show how the main objective of the artists of those times was not to faithfully represent the objective reality, but rather to emphasize the essence of the world and its perennial aspects. This may represent a possible explanation for the refusal of perspective in the Egyptian, Romanesque and Byzantine painting, characterised by a marked two-dimensionality.
Risk-sensitivity in Bayesian sensorimotor integration.
Directory of Open Access Journals (Sweden)
Jordi Grau-Moya
Full Text Available Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.
Probability and Bayesian statistics
1987-01-01
This book contains selected and refereed contributions to the "Inter national Symposium on Probability and Bayesian Statistics" which was orga nized to celebrate the 80th birthday of Professor Bruno de Finetti at his birthplace Innsbruck in Austria. Since Professor de Finetti died in 1985 the symposium was dedicated to the memory of Bruno de Finetti and took place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa pers are published especially by the relationship to Bruno de Finetti's scientific work. The evolution of stochastics shows growing importance of probability as coherent assessment of numerical values as degrees of believe in certain events. This is the basis for Bayesian inference in the sense of modern statistics. The contributions in this volume cover a broad spectrum ranging from foundations of probability across psychological aspects of formulating sub jective probability statements, abstract measure theoretical considerations, contributions to theoretical statistics an...
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel N
2012-01-01
Many networks of scientific interest naturally decompose into clusters or communities with comparatively fewer external than internal links; however, current Bayesian models of network communities do not exert this intuitive notion of communities. We formulate a nonparametric Bayesian model...... for community detection consistent with an intuitive definition of communities and present a Markov chain Monte Carlo procedure for inferring the community structure. A Matlab toolbox with the proposed inference procedure is available for download. On synthetic and real networks, our model detects communities...... consistent with ground truth, and on real networks, it outperforms existing approaches in predicting missing links. This suggests that community structure is an important structural property of networks that should be explicitly modeled....
Approximate Bayesian recursive estimation
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav
2014-01-01
Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf
DEFF Research Database (Denmark)
Antoniou, Constantinos; Harrison, Glenn W.; Lau, Morten I.
2015-01-01
A large literature suggests that many individuals do not apply Bayes’ Rule when making decisions that depend on them correctly pooling prior information and sample data. We replicate and extend a classic experimental study of Bayesian updating from psychology, employing the methods of experimenta...... economics, with careful controls for the confounding effects of risk aversion. Our results show that risk aversion significantly alters inferences on deviations from Bayes’ Rule....
Energy Technology Data Exchange (ETDEWEB)
Andrews, Stephen A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sigeti, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-15
These are a set of slides about Bayesian hypothesis testing, where many hypotheses are tested. The conclusions are the following: The value of the Bayes factor obtained when using the median of the posterior marginal is almost the minimum value of the Bayes factor. The value of τ^{2} which minimizes the Bayes factor is a reasonable choice for this parameter. This allows a likelihood ratio to be computed with is the least favorable to H_{0}.
Introduction to Bayesian statistics
Koch, Karl-Rudolf
2007-01-01
This book presents Bayes' theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters. It does so in a simple manner that is easy to comprehend. The book compares traditional and Bayesian methods with the rules of probability presented in a logical way allowing an intuitive understanding of random variables and their probability distributions to be formed.
Bayesian ARTMAP for regression.
Sasu, L M; Andonie, R
2013-10-01
Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cooperated Bayesian algorithm for distributed scheduling problem
Institute of Scientific and Technical Information of China (English)
QIANG Lei; XIAO Tian-yuan
2006-01-01
This paper presents a new distributed Bayesian optimization algorithm (BOA) to overcome the efficiency problem when solving NP scheduling problems.The proposed approach integrates BOA into the co-evolutionary schema,which builds up a concurrent computing environment.A new search strategy is also introduced for local optimization process.It integrates the reinforcement learning(RL) mechanism into the BOA search processes,and then uses the mixed probability information from BOA (post-probability) and RL (pre-probability) to enhance the cooperation between different local controllers,which improves the optimization ability of the algorithm.The experiment shows that the new algorithm does better in both optimization (2.2%) and convergence (11.7%),compared with classic BOA.
Hierarchical species distribution models
Hefley, Trevor J.; Hooten, Mevin B.
2016-01-01
Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.
Bayesian models for astrophysical data using R, JAGS, Python, and Stan
Hilbe, Joseph M; Ishida, Emille E O
2017-01-01
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.
Hierarchically Structured Electrospun Fibers
2013-01-07
in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin
Bayesian analysis in plant pathology.
Mila, A L; Carriquiry, A L
2004-09-01
ABSTRACT Bayesian methods are currently much discussed and applied in several disciplines from molecular biology to engineering. Bayesian inference is the process of fitting a probability model to a set of data and summarizing the results via probability distributions on the parameters of the model and unobserved quantities such as predictions for new observations. In this paper, after a short introduction of Bayesian inference, we present the basic features of Bayesian methodology using examples from sequencing genomic fragments and analyzing microarray gene-expressing levels, reconstructing disease maps, and designing experiments.
Directory of Open Access Journals (Sweden)
Markus Krauss
Full Text Available Interindividual variability in anatomical and physiological properties results in significant differences in drug pharmacokinetics. The consideration of such pharmacokinetic variability supports optimal drug efficacy and safety for each single individual, e.g. by identification of individual-specific dosings. One clear objective in clinical drug development is therefore a thorough characterization of the physiological sources of interindividual variability. In this work, we present a Bayesian population physiologically-based pharmacokinetic (PBPK approach for the mechanistically and physiologically realistic identification of interindividual variability. The consideration of a generic and highly detailed mechanistic PBPK model structure enables the integration of large amounts of prior physiological knowledge, which is then updated with new experimental data in a Bayesian framework. A covariate model integrates known relationships of physiological parameters to age, gender and body height. We further provide a framework for estimation of the a posteriori parameter dependency structure at the population level. The approach is demonstrated considering a cohort of healthy individuals and theophylline as an application example. The variability and co-variability of physiological parameters are specified within the population; respectively. Significant correlations are identified between population parameters and are applied for individual- and population-specific visual predictive checks of the pharmacokinetic behavior, which leads to improved results compared to present population approaches. In the future, the integration of a generic PBPK model into an hierarchical approach allows for extrapolations to other populations or drugs, while the Bayesian paradigm allows for an iterative application of the approach and thereby a continuous updating of physiological knowledge with new data. This will facilitate decision making e.g. from preclinical to
Hierarchical video summarization
Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.
1998-12-01
We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.
Hierarchically Structured Electrospun Fibers
Directory of Open Access Journals (Sweden)
Nicole E. Zander
2013-01-01
Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.
Hierarchical control of a nuclear reactor using uncertain dynamics techniques
International Nuclear Information System (INIS)
Rovere, L.A.; Otaduy, P.J.; Brittain, C.R.; Perez, R.B.
1988-01-01
Recent advances in the nonlinear optimal control area are opening new possibilities towards its implementation in process control. Algorithms for multivariate control, hierarchical decomposition, parameter tracking, model uncertainties actuator saturation effects and physical limits to state variables can be implemented on the basis of a consistent mathematical formulation. In this paper, good agreement is shown between a centralized and a hierarchical implementation of a controller for a hypothetical nuclear power plant subject to multiple demands. The performance of the hierarchical distributed system in the presence of localized subsystem failures is analyzed. 4 refs., 13 figs
Hierarchical prisoner’s dilemma in hierarchical game for resource competition
Fujimoto, Yuma; Sagawa, Takahiro; Kaneko, Kunihiko
2017-07-01
Dilemmas in cooperation are one of the major concerns in game theory. In a public goods game, each individual cooperates by paying a cost or defecting without paying it, and receives a reward from the group out of the collected cost. Thus, defecting is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individuals also play games. To study such a multi-level game, we introduce a hierarchical game in which multiple groups compete for limited resources by utilizing the collected cost in each group, where the power to appropriate resources increases with the population of the group. Analyzing this hierarchical game, we found a hierarchical prisoner’s dilemma, in which groups choose the defecting policy (say, armament) as a Nash strategy to optimize each group’s benefit, while cooperation optimizes the total benefit. On the other hand, for each individual, refusing to pay the cost (say, tax) is a Nash strategy, which turns out to be a cooperation policy for the group, thus leading to a hierarchical dilemma. Here the group reward increases with the group size. However, we find that there exists an optimal group size that maximizes the individual payoff. Furthermore, when the population asymmetry between two groups is large, the smaller group will choose a cooperation policy (say, disarmament) to avoid excessive response from the larger group, and the prisoner’s dilemma between the groups is resolved. Accordingly, the relevance of this hierarchical game on policy selection in society and the optimal size of human or animal groups are discussed.
Directory of Open Access Journals (Sweden)
Rafael Piatti Oiticica de Paiva
2012-01-01
Full Text Available Neste trabalho apresenta-se um modelo de otimização para o planejamento agregado da produção em usinas cooperadas do setor sucroenergético. Esta modelagem considera a relação hierárquica existente entre o planejamento anual da cooperativa e o planejamento tático de safra das usinas cooperadas. No nível de decisão da cooperativa, o modelo indica a meta de produção de cada usina e define a política de estocagem e de atendimento da demanda. No nível de decisão de uma usina cooperada, o modelo possibilita definir a quantidade de cana-de-açúcar colhida, a quantidade transportada por prestador de serviço, a seleção dos processos de produção de açúcar, álcool, melaço e energia elétrica. Para resolver os modelos de programação linear e programação inteira mista envolvidos, utilizou-se uma linguagem de modelagem algébrica e um software de última geração de programação matemática. Resultados computacionais obtidos em estudo de caso são apresentados como forma de ilustrar e validar a aplicação.The main concern of this work is related to the presentation of an aggregate production planning model of a cooperative society of sugar and alcohol milling companies. This mathematical model is based on a hierarchical approach between the annual planning problem of the cooperative and the tactical planning horizon of the sugarcane mills. At the cooperative level, the main questions are related to the allocation of production goals to each mill and the management of inventory and dynamic demands. At the milling companies' level, a process selection model aims at helping the decision makers to determine the following: quantity of sugarcane crushed; selection of sugarcane suppliers; selection of sugarcane transport system; and selection of industrial processes used in sugar, alcohol, molasses and energy production. In order to solve the linear and mixed integer mathematical models involved, a modeling language with an
Bayesian inference in processing experimental data: principles and basic applications
International Nuclear Information System (INIS)
D'Agostini, G
2003-01-01
This paper introduces general ideas and some basic methods of the Bayesian probability theory applied to physics measurements. Our aim is to make the reader familiar, through examples rather than rigorous formalism, with concepts such as the following: model comparison (including the automatic Ockham's Razor filter provided by the Bayesian approach); parametric inference; quantification of the uncertainty about the value of physical quantities, also taking into account systematic effects; role of marginalization; posterior characterization; predictive distributions; hierarchical modelling and hyperparameters; Gaussian approximation of the posterior and recovery of conventional methods, especially maximum likelihood and chi-square fits under well-defined conditions; conjugate priors, transformation invariance and maximum entropy motivated priors; and Monte Carlo (MC) estimates of expectation, including a short introduction to Markov Chain MC methods
Sparse Bayesian Learning for DOA Estimation with Mutual Coupling
Directory of Open Access Journals (Sweden)
Jisheng Dai
2015-10-01
Full Text Available Sparse Bayesian learning (SBL has given renewed interest to the problem of direction-of-arrival (DOA estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs. Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.
Bayesian nonparametric data analysis
Müller, Peter; Jara, Alejandro; Hanson, Tim
2015-01-01
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages.
Congdon, Peter
2014-01-01
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU
Foroughi Pour, Ali; Dalton, Lori A
2018-03-21
Many bioinformatics studies aim to identify markers, or features, that can be used to discriminate between distinct groups. In problems where strong individual markers are not available, or where interactions between gene products are of primary interest, it may be necessary to consider combinations of features as a marker family. To this end, recent work proposes a hierarchical Bayesian framework for feature selection that places a prior on the set of features we wish to select and on the label-conditioned feature distribution. While an analytical posterior under Gaussian models with block covariance structures is available, the optimal feature selection algorithm for this model remains intractable since it requires evaluating the posterior over the space of all possible covariance block structures and feature-block assignments. To address this computational barrier, in prior work we proposed a simple suboptimal algorithm, 2MNC-Robust, with robust performance across the space of block structures. Here, we present three new heuristic feature selection algorithms. The proposed algorithms outperform 2MNC-Robust and many other popular feature selection algorithms on synthetic data. In addition, enrichment analysis on real breast cancer, colon cancer, and Leukemia data indicates they also output many of the genes and pathways linked to the cancers under study. Bayesian feature selection is a promising framework for small-sample high-dimensional data, in particular biomarker discovery applications. When applied to cancer data these algorithms outputted many genes already shown to be involved in cancer as well as potentially new biomarkers. Furthermore, one of the proposed algorithms, SPM, outputs blocks of heavily correlated genes, particularly useful for studying gene interactions and gene networks.
Bayesian Age-Period-Cohort Modeling and Prediction - BAMP
Directory of Open Access Journals (Sweden)
Volker J. Schmid
2007-10-01
Full Text Available The software package BAMP provides a method of analyzing incidence or mortality data on the Lexis diagram, using a Bayesian version of an age-period-cohort model. A hierarchical model is assumed with a binomial model in the first-stage. As smoothing priors for the age, period and cohort parameters random walks of first and second order, with and without an additional unstructured component are available. Unstructured heterogeneity can also be included in the model. In order to evaluate the model fit, posterior deviance, DIC and predictive deviances are computed. By projecting the random walk prior into the future, future death rates can be predicted.
Inference in hybrid Bayesian networks
DEFF Research Database (Denmark)
Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2009-01-01
Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....
Searching Algorithm Using Bayesian Updates
Caudle, Kyle
2010-01-01
In late October 1967, the USS Scorpion was lost at sea, somewhere between the Azores and Norfolk Virginia. Dr. Craven of the U.S. Navy's Special Projects Division is credited with using Bayesian Search Theory to locate the submarine. Bayesian Search Theory is a straightforward and interesting application of Bayes' theorem which involves searching…
Bayesian Data Analysis (lecture 2)
CERN. Geneva
2018-01-01
framework but we will also go into more detail and discuss for example the role of the prior. The second part of the lecture will cover further examples and applications that heavily rely on the bayesian approach, as well as some computational tools needed to perform a bayesian analysis.
Bayesian Data Analysis (lecture 1)
CERN. Geneva
2018-01-01
framework but we will also go into more detail and discuss for example the role of the prior. The second part of the lecture will cover further examples and applications that heavily rely on the bayesian approach, as well as some computational tools needed to perform a bayesian analysis.
The Bayesian Covariance Lasso.
Khondker, Zakaria S; Zhu, Hongtu; Chu, Haitao; Lin, Weili; Ibrahim, Joseph G
2013-04-01
Estimation of sparse covariance matrices and their inverse subject to positive definiteness constraints has drawn a lot of attention in recent years. The abundance of high-dimensional data, where the sample size ( n ) is less than the dimension ( d ), requires shrinkage estimation methods since the maximum likelihood estimator is not positive definite in this case. Furthermore, when n is larger than d but not sufficiently larger, shrinkage estimation is more stable than maximum likelihood as it reduces the condition number of the precision matrix. Frequentist methods have utilized penalized likelihood methods, whereas Bayesian approaches rely on matrix decompositions or Wishart priors for shrinkage. In this paper we propose a new method, called the Bayesian Covariance Lasso (BCLASSO), for the shrinkage estimation of a precision (covariance) matrix. We consider a class of priors for the precision matrix that leads to the popular frequentist penalties as special cases, develop a Bayes estimator for the precision matrix, and propose an efficient sampling scheme that does not precalculate boundaries for positive definiteness. The proposed method is permutation invariant and performs shrinkage and estimation simultaneously for non-full rank data. Simulations show that the proposed BCLASSO performs similarly as frequentist methods for non-full rank data.
Bayesian dynamic mediation analysis.
Huang, Jing; Yuan, Ying
2017-12-01
Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Approximate Bayesian computation.
Directory of Open Access Journals (Sweden)
Mikael Sunnåker
Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Bayesian Inference on Gravitational Waves
Directory of Open Access Journals (Sweden)
Asad Ali
2015-12-01
Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Context updates are hierarchical
Directory of Open Access Journals (Sweden)
Anton Karl Ingason
2016-10-01
Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.
On local optima in learning bayesian networks
DEFF Research Database (Denmark)
Dalgaard, Jens; Kocka, Tomas; Pena, Jose
2003-01-01
This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...... is set at maximum, KES corresponds to the greedy equivalence search algorithm (GES). When greediness is kept at minimum, we prove that under mild assumptions KES asymptotically returns any inclusion optimal BN with nonzero probability. Experimental results for both synthetic and real data are reported...
Structure-based bayesian sparse reconstruction
Quadeer, Ahmed Abdul
2012-12-01
Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is very low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at high sparsity. © 1991-2012 IEEE.
Personalized Audio Systems - a Bayesian Approach
DEFF Research Database (Denmark)
Nielsen, Jens Brehm; Jensen, Bjørn Sand; Hansen, Toke Jansen
2013-01-01
Modern audio systems are typically equipped with several user-adjustable parameters unfamiliar to most users listening to the system. To obtain the best possible setting, the user is forced into multi-parameter optimization with respect to the users's own objective and preference. To address this......, the present paper presents a general inter-active framework for personalization of such audio systems. The framework builds on Bayesian Gaussian process regression in which a model of the users's objective function is updated sequentially. The parameter setting to be evaluated in a given trial is selected...
An analysis of the Bayesian track labelling problem
Aoki, E.H.; Boers, Y.; Svensson, Lennart; Mandal, Pranab K.; Bagchi, Arunabha
In multi-target tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature, but its exact mathematical formulation, in terms of Bayesian statistics, has not been yet looked at in detail. Doing so, however, may help us to understand how Bayes-optimal
Noise enhances information transfer in hierarchical networks.
Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A
2013-01-01
We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.
Borsboom, D.; Haig, B.D.
2013-01-01
Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science
Hierarchical quark mass matrices
International Nuclear Information System (INIS)
Rasin, A.
1998-02-01
I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)
Hierarchical partial order ranking
International Nuclear Information System (INIS)
Carlsen, Lars
2008-01-01
Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters
Protein construct storage: Bayesian variable selection and prediction with mixtures.
Clyde, M A; Parmigiani, G
1998-07-01
Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.
Hierarchical Fiber Structures Made by Electrospinning Polymers
Reneker, Darrell H.
2009-03-01
A filter for water purification that is very thin, with small interstices and high surface area per unit mass, can be made with nanofibers. The mechanical strength of a very thin sheet of nanofibers is not great enough to withstand the pressure drop of the fluid flowing through. If the sheet of nanofibers is made thicker, the strength will increase, but the flow will be reduced to an impractical level. An optimized filter can be made with nanometer scale structures supported on micron scale structures, which are in turn supported on millimeter scale structures. This leads to a durable hierarchical structure to optimize the filtration efficiency with a minimum amount of material. Buckling coils,ootnotetextTao Han, Darrell H Reneker, Alexander L. Yarin, Polymer, Volume 48, issue 20 (September 21, 2007), p. 6064-6076. electrical bending coilsootnotetextDarrell H. Reneker and Alexander L. Yarin, Polymer, Volume 49, Issue 10 (2008) Pages 2387-2425, DOI:10.1016/j.polymer.2008.02.002. Feature Article. and pendulum coilsootnotetextT. Han, D.H. Reneker, A.L. Yarin, Polymer, Volume 49, (2008) Pages 2160-2169, doi:10.1016/jpolymer.2008.01.0487878. spanning dimensions from a few microns to a few centimeters can be collected from a single jet by controlling the position and motion of a collector. Attractive routes to the design and construction of hierarchical structures for filtration are based on nanofibers supported on small coils that are in turn supported on larger coils, which are supported on even larger overlapping coils. ``Such top-down'' hierarchical structures are easy to make by electrospinning. In one example, a thin hierarchical structure was made, with a high surface area and small interstices, having an open area of over 50%, with the thinnest fibers supported at least every 15 microns.
Nested and Hierarchical Archimax copulas
Hofert, Marius; Huser, Raphaë l; Prasad, Avinash
2017-01-01
The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.
Nested and Hierarchical Archimax copulas
Hofert, Marius
2017-07-03
The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.
International Nuclear Information System (INIS)
Rajabalinejad, M.
2010-01-01
To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.
A Bayesian Model of Biases in Artificial Language Learning: The Case of a Word-Order Universal
Culbertson, Jennifer; Smolensky, Paul
2012-01-01
In this article, we develop a hierarchical Bayesian model of learning in a general type of artificial language-learning experiment in which learners are exposed to a mixture of grammars representing the variation present in real learners' input, particularly at times of language change. The modeling goal is to formalize and quantify hypothesized…
Book review: Bayesian analysis for population ecology
Link, William A.
2011-01-01
Brian Dennis described the field of ecology as “fertile, uncolonized ground for Bayesian ideas.” He continued: “The Bayesian propagule has arrived at the shore. Ecologists need to think long and hard about the consequences of a Bayesian ecology. The Bayesian outlook is a successful competitor, but is it a weed? I think so.” (Dennis 2004)
Transmutations across hierarchical levels
International Nuclear Information System (INIS)
O'Neill, R.V.
1977-01-01
The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed
Trees and Hierarchical Structures
Haeseler, Arndt
1990-01-01
The "raison d'etre" of hierarchical dustering theory stems from one basic phe nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.
Rationalizing method of replacement intervals by using Bayesian statistics
International Nuclear Information System (INIS)
Kasai, Masao; Notoya, Junichi; Kusakari, Yoshiyuki
2007-01-01
This study represents the formulations for rationalizing the replacement intervals of equipments and/or parts taking into account the probability density functions (PDF) of the parameters of failure distribution functions (FDF) and compares the optimized intervals by our formulations with those by conventional formulations which uses only representative values of the parameters of FDF instead of using these PDFs. The failure data are generated by Monte Carlo simulations since the real failure data can not be available for us. The PDF of PDF parameters are obtained by Bayesian method and the representative values are obtained by likelihood estimation and Bayesian method. We found that the method using PDF by Bayesian method brings longer replacement intervals than one using the representative of the parameters. (author)
Current trends in Bayesian methodology with applications
Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia
2015-01-01
Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on
How hierarchical is language use?
Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.
2012-01-01
It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.
Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro
2018-01-01
In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots
Directory of Open Access Journals (Sweden)
Yoshinobu Hagiwara
2018-03-01
Full Text Available In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA. Object recognition results using convolutional neural network (CNN, hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL, and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.
Bayesian image restoration, using configurations
Thorarinsdottir, Thordis
2006-01-01
In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the re...
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...