WorldWideScience

Sample records for hidden variable theories

  1. A survey of hidden-variables theories

    CERN Document Server

    Belinfante, F J

    1973-01-01

    A Survey of Hidden-Variables Theories is a three-part book on the hidden-variable theories, referred in this book as """"theories of the first kind"""". Part I reviews the motives in developing different types of hidden-variables theories. The quest for determinism led to theories of the first kind; the quest for theories that look like causal theories when applied to spatially separated systems that interacted in the past led to theories of the second kind. Parts II and III further describe the theories of the first kind and second kind, respectively. This book is written to make the literat

  2. Hidden variables and locality in quantum theory

    International Nuclear Information System (INIS)

    Shiva, Vandana.

    1978-12-01

    The status of hidden variables in quantum theory has been debated since the 1920s. The author examines the no-hidden-variable theories of von Neumann, Kochen, Specker and Bell, and finds that they all share one basic assumption: averaging over the hidden variables should reproduce the quantum mechanical probabilities. Von Neumann also makes a linearity assumption, Kochen and Specker require the preservation of certain functional relations between magnitudes, and Bell proposes a locality condition. It has been assumed that the extrastatistical requirements are needed to serve as criteria of success for the introduction of hidden variables because the statistical condition is trivially satisfied, and that Bell's result is based on a locality condition that is physically motivated. The author shows that the requirement of weak locality, which is not physically motivated, is enough to give Bell's result. The proof of Bell's inequality works equally well for any pair of commuting magnitudes satisfying a condition called the degeneracy principle. None of the no-hidden-variable proofs apply to a class of hidden variable theories that are not phase-space reconstructions of quantum mechanics. The author discusses one of these theories, the Bohm-Bub theory, and finds that hidden variable theories that re all the quantum statistics, for single and sequential measurements, must introduce a randomization process for the hidden variables after each measurement. The philosophical significance of this theory lies in the role it can play in solving the conceptual puzzles posed by quantum theory

  3. An impossibility theorem for parameter independent hidden variable theories

    Science.gov (United States)

    Leegwater, Gijs

    2016-05-01

    Recently, Roger Colbeck and Renato Renner (C&R) have claimed that '[n]o extension of quantum theory can have improved predictive power' (Colbeck & Renner, 2011, 2012b). If correct, this is a spectacular impossibility theorem for hidden variable theories, which is more general than the theorems of Bell (1964) and Leggett (2003). Also, C&R have used their claim in attempt to prove that a system's quantum-mechanical wave function is in a one-to-one correspondence with its 'ontic' state (Colbeck & Renner, 2012a). C&R's claim essentially means that in any hidden variable theory that is compatible with quantum-mechanical predictions, probabilities of measurement outcomes are independent of these hidden variables. This makes such variables otiose. On closer inspection, however, the generality and validity of the claim can be contested. First, it is based on an assumption called 'Freedom of Choice'. As the name suggests, this assumption involves the independence of an experimenter's choice of measurement settings. But in the way C&R define this assumption, a no-signalling condition is surreptitiously presupposed, making the assumption less innocent than it sounds. When using this definition, any hidden variable theory violating parameter independence, such as Bohmian Mechanics, is immediately shown to be incompatible with quantum-mechanical predictions. Also, the argument of C&R is hard to follow and their mathematical derivation contains several gaps, some of which cannot be closed in the way they suggest. We shall show that these gaps can be filled. The issue with the 'Freedom of Choice' assumption can be circumvented by explicitly assuming parameter independence. This makes the result less general, but better founded. We then obtain an impossibility theorem for hidden variable theories satisfying parameter independence only. As stated above, such hidden variable theories are impossible in the sense that any supplemental variables have no bearing on outcome probabilities

  4. Low-intensity interference effects and hidden-variable theories

    Energy Technology Data Exchange (ETDEWEB)

    Buonomano, V [Universidade Estadual de Campinas (Brazil). Inst. de Matematica

    1978-05-11

    The double-slit interference experiment and other similar experiments in the low-intensity limit (that is, one photon in the apparatus at a time) are examined in the spirit of Bell's work from the point of view of hidden-variable theories. It is found that there exists a class of hidden-variable theories which disagrees with quantum mechanics for a certain type of interference experiment. A manufactured conceptualization of this class, which is a particle view of interference, is described. An experiment, which appears to be feasible, is proposed to examine this disagreement.

  5. The incompatibility between local hidden variable theories and the ...

    Indian Academy of Sciences (India)

    I discuss in detail the result that the Bell's inequalities derived in the context of local hidden variable theories for discrete quantized observables can be satisfied only if a fundamental conservation law is violated on the average. This result shows that such theories are physically nonviable, and makes the demarcating criteria ...

  6. Quantum interference of probabilities and hidden variable theories

    International Nuclear Information System (INIS)

    Srinivas, M.D.

    1984-01-01

    One of the fundamental contributions of Louis de Broglie, which does not get cited often, has been his analysis of the basic difference between the calculus of the probabilities as predicted by quantum theory and the usual calculus of probabilities - the one employed by most mathematicians, in its standard axiomatised version due to Kolmogorov. This paper is basically devoted to a discussion of the 'quantum interference of probabilities', discovered by de Broglie. In particular, it is shown that it is this feature of the quantum theoretic probabilities which leads to some serious constraints on the possible 'hidden-variable formulations' of quantum mechanics, including the celebrated theorem of Bell. (Auth.)

  7. State-space dimensionality in short-memory hidden-variable theories

    International Nuclear Information System (INIS)

    Montina, Alberto

    2011-01-01

    Recently we have presented a hidden-variable model of measurements for a qubit where the hidden-variable state-space dimension is one-half the quantum-state manifold dimension. The absence of a short memory (Markov) dynamics is the price paid for this dimensional reduction. The conflict between having the Markov property and achieving the dimensional reduction was proved by Montina [A. Montina, Phys. Rev. A 77, 022104 (2008)] using an additional hypothesis of trajectory relaxation. Here we analyze in more detail this hypothesis introducing the concept of invertible process and report a proof that makes clearer the role played by the topology of the hidden-variable space. This is accomplished by requiring suitable properties of regularity of the conditional probability governing the dynamics. In the case of minimal dimension the set of continuous hidden variables is identified with an object living an N-dimensional Hilbert space whose dynamics is described by the Schroedinger equation. A method for generating the economical non-Markovian model for the qubit is also presented.

  8. Interpretation of non-Markovian stochastic Schroedinger equations as a hidden-variable theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2003-01-01

    Do diffusive non-Markovian stochastic Schroedinger equations (SSEs) for open quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A 66, 012108 (2002)] we investigated this question using the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE represents the state the system would be in at that time if a measurement was performed on the environment at that time, and yielded a particular result. However, the linking of solutions at different times to make a trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal (hidden variable) interpretation of quantum mechanics. We find that the noise function z(t) appearing in the non-Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property (beable) of the environment has a definite value z(t) even in the absence of measurement on the environment. The non-Markovian SSE gives the evolution of the state of the system 'conditioned' on this environment hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit

  9. Optimal no-go theorem on hidden-variable predictions of effect expectations

    Science.gov (United States)

    Blass, Andreas; Gurevich, Yuri

    2018-03-01

    No-go theorems prove that, under reasonable assumptions, classical hidden-variable theories cannot reproduce the predictions of quantum mechanics. Traditional no-go theorems proved that hidden-variable theories cannot predict correctly the values of observables. Recent expectation no-go theorems prove that hidden-variable theories cannot predict the expectations of observables. We prove the strongest expectation-focused no-go theorem to date. It is optimal in the sense that the natural weakenings of the assumptions and the natural strengthenings of the conclusion make the theorem fail. The literature on expectation no-go theorems strongly suggests that the expectation-focused approach is more general than the value-focused one. We establish that the expectation approach is not more general.

  10. Locality or non-locality in quantum mechanics: hidden variables without ''spooky action-at-a-distance''

    International Nuclear Information System (INIS)

    Aharonov, Y.; Scully, M.

    2001-01-01

    The folklore notion of the ''Non-Locality of Quantum Mechanics'' is examined from the point of view of hidden-variables theories according to Belinfante's classification in his Survey of Hidden Variables Theories. It is here shown that in the case of EPR, there exist hidden variables theories that successfully reproduce quantum-mechanical predictions, but which are explicitly local. Since such theories do not fall into Belinfante's classification, we propose an expanded classification which includes similar theories, which we term as theories of the ''third'' kind. Causal implications of such theories are explored. (orig.)

  11. Has Bell's inequality a general meaning for hidden-variable theories

    International Nuclear Information System (INIS)

    Lochak, G.

    1976-01-01

    The proof given by J. S. Bell of an inequality between mean values of measurement results which, according to him, would be characteristic of any local hidden-parameter theory, is analyzed. It is shown that Bell's proof is based upon a hypothesis already contained in von Neumann's famous theorem: It consists in the admission that hidden values of parameters must obey the same statistical laws as observed values. This hypothesis contradicts in advance well known and certainly correct statistical relations in measurement results: one must therefore reject the type of theory considered by Bell, and his inequality has no general meaning

  12. Einstein-Bohr controversy and theory of hidden variables

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Miloš V.

    2010-01-01

    Roč. 8, č. 4 (2010), s. 638-645 ISSN 1303-5150 R&D Projects: GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10100502 Keywords : Schroedinger equation * EPR paradox * hidden variables Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.697, year: 2010 http://arxiv.org/abs/1004.3005

  13. Feasibility of testing local hidden variable theories in a Charm factory

    International Nuclear Information System (INIS)

    Li Junli; Qiao Congfeng

    2006-01-01

    It is commonly believed that the local hidden variable theories (LHVTs) can be tested through measuring the Bell inequalities. This scheme, for the massive particle system, was originally set up for the entangled K 0 K 0 pair system from the φ factory. In this paper we show that the J/Ψ→K 0 K 0 process is even more realistic for this goal. We analyze the unique properties of J/Ψ in the detection of basic quantum effects, and find that it is possible to use J/Ψ decay as a test of LHVTs in the future τ-charm factory. Our analyses and conclusions are generally also true for other heavy onium decays

  14. POVMs and hidden variables

    International Nuclear Information System (INIS)

    Stairs, Allen

    2007-01-01

    Recent results by Paul Busch and Adan Cabello claim to show that by appealing to POVMs, non-contextual hidden variables can be ruled out in two dimensions. While the results of Busch and Cabello are mathematically correct, interpretive problems render them problematic as no hidden variable proofs

  15. Research on hidden variable theories: A review of recent progresses

    Energy Technology Data Exchange (ETDEWEB)

    Genovese, Marco [Istituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, 10135 Torino (Italy)]. E-mail: genovese@ien.it

    2005-07-01

    Quantum Mechanics (QM) is one of the pillars of modern physics: an impressive amount of experiments have confirmed this theory and many technological applications are based on it. Nevertheless, at one century since its development, various aspects concerning its very foundations still remain to be clarified. Among them, the transition from a microscopic probabilistic world into a macroscopic deterministic one and quantum non-locality. A possible way out from these problems would be if QM represents a statistical approximation of an unknown deterministic theory. This review is addressed to present the most recent progresses on the studies related to hidden variable theories (HVT), both from an experimental and a theoretical point of view, giving a larger emphasis to results with a direct experimental application. More in details, the first part of the review is a historical introduction to this problem. The Einstein-Podolsky-Rosen argument and the first discussions about HVT are introduced, describing the fundamental Bell's proposal for a general experimental test of every local HVT and the first attempts to realise it. The second part of the review is devoted to elucidate the recent progresses toward a conclusive Bell inequalities experiment obtained with entangled photons and other physical systems. Finally, the last sections are targeted to shortly discuss non-local HVT.

  16. Research on hidden variable theories: A review of recent progresses

    International Nuclear Information System (INIS)

    Genovese, Marco

    2005-01-01

    Quantum Mechanics (QM) is one of the pillars of modern physics: an impressive amount of experiments have confirmed this theory and many technological applications are based on it. Nevertheless, at one century since its development, various aspects concerning its very foundations still remain to be clarified. Among them, the transition from a microscopic probabilistic world into a macroscopic deterministic one and quantum non-locality. A possible way out from these problems would be if QM represents a statistical approximation of an unknown deterministic theory. This review is addressed to present the most recent progresses on the studies related to hidden variable theories (HVT), both from an experimental and a theoretical point of view, giving a larger emphasis to results with a direct experimental application. More in details, the first part of the review is a historical introduction to this problem. The Einstein-Podolsky-Rosen argument and the first discussions about HVT are introduced, describing the fundamental Bell's proposal for a general experimental test of every local HVT and the first attempts to realise it. The second part of the review is devoted to elucidate the recent progresses toward a conclusive Bell inequalities experiment obtained with entangled photons and other physical systems. Finally, the last sections are targeted to shortly discuss non-local HVT

  17. On the significance of bell's inequality for hidden-variable theories

    International Nuclear Information System (INIS)

    De Baere, W.

    1984-01-01

    It is explicitly shown that Bell's derivation of the generalized Bell inequality and its subsequent interpretation depend on an implicit hypothesis concerning the reproducibility of some set of hidden variables in different runs of the same experiment

  18. Generalized inequalities for quantum correlations with hidden variables

    International Nuclear Information System (INIS)

    Vinduska, M.

    1991-01-01

    Renowned inequalities for quantum correlations are generalized for the case when quantum system cannot be described with an absolute independent measure of the probability. Such a formulation appears to be suitable for the formulation of the hidden variables theory in terms of non-Euclidean geometry. 10 refs

  19. Hidden measurements, hidden variables and the volume representation of transition probabilities

    OpenAIRE

    Oliynyk, Todd A.

    2005-01-01

    We construct, for any finite dimension $n$, a new hidden measurement model for quantum mechanics based on representing quantum transition probabilities by the volume of regions in projective Hilbert space. For $n=2$ our model is equivalent to the Aerts sphere model and serves as a generalization of it for dimensions $n \\geq 3$. We also show how to construct a hidden variables scheme based on hidden measurements and we discuss how joint distributions arise in our hidden variables scheme and th...

  20. Compressing the hidden variable space of a qubit

    OpenAIRE

    Montina, Alberto

    2010-01-01

    In previously exhibited hidden variable models of quantum state preparation and measurement, the number of continuous hidden variables describing the actual state of a single realization is never smaller than the quantum state manifold dimension. We introduce a simple model for a qubit whose hidden variable space is one-dimensional, i.e., smaller than the two-dimensional Bloch sphere. The hidden variable probability distributions associated with the quantum states satisfy reasonable criteria ...

  1. A classification of hidden-variable properties

    International Nuclear Information System (INIS)

    Brandenburger, Adam; Yanofsky, Noson

    2008-01-01

    Hidden variables are extra components added to try to banish counterintuitive features of quantum mechanics. We start with a quantum-mechanical model and describe various properties that can be asked of a hidden-variable model. We present six such properties and a Venn diagram of how they are related. With two existence theorems and three no-go theorems (EPR, Bell and Kochen-Specker), we show which properties of empirically equivalent hidden-variable models are possible and which are not. Formally, our treatment relies only on classical probability models, and physical phenomena are used only to motivate which models to choose

  2. Compressing the hidden variable space of a qubit

    International Nuclear Information System (INIS)

    Montina, Alberto

    2011-01-01

    In previously exhibited hidden variable models of quantum state preparation and measurement, the number of continuous hidden variables describing the actual state of single realizations is never smaller than the quantum state manifold dimension. We introduce a simple model for a qubit whose hidden variable space is one-dimensional, i.e., smaller than the two-dimensional Bloch sphere. The hidden variable probability distributions associated with quantum states satisfy reasonable criteria of regularity. Possible generalizations of this shrinking to an N-dimensional Hilbert space are discussed.

  3. Hidden simplicity of gauge theory amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)

    2010-11-07

    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.

  4. Hidden worlds in quantum physics

    CERN Document Server

    Gouesbet, Gérard

    2014-01-01

    The past decade has witnessed a resurgence in research and interest in the areas of quantum computation and entanglement. This new book addresses the hidden worlds or variables of quantum physics. Author Gérard Gouesbet studied and worked with a former student of Louis de Broglie, a pioneer of quantum physics. His presentation emphasizes the history and philosophical foundations of physics, areas that will interest lay readers as well as professionals and advanced undergraduate and graduate students of quantum physics. The introduction is succeeded by chapters offering background on relevant concepts in classical and quantum mechanics, a brief history of causal theories, and examinations of the double solution, pilot wave, and other hidden-variables theories. Additional topics include proofs of possibility and impossibility, contextuality, non-locality, classification of hidden-variables theories, and stochastic quantum mechanics. The final section discusses how to gain a genuine understanding of quantum mec...

  5. Entanglement properties of kaons and tests of hidden-variable models

    International Nuclear Information System (INIS)

    Genovese, M.

    2004-01-01

    In this paper we discuss entanglement properties of neutral kaons systems and their use for testing local realism. In particular, we analyze a Hardy-type scheme [A. Bramon and G. Garbarino, Phys. Rev. Lett. 89, 160401 (2002)] recently suggested for performing a test of hidden-variable theories against standard quantum mechanics. Our result is that this scheme could, in principle, lead to a conclusive test of local realism, but only if higher identification efficiencies than in today's experiments will be reached

  6. About hidden influence of predictor variables: Suppressor and mediator variables

    Directory of Open Access Journals (Sweden)

    Milovanović Boško

    2013-01-01

    Full Text Available In this paper procedure for researching hidden influence of predictor variables in regression models and depicting suppressor variables and mediator variables is shown. It is also shown that detection of suppressor variables and mediator variables could provide refined information about the research problem. As an example for applying this procedure, relation between Atlantic atmospheric centers and air temperature and precipitation amount in Serbia is chosen. [Projekat Ministarstva nauke Republike Srbije, br. 47007

  7. Dimensional reduction in field theory and hidden symmetries in extended supergravity

    International Nuclear Information System (INIS)

    Kremmer, E.

    1985-01-01

    Dimensional reduction in field theories is discussed both in theories which do not include gravity and in gravity theories. In particular, 11-dimensional supergravity and its reduction to 4 dimensions is considered. Hidden symmetries of supergravity with N=8 in 4 dimensions, global E 7 and local SU(8)-invariances in particular are detected. The hidden symmmetries permit to interpret geometrically the scalar fields

  8. Context Tree Estimation in Variable Length Hidden Markov Models

    OpenAIRE

    Dumont, Thierry

    2011-01-01

    We address the issue of context tree estimation in variable length hidden Markov models. We propose an estimator of the context tree of the hidden Markov process which needs no prior upper bound on the depth of the context tree. We prove that the estimator is strongly consistent. This uses information-theoretic mixture inequalities in the spirit of Finesso and Lorenzo(Consistent estimation of the order for Markov and hidden Markov chains(1990)) and E.Gassiat and S.Boucheron (Optimal error exp...

  9. Local models and hidden nonlocality in Quantum Theory

    OpenAIRE

    Guerini, Leonardo

    2014-01-01

    This Master's thesis has two central subjects: the simulation of correlations generated by local measurements on entangled quantum states by local hidden-variables models and the revelation of hidden nonlocality. We present and detail the Werner's local model and the hidden nonlocality of some Werner states of dimension $d\\geq5$, the Gisin-Degorre's local model for a Werner state of dimension $d=2$ and the local model of Hirsch et al. for mixtures of the singlet state and noise, all of them f...

  10. The missing history of Bohm's hidden variables theory: The Ninth Symposium of the Colston Research Society, Bristol, 1957

    Science.gov (United States)

    Kožnjak, Boris

    2018-05-01

    In this paper, I analyze the historical context, scientific and philosophical content, and the implications of the thus far historically largely neglected Ninth Symposium of the Colston Research Society held in Bristol at the beginning of April 1957, the first major international event after World War II gathering eminent physicists and philosophers to discuss the foundational questions of quantum mechanics, in respect to the early reception of the causal quantum theory program mapped and defended by David Bohm during the five years preceding the Symposium. As will be demonstrated, contrary to the almost unanimously negative and even hostile reception of Bohm's ideas on hidden variables in the early 1950s, in the close aftermath of the 1957 Colston Research Symposium Bohm's ideas received a more open-minded and ideologically relaxed critical rehabilitation, in which the Symposium itself played a vital and essential part.

  11. Quantum mechanics and the theories of local hidden variables: an experimental test by measuring the spin correlation function in p-p scattering

    International Nuclear Information System (INIS)

    Lamehi-Rachti, Mohammad.

    1976-01-01

    The Einstein-Podolsky-Rosen paradox is briefly exposed with the Bell theorem on hidden variables and the locality principle. The conditions for an ideal experiment are discussed and the results from γ-γ correlation experiments are given. The principle of an experimental measurement of the spin correlation function predicted by the quantum mechanics theory is derived, new hypotheses to be introduced are discussed. The formula giving the dependence of the counting asymmetry on the spin correlation function, polarimeter analyzing power, and geometric correlation is developed. The principle of a Monte Carlo calculation is also exposed. The experimental device is described with the methods for measuring the subsidiary quantities and experimental results are analyzed [fr

  12. Heisenberg (and Schrödinger, and Pauli) on hidden variables

    Science.gov (United States)

    Bacciagaluppi, Guido; Crull, Elise

    In this paper, we discuss various aspects of Heisenberg's thought on hidden variables in the period 1927-1935. We also compare Heisenberg's approach to others current at the time, specifically that embodied by von Neumann's impossibility proof, but also views expressed mainly in correspondence by Pauli and by Schrödinger. We shall base ourselves mostly on published and unpublished materials that are known but little-studied, among others Heisenberg's own draft response to the EPR paper. Our aim will be not only to clarify Heisenberg's thought on the hidden-variables question, but in part also to clarify how this question was understood more generally at the time.

  13. Exploring inequality violations by classical hidden variables numerically

    International Nuclear Information System (INIS)

    Vongehr, Sascha

    2013-01-01

    There are increasingly suggestions for computer simulations of quantum statistics which try to violate Bell type inequalities via classical, common cause correlations. The Clauser–Horne–Shimony–Holt (CHSH) inequality is very robust. However, we argue that with the Einstein–Podolsky–Rosen setup, the CHSH is inferior to the Bell inequality, although and because the latter must assume anti-correlation of entangled photon singlet states. We simulate how often quantum behavior violates both inequalities, depending on the number of photons. Violating Bell 99% of the time is argued to be an ideal benchmark. We present hidden variables that violate the Bell and CHSH inequalities with 50% probability, and ones which violate Bell 85% of the time when missing 13% anti-correlation. We discuss how to present the quantum correlations to a wide audience and conclude that, when defending against claims of hidden classicality, one should demand numerical simulations and insist on anti-correlation and the full amount of Bell violation. -- Highlights: •The widely assumed superiority of the CHSH fails in the EPR problem. •We simulate Bell type inequalities behavior depending on the number of photons. •The core of Bell’s theorem in the EPR setup is introduced in a simple way understandable to a wide audience. •We present hidden variables that violate both inequalities with 50% probability. •Algorithms have been supplied in form of Mathematica programs

  14. Higher-dimensional black holes: hidden symmetries and separation of variables

    International Nuclear Information System (INIS)

    Frolov, Valeri P; Kubiznak, David

    2008-01-01

    In this paper, we discuss hidden symmetries in rotating black hole spacetimes. We start with an extended introduction which mainly summarizes results on hidden symmetries in four dimensions and introduces Killing and Killing-Yano tensors, objects responsible for hidden symmetries. We also demonstrate how starting with a principal CKY tensor (that is a closed non-degenerate conformal Killing-Yano 2-form) in 4D flat spacetime one can 'generate' the 4D Kerr-NUT-(A)dS solution and its hidden symmetries. After this we consider higher-dimensional Kerr-NUT-(A)dS metrics and demonstrate that they possess a principal CKY tensor which allows one to generate the whole tower of Killing-Yano and Killing tensors. These symmetries imply complete integrability of geodesic equations and complete separation of variables for the Hamilton-Jacobi, Klein-Gordon and Dirac equations in the general Kerr-NUT-(A)dS metrics

  15. Sociology of Hidden Curriculum

    Directory of Open Access Journals (Sweden)

    Alireza Moradi

    2017-06-01

    Full Text Available This paper reviews the concept of hidden curriculum in the sociological theories and wants to explain sociological aspects of formation of hidden curriculum. The main question concentrates on the theoretical approaches in which hidden curriculum is explained sociologically.For this purpose it was applied qualitative research methodology. The relevant data include various sociological concepts and theories of hidden curriculum collected by the documentary method. The study showed a set of rules, procedures, relationships and social structure of education have decisive role in the formation of hidden curriculum. A hidden curriculum reinforces by existed inequalities among learners (based on their social classes or statues. There is, in fact, a balance between the learner's "knowledge receptions" with their "inequality proportion".The hidden curriculum studies from different major sociological theories such as Functionalism, Marxism and critical theory, Symbolic internationalism and Feminism. According to the functionalist perspective a hidden curriculum has a social function because it transmits social values. Marxists and critical thinkers correlate between hidden curriculum and the totality of social structure. They depicts that curriculum prepares learners for the exploitation in the work markets. Symbolic internationalism rejects absolute hegemony of hidden curriculum on education and looks to the socialization as a result of interaction between learner and instructor. Feminism theory also considers hidden curriculum as a vehicle which legitimates gender stereotypes.

  16. Hidden variable interpretation of spontaneous localization theory

    Energy Technology Data Exchange (ETDEWEB)

    Bedingham, Daniel J, E-mail: d.bedingham@imperial.ac.uk [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2011-07-08

    The spontaneous localization theory of Ghirardi, Rimini, and Weber (GRW) is a theory in which wavepacket reduction is treated as a genuine physical process. Here it is shown that the mathematical formalism of GRW can be given an interpretation in terms of an evolving distribution of particles on configuration space similar to Bohmian mechanics (BM). The GRW wavefunction acts as a pilot wave for the set of particles. In addition, a continuous stream of noisy information concerning the precise whereabouts of the particles must be specified. Nonlinear filtering techniques are used to determine the dynamics of the distribution of particles conditional on this noisy information and consistency with the GRW wavefunction dynamics is demonstrated. Viewing this development as a hybrid BM-GRW theory, it is argued that, besides helping to clarify the relationship between the GRW theory and BM, its merits make it worth considering in its own right.

  17. On E(11) of M-theory: 1. Hidden Symmetries of Maximal Supergravities and Lego of Dynkin Diagrams

    International Nuclear Information System (INIS)

    Nurmagambetov, A.J.

    2007-01-01

    We review a graphical way of classifying hidden symmetry algebras and groups of D=11, 10 maximal supergravities in terms of Dynkin diagrams, the shapes of which are determined by the bosonic field content of supergravities supermultiplets. The approach we follow is tightly related to the West's conjecture on a hidden symmetry of M-theory, and we discuss benefits of the approach in compare to other ways of searching for hidden symmetries of String Theory

  18. A non-local hidden-variable model that violates Leggett-type inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Zela, F de [Departamento de Ciencias, Seccion Fisica, Pontificia Universidad Catolica del Peru, Apartado 1761, Lima (Peru)

    2008-12-19

    Recent experiments of Groeblacher et al proved the violation of a Leggett-type inequality that was claimed to be valid for a broad class of non-local hidden-variable theories. The impossibility of constructing a non-local and realistic theory, unless it entails highly counterintuitive features, seems thus to have been experimentally proved. This would bring us close to a definite refutation of realism. Indeed, realism was proved to be also incompatible with locality, according to a series of experiments testing Bell inequalities. The present paper addresses the said experiments of Groeblacher et al and presents an explicit, contextual and realistic, model that reproduces the predictions of quantum mechanics. It thus violates the Leggett-type inequality that was established with the aim of ruling out a supposedly broad class of non-local models. We can thus conclude that plausible contextual, realistic, models are still tenable. This restates the possibility of a future completion of quantum mechanics by a realistic and contextual theory which is not in a class containing only highly counterintuitive models. The class that was ruled out by the experiments of Groeblacher et al is thus proved to be a limited one, arbitrarily separating models that physically belong in the same class.

  19. A non-local hidden-variable model that violates Leggett-type inequalities

    International Nuclear Information System (INIS)

    Zela, F de

    2008-01-01

    Recent experiments of Groeblacher et al proved the violation of a Leggett-type inequality that was claimed to be valid for a broad class of non-local hidden-variable theories. The impossibility of constructing a non-local and realistic theory, unless it entails highly counterintuitive features, seems thus to have been experimentally proved. This would bring us close to a definite refutation of realism. Indeed, realism was proved to be also incompatible with locality, according to a series of experiments testing Bell inequalities. The present paper addresses the said experiments of Groeblacher et al and presents an explicit, contextual and realistic, model that reproduces the predictions of quantum mechanics. It thus violates the Leggett-type inequality that was established with the aim of ruling out a supposedly broad class of non-local models. We can thus conclude that plausible contextual, realistic, models are still tenable. This restates the possibility of a future completion of quantum mechanics by a realistic and contextual theory which is not in a class containing only highly counterintuitive models. The class that was ruled out by the experiments of Groeblacher et al is thus proved to be a limited one, arbitrarily separating models that physically belong in the same class

  20. Hidden Markov latent variable models with multivariate longitudinal data.

    Science.gov (United States)

    Song, Xinyuan; Xia, Yemao; Zhu, Hongtu

    2017-03-01

    Cocaine addiction is chronic and persistent, and has become a major social and health problem in many countries. Existing studies have shown that cocaine addicts often undergo episodic periods of addiction to, moderate dependence on, or swearing off cocaine. Given its reversible feature, cocaine use can be formulated as a stochastic process that transits from one state to another, while the impacts of various factors, such as treatment received and individuals' psychological problems on cocaine use, may vary across states. This article develops a hidden Markov latent variable model to study multivariate longitudinal data concerning cocaine use from a California Civil Addict Program. The proposed model generalizes conventional latent variable models to allow bidirectional transition between cocaine-addiction states and conventional hidden Markov models to allow latent variables and their dynamic interrelationship. We develop a maximum-likelihood approach, along with a Monte Carlo expectation conditional maximization (MCECM) algorithm, to conduct parameter estimation. The asymptotic properties of the parameter estimates and statistics for testing the heterogeneity of model parameters are investigated. The finite sample performance of the proposed methodology is demonstrated by simulation studies. The application to cocaine use study provides insights into the prevention of cocaine use. © 2016, The International Biometric Society.

  1. Hidden gauge symmetry

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.

    1979-01-01

    This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)

  2. New infinite-dimensional hidden symmetries for heterotic string theory

    International Nuclear Information System (INIS)

    Gao Yajun

    2007-01-01

    The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected

  3. Aspects of a representation of quantum theory in terms of classical probability theory by means of integration in Hilbert space

    International Nuclear Information System (INIS)

    Bach, A.

    1981-01-01

    A representation of quantum mechanics in terms of classical probability theory by means of integration in Hilbert space is discussed. This formal hidden-variables representation is analysed in the context of impossibility proofs concerning hidden-variables theories. The structural analogy of this formulation of quantum theory with classical statistical mechanics is used to elucidate the difference between classical mechanics and quantum mechanics. (author)

  4. The incompatibility between local hidden variable theories and the ...

    Indian Academy of Sciences (India)

    Thus, any theory with a different correlation function, like any ... the conservation laws goes to the core of the theories of quantized observables and ... that theories or models allowing perpetual motion are ruled out on first principles.

  5. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M

    2014-01-01

    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  6. Genuine tripartite entangled states with a local hidden-variable model

    International Nuclear Information System (INIS)

    Toth, Geza; Acin, Antonio

    2006-01-01

    We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von Neumann measurement can be described by a local model for these states. We show that some of these states are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner states

  7. The Influence of Entrepreneurship Subject on Students’ Interest in Entrepreneurship by Hidden Curriculum as Intervening Variable

    Directory of Open Access Journals (Sweden)

    Amin Kuncoro

    2016-06-01

    Full Text Available This research aims to know the influence of entrepreneurship subject on students’ interest in entrepreneurship at Institute of Mathaliul Falah (IPMAFA in Pati by hidden curriculum as intervening variable. The research used WarpsPls analysis to test model directly and directly. Samples of the study were 30 Islamic banking students who got entrepreneurship subject and Islamic community development who did not get the entrepreneurship subject. Findings show that the entrepreneurship subject influences students’ interest in entrepreneurship and the second model test results showed that hidden curriculum is not able to become the intervening variable for students’ interest in entrepreneurship subject on students’ interest in entrepreneurship.

  8. Variational Infinite Hidden Conditional Random Fields

    NARCIS (Netherlands)

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja; Ghahramani, Zoubin

    2015-01-01

    Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of

  9. Interferometric Computation Beyond Quantum Theory

    Science.gov (United States)

    Garner, Andrew J. P.

    2018-03-01

    There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that quaternionic quantum theory proves a suitable candidate, whereas box-world does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.

  10. The Hidden Reason Behind Children's Misbehavior.

    Science.gov (United States)

    Nystul, Michael S.

    1986-01-01

    Discusses hidden reason theory based on the assumptions that: (1) the nature of people is positive; (2) a child's most basic psychological need is involvement; and (3) a child has four possible choices in life (good somebody, good nobody, bad somebody, or severely mentally ill.) A three step approach for implementing hidden reason theory is…

  11. A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States

    Science.gov (United States)

    Ryff, Luiz Carlos

    1996-01-01

    A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.

  12. Incremental discovery of hidden structure: Applications in theory of elementary particles

    International Nuclear Information System (INIS)

    Zytkow, J.M.; Fischer, P.J.

    1996-01-01

    Discovering hidden structure is a challenging, universal research task in Physics, Chemistry, Biology, and other disciplines. Not only must the elements of hidden structure be postulated by the discoverer, but they can only be verified by indirect evidence, at the level of observable objects. In this paper we describe a framework for hidden structure discovery, built on a constructive definition of hidden structure. This definition leads to operators that build models of hidden structure step by step, postulating hidden objects, their combinations and properties, reactions described in terms of hidden objects, and mapping between the hidden and the observed structure. We introduce the operator dependency diagram, which shows the order of operator application and model evaluation. Different observational knowledge supports different evaluation criteria, which lead to different search systems with verifiable sequences of operator applications. Isomorph-free structure generation is another issue critical for efficiency of search. We apply our framework in the system GELL-MANN, that hypothesizes hidden structure for elementary particles and we present the results of a large scale search for quark models

  13. Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory

    International Nuclear Information System (INIS)

    Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.; McDonald, Kristian L.

    2008-01-01

    If scale invariance is a classical symmetry then both the Planck scale and the weak scale should emerge as quantum effects. We show that this can be realized in simple scale invariant theories with a hidden sector. The weak/Planck scale hierarchy emerges in the (technically natural) limit in which the hidden sector decouples from the ordinary sector. In this limit, finite corrections to the weak scale are consequently small, while quadratic divergences are absent by virtue of classical scale invariance, so there is no hierarchy problem

  14. A hidden variable in shear transformation zone volume versus Poisson's ratio relation in metallic glasses

    Science.gov (United States)

    Kim, S. Y.; Oh, H. S.; Park, E. S.

    2017-10-01

    Herein, we elucidate a hidden variable in a shear transformation zone (STZ) volume (Ω) versus Poisson's ratio (ν) relation and clarify the correlation between STZ characteristics and the plasticity of metallic glasses (MGs). On the basis of cooperative shear model and atomic stress theories, we carefully formulate Ω as a function of molar volume (Vm) and ν. The twofold trend in Ω and ν is attributed to a relatively large variation of Vm as compared to that of ν as well as an inverse relation between Vm and ν. Indeed, the derived equation reveals that the number of atoms in an STZ instead of Ω is a microstructural characteristic which has a close relationship with plasticity since it reflects the preference of atomistic behaviors between cooperative shearing and the generation of volume strain fluctuation under stress. The results would deepen our understanding of the correlation between microscopic behaviors (STZ activation) and macroscopic properties (plasticity) in MGs and enable a quantitative approach in associating various STZ-related macroscopic behaviors with intrinsic properties of MGs.

  15. Fermion zero modes in the vortex background of a Chern-Simons-Higgs theory with a hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Gustavo [Departamento de Física, FCEYN Universidad de Buenos Aires & IFIBA CONICET,Pabellón 1 Ciudad Universitaria, 1428 Buenos Aires (Argentina); Mohammadi, Azadeh [Departamento de Física, Universidade Federal da Paraíba,58.059-970, Caixa Postal 5.008, João Pessoa, PB (Brazil); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata/IFLP/CICBA,CC 67, 1900 La Plata (Argentina)

    2015-11-06

    In this paper we study a 2+1 dimensional system in which fermions are coupled to the self-dual topological vortex in U(1)×U(1) Chern-Simons theory, where both U(1) gauge symmetries are spontaneously broken. We consider two Abelian Higgs scalars with visible and hidden sectors coupled to a fermionic field through three interaction Lagrangians, where one of them violates the fermion number. Using a fine tuning procedure, we could obtain the number of the fermionic zero modes which is equal to the absolute value of the sum of the vortex numbers in the visible and hidden sectors.

  16. Sharp Contradiction for Local-Hidden-State Model in Quantum Steering

    Science.gov (United States)

    Chen, Jing-Ling; Su, Hong-Yi; Xu, Zhen-Peng; Pati, Arun Kumar

    2016-08-01

    In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.

  17. Discovering Hidden Controlling Parameters using Data Analytics and Dimensional Analysis

    Science.gov (United States)

    Del Rosario, Zachary; Lee, Minyong; Iaccarino, Gianluca

    2017-11-01

    Dimensional Analysis is a powerful tool, one which takes a priori information and produces important simplifications. However, if this a priori information - the list of relevant parameters - is missing a relevant quantity, then the conclusions from Dimensional Analysis will be incorrect. In this work, we present novel conclusions in Dimensional Analysis, which provide a means to detect this failure mode of missing or hidden parameters. These results are based on a restated form of the Buckingham Pi theorem that reveals a ridge function structure underlying all dimensionless physical laws. We leverage this structure by constructing a hypothesis test based on sufficient dimension reduction, allowing for an experimental data-driven detection of hidden parameters. Both theory and examples will be presented, using classical turbulent pipe flow as the working example. Keywords: experimental techniques, dimensional analysis, lurking variables, hidden parameters, buckingham pi, data analysis. First author supported by the NSF GRFP under Grant Number DGE-114747.

  18. Supersymmetry, p-brane duality, and hidden spacetime dimensions

    International Nuclear Information System (INIS)

    Bars, I.

    1996-01-01

    A global superalgebra with 32 supercharges and all possible central extensions is studied in order to extract some general properties of duality and hidden dimensions in a theory that treats p-branes democratically. The maximal number of dimensions is 12, with signature (10,2), containing one space and one time dimension that are hidden from the point of view of perturbative ten-dimensional string theory or its compactifications. When the theory is compactified on R d-1,1 circle-times T c+1,1 with d+c+2=12, there are isometry groups that relate to the hidden dimensions as well as to duality. Their combined intersecting classification schemes provide some properties of nonperturbative states and their couplings. copyright 1996 The American Physical Society

  19. Hidden supersymmetry and Fermion number fractionalization

    International Nuclear Information System (INIS)

    Akhoury, R.

    1985-01-01

    This paper discusses how a hidden supersymmetry of the underlying field theories can be used to interpret and to calculate fermion number fractionalization in different dimensions. This is made possible by relating it to a corresponding Witten index of the hidden supersymmetry. The closely related anomalies in odd dimensions are also discussed

  20. Hidden gauge structure of supersymmetric free differential algebras

    Energy Technology Data Exchange (ETDEWEB)

    Andrianopoli, Laura [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); INFN - Sezione di Torino,Torino (Italy); D’Auria, Riccardo [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Ravera, Lucrezia [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); INFN - Sezione di Torino,Torino (Italy)

    2016-08-16

    The aim of this paper is to clarify the role of the nilpotent fermionic generator Q{sup ′} introduced in http://dx.doi.org/10.1016/0550-3213(82)90376-5 and appearing in the hidden supergroup underlying the free differential algebra (FDA) of D=11 supergravity. We give a physical explanation of its role by looking at the gauge properties of the theory. We find that its presence is necessary, in order that the extra 1-forms of the hidden supergroup give rise to the correct gauge transformations of the p-forms of the FDA. This interpretation is actually valid for any supergravity containing antisymmetric tensor fields, and any supersymmetric FDA can always be traded for a hidden Lie superalgebra containing extra fermionic nilpotent generators. As an interesting example we construct the hidden superalgebra associated with the FDA of N=2, D=7 supergravity. In this case we are able to parametrize the mutually non local 2- and 3-form B{sup (2)} and B{sup (3)} in terms of hidden 1-forms and find that supersymmetry and gauge invariance require in general the presence of two nilpotent fermionic generators in the hidden algebra. We propose that our approach, where all the invariances of the FDA are expressed as Lie derivatives of the p-forms in the hidden supergroup manifold, could be an appropriate framework to discuss theories defined in enlarged versions of superspace recently considered in the literature, such us double field theory and its generalizations.

  1. Context-invariant quasi hidden variable (qHV) modelling of all joint von Neumann measurements for an arbitrary Hilbert space

    International Nuclear Information System (INIS)

    Loubenets, Elena R.

    2015-01-01

    We prove the existence for each Hilbert space of the two new quasi hidden variable (qHV) models, statistically noncontextual and context-invariant, reproducing all the von Neumann joint probabilities via non-negative values of real-valued measures and all the quantum product expectations—via the qHV (classical-like) average of the product of the corresponding random variables. In a context-invariant model, a quantum observable X can be represented by a variety of random variables satisfying the functional condition required in quantum foundations but each of these random variables equivalently models X under all joint von Neumann measurements, regardless of their contexts. The proved existence of this model negates the general opinion that, in terms of random variables, the Hilbert space description of all the joint von Neumann measurements for dimH≥3 can be reproduced only contextually. The existence of a statistically noncontextual qHV model, in particular, implies that every N-partite quantum state admits a local quasi hidden variable model introduced in Loubenets [J. Math. Phys. 53, 022201 (2012)]. The new results of the present paper point also to the generality of the quasi-classical probability model proposed in Loubenets [J. Phys. A: Math. Theor. 45, 185306 (2012)

  2. Pre-quantum mechanics. Introduction to models with hidden variables

    International Nuclear Information System (INIS)

    Grea, J.

    1976-01-01

    Within the context of formalism of hidden variable type, the author considers the models used to describe mechanical systems before the introduction of the quantum model. An account is given of the characteristics of the theoretical models and their relationships with experimental methodology. The models of analytical, pre-ergodic, stochastic and thermodynamic mechanics are studied in succession. At each stage the physical hypothesis is enunciated by postulate corresponding to the type of description of the reality of the model. Starting from this postulate, the physical propositions which are meaningful for the model under consideration are defined and their logical structure is indicated. It is then found that on passing from one level of description to another, one can obtain successively Boolean lattices embedded in lattices of continuous geometric type, which are themselves embedded in Boolean lattices. It is therefore possible to envisage a more detailed description than that given by the quantum lattice and to construct it by analogy. (Auth.)

  3. Naturally light hidden photons in LARGE volume string compactifications

    International Nuclear Information System (INIS)

    Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A.

    2009-09-01

    Extra ''hidden'' U(1) gauge factors are a generic feature of string theory that is of particular phenomenological interest. They can kinetically mix with the Standard Model photon and are thereby accessible to a wide variety of astrophysical and cosmological observations and laboratory experiments. In this paper we investigate the masses and the kinetic mixing of hidden U(1)s in LARGE volume compactifications of string theory. We find that in these scenarios the hidden photons can be naturally light and that their kinetic mixing with the ordinary electromagnetic photon can be of a size interesting for near future experiments and observations. (orig.)

  4. Bell inequalities for continuous-variable measurements

    International Nuclear Information System (INIS)

    He, Q. Y.; Reid, M. D.; Drummond, P. D.; Cavalcanti, E. G.

    2010-01-01

    Tests of local hidden-variable theories using measurements with continuous-variable (CV) outcomes are developed, and a comparison of different methods is presented. As examples, we focus on multipartite entangled Greenberger-Horne-Zeilinger and cluster states. We suggest a physical process that produces the states proposed here, and investigate experiments both with and without binning of the continuous variable. In the former case, the Mermin-Klyshko inequalities can be used directly. For unbinned outcomes, the moment-based Cavalcanti-Foster-Reid-Drummond inequalities are extended to functional inequalities by consideration of arbitrary functions of the measurements at each site. By optimizing these functions, we obtain more robust violations of local hidden-variable theories than with either binning or moments. Recent inequalities based on the algebra of quaternions and octonions are compared with these methods. Since the prime advantage of CV experiments is to provide a route to highly efficient detection via homodyne measurements, we analyze the effect of noise and detection losses in both binned and unbinned cases. The CV moment inequalities with an optimal function have greater robustness to both loss and noise. This could permit a loophole-free test of Bell inequalities.

  5. Inferring topologies of complex networks with hidden variables.

    Science.gov (United States)

    Wu, Xiaoqun; Wang, Weihan; Zheng, Wei Xing

    2012-10-01

    Network topology plays a crucial role in determining a network's intrinsic dynamics and function, thus understanding and modeling the topology of a complex network will lead to greater knowledge of its evolutionary mechanisms and to a better understanding of its behaviors. In the past few years, topology identification of complex networks has received increasing interest and wide attention. Many approaches have been developed for this purpose, including synchronization-based identification, information-theoretic methods, and intelligent optimization algorithms. However, inferring interaction patterns from observed dynamical time series is still challenging, especially in the absence of knowledge of nodal dynamics and in the presence of system noise. The purpose of this work is to present a simple and efficient approach to inferring the topologies of such complex networks. The proposed approach is called "piecewise partial Granger causality." It measures the cause-effect connections of nonlinear time series influenced by hidden variables. One commonly used testing network, two regular networks with a few additional links, and small-world networks are used to evaluate the performance and illustrate the influence of network parameters on the proposed approach. Application to experimental data further demonstrates the validity and robustness of our method.

  6. Learning and inference in a nonequilibrium Ising model with hidden nodes.

    Science.gov (United States)

    Dunn, Benjamin; Roudi, Yasser

    2013-02-01

    We study inference and reconstruction of couplings in a partially observed kinetic Ising model. With hidden spins, calculating the likelihood of a sequence of observed spin configurations requires performing a trace over the configurations of the hidden ones. This, as we show, can be represented as a path integral. Using this representation, we demonstrate that systematic approximate inference and learning rules can be derived using dynamical mean-field theory. Although naive mean-field theory leads to an unstable learning rule, taking into account Gaussian corrections allows learning the couplings involving hidden nodes. It also improves learning of the couplings between the observed nodes compared to when hidden nodes are ignored.

  7. Hidden Statistics of Schroedinger Equation

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    Work was carried out in determination of the mathematical origin of randomness in quantum mechanics and creating a hidden statistics of Schr dinger equation; i.e., to expose the transitional stochastic process as a "bridge" to the quantum world. The governing equations of hidden statistics would preserve such properties of quantum physics as superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods.

  8. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    Science.gov (United States)

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  9. Causal quantum theory and the collapse locality loophole

    International Nuclear Information System (INIS)

    Kent, Adrian

    2005-01-01

    Causal quantum theory is an umbrella term for ordinary quantum theory modified by two hypotheses: state vector reduction is a well-defined process, and strict local causality applies. The first of these holds in some versions of Copenhagen quantum theory and need not necessarily imply practically testable deviations from ordinary quantum theory. The second implies that measurement events which are spacelike separated have no nonlocal correlations. To test this prediction, which sharply differs from standard quantum theory, requires a precise definition of state vector reduction. Formally speaking, any precise version of causal quantum theory defines a local hidden variable theory. However, causal quantum theory is most naturally seen as a variant of standard quantum theory. For that reason it seems a more serious rival to standard quantum theory than local hidden variable models relying on the locality or detector efficiency loopholes. Some plausible versions of causal quantum theory are not refuted by any Bell experiments to date, nor is it evident that they are inconsistent with other experiments. They evade refutation via a neglected loophole in Bell experiments--the collapse locality loophole--which exists because of the possible time lag between a particle entering a measurement device and a collapse taking place. Fairly definitive tests of causal versus standard quantum theory could be made by observing entangled particles separated by ≅0.1 light seconds

  10. Completing Quantum Mechanics with Quantized Hidden Variables

    OpenAIRE

    van Enk, S. J.

    2015-01-01

    I explore the possibility that a quantum system S may be described completely by the combination of its standard quantum state $|\\psi\\rangle$ and a (hidden) quantum state $|\\phi\\rangle$ (that lives in the same Hilbert space), such that the outcome of any standard projective measurement on the system S is determined once the two quantum states are specified. I construct an algorithm that retrieves the standard quantum-mechanical probabilities, which depend only on $|\\psi\\rangle$, by assuming t...

  11. Nonparametric model validations for hidden Markov models with applications in financial econometrics.

    Science.gov (United States)

    Zhao, Zhibiao

    2011-06-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.

  12. Hidden photons in beam dump experiments and in connection with dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah

    2012-12-15

    Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, recently received much interest as natural feature of beyond standard model scenarios like string theory and SUSY and because of their possible connection to dark matter. This paper presents limits on hidden photons from past electron beam dump experiments including two new limits from experiments at KEK and Orsay. Additionally, various hidden sector models containing both a hidden photon and a dark matter candidate are discussed with respect to their viability and potential signatures in direct detection.

  13. Hidden photons in beam dump experiments and in connection with dark matter

    International Nuclear Information System (INIS)

    Andreas, Sarah

    2012-12-01

    Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, recently received much interest as natural feature of beyond standard model scenarios like string theory and SUSY and because of their possible connection to dark matter. This paper presents limits on hidden photons from past electron beam dump experiments including two new limits from experiments at KEK and Orsay. Additionally, various hidden sector models containing both a hidden photon and a dark matter candidate are discussed with respect to their viability and potential signatures in direct detection.

  14. Coding with partially hidden Markov models

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Rissanen, J.

    1995-01-01

    Partially hidden Markov models (PHMM) are introduced. They are a variation of the hidden Markov models (HMM) combining the power of explicit conditioning on past observations and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless data compression. A general...... 2-part coding scheme for given model order but unknown parameters based on PHMM is presented. A forward-backward reestimation of parameters with a redefined backward variable is given for these models and used for estimating the unknown parameters. Proof of convergence of this reestimation is given....... The PHMM structure and the conditions of the convergence proof allows for application of the PHMM to image coding. Relations between the PHMM and hidden Markov models (HMM) are treated. Results of coding bi-level images with the PHMM coding scheme is given. The results indicate that the PHMM can adapt...

  15. Sex allocation theory reveals a hidden cost of neonicotinoid exposure in a parasitoid wasp.

    Science.gov (United States)

    Whitehorn, Penelope R; Cook, Nicola; Blackburn, Charlotte V; Gill, Sophie M; Green, Jade; Shuker, David M

    2015-05-22

    Sex allocation theory has proved to be one the most successful theories in evolutionary ecology. However, its role in more applied aspects of ecology has been limited. Here we show how sex allocation theory helps uncover an otherwise hidden cost of neonicotinoid exposure in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate the sex of their offspring in line with Local Mate Competition (LMC) theory. Neonicotinoids are an economically important class of insecticides, but their deployment remains controversial, with evidence linking them to the decline of beneficial species. We demonstrate for the first time to our knowledge, that neonicotinoids disrupt the crucial reproductive behaviour of facultative sex allocation at sub-lethal, field-relevant doses in N. vitripennis. The quantitative predictions we can make from LMC theory show that females exposed to neonicotinoids are less able to allocate sex optimally and that this failure imposes a significant fitness cost. Our work highlights that understanding the ecological consequences of neonicotinoid deployment requires not just measures of mortality or even fecundity reduction among non-target species, but also measures that capture broader fitness costs, in this case offspring sex allocation. Our work also highlights new avenues for exploring how females obtain information when allocating sex under LMC. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective.

    Science.gov (United States)

    Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel

    2013-07-19

    We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above T(FL), in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss possible tests of the dynamical mean-field theory picture of transport using ac measurements.

  17. Equivalence of the spinning superparticle descriptions with Grassmann variables or with c-number spinors

    International Nuclear Information System (INIS)

    Barut, A.O.; Pavsic, M.

    1988-05-01

    A remarkable equivalence is established between the theories of spinning particles or superparticles using anticommuting Grassmann variables on the one hand and commuting c-number spinors on the other. We consider both real and complex Grassmann variables and map the equations of motion and the supersymmetry transformation from one theory to another. The more intuitive c-number theory allows us to generalize the notion of Zitterbewegung to strings and membranes. (A hidden supersymmetry exists in the classical model of the Dirac electron.) (author). 12 refs

  18. Measurement problem and local hidden variables with entangled photons

    Directory of Open Access Journals (Sweden)

    Muchowski Eugen

    2017-12-01

    Full Text Available It is shown that there is no remote action with polarization measurements of photons in singlet state. A model is presented introducing a hidden parameter which determines the polarizer output. This model is able to explain the polarization measurement results with entangled photons. It is not ruled out by Bell’s Theorem.

  19. Stargate of the Hidden Multiverse

    Directory of Open Access Journals (Sweden)

    Alexander Antonov

    2016-02-01

    Full Text Available Concept of Monoverse, which corresponds to the existing broad interpretation of the second postulate of the special theory of relativity, is not consistent with the modern astrophysical reality — existence of the dark matter and the dark energy, the total mass-energy of which is ten times greater than the mass-energy of the visible universe (which has been considered as the entire universe until very recent . This concept does not allow to explain their rather unusual properties — invisibility and lack of baryon content — which would seem to even destroy the very modern understanding of the term ‘matter’. However, all numerous alternative concepts of Multiverses, which have been proposed until today, are unable to explain these properties of the dark matter and dark energy. This article describes a new concept: the concept of the hidden Multiverse and hidden Supermultiverse, which mutual invisibility of parallel universes is explained by the physical reality of imaginary numbers. This concept completely explains the phenomenon of the dark matter and the dark energy. Moreover, it is shown that the dark matter and the dark energy are the experimental evidence for the existence of the hidden Multiverse. Described structure of the hidden Multiverse is fully consistent with the data obtained by the space stations WMAP and Planck. An extremely important property of the hidden Multiverse is an actual possibility of its permeation through stargate located on the Earth.

  20. Ordered random variables theory and applications

    CERN Document Server

    Shahbaz, Muhammad Qaiser; Hanif Shahbaz, Saman; Al-Zahrani, Bander M

    2016-01-01

    Ordered Random Variables have attracted several authors. The basic building block of Ordered Random Variables is Order Statistics which has several applications in extreme value theory and ordered estimation. The general model for ordered random variables, known as Generalized Order Statistics has been introduced relatively recently by Kamps (1995).

  1. New limits on hidden photons from past electron beam dumps

    International Nuclear Information System (INIS)

    Andreas, Sarah; Niebuhr, Carsten; Ringwald, Andreas

    2012-09-01

    Hidden sectors with light extra U(1) gauge bosons, so called hidden photons, have recently attracted some attention because they are a common feature of physics beyond the Standard Model like string theory and SUSY and additionally are phenomenologically of great interest regarding recent astrophysical observations. The hidden photon is already constrained by various laboratory experiments and presently searched for in running as well as upcoming experiments. We summarize the current status of limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay that have so far not been considered. All our limits take into account the experimental acceptances obtained from Monte Carlo simulations.

  2. New limits on hidden photons from past electron beam dumps

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah; Niebuhr, Carsten; Ringwald, Andreas

    2012-09-15

    Hidden sectors with light extra U(1) gauge bosons, so called hidden photons, have recently attracted some attention because they are a common feature of physics beyond the Standard Model like string theory and SUSY and additionally are phenomenologically of great interest regarding recent astrophysical observations. The hidden photon is already constrained by various laboratory experiments and presently searched for in running as well as upcoming experiments. We summarize the current status of limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay that have so far not been considered. All our limits take into account the experimental acceptances obtained from Monte Carlo simulations.

  3. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  4. Update on hidden sectors with dark forces and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah

    2012-11-15

    Recently there has been much interest in hidden sectors, especially in the context of dark matter and ''dark forces'', since they are a common feature of beyond standard model scenarios like string theory and SUSY and additionally exhibit interesting phenomenological aspects. Various laboratory experiments place limits on the so-called hidden photon and continuously further probe and constrain the parameter space; an updated overview is presented here. Furthermore, for several hidden sector models with light dark matter we study the viability with respect to the relic abundance and direct detection experiments.

  5. Search for hidden particles with the SHiP experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hagner, Caren; Bick, Daniel; Bieschke, Stefan; Ebert, Joachim; Schmidt-Parzefall, Walter [Universitaet Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-07-01

    Many theories beyond the standard model predict long lived neutral (hidden) particles. There might be a whole Hidden Sector (HS) of weakly interacting particles, which cannot be detected in existing high energy experiments. The SHiP experiment (Search for Hidden Particles) requires a high intensity beam dump, which could be realized by a new facility at the CERN SPS accelerator. New superweakly interacting particles with masses below O(10) GeV could be produced in the beam dump and detected in a general purpose Hidden Sector (HS) detector. In addition there will be a dedicated tau neutrino subdetector. I present the major requirements and technical challenges for the HS detector and discuss how the HS can be accessed through several portals: neutrino portal, scalar portal, vector portal and many more.

  6. Adaptive filtering for hidden node detection and tracking in networks.

    Science.gov (United States)

    Hamilton, Franz; Setzer, Beverly; Chavez, Sergio; Tran, Hien; Lloyd, Alun L

    2017-07-01

    The identification of network connectivity from noisy time series is of great interest in the study of network dynamics. This connectivity estimation problem becomes more complicated when we consider the possibility of hidden nodes within the network. These hidden nodes act as unknown drivers on our network and their presence can lead to the identification of false connections, resulting in incorrect network inference. Detecting the parts of the network they are acting on is thus critical. Here, we propose a novel method for hidden node detection based on an adaptive filtering framework with specific application to neuronal networks. We consider the hidden node as a problem of missing variables when model fitting and show that the estimated system noise covariance provided by the adaptive filter can be used to localize the influence of the hidden nodes and distinguish the effects of different hidden nodes. Additionally, we show that the sequential nature of our algorithm allows for tracking changes in the hidden node influence over time.

  7. Probability and logical structure of statistical theories

    International Nuclear Information System (INIS)

    Hall, M.J.W.

    1988-01-01

    A characterization of statistical theories is given which incorporates both classical and quantum mechanics. It is shown that each statistical theory induces an associated logic and joint probability structure, and simple conditions are given for the structure to be of a classical or quantum type. This provides an alternative for the quantum logic approach to axiomatic quantum mechanics. The Bell inequalities may be derived for those statistical theories that have a classical structure and satisfy a locality condition weaker than factorizability. The relation of these inequalities to the issue of hidden variable theories for quantum mechanics is discussed and clarified

  8. Spin chain and duality between string theory and gauge theories

    International Nuclear Information System (INIS)

    Gorskij, A.S.

    2005-01-01

    One discusses a string pattern hidden by the integrable spin chains describing the evolution equations in the Yang- Mills theory. It is shown that the single-loop correction to the dilatation operator in N = 4 theory may be expressed in terms of two-point correlation functions at two-dimensional world surface of a string. Correspondence between the Neumann integrable systems and the spin chains leads us to believe that passing to the finite values of the coupling constants in the gauge theory corresponds to the quantization of the world surface. The model of string bits for the digitized world surface is assumed to be in line with representation of the integrable spin chains in terms of the separable variables [ru

  9. Hidden twelve-dimensional super Poincare symmetry in eleven dimensions

    International Nuclear Information System (INIS)

    Bars, Itzhak; Deliduman, Cemsinan; Pasqua, Andrea; Zumino, Bruno

    2004-01-01

    First, we review a result in our previous paper, of how a ten-dimensional superparticle, taken off-shell, has a hidden eleven-dimensional super Poincare symmetry. Then, we show that the physical sector is defined by three first-class constraints which preserve the full eleven-dimensional symmetry. Applying the same concepts to the eleven-dimensional superparticle, taken off-shell, we discover a hidden twelve-dimensional super Poincare symmetry that governs the theory

  10. Local deterministic theory surviving the violation of Bell's inequalities

    International Nuclear Information System (INIS)

    Cormier-Delanoue, C.

    1984-01-01

    Bell's theorem which asserts that no deterministic theory with hidden variables can give the same predictions as quantum theory, is questioned. Such a deterministic theory is presented and carefully applied to real experiments performed on pairs of correlated photons, derived from the EPR thought experiment. The ensuing predictions violate Bell's inequalities just as quantum mechanics does, and it is further shown that this discrepancy originates in the very nature of radiations. Complete locality is therefore restored while separability remains more limited [fr

  11. Testing the non-locality of quantum theory in two-kaon systems

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, P.H. (California Univ., Berkeley (United States). Lawrence Berkeley Lab.)

    1993-06-07

    An idea for testing the non-local character of quantum theory in systems made of two neutral kaons is suggested. Such tests require detecting two long-lived or two short-lived neutral kaons in coincidence, when copper slabs are either interposed on or removed from their paths. They may be performed at an asymmetric [Phi][sup 0]-factory. They could answer some questions raised by the EPR paradox and Bell's inequalities. If such tests are performed and if predictions of quantum mechanics and standard theory of kaon regeneration are verified experimentally, all descriptions of the relevant phenomena in terms of local interactions will be ruled out in principle with the exception of very peculiar ones, which imply the existence of hidden variables, of different kinds of kaons corresponding to different values of the hidden variables, and, for some of these kaons, of regeneration probabilities enhanced by a factor of the order of 400 or more over the average. Of course, the experiment may also reveal a break down of quantum theory. (orig.)

  12. The Misapplication of Probability Theory in Quantum Mechanics

    Science.gov (United States)

    Racicot, Ronald

    2014-03-01

    This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.

  13. Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities

    International Nuclear Information System (INIS)

    Vecchia, P. di; Ferrara, S.; Girardello, L.

    1985-01-01

    Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)

  14. Infinite hidden conditional random fields for human behavior analysis.

    Science.gov (United States)

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja

    2013-01-01

    Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF (iHCRF), which is a nonparametric model based on hierarchical Dirichlet processes and is capable of automatically learning the optimal number of hidden states for a classification task. We show how we learn the model hyperparameters with an effective Markov-chain Monte Carlo sampling technique, and we explain the process that underlines our iHCRF model with the Restaurant Franchise Rating Agencies analogy. We show that the iHCRF is able to converge to a correct number of represented hidden states, and outperforms the best finite HCRFs--chosen via cross-validation--for the difficult tasks of recognizing instances of agreement, disagreement, and pain. Moreover, the iHCRF manages to achieve this performance in significantly less total training, validation, and testing time.

  15. Hidden symmetries in five-dimensional supergravity

    International Nuclear Information System (INIS)

    Poessel, M.

    2003-05-01

    This thesis is concerned with the study of hidden symmetries in supergravity, which play an important role in the present picture of supergravity and string theory. Concretely, the appearance of a hidden G 2(+2) /SO(4) symmetry is studied in the dimensional reduction of d=5, N=2 supergravity to three dimensions - a parallel model to the more famous E 8(+8) /SO(16) case in eleven-dimensional supergravity. Extending previous partial results for the bosonic part, I give a derivation that includes fermionic terms. This sheds new light on the appearance of the local hidden symmetry SO(4) in the reduction, and shows up an unusual feature which follows from an analysis of the R-symmetry associated with N=4 supergravity and of the supersymmetry variations, and which has no parallel in the eleven-dimensional case: The emergence of an additional SO(3) as part of the enhanced local symmetry, invisible in the dimensional reduction of the gravitino, and corresponding to the fact that, of the SO(4) used in the coset model, only the diagonal SO(3) is visible immediately upon dimensional reduction. The uncovering of the hidden symmetries proceeds via the construction of the proper coset gravity in three dimensions, and matching it with the Lagrangian obtained from the reduction. (orig.)

  16. The Properties of Model Selection when Retaining Theory Variables

    DEFF Research Database (Denmark)

    Hendry, David F.; Johansen, Søren

    Economic theories are often fitted directly to data to avoid possible model selection biases. We show that embedding a theory model that specifies the correct set of m relevant exogenous variables, x{t}, within the larger set of m+k candidate variables, (x{t},w{t}), then selection over the second...... set by their statistical significance can be undertaken without affecting the estimator distribution of the theory parameters. This strategy returns the theory-parameter estimates when the theory is correct, yet protects against the theory being under-specified because some w{t} are relevant....

  17. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1979-06-01

    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  18. Hidden Liquidity

    OpenAIRE

    Cebiroglu, Gökhan; Horst, Ulrich

    2012-01-01

    We cross-sectionally analyze the presence of aggregated hidden depth and trade volume in the S&P 500 and identify its key determinants. We find that the spread is the main predictor for a stock’s hidden dimension, both in terms of traded and posted liquidity. Our findings moreover suggest that large hidden orders are associated with larger transaction costs, higher price impact and increased volatility. In particular, as large hidden orders fail to attract (latent) liquidity to the market, hi...

  19. A Hidden Twelve-Dimensional SuperPoincare Symmetry In Eleven Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bars, Itzhak; Deliduman, Cemsinan; Pasqua, Andrea; Zumino, Bruno

    2003-12-13

    First, we review a result in our previous paper, of how a ten-dimensional superparticle, taken off-shell, has a hidden eleven-dimensional superPoincare symmetry. Then, we show that the physical sector is defined by three first-class constraints which preserve the full eleven-dimensional symmetry. Applying the same concepts to the eleven dimensional superparticle, taken off-shell, we discover a hidden twelve dimensional superPoincare symmetry that governs the theory.

  20. Local hidden variable modelling, classicality, quantum separability and the original Bell inequality

    International Nuclear Information System (INIS)

    Loubenets, Elena R

    2011-01-01

    We introduce a general condition sufficient for the validity of the original Bell inequality (1964) in a local hidden variable (LHV) frame. This condition can be checked experimentally and incorporates only as a particular case the assumption on perfect correlations or anticorrelations usually argued for this inequality in the literature. Specifying this general condition for a quantum bipartite case, we introduce the whole class of bipartite quantum states, separable and nonseparable, that (i) admit an LHV description under any bipartite measurements with two settings per site; (ii) do not necessarily exhibit perfect correlations and may even have a negative correlation function if the same quantum observable is measured at both sites, but (iii) satisfy the 'perfect correlation' version of the original Bell inequality for any three bounded quantum observables A 1 , A 2 = B 1 , B 2 at sites 'A' and 'B', respectively. Analysing the validity of this general LHV condition under classical and quantum correlation scenarios with the same physical context, we stress that, unlike the Clauser-Horne-Shimony-Holt inequality, the original Bell inequality distinguishes between classicality and quantum separability.

  1. Limitation on Bell's inequality

    Energy Technology Data Exchange (ETDEWEB)

    Buonomano, V [Universidade Estadual de Campinas (Brazil). Inst. de Matematica

    1978-01-01

    It is shown that Bell's Inequality does not characterize all local hidden variable explanations of the polarization correlation experiments. If one considers theories in which a single polarization measurement is not independent of previous particle-polarizer interactions then it is possible to manufacture local hidden variable theories which agree with quantum mechanics for any of the experiments performed to date. A relevant property here is ergodicity, and we can say that Bell's Inequality characterizes all ergodic local hidden variable theories (i.e., all local theories that give the same time and ensemble average) but not all non-ergodic local hidden variable theories. It is further shown that the most physically reasonable class of non-ergodic local hidden variable theories must also satisfy Bell's Inequality. It might be concluded from this article that if one insists on believing in both local hidden variable theories and the polarization correlation experiments supporting quantum mechanics then one must also believe in the existence of a field, medium or ether that permeates space and has relatively stable states (memory).

  2. A limitation on Bell's inequality

    International Nuclear Information System (INIS)

    Buonomano, V.

    1978-01-01

    It is shown that Bell's Inequality does not characterize all local hidden variable explanations of the polarization correlation experiments. If one considers theories in which a single polarization measurement is not independent of previous particle-polarizer interactions then it is possible to manufacture local hidden variable theories which agree with quantum mechanics for any of the experiments performed to date. A relevant property here is ergodicity, and we can say that Bell's Inequality characterizes all ergodic local hidden variable theories (i.e. all local theories that give the same time and ensemble average) but not all non-ergodic local hidden variable theories. It is further shown that the most physically reasonable class of non-ergodic local hidden variable theories must also satisfy Bell's Inequality. It might be concluded from this article that if one insists on believing in both local hidden variable theories and the polarization correlation experiments supporting quantum mechanics then one must also believe in the existence of a field, medium or ether that permeates space and has relatively stable states (memory)

  3. Hidden conformal symmetry of a rotating black hole with four charges

    International Nuclear Information System (INIS)

    Shao Kainan; Zhang Zhibai

    2011-01-01

    Kerr/CFT correspondence exhibits many remarkable connections between the near-horizon Kerr black hole and a conformal field theory (CFT). Recently, Castro, Maloney, and Strominger showed that a hidden conformal symmetry exists in the solution space of a Kerr black hole. In this paper we investigate a rotating black hole with four independent U(1) charges derived from string theory which is known as the four-dimensional Cvetic-Youm solution, and we prove that the same hidden conformal symmetry also holds. We obtain the exact black hole entropy using the temperatures derived. The entropy and absorption cross section agree with the previous results [M. Cvetic and F. Larsen, Nucl. Phys. B506, 107 (1997).] and [M. Cvetic and F. Larsen, J. High Energy Phys. 09 (2009) 088.]. In addition, we clarify a previous explanation on the temperatures of the Cvetic-Youm solution's dual CFT. This work provides more robust derivation of the hidden conformal symmetry of Kerr-like black holes and as well as Kerr/CFT correspondence.

  4. The elliptic genus and Hidden symmetry

    International Nuclear Information System (INIS)

    Jaffe, A.

    2001-01-01

    We study the elliptic genus (a partition function) in certain interacting, twist quantum field theories. Without twists, these theories have N=2 supersymmetry. The twists provide a regularization, and also partially break the supersymmetry. In spite of the regularization, one can establish a homotopy of the elliptic genus in a coupling parameter. Our construction relies on a priori estimates and other methods from constructive quantum field theory; this mathematical underpinning allows us to justify evaluating the elliptic genus at one endpoint of the homotopy. We obtain a version of Witten's proposed formula for the elliptic genus in terms of classical theta functions. As a consequence, the elliptic genus has a hidden SL(2,Z) symmetry characteristic of conformal theory, even though the underlying theory is not conformal. (orig.)

  5. Agency Theory

    DEFF Research Database (Denmark)

    Linder, Stefan; Foss, Nicolai Juul

    Agency theory studies the problems and solutions linked to delegation of tasks from principals to agents in the context of conflicting interests between the parties. Beginning from clear assumptions about rationality, contracting and informational conditions, the theory addresses problems of ex...... ante (“hidden characteristics”) as well as ex post information asymmetry (“hidden action”), and examines conditions under which various kinds of incentive instruments and monitoring arrangements can be deployed to minimize the welfare loss. Its clear predictions and broad applicability have allowed...... agency theory to enjoy considerable scientific impact on social science; however, it has also attracted considerable criticism....

  6. Agency Theory

    DEFF Research Database (Denmark)

    Linder, Stefan; Foss, Nicolai Juul

    2015-01-01

    Agency theory studies the problems and solutions linked to delegation of tasks from principals to agents in the context of conflicting interests between the parties. Beginning from clear assumptions about rationality, contracting, and informational conditions, the theory addresses problems of ex...... ante (‘hidden characteristics’) as well as ex post information asymmetry (‘hidden action’), and examines conditions under which various kinds of incentive instruments and monitoring arrangements can be deployed to minimize the welfare loss. Its clear predictions and broad applicability have allowed...... agency theory to enjoy considerable scientific impact on social science; however, it has also attracted considerable criticism....

  7. The Consensus String Problem and the Complexity of Comparing Hidden Markov Models

    DEFF Research Database (Denmark)

    Lyngsø, Rune Bang; Pedersen, Christian Nørgaard Storm

    2002-01-01

    The basic theory of hidden Markov models was developed and applied to problems in speech recognition in the late 1960s, and has since then been applied to numerous problems, e.g. biological sequence analysis. Most applications of hidden Markov models are based on efficient algorithms for computing...... the probability of generating a given string, or computing the most likely path generating a given string. In this paper we consider the problem of computing the most likely string, or consensus string, generated by a given model, and its implications on the complexity of comparing hidden Markov models. We show...... that computing the consensus string, and approximating its probability within any constant factor, is NP-hard, and that the same holds for the closely related labeling problem for class hidden Markov models. Furthermore, we establish the NP-hardness of comparing two hidden Markov models under the L∞- and L1...

  8. The Consensus String Problem and the Complexity of Comparing Hidden Markov Models

    DEFF Research Database (Denmark)

    Lyngsø, Rune Bang; Pedersen, Christian Nørgaard Storm

    2002-01-01

    The basic theory of hidden Markov models was developed and applied to problems in speech recognition in the late 1960s, and has since then been applied to numerous problems, e.g. biological sequence analysis. Most applications of hidden Markov models are based on efficient algorithms for computing......-norms. We discuss the applicability of the technique used for proving the hardness of comparing two hidden Markov models under the L1-norm to other measures of distance between probability distributions. In particular, we show that it cannot be used for proving NP-hardness of determining the Kullback...

  9. What are the Hidden Quantum Processes Behind Newton's Laws?

    OpenAIRE

    Ostoma, Tom; Trushyk, Mike

    1999-01-01

    We investigate the hidden quantum processes that are responsible for Newton's laws of motion and Newton's universal law of gravity. We apply Electro-Magnetic Quantum Gravity or EMQG to investigate Newtonian classical physics. EQMG is a quantum gravity theory that is manifestly compatible with Cellular Automata (CA) theory, a new paradigm for physical reality. EMQG is also based on a theory of inertia proposed by R. Haisch, A. Rueda, and H. Puthoff, which we modified and called Quantum Inertia...

  10. Hidden supersymmetry and large N

    International Nuclear Information System (INIS)

    Alfaro, J.

    1988-01-01

    In this paper we present a new method to deal with the leading order in the large-N expansion of a quantum field theory. The method uses explicitly the hidden supersymmetry that is present in the path-integral formulation of a stochastic process. In addition to this we derive a new relation that is valid in the leading order of the large-N expansion of the hermitian-matrix model for any spacetime dimension. (orig.)

  11. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  12. Scattering amplitudes in gauge theories

    International Nuclear Information System (INIS)

    Henn, Johannes M.; Plefka, Jan C.

    2014-01-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  13. Differentiating between precursor and control variables when analyzing reasoned action theories.

    Science.gov (United States)

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin; Brown, Larry; Diclemente, Ralph; Romer, Daniel; Valois, Robert; Vanable, Peter A; Carey, Michael P; Salazar, Laura

    2010-02-01

    This paper highlights the distinction between precursor and control variables in the context of reasoned action theory. Here the theory is combined with structural equation modeling to demonstrate how age and past sexual behavior should be situated in a reasoned action analysis. A two wave longitudinal survey sample of African-American adolescents is analyzed where the target behavior is having vaginal sex. Results differ when age and past behavior are used as control variables and when they are correctly used as precursors. Because control variables do not appear in any form of reasoned action theory, this approach to including background variables is not correct when analyzing data sets based on the theoretical axioms of the Theory of Reasoned Action, the Theory of Planned Behavior, or the Integrative Model.

  14. Discovering hidden sectors with monophoton Z' searches

    International Nuclear Information System (INIS)

    Gershtein, Yuri; Petriello, Frank; Quackenbush, Seth; Zurek, Kathryn M.

    2008-01-01

    In many theories of physics beyond the standard model, from extra dimensions to Hidden Valleys and models of dark matter, Z ' bosons mediate between standard model particles and hidden sector states. We study the feasibility of observing such hidden states through an invisibly decaying Z ' at the LHC. We focus on the process pp→γZ ' →γXX † , where X is any neutral, (quasi-) stable particle, whether a standard model neutrino or a new state. This complements a previous study using pp→ZZ ' →l + l - XX † . Only the Z ' mass and two effective charges are needed to describe this process. If the Z ' decays invisibly only to standard model neutrinos, then these charges are predicted by observation of the Z ' through the Drell-Yan process, allowing discrimination between Z ' decays to standard model ν's and invisible decays to new states. We carefully discuss all backgrounds and systematic errors that affect this search. We find that hidden sector decays of a 1 TeV Z ' can be observed at 5σ significance with 50 fb -1 at the LHC. Observation of a 1.5 TeV state requires super-LHC statistics of 1 ab -1 . Control of the systematic errors, in particular, the parton distribution function uncertainty of the dominant Zγ background, is crucial to maximize the LHC search reach.

  15. Quantum Theory finally reconciled with Special Relativity

    OpenAIRE

    Tommasini, Daniele

    2001-01-01

    In 1935 Einstein, Podolsky and Rosen (EPR) pointed out that Quantum Mechanics apparently implied some mysterious, instantaneous action at a distance. This paradox is supposed to be related to the probabilistic nature of the theory, but since deterministic alternatives involving "Hidden Variables" hardly agree with the experiments, the scientific community is now accepting this ``quantum nonlocality" as if it were a reality. However, I have argued recently that Quantum Electrodynamics is free ...

  16. Hidden crossing theory of charge exchange in H+ + He+(1 s) collisions in vicinity of maximum of cross section

    Science.gov (United States)

    Grozdanov, Tasko P.; Solov'ev, Evgeni A.

    2018-04-01

    Within the framework of dynamical adiabatic approach the hidden crossing theory of inelastic transitions is applied to charge exchange in H+ + He+(1 s) collisions in the wide range of center of mass collision energies E cm = (1.6 -70) keV. The good agreement with experiment and molecular close coupling calculations is obtained. At low energies our 4-state results are closest to the experiment and correctly reproduce the shoulder in energy dependence of the cross section around E cm = 6 keV. The 2-state results correctly predict the position of the maximum of the cross section at E cm ≈ 40 keV, whereas 4-state results fail to correctly describe the region around the maximum. The reason for this is the fact that adiabatic approximation for a given two-state hidden crossing is applicable for values of the Schtueckelberg parameter >1. But with increase of principal quantum number N the Schtueckelberg parameter decreases as N -3. That is why the 4-state approach involving higher excited states fails at smaller collision energies E cm ≈ 15 keV, while the 2-state approximation which involves low lying states can be extended to higher collision energies.

  17. Real-variable theory of Musielak-Orlicz Hardy spaces

    CERN Document Server

    Yang, Dachun; Ky, Luong Dang

    2017-01-01

    The main purpose of this book is to give a detailed and complete survey of recent progress related to the real-variable theory of Musielak–Orlicz Hardy-type function spaces, and to lay the foundations for further applications. The real-variable theory of function spaces has always been at the core of harmonic analysis. Recently, motivated by certain questions in analysis, some more general Musielak–Orlicz Hardy-type function spaces were introduced. These spaces are defined via growth functions which may vary in both the spatial variable and the growth variable. By selecting special growth functions, the resulting spaces may have subtler and finer structures, which are necessary in order to solve various endpoint or sharp problems. This book is written for graduate students and researchers interested in function spaces and, in particular, Hardy-type spaces.

  18. On hidden symmetries of a super gauge theory and twistor string theory

    International Nuclear Information System (INIS)

    Wolf, Martin

    2005-01-01

    We discuss infinite-dimensional hidden symmetry algebras (and hence an infinite number of conserved nonlocal charges) of the N-extented self-dual super Yang-Mills equations for general N=4 by using the supertwistor correspondence. Furthermore, by enhancing the supertwistor space, we construct the N-extended self-dual super Yang-Mills hierarchies, which describe infinite sets of graded abelian symmetries. We also show that the open topological B-model with the enhanced supertwistor space as target manifold will describe the hierarchies. Furthermore, these hierarchies will in turn - by a supersymmetric extension of Ward's conjecture - reduce to the super hierarchies of integrable models in D<4 dimensions. (author)

  19. Hidden symmetry of the quantum Calogero-Moser system

    DEFF Research Database (Denmark)

    Kuzentsov, Vadim b

    1996-01-01

    The hidden symmetry of the quantum Calogero-Moser system with an inverse-square potential is algebraically demonstrated making use of Dunkl's operators. We find the underlying algebra explaining the super-integrability phenomenon for this system. Applications to related multi-variable Bessel...... functions are also discussed....

  20. Korean Conference on Several Complex Variables

    CERN Document Server

    Byun, Jisoo; Gaussier, Hervé; Hirachi, Kengo; Kim, Kang-Tae; Shcherbina, Nikolay

    2015-01-01

    This volume includes 28 chapters by authors who are leading researchers of the world describing many of the up-to-date aspects in the field of several complex variables (SCV). These contributions are based upon their presentations at the 10th Korean Conference on Several Complex Variables (KSCV10), held as a satellite conference to the International Congress of Mathematicians (ICM) 2014 in Seoul, Korea. SCV has been the term for multidimensional complex analysis, one of the central research areas in mathematics. Studies over time have revealed a variety of rich, intriguing, new knowledge in complex analysis and geometry of analytic spaces and holomorphic functions which were "hidden" in the case of complex dimension one. These new theories have significant intersections with algebraic geometry, differential geometry, partial differential equations, dynamics, functional analysis and operator theory, and sheaves and cohomology, as well as the traditional analysis of holomorphic functions in all dimensions. This...

  1. State variable theories based on Hart's formulation

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, M.A.; Hannula, S.P.; Li, C.Y.

    1985-01-01

    In this paper a review of the development of a state variable theory for nonelastic deformation is given. The physical and phenomenological basis of the theory and the constitutive equations describing macroplastic, microplastic, anelastic and grain boundary sliding enhanced deformation are presented. The experimental and analytical evaluation of different parameters in the constitutive equations are described in detail followed by a review of the extensive experimental work on different materials. The technological aspects of the state variable approach are highlighted by examples of the simulative and predictive capabilities of the theory. Finally, a discussion of general capabilities, limitations and future developments of the theory and particularly the possible extensions to cover an even wider range of deformation or deformation-related phenomena is presented.

  2. Nonlocal hidden variables and nonlocal gauge theories

    International Nuclear Information System (INIS)

    Boiteux, M.

    1984-01-01

    A possible unification of classical fundamental interactions together with quantum interactions is proposed, based on an extension of the concept of local gauge invariance to a nonlocal gauge invariance. As an example this new concept is developed for the particular case of the electromagnetic field. (Auth.)

  3. Impulse-variability theory: implications for ballistic, multijoint motor skill performance.

    Science.gov (United States)

    Urbin, M A; Stodden, David F; Fischman, Mark G; Weimar, Wendi H

    2011-01-01

    Impulse-variability theory (R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979) accounts for the curvilinear relationship between the magnitude and resulting variability of the muscular forces that influence the success of goal-directed limb movements. The historical roots of impulse-variability theory are reviewed in the 1st part of this article, including the relationship between movement speed and spatial error. The authors then address the relevance of impulse-variability theory for the control of ballistic, multijoint skills, such as throwing, striking, and kicking. These types of skills provide a stark contrast to the relatively simple, minimal degrees of freedom movements that characterized early research. However, the inherent demand for ballistic force generation is a strong parallel between these simple laboratory tasks and multijoint motor skills. Therefore, the authors conclude by recommending experimental procedures for evaluating the adequacy of impulse variability as a theoretical model within the context of ballistic, multijoint motor skill performance. Copyright © Taylor & Francis Group, LLC

  4. Kinetic mixing of the photon with hidden U(1)s in string phenomenology

    International Nuclear Information System (INIS)

    Abel, S.A.; Khoze, V.V.; Jaeckel, J.

    2008-03-01

    Embeddings of the standard model in type II string theory typically contain a variety of U(1) gauge factors arising from D-branes in the bulk. In general, there is no reason why only one of these - the one corresponding to weak hypercharge - should be massless. Observations require that standard model particles must be neutral (or have an extremely small charge) under additional massless U(1)s, i.e. the latter have to belong to a so called hidden sector. The exchange of heavy messengers, however, can lead to a kinetic mixing between the hypercharge and the hidden-sector U(1)s, that is testable with near future experiments. This provides a powerful probe of the hidden sectors and, as a consequence, of the string theory realisation itself. In the present paper, we show, using a variety of methods, how the kinetic mixing can be derived from the underlying type II string compactification, involving supersymmetric and nonsupersymmetric configurations of D-branes, both in large volumes and in warped backgrounds with fluxes. We first demonstrate by explicit example that kinetic mixing occurs in a completely supersymmetric set-up where we can use conformal field theory techniques. We then develop a supergravity approach which allows us to examine the phenomenon in more general backgrounds, where we find that kinetic mixing is natural in the context of flux compactifications. We discuss the phenomenological consequences for experiments at the low-energy frontier, searching for signatures of light, sub-electronvolt or even massless hidden-sector U(1) gauge bosons and minicharged particles. (orig.)

  5. Kinetic mixing of the photon with hidden U(1)s in string phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Abel, S.A.; Khoze, V.V. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Goodsell, M.D. [Laboratoire de Physique Theorique et Hautes Energies, Paris (France); Jaeckel, J. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology]|[Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2008-03-15

    Embeddings of the standard model in type II string theory typically contain a variety of U(1) gauge factors arising from D-branes in the bulk. In general, there is no reason why only one of these - the one corresponding to weak hypercharge - should be massless. Observations require that standard model particles must be neutral (or have an extremely small charge) under additional massless U(1)s, i.e. the latter have to belong to a so called hidden sector. The exchange of heavy messengers, however, can lead to a kinetic mixing between the hypercharge and the hidden-sector U(1)s, that is testable with near future experiments. This provides a powerful probe of the hidden sectors and, as a consequence, of the string theory realisation itself. In the present paper, we show, using a variety of methods, how the kinetic mixing can be derived from the underlying type II string compactification, involving supersymmetric and nonsupersymmetric configurations of D-branes, both in large volumes and in warped backgrounds with fluxes. We first demonstrate by explicit example that kinetic mixing occurs in a completely supersymmetric set-up where we can use conformal field theory techniques. We then develop a supergravity approach which allows us to examine the phenomenon in more general backgrounds, where we find that kinetic mixing is natural in the context of flux compactifications. We discuss the phenomenological consequences for experiments at the low-energy frontier, searching for signatures of light, sub-electronvolt or even massless hidden-sector U(1) gauge bosons and minicharged particles. (orig.)

  6. Function theory of several complex variables

    CERN Document Server

    Krantz, Steven G

    2001-01-01

    The theory of several complex variables can be studied from several different perspectives. In this book, Steven Krantz approaches the subject from the point of view of a classical analyst, emphasizing its function-theoretic aspects. He has taken particular care to write the book with the student in mind, with uniformly extensive and helpful explanations, numerous examples, and plentiful exercises of varying difficulty. In the spirit of a student-oriented text, Krantz begins with an introduction to the subject, including an insightful comparison of analysis of several complex variables with th

  7. Bosonization, dual transformation and non-local hidden symmetry in two dimensions

    International Nuclear Information System (INIS)

    Hata, Hiroyuki

    1985-01-01

    The non-local hidden symmetry is investigated in the bosonized non-abelian Thirring model and the dual representation of the chiral model. In these representations the first non-local symmetry is spontaneously broken in naive pertubation theory. (orig.)

  8. Experimental test of state-independent quantum contextuality of an indivisible quantum system

    Science.gov (United States)

    Li, Meng; Huang, Yun-Feng; Cao, Dong-Yang; Zhang, Chao; Zhang, Yong-Sheng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2014-05-01

    Since the quantum mechanics was born, quantum mechanics was argued among scientists because the differences between quantum mechanics and the classical physics. Because of this, some people give hidden variable theory. One of the hidden variable theory is non-contextual hidden variable theory, and KS inequalities are famous in non-contextual hidden variable theory. But the original KS inequalities have 117 directions to measure, so it is almost impossible to test the KS inequalities in experiment. However bout two years ago, Sixia Yu and C.H. Oh point out that for a single qutrit, we only need to measure 13 directions, then we can test the KS inequalities. This makes it possible to test the KS inequalities in experiment. We use the polarization and the path of single photon to construct a qutrit, and we use the half-wave plates, the beam displacers and polar beam splitters to prepare the quantum state and finish the measurement. And the result prove that quantum mechanics is right and non-contextual hidden variable theory is wrong.

  9. Universality of State-Independent Violation of Correlation Inequalities for Noncontextual Theories

    International Nuclear Information System (INIS)

    Badziag, Piotr; Bengtsson, Ingemar; Cabello, Adan; Pitowsky, Itamar

    2009-01-01

    We show that the state-independent violation of inequalities for noncontextual hidden variable theories introduced in [Phys. Rev. Lett. 101, 210401 (2008)] is universal, i.e., occurs for any quantum mechanical system in which noncontextuality is meaningful. We describe a method to obtain state-independent violations for any system of dimension d≥3. This universality proves that, according to quantum mechanics, there are no 'classical' states.

  10. Hidden Markov Model for quantitative prediction of snowfall

    Indian Academy of Sciences (India)

    A Hidden Markov Model (HMM) has been developed for prediction of quantitative snowfall in Pir-Panjal and Great Himalayan mountain ranges of Indian Himalaya. The model predicts snowfall for two days in advance using daily recorded nine meteorological variables of past 20 winters from 1992–2012. There are six ...

  11. Boolean Approach to Dichotomic Quantum Measurement Theories

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, K. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Nakamura, T. [Keio University, Yokohama (Japan); Batle, J. [Universitat de les Illes Balears, Balearic Islands (Spain); Abdalla, S. [King Abdulaziz University Jeddah, Jeddah (Saudi Arabia); Farouk, A. [Al-Zahra College for Women, Muscat (Egypt)

    2017-02-15

    Recently, a new measurement theory based on truth values was proposed by Nagata and Nakamura [Int. J. Theor. Phys. 55, 3616 (2016)], that is, a theory where the results of measurements are either 0 or 1. The standard measurement theory accepts a hidden variable model for a single Pauli observable. Hence, we can introduce a classical probability space for the measurement theory in this particular case. Additionally, we discuss in the present contribution the fact that projective measurement theories (the results of which are either +1 or −1) imply the Bell, Kochen, and Specker (BKS) paradox for a single Pauli observable. To justify our assertion, we present the BKS theorem in almost all the two-dimensional states by using a projective measurement theory. As an example, we present the BKS theorem in two-dimensions with white noise. Our discussion provides new insight into the quantum measurement problem by using this measurement theory based on the truth values.

  12. Hidden Markov Model for Stock Selection

    Directory of Open Access Journals (Sweden)

    Nguyet Nguyen

    2015-10-01

    Full Text Available The hidden Markov model (HMM is typically used to predict the hidden regimes of observation data. Therefore, this model finds applications in many different areas, such as speech recognition systems, computational molecular biology and financial market predictions. In this paper, we use HMM for stock selection. We first use HMM to make monthly regime predictions for the four macroeconomic variables: inflation (consumer price index (CPI, industrial production index (INDPRO, stock market index (S&P 500 and market volatility (VIX. At the end of each month, we calibrate HMM’s parameters for each of these economic variables and predict its regimes for the next month. We then look back into historical data to find the time periods for which the four variables had similar regimes with the forecasted regimes. Within those similar periods, we analyze all of the S&P 500 stocks to identify which stock characteristics have been well rewarded during the time periods and assign scores and corresponding weights for each of the stock characteristics. A composite score of each stock is calculated based on the scores and weights of its features. Based on this algorithm, we choose the 50 top ranking stocks to buy. We compare the performances of the portfolio with the benchmark index, S&P 500. With an initial investment of $100 in December 1999, over 15 years, in December 2014, our portfolio had an average gain per annum of 14.9% versus 2.3% for the S&P 500.

  13. On history dependence of stress-strain diagrams and creep curves under variable repeated loading

    International Nuclear Information System (INIS)

    Gokhfeld, D.A.; Sadakov, O.S.; Martynenko, M.E.

    1979-01-01

    The ability of structural alloys to 'keep in memory' the loading prehistory becomes of special importance when inelastic variable repeated loading is considered. There are two main approaches to the development of the mathematical description of this phenomenon: the inclusion of hidden state variables in the incremental theory constitutive equations (a) and construction of proper hereditary functionals (b). In this respect the assumption that the 'memory' regarding the previous deformation history is due to structural nonhomogeneity of actual materials proves to be fruitful. (orig.)

  14. Hidden QCD in Chiral Gauge Theories

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Sannino, Francesco

    2005-01-01

    The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...

  15. Spin-path entanglement in single-neutron interferometer experiments

    International Nuclear Information System (INIS)

    Hasegawa, Yuji; Erdoesi, Daniel

    2011-01-01

    There are two powerful arguments against the possibility of extending quantum mechanics (QM) into a more fundamental theory yielding a deterministic description of nature. One is the experimental violation of Bell inequalities, which discards local hidden-variable theories as a possible extension to QM. The other is the Kochen-Specker (KS) theorem, which stresses the incompatibility of QM with a larger class of hidden-variable theories, known as noncontextual hidden-variable theories. We performed experiments with neutron interferometer, which exploits spin-path entanglements in single neutrons. A Bell-like state is generated to demonstrate a violation of the Bell-like inequality and phenomena in accordance with KS theorem: both experiments study quantum contextuality and show clear evidence of the incompatibility of noncontextual hidden variable theories with QM. The value S = 2.202±0.007≰2 is obtained in the new measurement of the Bell-like inequality, which shows a larger violation than the previous measurement. For the study of KS theorem, the obtained violation 2.291±0.008≰1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  16. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

    Science.gov (United States)

    Davidson, Mark

    2014-02-01

    Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

  17. Dualities among one-time field theories with spin, emerging from a unifying two-time field theory

    International Nuclear Information System (INIS)

    Bars, Itzhak; Quelin, Guillaume

    2008-01-01

    The relation between two-time physics (2T-physics) and the ordinary one-time formulation of physics (1T-physics) is similar to the relation between a 3-dimensional object moving in a room and its multiple shadows moving on walls when projected from different perspectives. The multiple shadows as seen by observers stuck on the wall are analogous to the effects of the 2T-universe as experienced in ordinary 1T spacetime. In this paper we develop some of the quantitative aspects of this 2T to 1T relationship in the context of field theory. We discuss 2T field theory in d+2 dimensions and its shadows in the form of 1T field theories when the theory contains Klein-Gordon, Dirac and Yang-Mills fields, such as the standard model of particles and forces. We show that the shadow 1T field theories must have hidden relations among themselves. These relations take the form of dualities and hidden spacetime symmetries. A subset of the shadows are 1T field theories in different gravitational backgrounds (different space-times) such as the flat Minkowski spacetime, the Robertson-Walker expanding universe, AdS d-k xS k , and others, including singular ones. We explicitly construct the duality transformations among this conformally flat subset, and build the generators of their hidden SO(d,2) symmetry. The existence of such hidden relations among 1T field theories, which can be tested by both theory and experiment in 1T-physics, is part of the evidence for the underlying d+2 dimensional spacetime and the unifying 2T-physics structure

  18. Hidden magnetism in periodically modulated one dimensional dipolar fermions

    Science.gov (United States)

    Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.

    2017-12-01

    The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.

  19. Hidden Scale Invariance in Condensed Matter

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2014-01-01

    . This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...

  20. Contiguity and quantum theory of measurement

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.S. [Adelaide Univ., SA (Australia). Dept. of Mathematical Physics]|[Adelaide Univ., SA (Australia). Dept. of Physics

    1995-12-31

    This paper presents a comprehensive treatment of the problem of measurement in microscopic physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics and information theory. It is pointed out that there are serious difficulties in reconciling the deterministic interpretations of quantum mechanics, based on the concepts of a universal wave function or hidden variables, with the principle of contiguity. Quantum mechanics is reformulated entirely in terms of observables, represented by matrices, including the statistical matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox. The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of macroscopic measuring devices is given in the interaction representation, and the attenuation of the indeterminacy of a microscopic observable in the process of measurement is related to observable changes of entropy. 28 refs.

  1. Contiguity and quantum theory of measurement

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1995-01-01

    This paper presents a comprehensive treatment of the problem of measurement in microscopic physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics and information theory. It is pointed out that there are serious difficulties in reconciling the deterministic interpretations of quantum mechanics, based on the concepts of a universal wave function or hidden variables, with the principle of contiguity. Quantum mechanics is reformulated entirely in terms of observables, represented by matrices, including the statistical matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox. The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of macroscopic measuring devices is given in the interaction representation, and the attenuation of the indeterminacy of a microscopic observable in the process of measurement is related to observable changes of entropy. 28 refs

  2. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Hidden Dimensions in the So-Called Reality of a Mathematics Classroom.

    Science.gov (United States)

    Bauersfeld, Heinrich

    1980-01-01

    Teaching and learning mathematics in classrooms is interpreted as human interaction in an institutionalized setting. Using theories and categories from different disciplines, a classroom episode is reanalyzed. Four hidden dimensions in the classroom process and thus deficient areas of research are identified. Consequences for teacher training are…

  4. Gauge theories in particle physics

    International Nuclear Information System (INIS)

    Aitchison, I.J.R.; Hey, A.J.G.

    1982-01-01

    The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)

  5. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  6. The mean and variance of climate change in the oceans: hidden evolutionary potential under stochastic environmental variability in marine sticklebacks.

    Science.gov (United States)

    Shama, Lisa N S

    2017-08-21

    Increasing climate variability may pose an even greater risk to species than climate warming because temperature fluctuations can amplify adverse impacts of directional warming on fitness-related traits. Here, the influence of directional warming and increasing climate variability on marine stickleback fish (Gasterosteus aculeatus) offspring size variation was investigated by simulating changes to the mean and variance of ocean temperatures predicted under climate change. Reproductive traits of mothers and offspring size reaction norms across four climate scenarios were examined to assess the roles of standing genetic variation, transgenerational and within-generation plasticity in adaptive potential. Mothers acclimated to directional warming produced smaller eggs than mothers in constant, ambient temperatures, whereas mothers in a predictably variable environment (weekly change between temperatures) produced a range of egg sizes, possibly reflecting a diversified bet hedging strategy. Offspring size post-hatch was mostly influenced by genotype by environment interactions and not transgenerational effects. Offspring size reaction norms also differed depending on the type of environmental predictability (predictably variable vs. stochastic), with offspring reaching the largest sizes in the stochastic environment. Release of cryptic genetic variation for offspring size in the stochastic environment suggests hidden evolutionary potential in this wild population to respond to changes in environmental predictability.

  7. Localization of hidden Chua's attractors

    International Nuclear Information System (INIS)

    Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I.

    2011-01-01

    The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria. In the present Letter for localization of hidden attractors of Chua's circuit it is suggested to use a special analytical-numerical algorithm. -- Highlights: → There are hidden attractors: basin doesn't contain neighborhoods of equilibria. → Hidden attractors cannot be reached by trajectory from neighborhoods of equilibria. → We suggested special procedure for localization of hidden attractors. → We discovered hidden attractor in Chua's system, L. Chua in his work didn't expect this.

  8. Gauging hidden symmetries in two dimensions

    International Nuclear Information System (INIS)

    Samtleben, Henning; Weidner, Martin

    2007-01-01

    We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine e 9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of e 9 . This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of e 9

  9. A Convergent Differential Evolution Algorithm with Hidden Adaptation Selection for Engineering Optimization

    Directory of Open Access Journals (Sweden)

    Zhongbo Hu

    2014-01-01

    Full Text Available Many improved differential Evolution (DE algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.

  10. Hidden Liquidity: Determinants and Impact

    OpenAIRE

    Gökhan Cebiroglu; Ulrich Horst

    2012-01-01

    We cross-sectionally analyze the presence of aggregated hidden depth and trade volume in the S&P 500 and identify its key determinants. We find that the spread is the main predictor for a stock’s hidden dimension, both in terms of traded and posted liquidity. Our findings moreover suggest that large hidden orders are associated with larger transaction costs, higher price impact and increased volatility. In particular, as large hidden orders fail to attract (latent) liquidity to the market, ...

  11. Fluid Mechanics and Complex Variable Theory: Getting Past the 19th Century

    Science.gov (United States)

    Newton, Paul K.

    2017-01-01

    The subject of fluid mechanics is a rich, vibrant, and rapidly developing branch of applied mathematics. Historically, it has developed hand-in-hand with the elegant subject of complex variable theory. The Westmont College NSF-sponsored workshop on the revitalization of complex variable theory in the undergraduate curriculum focused partly on…

  12. Hidden and generalized conformal symmetry of Kerr–Sen spacetimes

    International Nuclear Information System (INIS)

    Ghezelbash, A M; Siahaan, H M

    2013-01-01

    It is recently conjectured that generic non-extremal Kerr black hole could be holographically dual to a hidden conformal field theory (CFT) in two dimensions. Moreover, it is known that there are two CFT duals (pictures) to describe the charged rotating black holes which correspond to angular momentum J and electric charge Q of the black hole. Furthermore these two pictures can be incorporated by the CFT duals (general picture) that are generated by SL(2,Z) modular group. The general conformal structure can be revealed by looking at charged scalar wave equation in some appropriate values of frequency and charge. In this regard, we consider the wave equation of a charged massless scalar field in the background of Kerr–Sen black hole and show that in the ‘near region’, the wave equation can be reproduced by the Casimir operator of a local SL(2,R) L ×SL(2,R) R hidden conformal symmetry. We find the exact agreement between macroscopic and microscopic physical quantities like entropy and absorption cross section of scalars for Kerr–Sen black hole. We then find an extension of vector fields that in turn yields an extended local family of SL(2,R) L ×SL(2,R) R hidden conformal symmetry, parameterized by one parameter. For some special values of the parameter, we find a copy of SL(2,R) hidden conformal algebra for the charged Gibbons–Maeda–Garfinkle–Horowitz–Strominger black hole in the strong deflection limit. (paper)

  13. The hidden fermions in Z(2) theories

    International Nuclear Information System (INIS)

    Srednicki, M.

    1983-01-01

    Low dimensional Z(2) gauge theories have been rewritten in terms of locally coupled fermionic degrees of freedom by means of the Jordan-Wigner transformation. In this paper it is shown that higher dimensional Z(2) gauge theories are also fermionic theories in disguise. The SML solution to the 1+1 dimension Ising model is reviewed. Psi operators are represented pictorially as arrows, psi 1 points to the left, psi 2 to the right, each site of H a multiple of two operators. The 2+1 dimension Ising model is then considered. A fermion plaquette operator is introduced as the generator of a gauge symmetry for the fermionic H. Findings in 1+1 and 2+1 are then applied to 3+1 dimensional Z(2) gauge theory. A construction of this lattice is undertaken. Psi formalism replaces sigma formalism, as it permits extremely simple duality transformations to be made on any Z(2) Hamiltonian. It is shown that the fermionic formalism will lead to new ideas in Z(2) theories

  14. A Stochastic Flows Approach for Asset Allocation with Hidden Economic Environment

    Directory of Open Access Journals (Sweden)

    Tak Kuen Siu

    2015-01-01

    Full Text Available An optimal asset allocation problem for a quite general class of utility functions is discussed in a simple two-state Markovian regime-switching model, where the appreciation rate of a risky share changes over time according to the state of a hidden economy. As usual, standard filtering theory is used to transform a financial model with hidden information into one with complete information, where a martingale approach is applied to discuss the optimal asset allocation problem. Using a martingale representation coupled with stochastic flows of diffeomorphisms for the filtering equation, the integrand in the martingale representation is identified which gives rise to an optimal portfolio strategy under some differentiability conditions.

  15. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  16. Some elements of a theory of multidimensional complex variables. I - General theory. II - Expansions of analytic functions and application to fluid flows

    Science.gov (United States)

    Martin, E. Dale

    1989-01-01

    The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.

  17. Differentiating Between Precursor and Control Variables When Analyzing Reasoned Action Theories

    OpenAIRE

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin; Brown, Larry; DiClemente, Ralph; Romer, Daniel; Valois, Robert; Vanable, Peter A.; Carey, Michael P.; Salazar, Laura

    2009-01-01

    This paper highlights the distinction between precursor and control variables in the context of reasoned action theory. Here the theory is combined with structural equation modeling to demonstrate how age and past sexual behavior should be situated in a reasoned action analysis. A two wave longitudinal survey sample of African-American adolescents is analyzed where the target behavior is having vaginal sex. Results differ when age and past behavior are used as control variables and when they ...

  18. Hidden gravity in open-string field theory

    International Nuclear Information System (INIS)

    Siegel, W.

    1994-01-01

    We clarify the nature of the graviton as a bound state in open-string field theory: The flat metric in the action appears as the vacuum value of an open string field. The bound state appears as a composite field in the free field theory

  19. Hidden Curriculum: An Analytical Definition

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Andarvazh

    2018-03-01

    Full Text Available Background: The concept of hidden curriculum was first used by Philip Jackson in 1968, and Hafferty brought this concept to the medical education. Many of the subjects that medical students learn are attributed to this curriculum. So far several definitions have been presented for the hidden curriculum, which on the one hand made this concept richer, and on the other hand, led to confusion and ambiguity.This paper tries to provide a clear and comprehensive definition of it.Methods: In this study, concept analysis of McKenna method was used. Using keywords and searching in the databases, 561 English and 26 Persian references related to the concept was found, then by limitingthe research scope, 125 abstracts and by finding more relevant references, 55 articles were fully studied.Results: After analyzing the definitions by McKenna method, the hidden curriculum is defined as follows: The hidden curriculum is a hidden, powerful, intrinsic in organizational structure and culture and sometimes contradictory message, conveyed implicitly and tacitly in the learning environment by structural and human factors and its contents includes cultural habits and customs, norms, values, belief systems, attitudes, skills, desires and behavioral and social expectations can have a positive or negative effect, unplanned, neither planners nor teachers, nor learners are aware of it. The ultimate consequence of the hidden curriculum includes reproducing the existing class structure, socialization, and familiarizing learners for transmission and joining the professional world.Conclusion: Based on the concept analysis, we arrived at an analytical definition of the hidden curriculum that could be useful for further studies in this area.Keywords: CONCEPT ANALYSIS, HIDDEN CURRICULUM, MCKENNA’S METHOD

  20. Discrete variable theory of triatomic photodissociation

    International Nuclear Information System (INIS)

    Heather, R.W.; Light, J.C.

    1983-01-01

    The coupled equations describing the photodissociation process are expressed in the discrete variable representation (DVR) in which the coupled equations are labeled by quadrature points rather than by internal basis functions. A large reduction in the dimensionality of the coupled equations can be realized since the spatially localized bound state nuclear wave function vanishes at most of the quadrature points, making only certain orientations of the fragments important in the region of strong interaction (small separation). The discrete variable theory of photodissociation is applied to the model dissociation of bent HCN in which the CN fragment is treated as a rigid rotor. The truncated DVR rotational distributions are compared with the exact close coupled rotational distributions, and excellent agreement with greatly reduced dimensionality of the equations is found

  1. Hidden particle production at the ILC

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Itoh, Hideo; Okada, Nobuchika; Hano, Hitoshi; Yoshioka, Tamaki

    2008-01-01

    In a class of new physics models, the new physics sector is completely or partly hidden, namely, a singlet under the standard model (SM) gauge group. Hidden fields included in such new physics models communicate with the standard model sector through higher-dimensional operators. If a cutoff lies in the TeV range, such hidden fields can be produced at future colliders. We consider a scalar field as an example of the hidden fields. Collider phenomenology on this hidden scalar is similar to that of the SM Higgs boson, but there are several features quite different from those of the Higgs boson. We investigate productions of the hidden scalar at the International Linear Collider (ILC) and study the feasibility of its measurements, in particular, how well the ILC distinguishes the scalar from the Higgs boson, through realistic Monte Carlo simulations.

  2. Low energy theorems of hidden local symmetries

    International Nuclear Information System (INIS)

    Harada, Masayasu; Kugo, Taichiro; Yamawaki, Koichi.

    1994-01-01

    We prove to all orders of the loop expansion the low energy theorems of hidden local symmetries in four-dimensional nonlinear sigma models based on the coset space G/H, with G and H being arbitrary compact groups. Although the models are non-renormalizable, the proof is done in an analogous manner to the renormalization proof of gauge theories and two-dimensional nonlinear sigma models by restricting ourselves to the operators with two derivatives (counting a hidden gauge boson field as one derivative), i.e., with dimension 2, which are the only operators relevant to the low energy limit. Through loop-wise mathematical induction based on the Ward-Takahashi identity for the BRS symmetry, we solve renormalization equation for the effective action up to dimension-2 terms plus terms with the relevant BRS sources. We then show that all the quantum corrections to the dimension-2 operators, including the finite parts as well as the divergent ones, can be entirely absorbed into a re-definition (renormalization) of the parameters and the fields in the dimension-2 part of the tree-level Lagrangian. (author)

  3. Probing hidden sector photons through the Higgs window

    International Nuclear Information System (INIS)

    Ahlers, M.

    2008-07-01

    We investigate the possibility that a (light) hidden sector extra photon receives its mass via spontaneous symmetry breaking of a hidden sector Higgs boson, the so-called hidden-Higgs. The hidden-photon can mix with the ordinary photon via a gauge kinetic mixing term. The hidden-Higgs can couple to the Standard Model Higgs via a renormalizable quartic term - sometimes called the Higgs Portal. We discuss the implications of this light hidden-Higgs in the context of laser polarization and light-shining-through-the-wall experiments as well as cosmological, astrophysical, and non-Newtonian force measurements. For hidden-photons receiving their mass from a hidden-Higgs we find in the small mass regime significantly stronger bounds than the bounds on massive hidden sector photons alone. (orig.)

  4. Probing hidden sector photons through the Higgs window

    International Nuclear Information System (INIS)

    Ahlers, Markus; Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2008-01-01

    We investigate the possibility that a (light) hidden sector extra photon receives its mass via spontaneous symmetry breaking of a hidden sector Higgs boson, the so-called hidden-Higgs. The hidden-photon can mix with the ordinary photon via a gauge kinetic mixing term. The hidden-Higgs can couple to the standard model Higgs via a renormalizable quartic term - sometimes called the Higgs portal. We discuss the implications of this light hidden-Higgs in the context of laser polarization and light-shining-through-the-wall experiments as well as cosmological, astrophysical, and non-Newtonian force measurements. For hidden-photons receiving their mass from a hidden-Higgs, we find in the small mass regime significantly stronger bounds than the bounds on massive hidden sector photons alone.

  5. Cepheid pulsation theory and multiperiodic cepheid variables

    International Nuclear Information System (INIS)

    Cox, A.N.; Cox, J.P.

    1975-01-01

    In this review of the multiperiodic Cepheid variables, the subject matter is divided into four parts. The first discusses general causes of pulsation of Cepheids and other variable stars, and their locations on the H-R diagram. In the second section, the linear adiabatic and nonadiabatic theory calculation of radial pulsation periods and their application to the problem of masses and double-mode Cepheids are reviewed. Periodic solutions, and their stability, of the nonlinear radial pulsation equations for Cepheids and RR Lyrae stars are considered in the third section. The last section provides the latest results on nonlinear, nonperiodic, radial pulsations for Cepheids and RR Lyrae stars. (BJG)

  6. Insight: Exploring Hidden Roles in Collaborative Play

    Directory of Open Access Journals (Sweden)

    Tricia Shi

    2015-06-01

    Full Text Available This paper looks into interaction modes between players in co-located, collaborative games. In particular, hidden traitor games, in which one or more players is secretly working against the group mission, has the effect of increasing paranoia and distrust between players, so this paper looks into the opposite of a hidden traitor – a hidden benefactor. Rather than sabotaging the group mission, the hidden benefactor would help the group achieve the end goal while still having a reason to stay hidden. The paper explores what games with such a role can look like and how the role changes player interactions. Finally, the paper addresses the divide between video game and board game interaction modes; hidden roles are not common within video games, but they are of growing prevalence in board games. This fact, combined with the exploration of hidden benefactors, reveals that hidden roles is a mechanic that video games should develop into in order to match board games’ complexity of player interaction modes.

  7. Hidden attractors in dynamical systems

    Science.gov (United States)

    Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh

    2016-06-01

    Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.

  8. Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rissanen, Jorma

    1996-01-01

    Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...

  9. Hidden photons in connection to dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goodsell, Mark D. [CPhT, Ecole Polytechnique, Palaiseau (France)

    2013-06-15

    Light extra U(1) gauge bosons, so called hidden photons, which reside in a hidden sector have attracted much attention since they are a well motivated feature of many scenarios beyond the Standard Model and furthermore could mediate the interaction with hidden sector dark matter.We review limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay. In addition, we study the possibility of having dark matter in the hidden sector. A simple toy model and different supersymmetric realisations are shown to provide viable dark matter candidates in the hidden sector that are in agreement with recent direct detection limits.

  10. Hidden photons in connection to dark matter

    International Nuclear Information System (INIS)

    Andreas, Sarah; Ringwald, Andreas; Goodsell, Mark D.

    2013-06-01

    Light extra U(1) gauge bosons, so called hidden photons, which reside in a hidden sector have attracted much attention since they are a well motivated feature of many scenarios beyond the Standard Model and furthermore could mediate the interaction with hidden sector dark matter.We review limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay. In addition, we study the possibility of having dark matter in the hidden sector. A simple toy model and different supersymmetric realisations are shown to provide viable dark matter candidates in the hidden sector that are in agreement with recent direct detection limits.

  11. A single variable shear deformable nonlocal theory for transversely ...

    Indian Academy of Sciences (India)

    Rameshchandra P Shimpi

    2018-05-11

    May 11, 2018 ... Abstract. In this paper, a simple single variable shear deformable nonlocal theory for bending of micro- and ... the models based upon continuum mechanics are widely .... of the body. ...... Elsevier Science Ltd, Oxford, UK. pp.

  12. Helioscope bounds on hidden sector photons

    International Nuclear Information System (INIS)

    Redondo, J.

    2008-01-01

    The flux of hypothetical ''hidden photons'' from the Sun is computed under the assumption that they interact with normal matter only through kinetic mixing with the ordinary standard model photon. Requiring that the exotic luminosity is smaller than the standard photon luminosity provides limits for the mixing parameter down to χ -14 , depending on the hidden photon mass. Furthermore, it is pointed point out that helioscopes looking for solar axions are also sensitive to hidden photons. The recent results of the CAST collaboration are used to further constrain the mixing parameter χ at low masses (m γ' <1 eV) where the luminosity bound is weaker. In this regime the solar hidden photon ux has a sizable contribution of longitudinally polarized hidden photons of low energy which are invisible for current helioscopes. (orig.)

  13. A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

    Science.gov (United States)

    Ciancio, Vincenzo; Palumbo, Annunziata

    2018-04-01

    In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.

  14. Managing Hidden Costs of Offshoring

    DEFF Research Database (Denmark)

    Larsen, Marcus M.; Pedersen, Torben

    2014-01-01

    This chapter investigates the concept of the ‘hidden costs’ of offshoring, i.e. unexpected offshoring costs exceeding the initially expected costs. Due to the highly undefined nature of these costs, we position our analysis towards the strategic responses of firms’ realisation of hidden costs....... In this regard, we argue that a major response to the hidden costs of offshoring is the identification and utilisation of strategic mechanisms in the organisational design to eventually achieving system integration in a globally dispersed and disaggregated organisation. This is heavily moderated by a learning......-by-doing process, where hidden costs motivate firms and their employees to search for new and better knowledge on how to successfully manage the organisation. We illustrate this thesis based on the case of the LEGO Group....

  15. The Hidden Costs of Offshoring

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Manning, Stephan; Pedersen, Torben

    2011-01-01

    of offshoring. Specifically, we propose that hidden costs can be explained by the combination of increasing structural, operational and social complexity of offshoring activities. In addition, we suggest that firm orientation towards organizational design as part of an offshoring strategy and offshoring......This study seeks to explain hidden costs of offshoring, i.e. unexpected costs resulting from the relocation of business tasks and activities outside the home country. We develop a model that highlights the role of complexity, design orientation and experience in explaining hidden costs...... experience moderate the relationship between complexity and hidden costs negatively i.e. reduces the cost generating impact of complexity. We develop three hypotheses and test them on comprehensive data from the Offshoring Research Network (ORN). In general, we find support for our hypotheses. A key result...

  16. Collective variables method in relativistic theory

    International Nuclear Information System (INIS)

    Shurgaya, A.V.

    1983-01-01

    Classical theory of N-component field is considered. The method of collective variables accurately accounting for conservation laws proceeding from invariance theory under homogeneous Lorentz group is developed within the frames of generalized hamiltonian dynamics. Hyperboloids are invariant surfaces Under the homogeneous Lorentz group. Proceeding from this, field transformation is introduced, and the surface is parametrized so that generators of the homogeneous Lorentz group do not include components dependent on interaction and their effect on the field function is reduced to geometrical. The interaction is completely included in the expression for the energy-momentum vector of the system which is a dynamical value. Gauge is chosen where parameters of four-dimensional translations and their canonically-conjugated pulses are non-physical and thus phase space is determined by parameters of the homogeneous Lorentz group, field function and their canonically-conjugated pulses. So it is managed to accurately account for conservation laws proceeding from the requirement of lorentz-invariance

  17. Hidden Markov models and other machine learning approaches in computational molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, P. [California Inst. of Tech., Pasadena, CA (United States)

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In this tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.

  18. Belief propagation and replicas for inference and learning in a kinetic Ising model with hidden spins

    International Nuclear Information System (INIS)

    Battistin, C; Roudi, Y; Hertz, J; Tyrcha, J

    2015-01-01

    We propose a new algorithm for inferring the state of hidden spins and reconstructing the connections in a synchronous kinetic Ising model, given the observed history. Focusing on the case in which the hidden spins are conditionally independent of each other given the state of observable spins, we show that calculating the likelihood of the data can be simplified by introducing a set of replicated auxiliary spins. Belief propagation (BP) and susceptibility propagation (SusP) can then be used to infer the states of hidden variables and to learn the couplings. We study the convergence and performance of this algorithm for networks with both Gaussian-distributed and binary bonds. We also study how the algorithm behaves as the fraction of hidden nodes and the amount of data are changed, showing that it outperforms the Thouless–Anderson–Palmer (TAP) equations for reconstructing the connections. (paper)

  19. Experimental demonstration of quantum contextuality with nonentangled photons

    International Nuclear Information System (INIS)

    Liu, B. H.; Huang, Y. F.; Gong, Y. X.; Sun, F. W.; Zhang, Y. S.; Li, C. F.; Guo, G. C.

    2009-01-01

    We present an experimental test of quantum contextuality by using two-photon product states. The experimental results show that the noncontextual hidden-variable theories are violated by nonentangled states in spite of the local hidden-variable theories can be violated or not. We find that the Hong-Ou-Mandel-type quantum interference effect causes the quantum contextuality.

  20. Hidden supersymmetry and spectral asymmetry: Fermion number fractionization and anomalies in even and odd dimensions

    International Nuclear Information System (INIS)

    Akhoury, R.; Comtet, A.

    1986-01-01

    We discuss how a ''hidden supersymmetry'' of the underlying field theories can be used to interpret and to calculate fermion number fractionization, axial anomalies, and anomalies in odd dimensions. All of the above effects can be related to a corresponding Witten index Δ(β) defined using the hidden sypersymmetry: thus providing a unified treatment for them. The relevance of the β dependence of the Witten index in the different cases is also discussed. Further, for the three-dimensional case, an expression for the parity violating part of the effective action at finite temperatures is obtained. copyright 1986 Academic Press, Inc

  1. Hidden symmetries of Kaluza-Klein theories

    International Nuclear Information System (INIS)

    Popov, A.D.

    1987-01-01

    It is shown that the introduction of dynamical torsion in Kaluza-Klein theories makes it possible to increase the number of gauge fields extracted from the Lagrangian without increasing the number of additional dimensions. An example of spontaneous compactification of a studied model is considered

  2. Thermodynamic approach to the inelastic state variable theories

    International Nuclear Information System (INIS)

    Dashner, P.A.

    1978-06-01

    A continuum model is proposed as a theoretical foundation for the inelastic state variable theory of Hart. The model is based on the existence of a free energy function and the assumption that a strained material element recalls two other local configurations which are, in some specified manner, descriptive of prior deformation. A precise formulation of these material hypotheses within the classical thermodynamical framework leads to the recovery of a generalized elastic law and the specification of evolutionary laws for the remembered configurations which are frame invariant and formally valid for finite strains. Moreover, the precise structure of Hart's theory is recovered when strains are assumed to be small

  3. Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Schabinger, Robert; Wells, James D.

    2005-01-01

    Little experimental data bears on the question of whether there is a spontaneously broken hidden sector that has no Standard Model quantum numbers. Here we discuss the prospects of finding evidence for such a hidden sector through renormalizable interactions of the Standard Model Higgs boson with a Higgs boson of the hidden sector. We find that the lightest Higgs boson in this scenario has smaller rates in standard detection channels, and it can have a sizeable invisible final state branching fraction. Details of the hidden sector determine whether the overall width of the lightest state is smaller or larger than the Standard Model width. We compute observable rates, total widths and invisible decay branching fractions within the general framework. We also introduce the 'A-Higgs Model', which corresponds to the limit of a hidden sector Higgs boson weakly mixing with the Standard Model Higgs boson. This model has only one free parameter in addition to the mass of the light Higgs state and it illustrates most of the generic phenomenology issues, thereby enabling it to be a good benchmark theory for collider searches. We end by presenting an analogous supersymmetry model with similar phenomenology, which involves hidden sector Higgs bosons interacting with MSSM Higgs bosons through D-terms

  4. Hidden Risk Factors for Women

    Science.gov (United States)

    ... A.S.T. Quiz Hidden Stroke Risk Factors for Women Updated:Nov 22,2016 Excerpted from "What Women Need To Know About The Hidden Risk Factors ... 2012) This year, more than 100,000 U.S. women under 65 will have a stroke. Stroke is ...

  5. Hidden-Sector Dynamics and the Supersymmetric Seesaw

    CERN Document Server

    Campbell, Bruce A; Maybury, David W

    2008-01-01

    In light of recent analyses that have shown that nontrivial hidden-sector dynamics in models of supersymmetry breaking can lead to a significant impact on the predicted low-energy supersymmetric spectrum, we extend these studies to consider hidden-sector effects in extensions of the MSSM to include a seesaw model for neutrino masses. A dynamical hidden sector in an interval of mass scales below the seesaw scale would yield renormalization-group running involving both the anomalous dimension from the hidden sector and the seesaw-extended MSSM renormalization group equations (RGEs). These effects interfere in general, altering the generational mixing of the sleptons, and allowing for a substantial change to the expected level of charged-lepton flavour violation in seesaw-extended MSSM models. These results provide further support for recent theoretical observations that knowledge of the hidden sector is required in order to make concrete low-energy predictions, if the hidden sector is strongly coupled. In parti...

  6. On the relation between boundary proposals and hidden symmetries of the extended pre-big bang quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jalalzadeh, S.; Rostami, T. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moniz, P.V. [Centro de Matematica e Aplicacoes-UBI, Covilha (Portugal); Universidade da Beira Interior, Departamento de Fisica, Covilha (Portugal)

    2015-01-01

    A framework associating quantum cosmological boundary conditions to minisuperspace hidden symmetries has been introduced in Jalalzadeh and Moniz (Phys Rev D 89:083504, 2014). The scope of the application was, notwithstanding the novelty, restrictive because it lacked a discussion involving realistic matter fields. Therefore, in the present letter, we extend the framework scope to encompass elements from a scalar-tensor theory in the presence of a cosmological constant. More precisely, it is shown that hidden minisuperspace symmetries present in a pre-big bang model suggest a process from which boundary conditions can be selected. (orig.)

  7. Hidden scale invariance of metals

    DEFF Research Database (Denmark)

    Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.

    2015-01-01

    Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...... of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were...... available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant...

  8. Global Update and Trends of Hidden Hunger, 1995-2011: The Hidden Hunger Index.

    Directory of Open Access Journals (Sweden)

    Julie C Ruel-Bergeron

    Full Text Available Deficiencies in essential vitamins and minerals-also termed hidden hunger-are pervasive and hold negative consequences for the cognitive and physical development of children.This analysis evaluates the change in hidden hunger over time in the form of one composite indicator-the Hidden Hunger Index (HHI-using an unweighted average of prevalence estimates from the Nutrition Impact Model Study for anemia due to iron deficiency, vitamin A deficiency, and stunting (used as a proxy indicator for zinc deficiency. Net changes from 1995-2011 and population weighted regional means for various time periods are measured.Globally, hidden hunger improved (-6.7 net change in HHI from 1995-2011. Africa was the only region to see a deterioration in hidden hunger (+1.9 over the studied time period; East Asia and the Pacific performed exceptionally well (-13.0, while other regions improved only slightly. Improvements in HHI were mostly due to reductions in zinc and vitamin A deficiencies, while anemia due to iron deficiency persisted and even increased.This analysis is critical for informing and tracking the impact of policy and programmatic efforts to reduce micronutrient deficiencies, to advance the global nutrition agenda, and to achieve the Millennium Development Goals (MDGs. However, there remains an unmet need to invest in gathering frequent, nationally representative, high-quality micronutrient data as we renew our efforts to scale up nutrition, and as we enter the post-2015 development agenda.Preparation of this manuscript was funded by Sight and Life. There was no funding involved in the study design, data collection, analysis, or decision to publish.

  9. Variables of the Theory of Planned Behavior Are Associated with Family Meal Frequency among Adolescents

    Science.gov (United States)

    Eto, Kumi; Koch, Pamela; Contento, Isobel R.; Adachi, Miyuki

    2011-01-01

    Objective: To examine associations between Theory of Planned Behavior variables and the family meal frequency. Methods: Fifth-through seventh-grade students (n = 236) completed a self-administered questionnaire in their classrooms. The relationships between Theory of Planned Behavior variables (intention, attitudes, subjective norms, and perceived…

  10. Scaling dimensions in hidden Kerr/CFT correspondence

    International Nuclear Information System (INIS)

    Lowe, David A.; Messamah, Ilies; Skanata, Antun

    2011-01-01

    It has been proposed that a hidden conformal field theory (CFT) governs the dynamics of low frequency scattering in a general Kerr black hole background. We further investigate this correspondence by mapping higher order corrections to the massless wave equations in a Kerr background to an expansion within the CFT in terms of higher dimension operators. This implies the presence of infinite towers of CFT primary operators with positive conformal dimensions compatible with unitarity. The exact Kerr background softly breaks the conformal symmetry and the scaling dimensions of these operators run with frequency. The scale-invariant fixed point is dual to a degenerate case of flat spacetime.

  11. Atlas of solar hidden photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza,Pedro Cerbuna 12, E-50009, Zaragoza (Spain); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,Föhringer Ring 6, 80805 München (Germany)

    2015-07-20

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

  12. Atlas of solar hidden photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier, E-mail: redondo@mpp.mpg.de [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain)

    2015-07-01

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

  13. Graph theory enables drug repurposing--how a mathematical model can drive the discovery of hidden mechanisms of action.

    Science.gov (United States)

    Gramatica, Ruggero; Di Matteo, T; Giorgetti, Stefano; Barbiani, Massimo; Bevec, Dorian; Aste, Tomaso

    2014-01-01

    We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.

  14. Graph theory enables drug repurposing--how a mathematical model can drive the discovery of hidden mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Ruggero Gramatica

    Full Text Available We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.

  15. … To be hidden does not mean to be merely revealed – Part 1 Artistic research on hidden curriculum

    Directory of Open Access Journals (Sweden)

    Annette Krause

    2015-09-01

    Full Text Available This text revisits the long-term project Hidden Curriculum, initiated by Annette Krauss. The project addresses unquestioned routines, hierarchies of knowledge (part 1, and the role of the body in learning processes (part 2 from the perspective of secondary/high school education (in the research on a hidden curriculum. A deeper analysis of educational studies on the phenomenon of ‘hidden curriculum’ in relation to the feminist and critical pedagogies of bell hooks, Paulo Freire, and Jacques Rancière brings forward important insights generated through the artistic research within hidden curriculum. The aim of this text is to address academic canons, corporeality, and investigate everyday norms through revisiting the framework, results, and processes of the collaborative research into hidden curriculum with secondary high school students.

  16. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks

    Science.gov (United States)

    2018-01-01

    Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181

  17. APPLICATION OF HIDDEN MARKOV CHAINS IN QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    Hanife DEMIRALP

    2013-01-01

    Full Text Available The ever growing technological innovations and sophistication in industrial processes require adequate checks on quality. Thus, there is an increasing demand for simple and efficient quality control methods. In this regard the control charts stand out in simplicity and efficiency. In this paper, we propose a method of controlling quality based on the theory of hidden Markov chains. Based on samples drawn at different times from the production process, the method obtains the state of the process probabilistically. The main advantage of the method is that it requires no assumption on the normality of the process output.

  18. Hidden Symmetries for Thermodynamics and Emergence of Relativity

    International Nuclear Information System (INIS)

    Zhao Liu

    2010-01-01

    Erik Verlinde recently proposed an idea about the thermodynamic origin of gravity. Though this is a beautiful idea, which may resolve many long standing problems in the theories of gravity, it also raises many other problems. In this article I will comment on some of the problems of Verlinde's proposal with special emphasis on the thermodynamical origin of the principle of relativity. It is found that there is a large group of hidden symmetries of thermodynamics, which contains the Poincare group of the spacetime for which space is emergent. This explains the thermodynamic origin of the principle of relativity. (general)

  19. Global Update and Trends of Hidden Hunger, 1995-2011: The Hidden Hunger Index

    Science.gov (United States)

    Stevens, Gretchen A.; Ezzati, Majid; Black, Robert E.; Kraemer, Klaus

    2015-01-01

    Background Deficiencies in essential vitamins and minerals–also termed hidden hunger–are pervasive and hold negative consequences for the cognitive and physical development of children. Methods This analysis evaluates the change in hidden hunger over time in the form of one composite indicator–the Hidden Hunger Index (HHI)–using an unweighted average of prevalence estimates from the Nutrition Impact Model Study for anemia due to iron deficiency, vitamin A deficiency, and stunting (used as a proxy indicator for zinc deficiency). Net changes from 1995–2011 and population weighted regional means for various time periods are measured. Findings Globally, hidden hunger improved (-6.7 net change in HHI) from 1995–2011. Africa was the only region to see a deterioration in hidden hunger (+1.9) over the studied time period; East Asia and the Pacific performed exceptionally well (-13.0), while other regions improved only slightly. Improvements in HHI were mostly due to reductions in zinc and vitamin A deficiencies, while anemia due to iron deficiency persisted and even increased. Interpretation This analysis is critical for informing and tracking the impact of policy and programmatic efforts to reduce micronutrient deficiencies, to advance the global nutrition agenda, and to achieve the Millennium Development Goals (MDGs). However, there remains an unmet need to invest in gathering frequent, nationally representative, high-quality micronutrient data as we renew our efforts to scale up nutrition, and as we enter the post-2015 development agenda. Funding Preparation of this manuscript was funded by Sight and Life. There was no funding involved in the study design, data collection, analysis, or decision to publish. PMID:26673631

  20. Analytic function theory of several variables elements of Oka’s coherence

    CERN Document Server

    Noguchi, Junjiro

    2016-01-01

    The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps). The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appear...

  1. Results from the solar hidden photon search (SHIPS)

    International Nuclear Information System (INIS)

    Schwarz, Matthias; Schneide, Magnus; Susol, Jaroslaw; Wiedemann, Guenter; Redondo, Javier

    2015-02-01

    We present the results of a search for transversely polarised hidden photons (HPs) with ∝3 eV energies emitted from the Sun. These hypothetical particles, known also as paraphotons or dark sector photons, are theoretically well motivated for example by string theory inspired extensions of the Standard Model. Solar HPs of sub-eV mass can convert into photons of the same energy (photon<->HP oscillations are similar to neutrino flavour oscillations). At SHIPS this would take place inside a long light-tight high-vacuum tube, which tracks the Sun. The generated photons would then be focused into a low-noise photomultiplier at the far end of the tube. Our analysis of 330 h of data (and 330 h of background characterisation) reveals no signal of photons from solar hidden photon conversion. We estimate the rate of newly generated photons due to this conversion to be smaller than 25 mHz/m 2 at the 95%C.L. Using this and a recent model of solar HP emission, we set stringent constraints on χ, the coupling constant between HPs and photons, as a function of the HP mass.

  2. Results from the Solar Hidden Photon Search (SHIPS)

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Matthias; Schneide, Magnus; Susol, Jaroslaw; Wiedemann, Günter [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Knabbe, Ernst-Axel; Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); Redondo, Javier, E-mail: mschwarz@hs.uni-hamburg.de, E-mail: ernst-axel.knabbe@desy.de, E-mail: Axel-lindner@desy.de, E-mail: jredondo@unizar.es, E-mail: Andreas.Ringwald@desy.de, E-mail: mschneide@hs.uni-hamburg.de, E-mail: jsusol@hs.uni-hamburg.de, E-mail: gwiedemann@hs.uni-hamburg.de [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza (Spain)

    2015-08-01

    We present the results of a search for transversely polarised hidden photons (HPs) with ∼ 3 eV energies emitted from the Sun. These hypothetical particles, known also as paraphotons or dark sector photons, are theoretically well motivated for example by string theory inspired extensions of the Standard Model. Solar HPs of sub-eV mass can convert into photons of the same energy (photon ↔ HP oscillations are similar to neutrino flavour oscillations). At SHIPS this would take place inside a long light-tight high-vacuum tube, which tracks the Sun. The generated photons would then be focused into a low-noise photomultiplier at the far end of the tube. Our analysis of 330 h of data (and 330 h of background characterisation) reveals no signal of photons from solar hidden photon conversion. We estimate the rate of newly generated photons due to this conversion to be smaller than 25 mHz/m{sup 2} at the 95% C.L . Using this and a recent model of solar HP emission, we set stringent constraints on χ, the coupling constant between HPs and photons, as a function of the HP mass.

  3. Results from the solar hidden photon search (SHIPS)

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Matthias; Schneide, Magnus; Susol, Jaroslaw; Wiedemann, Guenter [Hamburg Univ. (Germany). Sternwarte; Knabbe, Ernst-Axel; Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-02-15

    We present the results of a search for transversely polarised hidden photons (HPs) with ∝3 eV energies emitted from the Sun. These hypothetical particles, known also as paraphotons or dark sector photons, are theoretically well motivated for example by string theory inspired extensions of the Standard Model. Solar HPs of sub-eV mass can convert into photons of the same energy (photon<->HP oscillations are similar to neutrino flavour oscillations). At SHIPS this would take place inside a long light-tight high-vacuum tube, which tracks the Sun. The generated photons would then be focused into a low-noise photomultiplier at the far end of the tube. Our analysis of 330 h of data (and 330 h of background characterisation) reveals no signal of photons from solar hidden photon conversion. We estimate the rate of newly generated photons due to this conversion to be smaller than 25 mHz/m{sup 2} at the 95%C.L. Using this and a recent model of solar HP emission, we set stringent constraints on χ, the coupling constant between HPs and photons, as a function of the HP mass.

  4. Results from the Solar Hidden Photon Search (SHIPS)

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Matthias [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Knabbe, Ernst-Axel; Lindner, Axel [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza (Spain); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); Schneide, Magnus; Susol, Jaroslaw; Wiedemann, Günter [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2015-08-07

    We present the results of a search for transversely polarised hidden photons (HPs) with ∼3 eV energies emitted from the Sun. These hypothetical particles, known also as paraphotons or dark sector photons, are theoretically well motivated for example by string theory inspired extensions of the Standard Model. Solar HPs of sub-eV mass can convert into photons of the same energy (photon ↔ HP oscillations are similar to neutrino flavour oscillations). At SHIPS this would take place inside a long light-tight high-vacuum tube, which tracks the Sun. The generated photons would then be focused into a low-noise photomultiplier at the far end of the tube. Our analysis of 330 h of data (and 330 h of background characterisation) reveals no signal of photons from solar hidden photon conversion. We estimate the rate of newly generated photons due to this conversion to be smaller than 25 mHz/m{sup 2} at the 95% C.L. Using this and a recent model of solar HP emission, we set stringent constraints on χ, the coupling constant between HPs and photons, as a function of the HP mass.

  5. Hardy's argument and successive spin-s measurements

    International Nuclear Information System (INIS)

    Ahanj, Ali

    2010-01-01

    We consider a hidden-variable theoretic description of successive measurements of noncommuting spin observables on an input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is ((1/2)) 4s , which is more than in the spatial case.

  6. Excluding joint probabilities from quantum theory

    Science.gov (United States)

    Allahverdyan, Armen E.; Danageozian, Arshag

    2018-03-01

    Quantum theory does not provide a unique definition for the joint probability of two noncommuting observables, which is the next important question after the Born's probability for a single observable. Instead, various definitions were suggested, e.g., via quasiprobabilities or via hidden-variable theories. After reviewing open issues of the joint probability, we relate it to quantum imprecise probabilities, which are noncontextual and are consistent with all constraints expected from a quantum probability. We study two noncommuting observables in a two-dimensional Hilbert space and show that there is no precise joint probability that applies for any quantum state and is consistent with imprecise probabilities. This contrasts with theorems by Bell and Kochen-Specker that exclude joint probabilities for more than two noncommuting observables, in Hilbert space with dimension larger than two. If measurement contexts are included into the definition, joint probabilities are not excluded anymore, but they are still constrained by imprecise probabilities.

  7. Geometric theory of functions of a complex variable

    CERN Document Server

    Goluzin, G M

    1969-01-01

    This book is based on lectures on geometric function theory given by the author at Leningrad State University. It studies univalent conformal mapping of simply and multiply connected domains, conformal mapping of multiply connected domains onto a disk, applications of conformal mapping to the study of interior and boundary properties of analytic functions, and general questions of a geometric nature dealing with analytic functions. The second Russian edition upon which this English translation is based differs from the first mainly in the expansion of two chapters and in the addition of a long survey of more recent developments. The book is intended for readers who are already familiar with the basics of the theory of functions of one complex variable.

  8. An infinite-dimensional weak KAM theory via random variables

    KAUST Repository

    Gomes, Diogo A.

    2016-08-31

    We develop several aspects of the infinite-dimensional Weak KAM theory using a random variables\\' approach. We prove that the infinite-dimensional cell problem admits a viscosity solution that is a fixed point of the Lax-Oleinik semigroup. Furthermore, we show the existence of invariant minimizing measures and calibrated curves defined on R.

  9. An infinite-dimensional weak KAM theory via random variables

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon

    2016-01-01

    We develop several aspects of the infinite-dimensional Weak KAM theory using a random variables' approach. We prove that the infinite-dimensional cell problem admits a viscosity solution that is a fixed point of the Lax-Oleinik semigroup. Furthermore, we show the existence of invariant minimizing measures and calibrated curves defined on R.

  10. Stochastic variables in N=1 supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Lechtenfeld, O.

    1984-06-01

    The stochastic structure of N=1 supersymmetric Yang-Mills theory is rederived by using a previously developed method for the construction of the (nonlocal) Nicolai map. The stochastic variables correspond to the fixed points of this mapping. The relations are derived in a light cone gauge and in general covariant gauges. (orig.)

  11. Nonlinear dynamical modes of climate variability: from curves to manifolds

    Science.gov (United States)

    Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander

    2016-04-01

    The necessity of efficient dimensionality reduction methods capturing dynamical properties of the system from observed data is evident. Recent study shows that nonlinear dynamical mode (NDM) expansion is able to solve this problem and provide adequate phase variables in climate data analysis [1]. A single NDM is logical extension of linear spatio-temporal structure (like empirical orthogonal function pattern): it is constructed as nonlinear transformation of hidden scalar time series to the space of observed variables, i. e. projection of observed dataset onto a nonlinear curve. Both the hidden time series and the parameters of the curve are learned simultaneously using Bayesian approach. The only prior information about the hidden signal is the assumption of its smoothness. The optimal nonlinearity degree and smoothness are found using Bayesian evidence technique. In this work we do further extension and look for vector hidden signals instead of scalar with the same smoothness restriction. As a result we resolve multidimensional manifolds instead of sum of curves. The dimension of the hidden manifold is optimized using also Bayesian evidence. The efficiency of the extension is demonstrated on model examples. Results of application to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510

  12. The interplay between affect and theory of planned behavior variables

    NARCIS (Netherlands)

    Keer, M.; van den Putte, B.; Neijens, P.

    2012-01-01

    Objectives: To assess whether affective evaluations of health behaviors moderate or mediate the influence of theory of planned behavior (TPB) variables on intention. Methods: For each of 20 health behaviors, respondents (N=300) completed questionnaire measures of affective evaluation, attitude,

  13. Search for Hidden Particles

    CERN Multimedia

    Solovev, V

    The SHiP Experiment is a new general-purpose fixed target facility at the SPS to search for hidden particles as predicted by a very large number of recently elaborated models of Hidden Sectors which are capable of accommodating dark matter, neutrino oscillations, and the origin of the full baryon asymmetry in the Universe. Specifically, the experiment is aimed at searching for very weakly interacting long lived particles including Heavy Neutral Leptons - right-handed partners of the active neutrinos; light supersymmetric particles - sgoldstinos, etc.; scalar, axion and vector portals to the hidden sector. The high intensity of the SPS and in particular the large production of charm mesons with the 400 GeV beam allow accessing a wide variety of light long-lived exotic particles of such models and of SUSY. Moreover, the facility is ideally suited to study the interactions of tau neutrinos.

  14. Are particle rest masses variable: Theory and constraints from solar system experiments

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1977-01-01

    Particle rest mass variation in spacetime is considered. According to Dicke, if this is the case various null experiments indicate that all masses vary in the same way. Their variation relative to the Planck-Wheeler mass defines a universal scalar rest-mass field. We construct the relativistic dynamics for this field based on very general assumptions. In addition, we assume Einstein's equations to be valid in Planck-Wheeler units. A special case of the theory coincides with Dicke's reformulation of Brans-Dicke theory as general relativity with variable rest masses. In the general case the rest-mass field is some power r of a scalar field which obeys an ordinary scalar equation with coupling to the curvature of strength q. The r and q are the only parameters of the theory. Comparison with experiment is facilitated by recasting the theory into units in which rest masses are constant, the Planck-Wheeler mass varies, and the metric satisfies the equations of a small subset of the scalar-tensor theories of gravitation. The results of solar system experiments, usually used to test general relativity, are here used to delimit the acceptable values of r and q. We conclude that if cosmological considerations are not invoked, then the solar system experiments do not rule out the possibility of rest-mass variability. That is, there are theories which agree with all null and solar system experiments, and yet contradict the strong equivalence principle by allowing rest masses to vary relative to the Planck-Wheeler mass. We show that the field theory of the rest-mass field can be quantized and interpreted in terms of massless scalar quanta which interact very weakly with matter. This explains why they have not turned up in high-energy experiments. In future reports we shall investigate the implications of various cosmological and astrophysical data for the theory of variable rest masses. The ultimate goal is a firm decision on whether rest masses vary or not

  15. Higgs Portal into Hidden Sectors

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Several attractive theoretical ideas suggest the existence of one or more 'hidden sectors' consisting of standard model singlet fields, some of which may not be too heavy. There is a profound reason to think that the Higgs sector might provide the first access to these hidden sectors. This scenario could affect Higgs phenomenology in drastic ways.

  16. Hidden in plain sight: the formal, informal, and hidden curricula of a psychiatry clerkship.

    Science.gov (United States)

    Wear, Delese; Skillicorn, Jodie

    2009-04-01

    To examine perceptions of the formal, informal, and hidden curricula in psychiatry as they are observed and experienced by (1) attending physicians who have teaching responsibilities for residents and medical students, (2) residents who are taught by those same physicians and who have teaching responsibilities for medical students, and (3) medical students who are taught by attendings and residents during their psychiatry rotation. From June to November 2007, the authors conducted focus groups with attendings, residents, and students in one midwestern academic setting. The sessions were audiotaped, transcribed, and analyzed for themes surrounding the formal, informal, and hidden curricula. All three groups offered a similar belief that the knowledge, skills, and values of the formal curriculum focused on building relationships. Similarly, all three suggested that elements of the informal and hidden curricula were expressed primarily as the values arising from attendings' role modeling, as the nature and amount of time attendings spend with patients, and as attendings' advice arising from experience and intuition versus "textbook learning." Whereas students and residents offered negative values arising from the informal and hidden curricula, attendings did not, offering instead the more positive values they intended to encourage through the informal and hidden curricula. The process described here has great potential in local settings across all disciplines. Asking teachers and learners in any setting to think about how they experience the educational environment and what sense they make of all curricular efforts can provide a reality check for educators and a values check for learners as they critically reflect on the meanings of what they are learning.

  17. A Novel Method for Decoding Any High-Order Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-01-01

    Full Text Available This paper proposes a novel method for decoding any high-order hidden Markov model. First, the high-order hidden Markov model is transformed into an equivalent first-order hidden Markov model by Hadar’s transformation. Next, the optimal state sequence of the equivalent first-order hidden Markov model is recognized by the existing Viterbi algorithm of the first-order hidden Markov model. Finally, the optimal state sequence of the high-order hidden Markov model is inferred from the optimal state sequence of the equivalent first-order hidden Markov model. This method provides a unified algorithm framework for decoding hidden Markov models including the first-order hidden Markov model and any high-order hidden Markov model.

  18. Abelian hidden sectors at a GeV

    International Nuclear Information System (INIS)

    Morrissey, David E.; Poland, David; Zurek, Kathryn M.

    2009-01-01

    We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1) x gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.

  19. Detecting faked continuous-variable entanglement using one-sided device-independent entanglement witnesses

    Science.gov (United States)

    Opanchuk, B.; Arnaud, L.; Reid, M. D.

    2014-06-01

    We demonstrate the principle of one-sided device-independent continuous-variable (CV) quantum information. In situations of no trust, we show by enactment how the use of standard CV entanglement criteria can mislead Charlie into thinking that Alice and Bob share entanglement, when the data are actually generated classically using a local-hidden-variable theory based on the Wigner function. We distinguish between criteria that demonstrate CV entanglement, and criteria that demonstrate the CV Einstein-Podolsky-Rosen (EPR) steering paradox. We show that the latter, but not the former, are necessarily one-sided device-independent entanglement witnesses, and can be used by Charlie to signify genuine EPR entanglement, if he trusts only Alice. A monogamy result for the EPR steering paradox confirms the security of the shared amplitude values in that case.

  20. Randomness and locality in quantum mechanics

    International Nuclear Information System (INIS)

    Bub, J.

    1976-01-01

    This paper considers the problem of representing the statistical states of a quantum mechanical system by measures on a classical probability space. The Kochen and Specker theorem proves the impossibility of embedding the possibility structure of a quantum mechanical system into a Boolean algebra. It is shown that a hidden variable theory involves a Boolean representation which is not an embedding, and that such a representation cannot recover the quantum statistics for sequential probabilities without introducing a randomization process for the hidden variables which is assumed to apply only on measurement. It is suggested that the relation of incompatability is to be understood as a type of stochastic independence, and that the indeterminism of a quantum mechanical system is engendered by the existence of independent families of properties. Thus, the statistical relations reflect the possibility structure of the system: the probabilities are logical. The hidden variable thesis is influenced by the Copenhagen interpretation of quantum mechanics, i.e. by some version of the disturbance theory of measurement. Hence, the significance of the representation problem is missed, and the completeness of quantum mechanics is seen to turn on the possibility of recovering the quantum statistics by a hidden variable scheme which satisfies certain physically motivated conditions, such as locality. Bell's proof that no local hidden variable theory can reproduce the statistical relations of quantum mechanics is considered. (Auth.)

  1. Gauge theories as string theories: the first results

    International Nuclear Information System (INIS)

    Gorsky, Aleksandr S

    2005-01-01

    The gauge/string theory duality in curved space is discussed mainly using a non-Abelian conformal N = 4 supersymmetric gauge theory and the theory of a closed superstring in the AdS 5 x S 5 metric as an example. It is shown that in the supergravity approximation, string duality yields the characteristics of a strong-coupling gauge theory. For a special shape of the contour, a Wilson loop expression is derived in the classical superstring approximation. The role of the hidden integrability in lower-loop calculations in gauge theory and in different approximations of string theory is discussed. It is demonstrated that in the large quantum-number limit, gauge theory operators can be described in terms of the dual string picture. Examples of metrics providing the dual description of gauge theories with broken conformal symmetry are presented, and formulations of the vacuum structure of such theories in terms of gravity are discussed. (reviews of topical problems)

  2. Analogy between electromagnetic potentials and wave-like dynamic variables with connections to quantum theory

    Science.gov (United States)

    Yang, Chen

    2018-05-01

    The transitions from classical theories to quantum theories have attracted many interests. This paper demonstrates the analogy between the electromagnetic potentials and wave-like dynamic variables with their connections to quantum theory for audiences at advanced undergraduate level and above. In the first part, the counterpart relations in the classical electrodynamics (e.g. gauge transform and Lorenz condition) and classical mechanics (e.g. Legendre transform and free particle condition) are presented. These relations lead to similar governing equations of the field variables and dynamic variables. The Lorenz gauge, scalar potential and vector potential manifest a one-to-one similarity to the action, Hamiltonian and momentum, respectively. In the second part, the connections between the classical pictures of electromagnetic field and particle to quantum picture are presented. By characterising the states of electromagnetic field and particle via their (corresponding) variables, their evolution pictures manifest the same algebraic structure (isomorphic). Subsequently, pictures of the electromagnetic field and particle are compared to the quantum picture and their interconnections are given. A brief summary of the obtained results are presented at the end of the paper.

  3. Hidden symmetries in one-dimensional quantum Hamiltonians

    International Nuclear Information System (INIS)

    Curado, E.M.F.; Rego-Monteiro, M.A.; Nazareno, H.N.

    2000-11-01

    We construct a Heisenberg-like algebra for the one dimensional infinite square-well potential in quantum mechanics. The number-type and ladder operators are realized in terms of physical operators of the system as in the harmonic oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed non commutative differential calculus. This square-well algebra is an example of an algebra in large class of generalized Heisenberg algebras recently constructed. This class of algebras also contains q-oscillators as a particular case. We also show here how this general algebra can address hidden symmetries present in several quantum systems. (author)

  4. Testing quantum mechanics using third-order correlations

    International Nuclear Information System (INIS)

    Kinsler, P.

    1996-01-01

    Semiclassical theories similar to stochastic electrodynamics are widely used in optics. The distinguishing feature of such theories is that the quantum uncertainty is represented by random statistical fluctuations. They can successfully predict some quantum-mechanical phenomena; for example, the squeezing of the quantum uncertainty in the parametric oscillator. However, since such theories are not equivalent to quantum mechanics, they will not always be useful. Complex number representations can be used to exactly model the quantum uncertainty, but care has to be taken that approximations do not reduce the description to a hidden variable one. This paper helps show the limitations of open-quote open-quote semiclassical theories,close-quote close-quote and helps show where a true quantum-mechanical treatment needs to be used. Third-order correlations are a test that provides a clear distinction between quantum and hidden variable theories in a way analogous to that provided by the open-quote open-quote all or nothing close-quote close-quote Greenberger-Horne-Zeilinger test of local hidden variable theories. copyright 1996 The American Physical Society

  5. Diphoton excess from hidden U(1 gauge symmetry with large kinetic mixing

    Directory of Open Access Journals (Sweden)

    Fuminobu Takahashi

    2016-09-01

    Full Text Available We show that the 750 GeV diphoton excess can be explained by introducing vector-like quarks and hidden fermions charged under a hidden U(1 gauge symmetry, which has a relatively large coupling constant as well as a significant kinetic mixing with U(1Y. With the large kinetic mixing, the standard model gauge couplings unify around 1017 GeV, suggesting the grand unified theory without too rapid proton decay. Our scenario predicts events with a photon and missing transverse momentum, and its cross section is related to that for the diphoton excess through the kinetic mixing. We also discuss other possible collider signatures and cosmology, including various ways to evade constraints on exotic stable charged particles. In some cases where the 750 GeV diphoton excess is due to diaxion decays, our scenario also predicts triphoton and tetraphoton signals.

  6. Perspective: Disclosing hidden sources of funding.

    Science.gov (United States)

    Resnik, David B

    2009-09-01

    In this article, the author discusses ethical and policy issues related to the disclosure of hidden sources of funding in research. The author argues that authors have an ethical obligation to disclose hidden sources of funding and that journals should adopt policies to enforce this obligation. Journal policies should require disclosure of hidden sources of funding that authors know about and that have a direct relation to their research. To stimulate this discussion, the author describes a recent case: investigators who conducted a lung cancer screening study had received funding from a private foundation that was supported by a tobacco company, but they did not disclose this relationship to the journal. Investigators and journal editors must be prepared to deal with these issues in a manner that promotes honesty, transparency, fairness, and accountability in research. The development of well-defined, reasonable policies pertaining to hidden sources of funding can be a step in this direction.

  7. Problems with Contingency Theory: Testing Assumptions Hidden within the Language of Contingency "Theory".

    Science.gov (United States)

    Schoonhoven, Clausia Bird

    1981-01-01

    Discusses problems in contingency theory, which relates organizational structure to the tasks performed and the information needed. Analysis of data from 17 hospitals suggests that traditional contingency theory underrepresents the complexity of relations among technological uncertainty, structure, and organizational effectiveness. (Author/RW)

  8. Anti-pairing in learning of a neural network with redundant hidden units

    International Nuclear Information System (INIS)

    Kwon, Chulan; Kim, Hyong Kyun

    2005-01-01

    We study the statistical mechanics of learning from examples between the two-layered committee machines with different numbers of hidden units using the replica theory. The number M of hidden units of the student network is larger than the number M T of those of the target network called the teacher. We choose the networks to have binary synaptic weights, ±1, which makes it possible to compare the calculation with the Monte Carlo simulation. We propose an effective teacher as a virtual target network which has the same M hidden units as the student and gives identical outputs with those of the original teacher. This is a way of making a conjecture for a ground state of a thermodynamic system, given by the weights of the effective teacher in our study. We suppose that the weights on M T hidden units of the effective teacher are the same as those of the original teacher while those on M - M T redundant hidden units are composed of anti-pairs, {1, - 1}, with probability 1 - p in the limit p → 0. For p = 0 exact, there are no terms related to the effective teacher in the calculation, for the contributions of anti-pairs to outputs are exactly cancelled. In the limit p → 0, however, we find that the learnt weights of the student are actually equivalent to those of the suggested effective teacher, which is not possible from the calculation for p = 0. p plays the role of a symmetry breaking parameter for anti-pairing ordering, which is analogous to the magnetic field for the Ising model. A first-order phase transition is found to be signalled by breaking of symmetry in permuting hidden units. Above a critical number of examples, the student is shown to learn perfectly the effective teacher. Anti-pairing can be measured by a set of order parameters; zero in the permutation-symmetric phase and nonzero in the permutation symmetry breaking phase. Results from the Monte Carlo simulation are shown to be in good agreement with those from the replica calculation

  9. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma 70 and sigma 54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  10. Interpolation theory

    CERN Document Server

    Lunardi, Alessandra

    2018-01-01

    This book is the third edition of the 1999 lecture notes of the courses on interpolation theory that the author delivered at the Scuola Normale in 1998 and 1999. In the mathematical literature there are many good books on the subject, but none of them is very elementary, and in many cases the basic principles are hidden below great generality. In this book the principles of interpolation theory are illustrated aiming at simplification rather than at generality. The abstract theory is reduced as far as possible, and many examples and applications are given, especially to operator theory and to regularity in partial differential equations. Moreover the treatment is self-contained, the only prerequisite being the knowledge of basic functional analysis.

  11. Toward a mechanistic explanation of phenotypic evolution: The need for a theory of theory integration.

    Science.gov (United States)

    Laubichler, Manfred D; Prohaska, Sonja J; Stadler, Peter F

    2018-01-01

    Reconciling different underlying ontologies and explanatory contexts has been one of the main challenges and impediments for theory integration in biology. Here, we analyze the challenge of developing an inclusive and integrative theory of phenotypic evolution as an example for the broader challenge of developing a theory of theory integration within the life sciences and suggest a number of necessary formal steps toward the resolution of often incompatible (hidden) assumptions. Theory integration in biology requires a better formal understanding of the structure of biological theories The strategy for integrating theories crucially depends on the relationships of the underlying ontologies. © 2018 Wiley Periodicals, Inc.

  12. Religion, Spirituality, and the Hidden Curriculum: Medical Student and Faculty Reflections.

    Science.gov (United States)

    Balboni, Michael J; Bandini, Julia; Mitchell, Christine; Epstein-Peterson, Zachary D; Amobi, Ada; Cahill, Jonathan; Enzinger, Andrea C; Peteet, John; Balboni, Tracy

    2015-10-01

    Religion and spirituality play an important role in physicians' medical practice, but little research has examined their influence within the socialization of medical trainees and the hidden curriculum. The objective is to explore the role of religion and spirituality as they intersect with aspects of medicine's hidden curriculum. Semiscripted, one-on-one interviews and focus groups (n = 33 respondents) were conducted to assess Harvard Medical School student and faculty experiences of religion/spirituality and the professionalization process during medical training. Using grounded theory, theme extraction was performed with interdisciplinary input (medicine, sociology, and theology), yielding a high inter-rater reliability score (kappa = 0.75). Three domains emerged where religion and spirituality appear as a factor in medical training. First, religion/spirituality may present unique challenges and benefits in relation to the hidden curriculum. Religious/spiritual respondents more often reported to struggle with issues of personal identity, increased self-doubt, and perceived medical knowledge inadequacy. However, religious/spiritual participants less often described relationship conflicts within the medical team, work-life imbalance, and emotional stress arising from patient suffering. Second, religion/spirituality may influence coping strategies during encounters with patient suffering. Religious/spiritual trainees described using prayer, faith, and compassion as means for coping whereas nonreligious/nonspiritual trainees discussed compartmentalization and emotional repression. Third, levels of religion/spirituality appear to fluctuate in relation to medical training, with many trainees experiencing an increase in religiousness/spirituality during training. Religion/spirituality has a largely unstudied but possibly influential role in medical student socialization. Future study is needed to characterize its function within the hidden curriculum. Copyright

  13. An improved and explicit surrogate variable analysis procedure by coefficient adjustment.

    Science.gov (United States)

    Lee, Seunggeun; Sun, Wei; Wright, Fred A; Zou, Fei

    2017-06-01

    Unobserved environmental, demographic, and technical factors can negatively affect the estimation and testing of the effects of primary variables. Surrogate variable analysis, proposed to tackle this problem, has been widely used in genomic studies. To estimate hidden factors that are correlated with the primary variables, surrogate variable analysis performs principal component analysis either on a subset of features or on all features, but weighting each differently. However, existing approaches may fail to identify hidden factors that are strongly correlated with the primary variables, and the extra step of feature selection and weight calculation makes the theoretical investigation of surrogate variable analysis challenging. In this paper, we propose an improved surrogate variable analysis using all measured features that has a natural connection with restricted least squares, which allows us to study its theoretical properties. Simulation studies and real data analysis show that the method is competitive to state-of-the-art methods.

  14. Relating c 0 conformal field theories

    International Nuclear Information System (INIS)

    Guruswamy, S.; Ludwig, A.W.W.

    1998-03-01

    A 'canonical mapping' is established between the c = -1 system of bosonic ghosts at the c = 2 complex scalar theory and, a similar mapping between the c = -2 system of fermionic ghosts and the c = 1 Dirac theory. The existence of this mapping is suggested by the identity of the characters of the respective theories. The respective c 0 theories share the same space of states, whereas the spaces of conformal fields are different. Upon this mapping from their c 0) complex scalar and the Dirac theories inherit hidden nonlocal sl(2) symmetries. (author)

  15. Observation of hidden Fermi surface nesting in a two dimensional conductor

    International Nuclear Information System (INIS)

    Breuer, K.; Stagerescu, C.; Smith, K.E.; Greenblatt, M.; Ramanujachary, K.

    1996-01-01

    We report the first direct measurement of hidden Fermi surface nesting in a two dimensional conductor. The system studied was Na 0.9 Mo 6 O 17 , and the measured Fermi surface consists of electron and hole pockets that can be combined to form sets of pseudo-one-dimensional Fermi surfaces, exhibiting the nesting necessary to drive a Peierls transition to a charge density wave state. The observed nesting vector is shown to be in excellent agreement with theory. copyright 1996 The American Physical Society

  16. Neutron polarimetric test of Leggett's contextual model of quantum mechanics

    International Nuclear Information System (INIS)

    Schmitzer, C.; Bartosik, H.; Klepp, J.; Sponar, S.; Badurek, G.; Hasegawa, J.

    2009-01-01

    Full text: The Einstein-Podolsky-Rosen (EPR) argument attempted to dispute quantum theory. With the Bell inequality it was possible to set up an experimental test of the EPR argument. Here, we describe the rebuilding of the measurement station at the tangential beam exit of the TRIGA reactor of the Atominstitut in Vienna. A new polarimeter setup was constructed and adjusted to generate Bell states by entangling a neutron's energy and spin. After accomplishing visibilities of up to 98.7 %, it was possible to test a Leggett-type inequality, which challenges a 'contextual' hidden variable theory. Such a contextual model would have been capable of reproducing former Bell inequality violations. Measurement results of this Leggett inequality and a generalized Clauser-Horne-Shimony-Holt (CHSH) inequality show violations of this hidden variable model. Hence noncontextual and contextual hidden variable theories can be excluded simultaneously and quantum mechanical predictions are confirmed. (author)

  17. Probability, random variables, and random processes theory and signal processing applications

    CERN Document Server

    Shynk, John J

    2012-01-01

    Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several app

  18. Hidden charged dark matter and chiral dark radiation

    Science.gov (United States)

    Ko, P.; Nagata, Natsumi; Tang, Yong

    2017-10-01

    In the light of recent possible tensions in the Hubble constant H0 and the structure growth rate σ8 between the Planck and other measurements, we investigate a hidden-charged dark matter (DM) model where DM interacts with hidden chiral fermions, which are charged under the hidden SU(N) and U(1) gauge interactions. The symmetries in this model assure these fermions to be massless. The DM in this model, which is a Dirac fermion and singlet under the hidden SU(N), is also assumed to be charged under the U(1) gauge symmetry, through which it can interact with the chiral fermions. Below the confinement scale of SU(N), the hidden quark condensate spontaneously breaks the U(1) gauge symmetry such that there remains a discrete symmetry, which accounts for the stability of DM. This condensate also breaks a flavor symmetry in this model and Nambu-Goldstone bosons associated with this flavor symmetry appear below the confinement scale. The hidden U(1) gauge boson and hidden quarks/Nambu-Goldstone bosons are components of dark radiation (DR) above/below the confinement scale. These light fields increase the effective number of neutrinos by δNeff ≃ 0.59 above the confinement scale for N = 2, resolving the tension in the measurements of the Hubble constant by Planck and Hubble Space Telescope if the confinement scale is ≲1 eV. DM and DR continuously scatter with each other via the hidden U(1) gauge interaction, which suppresses the matter power spectrum and results in a smaller structure growth rate. The DM sector couples to the Standard Model sector through the exchange of a real singlet scalar mixing with the Higgs boson, which makes it possible to probe our model in DM direct detection experiments. Variants of this model are also discussed, which may offer alternative ways to investigate this scenario.

  19. The hidden universe

    International Nuclear Information System (INIS)

    Disney, M.

    1985-01-01

    Astronomer Disney has followed a somewhat different tack than that of most popular books on cosmology by concentrating on the notion of hidden (as in not directly observable by its own radiation) matter in the universe

  20. Religious Tolerance in the Hidden Curriculum

    Directory of Open Access Journals (Sweden)

    Kevin Nobel Kurniawan

    2018-03-01

    Full Text Available Religious intolerance is spreading within the Indonesian institution of education. Previous studies have shown that the growth of intolerance is due to the state’s regulation and pedagogical apparatus. In contrast to the previous studies, I argue that the intolerance is related to hidden curriculum applied by the institution of education.  Normatively, the hidden curriculum contains the value of religious tolerance. However, factually, the author found that there are practices of intolerance, through the formal and informal spheres in the school’s structure, within the hidden curriculum. This article applies a qualitative approach with a mixed method research strategy to analyze data collected from students, teachers, and alumnis through field observation, in-depth interview, and survey.

  1. An adaptive synchronization strategy based on active control for demodulating message hidden in chaotic signals

    International Nuclear Information System (INIS)

    Tang Fang

    2008-01-01

    In the field of secure communication, it is very important to demodulate the message hidden in chaotic signals. In this paper, an adaptive synchronization strategy based on active control is proposed, which is used to design an active controller and an appropriate adaptive demodulator at the receiver to recover the transmitted message hidden in chaotic signals of a drive system. Based on Lyapunov stability theory, it is shown that the transmitted message can be theoretically recovered by using the proposed strategy. Numerical simulations based on the Chua's circuit are also presented to verify the effectiveness of the proposed strategy. In addition, it is shown via simulations that, by increasing the gain of the active controller the message error caused by the external noise and the discontinuous property of the message can be reduced

  2. Hidden Variables and Placebo Effects

    Science.gov (United States)

    Goradia, Shantilal

    2006-03-01

    God's response to prayers and placebo leads to a question. How does He respond deterministically? He may be controlling at least one of the two variables of the uncertainty principle by extending His invisible soul to each body particle locally. Amazingly, many Vedic verses support this answer. One describes the size of the soul as arithmetically matching the size of the nucleons as if a particle is a soul. One gives a name meaning particle soul (anu-atma), consistent with particle's indeterministic behavior like that of (soulful) bird’s flying in any directions irrespective of the direction of throw. One describes souls as eternal consistent with the conservation of baryon number. One links the souls to the omnipresent (param- atma) like Einstein Rosen bridges link particles to normal spacetime. One claims eternal coexistence of matter and soul as is inflationary universe in physics/0210040 V2. The implicit scientific consistency of such verses makes the relationship of particle source of consciousness to the omnipresent Supreme analogous to the relationship of quantum source of gravitons in my gr-qc/0507130 to normal spacetime This frees us from the postulation of quantum wormholes and quantum foam. Dr. Hooft's view in ``Does God play dice,'' Physicsword, Dec 2005 seems consistent with my progressive conference presentations in Russia, Europe, India, and USA (Hindu University) in 2004/05. I see implications for nanoscience.

  3. Hidden Markov Item Response Theory Models for Responses and Response Times.

    Science.gov (United States)

    Molenaar, Dylan; Oberski, Daniel; Vermunt, Jeroen; De Boeck, Paul

    2016-01-01

    Current approaches to model responses and response times to psychometric tests solely focus on between-subject differences in speed and ability. Within subjects, speed and ability are assumed to be constants. Violations of this assumption are generally absorbed in the residual of the model. As a result, within-subject departures from the between-subject speed and ability level remain undetected. These departures may be of interest to the researcher as they reflect differences in the response processes adopted on the items of a test. In this article, we propose a dynamic approach for responses and response times based on hidden Markov modeling to account for within-subject differences in responses and response times. A simulation study is conducted to demonstrate acceptable parameter recovery and acceptable performance of various fit indices in distinguishing between different models. In addition, both a confirmatory and an exploratory application are presented to demonstrate the practical value of the modeling approach.

  4. Fitting Hidden Markov Models to Psychological Data

    Directory of Open Access Journals (Sweden)

    Ingmar Visser

    2002-01-01

    Full Text Available Markov models have been used extensively in psychology of learning. Applications of hidden Markov models are rare however. This is partially due to the fact that comprehensive statistics for model selection and model assessment are lacking in the psychological literature. We present model selection and model assessment statistics that are particularly useful in applying hidden Markov models in psychology. These statistics are presented and evaluated by simulation studies for a toy example. We compare AIC, BIC and related criteria and introduce a prediction error measure for assessing goodness-of-fit. In a simulation study, two methods of fitting equality constraints are compared. In two illustrative examples with experimental data we apply selection criteria, fit models with constraints and assess goodness-of-fit. First, data from a concept identification task is analyzed. Hidden Markov models provide a flexible approach to analyzing such data when compared to other modeling methods. Second, a novel application of hidden Markov models in implicit learning is presented. Hidden Markov models are used in this context to quantify knowledge that subjects express in an implicit learning task. This method of analyzing implicit learning data provides a comprehensive approach for addressing important theoretical issues in the field.

  5. Geometric phases and hidden local gauge symmetry

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo

    2005-01-01

    The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases

  6. Locating Hidden Servers

    National Research Council Canada - National Science Library

    Oeverlier, Lasse; Syverson, Paul F

    2006-01-01

    .... Announced properties include server resistance to distributed DoS. Both the EFF and Reporters Without Borders have issued guides that describe using hidden services via Tor to protect the safety of dissidents as well as to resist censorship...

  7. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  8. Quantum Theory and Beyond

    Science.gov (United States)

    Bastin, Ted

    2009-07-01

    List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H

  9. Nuclear scissors modes and hidden angular momenta

    Energy Technology Data Exchange (ETDEWEB)

    Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V. [Joint Institute for Nuclear Research (Russian Federation); Schuck, P. [Université Paris-Sud, Institut de Physique Nucléaire, IN2P3–CNRS (France)

    2017-01-15

    The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.

  10. Joint probabilities of noncommuting observables and the Einstein-Podolsky-Rosen question in Wiener-Siegel quantum theory

    International Nuclear Information System (INIS)

    Warnock, R.L.

    1996-02-01

    Ordinary quantum theory is a statistical theory without an underlying probability space. The Wiener-Siegel theory provides a probability space, defined in terms of the usual wave function and its ''stochastic coordinates''; i.e., projections of its components onto differentials of complex Wiener processes. The usual probabilities of quantum theory emerge as measures of subspaces defined by inequalities on stochastic coordinates. Since each point α of the probability space is assigned values (or arbitrarily small intervals) of all observables, the theory gives a pseudo-classical or ''hidden-variable'' view in which normally forbidden concepts are allowed. Joint probabilities for values of noncommuting variables are well-defined. This paper gives a brief description of the theory, including a new generalization to incorporate spin, and reports the first concrete calculation of a joint probability for noncommuting components of spin of a single particle. Bohm's form of the Einstein-Podolsky-Rosen Gedankenexperiment is discussed along the lines of Carlen's paper at this Congress. It would seem that the ''EPR Paradox'' is avoided, since to each α the theory assigns opposite values for spin components of two particles in a singlet state, along any axis. In accordance with Bell's ideas, the price to pay for this attempt at greater theoretical detail is a disagreement with usual quantum predictions. The disagreement is computed and found to be large

  11. Von Neumann's impossibility proof: Mathematics in the service of rhetorics

    Science.gov (United States)

    Dieks, Dennis

    2017-11-01

    According to what has become a standard history of quantum mechanics, in 1932 von Neumann persuaded the physics community that hidden variables are impossible as a matter of principle, after which leading proponents of the Copenhagen interpretation put the situation to good use by arguing that the completeness of quantum mechanics was undeniable. This state of affairs lasted, so the story continues, until Bell in 1966 exposed von Neumann's proof as obviously wrong. The realization that von Neumann's proof was fallacious then rehabilitated hidden variables and made serious foundational research possible again. It is often added in recent accounts that von Neumann's error had been spotted almost immediately by Grete Hermann, but that her discovery was of no effect due to the dominant Copenhagen Zeitgeist. We shall attempt to tell a story that is more historically accurate and less ideologically charged. Most importantly, von Neumann never claimed to have shown the impossibility of hidden variables tout court, but argued that hidden-variable theories must possess a structure that deviates fundamentally from that of quantum mechanics. Both Hermann and Bell appear to have missed this point; moreover, both raised unjustified technical objections to the proof. Von Neumann's argument was basically that hidden-variables schemes must violate the ;quantum principle; that physical quantities are to be represented by operators in a Hilbert space. As a consequence, hidden-variables schemes, though possible in principle, necessarily exhibit a certain kind of contextuality. As we shall illustrate, early reactions to Bohm's theory are in agreement with this account. Leading physicists pointed out that Bohm's theory has the strange feature that pre-existing particle properties do not generally reveal themselves in measurements, in accordance with von Neumann's result. They did not conclude that the ;impossible was done; and that von Neumann had been shown wrong.

  12. Hidden neural networks: application to speech recognition

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1998-01-01

    We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...

  13. Microwave background constraints on mixing of photons with hidden photons

    International Nuclear Information System (INIS)

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Guenter

    2008-12-01

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle χ 0 -7 - 10 -5 for hidden photon masses between 10 -14 eV and 10 -7 eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained. (orig.)

  14. Preface to a GUT (Grand Unified Theory)

    International Nuclear Information System (INIS)

    Honig, W.

    1982-01-01

    A Grand Unified Theory (GUT) is proposed exhibiting relativistic invariance and based on a physical model for vacuum space consisting of the superposition of oppositely charged continuous fluids. Models for the photon, electron, neutrino, proton, etc., consist of separate unique variations in the relative densities of the fluids and their flow patterns. This GUT is also based on the use of transfinite axiomatic number forms and on a concept of metrical relativity which hopefully reconciles the many logical dichotomies in and between Special Relativity and Quantum Mechanics. These ideas result in a number of experimental proposals and predicted results which appear to be underivable from present paradigms, first among which is a physical model for the hidden variable of Quantum Mechanics. It is on these features that attention should rest. (Auth.)

  15. Hidden Crises and Communication: An Interactional Analysis of Hidden Crises

    NARCIS (Netherlands)

    dr. Annette Klarenbeek

    2011-01-01

    In this paper I describe the ways in which the communication discipline can make a hidden crisis transparent. For this purpose I examine the concept of crisis entrepreneurship from a communication point of view. Using discourse analysis, I analyse the discursive practices of crisis entrepreneurs in

  16. Hidden Crises and Communication : An Interactional Analysis of Hidden Crises

    NARCIS (Netherlands)

    dr. Annette Klarenbeek

    2011-01-01

    In this paper I describe the ways in which the communication discipline can make a hidden crisis transparent. For this purpose I examine the concept of crisis entrepreneurship from a communication point of view. Using discourse analysis, I analyse the discursive practices of crisis entrepreneurs in

  17. The unconscious at work; how hidden patterns in organizations may hamper social innovation

    OpenAIRE

    Andriessen, Daan

    2010-01-01

    Social innovation is the renewal of labour organisation that leads to improved performance by the organisation. The innovations that are promoted under the heading of social innovation often require substantive behavioural change on the part of employees and managers. However, in many organisations there are hidden, often unconscious forces at work that make it difficult to implement these new ways of working. In this paper Maslow‟s hierarchy of needs and transactional analysis theory are use...

  18. Hidden treasures - 50 km points of interests

    Science.gov (United States)

    Lommi, Matias; Kortelainen, Jaana

    2015-04-01

    Tampere is third largest city in Finland and a regional centre. During 70's there occurred several communal mergers. Nowadays this local area has both strong and diversed identity - from wilderness and agricultural fields to high density city living. Outside the city center there are interesting geological points unknown for modern city settlers. There is even a local proverb, "Go abroad to Teisko!". That is the area the Hidden Treasures -student project is focused on. Our school Tammerkoski Upper Secondary School (or Gymnasium) has emphasis on visual arts. We are going to offer our art students scientific and artistic experiences and knowledge about the hidden treasures of Teisko area and involve the Teisko inhabitants into this project. Hidden treasures - Precambrian subduction zone and a volcanism belt with dense bed of gold (Au) and arsenic (As), operating goldmines and quarries of minerals and metamorphic slates. - North of subduction zone a homogenic precambrian magmastone area with quarries, products known as Kuru Grey. - Former ashores of post-glasial Lake Näsijärvi and it's sediments enabled the developing agriculture and sustained settlement. Nowadays these ashores have both scenery and biodiversity values. - Old cattle sheds and dairy buildings made of local granite stones related to cultural stonebuilding inheritance. - Local active community of Kapee, about 100 inhabitants. Students will discover information of these "hidden" phenomena, and rendering this information trough Enviromental Art Method. Final form of this project will be published in several artistic and informative geocaches. These caches are achieved by a GPS-based special Hidden Treasures Cycling Route and by a website guiding people to find these hidden points of interests.

  19. Hidden Markov Model Application to Transfer The Trader Online Forex Brokers

    Directory of Open Access Journals (Sweden)

    Farida Suharleni

    2012-05-01

    Full Text Available Hidden Markov Model is elaboration of Markov chain, which is applicable to cases that can’t directly observe. In this research, Hidden Markov Model is used to know trader’s transition to broker forex online. In Hidden Markov Model, observed state is observable part and hidden state is hidden part. Hidden Markov Model allows modeling system that contains interrelated observed state and hidden state. As observed state in trader’s transition to broker forex online is category 1, category 2, category 3, category 4, category 5 by condition of every broker forex online, whereas as hidden state is broker forex online Marketiva, Masterforex, Instaforex, FBS and Others. First step on application of Hidden Markov Model in this research is making construction model by making a probability of transition matrix (A from every broker forex online. Next step is making a probability of observation matrix (B by making conditional probability of five categories, that is category 1, category 2, category 3, category 4, category 5 by condition of every broker forex online and also need to determine an initial state probability (π from every broker forex online. The last step is using Viterbi algorithm to find hidden state sequences that is broker forex online sequences which is the most possible based on model and observed state that is the five categories. Application of Hidden Markov Model is done by making program with Viterbi algorithm using Delphi 7.0 software with observed state based on simulation data. Example: By the number of observation T = 5 and observed state sequences O = (2,4,3,5,1 is found hidden state sequences which the most possible with observed state O as following : where X1 = FBS, X2 = Masterforex, X3 = Marketiva, X4 = Others, and X5 = Instaforex.

  20. Microwave background constraints on mixing of photons with hidden photons

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max-Planck-Institut fuer Physik, Muenchen (Germany); Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-12-15

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle {chi}{sub 0} hidden photon masses between 10{sup -14} eV and 10{sup -7} eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained. (orig.)

  1. Hidden symmetries in minimal five-dimensional supergravity

    International Nuclear Information System (INIS)

    Poessel, Markus; Silva, Sebastian

    2004-01-01

    We study the hidden symmetries arising in the dimensional reduction of d=5, N=2 supergravity to three dimensions. Extending previous partial results for the bosonic part, we give a derivation that includes fermionic terms, shedding light on the appearance of the local hidden symmetry SO(4) in the reduction

  2. Searching for hidden-charm baryonium signals in QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Xing; Zhou, Dan [Beihang University, School of Physics, Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beijing (China); Chen, Wei [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, SK (Canada); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University, Research Center for Hadron and CSR Physics, Institute of Modern Physics of CAS, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics, State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center of High Energy Physics, Beijing (China)

    2016-11-15

    We give an explicit QCD sum rule investigation for hidden-charm baryonium states with the quark content u anti ud anti dc anti c, spin J = 0/1/2/3, and of both positive and negative parities. We systematically construct the relevant local hidden-charm baryonium interpolating currents, which can actually couple to various structures, including hidden-charm baryonium states, charmonium states plus two pions, and hidden-charm tetraquark states plus one pion, etc. We do not know which structure these currents couple to at the beginning, but after sum rule analyses we can obtain some information. We find some of them can couple to hidden-charm baryonium states, using which we evaluate the masses of the lowest-lying hidden-charm baryonium states with quantum numbers J{sup P} = 2{sup -}/3{sup -}/0{sup +}/1{sup +}/2{sup +} to be around 5.0 GeV. We suggest to search for hidden-charm baryonium states, especially the one of J = 3{sup -}, in the D-wave J/ψππ and P-wave J/ψρ and J/ψω channels in this energy region. (orig.)

  3. Comparison between OpenFOAM CFD & BEM theory for variable speed – variable pitch HAWT

    Directory of Open Access Journals (Sweden)

    ElQatary Islam

    2014-01-01

    Full Text Available OpenFoam is used to compare computational fluid dynamics (CFD with blade element momentum theory (BEM for a variable speed - variable pitch HAWT (Horizontal Axis Wind Turbine. The wind turbine is first designed using the BEM to determine the blade chord, twist and operating conditions. The wind turbine blade has an outer diameter of 14 m, uses a NACA 63–415 profile for the entire blade and root to tip twist distribution of 15deg (Figure 3. The RPM varies from 20–75 for freestream velocities varying between 3–10.5 m/s (variable speed and a constant RPM of 78.78 for velocities ranging between 11–25 m/s (variable pitch. OpenFOAM is used to investigate the wind turbine performance at several operating points including cut-in wind speed (3 m/s, rated wind speed (10.5 m/s and in the variable pitch zone. Simulation results show that in the variable-speed operating range, both CFD and BEM compare reasonably well. This agreement can be attributed to the fact that the complex three-dimensional flow around the turbine blades can be split into two radial segments. For radii less than the mid-span, the flow is three-dimensional, whereas for radii greater than the mid-span, the flow is approximately two-dimensional. Since the majority of the power is produced from sections beyond the mid-span, the agreement between CFD and BEM is reasonable. For the variable-pitch operating range the CFD results and BEM deviate considerably. In this case the majority of the power is produced from the inner sections in which the flow is three-dimensional and can no longer be predicted by the BEM. The results show that differences in pitch angles up to 10deg can result to regulate the power for high wind speeds in the variable-pitch operation zone.

  4. QCD sum rule study of hidden-charm pentaquarks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Xing; Cui, Er-Liang [Beihang University, School of Physics and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beijing (China); Chen, Wei; Steele, T.G. [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center of High Energy Physics, Beijing (China)

    2016-10-15

    We study the mass spectra of hidden-charm pentaquarks having spin J = (1)/(2)/(3)/(2)/(5)/(2) and quark contents uudc anti c. We systematically construct all the relevant local hidden-charm pentaquark currents, and we select some of them to perform QCD sum rule analyses. We find that the P{sub c}(4380) and P{sub c}(4450) can be identified as hidden-charm pentaquark states composed of an anti-charmed meson and a charmed baryon. Besides them, we also find (a) the lowest-lying hidden-charm pentaquark state of J{sup P} = 1/2{sup -} has the mass 4.33{sup +0.17}{sub -0.13} GeV, while the one of J{sup P} = 1/2{sup +} is significantly higher, that is, around 4.7-4.9 GeV; (b) the lowest-lying hidden-charm pentaquark state of J{sup P} = 3/2{sup -} has the mass 4.37{sup +0.18}{sub -0.13} GeV, consistent with the P{sub c}(4380) of J{sup P} = 3/2{sup -}, while the one of J{sup P} = 3/2{sup +} is also significantly higher, that is, above 4.6 GeV; (c) the hidden-charm pentaquark state of J{sup P} = 5/2{sup -} has a mass around 4.5-4.6 GeV, slightly larger than the P{sub c}(4450) of J{sup P} = 5/2{sup +}. (orig.)

  5. Can quantum mechanics be an emergent phenomenon?

    Science.gov (United States)

    Blasone, Massimo; Jizba, Petr; Scardigli, Fabio

    2009-06-01

    We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann-von Neumann operatorial formulation of classical physics.

  6. Can quantum mechanics be an emergent phenomenon?

    International Nuclear Information System (INIS)

    Blasone, Massimo; Jizba, Petr; Scardigli, Fabio

    2009-01-01

    We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann-von Neumann operatorial formulation of classical physics.

  7. Explaining anomalies in intertemporal choice : a mental zooming theory

    OpenAIRE

    Holden, Stein Terje

    2014-01-01

    I present a theory that can explain hyperbolic discounting and magnitude effects in intertemporal choice. This approach builds on theories of narrow framing and reference dependence and expands these theories in a novel way by examining hidden mental zooming in base consumption adjustment in decisions regarding intertemporal prospects of varying magnitudes and time horizons. Data from a field experiment were used to assess the theory with an incentivecompatible multiple price list approach in...

  8. Sociocultural Dimension of Hidden Content in a Professional Language Curriculum

    Directory of Open Access Journals (Sweden)

    Ekaterina E. Shishlova

    2017-12-01

    Full Text Available Introduction: studying curriculum as a pedagogical problem has traditionally been reduced to the analysis of its explicit content, set in official educational documents. However, a much less studied hidden content plays a significant role in education. So, what is the role of the hidden curriculum during professional language training? The purpose of the article is to determine the potential impact of hidden curriculum on students’ conceptual worldview. Comparing the worldview presented in textbooks with students’ one has allowed us to estimate the rate of influence of hidden curr iculum. Materials and Methods: the methodological basis of the work is the cultural concept of personalityoriented education. The methodology for studying the role of hidden curriculum includes four stages: at the first stage, the authors set the criteria for selecting textbooks for analysis and do the selection; at the second stage, the authors select sociocultural concepts for analysis; at the third stage, the scheme of analysis is designed and the analysis of textbooks is done; at the fourth stage, the authors identify the potential influence of hidden curriculum on students’ conceptual worldview. Results: the structure of hidden curriculum has been determined and the scheme for analysing its subject component has been developed. The authors have identified a significant influence of hidden curriculum on students’ worldview, which represents the scientific novelty of the article. Discussion and Conclusions: the article gives the definition of a hidden curriculum which is new for Russian pedagogy and presents a methodology for its analysis in EFL textbooks. That analysis is recommended to be conducted when selecting teaching materials both i n languages and other humanities.

  9. Bayesian modeling of measurement error in predictor variables using item response theory

    NARCIS (Netherlands)

    Fox, Gerardus J.A.; Glas, Cornelis A.W.

    2000-01-01

    This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved

  10. Detecting hidden particles with MATHUSLA

    Science.gov (United States)

    Evans, Jared A.

    2018-03-01

    A hidden sector containing light long-lived particles provides a well-motivated place to find new physics. The recently proposed MATHUSLA experiment has the potential to be extremely sensitive to light particles originating from rare meson decays in the very long lifetime region. In this work, we illustrate this strength with the specific example of a light scalar mixed with the standard model-like Higgs boson, a model where MATHUSLA can further probe unexplored parameter space from exotic Higgs decays. Design augmentations should be considered in order to maximize the ability of MATHUSLA to discover very light hidden sector particles.

  11. Skyrmions with holography and hidden local symmetry

    International Nuclear Information System (INIS)

    Nawa, Kanabu; Hosaka, Atsushi; Suganuma, Hideo

    2009-01-01

    We study baryons as Skyrmions in holographic QCD with D4/D8/D8 multi-D brane system in type IIA superstring theory, and also in the nonlinear sigma model with hidden local symmetry. Comparing these two models, we find that the extra dimension and its nontrivial curvature can largely change the role of (axial) vector mesons for baryons in four-dimensional space-time. In the hidden local symmetry approach, the ρ-meson field as a massive Yang-Mills field has a singular configuration in Skyrmion, which gives a strong repulsion for the baryon as a stabilizer. When the a 1 meson is added in this approach, the stability of Skyrmion is lost by the cancellation of ρ and a 1 contributions. On the contrary, in holographic QCD, the ρ-meson field does not appear as a massive Yang-Mills field due to the extra dimension and its nontrivial curvature. We show that the ρ-meson field has a regular configuration in Skyrmion, which gives a weak attraction for the baryon in holographic QCD. We argue that Skyrmion with π, ρ, and a 1 mesons become stable due to the curved extra dimension and also the presence of the Skyrme term in holographic QCD. From this result, we also discuss the features of our truncated-resonance analysis on baryon properties with π and ρ mesons below the cutoff scale M KK ∼1 GeV in holographic QCD, which is compared with other 5D instanton analysis.

  12. Clustering Multivariate Time Series Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Shima Ghassempour

    2014-03-01

    Full Text Available In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs, where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers.

  13. Zipf exponent of trajectory distribution in the hidden Markov model

    Science.gov (United States)

    Bochkarev, V. V.; Lerner, E. Yu

    2014-03-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.

  14. Zipf exponent of trajectory distribution in the hidden Markov model

    International Nuclear Information System (INIS)

    Bochkarev, V V; Lerner, E Yu

    2014-01-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different

  15. Learning to Automatically Detect Features for Mobile Robots Using Second-Order Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Olivier Aycard

    2004-12-01

    Full Text Available In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.

  16. Hidden symmetries of the Kaluza-Klein-type theories

    International Nuclear Information System (INIS)

    Popov, A.D.

    1987-01-01

    It is shown that introduction of dynamical torsion in Kaluza-Klein theories makes is possible to increase the number of gauge fields extracted from the Lagrangian without increasing the number of extra dimentions. An example of spontaneous compactification of the model investigated is considered

  17. SHIFT: server for hidden stops analysis in frame-shifted translation.

    Science.gov (United States)

    Gupta, Arun; Singh, Tiratha Raj

    2013-02-23

    Frameshift is one of the three classes of recoding. Frame-shifts lead to waste of energy, resources and activity of the biosynthetic machinery. In addition, some peptides synthesized after frame-shifts are probably cytotoxic which serve as plausible cause for innumerable number of diseases and disorders such as muscular dystrophies, lysosomal storage disorders, and cancer. Hidden stop codons occur naturally in coding sequences among all organisms. These codons are associated with the early termination of translation for incorrect reading frame selection and help to reduce the metabolic cost related to the frameshift events. Researchers have identified several consequences of hidden stop codons and their association with myriad disorders. However the wealth of information available is speckled and not effortlessly acquiescent to data-mining. To reduce this gap, this work describes an algorithmic web based tool to study hidden stops in frameshifted translation for all the lineages through respective genetic code systems. This paper describes SHIFT, an algorithmic web application tool that provides a user-friendly interface for identifying and analyzing hidden stops in frameshifted translation of genomic sequences for all available genetic code systems. We have calculated the correlation between codon usage frequencies and the plausible contribution of codons towards hidden stops in an off-frame context. Markovian chains of various order have been used to model hidden stops in frameshifted peptides and their evolutionary association with naturally occurring hidden stops. In order to obtain reliable and persuasive estimates for the naturally occurring and predicted hidden stops statistical measures have been implemented. This paper presented SHIFT, an algorithmic tool that allows user-friendly exploration, analysis, and visualization of hidden stop codons in frameshifted translations. It is expected that this web based tool would serve as a useful complement for

  18. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  19. Asymptotics for Estimating Equations in Hidden Markov Models

    DEFF Research Database (Denmark)

    Hansen, Jørgen Vinsløv; Jensen, Jens Ledet

    Results on asymptotic normality for the maximum likelihood estimate in hidden Markov models are extended in two directions. The stationarity assumption is relaxed, which allows for a covariate process influencing the hidden Markov process. Furthermore a class of estimating equations is considered...

  20. Natural inflation with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Neil D. Barrie

    2016-05-01

    Full Text Available We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns−1≈−0.025(N⋆60−1 and r≈0.0667(N⋆60−1, where N⋆≈30–65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.

  1. A hidden service model based on HS-HS anonymous network

    Science.gov (United States)

    Meng, Yitong; Zhao, Xing; Fei, Jinlong; Zhu, Yuefei

    2017-10-01

    The Hidden Service provided by Tor anonymous network can effectively protect the anonymity and security of the Hidden server, this article through the analysis of the data packet structure of Tor, three jump transmission mechanism and link establishment protocol and Hidden Service communication process, in view of the Hidden node number too much, link building Service for too long and too redundant link problem. An improved hidden service model HS-HS is proposed that incorporating multiple transmission link and reuse, and at the same time will be important transit point for reuse protection link anonymity, through the ExperimenTor simulation environment test, verify the improved model of HS-HS can be more effective in guarantee anonymity and security, improve the overall efficiency of data transmission, to meet the needs of today's anonymous service.

  2. VISIBLE COSTS AND HIDDEN COSTS IN THE BAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Criveanu Maria

    2013-04-01

    Full Text Available Hidden costs are present in the activity of any company, hardly identified in the traditional administrative accounting. The high levels of the hidden costs and their unknown presence have serious consequences on the decisions made by the managers. This paper aims at presenting some aspects related to the hidden costs that occur in the activity of the companies in the baking industry and the possibilities to reduce their level.

  3. GY SAMPLING THEORY AND GEOSTATISTICS: ALTERNATE MODELS OF VARIABILITY IN CONTINUOUS MEDIA

    Science.gov (United States)

    In the sampling theory developed by Pierre Gy, sample variability is modeled as the sum of a set of seven discrete error components. The variogram used in geostatisties provides an alternate model in which several of Gy's error components are combined in a continuous mode...

  4. The hidden values

    DEFF Research Database (Denmark)

    Rasmussen, Birgitte; Jensen, Karsten Klint

    “The Hidden Values - Transparency in Decision-Making Processes Dealing with Hazardous Activities”. The report seeks to shed light on what is needed to create a transparent framework for political and administrative decisions on the use of GMOs and chemical products. It is our hope that the report...

  5. Suppressing the QCD axion abundance by hidden monopoles

    International Nuclear Information System (INIS)

    Kawasaki, Masahiro

    2015-11-01

    We study the Witten effect of hidden monopoles on the QCD axion dynamics, and show that its abundance as well as isocurvature perturbations can be significantly suppressed if there is a sufficient amount of hidden monopoles. When the hidden monopoles make up a significant fraction of dark matter, the Witten effect suppresses the abundance of axion with the decay constant smaller than 10 12 GeV. The cosmological domain wall problem of the QCD axion can also be avoided, relaxing the upper bound on the decay constant when the Peccei-Quinn symmetry is spontaneously broken after inflation.

  6. Can quantum mechanics be an emergent phenomenon?

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo [INFN, Gruppo Collegato di Salerno, DMI, Universita di Salerno, Fisciano - 84084 (Italy); Jizba, Petr [ITP, Freie Universitaet Berlin, Arnimallee 14 D-14195 Berlin (Germany); Scardigli, Fabio, E-mail: blasone@sa.infn.i, E-mail: jizba@physik.fu-berlin.d, E-mail: fabio@phys.ntu.edu.t [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2009-06-01

    We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann-von Neumann operatorial formulation of classical physics.

  7. Supersymmetric rings in field theory

    International Nuclear Information System (INIS)

    Blanco-Pillado, Jose J.; Redi, Michele

    2006-01-01

    We study the dynamics of BPS string-like objects obtained by lifting monopole and dyon solutions of N = 2 Super-Yang-Mills theory to five dimensions. We present exact traveling wave solutions which preserve half of the supersymmetries. Upon compactification this leads to macroscopic BPS rings in four dimensions in field theory. Due to the fact that the strings effectively move in six dimensions the same procedure can also be used to obtain rings in five dimensions by using the hidden dimension

  8. Extracting hidden-photon dark matter from an LC-circuit

    International Nuclear Information System (INIS)

    Arias, Paola; Arza, Ariel; Gamboa, Jorge; Mendez, Fernando

    2014-11-01

    We point out that a cold dark matter condensate made of gauge bosons from an extra hidden U(1) sector - dubbed hidden-photons - can create a small, oscillating electric density current. Thus, they could also be searched for in the recently proposed LC-circuit setup conceived for axion cold dark matter search by Sikivie, Sullivan and Tanner. We estimate the sensitivity of this setup for hidden-photon cold dark matter and we find it could cover a sizable, so far unexplored parameter space.

  9. Extracting Hidden-Photon Dark Matter From an LC-Circuit

    CERN Document Server

    Arias, Paola; Döbrich, Babette; Gamboa, Jorge; Méndez, Fernando

    2015-01-01

    We point out that a cold dark matter condensate made of gauge bosons from an extra hidden U(1) sector - dubbed hidden- photons - can create a small, oscillating electric density current. Thus, they could also be searched for in the recently proposed LC-circuit setup conceived for axion cold dark matter search by Sikivie, Sullivan and Tanner. We estimate the sensitivity of this setup for hidden-photon cold dark matter and we find it could cover a sizable, so far unexplored parameter space.

  10. Temporal framing and the hidden-zero effect: rate-dependent outcomes on delay discounting.

    Science.gov (United States)

    Naudé, Gideon P; Kaplan, Brent A; Reed, Derek D; Henley, Amy J; DiGennaro Reed, Florence D

    2018-05-01

    Recent research suggests that presenting time intervals as units (e.g., days) or as specific dates, can modulate the degree to which humans discount delayed outcomes. Another framing effect involves explicitly stating that choosing a smaller-sooner reward is mutually exclusive to receiving a larger-later reward, thus presenting choices as an extended sequence. In Experiment 1, participants (N = 201) recruited from Amazon Mechanical Turk completed the Monetary Choice Questionnaire in a 2 (delay framing) by 2 (zero framing) design. Regression suggested a main effect of delay, but not zero, framing after accounting for other demographic variables and manipulations. We observed a rate-dependent effect for the date-framing group, such that those with initially steep discounting exhibited greater sensitivity to the manipulation than those with initially shallow discounting. Subsequent analyses suggest these effects cannot be explained by regression to the mean. Experiment 2 addressed the possibility that the null effect of zero framing was due to within-subject exposure to the hidden- and explicit-zero conditions. A new Amazon Mechanical Turk sample completed the Monetary Choice Questionnaire in either hidden- or explicit-zero formats. Analyses revealed a main effect of reward magnitude, but not zero framing, suggesting potential limitations to the generality of the hidden-zero effect. © 2018 Society for the Experimental Analysis of Behavior.

  11. Boundary conditions in conformal and integrable theories

    CERN Document Server

    Petkova, V B

    2000-01-01

    The study of boundary conditions in rational conformal field theories is not only physically important. It also reveals a lot on the structure of the theory ``in the bulk''. The same graphs classify both the torus and the cylinder partition functions and provide data on their hidden ``quantum symmetry''. The Ocneanu triangular cells -- the 3j-symbols of these symmetries, admit various interpretations and make a link between different problems.

  12. Unresolved issues in theories of autoimmune disease using myocarditis as a framework

    OpenAIRE

    Root-Bernstein, Robert; Fairweather, DeLisa

    2014-01-01

    Many theories of autoimmune disease have been proposed since the discovery that the immune system can attack the body. These theories include the hidden or cryptic antigen theory, modified antigen theory, T cell bypass, T cell-B cell mismatch, epitope spread or drift, the bystander effect, molecular mimicry, anti-idiotype theory, antigenic complementarity, and dual-affinity T cell receptors. We critically review these theories and relevant mathematical models as they apply to autoimmune myoca...

  13. Constraints on grand unified superstring theories

    International Nuclear Information System (INIS)

    Ellis, J.; Lopez, J.L.; Nanopoulos, D.V.; Houston Advanced Research Center

    1990-01-01

    We evaluate some constraints on the construction of grand unified superstring theories (GUSTs) using higher level Kac-Moody algebras on the world-sheet. In the most general formulation of the heterotic string in four dimensions, an analysis of the basic GUST model-building constraints, including a realistic hidden gauge group, reveals that there are no E 6 models and any SO(10) models can only exist at level-5. Also, any such SU(5) models can exist only for levels 4≤k≤19. These SO(10) and SU(5) models risk having many large, massless, phenomenologically troublesome representations. We also show that with a suitable hidden sector gauge group, it is possible to avoid free light fractionally charged particles, which are endemic to string derived models. We list all such groups and their representations for the flipped SU(5)xU(1) model. We conclude that a sufficiently binding hidden sector gauge group becomes a basic model-building constraint. (orig.)

  14. Multilayer Neural Networks with Extensively Many Hidden Units

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido

    2001-01-01

    The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones

  15. Hidden Area and Mechanical Nonlinearities in Freestanding Graphene

    Science.gov (United States)

    Nicholl, Ryan J. T.; Lavrik, Nickolay V.; Vlassiouk, Ivan; Srijanto, Bernadeta R.; Bolotin, Kirill I.

    2017-06-01

    We investigated the effect of out-of-plane crumpling on the mechanical response of graphene membranes. In our experiments, stress was applied to graphene membranes using pressurized gas while the strain state was monitored through two complementary techniques: interferometric profilometry and Raman spectroscopy. By comparing the data obtained through these two techniques, we determined the geometric hidden area which quantifies the crumpling strength. While the devices with hidden area ˜0 % obeyed linear mechanics with biaxial stiffness 428 ±10 N /m , specimens with hidden area in the range 0.5%-1.0% were found to obey an anomalous nonlinear Hooke's law with an exponent ˜0.1 .

  16. Hidden Markov models for zero-inflated Poisson counts with an application to substance use.

    Science.gov (United States)

    DeSantis, Stacia M; Bandyopadhyay, Dipankar

    2011-06-30

    Paradigms for substance abuse cue-reactivity research involve pharmacological or stressful stimulation designed to elicit stress and craving responses in cocaine-dependent subjects. It is unclear as to whether stress induced from participation in such studies increases drug-seeking behavior. We propose a 2-state Hidden Markov model to model the number of cocaine abuses per week before and after participation in a stress-and cue-reactivity study. The hypothesized latent state corresponds to 'high' or 'low' use. To account for a preponderance of zeros, we assume a zero-inflated Poisson model for the count data. Transition probabilities depend on the prior week's state, fixed demographic variables, and time-varying covariates. We adopt a Bayesian approach to model fitting, and use the conditional predictive ordinate statistic to demonstrate that the zero-inflated Poisson hidden Markov model outperforms other models for longitudinal count data. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Hidden conformal symmetry of extremal black holes

    International Nuclear Information System (INIS)

    Chen Bin; Long Jiang; Zhang Jiaju

    2010-01-01

    We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.

  18. Aligning the Hidden Curriculum of Management Education With PRME

    DEFF Research Database (Denmark)

    Blasco, Maribel

    2012-01-01

    and content alone is not enough to improve students’ sense of social responsibility. Business schools are conceptualized in this article as multilevel learning environments comprising various message sites where students undergo moral learning and socialization processes. Using perspectives from HC research...... combined with transformative learning and communities of practice theory, the article offers an inquiry-based framework for PRME implementation that takes these moral learning and socialization processes into account. It provides suggestions for how to address the hidden curriculum both in the diagnostic...... phase of assessing a school’s PRME needs and in the implementation phase where PRME is integrated into business school learning environments. The concept of meta-messages is introduced to account for how students apprehend the HC at business schools....

  19. Extracting hidden-photon dark matter from an LC-circuit

    International Nuclear Information System (INIS)

    Arias, Paola; Arza, Ariel; Gamboa, Jorge; Mendez, Fernando; Doebrich, Babette

    2015-01-01

    We point out that a cold dark matter condensate made of gauge bosons from an extra hidden U(1) sector - dubbed hidden photons - can create a small, oscillating electric density current. Thus, they could also be searched for in the recently proposed LC-circuit setup conceived for axion cold dark matter search by Sikivie, Sullivan and Tanner. We estimate the sensitivity of this setup for hidden-photon cold dark matter and we find it could cover a sizable, so far unexplored parameter space. (orig.)

  20. Petro Rents, Political Institutions, and Hidden Wealth

    DEFF Research Database (Denmark)

    Andersen, Jørgen Juel; Johannesen, Niels; Lassen, David Dreyer

    2017-01-01

    Do political institutions limit rent seeking by politicians? We study the transformation of petroleum rents, almost universally under direct government control, into hidden wealth using unique data on bank deposits in offshore financial centers that specialize in secrecy and asset protection. Our...... rulers is diverted to secret accounts. We find very limited evidence that shocks to other types of income not directly controlled by governments affect hidden wealth....

  1. Hidden charm molecules in a finite volume

    International Nuclear Information System (INIS)

    Albaladejo, M.; Hidalgo-Duque, C.; Nieves, J.; Oset, E.

    2014-01-01

    In the present paper we address the interaction of charmed mesons in hidden charm channels in a finite box. We use the interaction from a recent model based on heavy quark spin symmetry that predicts molecules of hidden charm in the infinite volume. The energy levels in the box are generated within this model, and several methods for the analysis of these levels ("inverse problem") are investigated. (author)

  2. B-graph sampling to estimate the size of a hidden population

    NARCIS (Netherlands)

    Spreen, M.; Bogaerts, S.

    2015-01-01

    Link-tracing designs are often used to estimate the size of hidden populations by utilizing the relational links between their members. A major problem in studies of hidden populations is the lack of a convenient sampling frame. The most frequently applied design in studies of hidden populations is

  3. Interpretation of the quantum formalism and Bell's theorem

    International Nuclear Information System (INIS)

    Santos, E.

    1991-01-01

    It is argued that quantum mechanics must be interpreted according to the Copenhagen interpretation. Consequently the formalism must be used in a purely operational way. The relation between realism, hidden variables, and the Bell inequalities is discussed. The proof of impossibility of local hidden-variables theories (Bell theorem) is criticized on the basis that the quantum mechanical states violating local realism are not physically realizable states

  4. Hidden Agendas in Marriage: Affective and Longitudinal Dimensions.

    Science.gov (United States)

    Krokoff, Lowell J.

    1990-01-01

    Examines how couples' discussions of troublesome problems reveal hidden agendas (issues not directly discussed or explored). Finds disgust and contempt are at the core of both love and respect agendas for husbands and wives. Finds that wives' more than husbands' hidden agendas are directly predictive of how negatively they argue at home. (SR)

  5. Generalized Bell-inequality experiments and computation

    Energy Technology Data Exchange (ETDEWEB)

    Hoban, Matty J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD (United Kingdom); Wallman, Joel J. [School of Physics, The University of Sydney, Sydney, New South Wales 2006 (Australia); Browne, Dan E. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2011-12-15

    We consider general settings of Bell inequality experiments with many parties, where each party chooses from a finite number of measurement settings each with a finite number of outcomes. We investigate the constraints that Bell inequalities place upon the correlations possible in local hidden variable theories using a geometrical picture of correlations. We show that local hidden variable theories can be characterized in terms of limited computational expressiveness, which allows us to characterize families of Bell inequalities. The limited computational expressiveness for many settings (each with many outcomes) generalizes previous results about the many-party situation each with a choice of two possible measurements (each with two outcomes). Using this computational picture we present generalizations of the Popescu-Rohrlich nonlocal box for many parties and nonbinary inputs and outputs at each site. Finally, we comment on the effect of preprocessing on measurement data in our generalized setting and show that it becomes problematic outside of the binary setting, in that it allows local hidden variable theories to simulate maximally nonlocal correlations such as those of these generalized Popescu-Rohrlich nonlocal boxes.

  6. Generalized Bell-inequality experiments and computation

    International Nuclear Information System (INIS)

    Hoban, Matty J.; Wallman, Joel J.; Browne, Dan E.

    2011-01-01

    We consider general settings of Bell inequality experiments with many parties, where each party chooses from a finite number of measurement settings each with a finite number of outcomes. We investigate the constraints that Bell inequalities place upon the correlations possible in local hidden variable theories using a geometrical picture of correlations. We show that local hidden variable theories can be characterized in terms of limited computational expressiveness, which allows us to characterize families of Bell inequalities. The limited computational expressiveness for many settings (each with many outcomes) generalizes previous results about the many-party situation each with a choice of two possible measurements (each with two outcomes). Using this computational picture we present generalizations of the Popescu-Rohrlich nonlocal box for many parties and nonbinary inputs and outputs at each site. Finally, we comment on the effect of preprocessing on measurement data in our generalized setting and show that it becomes problematic outside of the binary setting, in that it allows local hidden variable theories to simulate maximally nonlocal correlations such as those of these generalized Popescu-Rohrlich nonlocal boxes.

  7. On the LHC sensitivity for non-thermalised hidden sectors

    Science.gov (United States)

    Kahlhoefer, Felix

    2018-04-01

    We show under rather general assumptions that hidden sectors that never reach thermal equilibrium in the early Universe are also inaccessible for the LHC. In other words, any particle that can be produced at the LHC must either have been in thermal equilibrium with the Standard Model at some point or must be produced via the decays of another hidden sector particle that has been in thermal equilibrium. To reach this conclusion, we parametrise the cross section connecting the Standard Model to the hidden sector in a very general way and use methods from linear programming to calculate the largest possible number of LHC events compatible with the requirement of non-thermalisation. We find that even the HL-LHC cannot possibly produce more than a few events with energy above 10 GeV involving states from a non-thermalised hidden sector.

  8. Massive hidden photons as lukewarm dark matter

    International Nuclear Information System (INIS)

    Redondo, Javier; Postma, Marieke

    2008-11-01

    We study the possibility that a keV-MeV mass hidden photon (HP), i.e. a hidden sector U(1) gauge boson, accounts for the observed amount of dark matter. We focus on the case where the HP interacts with the standard model sector only through kinetic mixing with the photon. The relic abundance is computed including all relevant plasma effects into the photon's self-energy, which leads to a resonant yield almost independent of the HP mass. The HP can decay into three photons. Moreover, if light enough it can be copiously produced in stars. Including bounds from cosmic photon backgrounds and stellar evolution, we find that the hidden photon can only give a subdominant contribution to the dark matter. This negative conclusion may be avoided if another production mechanism besides kinetic mixing is operative. (orig.)

  9. Massive hidden photons as lukewarm dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Postma, Marieke [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-11-15

    We study the possibility that a keV-MeV mass hidden photon (HP), i.e. a hidden sector U(1) gauge boson, accounts for the observed amount of dark matter. We focus on the case where the HP interacts with the standard model sector only through kinetic mixing with the photon. The relic abundance is computed including all relevant plasma effects into the photon's self-energy, which leads to a resonant yield almost independent of the HP mass. The HP can decay into three photons. Moreover, if light enough it can be copiously produced in stars. Including bounds from cosmic photon backgrounds and stellar evolution, we find that the hidden photon can only give a subdominant contribution to the dark matter. This negative conclusion may be avoided if another production mechanism besides kinetic mixing is operative. (orig.)

  10. Violation of Bell's Inequality Using Continuous Variable Measurements

    Science.gov (United States)

    Thearle, Oliver; Janousek, Jiri; Armstrong, Seiji; Hosseini, Sara; Schünemann Mraz, Melanie; Assad, Syed; Symul, Thomas; James, Matthew R.; Huntington, Elanor; Ralph, Timothy C.; Lam, Ping Koy

    2018-01-01

    A Bell inequality is a fundamental test to rule out local hidden variable model descriptions of correlations between two physically separated systems. There have been a number of experiments in which a Bell inequality has been violated using discrete-variable systems. We demonstrate a violation of Bell's inequality using continuous variable quadrature measurements. By creating a four-mode entangled state with homodyne detection, we recorded a clear violation with a Bell value of B =2.31 ±0.02 . This opens new possibilities for using continuous variable states for device independent quantum protocols.

  11. Research on the Diesel Engine with Sliding Mode Variable Structure Theory

    Science.gov (United States)

    Ma, Zhexuan; Mao, Xiaobing; Cai, Le

    2018-05-01

    This study constructed the nonlinear mathematical model of the diesel engine high-pressure common rail (HPCR) system through two polynomial fitting which was treated as a kind of affine nonlinear system. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for affine nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrated that sliding-mode variable structure control algorithm shows favourable control performances which are overcoming the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.

  12. String amplitudes: from field theories to number theory

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...

  13. Spectral Theory of Operators on Hilbert Spaces

    CERN Document Server

    Kubrusly, Carlos S

    2012-01-01

    This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Space is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathemat

  14. Invisible axion in the hidden sector of no-scale supergravity

    International Nuclear Information System (INIS)

    Sato, Hikaru

    1987-01-01

    We propose a new axion model which incorporates the U(1) PQ symmetry into a hidden sector, as well as an observable sector, of no-scale supergravity models. The axion is a spin-zero field in the hidden sector. The U(1) PQ symmetry is naturally embedded in the family symmetry of the no-scale models. Invisible axions live in the gravity hidden sector without conflict with the cosmological and astrophysical constraints. (orig.)

  15. Increased taxon sampling reveals thousands of hidden orthologs in flatworms

    Science.gov (United States)

    2017-01-01

    Gains and losses shape the gene complement of animal lineages and are a fundamental aspect of genomic evolution. Acquiring a comprehensive view of the evolution of gene repertoires is limited by the intrinsic limitations of common sequence similarity searches and available databases. Thus, a subset of the gene complement of an organism consists of hidden orthologs, i.e., those with no apparent homology to sequenced animal lineages—mistakenly considered new genes—but actually representing rapidly evolving orthologs or undetected paralogs. Here, we describe Leapfrog, a simple automated BLAST pipeline that leverages increased taxon sampling to overcome long evolutionary distances and identify putative hidden orthologs in large transcriptomic databases by transitive homology. As a case study, we used 35 transcriptomes of 29 flatworm lineages to recover 3427 putative hidden orthologs, some unidentified by OrthoFinder and HaMStR, two common orthogroup inference algorithms. Unexpectedly, we do not observe a correlation between the number of putative hidden orthologs in a lineage and its “average” evolutionary rate. Hidden orthologs do not show unusual sequence composition biases that might account for systematic errors in sequence similarity searches. Instead, gene duplication with divergence of one paralog and weak positive selection appear to underlie hidden orthology in Platyhelminthes. By using Leapfrog, we identify key centrosome-related genes and homeodomain classes previously reported as absent in free-living flatworms, e.g., planarians. Altogether, our findings demonstrate that hidden orthologs comprise a significant proportion of the gene repertoire in flatworms, qualifying the impact of gene losses and gains in gene complement evolution. PMID:28400424

  16. Searching for hidden sector in multiparticle production at LHC

    Directory of Open Access Journals (Sweden)

    Miguel-Angel Sanchis-Lozano

    2016-03-01

    Full Text Available We study the impact of a hidden sector beyond the Standard Model, e.g. a Hidden Valley model, on factorial moments and cumulants of multiplicity distributions in multiparticle production with a special emphasis on the prospects for LHC results.

  17. An introduction to hidden Markov models for biological sequences

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose

    1998-01-01

    A non-matematical tutorial on hidden Markov models (HMMs) plus a description of one of the applications of HMMs: gene finding.......A non-matematical tutorial on hidden Markov models (HMMs) plus a description of one of the applications of HMMs: gene finding....

  18. Reverse engineering the world: a commentary on Hoffman, Singh, and Prakash, "The interface theory of perception".

    Science.gov (United States)

    Fields, Chris

    2015-12-01

    Does perception hide the truth? Information theory, computer science, and quantum theory all suggest that the answer is "yes." They suggest, indeed, that useful perception is only feasible because the truth can be hidden.

  19. Testing string theory at LHC?

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    A theory with such mathematical beauty cannot be wrong: this is one of the main arguments in favour of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, nor the space of extra dimensions where they live. However there are good reasons to believe that the 'hidden' dimensions of string theory may be much larger than what we thought in the past and that they may be within experimental reach in the near future - together with the strings themselves. In my talk, I will give an elementary introduction of string theory and describe the main experimental predictions.Organiser(s): Jasper Kirkby / EP DivisionNote: Tea & coffee will be served at 16.00 hrs.

  20. Universal moduli space and string theory

    International Nuclear Information System (INIS)

    Schwarz, A.S.

    1989-09-01

    The construction of the universal supermoduli space is given. The super-Mumford form (the holomorphic square root from the string measure) is extended to the universal supermoduli space and expressed through the superanalog of Sato's τ-function. The hidden N=2 superconformal symmetry in the string theory is considered. (author). 13 refs

  1. Determinism, independence, and objectivity are incompatible.

    Science.gov (United States)

    Ionicioiu, Radu; Mann, Robert B; Terno, Daniel R

    2015-02-13

    Hidden-variable models aim to reproduce the results of quantum theory and to satisfy our classical intuition. Their refutation is usually based on deriving predictions that are different from those of quantum mechanics. Here instead we study the mutual compatibility of apparently reasonable classical assumptions. We analyze a version of the delayed-choice experiment which ostensibly combines determinism, independence of hidden variables on the conducted experiments, and wave-particle objectivity (the assertion that quantum systems are, at any moment, either particles or waves, but not both). These three ideas are incompatible with any theory, not only with quantum mechanics.

  2. The origin of the hidden supersymmetry

    International Nuclear Information System (INIS)

    Jakubsky, Vit; Nieto, Luis-Miguel; Plyushchay, Mikhail S.

    2010-01-01

    The hidden supersymmetry and related tri-supersymmetric structure of the free particle system, the Dirac delta potential problem and the Aharonov-Bohm effect (planar, bound state, and tubule models) are explained by a special nonlocal unitary transformation, which for the usual N=2 supercharges has a nature of Foldy-Wouthuysen transformation. We show that in general case, the bosonized supersymmetry of nonlocal, parity even systems emerges in the same construction, and explain the origin of the unusual N=2 supersymmetry of electron in three-dimensional parity even magnetic field. The observation extends to include the hidden superconformal symmetry.

  3. Hidden photon dark matter search with large metallic mirror

    International Nuclear Information System (INIS)

    Doebrich, Babette; Lindner, Axel; Daumiller, Kai; Engel, Ralph; Roth, Markus; Kowalski, Marek

    2014-10-01

    If Dark Matter is composed of hidden-sector photons that kinetically mix with photons of the visible sector, then Dark Matter has a tiny oscillating electric field component. Its presence would lead to a small amount of visible radiation being emitted from a conducting surface, with the photon frequency given approximately by the mass of the hidden photon. Here, we report on experimental efforts that have started recently to search for such hidden photon Dark Matter in the (sub-)eV regime with a prototype mirror for the Auger fluorescence detector at the Karlsruhe Institute for Technology.

  4. Categorification and higher representation theory

    CERN Document Server

    Beliakova, Anna

    2017-01-01

    The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse te...

  5. Testing Convergence of Different Free-Energy Methods in a Simple Analytical System with Hidden Barriers

    Directory of Open Access Journals (Sweden)

    S. Alexis Paz

    2018-03-01

    Full Text Available In this work, we study the influence of hidden barriers on the convergence behavior of three free-energy calculation methods: well-tempered metadynamics (WTMD, adaptive-biasing forces (ABF, and on-the-fly parameterization (OTFP. We construct a simple two-dimensional potential-energy surfaces (PES that allows for an exact analytical result for the free-energy in any one-dimensional order parameter. Then we chose different CV definitions and PES parameters to create three different systems with increasing sampling challenges. We find that all three methods are not greatly affected by the hidden-barriers in the simplest case considered. The adaptive sampling methods show faster sampling while the auxiliary high-friction requirement of OTFP makes it slower for this case. However, a slight change in the CV definition has a strong impact in the ABF and WTMD performance, illustrating the importance of choosing suitable collective variables.

  6. A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function

    OpenAIRE

    Guliyev , Namig; Ismailov , Vugar

    2016-01-01

    The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted. In this paper, we consider constructive approximation on any finite interval of $\\mathbb{R}$ by neural networks with only one neuron in the hid...

  7. A Duration Hidden Markov Model for the Identification of Regimes in Stock Market Returns

    DEFF Research Database (Denmark)

    Ntantamis, Christos

    This paper introduces a Duration Hidden Markov Model to model bull and bear market regime switches in the stock market; the duration of each state of the Markov Chain is a random variable that depends on a set of exogenous variables. The model not only allows the endogenous determination...... of the different regimes and but also estimates the effect of the explanatory variables on the regimes' durations. The model is estimated here on NYSE returns using the short-term interest rate and the interest rate spread as exogenous variables. The bull market regime is assigned to the identified state...... with the higher mean and lower variance; bull market duration is found to be negatively dependent on short-term interest rates and positively on the interest rate spread, while bear market duration depends positively the short-term interest rate and negatively on the interest rate spread....

  8. Realist identification of group-level latent variables for perinatal social epidemiology theory building.

    Science.gov (United States)

    Eastwood, John Graeme; Jalaludin, Bin Badrudin; Kemp, Lynn Ann; Phung, Hai Ngoc

    2014-01-01

    We have previously reported in this journal on an ecological study of perinatal depressive symptoms in South Western Sydney. In that article, we briefly reported on a factor analysis that was utilized to identify empirical indicators for analysis. In this article, we report on the mixed method approach that was used to identify those latent variables. Social epidemiology has been slow to embrace a latent variable approach to the study of social, political, economic, and cultural structures and mechanisms, partly for philosophical reasons. Critical realist ontology and epistemology have been advocated as an appropriate methodological approach to both theory building and theory testing in the health sciences. We describe here an emergent mixed method approach that uses qualitative methods to identify latent constructs followed by factor analysis using empirical indicators chosen to measure identified qualitative codes. Comparative analysis of the findings is reported together with a limited description of realist approaches to abstract reasoning.

  9. Child Abuse: The Hidden Bruises

    Science.gov (United States)

    ... for Families - Vietnamese Spanish Facts for Families Guide Child Abuse - The Hidden Bruises No. 5; Updated November 2014 The statistics on physical child abuse are alarming. It is estimated hundreds of thousands ...

  10. Hidden role of Maxwell superalgebras in the free differential algebras of D = 4 and D = 11 supergravity

    Science.gov (United States)

    Ravera, Lucrezia

    2018-03-01

    The purpose of this paper is to show that the so-called Maxwell superalgebra in four dimensions, which naturally involves the presence of a nilpotent fermionic generator, can be interpreted as a hidden superalgebra underlying N=1, {D}=4 supergravity extended to include a 2-form gauge potential associated to a 2-index antisymmetric tensor. In this scenario, the theory is appropriately discussed in the context of Free Differential Algebras (an extension of the Maurer-Cartan equations to involve higher-degree differential forms). The study is then extended to the Free Differential Algebra describing D = 11 supergravity, showing that, also in this case, there exists a super-Maxwell algebra underlying the theory. The same extra spinors dual to the nilpotent fermionic generators whose presence is crucial for writing a supersymmetric extension of the Maxwell algebras, both in the D = 4 and in the D = 11 case, turn out to be fundamental ingredients also to reproduce the D = 4 and D = 11 Free Differential Algebras on ordinary superspace, whose basis is given by the supervielbein. The analysis of the gauge structure of the supersymmetric Free Differential Algebras is carried on taking into account the gauge transformations from the hidden supergroup-manifold associated with the Maxwell superalgebras.

  11. Analysing the hidden curriculum: use of a cultural web.

    Science.gov (United States)

    Mossop, Liz; Dennick, Reg; Hammond, Richard; Robbé, Iain

    2013-02-01

    Major influences on learning about medical professionalism come from the hidden curriculum. These influences can contribute positively or negatively towards the professional enculturation of clinical students. The fact that there is no validated method for identifying the components of the hidden curriculum poses problems for educators considering professionalism. The aim of this study was to analyse whether a cultural web, adapted from a business context, might assist in the identification of elements of the hidden curriculum at a UK veterinary school. A qualitative approach was used. Seven focus groups consisting of three staff groups and four student groups were organised. Questioning was framed using the cultural web, which is a model used by business owners to assess their environment and consider how it affects their employees and customers. The focus group discussions were recorded, transcribed and analysed thematically using a combination of a priori and emergent themes. The cultural web identified elements of the hidden curriculum for both students and staff. These included: core assumptions; routines; rituals; control systems; organisational factors; power structures, and symbols. Discussions occurred about how and where these issues may affect students' professional identity development. The cultural web framework functioned well to help participants identify elements of the hidden curriculum. These aspects aligned broadly with previously described factors such as role models and institutional slang. The influence of these issues on a student's development of a professional identity requires discussion amongst faculty staff, and could be used to develop learning opportunities for students. The framework is promising for the analysis of the hidden curriculum and could be developed as an instrument for implementation in other clinical teaching environments. © Blackwell Publishing Ltd 2013.

  12. Anticipating hidden text salting in emails (extended abstract)

    OpenAIRE

    Lioma, Christina; Moens, Marie-Francine; Gomez, Juan Carlos; De Beer, Jan; Bergholz, Andre; Paass, Gerhard; Horkan, Patrick

    2008-01-01

    Salting is the intentional addition or distortion of content, aimed to evade automatic filtering. Salting is usually found in spam emails. Salting can also be hidden in phishing emails, which aim to steal personal information from users. We present a novel method that detects hidden salting tricks as visual anomalies in text. We solely use these salting tricks to successfully classify emails as phishing (F-measure >90%).

  13. Complicated basins and the phenomenon of amplitude death in coupled hidden attractors

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Ushnish [Department of Physics, Sri Venkateswara College, University of Delhi, New Delhi 110021 (India); Department of Physics, National University of Singapore, Singapore 117551 (Singapore); Prasad, Awadhesh, E-mail: awadhesh@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-02-07

    Understanding hidden attractors, whose basins of attraction do not contain the neighborhood of equilibrium of the system, are important in many physical applications. We observe riddled-like complicated basins of coexisting hidden attractors both in coupled and uncoupled systems. Amplitude death is observed in coupled hidden attractors with no fixed point using nonlinear interaction. A new route to amplitude death is observed in time-delay coupled hidden attractors. Numerical results are presented for systems with no or one stable fixed point. The applications are highlighted.

  14. Asymmetric dark matter and the hadronic spectra of hidden QCD

    Science.gov (United States)

    Lonsdale, Stephen J.; Schroor, Martine; Volkas, Raymond R.

    2017-09-01

    The idea that dark matter may be a composite state of a hidden non-Abelian gauge sector has received great attention in recent years. Frameworks such as asymmetric dark matter motivate the idea that dark matter may have similar mass to the proton, while mirror matter and G ×G grand unified theories provide rationales for additional gauge sectors which may have minimal interactions with standard model particles. In this work we explore the hadronic spectra that these dark QCD models can allow. The effects of the number of light colored particles and the value of the confinement scale on the lightest stable state, the dark matter candidate, are examined in the hyperspherical constituent quark model for baryonic and mesonic states.

  15. MEANINGFUL VARIABILITY: A SOCIOLINGUISTICALLY-GROUNDED APPROACH TO VARIATION IN OPTIMALITY THEORY

    Directory of Open Access Journals (Sweden)

    Juan Antonio Cutillas Espinosa

    2004-12-01

    Full Text Available Most approaches to variability in Optimality Theory have attempted to make variation possible within the OT framework, i.e. to reformulate constraints and rankings to accommodate variable and gradient linguistic facts. Sociolinguists have attempted to apply these theoretical advances to the study of language variation, with an emphasis on language-interna1 variables (Auger 2001, Cardoso 2001. Little attention has been paid to the array of externa1 factors that influence the patterning of variation. In this paper, we argue that some variation pattems-specially those that are socially meaningful- are actually the result of a three-grarnmar system. G, is the standard grammar, which has to be available to the speaker to obtain these variation patterns. G; is the vernacular grammar, which the speaker is likely to have acquired in his local community. Finally, G, is an intergrammar, which is used by the speaker as his 'default' constraint set. G is a continuous ranking (Boersma & Hayes 2001 and domination relations are consciously altered by the speakers to shape the appropriate and variable linguistic output. We illustrate this model with analyses of English and Spanish.

  16. Gauge mediation scenario with hidden sector renormalization in MSSM

    International Nuclear Information System (INIS)

    Arai, Masato; Kawai, Shinsuke; Okada, Nobuchika

    2010-01-01

    We study the hidden sector effects on the mass renormalization of a simplest gauge-mediated supersymmetry breaking scenario. We point out that possible hidden sector contributions render the soft scalar masses smaller, resulting in drastically different sparticle mass spectrum at low energy. In particular, in the 5+5 minimal gauge-mediated supersymmetry breaking with high messenger scale (that is favored by the gravitino cold dark matter scenario), we show that a stau can be the next lightest superparticle for moderate values of hidden sector self-coupling. This provides a very simple theoretical model of long-lived charged next lightest superparticles, which imply distinctive signals in ongoing and upcoming collider experiments.

  17. Gauge mediation scenario with hidden sector renormalization in MSSM

    Science.gov (United States)

    Arai, Masato; Kawai, Shinsuke; Okada, Nobuchika

    2010-02-01

    We study the hidden sector effects on the mass renormalization of a simplest gauge-mediated supersymmetry breaking scenario. We point out that possible hidden sector contributions render the soft scalar masses smaller, resulting in drastically different sparticle mass spectrum at low energy. In particular, in the 5+5¯ minimal gauge-mediated supersymmetry breaking with high messenger scale (that is favored by the gravitino cold dark matter scenario), we show that a stau can be the next lightest superparticle for moderate values of hidden sector self-coupling. This provides a very simple theoretical model of long-lived charged next lightest superparticles, which imply distinctive signals in ongoing and upcoming collider experiments.

  18. Quantum mechanics and hidden superconformal symmetry

    Science.gov (United States)

    Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A.

    2017-12-01

    Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp (1 |2 ) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp (1 |2 ) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Vasiliev-Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wave function parity. These models—both oscillator and particlelike—realize all possible unitary irreducible representations of osp (1 |2 ).

  19. Radiation perturbation theory in gravity and quantum universe as a hydrogen atom

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1992-01-01

    In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs

  20. LHCb - Search for hidden-sector bosons at LHCb

    CERN Multimedia

    Mauri, Andrea

    2016-01-01

    A search is presented for a hidden-sector boson, $\\chi$, produced in the decay $B^0 \\rightarrow K^* (892)^0 \\chi$, with $K^* (892)^0 \\rightarrow K^+ \\pi^-$ and $\\chi \\rightarrow \\mu^+ \\mu^-$ . The search is performed using a $pp$-collision data sample collected at $\\sqrt{s}=7$ and 8 TeV with the LHCb detector, corresponding to integrated luminosities of 1 and 2 fb$^{-1}$ respectively. No significant signal is observed in the mass range $214 \\le m_\\chi \\le 4350$ MeV, and upper limits are placed on the branching fraction product $\\mathcal{B}(B^0 \\rightarrow K^* (892)^0 \\chi) \\times \\mathcal{B}(\\chi \\rightarrow \\mu^+ \\mu^- )$ as a function of the mass and lifetime of the $\\chi$ boson. These limits place the most stringent constraints to date on many theories that predict the existence of additional low-mass dark bosons.

  1. Comment on ‘Hidden variable interpretation of spontaneous localization theory’

    International Nuclear Information System (INIS)

    Tumulka, Roderich

    2011-01-01

    In a recent paper, Bedingham (2011 J. Phys. A: Math. Theor. 44 275303) discussed a hybrid between a theory of spontaneous wavefunction collapse and Bohmian mechanics. I offer a simpler way of conveying the substance of Bedingham’s paper. (comments and replies)

  2. Searching for hidden sectors in multiparticle production at the LHC

    CERN Document Server

    Sanchis-Lozano, Miguel-Angel; Moreno-Picot, Salvador

    2016-01-01

    We study the impact of a hidden sector beyond the Standard Model, e.g. a Hidden Valley model, on factorial moments and cumulants of multiplicity distributions in multiparticle production with a special emphasis on the prospects for LHC results.

  3. Chaos Synchronization Using Adaptive Dynamic Neural Network Controller with Variable Learning Rates

    Directory of Open Access Journals (Sweden)

    Chih-Hong Kao

    2011-01-01

    Full Text Available This paper addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via an adaptive dynamic neural network control (ADNNC system. The proposed ADNNC system is composed of a neural controller and a smooth compensator. The neural controller uses a dynamic RBF (DRBF network to online approximate an ideal controller. The DRBF network can create new hidden neurons online if the input data falls outside the hidden layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate. The smooth compensator is designed to compensate for the approximation error between the neural controller and the ideal controller. Moreover, the variable learning rates of the parameter adaptation laws are derived based on a discrete-type Lyapunov function to speed up the convergence rate of the tracking error. Finally, the simulation results which verified the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized using the proposed ADNNC scheme.

  4. Several foundational and information theoretic implications of Bell’s theorem

    Science.gov (United States)

    Kar, Guruprasad; Banik, Manik

    2016-08-01

    In 1935, Albert Einstein and two colleagues, Boris Podolsky and Nathan Rosen (EPR) developed a thought experiment to demonstrate what they felt was a lack of completeness in quantum mechanics (QM). EPR also postulated the existence of more fundamental theory where physical reality of any system would be completely described by the variables/states of that fundamental theory. This variable is commonly called hidden variable and the theory is called hidden variable theory (HVT). In 1964, John Bell proposed an empirically verifiable criterion to test for the existence of these HVTs. He derived an inequality, which must be satisfied by any theory that fulfill the conditions of locality and reality. He also showed that QM, as it violates this inequality, is incompatible with any local-realistic theory. Later it has been shown that Bell’s inequality (BI) can be derived from different set of assumptions and it also find applications in useful information theoretic protocols. In this review, we will discuss various foundational as well as information theoretic implications of BI. We will also discuss about some restricted nonlocal feature of quantum nonlocality and elaborate the role of Uncertainty principle and Complementarity principle in explaining this feature.

  5. Secret Codes: The Hidden Curriculum of Semantic Web Technologies

    Science.gov (United States)

    Edwards, Richard; Carmichael, Patrick

    2012-01-01

    There is a long tradition in education of examination of the hidden curriculum, those elements which are implicit or tacit to the formal goals of education. This article draws upon that tradition to open up for investigation the hidden curriculum and assumptions about students and knowledge that are embedded in the coding undertaken to facilitate…

  6. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling.

    Science.gov (United States)

    Zheng, Lianqing; Chen, Mengen; Yang, Wei

    2009-06-21

    To overcome the pseudoergodicity problem, conformational sampling can be accelerated via generalized ensemble methods, e.g., through the realization of random walks along prechosen collective variables, such as spatial order parameters, energy scaling parameters, or even system temperatures or pressures, etc. As usually observed, in generalized ensemble simulations, hidden barriers are likely to exist in the space perpendicular to the collective variable direction and these residual free energy barriers could greatly abolish the sampling efficiency. This sampling issue is particularly severe when the collective variable is defined in a low-dimension subset of the target system; then the "Hamiltonian lagging" problem, which reveals the fact that necessary structural relaxation falls behind the move of the collective variable, may be likely to occur. To overcome this problem in equilibrium conformational sampling, we adopted the orthogonal space random walk (OSRW) strategy, which was originally developed in the context of free energy simulation [L. Zheng, M. Chen, and W. Yang, Proc. Natl. Acad. Sci. U.S.A. 105, 20227 (2008)]. Thereby, generalized ensemble simulations can simultaneously escape both the explicit barriers along the collective variable direction and the hidden barriers that are strongly coupled with the collective variable move. As demonstrated in our model studies, the present OSRW based generalized ensemble treatments show improved sampling capability over the corresponding classical generalized ensemble treatments.

  7. Cauchy's stress theory in a modern light

    International Nuclear Information System (INIS)

    Koenemann, Falk H

    2014-01-01

    The 180 year old stress theory by Cauchy is found to be insufficient to serve as a basis for a modern understanding of material behaviour. Six reasons are discussed in detail: (1) Cauchy's theory, following Euler, considers forces interacting with planes. This is in contrast to Newton's mechanics which considers forces interacting with radius vectors. (2) Bonds in solids have never been taken into account. (3) Cauchy's stress theory does not meet the minimum conditions for vector spaces because it does not have a metric. It is not a field theory, and not in the Euclidean space. (4) Cauchy's theory contains a hidden boundary condition that makes it less than general. (5) The current theory of stress is found to be at variance with the theory of potentials. (6) The theory is conceptually incompatible with thermodynamics for physical and geometrical reasons. (paper)

  8. Dopamine reward prediction errors reflect hidden state inference across time

    Science.gov (United States)

    Starkweather, Clara Kwon; Babayan, Benedicte M.; Uchida, Naoshige; Gershman, Samuel J.

    2017-01-01

    Midbrain dopamine neurons signal reward prediction error (RPE), or actual minus expected reward. The temporal difference (TD) learning model has been a cornerstone in understanding how dopamine RPEs could drive associative learning. Classically, TD learning imparts value to features that serially track elapsed time relative to observable stimuli. In the real world, however, sensory stimuli provide ambiguous information about the hidden state of the environment, leading to the proposal that TD learning might instead compute a value signal based on an inferred distribution of hidden states (a ‘belief state’). In this work, we asked whether dopaminergic signaling supports a TD learning framework that operates over hidden states. We found that dopamine signaling exhibited a striking difference between two tasks that differed only with respect to whether reward was delivered deterministically. Our results favor an associative learning rule that combines cached values with hidden state inference. PMID:28263301

  9. Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis1

    International Nuclear Information System (INIS)

    Milgrom, M.; The Institute for Advanced Study)

    1983-01-01

    I consider the possibility that there is not, in fact, much hidden mass in galaxies and galaxy systems. If a certain modified version of the Newtonian dynamics is used to describe the motion of bodies in a gravitational field (of a galaxy, say), the observational results are reproduced with no need to assume hidden mass in appreciable quantities. Various characteristics of galaxies result with no further assumptions. In the basis of the modification is the assumption that in the limit of small acceleration a 0 , the acceleration of a particle at distance r from a mass M satisfies approximately a 2 /a 0 roughly-equalMGr -2 , where a 0 is a constant of the dimensions of an acceleration. A success of this modified dynamics in explaining the data may be interpreted as implying a need to change the law of inertia in the limit of small accelerations or a more limited change of gravity alone. I discuss various observational constraints on possible theories for the modified dynamics from data which exist already and suggest other systems which may provide useful constraints

  10. Hidden symmetries and critical dimensions in the theory of modulated structures

    International Nuclear Information System (INIS)

    Babich, A.V.; Berezovsky, S.V.; Klepikov, V.F.

    2009-01-01

    Some aspects of the theory of the critical phenomena in systems with spontaneous symmetry breaking are considered. The applicability range of the mean field approximation for the systems with modulated structures is discussed. Connection between symmetries of a corresponding model and the existence of exact solutions is showed. The role of symmetries in the theory of dynamic long range ordering is discussed

  11. Extended abstract of a hidden agenda

    Energy Technology Data Exchange (ETDEWEB)

    Goguen, J.; Malcolm, G. [Oxford Univ. (United Kingdom)

    1996-12-31

    The initial goal of our hidden research programme was both straightforward and ambitious: give a semantics for software engineering, and in particular for the object paradigm, supporting correctness proofs that are as simple and mechanical as possible. This emphasizes proofs rather than models, and thus suggests an equational approach, rather than one based on higher order logic, denotational semantics, or any kind of model, because equational proofs achieve maximal simplicity and mechanization, and yet are fully expressive. We introduce powerful coinduction techniques for proving behavioral properties of complex systems. We make the no doubt outrageous claim that our hidden approach gives simpler proofs than other formalisms; this is because we exploit algebraic structure that most other approaches discard.

  12. Application of Portfolio Theory to Minimization of Generation Variability in a System with Wind plants

    International Nuclear Information System (INIS)

    Sabolic, D.

    2016-01-01

    This paper evaluates validity of modern portfolio theory (MPT) for planning of installation of new wind plants with the lowest possible generation variability for given expected yearly generation. Suppose a Planner had historic meteorological data on wind speeds at a finite number of locations over longer time periods, and that they were technically convertible to time series of forecasted generation powers per megawatt of installed capacity. Suppose further that she intended to upgrade existing system with certain fixed amount of new wind plant capacity. Then she would be able to allocate shares in that total capacity to the available locations in a way that suits her policy goals regarding relation between total expected annual generation and total variability of generation best. Minimization of variability is a legitimate policy goal because it increases total costs of energy supply, so that leaving generation to vary more than technically necessary is economically inefficient. This article focuses on applicability of portfolio theory to such a problem. In the presented research, measured 15-minute data of wind generation in existing Croatian wind plants were used.(author).

  13. Meta fluid dynamic as a gauge field theory

    International Nuclear Information System (INIS)

    Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.

    2003-01-01

    In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)

  14. Photoacoustic imaging of hidden dental caries by using a fiber-based probing system

    Science.gov (United States)

    Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji

    2017-04-01

    Photoacoustic method to detect hidden dental caries is proposed. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating laser light to occlusal surface of model tooth. By making a map of intensity of these high frequency components, photoacoustic images of hidden caries were successfully obtained. A photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for using clinical application, and clear photoacoustic image of hidden caries was also obtained by this system.

  15. A hidden history

    OpenAIRE

    Peppers, Emily

    2008-01-01

    The Cultural Collections Audit project began at the University of Edinburgh in 2004, searching for hidden treasures in its 'distributed heritage collections' across the university. The objects and collections recorded in the Audit ranged widely from fine art and furniture to historical scientific and teaching equipment and personalia relating to key figures in the university's long tradition of academic excellence. This information was gathered in order to create a central database of informa...

  16. Life imitating art: depictions of the hidden curriculum in medical television programs.

    Science.gov (United States)

    Stanek, Agatha; Clarkin, Chantalle; Bould, M Dylan; Writer, Hilary; Doja, Asif

    2015-09-26

    The hidden curriculum represents influences occurring within the culture of medicine that indirectly alter medical professionals' interactions, beliefs and clinical practices throughout their training. One approach to increase medical student awareness of the hidden curriculum is to provide them with readily available examples of how it is enacted in medicine; as such the purpose of this study was to examine depictions of the hidden curriculum in popular medical television programs. One full season of ER, Grey's Anatomy and Scrubs were selected for review. A summative content analysis was performed to ascertain the presence of depictions of the hidden curriculum, as well as to record the type, frequency and quality of examples. A second reviewer also viewed a random selection of episodes from each series to establish coding reliability. The most prevalent themes across all television programs were: the hierarchical nature of medicine; challenges during transitional stages in medicine; the importance of role modeling; patient dehumanization; faking or overstating one's capabilities; unprofessionalism; the loss of idealism; and difficulties with work-life balance. The hidden curriculum is frequently depicted in popular medical television shows. These examples of the hidden curriculum could serve as a valuable teaching resource in undergraduate medical programs.

  17. Rare Z boson decays to a hidden sector

    Science.gov (United States)

    Blinov, Nikita; Izaguirre, Eder; Shuve, Brian

    2018-01-01

    We demonstrate that rare decays of the Standard Model Z boson can be used to discover and characterize the nature of new hidden-sector particles. We propose new searches for these particles in soft, high-multiplicity leptonic final states at the Large Hadron Collider. The proposed searches are sensitive to low-mass particles produced in Z decays, and we argue that these striking signatures can shed light on the hidden-sector couplings and mechanism for mass generation.

  18. Is wave-particle objectivity compatible with determinism and locality?

    Science.gov (United States)

    Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B; Terno, Daniel R

    2014-09-26

    Wave-particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions.

  19. Is wave–particle objectivity compatible with determinism and locality?

    Science.gov (United States)

    Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B.; Terno, Daniel R.

    2014-01-01

    Wave–particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions. PMID:25256419

  20. Cosmological abundance of the QCD axion coupled to hidden photons

    Science.gov (United States)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  1. Infrared Constraint on Ultraviolet Theories

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yuhsin [Cornell Univ., Ithaca, NY (United States)

    2012-08-01

    While our current paradigm of particle physics, the Standard Model (SM), has been extremely successful at explaining experiments, it is theoretically incomplete and must be embedded into a larger framework. In this thesis, we review the main motivations for theories beyond the SM (BSM) and the ways such theories can be constrained using low energy physics. The hierarchy problem, neutrino mass and the existence of dark matter (DM) are the main reasons why the SM is incomplete . Two of the most plausible theories that may solve the hierarchy problem are the Randall-Sundrum (RS) models and supersymmetry (SUSY). RS models usually suffer from strong flavor constraints, while SUSY models produce extra degrees of freedom that need to be hidden from current experiments. To show the importance of infrared (IR) physics constraints, we discuss the flavor bounds on the anarchic RS model in both the lepton and quark sectors. For SUSY models, we discuss the difficulties in obtaining a phenomenologically allowed gaugino mass, its relation to R-symmetry breaking, and how to build a model that avoids this problem. For the neutrino mass problem, we discuss the idea of generating small neutrino masses using compositeness. By requiring successful leptogenesis and the existence of warm dark matter (WDM), we can set various constraints on the hidden composite sector. Finally, to give an example of model independent bounds from collider experiments, we show how to constrain the DM–SM particle interactions using collider results with an effective coupling description.

  2. Low-scale gravity mediation in warped extra dimension and collider phenomenology on hidden sector

    International Nuclear Information System (INIS)

    Itoh, H.; Okada, N.; Yamashita, T.

    2007-01-01

    We propose a new scenario of gravity-mediated supersymmetry breaking (gravity mediation) in a supersymmetric Randall-Sundrum model, where the gravity mediation takes place at a low scale due to the warped metric. We investigate collider phenomenology involving the hidden sector field, and find a possibility that the hidden sector field can be produced at the LHC and the ILC. The hidden sector may no longer be hidden. (author)

  3. Twenty five years of fundamental theory

    International Nuclear Information System (INIS)

    Bell, J.S.

    1980-01-01

    In reviewing the last twenty five years in fundamental physics theory it is stated that there has been no revolution in this field. In the absence of gravitation, Lorentz invariance remains a requirement on fundamental laws. Einstein's theory of gravitation inspires increasing conviction on the astronomical scale. Quantum theory remains the framework for all serious effort in microphysics, and quantum electrodynamics remains the model of a fully articulated microphysical theory, completely successful in its domain. However,a number of ideas have appeared, of great theoretical interest and some phenomenological success, which may well contribute to the next decisive step. Recent work on the following topics is mentioned; gravitational radiation, singularites, black body radiation from black holes, gauge and hidden symmetry in quantum electrodynamics, the renormalization of electromagnetic and weak interaction theory, non-Abelian gauge theories, magnetic monopoles as the most striking example of solitons, and supersymmetry. (UK)

  4. Entry deterrence and hidden competition

    NARCIS (Netherlands)

    Lavrutich, Maria; Huisman, Kuno; Kort, Peter

    This paper studies strategic investment behavior of firms facing an uncertain demand in a duopoly setting. Firms choose both investment timing and the capacity level while facing additional uncertainty about market participants, which is introduced via the concept of hidden competition. We focus on

  5. Adaptive Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rasmussen, Tage

    1996-01-01

    Partially Hidden Markov Models (PHMM) have recently been introduced. The transition and emission probabilities are conditioned on the past. In this report, the PHMM is extended with a multiple token version. The different versions of the PHMM are applied to bi-level image coding....

  6. Applications of hidden symmetries to black hole physics

    International Nuclear Information System (INIS)

    Frolov, Valeri

    2011-01-01

    This work is a brief review of applications of hidden symmetries to black hole physics. Symmetry is one of the most important concepts of the science. In physics and mathematics the symmetry allows one to simplify a problem, and often to make it solvable. According to the Noether theorem symmetries are responsible for conservation laws. Besides evident (explicit) spacetime symmetries, responsible for conservation of energy, momentum, and angular momentum of a system, there also exist what is called hidden symmetries, which are connected with higher order in momentum integrals of motion. A remarkable fact is that black holes in four and higher dimensions always possess a set ('tower') of explicit and hidden symmetries which make the equations of motion of particles and light completely integrable. The paper gives a general review of the recently obtained results. The main focus is on understanding why at all black holes have something (symmetry) to hide.

  7. Discussing discourse modalities in argument theory : Reconsidering a paradigm

    NARCIS (Netherlands)

    van den Hoven, P.J.

    2018-01-01

    This article analyzes a statement by Blair that the conditions of interpretation of visual expression are indeterminate to a much greater degree than is the case with verbal expression. We argue that this proposition reveals a somewhat hidden paradigm about what argument theory is or should be. This

  8. Hidden Attraction - The History and Mystery of Magnetism

    Science.gov (United States)

    Verschuur, Gerrit L.

    1996-04-01

    Long one of nature's most fascinating phenomena, magnetism was once the subject of many superstitions. Magnets were thought useful to thieves, effective as a love potion, and as a cure for gout or spasms. They could remove sorcery from women and put demons to flight and even reconcile married couples. It was said that a lodestone pickled in the salt of sucking fish had the power to attract gold. Today, these beliefs have been put aside, but magnetism is no less remarkable for our modern understanding of it. In Hidden Attraction , Gerrit L. Verschuur, a noted astronomer and National Book Award nominee for The Invisible Universe , traces the history of our fascination with magnetism, from the mystery and superstition that propelled the first alchemical experiments with lodestone, through the more tangible works of Faraday, Maxwell, Hertz and other great pioneers of magnetism (scientists responsible for the extraordinary advances in modern science and technology, including radio, the telephone, and computers, that characterize the twentieth century), to state-of-the-art theories that see magnetism as a basic force in the universe. Boasting many informative illustrations, this is an adventure of the mind, using the specific phenomenon of magnetism to show how we have moved from an era of superstitions to one in which the Theory of Everything looms on the horizon.

  9. Hidden Statistics Approach to Quantum Simulations

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the

  10. Detecting Hidden Hierarchy of Non Hierarchical Terrorist Networks

    DEFF Research Database (Denmark)

    Memon, Nasrullah

    measures (and combinations of them) to identify key players (important nodes) in terrorist networks. Our recently introduced techniques and algorithms (which are also implemented in the investigative data mining toolkit known as iMiner) will be particularly useful for law enforcement agencies that need...... to analyze terrorist networks and prioritize their targets. Applying recently introduced mathematical methods for constructing the hidden hierarchy of "nonhierarchical" terrorist networks; we present case studies of the terrorist attacks occurred / planned in the past, in order to identify hidden hierarchy...

  11. Signatures of a hidden cosmic microwave background.

    Science.gov (United States)

    Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2008-09-26

    If there is a light Abelian gauge boson gamma' in the hidden sector its kinetic mixing with the photon can produce a hidden cosmic microwave background (HCMB). For meV masses, resonant oscillations gammagamma' happen after big bang nucleosynthesis (BBN) but before CMB decoupling, increasing the effective number of neutrinos Nnu(eff) and the baryon to photon ratio, and distorting the CMB blackbody spectrum. The agreement between BBN and CMB data provides new constraints. However, including Lyman-alpha data, Nnu(eff) > 3 is preferred. It is tempting to attribute this effect to the HCMB. The interesting parameter range will be tested in upcoming laboratory experiments.

  12. Hidden inventory and safety considerations

    International Nuclear Information System (INIS)

    Anderson, A.R.; James, R.H.; Morgan, F.

    1976-01-01

    Preliminary results are described of the evaluation of residual plutonium in a process line used for the production of experimental fast reactor fuel. Initial attention has been focussed on a selection of work boxes used for processing powders and solutions. Amounts of material measured as ''hidden inventory'' are generally less than 0.1 percent of throughput but in one box containing very complex equipment the amount was exceptionally about 0.5 percent. The total surface area of the box and the installed equipment appears to be the most significant factor in determining the amount of plutonium held-up as ''hidden inventory,'' representing an average of about 4 x 10 -4 g cm -2 . Present results are based on gamma spectrometer measurements but neutron techniques are being developed to overcome some of the inherent uncertainties in the gamma method. It is suggested that the routine use of sample plates of known surface area would be valuable in monitoring the deposition of plutonium in work boxes

  13. Hidden School Dropout among Immigrant Students: A Cross-Sectional Study

    Science.gov (United States)

    Makarova, Elena; Herzog, Walter

    2013-01-01

    Actual school dropout among immigrant youth has been addressed in a number of studies, but research on hidden school dropout among immigrant students is rare. Thus, the objective of this paper is to analyze hidden school dropout among primary school students with an immigrant background. The analyses were performed using survey data of 1186…

  14. Reassessment of Bohm's quantum electrodynamics

    International Nuclear Information System (INIS)

    Baumann, K.

    1986-01-01

    Bohm's interpretation of quantum theory is reexamined, with emphasis on quantum electrodynamics. Subjects of the discussion are the observability of 'hidden' variables, the applicability of Bohm's theory to spinor QED, the violation of Lorentz invariance, and variants of Bohm's theory. A formulation of causal quantum field theory in terms of distributions is also presented. (Author)

  15. Group field theory with noncommutative metric variables.

    Science.gov (United States)

    Baratin, Aristide; Oriti, Daniele

    2010-11-26

    We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.

  16. WIMPless dark matter from non-Abelian hidden sectors with anomaly-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Shadmi, Yael

    2011-01-01

    In anomaly-mediated supersymmetry breaking models, superpartner masses are proportional to couplings squared. Their hidden sectors therefore naturally contain WIMPless dark matter, particles whose thermal relic abundance is guaranteed to be of the correct size, even though they are not weakly interacting massive particles. We study viable dark matter candidates in WIMPless anomaly-mediated supersymmetry breaking models with non-Abelian hidden sectors and highlight unusual possibilities that emerge in even the simplest models. In one example with a pure SU(N) hidden sector, stable hidden gluinos freeze out with the correct relic density, but have an extremely low, but natural, confinement scale, providing a framework for self-interacting dark matter. In another simple scenario, hidden gluinos freeze out and decay to visible Winos with the correct relic density, and hidden glueballs may either be stable, providing a natural framework for mixed cold-hot dark matter, or may decay, yielding astrophysical signals. Last, we present a model with light hidden pions that may be tested with improved constraints on the number of nonrelativistic degrees of freedom. All of these scenarios are defined by a small number of parameters, are consistent with gauge coupling unification, preserve the beautiful connection between the weak scale and the observed dark matter relic density, and are natural, with relatively light visible superpartners. We conclude with comments on interesting future directions.

  17. The protection motivation theory within the stages of the transtheoretical model - stage-specific interplay of variables and prediction of exercise stage transitions.

    Science.gov (United States)

    Lippke, Sonia; Plotnikoff, Ronald C

    2009-05-01

    Two different theories of health behaviour have been chosen with the aim of theory integration: a continuous theory (protection motivation theory, PMT) and a stage model (transtheoretical model, TTM). This is the first study to test whether the stages of the TTM moderate the interrelation of PMT-variables and the mediation of motivation, as well as PMT-variables' interactions in predicting stage transitions. Hypotheses were tested regarding (1) mean patterns, stage pair-comparisons and nonlinear trends using ANOVAs; (2) prediction-patterns for the different stage groups employing multi-group structural equation modelling (MSEM) and nested model analyses; and (3) stage transitions using binary logistic regression analyses. Adults (N=1,602) were assessed over a 6 month period on their physical activity stages, PMT-variables and subsequent behaviour. (1) Particular mean differences and nonlinear trends in all test variables were found. (2) The PMT adequately fitted the five stage groups. The MSEM revealed that covariances within threat appraisal and coping appraisal were invariant and all other constrains were stage-specific, i.e. stage was a moderator. Except for self-efficacy, motivation fully mediated the relationship between the social-cognitive variables and behaviour. (3) Predicting stage transitions with the PMT-variables underscored the importance of self-efficacy. Only when threat appraisal and coping appraisal were high, stage movement was more likely in the preparation stage. Results emphasize stage-specific differences of the PMT mechanisms, and hence, support the stage construct. The findings may guide further theory building and research integrating different theoretical approaches.

  18. On the hidden maxwell superalgebra underlying D = 4 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Penafiel, D.M. [Departamento de Fisica, Universidad de Concepcion (Chile); DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy); Ravera, L. [DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy)

    2017-09-15

    In this work, we expand the hidden AdS-Lorentz superalgebra underlying D = 4 supergravity, reaching a (hidden) Maxwell superalgebra. The latter can be viewed as an extension involving cosmological constant of the superalgebra underlying D = 4 supergravity in flat spacetime. We write the Maurer-Cartan equations in this context and we find some interesting extensions of the antisymmetric 3-form A{sup (3)} appearing in the Free Differential Algebra in Minkowski space. The structure of Free Differential Algebras is obtained by considering the zero curvature equations. We write the parametrization of A{sup (3)} in terms of 1-forms and we rend the topological features of its extensions manifest. We interestingly find out that the structure of these extensions, and consequently the structure of the corresponding boundary contribution dA{sup (3)}, strongly depends on the form of the extra fermionic generator appearing in the hidden Maxwell superalgebra. The model we develop in this work is defined in an enlarged superspace with respect to the ordinary one, and the extra bosonic and fermionic 1-forms required for the closure of the hidden Maxwell superalgebra must be considered as physical fields in this enlarged superspace. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. The Hidden Dimensions of Databases.

    Science.gov (United States)

    Jacso, Peter

    1994-01-01

    Discusses methods of evaluating commercial online databases and provides examples that illustrate their hidden dimensions. Topics addressed include size, including the number of records or the number of titles; the number of years covered; and the frequency of updates. Comparisons of Readers' Guide Abstracts and Magazine Article Summaries are…

  20. A Hidden Markov Model for Analysis of Frontline Veterinary Data for Emerging Zoonotic Disease Surveillance

    Science.gov (United States)

    Robertson, Colin; Sawford, Kate; Gunawardana, Walimunige S. N.; Nelson, Trisalyn A.; Nathoo, Farouk; Stephen, Craig

    2011-01-01

    Surveillance systems tracking health patterns in animals have potential for early warning of infectious disease in humans, yet there are many challenges that remain before this can be realized. Specifically, there remains the challenge of detecting early warning signals for diseases that are not known or are not part of routine surveillance for named diseases. This paper reports on the development of a hidden Markov model for analysis of frontline veterinary sentinel surveillance data from Sri Lanka. Field veterinarians collected data on syndromes and diagnoses using mobile phones. A model for submission patterns accounts for both sentinel-related and disease-related variability. Models for commonly reported cattle diagnoses were estimated separately. Region-specific weekly average prevalence was estimated for each diagnoses and partitioned into normal and abnormal periods. Visualization of state probabilities was used to indicate areas and times of unusual disease prevalence. The analysis suggests that hidden Markov modelling is a useful approach for surveillance datasets from novel populations and/or having little historical baselines. PMID:21949763

  1. Application of Hidden Markov Models in Biomolecular Simulations.

    Science.gov (United States)

    Shukla, Saurabh; Shamsi, Zahra; Moffett, Alexander S; Selvam, Balaji; Shukla, Diwakar

    2017-01-01

    Hidden Markov models (HMMs) provide a framework to analyze large trajectories of biomolecular simulation datasets. HMMs decompose the conformational space of a biological molecule into finite number of states that interconvert among each other with certain rates. HMMs simplify long timescale trajectories for human comprehension, and allow comparison of simulations with experimental data. In this chapter, we provide an overview of building HMMs for analyzing bimolecular simulation datasets. We demonstrate the procedure for building a Hidden Markov model for Met-enkephalin peptide simulation dataset and compare the timescales of the process.

  2. Detecting Faults By Use Of Hidden Markov Models

    Science.gov (United States)

    Smyth, Padhraic J.

    1995-01-01

    Frequency of false alarms reduced. Faults in complicated dynamic system (e.g., antenna-aiming system, telecommunication network, or human heart) detected automatically by method of automated, continuous monitoring. Obtains time-series data by sampling multiple sensor outputs at discrete intervals of t and processes data via algorithm determining whether system in normal or faulty state. Algorithm implements, among other things, hidden first-order temporal Markov model of states of system. Mathematical model of dynamics of system not needed. Present method is "prior" method mentioned in "Improved Hidden-Markov-Model Method of Detecting Faults" (NPO-18982).

  3. From the solar system fo hidden cosmic structures

    Energy Technology Data Exchange (ETDEWEB)

    Benes, K

    1987-01-01

    The development of experimental astrophysics showed that in the evolution of planets, natural processes of a common nature take place. They include, e.g., radiogenic heat, the production of magmas, volcanic activity, degassing, etc. The solar system is a cosmic formation in an advanced stage of development and it is a realistic assumption that in the Galaxy other hidden planetary systems in various stages of development exist. The views on the possibility of the origination of life in other systems differ; life, however, is seen as a hidden property of cosmic matter. (M.D.).

  4. Search for hidden Higgs decay in ATLAS detector

    International Nuclear Information System (INIS)

    Gabrielli, A.

    2013-01-01

    In this paper, a brief overview of the search for the Higgs boson in Hidden Valley models is given. Hidden Valley models predict Higgs decays to neutral particles, which can be also long lived with decay paths comparable to the LHC detectors dimensions. Decay final states consist of collimated leptons (Lepton Jets). Results are presented of a search for Higgs decays to long lived particles in the ATLAS detector at the LHC, based on 1.92 fb −1 data collected during 2011 at a 7TeV center-of-mass energy.

  5. Contextuality for preparations, transformations, and unsharp measurements

    International Nuclear Information System (INIS)

    Spekkens, R.W.

    2005-01-01

    The Bell-Kochen-Specker theorem establishes the impossibility of a noncontextual hidden variable model of quantum theory, or equivalently, that quantum theory is contextual. In this paper, an operational definition of contextuality is introduced which generalizes the standard notion in three ways: (i) it applies to arbitrary operational theories rather than just quantum theory (ii) it applies to arbitrary experimental procedures rather than just sharp measurements, and (iii) it applies to a broad class of ontological models of quantum theory rather than just deterministic hidden variable models. We derive three no-go theorems for ontological models, each based on an assumption of noncontextuality for a different sort of experimental procedure; one for preparation procedures, another for unsharp measurement procedures (that is, measurement procedures associated with positive-operator valued measures), and a third for transformation procedures. All three proofs apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs of contextuality

  6. Dissipative hidden sector dark matter

    Science.gov (United States)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  7. A theory of the strong interactions

    International Nuclear Information System (INIS)

    Gross, D.J.

    1979-01-01

    The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.)

  8. Glimpses of soliton theory the algebra and geometry of nonlinear PDEs

    CERN Document Server

    Kasman, Alex

    2010-01-01

    Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstr...

  9. The ``Folk Theorem'' on effective field theory: How does it fare in nuclear physics?

    Science.gov (United States)

    Rho, Mannque

    2017-10-01

    This is a brief history of what I consider as very important, some of which truly seminal, contributions made by young Korean nuclear theorists, mostly graduate students working on PhD thesis in 1990s and early 2000s, to nuclear effective field theory, nowadays heralded as the first-principle approach to nuclear physics. The theoretical framework employed is an effective field theory anchored on a single scale-invariant hidden local symmetric Lagrangian constructed in the spirit of Weinberg's "Folk Theorem" on effective field theory. The problems addressed are the high-precision calculations on the thermal np capture, the solar pp fusion process, the solar hep process — John Bahcall's challenge to nuclear theorists — and the quenching of g A in giant Gamow-Teller resonances and the whopping enhancement of first-forbidden beta transitions relevant in astrophysical processes. Extending adventurously the strategy to a wild uncharted domain in which a systematic implementation of the "theorem" is far from obvious, the same effective Lagrangian is applied to the structure of compact stars. A surprising, unexpected, result on the properties of massive stars, totally different from what has been obtained up to day in the literature, is predicted, such as the precocious onset of conformal sound velocity together with a hint for the possible emergence in dense matter of hidden symmetries such as scale symmetry and hidden local symmetry.

  10. Electroweak-charged bound states as LHC probes of hidden forces

    Science.gov (United States)

    Li, Lingfeng; Salvioni, Ennio; Tsai, Yuhsin; Zheng, Rui

    2018-01-01

    We explore the LHC reach on beyond-the-standard model (BSM) particles X associated with a new strong force in a hidden sector. We focus on the motivated scenario where the SM and hidden sectors are connected by fermionic mediators ψ+,0 that carry SM electroweak charges. The most promising signal is the Drell-Yan production of a ψ±ψ¯ 0 pair, which forms an electrically charged vector bound state ϒ± due to the hidden force and later undergoes resonant annihilation into W±X . We analyze this final state in detail in the cases where X is a real scalar ϕ that decays to b b ¯, or a dark photon γd that decays to dileptons. For prompt X decays, we show that the corresponding signatures can be efficiently probed by extending the existing ATLAS and CMS diboson searches to include heavy resonance decays into BSM particles. For long-lived X , we propose new searches where the requirement of a prompt hard lepton originating from the W boson ensures triggering and essentially removes any SM backgrounds. To illustrate the potential of our results, we interpret them within two explicit models that contain strong hidden forces and electroweak-charged mediators, namely λ -supersymmetry (SUSY) and non-SUSY ultraviolet extensions of the twin Higgs model. The resonant nature of the signals allows for the reconstruction of the mass of both ϒ± and X , thus providing a wealth of information about the hidden sector.

  11. Quality of life theory III. Maslow revisited.

    Science.gov (United States)

    Ventegodt, Søren; Merrick, Joav; Andersen, Niels Jørgen

    2003-10-13

    In 1962, Abraham Maslow published his book Towards a Psychology of Being, and established a theory of quality of life, which still is considered a consistent theory of quality of life. Maslow based his theory for development towards happiness and true being on the concept of human needs. He described his approach as an existentialistic psychology of self-actualization, based on personal growth. When we take more responsibility for our own life, we take more of the good qualities that we have into use, and we become more free, powerful, happy, and healthy. It seems that Maslow's concept of self-actualization can play an important role in modern medicine. As most chronic diseases often do not disappear in spite of the best biomedical treatments, it might be that the real change our patients have for betterment is understanding and living the noble path of personal development. The hidden potential for improving life really lies in helping the patient to acknowledge that his or her lust for life, his or her needs, and his or her wish to contribute, is really deep down in human existence one and the same. But you will only find this hidden meaning of life if you scrutinize your own life and existence closely enough, to come to know your innermost self.

  12. Quality of Life Theory III. Maslow Revisited

    Directory of Open Access Journals (Sweden)

    Soren Ventegodt

    2003-01-01

    Full Text Available In 1962, Abraham Maslow published his book Towards a Psychology of Being, and established a theory of quality of life, which still is considered a consistent theory of quality of life. Maslow based his theory for development towards happiness and true being on the concept of human needs. He described his approach as an existentialistic psychology of self-actualization, based on personal growth.When we take more responsibility for our own life, we take more of the good qualities that we have into use, and we become more free, powerful, happy, and healthy. It seems that Maslow�s concept of self-actualization can play an important role in modern medicine. As most chronic diseases often do not disappear in spite of the best biomedical treatments, it might be that the real change our patients have for betterment is understanding and living the noble path of personal development. The hidden potential for improving life really lies in helping the patient to acknowledge that his or her lust for life, his or her needs, and his or her wish to contribute, is really deep down in human existence one and the same. But you will only find this hidden meaning of life if you scrutinize your own life and existence closely enough, to come to know your innermost self.

  13. Elevated temperature inelastic analysis of metallic media under time varying loads using state variable theories

    International Nuclear Information System (INIS)

    Kumar, V.; Mukherjee, S.

    1977-01-01

    In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory

  14. Application of ANNS in tube CHF prediction: effect on neuron number in hidden layer

    International Nuclear Information System (INIS)

    Han, L.; Shan, J.; Zhang, B.

    2004-01-01

    Prediction of the Critical Heat Flux (CHF) for upward flow of water in uniformly heated vertical round tube is studied with Artificial Neuron Networks (ANNs) method utilizing different neuron number in hidden layers. This study is based on thermal equilibrium conditions. The neuron number in hidden layers is chosen to vary from 5 to 30 with the step of 5. The effect due to the variety of the neuron number in hidden layers is analyzed. The analysis shows that the neuron number in hidden layers should be appropriate, too less will affect the prediction accuracy and too much may result in abnormal parametric trends. It is concluded that the appropriate neuron number in two hidden layers should be [15 15]. (authors)

  15. UV Photography Shows Hidden Sun Damage

    Science.gov (United States)

    ... mcat1=de12", ]; for (var c = 0; c UV photography shows hidden sun damage A UV photograph gives ... developing skin cancer and prematurely aged skin. Normal photography UV photography 18 months of age: This boy's ...

  16. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    Science.gov (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  17. POLSAR LAND COVER CLASSIFICATION BASED ON HIDDEN POLARIMETRIC FEATURES IN ROTATION DOMAIN AND SVM CLASSIFIER

    Directory of Open Access Journals (Sweden)

    C.-S. Tao

    2017-09-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets’ scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy

  18. Classification of three-family grand unification in string theory. II. The SU(5) and SU(6) models

    International Nuclear Information System (INIS)

    Kakushadze, Z.; Tye, S.H.

    1997-01-01

    Requiring that supersymmetric SU(5) and SU(6) grand unifications in the heterotic string theory must have three chiral families, adjoint (or higher representation) Higgs fields in the grand unified gauge group, and a non-Abelian hidden sector, we construct such string models within the framework of free conformal field theory and asymmetric orbifolds. Within this framework, we construct all such string models via Z 6 asymmetric orbifolds that include a Z 3 outerautomorphism, the latter yielding a level-three current algebra for the grand unification gauge group SU(5) or SU(6). We then classify all such Z 6 asymmetric orbifolds that result in models with a non-Abelian hidden sector. All models classified in this paper have only one adjoint (but no other higher representation) Higgs field in the grand unified gauge group. This Higgs field is neutral under all other gauge symmetries. The list of hidden sectors for three-family SU(6) string models are SU(2), SU(3), and SU(2)circle-times SU(2). In addition to these, three-family SU(5) string models can also have an SU(4) hidden sector. Some of the models have an apparent anomalous U(1) gauge symmetry. copyright 1997 The American Physical Society

  19. Perspective taking and theory of mind in hide and seek.

    Science.gov (United States)

    Street, Chris N H; Bischof, Walter F; Kingstone, Alan

    2018-01-01

    Does theory of mind play a significant role in where people choose to hide an item or where they search for an item that has been hidden? Adapting Anderson's "Hide-Find Paradigm" Anderson et al. (Action, Perception and Performance, 76, 907-913, 2014) participants viewed homogenous or popout visual arrays on a touchscreen table. Their task was to indicate where in the array they would hide an item, or to search for an item that had been hidden, by either a friend or a foe. Critically, participants believed that their sitting location at the touchtable was the same as-or opposite to-their partner's location. Replicating Anderson et al., participants tended to (1) select items nearer to themselves on homogenous displays, and this bias was stronger for a friend than foe; and (2) select popout items, and again, more for a friend than foe. These biases were observed only when participants believed that they shared the same physical perspective as their partner. Collectively, the data indicate that theory of mind plays a significant role in hiding and finding, and demonstrate that the hide-find paradigm is a powerful tool for investigating theory of mind in adults.

  20. Review of hidden carbon emissions, trade, and labor income share in China, 2001–2011

    International Nuclear Information System (INIS)

    Wang, Shu-Hong; Song, Ma-Lin

    2014-01-01

    Coordinated development between the economy and the environment is currently one of the most important issues in China. By establishing models concerning labor income share and hidden carbon emissions, and taking trade as the link in their relationship, this study puts forward the scale effects, technological effects, and structural effects that relate to labor income share under the function of trade. We then establish multi-index and multi-indicator constitutive (MIMIC) equation to measure the ratio of hidden carbon emissions to total emissions, which is further considered the basis of the measurement model. Results of regression analysis carried out on labor income share show that hidden carbon emissions do have a positive effect on labor income share. In the meantime, we also prove that under scale effects, technological effects, and the structural effects of trade, hidden carbon emissions affect labor income shares in different directions. Our conclusions and policy implications are obtained from the calculated results. - Highlights: • This study establishes models concerning labor income share and hidden carbon emissions. • MIMIC is established to measure the ratio of hidden carbon emissions to total discharge. • Hidden carbon emissions have a positive effect on labor income share. • Hidden carbon emissions have various effects on the labor income share

  1. The selection and implementation of hidden line algorithms

    International Nuclear Information System (INIS)

    Schneider, A.

    1983-06-01

    One of the most challenging problems in the field of computer graphics is the elimination of hidden lines in images of nontransparent bodies. In the real world the nontransparent material hinders the light ray coming from hidden regions to the observer. In the computer based image formation process there is no automatic visibility regulation of this kind. So many lines are created which result in a poor quality of the spacial representation. Therefore a three-dimensional representation on the screen is only meaningfull if the hidden lines are eliminated. For this process many algorithms have been developed in the past. A common feature of these codes is the large amount of computer time needed. In the first generation of algorithms, which are commonly used today, the bodies are modeled by plane polygons. More recently, however, also algorithms are in use, which are able to treat curved surfaces without discretisation by plane surfaces. In this paper the first group of algorithms is reviewed, and the most important codes are described. The experience obtained during the implementation of two algorithms is presented. (orig.) [de

  2. Hidden sector behind the CKM matrix

    Science.gov (United States)

    Okawa, Shohei; Omura, Yuji

    2017-08-01

    The small quark mixing, described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the standard model, may be a clue to reveal new physics around the TeV scale. We consider a simple scenario that extra particles in a hidden sector radiatively mediate the flavor violation to the quark sector around the TeV scale and effectively realize the observed CKM matrix. The lightest particle in the hidden sector, whose contribution to the CKM matrix is expected to be dominant, is a good dark matter (DM) candidate. There are many possible setups to describe this scenario, so that we investigate some universal predictions of this kind of model, focusing on the contribution of DM to the quark mixing and flavor physics. In this scenario, there is an explicit relation between the CKM matrix and flavor violating couplings, such as four-quark couplings, because both are radiatively induced by the particles in the hidden sector. Then, we can explicitly find the DM mass region and the size of Yukawa couplings between the DM and quarks, based on the study of flavor physics and DM physics. In conclusion, we show that DM mass in our scenario is around the TeV scale, and the Yukawa couplings are between O (0.01 ) and O (1 ). The spin-independent DM scattering cross section is estimated as O (10-9) [pb]. An extra colored particle is also predicted at the O (10 ) TeV scale.

  3. Quantum field theory in a nutshell

    CERN Document Server

    Zee, A

    2010-01-01

    Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading

  4. Laser experiments explore the hidden sector

    International Nuclear Information System (INIS)

    Ahlers, M.

    2007-11-01

    Recently, the laser experiments BMV and GammeV, searching for light shining through walls, have published data and calculated new limits on the allowed masses and couplings for axion-like particles. In this note we point out that these experiments can serve to constrain a much wider variety of hidden-sector particles such as, e.g., minicharged particles and hidden-sector photons. The new experiments improve the existing bounds from the older BFRT experiment by a factor of two. Moreover, we use the new PVLAS constraints on a possible rotation and ellipticity of light after it has passed through a strong magnetic field to constrain pure minicharged particle models. For masses -7 times the electron electric charge. This is the best laboratory bound and comparable to bounds inferred from the energy spectrum of the cosmic microwave background. (orig.)

  5. Topics in supersymmetric theories

    International Nuclear Information System (INIS)

    Nemeschansky, D.D.

    1984-01-01

    This thesis discusses four different topics in supersymmetric theories. In the first part models in which supersymmetry is broken by the Fayet-Iliopoulos mechanism are considered. The possibility that scalar quark and lepton masses might arise radiatively in such theories is explored. In the second part supersymmetric grand unified models with a sliding singlet are considered. The author reviews the argument that the sliding singlet does not work in models with large supersymmetry breaking. Then he considers the possibility of using a sliding singlet with low energy supersymmetry breaking. The third part of the thesis deals with the entropy problem of supersymmetric theories. Most supersymmetric models possess a decoupled particle with mass of order 100 GeV which is copiously produced in the early universe and whose decay produces huge amounts of entropy. The author shows how this problem can be avoided in theories in which the hidden sector contains several light fields. In the fourth part effective Lagrangians for supersymmetric theories are studied. The anomalous pion interaction for supersymmetric theories is written down. General properties of this term are studied both on compact and non-compact manifolds

  6. 438 Optimal Number of States in Hidden Markov Models and its ...

    African Journals Online (AJOL)

    In this paper, Hidden Markov Model is applied to model human movements as to .... emit either discrete information or a continuous data derived from a Probability .... For each hidden state in the test set, the probability = ... by applying the Kullback-Leibler distance (Juang & Rabiner, 1985) which ..... One Size Does Not Fit.

  7. Bi-dimension decomposed hidden Markov models for multi-person activity recognition

    Institute of Scientific and Technical Information of China (English)

    Wei-dong ZHANG; Feng CHEN; Wen-li XU

    2009-01-01

    We present a novel model for recognizing long-term complex activities involving multiple persons. The proposed model, named 'decomposed hidden Markov model' (DHMM), combines spatial decomposition and hierarchical abstraction to capture multi-modal, long-term dependent and multi-scale characteristics of activities. Decomposition in space and time offers conceptual advantages of compaction and clarity, and greatly reduces the size of state space as well as the number of parameters.DHMMs are efficient even when the number of persons is variable. We also introduce an efficient approximation algorithm for inference and parameter estimation. Experiments on multi-person activities and multi-modal individual activities demonstrate that DHMMs are more efficient and reliable than familiar models, such as coupled HMMs, hierarchical HMMs, and multi-observation HMMs.

  8. Modeling variability in dendritic ice crystal backscattering cross sections at millimeter wavelengths using a modified Rayleigh–Gans theory

    International Nuclear Information System (INIS)

    Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Botta, Giovanni; Verlinde, Johannes

    2013-01-01

    Using the Generalized Multi-particle Mie-method (GMM), Botta et al. (in this issue) [7] created a database of backscattering cross sections for 412 different ice crystal dendrites at X-, Ka- and W-band wavelengths for different incident angles. The Rayleigh–Gans theory, which accounts for interference effects but ignores interactions between different parts of an ice crystal, explains much, but not all, of the variability in the database of backscattering cross sections. Differences between it and the GMM range from −3.5 dB to +2.5 dB and are highly dependent on the incident angle. To explain the residual variability a physically intuitive iterative method was developed to estimate the internal electric field within an ice crystal that accounts for interactions between the neighboring regions within it. After modifying the Rayleigh–Gans theory using this estimated internal electric field, the difference between the estimated backscattering cross sections and those from the GMM method decreased to within 0.5 dB for most of the ice crystals. The largest percentage differences occur when the form factor from the Rayleigh–Gans theory is close to zero. Both interference effects and neighbor interactions are sensitive to the morphology of ice crystals. Improvements in ice-microphysical models are necessary to predict or diagnose internal structures within ice crystals to aid in more accurate interpretation of radar returns. Observations of the morphology of ice crystals are, in turn, necessary to guide the development of such ice-microphysical models and to better understand the statistical properties of ice crystal morphologies in different environmental conditions. -- Highlights: • Significant variability exists in radar backscattering cross sections of dendrites. • Source of variability depends upon detailed distribution of mass within dendrites. • The Rayleigh–Gans theory (RG) captures most of the variability. • Improving RG by estimating dendrite

  9. Examining Impulse-Variability Theory and the Speed-Accuracy Trade-Off in Children's Overarm Throwing Performance.

    Science.gov (United States)

    Molina, Sergio L; Stodden, David F

    2018-04-01

    This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.

  10. Hidden attraction the history and mystery of magnetism

    CERN Document Server

    Verschuur, Gerrit L

    1996-01-01

    Long one of nature''s most fascinating phenomena, magnetism was once the subject of many superstitions. Magnets were thought useful to thieves, effective as a love potion or as a cure for gout or spasms. They could remove sorcery from women and put demons to flight and even reconcile married couples. It was said that a lodestone pickled in the salt of sucking fish had the power to attract gold. Today, these beliefs have been put aside, but magnetism is no less remarkable for our modern understanding of it. In Hidden Attraction, Gerrit L. Verschuur, a noted astronomer and National Book Award nominee for The Invisible Universe, traces the history of our fascination with magnetism, from the first discovery of magnets in Greece, to state-of-the-art theories that see magnetism as a basic force in the universe. The book begins with the early debunking of superstitions by Peter Peregrinus (Pierre de Maricourt), whom Roger Bacon hailed as one of the world''s first experimental scientists (Perigrinus held that "experi...

  11. The hidden and informal curriculum across the continuum of training: A cross-sectional qualitative study.

    Science.gov (United States)

    Doja, Asif; Bould, M Dylan; Clarkin, Chantalle; Eady, Kaylee; Sutherland, Stephanie; Writer, Hilary

    2016-04-01

    The hidden and informal curricula refer to learning in response to unarticulated processes and constraints, falling outside the formal medical curriculum. The hidden curriculum has been identified as requiring attention across all levels of learning. We sought to assess the knowledge and perceptions of the hidden and informal curricula across the continuum of learning at a single institution. Focus groups were held with undergraduate and postgraduate learners and faculty to explore knowledge and perceptions relating to the hidden and informal curricula. Thematic analysis was conducted both inductively by research team members and deductively using questions structured by the existing literature. Participants highlighted several themes related to the presence of the hidden and informal curricula in medical training and practice, including: the privileging of some specialties over others; the reinforcement of hierarchies within medicine; and a culture of tolerance towards unprofessional behaviors. Participants acknowledged the importance of role modeling in the development of professional identities and discussed the deterioration in idealism that occurs. Common issues pertaining to the hidden curriculum exist across all levels of learners, including faculty. Increased awareness of these issues could allow for the further development of methods to address learning within the hidden curriculum.

  12. Low scale gravity mediation with warped extra dimension and collider phenomenology on the hidden sector

    International Nuclear Information System (INIS)

    Itoh, Hideo; Okada, Nobuchika; Yamashita, Toshifumi

    2006-01-01

    We propose a scenario of gravity mediated supersymmetry breaking (gravity mediation) in a supersymmetric Randall-Sundrum model. In our setup, both the visible sector and the hidden sector coexist on the infrared (IR) brane. We introduce the Polonyi model as a simple hidden sector. Because of the warped metric, the effective cutoff scale on the IR brane is 'warped down', so that the gravity mediation occurs at a low scale. As a result, the gravitino is naturally the lightest superpartner (LSP) and contact interactions between the hidden and the visible sector fields become stronger. We address phenomenologies for various IR cutoff scales. In particular, we investigate collider phenomenology involving a scalar field (Polonyi field) in the hidden sector for the case with the IR cutoff around 10 TeV. We find a possibility that the hidden sector scalar can be produced at the LHC and the international linear collider (ILC). Interestingly, the scalar behaves like the Higgs boson of the standard model in the production process, while its decay process is quite different and, once produced, it will provide us with a very clean signature. The hidden sector may be no longer hidden

  13. In Brief: Hidden environment and health costs of energy

    Science.gov (United States)

    Showstack, Randy

    2009-10-01

    The hidden costs of energy production and use in the United States amounted to an estimated $120 billion in 2005, according to a 19 October report by the U.S. National Research Council. The report, “Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use,” examines hidden costs, including the cost of air pollution damage to human health, which are not reflected in market prices of energy sources, electricity, or gasoline. The report found that in 2005, the total annual external damages from sulfur dioxide, nitrogen oxides, and particulate matter created by coal-burning power plants that produced 95% of the nation's coal-generated electricity were about $62 billion, with nonclimate damages averaging about 3.2 cents for every kilowatt-hour of energy produced. It is estimated that by 2030, nonclimate damages will fall to 1.7 cents per kilowatt-hour. The 2030 figure assumes that new policies already slated for implementation are put in place.

  14. A possible loophole in the theorem of Bell.

    Science.gov (United States)

    Hess, K; Philipp, W

    2001-12-04

    The celebrated inequalities of Bell are based on the assumption that local hidden parameters exist. When combined with conflicting experimental results, these inequalities appear to prove that local hidden parameters cannot exist. This contradiction suggests to many that only instantaneous action at a distance can explain the Einstein, Podolsky, and Rosen type of experiments. We show that, in addition to the assumption that hidden parameters exist, Bell tacitly makes a variety of other assumptions that contribute to his being able to obtain the desired contradiction. For instance, Bell assumes that the hidden parameters do not depend on time and are governed by a single probability measure independent of the analyzer settings. We argue that the exclusion of time has neither a physical nor a mathematical basis but is based on Bell's translation of the concept of Einstein locality into the language of probability theory. Our additional set of local hidden variables includes time-like correlated parameters and a generalized probability density. We prove that our extended space of local hidden variables does not permit Bell-type proofs to go forward.

  15. Sampling theory, a renaissance compressive sensing and other developments

    CERN Document Server

    2015-01-01

    Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.

  16. Distinguishing Hidden Markov Chains

    OpenAIRE

    Kiefer, Stefan; Sistla, A. Prasad

    2015-01-01

    Hidden Markov Chains (HMCs) are commonly used mathematical models of probabilistic systems. They are employed in various fields such as speech recognition, signal processing, and biological sequence analysis. We consider the problem of distinguishing two given HMCs based on an observation sequence that one of the HMCs generates. More precisely, given two HMCs and an observation sequence, a distinguishing algorithm is expected to identify the HMC that generates the observation sequence. Two HM...

  17. Coupling of Hidden Sector

    OpenAIRE

    Królikowski, Wojciech

    2016-01-01

    A hypothetic Hidden Sector of the Universe, consisting of sterile fer\\-mions (``sterinos'') and sterile mediating bosons (``sterons'') of mass dimension 1 (not 2!) --- the last described by an antisymmetric tensor field --- requires to exist also a scalar isovector and scalar isoscalar in order to be able to construct electroweak invariant coupling (before spontaneously breaking its symmetry). The introduced scalar isoscalar might be a resonant source for the diphoton excess of 750 GeV, sugge...

  18. The Importance of the Cultural-Historical Theory for Education. Some Meditations on Learning, Development, Activity, and Creativity

    Directory of Open Access Journals (Sweden)

    Nikolai Veresov

    2013-07-01

    Full Text Available “What are the main items showing the importance of cultural-historical psychology for education?” It is much easier to put such a question than to give an appropriate answer. Different experts in this area definitely propose different answers to it. In this article I would try to present my answer from my perspective. It seems that our understanding of Vygotsky’s theory is so deep and complete that any question of missed links or hidden messages does not make any sense. What essentially new could be found in this area after more than 40 years of discovering of the cultural-historical theory by generations of researchers? However, I will try to show that there are missed links in our understanding of Vygotsky’s theoretical approach. Even more, I will try to show that there is a hidden message from Vygotsky which remains unclaimed. I will try to show then that both items (the missed link and the hidden message are connected with the idea of development in terms of drama.

  19. The monster sporadic group and a theory underlying superstring models

    International Nuclear Information System (INIS)

    Chapline, G.

    1996-09-01

    The pattern of duality symmetries acting on the states of compactified superstring models reinforces an earlier suggestion that the Monster sporadic group is a hidden symmetry for superstring models. This in turn points to a supersymmetric theory of self-dual and anti-self-dual K3 manifolds joined by Dirac strings and evolving in a 13 dimensional spacetime as the fundamental theory. In addition to the usual graviton and dilaton this theory contains matter-like degrees of freedom resembling the massless states of the heterotic string, thus providing a completely geometric interpretation for ordinary matter. 25 refs

  20. Co-existing hidden attractors in a radio-physical oscillator system

    DEFF Research Database (Denmark)

    Kuznetsov, A. P.; Kuznetsov, S. P.; Mosekilde, Erik

    2015-01-01

    The term `hidden attractor' relates to a stable periodic, quasiperiodic or chaotic state whose basin of attraction does not overlap with the neighborhood of an unstable equilibrium point. Considering a three-dimensional oscillator system that does not allow for the existence of an equilibrium point...... frequency, describe the bifurcations through which hidden attractors of different type arise and disappear, and illustrate the form of the basins of attraction....

  1. A two particle hidden sector and the oscillations with photons

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Pedro D. [Universidad de Antofagasta, Departamento de Fisica, Antofagasta (Chile); Arias, Paola; Maldonado, Carlos [Universidad de Santiago de Chile, Departmento de Fisica, Santiago (Chile)

    2018-01-15

    We present a detailed study of the oscillations and optical properties for vacuum, in a model for the dark sector that contains axion-like particles and hidden photons. We provide bounds for the couplings versus the mass, using current results from ALPS-I and PVLAS. We also discuss the challenges for the detection of models with more than one hidden particle in light shining trough wall-like experiments. (orig.)

  2. A Geometrical Approach to Bell's Theorem

    Science.gov (United States)

    Rubincam, David Parry

    2000-01-01

    Bell's theorem can be proved through simple geometrical reasoning, without the need for the Psi function, probability distributions, or calculus. The proof is based on N. David Mermin's explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stern-Gerlach detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of local hidden variable theories for this experiment can be arranged in colored strips from which simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem. Moreover, all local hidden variable theories can be graphed in such a way as to enclose their statistics in a pyramid, with the quantum-mechanical result lying a finite distance beneath the base of the pyramid.

  3. To the theory of the first-type phase transformations for many variables

    International Nuclear Information System (INIS)

    Fateev, M.P.

    2002-01-01

    The multidimensional theory on the first-type phase transitions near the one-dimensional saddle point is considered. The transformations of the variables, describing the new phase nucleation, making it possible to achieve their complex separation in the Fokker-Planck equation, and thus to reduce the problem to the one-dimensional one, are proposed. The distribution function and nucleation velocity are determined both for the stationary and nonstationary nucleation stages. The problem on volatile liquid boiling is considered as an example for the case when there are two parameters, characterizing the new phase nucleation [ru

  4. Raising awareness of the hidden curriculum in veterinary medical education: a review and call for research.

    Science.gov (United States)

    Whitcomb, Tiffany L

    2014-01-01

    The hidden curriculum is characterized by information that is tacitly conveyed to and among students about the cultural and moral environment in which they find themselves. Although the hidden curriculum is often defined as a distinct entity, tacit information is conveyed to students throughout all aspects of formal and informal curricula. This unconsciously communicated knowledge has been identified across a wide spectrum of educational environments and is known to have lasting and powerful impacts, both positive and negative. Recently, medical education research on the hidden curriculum of becoming a doctor has come to the forefront as institutions struggle with inconsistencies between formal and hidden curricula that hinder the practice of patient-centered medicine. Similarly, the complex ethical questions that arise during the practice and teaching of veterinary medicine have the potential to cause disagreement between what the institution sets out to teach and what is actually learned. However, the hidden curriculum remains largely unexplored for this field. Because the hidden curriculum is retained effectively by students, elucidating its underlying messages can be a key component of program refinement. A review of recent literature about the hidden curriculum in a variety of fields, including medical education, will be used to explore potential hidden curricula in veterinary medicine and draw attention to the need for further investigation.

  5. Inference with constrained hidden Markov models in PRISM

    DEFF Research Database (Denmark)

    Christiansen, Henning; Have, Christian Theil; Lassen, Ole Torp

    2010-01-01

    A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference. De......_different are integrated. We experimentally validate our approach on the biologically motivated problem of global pairwise alignment.......A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference...

  6. EVALUASI HIDDEN CURRICULUM DI SMP NEGERI BOJA, KABUPATEN KENDAL

    Directory of Open Access Journals (Sweden)

    Neni Lestari

    2015-12-01

    Full Text Available This study aimed to evaluate the implementation and impact of Hidden Curriculum, as well as the determinant factors of success and sustainability in SMPN 2 Boja Kendal. This study was an evaluative research using qualitative approach. The data collected by using observation, interviews, and documentation. Data analyzed by collecting and selecting to be deduce. Validity used triangulation data that combined the result of observation, interviews, and documentation. The results of the study were: 1 The activities of hidden curriculum development at SMPN 2 Boja Kendal, namely: flag ceremony, school environmental management, establishing and enforcing discipline, special religious worship, smiles, greetings and courtesies, exemplary, relationship among students and principal, teachers, and staff, school canteen services. 2 The impact of the hidden curriculum development was the changing of school community’s behavior being better, created clean and beautiful school environment, the improvement of public trust to the school toward their kids’ education. Development of the hidden curriculum could establish students good character and an optimal achievement as well as a good school culture. 3 Internal supporting factors including: qualified human resources, the availability of school facilities, school environment was clean and beautiful. External supporting factors occur in the form of endorsement of the parents, school committees and communities in establishing good and virtuous character for the students.

  7. Hidden solution to the μ/Bμ problem in gauge mediation

    International Nuclear Information System (INIS)

    Roy, Tuhin S.; Schmaltz, Martin

    2008-01-01

    We propose a solution to the μ/B μ problem in gauge mediation. The novel feature of our solution is that it uses dynamics of the hidden sector, which is often present in models with dynamical supersymmetry breaking. We give an explicit example model of gauge mediation where a very simple messenger sector generates both μ and B μ at one loop. The usual problem, that B μ is then too large, is solved by strong renormalization effects from the hidden sector which suppress B μ relative to μ. Our mechanism relies on an assumption about the signs of certain incalculable anomalous dimensions in the hidden sector. Making these assumptions not only allows us to solve the μ/B μ problem but also leads to a characteristic superpartner spectrum which would be a smoking gun signal for our mechanism.

  8. Multitask TSK fuzzy system modeling by mining intertask common hidden structure.

    Science.gov (United States)

    Jiang, Yizhang; Chung, Fu-Lai; Ishibuchi, Hisao; Deng, Zhaohong; Wang, Shitong

    2015-03-01

    The classical fuzzy system modeling methods implicitly assume data generated from a single task, which is essentially not in accordance with many practical scenarios where data can be acquired from the perspective of multiple tasks. Although one can build an individual fuzzy system model for each task, the result indeed tells us that the individual modeling approach will get poor generalization ability due to ignoring the intertask hidden correlation. In order to circumvent this shortcoming, we consider a general framework for preserving the independent information among different tasks and mining hidden correlation information among all tasks in multitask fuzzy modeling. In this framework, a low-dimensional subspace (structure) is assumed to be shared among all tasks and hence be the hidden correlation information among all tasks. Under this framework, a multitask Takagi-Sugeno-Kang (TSK) fuzzy system model called MTCS-TSK-FS (TSK-FS for multiple tasks with common hidden structure), based on the classical L2-norm TSK fuzzy system, is proposed in this paper. The proposed model can not only take advantage of independent sample information from the original space for each task, but also effectively use the intertask common hidden structure among multiple tasks to enhance the generalization performance of the built fuzzy systems. Experiments on synthetic and real-world datasets demonstrate the applicability and distinctive performance of the proposed multitask fuzzy system model in multitask regression learning scenarios.

  9. Hidden Costs of Hospital Based Delivery from Two Tertiary Hospitals in Western Nepal.

    Directory of Open Access Journals (Sweden)

    Jeevan Acharya

    Full Text Available Hospital based delivery has been an expensive experience for poor households because of hidden costs which are usually unaccounted in hospital costs. The main aim of this study was to estimate the hidden costs of hospital based delivery and determine the factors associated with the hidden costs.A hospital based cross-sectional study was conducted among 384 post-partum mothers with their husbands/house heads during the discharge time in Manipal Teaching Hospital and Western Regional Hospital, Pokhara, Nepal. A face to face interview with each respondent was conducted using a structured questionnaire. Hidden costs were calculated based on the price rate of the market during the time of the study.The total hidden costs for normal delivery and C-section delivery were 243.4 USD (US Dollar and 321.6 USD respectively. Of the total maternity care expenditures; higher mean expenditures were found for food & drinking (53.07%, clothes (9.8% and transport (7.3%. For postpartum women with their husband or house head, the total mean opportunity cost of "days of work loss" were 84.1 USD and 81.9 USD for normal delivery and C-section respectively. Factors such as literate mother (p = 0.007, employed house head (p = 0.011, monthly family income more than 25,000 NRs (Nepalese Rupees (p = 0.014, private hospital as a place of delivery (p = 0.0001, C-section as a mode of delivery (p = 0.0001, longer duration (>5days of stay in hospital (p = 0.0001, longer distance (>15km from house to hospital (p = 0.0001 and longer travel time (>240 minutes from house to hospital (p = 0.007 showed a significant association with the higher hidden costs (>25000 NRs.Experiences of hidden costs on hospital based delivery and opportunity costs of days of work loss were found high. Several socio-demographic factors, delivery related factors (place and mode of delivery, length of stay, distance from hospital and travel time were associated with hidden costs. Hidden costs can be a

  10. Hidden Costs of Hospital Based Delivery from Two Tertiary Hospitals in Western Nepal.

    Science.gov (United States)

    Acharya, Jeevan; Kaehler, Nils; Marahatta, Sujan Babu; Mishra, Shiva Raj; Subedi, Sudarshan; Adhikari, Bipin

    2016-01-01

    Hospital based delivery has been an expensive experience for poor households because of hidden costs which are usually unaccounted in hospital costs. The main aim of this study was to estimate the hidden costs of hospital based delivery and determine the factors associated with the hidden costs. A hospital based cross-sectional study was conducted among 384 post-partum mothers with their husbands/house heads during the discharge time in Manipal Teaching Hospital and Western Regional Hospital, Pokhara, Nepal. A face to face interview with each respondent was conducted using a structured questionnaire. Hidden costs were calculated based on the price rate of the market during the time of the study. The total hidden costs for normal delivery and C-section delivery were 243.4 USD (US Dollar) and 321.6 USD respectively. Of the total maternity care expenditures; higher mean expenditures were found for food & drinking (53.07%), clothes (9.8%) and transport (7.3%). For postpartum women with their husband or house head, the total mean opportunity cost of "days of work loss" were 84.1 USD and 81.9 USD for normal delivery and C-section respectively. Factors such as literate mother (p = 0.007), employed house head (p = 0.011), monthly family income more than 25,000 NRs (Nepalese Rupees) (p = 0.014), private hospital as a place of delivery (p = 0.0001), C-section as a mode of delivery (p = 0.0001), longer duration (>5days) of stay in hospital (p = 0.0001), longer distance (>15km) from house to hospital (p = 0.0001) and longer travel time (>240 minutes) from house to hospital (p = 0.007) showed a significant association with the higher hidden costs (>25000 NRs). Experiences of hidden costs on hospital based delivery and opportunity costs of days of work loss were found high. Several socio-demographic factors, delivery related factors (place and mode of delivery, length of stay, distance from hospital and travel time) were associated with hidden costs. Hidden costs can be a

  11. Duality symmetry of N=4 Yang-Mills theory on T3

    International Nuclear Information System (INIS)

    Hacquebord, F.; Verlinde, H.

    1997-01-01

    We study the spectrum of BPS states in N=4 supersymmetric U(N) Yang-Mills theory. This theory has been proposed to describe M-theory on T 3 in the discrete light-cone formalism. We find that the degeneracy of irreducible BPS bound states in this model exhibits a (partially hidden) SL(5,Z) duality symmetry. Besides the electro-magnetic symmetry, this duality group also contains Nahm-like transformations that interchange the rank N of the gauge group with some of the magnetic or electric fluxes. In the M-theory interpretation, this mapping amounts to a reflection that interchanges the longitudinal direction with one of the transverse directions. (orig.)

  12. Hidden-sector Spectroscopy with Gravitational Waves from Binary Neutron Stars

    Science.gov (United States)

    Croon, Djuna; Nelson, Ann E.; Sun, Chen; Walker, Devin G. E.; Xianyu, Zhong-Zhi

    2018-05-01

    We show that neutron star (NS) binaries can be ideal laboratories to probe hidden sectors with a long-range force. In particular, it is possible for gravitational wave (GW) detectors such as LIGO and Virgo to resolve the correction of waveforms from ultralight dark gauge bosons coupled to NSs. We observe that the interaction of the hidden sector affects both the GW frequency and amplitude in a way that cannot be fitted by pure gravity.

  13. Recent trials to verify quantum mechanics

    International Nuclear Information System (INIS)

    Paty, M.

    1974-01-01

    An account of the experiments which deal with the verification of Quantum Mechanics and the hidden variable problem is made. First, the well-known EPR paradox is recalled which, in spite of its refutation by Bohr, was the starting point of the questionning on the completeness of Quantum Mechanics and of hidden variable theories; and then Bell's theorem, which shows that the two approaches, Quantum Mechanics and hidden variables, can be put in contradiction. Thereafter the various types of experiments which have been carried out on that subject, mostly concerning the correlation measurements between two photons emitted by a quantum system are described. The most recent experimental results are diverging, some of them to confirm and some others to contradict quantum mechanics. A review of these is given; and a discussion is presented about their possible implications [fr

  14. Hidden Neural Networks: A Framework for HMM/NN Hybrids

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric; Krogh, Anders Stærmose

    1997-01-01

    This paper presents a general framework for hybrids of hidden Markov models (HMM) and neural networks (NN). In the new framework called hidden neural networks (HNN) the usual HMM probability parameters are replaced by neural network outputs. To ensure a probabilistic interpretation the HNN is nor...... HMMs on TIMIT continuous speech recognition benchmarks. On the task of recognizing five broad phoneme classes an accuracy of 84% is obtained compared to 76% for a standard HMM. Additionally, we report a preliminary result of 69% accuracy on the TIMIT 39 phoneme task...

  15. Hidden costs, value lost: uninsurance in America

    National Research Council Canada - National Science Library

    Committee on the Consequences of Uninsurance

    2003-01-01

    Hidden Cost, Value Lost , the fifth of a series of six books on the consequences of uninsurance in the United States, illustrates some of the economic and social losses to the country of maintaining...

  16. Hidden Markov Models for Human Genes

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Chauvin, Yves

    1997-01-01

    We analyse the sequential structure of human genomic DNA by hidden Markov models. We apply models of widely different design: conventional left-right constructs and models with a built-in periodic architecture. The models are trained on segments of DNA sequences extracted such that they cover com...

  17. The hidden costs of self-management services in the accounting activity of a company

    Directory of Open Access Journals (Sweden)

    Dan Ioan TOPOR

    2017-05-01

    Full Text Available This article addresses relevant aspects regarding the hidden costs of self-management services in the accounting area, within the accounting department of a company. With this aim, the authors conducted a study using a questionnaire, whose results were analyzed and interpreted. The hidden costs of the self-management of business accounting services observed in the accounting department of the company have been assessed and the causes of their generating sources were identified and analyzed. The debate of these hidden costs involved the treating of notions that exist in the accounting language, but are still not sufficiently explored by the specialists in the area. We also presented and analyzed the causes of the hidden costs of self-management in the accounting activity, as well as a reporting document for failures, arising from the case study. The article ends with the authors' conclusions regarding the hidden costs of self-management services in the accounting area.

  18. Bell's theorem and the problem of decidability between the views of Einstein and Bohr.

    Science.gov (United States)

    Hess, K; Philipp, W

    2001-12-04

    Einstein, Podolsky, and Rosen (EPR) have designed a gedanken experiment that suggested a theory that was more complete than quantum mechanics. The EPR design was later realized in various forms, with experimental results close to the quantum mechanical prediction. The experimental results by themselves have no bearing on the EPR claim that quantum mechanics must be incomplete nor on the existence of hidden parameters. However, the well known inequalities of Bell are based on the assumption that local hidden parameters exist and, when combined with conflicting experimental results, do appear to prove that local hidden parameters cannot exist. This fact leaves only instantaneous actions at a distance (called "spooky" by Einstein) to explain the experiments. The Bell inequalities are based on a mathematical model of the EPR experiments. They have no experimental confirmation, because they contradict the results of all EPR experiments. In addition to the assumption that hidden parameters exist, Bell tacitly makes a variety of other assumptions; for instance, he assumes that the hidden parameters are governed by a single probability measure independent of the analyzer settings. We argue that the mathematical model of Bell excludes a large set of local hidden variables and a large variety of probability densities. Our set of local hidden variables includes time-like correlated parameters and a generalized probability density. We prove that our extended space of local hidden variables does permit derivation of the quantum result and is consistent with all known experiments.

  19. Hidden Costs and the Role of Modularity

    DEFF Research Database (Denmark)

    Larsen, Marcus M.

    2013-01-01

    that the inability to effectively estimate the costs of implementing an activity in a foreign location has a negative impact on the process performance of that activity. Performance is deterred as operations are likely to be disrupted by opportunity costs and managerial responses. However, this relationship......This paper addresses estimation errors in strategic decision-making processes due to hidden costs. While previous research has investigated the antecedents of hidden costs, this paper investigates performance consequences. Using unique data on 221 offshoring implementations, it is argued...... is mitigated by the degree of modularity in the activity as it reduces the need for costly coordination in offshoring. This paper contributes to research on offshoring and strategic decision-making by emphasizing the importance of organizational design and of estimating the costs of internal organizational...

  20. Independent SU(2)-loop variables and the reduced configuration space of SU(2)-lattice gauge theory

    International Nuclear Information System (INIS)

    Loll, R.

    1992-01-01

    We give a reduction procedure for SU(2)-trace variables and an explicit description of the reduced configuration sace of pure SU(2)-gauge theory on the hypercubic lattices in two, three and four dimensions, using an independent subset of the gauge-invariant Wilson loops. (orig.)

  1. Locality and reality

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1980-01-01

    Einstein's principle that no signal travels faster than light suggests that observations in one spacetime region should not depend on whether or not a radioactive decay is detected in a spacelike-separated region. This locality property is incompatible with the predictions of quantum theory, and this incompatibility holds independently of the questions of realism, objective reality, and hidden variables. It holds both in the pragmatic quantum theory of Bohr and in realistic frameworks. It is shown here to hold in a completed realistic quantum theory that reconciles Einstein's demand for a description of reality itself with Bohr's contention that quantum theory is complete. This completed realistic quantum theory has no hidden variables, and no objective reality in which observable attributes can become definite independently of observers. The theory is described in some detail, with particular attention to those aspects related to the question of locality. This completed realistic quantum theory is in principle more comprehensive than Bohn's pragmatic quantum theory because it is not limited in principle by the requirement that the observed system be physically separated from the observing one. Applications are discussed

  2. Segmentation of laser range radar images using hidden Markov field models

    International Nuclear Information System (INIS)

    Pucar, P.

    1993-01-01

    Segmentation of images in the context of model based stochastic techniques is connected with high, very often unpracticle computational complexity. The objective with this thesis is to take the models used in model based image processing, simplify and use them in suboptimal, but not computationally demanding algorithms. Algorithms that are essentially one-dimensional, and their extensions to two dimensions are given. The model used in this thesis is the well known hidden Markov model. Estimation of the number of hidden states from observed data is a problem that is addressed. The state order estimation problem is of general interest and is not specifically connected to image processing. An investigation of three state order estimation techniques for hidden Markov models is given. 76 refs

  3. Perspective: Sloppiness and emergent theories in physics, biology, and beyond.

    Science.gov (United States)

    Transtrum, Mark K; Machta, Benjamin B; Brown, Kevin S; Daniels, Bryan C; Myers, Christopher R; Sethna, James P

    2015-07-07

    Large scale models of physical phenomena demand the development of new statistical and computational tools in order to be effective. Many such models are "sloppy," i.e., exhibit behavior controlled by a relatively small number of parameter combinations. We review an information theoretic framework for analyzing sloppy models. This formalism is based on the Fisher information matrix, which is interpreted as a Riemannian metric on a parameterized space of models. Distance in this space is a measure of how distinguishable two models are based on their predictions. Sloppy model manifolds are bounded with a hierarchy of widths and extrinsic curvatures. The manifold boundary approximation can extract the simple, hidden theory from complicated sloppy models. We attribute the success of simple effective models in physics as likewise emerging from complicated processes exhibiting a low effective dimensionality. We discuss the ramifications and consequences of sloppy models for biochemistry and science more generally. We suggest that the reason our complex world is understandable is due to the same fundamental reason: simple theories of macroscopic behavior are hidden inside complicated microscopic processes.

  4. A stochastic picture of spin

    International Nuclear Information System (INIS)

    Faris, W.G.

    1981-01-01

    Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)

  5. Hidden Markov models for labeled sequences

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose

    1994-01-01

    A hidden Markov model for labeled observations, called a class HMM, is introduced and a maximum likelihood method is developed for estimating the parameters of the model. Instead of training it to model the statistics of the training sequences it is trained to optimize recognition. It resembles MMI...

  6. Hidden costs of nuclear power

    International Nuclear Information System (INIS)

    England, R.W.

    1979-01-01

    Mr. England contends that these hidden costs add up to a figure much higher than those that appear in the electric utilities' profit and loss account - costs that are borne by Federal taxpayers, by nuclear industry workers, and by all those people who must share their environment with nuclear facilities. Costs he details are additional deaths and illnesses resulting from exposure to radiation, and the use of tax dollars to clean up the lethal garbage produced by those activities. He asserts that careless handling of uranium ore and mill tailings in past years has apparently resulted in serious public health problems in those mining communities. In another example, Mr. England states that the failure to isolate uranium tailings physically from their environment has probably contributed to an acute leukemia rate in Mesa County, Colorado. He mentions much of the technology development for power reactors being done by the Federal government, not by private reactor manufacturers - thus, again, hidden costs that do not show up in electric bills of customers. The back end of the nuclear fuel cycle as a place for Federally subsidized research and development is discussed briefly. 1 figure, 2 tables

  7. Multivariate longitudinal data analysis with mixed effects hidden Markov models.

    Science.gov (United States)

    Raffa, Jesse D; Dubin, Joel A

    2015-09-01

    Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.

  8. Generalization of the Greenberger-Horne-Zeilinger algebraic proof of nonlocality

    International Nuclear Information System (INIS)

    Clifton, R.K.; Redhead, M.L.G.; Butterfield, J.N.

    1991-01-01

    The authors further develop a recent new proof (by Greenberger, Horne, and Zeilinger - GHZ) that local deterministic hidden-variable theories are inconsistent with certain strict correlations predicted by quantum mechanics. First, they generalize GHZ's proof so that it applied to factorable stochastic theories in which apparatus hidden variables are casually relevant to measurement results, and theories in which the hidden variables evolve indeterministically prior to the particle-apparatus interactions. Then they adopt a more general measure-theoretic approach which requires that GHZ's argument be modified in order to produce a valid proof. Finally, they motivate the more general proof's assumptions in a somewhat different way from previous authors in order to strengthen the implications of the proof as much as possible. After developing GHZ's proof along these lines, they then consider the analogue, for their proof, of Bohr's reply to the EPR argument, and conclude (pace GHZ) that in at least one respect (viz, that of most concern to Bohr) the proof is no more powerful than Bell's. Nevertheless, they point out some new advantages of their proof over Bell's, and over other algebraic proofs of nonlocality. And they conclude by giving a modified version of their proof that, like Bell's does not rely on experimentally unrealizable strict correlations, but still leads to a testable quasi-algebraic locality inequality

  9. Limits of performance for the model reduction problem of hidden Markov models

    KAUST Repository

    Kotsalis, Georgios

    2015-12-15

    We introduce system theoretic notions of a Hankel operator, and Hankel norm for hidden Markov models. We show how the related Hankel singular values provide lower bounds on the norm of the difference between a hidden Markov model of order n and any lower order approximant of order n̂ < n.

  10. Limits of performance for the model reduction problem of hidden Markov models

    KAUST Repository

    Kotsalis, Georgios; Shamma, Jeff S.

    2015-01-01

    We introduce system theoretic notions of a Hankel operator, and Hankel norm for hidden Markov models. We show how the related Hankel singular values provide lower bounds on the norm of the difference between a hidden Markov model of order n and any lower order approximant of order n̂ < n.

  11. Lessons from conducting trans-national Internet-mediated participatory research with hidden populations of cannabis cultivators.

    Science.gov (United States)

    Barratt, Monica J; Potter, Gary R; Wouters, Marije; Wilkins, Chris; Werse, Bernd; Perälä, Jussi; Pedersen, Michael Mulbjerg; Nguyen, Holly; Malm, Aili; Lenton, Simon; Korf, Dirk; Klein, Axel; Heyde, Julie; Hakkarainen, Pekka; Frank, Vibeke Asmussen; Decorte, Tom; Bouchard, Martin; Blok, Thomas

    2015-03-01

    Internet-mediated research methods are increasingly used to access hidden populations. The International Cannabis Cultivation Questionnaire (ICCQ) is an online survey designed to facilitate international comparisons into the relatively under-researched but increasingly significant phenomenon of domestic cannabis cultivation. The Global Cannabis Cultivation Research Consortium has used the ICCQ to survey over 6000 cannabis cultivators across 11 countries. In this paper, we describe and reflect upon our methodological approach, focusing on the digital and traditional recruitment methods used to access this hidden population and the challenges of working across multiple countries, cultures and languages. Descriptive statistics showing eligibility and completion rates and recruitment source by country of residence. Over three quarters of eligible respondents who were presented with the survey were included in the final sample of n=6528. English-speaking countries expended more effort to recruit participants than non-English-speaking countries. The most effective recruitment modes were cannabis websites/groups (33%), Facebook (14%) and news articles (11%). While respondents recruited through news articles were older, growing practice variables were strikingly similar between these main recruitment modes. Through this process, we learnt that there are trade-offs between hosting multiple surveys in each country vs. using one integrated database. We also found that although perceived anonymity is routinely assumed to be a benefit of using digital research methodologies, there are significant limits to research participant anonymity in the current era of mass digital surveillance, especially when the target group is particularly concerned about evading law enforcement. Finally, we list a number of specific recommendations for future researchers utilising Internet-mediated approaches to researching hidden populations. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Hidden Valley Higgs Decays in the ATLAS detector

    CERN Document Server

    Ciapetti, G

    2009-01-01

    A number of extensions of the Standard Model result in particles that are neutral, weakly-coupled and have macroscopic decay lengths that can be comparable with LHC detector dimensions. These particles represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS apparatus. For the purpose of exploring the challenges to the trigger posed by long-lived particles, the Hidden Valley scenario serves as an excellent setting. In this note we present the results of a first study of ATLAS detector performance for some Hidden Valley processes with long-lived, neutral states that decay throughout the detector volume to multi heavy-flavor jets, mainly b-bbar.

  13. The hidden epidemic: confronting sexually transmitted diseases

    National Research Council Canada - National Science Library

    Eng, Thomas R; Butler, William T

    .... In addition, STDs increase the risk of HIV transmission. The Hidden Epidemic examines the scope of sexually transmitted infections in the United States and provides a critical assessment of the nation's response to this public health crisis...

  14. A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models.

    Science.gov (United States)

    Engelhardt, Benjamin; Kschischo, Maik; Fröhlich, Holger

    2017-06-01

    Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model are likely to manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue, we suggest a Bayesian approach to estimate hidden influences in ODE-based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. We demonstrate the performance of our Bayesian dynamic elastic-net with several ordinary differential equation models from the literature, such as human JAK-STAT signalling, information processing at the erythropoietin receptor, isomerization of liquid α -Pinene, G protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we investigate a set of commonly known network motifs and a gene-regulatory network. Altogether our method supports the modeller in an algorithmic manner to identify possible sources of errors in ODE-based models on the basis of experimental data. © 2017 The Author(s).

  15. Experimental search for solar hidden photons in the eV energy range using kinetic mixing with photons

    International Nuclear Information System (INIS)

    Mizumoto, T.; Ohta, R.; Horie, T.; Suzuki, J.; Minowa, M.; Inoue, Y.

    2013-01-01

    We have searched for solar hidden photons in the eV energy range using a dedicated hidden photon detector. The detector consisted of a parabolic mirror with a diameter of 500 mm and a focal length of 1007 mm installed in a vacuum chamber, and a photomultiplier tube at its focal point. The detector was attached to the Tokyo axion helioscope, Sumico which has a mechanism to track the sun. From the result of the measurement, we found no evidence for the existence of hidden photons and set a limit on the photon-hidden photon mixing parameter χ depending on the hidden photon mass m γ'

  16. The Relation between Theory of Justice of John Rawls by Kant's Ethics and Hegel's philosophy of Right

    Directory of Open Access Journals (Sweden)

    Hazhir Mehri

    2010-12-01

    "Theory of justice" due to the boroad variety of social sciences, audience many attracted. Readers of this theory found a wide variety of disciplines ranging from psychology and economic to ethical issues. Selected topic for which it repeatedly Rawls in his book and his theory  named the Kantian and did not name in Hegel, the Hegelian's philosophy of Right theory of the hidden angles of this article will focus on, as well as his abut influence on some views Interpreters

  17. Searching for confining hidden valleys at LHCb, ATLAS, and CMS

    Science.gov (United States)

    Pierce, Aaron; Shakya, Bibhushan; Tsai, Yuhsin; Zhao, Yue

    2018-05-01

    We explore strategies for probing hidden valley scenarios exhibiting confinement. Such scenarios lead to a moderate multiplicity of light hidden hadrons for generic showering and hadronization similar to QCD. Their decays are typically soft and displaced, making them challenging to probe with traditional LHC searches. We show that the low trigger requirements and excellent track and vertex reconstruction at LHCb provide a favorable environment to search for such signals. We propose novel search strategies in both muonic and hadronic channels. We also study existing ATLAS and CMS searches and compare them with our proposals at LHCb. We find that the reach at LHCb is generically better in the parameter space we consider here, even with optimistic background estimations for ATLAS and CMS searches. We discuss potential modifications at ATLAS and CMS that might make these experiments competitive with the LHCb reach. Our proposed searches can be applied to general hidden valley models as well as exotic Higgs boson decays, such as in twin Higgs models.

  18. Hidden Connectivity in Networks with Vulnerable Classes of Nodes

    Directory of Open Access Journals (Sweden)

    Sebastian M. Krause

    2016-10-01

    Full Text Available In many complex systems representable as networks, nodes can be separated into different classes. Often these classes can be linked to a mutually shared vulnerability. Shared vulnerabilities may be due to a shared eavesdropper or correlated failures. In this paper, we show the impact of shared vulnerabilities on robust connectivity and how the heterogeneity of node classes can be exploited to maintain functionality by utilizing multiple paths. Percolation is the field of statistical physics that is generally used to analyze connectivity in complex networks, but in its existing forms, it cannot treat the heterogeneity of multiple vulnerable classes. To analyze the connectivity under these constraints, we describe each class as a color and develop a “color-avoiding” percolation. We present an analytic theory for random networks and a numerical algorithm for all networks, with which we can determine which nodes are color-avoiding connected and whether the maximal set percolates in the system. We find that the interaction of topology and color distribution implies a rich critical behavior, with critical values and critical exponents depending both on the topology and on the color distribution. Applying our physics-based theory to the Internet, we show how color-avoiding percolation can be used as the basis for new topologically aware secure communication protocols. Beyond applications to cybersecurity, our framework reveals a new layer of hidden structure in a wide range of natural and technological systems.

  19. Geolocating fish using Hidden Markov Models and Data Storage Tags

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Pedersen, Martin Wæver; Madsen, Henrik

    2009-01-01

    Geolocation of fish based on data from archival tags typically requires a statistical analysis to reduce the effect of measurement errors. In this paper we present a novel technique for this analysis, one based on Hidden Markov Models (HMM's). We assume that the actual path of the fish is generated...... by a biased random walk. The HMM methodology produces, for each time step, the probability that the fish resides in each grid cell. Because there is no Monte Carlo step in our technique, we are able to estimate parameters within the likelihood framework. The method does not require the distribution...... of inference in state-space models of animals. The technique can be applied to geolocation based on light, on tidal patterns, or measurement of other variables that vary with space. We illustrate the method through application to a simulated data set where geolocation relies on depth data exclusively....

  20. Construction of state-independent proofs for quantum contextuality

    Science.gov (United States)

    Tang, Weidong; Yu, Sixia

    2017-12-01

    Since the enlightening proofs of quantum contextuality first established by Kochen and Specker, and also by Bell, various simplified proofs have been constructed to exclude the noncontextual hidden variable theory of our nature at the microscopic scale. The conflict between the noncontextual hidden variable theory and quantum mechanics is commonly revealed by Kochen-Specker sets of yes-no tests, represented by projectors (or rays), via either logical contradictions or noncontextuality inequalities in a state-(in)dependent manner. Here we propose a systematic and programmable construction of a state-independent proof from a given set of nonspecific rays in C3 according to their Gram matrix. This approach brings us a greater convenience in the experimental arrangements. Besides, our proofs in C3 can also be generalized to any higher-dimensional systems by a recursive method.

  1. Pre- and post-selection, weak values and contextuality

    International Nuclear Information System (INIS)

    Tollaksen, Jeff

    2007-01-01

    By analysing the concept of contextuality (Bell-Kochen-Specker) in terms of pre- and post-selection, it is possible to assign definite values to observables in a new and surprising way. Physical reasons are presented for restrictions on these assignments. When measurements are performed which do not disturb the pre- and post-selection (i.e. weak measurements), then novel experimental aspects of contextuality can be demonstrated. We also prove that every PPS-paradox with definite predictions directly implies 'quantum contextuality' which is introduced as the analogue of contextuality at the level of quantum mechanics rather than at the level of hidden variable theories. Finally, we argue that certain results of these measurements (e.g. eccentric weak values outside the eigenvalue spectrum) cannot be explained by a 'classical-like' hidden variable theory

  2. Identification of chaotic systems with hidden variables (modified Bock's algorithm)

    International Nuclear Information System (INIS)

    Bezruchko, Boris P.; Smirnov, Dmitry A.; Sysoev, Ilya V.

    2006-01-01

    We address the problem of estimating parameters of chaotic dynamical systems from a time series in a situation when some of state variables are not observed and/or the data are very noisy. Using specially developed quantitative criteria, we compare performance of the original multiple shooting approach (Bock's algorithm) and its modified version. The latter is shown to be significantly superior for long chaotic time series. In particular, it allows to obtain accurate estimates for much worse starting guesses for the estimated parameters

  3. Nurture Hidden Talents: Transform School Culture into One That Values Teacher Expertise

    Science.gov (United States)

    Zimmerman, Diane P.

    2014-01-01

    This article looks into the school culture where teacher expertise is often hidden and underused. While the media-rich culture places a high value on talent, the irony is that talent is underrated in most schools, and educators often remain silent about their hidden talents. Many school cultures are not conducive to dialogue that supports displays…

  4. Long memory of financial time series and hidden Markov models with time-varying parameters

    DEFF Research Database (Denmark)

    Nystrup, Peter; Madsen, Henrik; Lindström, Erik

    Hidden Markov models are often used to capture stylized facts of daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior for the ability to reproduce the stylized...... facts have not been thoroughly examined. This paper presents an adaptive estimation approach that allows for the parameters of the estimated models to be time-varying. It is shown that a two-state Gaussian hidden Markov model with time-varying parameters is able to reproduce the long memory of squared...... daily returns that was previously believed to be the most difficult fact to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step predictions....

  5. Photoacoustic imaging of hidden dental caries by using a bundle of hollow optical fibers

    Science.gov (United States)

    Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji

    2018-02-01

    Photoacoustic imaging system using a bundle of hollow-optical fibers to detect hidden dental caries is proposed. Firstly, we fabricated a hidden caries model with a brown pigment simulating a common color of caries lesion. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating Nd:YAG laser light with a 532 nm wavelength to occlusal surface of model tooth. We calculated by Fourier transform and found that the waveform from the carious part provides frequency components of approximately from 0.5 to 1.2 MHz. Then a photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for clinical applications. From intensity map of frequency components in 0.5-1.2 MHz, photoacoustic images of hidden caries in the simulated samples were successfully obtained.

  6. The Theory of Thermodynamic Systems with Internal Variables of State: Necessary and Sufficient Conditions for Compliance with the Second Law of Thermodynamics

    Science.gov (United States)

    Shnip, A. I.

    2018-01-01

    Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.

  7. Hidden loss

    DEFF Research Database (Denmark)

    Kieffer-Kristensen, Rikke; Johansen, Karen Lise Gaardsvig

    2013-01-01

    to participate. RESULTS: All children were affected by their parents' ABI and the altered family situation. The children's expressions led the authors to identify six themes, including fear of losing the parent, distress and estrangement, chores and responsibilities, hidden loss, coping and support. The main......PRIMARY OBJECTIVE: The purpose of this study was to listen to and learn from children showing high levels of post-traumatic stress symptoms after parental acquired brain injury (ABI), in order to achieve an in-depth understanding of the difficulties the children face in their everyday lives...... finding indicates that the children experienced numerous losses, many of which were often suppressed or neglected by the children to protect the ill parents. CONCLUSIONS: The findings indicated that the children seemed to make a special effort to hide their feelings of loss and grief in order to protect...

  8. Hidden Markov models: the best models for forager movements?

    Science.gov (United States)

    Joo, Rocio; Bertrand, Sophie; Tam, Jorge; Fablet, Ronan

    2013-01-01

    One major challenge in the emerging field of movement ecology is the inference of behavioural modes from movement patterns. This has been mainly addressed through Hidden Markov models (HMMs). We propose here to evaluate two sets of alternative and state-of-the-art modelling approaches. First, we consider hidden semi-Markov models (HSMMs). They may better represent the behavioural dynamics of foragers since they explicitly model the duration of the behavioural modes. Second, we consider discriminative models which state the inference of behavioural modes as a classification issue, and may take better advantage of multivariate and non linear combinations of movement pattern descriptors. For this work, we use a dataset of >200 trips from human foragers, Peruvian fishermen targeting anchovy. Their movements were recorded through a Vessel Monitoring System (∼1 record per hour), while their behavioural modes (fishing, searching and cruising) were reported by on-board observers. We compare the efficiency of hidden Markov, hidden semi-Markov, and three discriminative models (random forests, artificial neural networks and support vector machines) for inferring the fishermen behavioural modes, using a cross-validation procedure. HSMMs show the highest accuracy (80%), significantly outperforming HMMs and discriminative models. Simulations show that data with higher temporal resolution, HSMMs reach nearly 100% of accuracy. Our results demonstrate to what extent the sequential nature of movement is critical for accurately inferring behavioural modes from a trajectory and we strongly recommend the use of HSMMs for such purpose. In addition, this work opens perspectives on the use of hybrid HSMM-discriminative models, where a discriminative setting for the observation process of HSMMs could greatly improve inference performance.

  9. Hidden Markov models: the best models for forager movements?

    Directory of Open Access Journals (Sweden)

    Rocio Joo

    Full Text Available One major challenge in the emerging field of movement ecology is the inference of behavioural modes from movement patterns. This has been mainly addressed through Hidden Markov models (HMMs. We propose here to evaluate two sets of alternative and state-of-the-art modelling approaches. First, we consider hidden semi-Markov models (HSMMs. They may better represent the behavioural dynamics of foragers since they explicitly model the duration of the behavioural modes. Second, we consider discriminative models which state the inference of behavioural modes as a classification issue, and may take better advantage of multivariate and non linear combinations of movement pattern descriptors. For this work, we use a dataset of >200 trips from human foragers, Peruvian fishermen targeting anchovy. Their movements were recorded through a Vessel Monitoring System (∼1 record per hour, while their behavioural modes (fishing, searching and cruising were reported by on-board observers. We compare the efficiency of hidden Markov, hidden semi-Markov, and three discriminative models (random forests, artificial neural networks and support vector machines for inferring the fishermen behavioural modes, using a cross-validation procedure. HSMMs show the highest accuracy (80%, significantly outperforming HMMs and discriminative models. Simulations show that data with higher temporal resolution, HSMMs reach nearly 100% of accuracy. Our results demonstrate to what extent the sequential nature of movement is critical for accurately inferring behavioural modes from a trajectory and we strongly recommend the use of HSMMs for such purpose. In addition, this work opens perspectives on the use of hybrid HSMM-discriminative models, where a discriminative setting for the observation process of HSMMs could greatly improve inference performance.

  10. Chimpanzees (Pan troglodytes) use markers to monitor the movement of a hidden item.

    Science.gov (United States)

    Beran, Michael J; Beran, Mary M; Menzel, Charles R

    2005-10-01

    Four chimpanzees (Pan troglodytes) monitored the movement of hidden items in arrays of opaque cups. A chocolate candy was hidden in an array of four cups and temporarily presented paper markers indicated the location of the candy (which otherwise was not visible). These markers were either non-symbolic or symbolic (lexigram) stimuli that in other contexts acted as a label for the hidden candy, and the array was either rotated 180 degrees after the marker was removed or the array remained in the same location. For three of four chimpanzees, performance was better than chance in all conditions and there was no effect of the type of marker. These experiments indicate that chimpanzees can track the movement of a hidden item in an array of identical cups even when they never see the item itself, but only see a temporarily presented marker for the location of that item. However, there was no benefit to the use of symbolic as opposed to non-symbolic stimuli in this performance.

  11. Dissociations and dissociation theory in hypnosis: comment on Kirsch and Lynn (1998)

    Science.gov (United States)

    Kihlstrom, J F

    1998-03-01

    I. Kirsch and S. J. Lynn's (1998) critique of the neodissociation theory of divided consciousness fails to consider evidence of dissociations between explicit and implicit memory and perception in hypnosis. Contrary to their conclusions, evidence that the rate of hidden observer response (like other hypnotic responses) varies with the wording of instructions does not contradict neodissociation theory; rather, it underscores the fact that hypnosis entails social interaction as well as alterations in conscious awareness. Neodissociation and sociocognitive theories of hypnosis complement each other. Each draws attention to aspects of the experience of hypnosis that the other neglects.

  12. Significance of hidden advertising of the media business models in Latvia

    OpenAIRE

    Rožukalne, Anda

    2012-01-01

    Since 2002 parliamentary and municipal elections in Latvia, media content researches have shown a considerable amount of hidden advertising: media publish information that is paid-for, yet not identified as advertising, assigning this information with the qualities of independent content, therefore misleading its audience. In order to analyze this practice, a research was commissioned to find out why Latvian media publish hidden advertising, what is the force behind this practice, who are com...

  13. Bell's inequality and 'ghost-like action-at-a-distance' in quantum mechanics

    International Nuclear Information System (INIS)

    Mattuck, R.D.

    1982-01-01

    The phenomenon of non-locality in quantum mechanics is one of its most fundamental features and is most strikingly exemplified in the discussion of the EPR type of experiment. The generality of Bell's inequality and the results of experiments done up to now show that local hidden-variable theories are ruled out as a means to resolve the famous EPR paradox. What remains for further consideration are the non-local and the Einstein-separable hidden-variable models. Finally, an alternative and possible successful approach in trying to 'explain' non-locality might involve ideas of backward causation. (author)

  14. Do EPR-Bell correlations require a non-local interpretation of quantum mechanics? I: Wigner approach

    International Nuclear Information System (INIS)

    Scully, Marlan O.; Erez, Noam; Fry, Edward S.

    2005-01-01

    Bell inequality experiments teach us that, to explain the data, a hidden variable theory must be non-local. But, to also apply this conclusion to quantum mechanics is unjustified. The key assumptions required to obtain a Bell inequality are (1) locality and (2) the assignment of meaningful (non-negative) probabilities to seemingly physical correlations (Bell expresses these correlations via 'hidden variables'). Since the Bell inequality is violated by experiment, at least one of these assumptions is wrong. The widespread conclusion that locality must be relinquished is unwarranted; rather, the previously mentioned correlations are not physical observables-they are not elements of physical reality

  15. p-adic probability interpretation of Bell's inequality

    International Nuclear Information System (INIS)

    Khrennikov, A.

    1995-01-01

    We study the violation of Bell's inequality using a p-adic generalization of the theory of probability. p-adic probability is introduced as a limit of relative frequencies but this limit exists with respect to a p-adic metric. In particular, negative probability distributions are well defined on the basis of the frequency definition. This new type of stochastics can be used to describe hidden-variables distributions of some quantum models. If the hidden variables have a p-adic probability distribution, Bell's inequality is not valid and it is not necessary to discuss the experimental violations of this inequality. ((orig.))

  16. Bell's inequality and 'ghost-like action-at-a-distance' in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Mattuck, R.D. (Copenhagen Univ. (Denmark). H.C. Oersted Inst.)

    1982-01-01

    The phenomenon of non-locality in quantum mechanics is one of its most fundamental features and is most strikingly exemplified in the discussion of the EPR type of experiment. The generality of Bell's inequality and the results of experiments done up to now show that local hidden-variable theories are ruled out as a means to resolve the famous EPR paradox. What remains for further consideration are the non-local and the Einstein-separable hidden-variable models. Finally, an alternative and possible successful approach in trying to 'explain' non-locality might involve ideas of backward causation.

  17. Enhanced axion-photon coupling in GUT with hidden photon

    Science.gov (United States)

    Daido, Ryuji; Takahashi, Fuminobu; Yokozaki, Norimi

    2018-05-01

    We show that the axion coupling to photons can be enhanced in simple models with a single Peccei-Quinn field, if the gauge coupling unification is realized by a large kinetic mixing χ = O (0.1) between hypercharge and unbroken hidden U(1)H. The key observation is that the U(1)H gauge coupling should be rather strong to induce such large kinetic mixing, leading to enhanced contributions of hidden matter fields to the electromagnetic anomaly. We find that the axion-photon coupling is enhanced by about a factor of 10-100 with respect to the GUT-axion models with E / N = 8 / 3.

  18. Fractional statistics, exceptional preons, scalar dark matter, lepton number violation, neutrino masses, and hidden gauge structure

    International Nuclear Information System (INIS)

    Zee, A.

    1985-09-01

    A brief review is given of the basics of fractional statistics, which is based on the Dirac-Bohm-Aharanov effect. Some group theoretic aspects of exceptional preons are breifly described, and a theory is proposed containing hypercolor and hyperflavor with G/sub HC/ x G/sub HF/ = E(6) x E(6) and preons in (27,27). It is also suggested that the dark matter in the universe is due to a scalar field which transforms as a singlet under SU(3) x SU(2) x U(1) and interacts only via the Higgs boson. Some speculation is made on the existence and physical consequences of a SU(2) singet charged scalar field which couples to two lepton doublet, necessarily violating electron, muon, and tauon numbers. The Majorana masses of neutrinos are discussed as the result of breaking the total lepton number. Abelian gauge field hidden inside non-abelian gauge theory is briefly described in analogy to the electromagnetic potential term. 20 refs

  19. Multistability and hidden attractors in a multilevel DC/DC converter

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik

    2015-01-01

    An attracting periodic, quasiperiodic or chaotic set of a smooth, autonomous system may be referred to as a "hidden attractor" if its basin of attraction does not overlap with the neighborhood of an unstable equilibrium point. Historically, this condition has implied that the basin of attraction...... produce complicated structures of attracting and repelling states organized around the basic switching cycle. This leads us to suggest the existence of hidden attractors in such systems as well. In this case, the condition will be that the basin of attraction does not overlap with the fixed point...

  20. iHeartLift: a closed loop system with bio-feedback that uses music tempo variability to improve heart rate variability.

    Science.gov (United States)

    Ho, Thomas C T; Chen, Xiang

    2011-01-01

    "Musica delenit bestiam feram" translates into "Music soothes the savage beast". There is a hidden truth in this ancient quip passed down from generations. Besides soothing the heart, it also incites the heart to a healthier level of heart rate variability (HRV). In this paper, an approach to use and test music and biofeedback to increase the heart rate variability for people facing daily stress is discussed. By determining the music tempo variability (MTV) of a piece of music and current heart rate variability, iHeartLift is able to compare the 2 trends and locate a musical piece that is suited to increase the user's heart rate variability to a healthier level. With biofeedback, the 2 trends are continuously compared in real-time and the musical piece is changed in accordance with the current comparisons. A study was conducted and it was generally found that HRV can be uplifted by music regardless of language and meaning of musical lyrics but with limitations to musical genre.

  1. Mass spectra of hidden-charm molecular pentaquarks states

    International Nuclear Information System (INIS)

    Patel, Smruti; Vinodkumar, P.C.

    2016-01-01

    Very recently, the LHCb Collaboration has reported two hidden-charmed resonances P_c(4380) and P_c(4450) consistent with pentaquark states in the Λ_b"0 → K"-J/Ψp process with masses (widths) (4380 ±8 ± 29) MeV ((205 ±18 ± 86) MeV) and (4449.8 ±1.7 ± 2.5) MeV ((39 ±5 ±19) MeV), respectively. The observation of the P_c states has aroused the theorist's strong interest in the hidden-charm pentaquark states. They have been studied in various frameworks, such as the molecule-like pentaquark states, the diquark-diquark-antiquark type pentaquark states, the diquark-triquark type pentaquark states, re-scattering effects, etc. An identification of pentaquark states as exotic hadron has been one of the long standing problems in the physics of strong interaction and quantum chromodynamics (QCD). A decade ago lots of discussion were made about pentaquarks states but due to lack of further experimental evidences the study of pentaquarks have been almost gone in the darkness. But, recent remarkable observation of two resonances i.e. P_c(4380) and P_c(4450) with hidden charm and the minimal quark content cc-baruud provided new impact for studies of pentaquark states and opens a new window to study the exotic hadronic matter

  2. The Influence of Psychographic Variables on the Theory of Exit, Voice, and Loyalty of Customer Complaints Behaviour in Banks

    OpenAIRE

    Preko Alexander; Agbanu Kwami Samuel

    2015-01-01

    This paper analyses Customer Complaints Behaviour (CCB) using psychographic factors and the Theory of Exit, Voice and Loyalty. Prior studies on the continent of Africa have explored customer dissatisfaction, service failure, complaints handling and complaint attitudes, but not in association with psychographic factors. This research gap is addressed with a new conceptual understanding that integrates psychographic variables and the Theory of Exit, Voice and Loyalty in a single ...

  3. Long Memory of Financial Time Series and Hidden Markov Models with Time-Varying Parameters

    DEFF Research Database (Denmark)

    Nystrup, Peter; Madsen, Henrik; Lindström, Erik

    2016-01-01

    Hidden Markov models are often used to model daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior have not been thoroughly examined. This paper presents an adaptive...... to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step density forecasts. Finally, it is shown that the forecasting performance of the estimated models can be further improved using local smoothing to forecast the parameter variations....

  4. Examining the Causes of Memory Strength Variability: Recollection, Attention Failure, or Encoding Variability?

    Science.gov (United States)

    Koen, Joshua D.; Aly, Mariam; Wang, Wei-Chun; Yonelinas, Andrew P.

    2013-01-01

    A prominent finding in recognition memory is that studied items are associated with more variability in memory strength than new items. Here, we test 3 competing theories for why this occurs--the "encoding variability," "attention failure", and "recollection" accounts. Distinguishing among these theories is critical…

  5. Variable complexity online sequential extreme learning machine, with applications to streamflow prediction

    Science.gov (United States)

    Lima, Aranildo R.; Hsieh, William W.; Cannon, Alex J.

    2017-12-01

    In situations where new data arrive continually, online learning algorithms are computationally much less costly than batch learning ones in maintaining the model up-to-date. The extreme learning machine (ELM), a single hidden layer artificial neural network with random weights in the hidden layer, is solved by linear least squares, and has an online learning version, the online sequential ELM (OSELM). As more data become available during online learning, information on the longer time scale becomes available, so ideally the model complexity should be allowed to change, but the number of hidden nodes (HN) remains fixed in OSELM. A variable complexity VC-OSELM algorithm is proposed to dynamically add or remove HN in the OSELM, allowing the model complexity to vary automatically as online learning proceeds. The performance of VC-OSELM was compared with OSELM in daily streamflow predictions at two hydrological stations in British Columbia, Canada, with VC-OSELM significantly outperforming OSELM in mean absolute error, root mean squared error and Nash-Sutcliffe efficiency at both stations.

  6. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  7. Hidden Broad-line Regions in Seyfert 2 Galaxies: From the Spectropolarimetric Perspective

    International Nuclear Information System (INIS)

    Du, Pu; Wang, Jian-Min; Zhang, Zhi-Xiang

    2017-01-01

    The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kinematics and geometry of hidden BLRs are still not fully understood. The virial factor obtained from reverberation mapping of type 1 AGNs may be a useful diagnostic of the nature of hidden BLRs in type 2 objects. In order to understand the hidden BLRs, we compile six type 2 objects from the literature with polarized BELs and dynamical measurements of black hole masses. All of them contain pseudobulges. We estimate their virial factors, and find the average value is 0.60 and the standard deviation is 0.69, which agree well with the value of type 1 AGNs with pseudobulges. This study demonstrates that (1) the geometry and kinematics of BLR are similar in type 1 and type 2 AGNs of the same bulge type (pseudobulges), and (2) the small values of virial factors in Seyfert 2 galaxies suggest that, similar to type 1 AGNs, BLRs tend to be very thick disks in type 2 objects.

  8. Local models of Gauge Mediated Supersymmetry Breaking in String Theory

    CERN Document Server

    Garcia-Etxebarria, I; Uranga, Angel M; Garcia-Etxebarria, Inaki; Saad, Fouad; Uranga, Angel M.

    2006-01-01

    We describe local Calabi-Yau geometries with two isolated singularities at which systems of D3- and D7-branes are located, leading to chiral sectors corresponding to a semi-realistic visible sector and a hidden sector with dynamical supersymmetry breaking. We provide explicit models with a 3-family MSSM-like visible sector, and a hidden sector breaking supersymmetry at a meta-stable minimum. For singularities separated by a distance smaller than the string scale, this construction leads to a simple realization of gauge mediated supersymmetry breaking in string theory. The models are simple enough to allow the explicit computation of the massive messenger sector, using dimer techniques for branes at singularities. The local character of the configurations makes manifest the UV insensitivity of the supersymmetry breaking mediation.

  9. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system

    OpenAIRE

    Kuznetsov, N. V.; Leonov, G. A.; Mokaev, T. N.; Prasad, A.; Shrimali, M. D.

    2015-01-01

    The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a hidden attractor in the case of multistability as well as a classical self-excited attractor. The hidden attractor in this system can be localized by analytical/numerical methods based on the continuation and perpetual points. The concept of finite-time Lyapunov dimension is developed for numerical study of the dimension of attractors. A con...

  10. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    ''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in

  11. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    Science.gov (United States)

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.

  12. Intense gamma-ray lines from hidden vector dark matter decay

    International Nuclear Information System (INIS)

    Arina, Chiara; Hambye, Thomas

    2009-12-01

    Scenarios with hidden, spontaneously broken, non-abelian gauge groups contain a natural dark matter candidate, the hidden vector, whose longevity is due to an accidental custodial symmetry in the renormalizable Lagrangian. Nevertheless, non-renormalizable dimension six operators break the custodial symmetry and induce the decay of the dark matter particle at cosmological times. We discuss in this paper the cosmic ray signatures of this scenario and we show that the decay of hidden vector dark matter particles generically produce an intense gamma ray line which could be observed by the Fermi-LAT experiment, if the scale of custodial symmetry breaking is close to the Grand Unification scale. This gamma line proceeds directly from a tree level dark matter 2-body decay in association with a Higgs boson. Within this model we also perform a determination of the relic density constraints taking into account the dark matter annihilation processes with one dark matter particle in the final state. The corresponding direct detection rates can be easily of order the current experimental sensitivities. (orig.)

  13. Intense gamma-ray lines from hidden vector dark matter decay

    Energy Technology Data Exchange (ETDEWEB)

    Arina, Chiara; Hambye, Thomas [Universite Libre de Bruxelles (Belgium). Service de Physique Theorique; Ibarra, Alejandro [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Weniger, Christoph [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-12-15

    Scenarios with hidden, spontaneously broken, non-abelian gauge groups contain a natural dark matter candidate, the hidden vector, whose longevity is due to an accidental custodial symmetry in the renormalizable Lagrangian. Nevertheless, non-renormalizable dimension six operators break the custodial symmetry and induce the decay of the dark matter particle at cosmological times. We discuss in this paper the cosmic ray signatures of this scenario and we show that the decay of hidden vector dark matter particles generically produce an intense gamma ray line which could be observed by the Fermi-LAT experiment, if the scale of custodial symmetry breaking is close to the Grand Unification scale. This gamma line proceeds directly from a tree level dark matter 2-body decay in association with a Higgs boson. Within this model we also perform a determination of the relic density constraints taking into account the dark matter annihilation processes with one dark matter particle in the final state. The corresponding direct detection rates can be easily of order the current experimental sensitivities. (orig.)

  14. Intense gamma-ray lines from hidden vector dark matter decay

    International Nuclear Information System (INIS)

    Arina, Chiara; Hambye, Thomas; Ibarra, Alejandro; Weniger, Christoph

    2010-01-01

    Scenarios with hidden, spontaneously broken, non-abelian gauge groups contain a natural dark matter candidate, the hidden vector, whose longevity is due to an accidental custodial symmetry in the renormalizable Lagrangian. Nevertheless, non-renormalizable dimension six operators break the custodial symmetry and induce the decay of the dark matter particle at cosmological times. We discuss in this paper the cosmic ray signatures of this scenario and we show that the decay of hidden vector dark matter particles generically produce an intense gamma ray line which could be observed by the Fermi-LAT experiment, if the scale of custodial symmetry breaking is close to the Grand Unification scale. This gamma line proceeds directly from a tree level dark matter 2-body decay in association with a Higgs boson. Within this model we also perform a determination of the relic density constraints taking into account the dark matter annihilation processes with one dark matter particle in the final state. The corresponding direct detection rates can be easily of order the current experimental sensitivities

  15. The Hidden Cost of Buying a Computer.

    Science.gov (United States)

    Johnson, Michael

    1983-01-01

    In order to process data in a computer, application software must be either developed or purchased. Costs for modifications of the software package and maintenance are often hidden. The decision to buy or develop software packages should be based upon factors of time and maintenance. (MLF)

  16. Theoretical analysis of hidden photon searches in high-precision experiments

    International Nuclear Information System (INIS)

    Beranek, Tobias

    2014-01-01

    Although the Standard Model of particle physics (SM) provides an extremely successful description of the ordinary matter, one knows from astronomical observations that it accounts only for around 5% of the total energy density of the Universe, whereas around 30% are contributed by the dark matter. Motivated by anomalies in cosmic ray observations and by attempts to solve questions of the SM like the (g-2) μ discrepancy, proposed U(1) extensions of the Standard Model gauge group SU(3) x SU(2) x U(1) have raised attention in recent years. In the considered U(1) extensions a new, light messenger particle γ', the hidden photon, couples to the hidden sector as well as to the electromagnetic current of the SM by kinetic mixing. This allows for a search for this particle in laboratory experiments exploring the electromagnetic interaction. Various experimental programs have been started to search for the γ' boson, such as in electron-scattering experiments, which are a versatile tool to explore various physics phenomena. One approach is the dedicated search in fixed-target experiments at modest energies as performed at MAMI or at JLAB. In these experiments the scattering of an electron beam off a hadronic target e→e(A,Z)l + l - is investigated and a search for a very narrow resonance in the invariant mass distribution of the l + l - pair is performed. This requires an accurate understanding of the theoretical basis of the underlying processes. For this purpose it is demonstrated in the first part of this work, in which way the hidden photon can be motivated from existing puzzles encountered at the precision frontier of the SM. The main part of this thesis deals with the analysis of the theoretical framework for electron scattering fixed-target experiments searching for hidden photons. As a first step, the cross section for the bremsstrahlung emission of hidden photons in such experiments is studied. Based on these results, the applicability of the Weizsaecker

  17. Sterile neutrino, hidden dark matter and their cosmological signatures

    International Nuclear Information System (INIS)

    Das, Subinoy

    2012-01-01

    Though thermal dark matter has been the central idea behind the dark matter candidates, it is highly possible that dark matter of the universe is non-thermal in origin or it might be in thermal contact with some hidden or dark sector but not with standard model. Here we explore the cosmological bounds as well as the signatures on two types of non-thermal dark matter candidates. First we discuss a hidden dark matter with almost no interaction (or very feeble) with standard model particles so that it is not in thermal contact with visible sector but we assume it is thermalized with in a hidden sector due to some interaction. While encompassing the standard cold WIMP scenario, we do not require the freeze-out process to be non-relativistic. Rather, freeze-out may also occur when dark matter particles are semi-relativistic or relativistic. Especially we focus on the warm dark matter scenario in this set up and find the constraints on the warm dark matter mass, cross-section and hidden to visible sector temperature ratio which accounts for the observed dark-matter density, satisfies the Tremaine-Gunn bound on dark-matter phase space density and has a free-streaming length consistent with cosmological constraints on the matter power spectrum. Our method can also be applied to keV sterile neutrino dark matter which is not thermalized with standard model but is thermalized with in a dark sector. The second part of this proceeding focuses on an exotic dark matter candidate which arises from the existence of eV mass sterile neutrino through a late phase transition. Due to existence of a strong scalar force the light sterile states get trapped into stable degenerate micro nuggets. We find that its signature in matter power spectra is close to a warm dark matter candidate.

  18. The Relation between Theory of Justice of John Rawls by Kant\\\\\\'s Ethics and Hegel\\\\\\'s philosophy of Right

    Directory of Open Access Journals (Sweden)

    Asgar Dirbaz

    2011-01-01

    "Theory of justice" due to the boroad variety of social sciences, audience many attracted. Readers of this theory found a wide variety of disciplines ranging from psychology and economic to ethical issues. Selected topic for which it repeatedly Rawls in his book and his theory  named the Kantian and did not name in Hegel, the Hegelian's philosophy of Right theory of the hidden angles of this article will focus on, as well as his abut influence on some views Interpreters

  19. A Hidden Markov Models Approach for Crop Classification: Linking Crop Phenology to Time Series of Multi-Sensor Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Sofia Siachalou

    2015-03-01

    Full Text Available Vegetation monitoring and mapping based on multi-temporal imagery has recently received much attention due to the plethora of medium-high spatial resolution satellites and the improved classification accuracies attained compared to uni-temporal approaches. Efficient image processing strategies are needed to exploit the phenological information present in temporal image sequences and to limit data redundancy and computational complexity. Within this framework, we implement the theory of Hidden Markov Models in crop classification, based on the time-series analysis of phenological states, inferred by a sequence of remote sensing observations. More specifically, we model the dynamics of vegetation over an agricultural area of Greece, characterized by spatio-temporal heterogeneity and small-sized fields, using RapidEye and Landsat ETM+ imagery. In addition, the classification performance of image sequences with variable spatial and temporal characteristics is evaluated and compared. The classification model considering one RapidEye and four pan-sharpened Landsat ETM+ images was found superior, resulting in a conditional kappa from 0.77 to 0.94 per class and an overall accuracy of 89.7%. The results highlight the potential of the method for operational crop mapping in Euro-Mediterranean areas and provide some hints for optimal image acquisition windows regarding major crop types in Greece.

  20. Relativistic theory of gravitation and the graviton rest mass

    International Nuclear Information System (INIS)

    Logunsov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    This paper examines a graviton rest mass (m) introduced in the framework of the relativistic theory of gravitation and obtains equations that describe a massive gravitational field. Under the assumption that the entire hidden mass of the matter in the Universe is due to the existence of a massive gravitational field, an upper bound on the rest mass is obtained: m ≤ 0.64 x 10 --65 g