WorldWideScience

Sample records for hf-82-35-pmpw ultrafiltration membrane

  1. 21 CFR 177.2910 - Ultra-filtration membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultra-filtration membranes. 177.2910 Section 177... Components of Articles Intended for Repeated Use § 177.2910 Ultra-filtration membranes. Ultra-filtration... the processing of food, under the following prescribed conditions; (a)(1) Ultra-filtration...

  2. Large pore size polyacrylonitrile membrane for ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of the components of solution for membrane casting and preparation conditions on the membrane perrormances are studied in this paper. Polyacrylonitrile(PAN) was used as polymer and DMAC as solvent. The ultrafiltration (UF) membranes whose cut-off of molecular weight is 150000 and flux of pure water reaches 150-200 ml/(cm2 ·h) were prepared by selecting proper components of solution for membrane casting and membrane preparation conditions.

  3. Ultrafiltration by gyroid nanoporous polymer membranes

    DEFF Research Database (Denmark)

    Li, Li; Szewczykowski, Piotr Przemyslaw; Clausen, Lydia D.;

    2011-01-01

    Gyroid nanoporous cross-linked 1,2-polybutadiene membranes with uniform pores were developed for ultrafiltration applications. The gyroid porosity has the advantage of isotropic percolation with no need for structure pre-alignment. The effects of solvent and surface photo-hydrophilization on perm......Gyroid nanoporous cross-linked 1,2-polybutadiene membranes with uniform pores were developed for ultrafiltration applications. The gyroid porosity has the advantage of isotropic percolation with no need for structure pre-alignment. The effects of solvent and surface photo...

  4. Microfiltration and Ultrafiltration Membranes for Drinking Water

    Science.gov (United States)

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  5. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios

    2007-01-01

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-mo...... is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects can not be neglected. Therefore stagnant film theory and the osmotic pressure model can describe the dependency between flux and bulk concentration....

  6. SURVEY REGARDING THE ULTRAFILTRATION OF PROTEINES THROUGH MEMBRANE BASED PROCEDURES

    Directory of Open Access Journals (Sweden)

    CAMELIA HODOSAN

    2013-12-01

    Full Text Available This work is based on examples that emphasize the complexity of the proteins ultrafiltration process, pointing out the first 10-15 minutes of ultrafiltration. The knowledgement of the factors that influence the separation through ultrafiltration of proteins will allow to choose the right type of membrane, the frequent use of the same membrane and the operation in mechanical and chemical conditions adequate to the ultrafiltration system, when it is separated a protein with certain molecular weight.

  7. Ceramic Ultrafiltration Membrane from Nanosilica Particles

    Science.gov (United States)

    Wahid, Zarina Abdul; Ramli, Rafindde; Muchtar, Andanastuti; Mohammad, Abd Wahab

    This study attempts to develop asymmetric ceramic membrane filter from nanosilica particles for ultrafiltration (UF) membrane. The alumina tube was used as a support and was coated with SiC which acted as an intermediate layer or microfiltration (MF) layer. The UF membrane was developed using the filtration technique through chemical suspension of the particles. Nanosilica was suspended in HCl acid, iso-propanol and acetone before it was deposited on the alumina tube using a special coating assembly. The membranes were characterised for pore size, thickness and microstructure. This study found that the use of nanoparticles for membrane development could easily control the pore size as well as the thickness of the membrane. The uniformity of the membrane thickness could also be achieved through this filtration technique.

  8. Adsorption of amylase enzyme on ultrafiltration membranes.

    Science.gov (United States)

    Beier, Søren Prip; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios M; Hansen, Ernst B; Jonsson, Gunnar

    2007-08-28

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of amylase-F has been measured on two different ultrafiltration membranes, both with a cutoff value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage and is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms, the maximum static permeability drops and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75%, and the maximum static adsorption resistance is 0.014 m2.h.bar/L. The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23%, and the maximum static adsorption resistance is 0.0046 m2.h.bar/L. The difference in maximum static adsorption, by a factor of around 3, affects the performance during the filtration of a 5 g/L amylase-F solution at 2 bar. The two membranes behave very similarly during filtration with almost equal fluxes and retentions even though the initial water permeability of the PES membrane is around 3 times larger than the initial water permeability of the ETNA10PP membrane. This is mainly attributed to the larger maximum static adsorption of the PES membrane. The permeability drop during filtration exceeds the maximum static permeability drop, indicating that the buildup layer on the membranes during filtration exceeds monolayer coverage, which is also seen by the increase in fouling resistance during filtration. The accumulated layer on the membrane surface can be described as a continually increasing cake-layer thickness, which is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects cannot be neglected. Therefore, stagnant film theory and the osmotic

  9. CROSS-FLOW ULTRAFILTRATION OF SECONDARY EFFLUENTS. MEMBRANE FOULING ANALYSIS

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The application of cross-flow ultrafiltration to regenerate secondary effluents is limited by membrane fouling. This work analyzes the influence of the main operational parameters (transmembrane pressure and cross-flow velocity about the selectivity and fouling observed in an ultrafiltration tubular ceramic membrane. The experimental results have shown a significant retention of the microcolloidal and soluble organic matter (52 – 54% in the membrane. The fouling analysis has defined the critical operational conditions where the fouling resistance is minimized. Such conditions can be described in terms of a dimensionless number known as shear stress number and its relationship with other dimensionless parameter, the fouling number.

  10. FRACTIONATION OF HYDROLYZED MICROCRYSTALLINE CELLULOSE BY ULTRAFILTRATION MEMBRANE

    Directory of Open Access Journals (Sweden)

    NGUYEN HUYNH THAO THY

    2016-01-01

    Full Text Available Bioethanol process using cellulosic materials have been emerging an interesting field with a high potential of replacing petroleum-based fuel, as a future alternative. This work emphasised on improvement of enzymatic hydrolysis of alkaline NaOH-pretreated cellulose by applying an ultrafiltration membrane 10 kDa cutoff in order to minimise sugar inhibition on enzymes, reuse enzyme in hydrolysis and recover sugar for the subsequent fermentation. An improvement in the methodology of the enzymatic hydrolysis with ultrafiltration was made that the membrane was installed at the end of a tube connecting with a peristaltic pump to continuously remove glucose from hydrolysis reaction hence sugar was unable to inhibit enzyme activity and enzyme was retained inside the reactor for the reusing purpose. The combination of NaOH 1M alkaline pretreatment, enzymatic hydrolysis of cellulose with the optimum 3% enzyme dosage, ultrafiltration 10 kDa cutoff was evaluated to obtain the highest sugar concentration at 9 mg/ml after 6 hour hydrolysis. In comparison between hydrolysis with ultrafiltration and hydrolysis without ultrafiltration, the sugar concentration in hydrolysis with ultrafiltration was very much higher than that in hydrolysis without ultrafiltration in all enzyme dosages (1.5%, 3%, 6%. The hydrolysis with filtration produced a time profile in six hours with continuously significant increase in the sugar concentration. Only a small reduction initially for 1.5% dosage and no reduction in sugar concentration in 3% and 6% dosages. Hence the effect of product inhibition in hydrolysis was minimised as a result. In addition, a direct relationship between sugar concentration inside hydrolysis reactor, enzyme dosage and rate of sugar removal was observed during the hydrolysis process. Higher enzyme dosage in hydrolysis required a higher rate of sugar removal sufficiently to avoid inhibition in hydrolysis reaction.

  11. Dynamic modeling of ultrafiltration membranes for whey separation processes

    NARCIS (Netherlands)

    Saltık, M.B.; Özkan, Leyla; Jacobs, Marc; Padt, van der Albert

    2017-01-01

    In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process monitori

  12. NITRATE REMOVAL FROM WATER USING SURFACE-MODIFIED ULTRAFILTRATION MEMBRANES

    OpenAIRE

    Habuda-Stanić, Mirna; Nujić, Marija; Santo, Vera

    2014-01-01

    Elevated nitrate concentrations in natural water sources are a worldwide concern due to the extensive levels of soil N-fertilization. This study investigates three commercially available polyethersulfone (PES) ultrafiltration (UF) membranes with different molecular weight cut-offs (5, 10, and 30 kDa), which we modified with a cationic surfactant, cetylpyridinium chloride to improve their nitrate removal. The nitrate removal efficiency of these membranes was examinated as functions of initial ...

  13. Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth.

    Science.gov (United States)

    Wang, Caixia; Li, Qiang; Tang, Huang; Yan, Daojiang; Zhou, Wei; Xing, Jianmin; Wan, Yinhua

    2012-07-01

    The membrane fouling mechanism was studied in treating succinic acid fermentation broth during dead-end ultrafiltration. Different membranes were used and two models were applied to analyze the fouling mechanism. Resistance-in-series model was applied to determine the main factor that caused the operation resistance. Results indicated that most membranes tended to be fouled by cake layer or concentration polarization. Hermia's model, which is composed of four individual sub-models, was used to analyze the predominant fouling mechanism. Results showed that the fouling of RC 10 kDa and PES 30 kDa was controlled by the complete blocking mechanism, while PES 100 kDa was controlled by the intermediate blocking and PES 10 kDa was controlled by cake layer. This conclusion was also proved by SEM photos. Membrane characteristics were monitored before and after ultrafiltration by AFM and goniometer. Both contact angle and roughness of most membranes increased after ultrafiltration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes.

    Science.gov (United States)

    Sumisha, A; Arthanareeswaran, G; Lukka Thuyavan, Y; Ismail, A F; Chakraborty, S

    2015-11-01

    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.

  15. Fouling mechanism and cleanability of ultrafiltration membranes ...

    African Journals Online (AJOL)

    2015-07-04

    Jul 4, 2015 ... A Hermia model was used to explore the fouling mechanism of the modified membranes. ... (EPS), when they are bound to the flocs, or as soluble microbial products (SMP) ... In this paper, PES membranes with a molecular weight cut-off value .... the model foulant solution was measured using the dynamic.

  16. Fluctuation of Ultrafiltration Coefficient of Hemodialysis Membrane During Reuse

    Science.gov (United States)

    Arif, Idam; Christin

    2010-12-01

    Hemodialysis treatment for patient with kidney failure is to regulate body fluid and to excrete waste products of metabolism. The patient blood and the dialyzing solution (dialysate) are flowed counter currently in a dialyzer to allow volume flux of fluid and diffusion of solutes from the blood to the dialysate through a semipermiable membrane. The volume flux of fluid depends on the hydrostatic and the osmotic pressure difference between the blood and the dialysate. It also depends on the membrane parameter that represents how the membrane allows the fluid and the solutes to move across as a result of the pressure difference, known as the ultrafiltration coefficient Kuf. The coefficient depends on the number and the radius of membrane pores for the movement of the fluids and the solutes across the membrane. The measured membrane ultrafiltration coefficient of reused dialyzer shows fluctuation between one uses to another without any significant trend of change. This indicates that the cleaning process carried out before reuse does not cause perfect removal of clots that happen in the previous use. Therefore the unblocked pores are forced to work hardly to obtain targeted volume flux in a certain time of treatment. This may increase the unblocked pore radius. Reuse is stopped when there is indication of blood leakage during the hemodialysis treatment.

  17. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  18. Low fouling polysulfone ultrafiltration membrane via click chemistry

    KAUST Repository

    Xie, Yihui

    2014-10-13

    Hydrophilic surfaces are known to be less prone to fouling. Ultrafiltration membranes are frequently prepared from rather hydrophobic polymers like polysulfone (PSU). Strategies to keep the good pore forming characteristics of PSU, but with improved hydrophilicity are proposed here. PSU functionalized with 1,2,3-triazole ring substituents containing OH groups was successfully synthesized through click chemistry reaction. The structures of the polymers were confirmed using NMR spectroscopy and Fourier transform infrared spectroscopy (FTIR). High thermal stability (>280°C) was observed by thermal gravimetric analysis. Elemental analysis showed the presence of nitrogen containing triazole group with different degrees of functionalization (23%, 49%, 56%, and 94%). The glass transition temperature shifted with the introduction of triazole pendant groups from 190°C (unmodified) to 171°C. Ultrafiltration membranes were prepared via phase inversion by immersion in different coagulation baths (NMP/water mixtures with volume ratios from 0/100 to 40/60). The morphologies of these membranes were studied by field emission scanning electron microscopy (FESEM). The optimized PSU bearing triazole functions membranes exhibited water permeability up to 187 L m-2 h-1 bar-1, which is 23 times higher than those prepared under the same conditions but with unmodified polysulfone (PSU; 8 L m-2 h-1 bar-1). Results of bovine serum albumin protein rejection test indicated that susceptibility to fouling decreased with the modification, due to the increased hydrophilicity, while keeping high protein rejection ratio (>99%).

  19. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  20. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  1. Reduced fouling of ultrafiltration membranes via surface fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Sedath, R.H.; Yates, S.F.; Li, N.N.

    1993-03-01

    Surface fluorination can affect significantly the performance of an ultrafiltration membrane used to concentrate a food-related stream. Membranes fluorinated and tested as flat sheets exhibit higher initial fluxes, and do not foul as rapidly as untreated membranes. This improvement is linked to increased surface hydrophilicity, as shown in decreased contact angle with water. This increased hydrophilicity, in turn, is linked to the addition of fluorine and oxygen to the surface. The pilot plant study did-not show the difference in membrane flux and fouling observed in the flat sheet study. Instead, fluorinated and unfluorinated modules behaved similarly. Fouling by potato waste feed was severe and resulted in formation of an extensive gel layer within the module on the membrane surface. XPS, SEM and FTIR indicate that buildup of organic material occurred on both fluorinated and unfluorinated membranes, but SEM indicates that a fibrous mat of material was observed only on the nonfluorinated membrane. We conclude that in the pilot study, membrane fouling and gel formation were so extensive that the surface interaction effect was overwhelmed.

  2. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  3. Biodegradation of microcystins during gravity-driven membrane (GDM ultrafiltration.

    Directory of Open Access Journals (Sweden)

    Esther Kohler

    Full Text Available Gravity-driven membrane (GDM ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs. We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L(-1 MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified.

  4. Effect of coagulation pretreatment on the fouling of ultrafiltration membrane

    Institute of Scientific and Technical Information of China (English)

    DONG Bing-zhi; CHEN Yan; GAO Nai-yun; FAN Jin-chu

    2007-01-01

    The purpose of this study is to understand the effect and mechanism of preventing membrane fouling,by coagulation pretreatment,in terms of fractional component and molecular weight of natural organic matter(NOM).A relatively higher molecular weight(MW)of hydrophobic compounds was responsible for a rapid decline in the ultrafiltration flux.Coagulation could effectively remove the hydrophobic organics.resulting in the increase of flux.It was found that a lower MW of neutral hydrophilic compounds,which could remove inadequately by coagulation.was responsible for tlle slow declining flux.The fluxes in the filtration of coagulated water and supematant water were compared and the results showed that a lower MW of neutral hydrophilic compounds remained in the supernatant water after coagulation could be rejected by a membrane,resulting in fouling.It was also found that the coagulated flocs could absorb neutral hydrophilic compounds effectively.Therefore,with the coagulated flocs formed on the membrane surface,the flux decline could be improved.

  5. [Effect of charged ultrafiltration membrane on natural organic matter removal and membrane fouling].

    Science.gov (United States)

    Hou, Juan; Shao, Jia-Hui; He, Yi-Liang

    2010-06-01

    With the deterioration of water pollution and stringency of water standards, ultrafiltration (UF) has become one of the best alternatives replacing conventional drinking water treatment technologies. However, UF is not very effectively to remove natural organic matter (NOM) due to the comparatively large pore size compared to the size of NOM. Fouling issue is another factor that restricts its widespread application. The rejection coefficient and flux decline during ultrafiltration of humic acid (HA) and raw water through neutral unmodified and negatively charge-modified regenerated cellulose (RC) membranes were investigated, and the analysis for membrane resistance was provided. The initial removal rate for HA is 59% and the flux decline is 32% on neutral unmodified RC membrane with MWCO of 100 x 10(3), while the initial removal rate for HA increases to 92% and the flux decline decreases to 25% on negatively charge-modified RC membrane. Compared to neutral unmodified RC membrane, the removal rate for NOM on negatively charge-modified RC membrane increases 20% and the flux decline decreases 12%. Results indicated that charged UF membrane could be an effective way for better removal of NOM and reduction of the membrane fouling due to the electrostatic interaction with the combination effect of membrane pore size.

  6. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-05

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme.

  7. Enzyme stabilization by linear chain polymers in ultrafiltration membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greco, G.; Gianfreda, L.

    1981-10-01

    The experimental results discussed in this article concern pi-nitrophenylphosphate hydrolysis by acid phosphatase in an ultrafiltration membrane reactor. The basic conclusions drawn are : 1) Linking the enzyme to a soluble support does not give rise to an increase in its stability while the chemical manipulations involved result in marked reductions in enzymic activity. 2) Enzyme entrapment within a proteic gel produces a considerable increase in its thermal stability as compared to the diluted native enzyme; this presumably stems from drastic reductions in enzyme mobility. 3) Correspondingly, considerable reductions occur in enzyme activity that depend on substrate mass transfer resistances within the gel layer. 4) Small amounts of linear chain water-soluble synthetic polymers (polyacrylamides) give rise to high macromolecular concentration levels in the reactor region where the enzyme is dynamically immobilized and produce the same enzyme stabilization as gel entrapment. 5) Only minor substrate mass transfer limitations take place in this region and hence enzyme activity is virtually unaffected. 6) Both effects (stabilization and slight activity reduction) seem not to depend strongly on the characteristics of the soluble polymer (molecular weight and ionic character). (Refs. 16).

  8. A survey of structure characterization methods for ultrafiltration and reverse osmosis membranes

    NARCIS (Netherlands)

    Smolders, C.A.; Mulder, M.H.V.; Velden, van der P.M.

    1976-01-01

    Asymmetric membranes consist of a thin skin, which is permselective to certain molecules in solution, and a porous support, serving as a mechanical support layer and also as a transport layer for the permeate. Both in ultrafiltration and in hyperfiltration (reverse osmosis) asymmetric membranes are

  9. A survey of structure characterization methods for ultrafiltration and reverse osmosis membranes

    NARCIS (Netherlands)

    Smolders, C.A.; Mulder, M.H.V.; van der Velden, P.M.

    1976-01-01

    Asymmetric membranes consist of a thin skin, which is permselective to certain molecules in solution, and a porous support, serving as a mechanical support layer and also as a transport layer for the permeate. Both in ultrafiltration and in hyperfiltration (reverse osmosis) asymmetric membranes are

  10. MICROFILTRATION AND ULTRAFILTRATION OF Bacillus thuringiensis FERMENTATION BROTH: MEMBRANE PERFORMANCE AND SPORE-CRYSTAL RECOVERY APPROACHES

    OpenAIRE

    R. Marzban; F. Saberi; M.M.A. Shirazi

    2016-01-01

    Abstract Recovery of spores and crystals from the fermentation broth of Bacillus thuringiensis (Bt) was studied using the membrane separation technology. Four types of polymeric membranes, with different characteristics, in the range of microfiltration (MF) and ultrafiltration (UF) were used for evaluating their permeate flux and spore-crystal recovery capacity. Results indicated that both MF and UF membranes are effective for spore-crystal recovery. The hydrophobic MF membrane made of polyvi...

  11. Drinking water treatment by ultrafiltration membranes; Potabilizacion de aguas mediante membranas de ultrafiltracion

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, J. C.; Moreno, B.; Poyatos, J. M.; Rua, A. de la; Perez, J. J.; Plaza, F.; Garralon, G.; Gomez, M. A.

    2007-07-01

    In this paper the application of ultrafiltration technology as a drinking water treatment was evaluated. For this reason, a pilot scale ultrafiltration module equipped with a flat membrane cassette of polyvinylidene fluoride (PVDF) with an average pore size of 0.05 {mu}m was used. Different types of artificially polluted waters (with urban waste water and soil suspension) were used. the performance of ultrafiltration technology was evaluated by means of different physicochemical and microbiological parameters both feed water and treated water. Bacterial and viral indicators were efficiently retained by the system and the same time organoleptic parameters were improved. However, it is important to emphasize the problems that the ultrafiltration technology has for the eliminate dissolves compounds remaining the most dissolve organic compounds in the feed water. (Author) 11 refs.

  12. [Hydrolyzed lactose contained in the ultrafiltrate of milk or milk products in an enzymatic membrane reactor].

    Science.gov (United States)

    Roger, L; Maubois, J L; Thapon, J L; Brule, G

    1978-01-01

    Milk and milk by-products with a low lactose content, very interesting from a nutritional and technological point of view, were obtained by the application of the enzymatic membrane reactor technique. A previous separation of the aqueous phase of milk or ultrafiltrate was necessary and realized by ultrafiltration. The enzyme, a commercial beta-galactosidase, was maintained in solution in the retentate part of the membrane reactor. The optimal conditions of the lactose hydrolysis in milk and whey ultrafiltrates were determined. The behaviour of the aqueous phase of milk in membrane reactor, specially of mineral salts, was studied. Three possibilities were proposed to avoid a calcium-phosphate deposit on the surface of (and in) the reactor membranes: a precipitation of calcium salts by heating, a partial demineralization by electrodialysis or ion exchange, a calcium complexation by addition of sodium citrate. A continuous process for the lactose hydrolysis of milk and demineralized whey or milk ultrafiltrate was proposed. The organoleptic quality of low lactose milk, before and after heat treatment, was evaluated by a tasting panel. High sweeting syrup, were obtained by concentration of lactose hydrolyzed and demineralized ultrafiltrates. Nutritional aspects of these products are discussed specially from the toxicological point of view of galactose.

  13. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  14. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Hu, Wenhan; Li, Yi [Suzhou Faith & Hope Membrane Technology Co., Ltd., Suzhou, 215000 (China); Li, Xinsong, E-mail: lixs@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2016-11-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  15. Harvesting and Separation Technique of Porphyridium cruentum Polysaccharide Using Ultrafiltration Membrane

    Directory of Open Access Journals (Sweden)

    Hasanah Hasanah

    2016-08-01

    Full Text Available Red microalga Porphyridium cruentum secreting polysaccharides into its medium culture. Harvestingand separation of polysaccharide of P. cruentum usually use centrifugation and in large scale needs highcost. The use of ultrafiltration membrane can be one of the alternatives for harvesting and separation ofP. cruentum polysaccharide. This study aimed to determine the characteristic of membrane and permeatfrom harvesting and separation of P. cruentum polysaccharide using ultrafiltration. Research consisted offour stages : membrane characterization, cultivation of P. cruentum, harvesting using 0.05 μm ultrafiltrationmembrane, and polysaccharide separation using 0.01 μm ultrafiltration membrane. Characterization ofmembrane permeability and internal resistance on ultrafiltration 0.05 μm dan 0.01 μm were 137.32 L/m2hbarand 62.38 L/m2hbar and 0.01 barm2h/L and 0.02 barm2h/L, respectively. Harvesting using ultrafiltration 0.05μm produced flux 131.37-94.75 L/m2h, biomass rejection 96% and permeate with OD (Optical Density (0.01± 0.00, viscosity (2.4 ± 0.17 cp, pH (8 ± 0.00, and salinity (42.37 ± 0.11 ‰. Separation of polysaccharideusing ultrafiltration 0.05 μm produced flux 58.11-51.53 L/m2h and permeate with viscosity (2.2 ± 0.30 cp,pH (7.8 ± 0.01, and salinity (38.73 ± 0.05 ‰. Ultrafiltration process decreased OD, viscosity, and salinityof permeate.

  16. Enhancing the Compatibility, Hydrophilicity and Mechanical Properties of Polysulfone Ultrafiltration Membranes with Lignocellulose Nanofibrils

    Directory of Open Access Journals (Sweden)

    Zhaodong Ding

    2016-10-01

    Full Text Available Lignocellulose nanofibrils (LCN and cellulose nanofibrils (CNF are popular nanometer additives to improve mechanical properties and hydrophilic abilities; moreover, lignocellulose has potential as a natural adhesion promoter in fiber-reinforced composites. LCN and CNF were blended into polysulfone (PSF to prepare ultrafiltration membranes via the phase inversion method. These additives were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy, and the rheological properties such as shear viscosity and non-Newtonian fluid index of the casting solutions were analyzed using a rotational rheometer. The performance of ultrafiltration membranes was characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The pure water flux, bovine serum albumin retention ratio, water contact angle, surface energy, molecular weight cut-off, pore size and mechanical properties were measured. The equilibrium contact angle of water decreased from 63.5° on the PSF membrane to 42.1° on the CNF/PSF membrane and then decreased to 33.9° on the LCN/PSF membrane when the nanometer additives content was 0.8 wt %. The results reveal that LCN and CNF were successfully combined with PSF. Moreover, the combination of LCN/PSF ultrafiltration membranes was more promising than that of CNF/PSF ultrafiltration membranes.

  17. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Science.gov (United States)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-11-01

    In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption related to protein with opposite electric charges. Furthermore, the ultrafiltration performance of the zwitterionic PES membranes was evaluated. The results showed that the modified membranes possessed of enhanced pure water flux, relative flux recovery and mildly lower rejection. The Darcy's Law analysis illustrated that the acidic amino acid grafted PES membranes had much lower permeation

  18. Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites

    Directory of Open Access Journals (Sweden)

    N. N. Sudareva

    2012-03-01

    Full Text Available Poly(phenylene isophtalamide (PA was modified by fullerene C60 using solid-phase method. Novel ultrafiltration membranes based on nanocomposites containing up to 10 wt% of fullerene and carbon black were prepared. Properties of PA/C60 composites in solutions were studied by light scattering and rheological methods. The relationship between characteristics of casting solutions and properties of nanocomposite membranes was studied. Scanning electron microscopy was used for structural characterization of the membranes. It was found that increase in fullerene content in nanocomposite enhances the membrane rigidity. All nanocomposite membranes were tested in dynamic (ultrafiltration and static sorption experiments using a solution of protein mixture, with the purpose of studying protein sorption. The membranes modified by fullerene demonstrate the best values of flux reduced recovery after contact with protein solution. It was found that addition of fullerene C60 to the polymer improves technological parameters of the obtained composite membranes.

  19. Supported mesoporous carbon ultrafiltration membrane and process for making the same

    Science.gov (United States)

    Strano, Michael; Foley, Henry C.; Agarwal, Hans

    2004-04-13

    A novel supported mesoporous carbon ultrafiltration membrane and process for producing the same. The membranes comprise a mesoporous carbon layer that exists both within and external to the porous support. A liquid polymer precursor composition comprising both carbonizing and noncarbonizing templating polymers is deposited on the porous metal support. The coated support is then heated in an inert-gas atmosphere to pyrolyze the polymeric precursor and form a mesoporous carbon layer on and within the support. The pore-size of the membranes is dependent on the molecular weight of the noncarbonizing templating polymer precursor. The mesoporous carbon layer is stable and can withstand high temperatures and exposure to organic chemicals. Additionally, the porous metal support provides excellent strength properties. The composite structure of the membrane provides novel structural properties and allows for increased operating pressures allowing for greater membrane flow rates. The invention also relates to the use of the novel ultrafiltration membrane to separate macromolecules from solution. An example is shown separating bovine serum albumin from water. The membrane functions by separating and by selective adsorption. Because of the membrane's porous metal support, it is well suited to industrial applications. The unique properties of the supported mesoporous carbon membrane also allow the membrane to be used in transient pressure or temperature swing separations processes. Such processes were not previously possible with existing mesoporous membranes. The present invention, however, possesses the requisite physical properties to perform such novel ultrafiltration processes.

  20. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    Science.gov (United States)

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.

  1. Modified PVA-CA blend ultrafiltration membrane by alkali metal chloride

    Institute of Scientific and Technical Information of China (English)

    张启修; 邱运仁

    2003-01-01

    The modified PVA-CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA-CA blend membrane has little change compared with that of the unmodified PVA-CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA-CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA-CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA-CA blend membrane does when the mass fraction of salts is the same.

  2. Ultrafiltration by a compacted clay membrane-II. Sodium ion exclusion at various ionic strengths

    Science.gov (United States)

    Hanshaw, B.B.; Coplen, T.B.

    1973-01-01

    Several recent laboratory studies and field investigations have indicated that shales and compacted clay minerals behave as semipermeable membranes. One of the properties of semipermeable membranes is to retard or prevent the passage of charged ionic species through the membrane pores while allowing relatively free movement of uncharged species. This phenomenon is termed salt filtering, reverse osmosis, or ultrafiltration. This paper shows how one can proceed from the ion exchange capacity of clay minerals and, by means of Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane. Reasonable agreement between theory and laboratory results were found. The concentration of the ultrafiltrate was always greater than predicted because of uncertainty in values of some parameters in the equations. Ultrafiltration phenomena may be responsible for the formation of some subsurface brines and mineral deposits. The effect should also be taken into consideration in any proposal for subsurface waste emplacement in an environment containing large quantities of clay minerals. ?? 1973.

  3. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suryani, Puput Eka [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia); Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Purnama, Herry [Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Susanto, Heru, E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia)

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  4. Ceramic membrane by tape casting and sol-gel coating for microfiltration and ultrafiltration application

    Science.gov (United States)

    Das, Nandini; Maiti, H. S.

    2009-11-01

    Alumina membrane filters in the form of thin (0.3-0.8 mm) discs of 25-30 mm diameter suitable for microfiltration application have been fabricated by tape-casting technique. Further using this microfiltration membrane as substrate, boehmite sol coating was applied on it and ultrafiltration membrane with very small thickness was formed. The pore size of the microfiltration membrane could be varied in the range of 0.1-0.7 μm through optimisation of experimental parameter. In addition, each membrane shows a very narrow pore size distribution. The most important factor, which determines the pore size of the membrane, is the initial particle size and its distribution of the ceramic powder. The top thin ultrafiltration, boehmite layer was prepared by sol-gel method, with a thickness of 0.5 μm. Particle size of the sol was approximately 30-40 nm. The structure and formation of the layer was analysed through TEM. At 550 °C formation of the top layer was completed. The pore size of the ultrafiltration membrane measured from TEM micrograph was almost 10 nm. Results of microbial (Escherichia coli—smallest-sized water-borne bacteria) test confirm the possibility of separation through this membrane

  5. Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance.

    Science.gov (United States)

    Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun

    2017-05-02

    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH)x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.

  6. Preparation and characterization of an antibacterial ultrafiltration membrane with N-chloramine functional groups.

    Science.gov (United States)

    Hou, Shuhua; Dong, Xue; Zhu, Jianhua; Zheng, Jifu; Bi, Weihui; Li, Shenghai; Zhang, Suobo

    2017-06-15

    In this study, a cardo poly(aryl ether ketone) ultrafiltration membrane containing an N-chloramine functional group (PEK-N-Cl membrane) was easily obtained via exposure of a cardo poly(aryl ether ketone) ultrafiltration membrane (PEK-NH membrane) to dilute sodium hypochlorite solution. The chlorination process did not harm membrane performance. In addition, the PEK-N-Cl membrane was stable in both air and water. The PEK-N-Cl membrane exhibited excellent antimicrobial properties against both Gram-negative and Gram-positive bacteria (i.e. E. coli and Bacillus subtilis, respectively). The PEK-N-Cl membrane provided 94.2% and 100% reduction of E. coli and Bacillus subtilis, respectively, within 30min of contact times. Moreover, nearly 100% of the E. coli was killed after 2h during the filtration process for the PEK-N-Cl membrane. In addition, the water flux decreased by 42% for the PEK-N-Cl membrane compared to 77.6% for the PEK-NH membrane after filtration of the E. coli solution and incubation on LB nutrient agar plate, indicating that the PEK-N-Cl membrane enhibits antifouling. Furthermore, the PEK-N-Cl membrane is recyclable via subsequent exposure to a sodium hypochlorite solution.

  7. Micellar-enhanced ultrafiltration membrane (MEUF) of Batik wastewater using Cetylpyridinium chloride surfactant

    Science.gov (United States)

    Aryanti, Nita; Pramudono, Bambang; Prawira, Christ Nadya P.; Renardi, Rheza; Fatikhatul K. Ika, S.

    2015-12-01

    In batik production, reactive dyes such as remazol, indigosol, naphtol and rapid are used in the dying process. Batik wastewater contains high level of reactive dyes, wax and sodium salts and is characterized with high Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) as well as high concentration of phenol and Ammonia. Micellar-Enhanced Ultrafiltration Membrane (MEUF) is one of promising technology to separate low molecular weight substances such as dyes. The MEUF process involves combination of ultrafiltration membrane and surfactant at concentration higher than surfactant's Critical Micelle Concentration (CMC). This technique combines high selectivity of reverse osmosis membrane and high flux of ultrafiltration membrane but with lower pressure. Ultrafiltration of batik waste water without surfactant (UF) and with addition of surfactant (MEUF) were studied in order to compare the performance of both systems. The Batik wastewater were obtained from batik industry in Semarang and Surakarta, Central Java, Indonesia. Cetyl Pyridinium Chloride at concentration of 2 and 4 times of its CMC were used. Flatsheet ultrafiltration membrane was made from Polyethersulphone (12% w/w), N-methyl Pyrrolidone (83% w/w) and Polyethylene Glycol (5% w/w). The performance of the UF and MEUF were evaluated based on flux profiles and rejections (COD, TSS, concentration of Ammonia). The results showed that the MEUF had superior performance than the UF. Concentration of COD, TSS, phenol and ammonia were reduced significantly. The rejection of COD were 92.74% and 94.15%. Moreover, the MEUF was capable to reduce the TSS with the rejection of 86.26% and 65%. The concentration of ammonia in permeate were 0.43 ppm and below 0.01 ppm.

  8. Characterization of a non-fouling ultrafiltration membrane

    DEFF Research Database (Denmark)

    Wei, J.; Helm, G.S.; Corner-Walker, N.

    2006-01-01

    This report describes the properties of surface-modified poly(vinylidene fluoride) (PVDF) membranes. These membranes were created by coating hydrophilic polymers on the support PVDF membrane to reduce the tendency to protein fouling. The modified membranes with different molecular weight cut-off ...

  9. Novel adsorptive ultrafiltration membranes derived from polyvinyltetrazole-co-polyacrylonitrile for Cu(II) ions removal

    KAUST Repository

    Kumar, Mahendra

    2016-05-04

    Novel adsorptive ultrafiltration membranes were manufactured from synthesized polyvinyltetrazole−co−polyacrylonitrile (PVT−co−PAN) by nonsolvent induced phase separation (NIPS). PVT−co−PAN with various degree of functionalization (DF) was synthesized via a [3+2] cycloaddition reaction at 60°C using a commercial PAN. PVT−co−PAN with varied DF was then explored to prepare adsorptive membranes. The membranes were characterized by surface zeta potential and static water contact angle measurements, scanning electron microscopy as well as atomic force microscopy (AFM) techniques. It was shown that PVT segments contributed to alter the pore size, charge and hydrophilic behavior of the membranes. The membranes became more negatively charged and hydrophilic after addition of PVT segments. The PVT segments in the membranes served as the major binding sites for adsorption of Cu(II) ions from aqueous solution. The maximum adsorption of Cu(II) ions by the membranes in static condition and in a continuous ultrafiltration of 10 ppm solution was attained at pH = 5. The adsorption data suggest that the Freundlich isotherm model describes well Cu(II) ions adsorption on the membranes from aqueous solution. The adsorption capacity obtained from the Freundlich isotherm model was 44.3 mg g−1; this value is higher than other membrane adsorption data reported in the literature. Overall, the membranes fabricated from PVT−co−PAN are attractive for efficient removal of heavy metal ions under the optimized conditions.

  10. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials

    KAUST Repository

    Mauter, Meagan S.

    2011-08-24

    Figure Presented: Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes. © 2011 American Chemical Society.

  11. Integrated antimicrobial and antifouling ultrafiltration membrane by surface grafting PEO and N-chloramine functional groups.

    Science.gov (United States)

    Hou, Shuhua; Xing, Jialin; Dong, Xue; Zheng, Jifu; Li, Shenghai

    2017-08-15

    Ultrafiltration membranes with integrated antimicrobial and antifouling properties were fabricated using an engineering thermoplastic (carboxylated cardopoly(aryl ether ketone, PEK-COOH). Different molecular weights of PEO (Mw: 120, 350, 550) were grafted to the PEK-COOH membrane surface via EDC/NHS methodology. N-chloramine modified membranes then were prepared by simple exposure to dilute sodium hypochlorite solution. The surface grafting processes were all performed in water (i.e. without organic solvent). With this surface modification, the hydrophilicity of membranes improved significantly and the pure water flux increased compared to the unmodified PEK-COOH membrane. Furthermore, the PEO and N-chloramine modified membranes were resistant not only to both protein adsorption and bacterial adhesion, but also to microbial proliferation. The results of this work suggest that PEO and N-chloramine modified membranes are promising as fouling-resistant membranes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials.

    Science.gov (United States)

    Mauter, Meagan S; Wang, Yue; Okemgbo, Kaetochi C; Osuji, Chinedum O; Giannelis, Emmanuel P; Elimelech, Menachem

    2011-08-01

    Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes.

  13. Spinning of hollow fiber ultrafiltration membranes from a polymer blend

    NARCIS (Netherlands)

    Wienk, I.M.; Wienk, I.M.; Olde scholtenhuis, F.H.A.; van den Boomgaard, Anthonie; Smolders, C.A.; Smolders, C.A.

    1995-01-01

    In this study the dry-wet spinning technique is used for the preparation of hollow fiber membranes. In the polymer solution a blend of two polymers, poly(ether sulfone) and poly(vinyl pyrrolidone), is used. The morphology of the membranes obtained is related to rheological characteristics and phase

  14. Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes

    Science.gov (United States)

    Liao, Yaozu; Yu, Deng-Guang; Wang, Xia; Chain, Wei; Li, Xin-Gui; Hoek, Eric M. V.; Kaner, Richard B.

    2013-04-01

    Electro-active switchable ultrafiltration membranes are of great interest due to the possibility of external control over permeability, selectivity, anti-fouling and cleaning. Here, we report on hybrid single-walled carbon nanotube (SWCNT)-polyaniline (PANi) nanofibers synthesized by in situ polymerization of aniline in the presence of oxidized SWCNTs. The composite nanofibers exhibit unique morphology of core-shell (SWCNT-PANi) structures with average total diameters of 60 nm with 10 to 30 nm thick PANi coatings. The composite nanofibers are easily dispersed in polar aprotic solvents and cast into asymmetric membranes via a nonsolvent induced phase separation. The hybrid SWCNT-PANi membranes are electrically conductive at neutral pH and exhibit ultrafiltration-like permeability and selectivity when filtering aqueous suspensions of 6 nm diameter bovine serum albumin and 48 nm diameter silica particles. A novel flash welding technique is utilized to tune the morphology, porosity, conductivity, permeability and nanoparticle rejection of the SWCNT-PANi composite ultrafiltration membranes. Upon flash welding, both conductivity and pure water permeability of the membranes improves by nearly a factor of 10, while maintaining silica nanoparticle rejection levels above 90%. Flash welding of SWCNT-PANi composite membranes holds promise for formation of electrochemically tunable membranes.Electro-active switchable ultrafiltration membranes are of great interest due to the possibility of external control over permeability, selectivity, anti-fouling and cleaning. Here, we report on hybrid single-walled carbon nanotube (SWCNT)-polyaniline (PANi) nanofibers synthesized by in situ polymerization of aniline in the presence of oxidized SWCNTs. The composite nanofibers exhibit unique morphology of core-shell (SWCNT-PANi) structures with average total diameters of 60 nm with 10 to 30 nm thick PANi coatings. The composite nanofibers are easily dispersed in polar aprotic solvents and

  15. Pretreatment with ceramic membrane microfiltration in the clarification process of sugarcane juice by ultrafiltration

    Directory of Open Access Journals (Sweden)

    Priscilla dos Santos Gaschi

    2014-04-01

    Full Text Available In the present study, the sugar cane juice from COCAFE Mill, was clarified using tubular ceramic membranes (α-Al2O3/TiO2 with pore size of 0.1 and 0.3 µm, and membrane area of 0.005 m2. Experiments were performed in batch with sugar cane juice, in a pilot unit of micro and ultrafiltration using the principle of tangential filtration. The sugar cane juice was settled for one hour and the supernatant was treated by microfiltration. After that, the MF permeate was ultrafiltered. The experiments of micro and ultrafiltration were carried out at 65ºC and 1 bar. The ceramic membranes were able to remove the colloidal particles, producing a limpid permeated juice with color reduction. The clarification process with micro- followed by ultrafiltration produced a good result with an average purity rise of 2.74 units, 99.4% lower turbidity and 44.8% lighter color in the permeate.

  16. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.

    2017-07-18

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  17. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-03-17

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  18. Physicochemical aspects of polymer selection for ultrafiltration and microfiltration membranes

    NARCIS (Netherlands)

    Cornelissen, E.R.; Boogaard, van den Th.; Strathmann, H.

    1998-01-01

    The concept of additivity of surface tension components has been used to predict the adsorptive fouling tendency of membranes. The calculated value for the free energy of adhesion ΔGLWS is taken as a measure for this fouling tendency. ΔGLWS values can be determined from the surface tension component

  19. A new spinning technique for hollow fiber ultrafiltration membranes

    NARCIS (Netherlands)

    Wienk, I.M.; Wienk, I.M.; Teunis, Hermannus A.; van den Boomgaard, Anthonie; Smolders, C.A.; Smolders, C.A.

    1993-01-01

    A new spinning technique for hollow fiber membranes with a densified outer toplayer has been developed in our laboratory. This technique makes use of a new type of spinneret having three concentric orifices. Apart from polymer solution and bore liquid as applied in classical spinnerets a third liqui

  20. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    Science.gov (United States)

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  2. Preparation and properties of metal-PVA composite hydrophilic ultrafiltration membranes

    Institute of Scientific and Technical Information of China (English)

    邱运仁; 张启修

    2003-01-01

    Metal-polyvinyl alcohol(PVA) composite ultrafiltration membranes were prepared by coating a certain concentration of PVA solution on metallic fiber sintered membranes. The effects of preparation conditions, such as the coating solution concentration, sequence and times of coating, and heat-treatment on the properties of the composite membranes were studied. The results show that the hole diameter of the composite membrane decreases with the increase of the concentration of PVA, the hole diameter of composite membrane is different when the sequence of coating is different. When the higher concentration of PVA solution is used to coat the metallic membrane for the first time and the other smaller one for the second time, the hole diameter of the composite membrane is relatively small, compared with that of the composite membrane made by the smaller concentration of PVA solution for the first time and the other higher one for the second time. The holes of the composite membrane contract and the stability of the membrane is improved by heat treatment. When metal-PVA composite hydrophilic membranes are used to treat the oil/water emulsion with the concentration of 1 000 mg@ L -1, the retention is from 80% to 90%, and the permeate flux is from 15 L @ m-2 @ h-1 to 40 L @ m-2 @ h-1 at pressure of 0.2 to 0.3 MPa.

  3. Performance of Hollow Fiber Ultrafiltration Membranes in the Clarification of Blood Orange Juice

    Directory of Open Access Journals (Sweden)

    Carmela Conidi

    2015-12-01

    Full Text Available The clarification of blood orange juice by ultrafiltration (UF was investigated by using three hollow fiber membrane modules characterized by different membrane materials (polysulfone (PS and polyacrylonitrile (PAN and molecular weight cut-off (MWCO (50 and 100 kDa. The performance of selected membranes was investigated in terms of productivity and selectivity towards total anthocyanin content (TAC, total phenolic content (TPC, and total antioxidant activity (TAA. All selected membranes allowed a good preservation of antioxidant compounds; however, the most suitable membrane for the clarification of the juice was found to be the PS 100 kDa membrane. In optimized operating conditions this membrane exhibited steady-state fluxes of 7.12 L/m2h, higher than those measured for other investigated membranes. Rejections towards TPC and TAA were of the order of 17.5% and 15%, respectively. These values were lower than those determined for PS 50 kDa and PAN 50 kDa membranes. In addition, the PS 100 kDa membrane exhibited a lower rejection (7.3% towards TAC when compared to the PS 50 kDa membrane (9.2%.

  4. Polypropylene Track Membranes for Mikro and Ultrafiltration of Chemically Aggressive Agents

    CERN Document Server

    Kravets, L I; Apel, P Yu

    2000-01-01

    A production process for track membranes on the basis of chemically resistant polymer polypropylene has been developed. Research in all stages of the formation of the polypropylene track membranes has been conducted: the main principles of the process of chemical etching of polypropylene irradiated with accelerated ions have been investigated, the most effective structure of the etchant for a selective etching of the heavy ion tracks has been selected, the parameters of etching have been optimized. A method for sensibilization of latent tracks in polypropylene by effect of solvents has been developed. It helps to reach a significant increase in etching selectivity. A method for destruction of an absorbed chromocontaining layer on the surface of polypropylene track membranes formed during etching has been elaborated. Experimental samples of the membranes for micro and ultrafiltration have been obtained and their properties have been studied in course of their exploitation in chemically aggressive agents. For t...

  5. Operation Characteristics of Treating Surface Water with Polyvinylchloride Hollow Fiber Ultrafiltration Membrane

    Institute of Scientific and Technical Information of China (English)

    GUO Xiaoyan; ZHANG Zhenjia; FANG Lin; SU Liguo

    2006-01-01

    A pilot plant study on a polyvinylchloride hollow fiber ultrafiltration membrane process was conducted for treating surface water.The membrane system was operated in the dead-end filtration mode under different constant permeate fluxes.The results show that the optimized operation ( transmembrane pressure≤0.1 Mpa,filtration time≤30 min) with a hydraulic cleaning (30 s) and a chemical cleaning (30 min,the chemical cleaning was performed after 16 cycles of filtration ) en ures a quite steady flux (1 100 L/(m2·h · Mpa)) and good permeate quality (turbidity <0.1NTU ).A full-scale plant can be suggested to operate with a mixed strategy of constant permeate flux mode (transmembrane pressure ≤0.1 Mpa) and constant transmembrane pressure mode.When the temperature of raw water becomes below 5 ℃,a constant transmembrane pressure mode should be used; otherwise a constant permeate flux mode (transmembrane pressure ≤ 0.1 Mpa) can be operated.In this way,irreversible fouling of ultrafiltration membrane can be minimized to keep a stable flux and make the life of membrane longer.

  6. Fouling and cleaning characteristics of ultrafiltration of hydrophobic dissolved organic matter by a polyvinyl chloride hollow fiber membrane.

    Science.gov (United States)

    Guo, Xiaoyan; Gao, Wei; Li, Jihui; Hu, Wanli

    2009-06-01

    Ultrafiltration membrane fouling is a significant problem in drinking water treatment. Many researchers believe that hydrophobic natural organic matter is the main foulant. In this research, fulvic acid, tannin, and aniline were used to represent hydrophobic acid, neutral, and base, respectively, to investigate modified polyvinyl chloride ultrafiltration membrane fouling characteristics. Four kinds of cleaning methods were used in this study: flushing, backwashing, flushing and backwashing, and chemical cleaning with 0.5% sodium hydroxide. Each was performed on the three hydrophobic dissolved organic matters (acid, neutral, and base) to identify the fouling mechanisms of polyvinyl chloride ultrafiltration membrane. Results showed that hydrophobic base fouled membranes the most and hydrophobic acid the least based on cleaning difficulty.

  7. Effect of gamma-ray irradiation at low doses on the performance of PES ultrafiltration membrane

    Science.gov (United States)

    Zhang, Xue; Niu, Lixia; Li, Fuzhi; Yu, Suping; Zhao, Xuan; Hu, Hongying

    2016-10-01

    The influence of gamma irradiation on the performance of polyether sulfone (PES) ultrafiltration (UF) membrane was investigated at low absorbed doses (0-75 kGy) using a cobalt source. The performance of the UF membranes was tested using low level radioactive wastewater (LLRW) containing three types of surfactants (anionic, cationic and nonionic surfactants). The physical and chemical properties of membrane surface were analyzed, and relationships between these properties and separation performance and fouling characteristics were determined. At 10-75 kGy irradiation, there were no significant changes observed in the membrane surface roughness or polymer functional groups, however the contact angle decreased sharply from 92° to ca. 70° at irradiation levels as low as 10 kGy. When membranes were exposed to the surfactant-containing LLRW, the flux decreased more sharply for higher dosed irradiated membranes, while flux in virgin membranes increased during the filtration processes. The study highlights that fouling properties of membrane may be changed due to the changes of surface hydrophilicity at low dose irradiation, while other surface properties and retentions remain stable. Therefore, a membrane fouling test with real or simulated wastewater is recommended to fully evaluate the membrane irradiation resistance.

  8. Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes

    KAUST Repository

    Hoek, Eric M.V.

    2011-12-01

    Herein we report on the formation and characterization of mixed-matrix ultrafiltration (UF) membranes hand-cast by nonsolvent induced phase inversion. We evaluated nanometer-to-micrometer sized inorganic fillers (silver, copper, silica, zeolite, and silver-zeolite) materials with polysulfone (PSf) as the polymeric dispersing matrix. In general, mixed-matrix membranes were rougher, more hydrophilic, and more mechanically robust. Only sub-micron zeolite-PSf mixed-matrix membranes exhibited simultaneous improvements in water permeability and solute selectivity; all other mixed-matrix membranes were more permeable, but less selective due to defects associated with poor polymer-filler binding. Protein and bacterial fouling resistance of mixed-matrix membranes containing silver, zeolite, and silver-zeolite nanoparticles were compared to a low-fouling, poly(acrylonitrile) (PAN) UF membrane. Zeolite and silver containing membranes exhibited better protein fouling resistance (due to higher hydrophilicity), whereas silver and silver-zeolite based membranes produce better bacterial fouling resistance due to antimicrobial properties. Overall, zeolite-PSf and silver exchanged zeolite-PSf membranes offered the best combination of improved permeability, selectivity, and fouling resistance - superior to the commercial PAN membrane. © 2011 Elsevier B.V.

  9. Photochemical modification of poly(ether sulfone) ultrafiltration membranes by UV-assisted graft polymerization for the prevention of biofouling

    Science.gov (United States)

    Pieracci, John Paul

    Membranes are widely used by the biotechnology industry in the separation and recovery of proteins from biological solutions. Fouling of membrane surfaces by irreversible protein adsorption during ultrafiltration causes loss of membrane permeability and can reduce membrane selectivity and lead to significant product loss through denaturation. In this work, low fouling poly(ether sulfone) (PES) ultrafiltration membranes were produced by ultraviolet (UV) assisted graft polymerization of hydrophilic vinyl monomers using a newly developed photochemical dip modification technique. This technique was developed to make the UV modification process more easily adaptable to continuous membrane manufacturing processes. A method was also developed to measure and track the degree of polymer grafting on the membrane surface using attenuated total reflection Fourier transform infrared spectroscopy (FTIR/ATR). Grafting the hydrophilic monomer N-vinyl-2-pyrrolidinone (NVP) onto the membrane surface increased surface wettability and produced membranes with the high wettability of regenerated cellulose membranes. The enhanced surface wettability significantly decreased irreversible adsorptive fouling during the filtration of the protein bovine serum albumin (BSA). In order to maintain the rejection of BSA after modification, PES chain scission was tightly controlled by regulating the UV wavelength range and the light intensity used. The UV reactor system was operated with 300 nm UV lamps and a benzene filter used to remove high energy wavelengths below 275 nm that were determined to cause severe loss of BSA rejection due to pore enlargement from extensive chain scission. Dip modification caused membrane permeability to decrease due to the grafted chains blocking the membrane pores. The use of a chain transfer agent during modification followed by ethanol cleaning increased modified membrane permeability, but BSA rejection was severely decreased. The resultant membranes produced by

  10. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties.

    Science.gov (United States)

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-02-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation.

  11. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties

    Science.gov (United States)

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-01-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation. PMID:26166926

  12. Improving Anti-Protein-Fouling Property of Polyacrylonitrile Ultrafiltration Membrane by Grafting Sulfobetaine Zwitterions

    Directory of Open Access Journals (Sweden)

    Hong Meng

    2014-01-01

    Full Text Available Zwitterions show great superiority in the field of polymer membrane surface functionalization, as the synthesis process is simple, the adaptability of functional groups is strong, and zwitterions with strong hydration capacity in aqueous solutions can inhibit protein adsorption. In this study, a polyacrylonitrile ultrafiltration membrane was modified to improve anti-protein-fouling capacity by grafting short-chain sulfonic type zwitterions. 3-Dimethylaminopropylamine was first grafted onto hydrolyzed polyacrylonitrile (PAN membrane by the activation of 1-(3-dimethylaminopropyl-3-ethylcarbodiimide hydrochloride (EDC. Subsequently, sulfobetaine zwitterions emerged on the membrane surface by quaternization of 1,3-propane sultone. The sulfobetaine zwitterionic membranes were analyzed for surface chemical composition, hydrophilic properties, and surface and cross-sectional structure of the membrane, by a combination of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle measurement, and scanning electron microscopy. Static protein adsorption and dynamic filtration experiments were undertaken to show that the modified membrane had excellent resistance to protein adsorption. It was found that the molecular weight cutoff of the substrate membrane had great influence on the flux recovery rate of the modified membrane.

  13. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  14. Chemical cleaning of fouled PVC membrane during ultrafiltration of algal-rich water

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Jiayu Tian; Heng Liang; Jun Nan; Zhonglin Chen; Guibai Li

    2011-01-01

    Cleaning of hollow-fibre polyvinyl chloride (PVC) membrane with different chemical reagents after ultrafiltration of algal-rich water was investigated. Among the tested cleaning reagents (NaOH, HCl, EDTA, and NaClO), 100 mg/L NaClO exhibited the best performance (88.4% ± 1.1%) in removing the irreversible fouling resistance. This might be attributed to the fact that NaClO could eliminate almost all the major foulants such as carbohydrate-like and protein-like materials on the membrane surface, as confirmed by Fourier transform infrared spectroscopy analysis. However, negligible irreversible resistance (1.5% ± 1.0%) was obtained when the membrane was cleaning by 500 mg/L NaOH for 1.0 hr, although the NaOH solution could also desorb a portion of the major foulants from the fouled PVC membrane. Scanning electronic microscopy and atomic force microscopy analyses demonstrated that 500 mg/L NaOH could change the structure of the residual foulants on the membrane, making them more tightly attached to the membrane surface. This phenomenon might be responsible for the negligible membrane permeability restoration after NaOH cleaning. On the other hand, the microscopic analyses reflected that NaClO could effectively remove the foulants accumulated on the membrane surface.

  15. ULTRAFILTRATION MEMBRANE FORMATION OF PES-C, PES AND PPESK POLYMERS WITH DIFFERENT SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    Wei-na Sun; Cui-xian Chen; Ji-ding Li; Yang-zheng Lin

    2009-01-01

    Ultrafiltration membranes were prepared using phenolphthalein polyarylethersulfone (PES-C),polyethersulfone (PES) and poly(phthalazinone ether sulfone ketone) (PPESK) as polymers and NMP,DMAc,DMF and DMSO as solvents by immersion precipitation via phase inversion.Experimental data of thermodynamic properties of the polymer solutions and kinetic process of membrane formation were reported.For polymer solutions with good solvents,the sequence of the viscous flow activation energy (Eη) was coincident with that of the viscosity (η),without depending on the dissolving power of the solvents (characterized by intrinsic viscosity ([η]).The cloud point of the dilute polymer solutions was related to [η] of the polymer and gave a strong influence on the gelation rate in membrane formation process.The pure water flux (J) and the bovine serum albumin (BSA) rejection (R) of PES-C,PES and PPESK membranes were measured,the pure water flux (J) of membranes significantly depended on the gelation rate.The open porosity (OP) and the maximum pore size of membrane surface were calculated,and the relationship between membrane performance and membrane pore structure was discussed.

  16. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation

    Science.gov (United States)

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel. J. D.

    2016-07-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores.

  17. Enhancement and Mitigation Mechanisms of Protein Fouling of Ultrafiltration Membranes under Different Ionic Strengths.

    Science.gov (United States)

    Miao, Rui; Wang, Lei; Mi, Na; Gao, Zhe; Liu, Tingting; Lv, Yongtao; Wang, Xudong; Meng, Xiaorong; Yang, Yongzhe

    2015-06-02

    To determine further the enhancement and mitigation mechanisms of protein fouling, filtration experiments were carried out with polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and bovine serum albumin (BSA) over a range of ionic strengths. The interaction forces, the adsorption behavior of BSA on the membrane surface, and the structure of the BSA adsorbed layers at corresponding ionic strengths were investigated. Results indicate that when the ionic strength increased from 0 to 1 mM, there was a decrease in the PVDF-BSA and BSA-BSA electrostatic repulsion forces, resulting in a higher deposition rate of BSA onto the membrane surface, and the formation of a denser BSA layer; consequently, membrane fouling was enhanced. However, at ionic strengths of 10 and 100 mM, membrane fouling and the BSA removal rate decreased significantly. This was mainly due to the increased hydration repulsion forces, which caused a decrease in the PVDF-BSA and BSA-BSA interaction forces accompanied by a decreased hydrodynamic radius and increased diffusion coefficient of BSA. Consequently, BSA passed more easily through the membrane and into permeate. There was less accumulation of BSA on the membrane surface. A more nonrigid and open structure BSA layer was formed on the membrane surface.

  18. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  19. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching.

    Science.gov (United States)

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-08-06

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.

  20. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching

    Directory of Open Access Journals (Sweden)

    Muhammad Usama Siddiqui

    2016-08-01

    Full Text Available We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.

  1. MICROFILTRATION AND ULTRAFILTRATION OF Bacillus thuringiensis FERMENTATION BROTH: MEMBRANE PERFORMANCE AND SPORE-CRYSTAL RECOVERY APPROACHES

    Directory of Open Access Journals (Sweden)

    R. Marzban

    Full Text Available Abstract Recovery of spores and crystals from the fermentation broth of Bacillus thuringiensis (Bt was studied using the membrane separation technology. Four types of polymeric membranes, with different characteristics, in the range of microfiltration (MF and ultrafiltration (UF were used for evaluating their permeate flux and spore-crystal recovery capacity. Results indicated that both MF and UF membranes are effective for spore-crystal recovery. The hydrophobic MF membrane made of polyvinylidene fluoride (PVDF achieved a better performance compared to the one made with hydrophilic cellulose acetate (CA. Both had a 0.22 µm pore size, under the condition of an upper range of feed pressure. Also, with the increase of the feed flow rate, a higher flux was achieved for the PVDF membrane. A UF membrane made of polyethersulfone (PES polymer was also used effectively for spore/crystal recovery from the broth, but under a higher operating pressure. In the entire experiment, a 99.9% rejection factor was measured with the applied membranes for the spore/crystal in the fermentation broth.

  2. Synthesis of Nanostructured Anatase Mesoporous Membranes with Photocatalytic and Separation Capabilities for Water Ultrafiltration Process

    Directory of Open Access Journals (Sweden)

    Vahideh Tajer-Kajinebaf

    2013-01-01

    Full Text Available In this work, the nanostructured anatase mesoporous membranes were prepared for water ultrafiltration (UF process with photocatalytic and physical separation capabilities. A macroporous substrate was synthesized from α-Al2O3, then a colloidal titania sol was used for the preparation of the intermediate layer. Also, the membrane top layer was synthesized by deposition and calcination of titania polymeric sol on the intermediate layer. The characterization was performed by DLS, TG-DTA, XRD, BET, FESEM, TEM, and AFM techniques. Also, the filtration experiments were carried out based on separation of methyl orange from aqueous solution by a membrane setup with a dead-end filtration cell. Photocatalytic activity of the membranes was evaluated by methyl orange photodegradation using UV-visible spectrophotometer. The mean particle size of the colloidal and polymeric sols was 14 and 1.5 nm, respectively. The anatase membranes exhibited homogeneity, with the surface area of 32.8 m2/g, the mean pore size of 8.17 nm, and the crystallite size of 9.6 nm. The methyl orange removal efficiency by the mesoporous membrane based on physical separation was determined to be 52% that was improved up to 83% by a coupling photocatalytic technique. Thus, the UF membrane showed a high potential due to its multifunctional capability for water purification applications.

  3. Enhanced Wettability and Transport Control of Ultrafiltration and Reverse Osmosis Membranes with Grafted Polyelectrolytes.

    Science.gov (United States)

    Gao, Kai; Kearney, Logan T; Wang, Ruocun; Howarter, John A

    2015-11-11

    End-functionalized poly(acrylic acid) (PAA-silane) was synthesized with reversible addition-fragmentation chain-transfer (RAFT) polymerization and attached to both polysulfone ultrafiltration (UF) and polyamide reverse osmosis (RO) membranes through a nonimpairing, one-step grafting to approach in order to improve membrane surface wettability with minimal impact on membrane transport performance. After PAA grafting, composition and morphology changes on the membrane surface were characterized with Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Static contact angle on PAA grafted membranes exhibited an increase in surface hydrophilicity and hence a potential enhancement in antifouling performance. The native contact angle on the polysulfone membrane systems was 86° and was reduced to 24° after modification, while the polyamide film contact angle decreased from 58° to 25°. The PAA layer endowed the porous UF membrane with dynamic control over the permeability and selectivity through the manipulation of the solution pH. The UF membrane with a 35 nm average pore size displayed a 115% increase in flux when the contact solution was changed from pH 11 to pH 3. This effect was diminished to 70% and 32% as the average pore size decreased to 20 and 10 nm, respectively. Modified RO membranes displayed no reduction in membrane performance indicating that the underlying materials were unaffected by the modification environment or added polymer. Model polyamide and polysulfone surfaces were reacted with the PAA-silane inside a quartz crystal microbalance (QCM) to help inform the deposition behavior for the respective membrane chemistries.

  4. Carbon dioxide nucleation as a novel cleaning method for ultrafiltration membranes

    KAUST Repository

    Al Ghamdi, Mohanned

    2016-12-08

    The use of low-pressure membranes, mainly ultrafiltration (UF), has emerged in the last decade and began to show acceptance as a novel pretreatment process for seawater reverse osmosis (SWRO) desalination. This is mainly due to the superior water quality provided by these membranes, in addition to reduction in chemicals consumption compared to conventional methods. However, membrane fouling remains the main drawback of this technology. Therefore, frequent cleaning of these membranes is required to maintain water flux and its quality. Usually, after a series of backwash using UF permeate chemical cleaning is required under some conditions to fully recover the operating flux. Frequent chemical cleaning will probably decrease the life time of the membrane, increase costs, and will have some effects on the environment. The new cleaning method proposed in this study consists of using a solution saturated with carbon dioxide (CO2) to clean UF membranes. Under the drop in pressure, this solution will become in a supersaturated state and bubbles will start to nucleate on the surface of the membrane and its pores from this solution resulting in the removal of the fouling material deposited on the membrane. Different compositions of fouling solutions including the use of organic compounds such as sodium alginate and colloidal 5 silica with different concentrations were studied using synthetic seawater with different concentrations. This cleaning method was then compared to the backwash using Milli-Q water and showed an improved performance compared to it. An operational modification to this cleaning technique was then investigated which includs a series of sudden pressure drop during the backwash process. This enhanced technique showed an even better performance in cleaning the membrane, especially at severe fouling conditions. In most cases, the membrane permeability was fully recovered even at harsh conditions where conventional backwash failed to maintain a stable

  5. Experimental and computational investigation of polyacrylonitrile ultrafiltration membrane for industrial oily wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Adib Hooman; Hassanajili, Shadi; Sheikhi-Kouhsar, Mohammad Reza [Shiraz University, Shiraz (Iran, Islamic Republic of); Salahi, Abdolhamid; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)

    2015-01-15

    An experimental study on separation of industrial oil from oily wastewater has been done. A polyacrylonitrile membrane with a molecular weight cut-off (MWCO) of 20 kDa was used and an outlet wastewater of API unit of Tehran refinery was employed. The main purpose of this study was to develop a support vector machine model for permeation flux decline and fouling resistance in a cross-flow hydrophilic polyacrylonitrile membrane during ultrafiltration. The operating conditions which have been applied to develop a support vector machine model were transmembrane pressure (TMP), operating temperature, cross flow velocity (CFV), pH values of oily wastewater, permeation flux decline and fouling resistance. The testing results obtained by the support vector machine models are in very good agreement with experimental data. The calculated squared correlation coefficients for permeation flux decline and fouling resistance were both 0.99. Based on the results, the support vector machine proved to be a reliable accurate estimation method.

  6. Ultrafiltration membranes from waste polyethylene terephthalate and additives: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Smitha Rajesh

    2014-01-01

    Full Text Available The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET and polyvinylpyrrolidone (PVP is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP, molecular weight cut-off (MWCO, and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.

  7. Preparation and characterization of thermally stable copoly(phthalazinone biphenyl ether sulfone) hollow fiber ultrafiltration membranes

    Science.gov (United States)

    Liu, Peng; Zhang, Shouhai; Wang, Yutian; Lu, Yan; Jian, Xigao

    2015-04-01

    Novel thermally stable copoly(phthalazinone biphenyl ether sulfone) (PPBES) hollow fiber ultrafiltration (UF) membranes were successfully fabricated by the dry/wet phase inversion technique. The effects of polymer dope formulation (i.e., the PPBES concentration, different types and contents of additives) and fiber spinning conditions (i.e., air gap distance, coagulation bath temperature) on the morphologies and separation performance of PPBES hollow fiber UF membranes were investigated, respectively. It was found that the water flux of hollow fiber membrane decreased with the increase of PPBES concentration or EGME content in casting solution, while the rejection of PEG increased. However, the PPBES hollow fiber UF prepared with LiCl as inorganic small molecule additive exhibited different phenomena. In addition, the decrease of air gap distance or the increase of coagulation bath temperature could improve the water flux of UF membrane while reduce the rejection of PEG. Moreover, the thermal stability of the PPBES hollow fiber UF membranes was investigated. The water flux of PPBES membrane increased dramatically from 155 to 428 L m-2 h-1 without significant decrease of rejection when the temperature of feed solution increased from 20 °C to 95 °C.

  8. Study to determine the technical and economic feasibility of reclaiming chemicals used in micellar polymer and low tension surfactant flooding. Final report. [Ultrafiltration membranes and reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.

    1978-02-01

    Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.

  9. Membrane foulants and fouling mechanisms in microfiltration and ultrafiltration of an activated sludge effluent.

    Science.gov (United States)

    Nguyen, S T; Roddick, F A; Harris, J L

    2010-01-01

    Membrane fouling in microfiltration (MF) and ultrafiltration (UF) of an activated sludge (AS) effluent was investigated. It was found that the major membrane foulants were polysaccharides, proteins, polysaccharide-like and protein-like materials and humic substances. MF fouling by the raw effluent was governed by pore adsorption of particles smaller than the pores during the first 30 minutes of filtration and then followed the cake filtration model. UF fouling could be described by the cake filtration model throughout the course of filtration. Coagulation with alum and (poly)aluminium chlorohydrate (ACH) altered the MF fouling mechanism to follow the cake filtration model from the beginning of filtration. The MF and UF flux improvement by coagulation was due to the removal of some of the foulants in the raw AS effluent by the coagulants. The MF flux improvement was greater for alum than for ACH whereas the two coagulants performed equally well in UF. Coagulation also reduced hydraulically irreversible fouling on the membranes and this effect was more prominent in MF than in UF. The unified membrane fouling index (UMFI) was used to quantitatively evaluate the effectiveness of coagulation on membrane flux enhancement.

  10. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide.

    Science.gov (United States)

    Zhao, Yuanyuan; Lu, Jiaqi; Liu, Xuyang; Wang, Yudan; Lin, Jiuyang; Peng, Na; Li, Jingchun; Zhao, Fangbo

    2016-10-15

    A novel polyvinyl chloride (PVC) membrane was modified with graphene oxide (GO) via phase inversion method to improve its hydrophilicity and mechanical properties. The GO presented a large amount of hydrophilic groups after the modification through the modified Hummers method. It was observed that with the addition of low fraction of GO powder, the GO/PVC hybrid membranes exhibited a significant enhancement in hydrophilicity, water flux, and mechanical properties. With optimal dosage (0.1wt%), the pure water flux of GO/PVC membrane increased from 232.6L/(m(2)hbar) to 430.0L/(m(2)hbar) and the tensile strength increased from 231.3cN to 305.3cN. The improved properties of the PVC/GO hybrid membranes are mainly attributed to the strong hydrophilicity of functional groups on the GO surface, indicating that GO has a promising candidate for modification of PVC ultrafiltration membranes in wastewater treatment.

  11. Porous membrane ultrafiltration-A novel method for enrichment of the active compounds from micro-plasma samples

    Science.gov (United States)

    Liu, Qingshan; Yin, Xiaoying; Sha, Biying; You, Jingjing

    2014-10-01

    To enrich the active compounds from plasma samples, a novel and simple method has been developed using a porous membrane envelope based on the ultrafiltration technique combining with high-performance liquid chromatography. The ultrafiltration device is a sealed porous membrane envelope prepared with a polypropylene sheet to effectively separate the active small molecules and large biomolecules, and a sample carrier is held inside the envelope to load plasma samples. The enrichment of hyperoside and isoquercitrin from rat plasma was used as an example. Significant factors of this method, such as membrane types, the desorption solvent, and the desorption time were optimized for the ultrafiltration method. Under the optimal conditions, correlation coefficients of 0.999 and 0.998 were obtained for hyperoside and isoquercitrin, respectively, with a linear range between 0.5 and 100 μg/mL. The absolute extraction recoveries from 83.2% to 86.8% were achieved. The detection limits of the method for hyperoside and isoquercitrin were 0.22 and 0.20 μg/mL, respectively. Compared with protein precipitation, solid-phase extraction and commercial ultrafiltration membrane methods, our proposed method demonstrates lower detection limits and lower cost for extraction. Also, it consumes less plasma samples and is found to be applicable to biological samples.

  12. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water.

    Science.gov (United States)

    Pastrana-Martínez, Luisa M; Morales-Torres, Sergio; Figueiredo, José L; Faria, Joaquim L; Silva, Adrián M T

    2015-06-15

    Flat sheet ultrafiltration (UF) membranes with photocatalytic properties were prepared with lab-made TiO2 and graphene oxide-TiO2 (GOT), and also with a reference TiO2 photocatalyst from Evonik (P25). These membranes were tested in continuous operation mode for the degradation and mineralization of a pharmaceutical compound, diphenhydramine (DP), and an organic dye, methyl orange (MO), under both near-UV/Vis and visible light irradiation. The effect of NaCl was investigated considering simulated brackish water (NaCl 0.5 g L(-1)) and simulated seawater (NaCl 35 g L(-1)). The results indicated that the membranes prepared with the GOT composite (M-GOT) exhibited the highest photocatalytic activity, outperforming those prepared with bare TiO2 (M-TiO2) and P25 (M-P25), both inactive under visible light illumination. The best performance of M-GOT may be due to the lower band-gap energy (2.9 eV) of GOT. In general, the permeate flux was also higher for M-GOT probably due to a combined effect of its highest photocatalytic activity, highest hydrophilicity (contact angles of 11°, 17° and 18° for M-GOT, M-TiO2 and M-P25, respectively) and higher porosity (71%). The presence of NaCl had a detrimental effect on the efficiency of the membranes, since chloride anions can act as hole and hydroxyl radical scavengers, but it did not affect the catalytic stability of these membranes. A hierarchically ordered membrane was also prepared by intercalating a freestanding GO membrane in the structure of the M-GOT membrane (M-GO/GOT). The results showed considerably higher pollutant removal in darkness and good photocatalytic activity under near-UV/Vis and visible light irradiation in continuous mode experiments.

  13. Lactic acid recovery from cheese whey fermentation broth using combined ultrafiltration and nanofiltration membranes.

    Science.gov (United States)

    Li, Yebo; Shahbazi, Abolghasem

    2006-01-01

    The separation of lactic acid from lactose in the ultrafiltration permeate of cheese whey broth was studied using a cross-flow nanofiltration membrane unit. Experiments to test lactic acid recovery were conducted at three levels of pressure (1.4, 2.1, and 2.8 MPa), two levels of initial lactic acid concentration (18.6 and 27 g/L), and two types of nanofiltration membranes (DS-5DK and DS-5HL). Higher pressure caused significantly higher permeate flux and higher lactose and lactic acid retention (p < 0.0001). Higher initial lactic acid concentrations also caused significantly higher permeate flux, but significantly lower lactose and lactic acid retention (p < 0.0001). The two tested membranes demonstrated significant differences on the permeate flux and lactose and lactic acid retention. Membrane DS-5DK was found to retain 100% of lactose at an initial lactic acid concentration of 18.6 g/L for all the tested pressures, and had a retention level of 99.5% of lactose at initial lactic acid concentration of 27 g/L when the pressure reached 2.8 MPa. For all the tests when lactose retention reached 99-100%, as much as 64% of the lactic acid could be recovered in the permeate.

  14. Pre-treatment of industrial wastewater polluted with lead using adsorbents and ultrafiltration or microfiltration membranes.

    Science.gov (United States)

    Katsou, Evina; Malamis, Simos; Haralambous, Katherine

    2011-04-01

    This work investigated the use of ultrafiltration (UF) or microfiltration (MF) membranes combined with natural minerals for the pre-treatment of wastewater containing high amounts of lead. The effects of initial lead concentration, solution pH, membrane pore size, mineral type and concentration and mineral - metal contact time were investigated. Lead removal accomplished by the UF system was higher in wastewater compared to that obtained in aqueous solutions and this was attributed to the formation of insoluble metal precipitates/complexes, which were effectively retained by the membranes. At pH = 6 the dominant removal mechanism was precipitation/complexation, while mineral adsorption enhanced lead removal. The combined use of minerals and UF/MF membranes can effectively remove lead from wastewater resulting in a final effluent that can be further treated biologically with no biomass inhibition problems or can be safely discharged into municipal sewers. Kinetics investigation revealed a two-stage diffusion process for all minerals employed. The Langmuir isotherm exhibited the best fit to the experimental data.

  15. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation.

    Science.gov (United States)

    Secondes, Mona Freda N; Naddeo, Vincenzo; Belgiorno, Vincenzo; Ballesteros, Florencio

    2014-01-15

    Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs.

  16. A STUDY OF BRACKISH WATER MEMBRANE WITH ULTRAFILTRATION PRETREATMENT IN INDONESIA´S COASTAL AREA

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-01-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30--61 L/m2·hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF--PS (Polysulfone-UF with total dissolved solid rejection about 96--98% and color rejection about 99--100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF--air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  17. A study of brackish water membrane with ultrafiltration pretreatment in Indonesia’s coastal area

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-06-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30–61 L/m2∙hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF–PS (Polysulfone-UF with total dissolved solid rejection about 96–98% and color rejection about 99–100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF–air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  18. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes

    KAUST Repository

    Yoon, Jaekyung

    2009-09-01

    Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L-1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m-1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and ClO4 - rejection follows the order LFC-1 (>90%) > MX07 (25-95%) ≅ ESNA (30-90%) > GM (3-47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and ClO4 - rejection follows the order CaCl2 < KCl ≅ K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding NO3 - (71-74%) than the ESNA NF membrane (11-56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (CrO4 2 -, SO4 2 -, and HAsSO4 2 -) the rejection (38-56%) is fairly proportional to the ri,s/rp ratio (0.32-0.62) for the ESNA

  19. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  20. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chien-Hwa [Department of Civil and Environment Engineering, Nanya Institute of Technology, Taoyuan, Taiwan (China); Fang, Lung-Chen; Lateef, Shaik Khaja [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wu, Chung-Hsin, E-mail: chunghsinwu@yahoo.com.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China); Lin, Cheng-Fang [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-15

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including {alpha}-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  1. Covalent Immobilization of Lipase on Poly ( acrylonitrile-co-maleic acid) Ultrafiltration Hollow Fiber Membrane

    Institute of Scientific and Technical Information of China (English)

    YE Peng; XU Zhi-kang; WU Jian; DENG Hong-tao; SETA Patrick

    2005-01-01

    Lipase from Candida rugosa was covalently immobilized on the surface of an ultrafiltration hollow fiber membrane fabricated from poly (acrylonitrile-co-maleic acid) (PANCMA) in which the carboxyl groups were activated with 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) and dicyclohexyl carbodiimide (DCC)/N-hydroxyl succinimide(NHS), respectively. The properties of the immobilized lipase were assayed and compared with those of the free enzyme. The maximum activities were observed in a relatively broader pH value range at high temperatures for the immobilized lipase compared to the free one. It was also found that the thermal and pH stabilities of lipase were improved upon immobilization and at 50 ℃ the thermal inactivation rate constant values are 2.1×10-2 for the free lipase, 3.2×10-3 for the immobilized lipase on the EDC-activated PANCMA membrane and 3.5×10-3 for the immobilized lipase on the DCC/NHS-activated PANCMA membrane, respectively.

  2. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    Science.gov (United States)

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes 3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders.

  3. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing

    2012-12-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  4. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME

    Directory of Open Access Journals (Sweden)

    Wong Pui Wah

    2002-11-01

    Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

  5. Evaluation of novel large cut-off ultrafiltration membranes for adenovirus serotype 5 (Ad5 concentration.

    Directory of Open Access Journals (Sweden)

    Piergiuseppe Nestola

    Full Text Available The purification of virus particles and viral vectors for vaccine and gene therapy applications is gaining increasing importance in order to deliver a fast, efficient, and reliable production process. Ultrafiltration (UF is a widely employed unit operation in bioprocessing and its use is present in several steps of the downstream purification train of biopharmaceuticals. However, to date few studies have thoroughly investigated the performance of several membrane materials and cut-offs for virus concentration/diafiltration. The present study aimed at developing a novel class of UF cassettes for virus concentration/diafiltration. A detailed study was conducted to evaluate the effects of (i membrane materials, namely polyethersulfone (PES, regenerated cellulose (RC, and highly cross-linked RC (xRC, (ii nominal cut-off, and (iii UF device geometry at different production scales. The results indicate that the xRC cassettes with a cut-off of approximately 500 kDa are able to achieve a 10-fold concentration factor with 100% recovery of particles with a process time twice as fast as that of a commercially available hollow fiber. DNA and host cell protein clearances, as well as hydraulic permeability and fouling behavior, were also assessed.

  6. Evaluation of novel large cut-off ultrafiltration membranes for adenovirus serotype 5 (Ad5) concentration.

    Science.gov (United States)

    Nestola, Piergiuseppe; Martins, Duarte L; Peixoto, Cristina; Roederstein, Susanne; Schleuss, Tobias; Alves, Paula M; Mota, José P B; Carrondo, Manuel J T

    2014-01-01

    The purification of virus particles and viral vectors for vaccine and gene therapy applications is gaining increasing importance in order to deliver a fast, efficient, and reliable production process. Ultrafiltration (UF) is a widely employed unit operation in bioprocessing and its use is present in several steps of the downstream purification train of biopharmaceuticals. However, to date few studies have thoroughly investigated the performance of several membrane materials and cut-offs for virus concentration/diafiltration. The present study aimed at developing a novel class of UF cassettes for virus concentration/diafiltration. A detailed study was conducted to evaluate the effects of (i) membrane materials, namely polyethersulfone (PES), regenerated cellulose (RC), and highly cross-linked RC (xRC), (ii) nominal cut-off, and (iii) UF device geometry at different production scales. The results indicate that the xRC cassettes with a cut-off of approximately 500 kDa are able to achieve a 10-fold concentration factor with 100% recovery of particles with a process time twice as fast as that of a commercially available hollow fiber. DNA and host cell protein clearances, as well as hydraulic permeability and fouling behavior, were also assessed.

  7. Influence of hydrophobic/hydrophilic fractions of extracellular organic matters of Microcystis aeruginosa on ultrafiltration membrane fouling.

    Science.gov (United States)

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Tan, Chaoqun; Zhu, Mingqiu

    2014-02-01

    Fouling is a major obstacle to maintain the efficiency of ultrafiltration-based drinking water treatment process. Algal extracellular organic matters (EOMs) are currently considered as one of the major sources of membrane fouling. The objective of this study was to investigate the influence of different hydrophobic/hydrophilic fractions of EOM extracted from Microcystis aeruginosa on ultrafiltration membrane fouling at lab scale. The experimental data indicated that EOM exhibited similar flux decline trends on polyethersulfone (PES) and regenerated cellulose (RC) membranes but caused greater irreversible fouling on PES membrane than RC membrane due to its hydrophobic property. It was also observed that charged hydrophilic (CHPI) and neutral hydrophilic (NHPI) fractions caused greater flux decline over hydrophobic (HPO) and transphilic (TPI) fractions. For PES membrane, the order of the irreversible fouling potentials for the four fractions was HPO>TPI>CHPI>NHPI, while the irreversible fouling potentials of RC membrane were tiny and could be ignored. Fluorescence excitation-emission matrix (EEM) spectra and Fourier transform infrared (FTIR) spectra suggested that protein-like, polysaccharide-like and humic-like substances were the major components responsible for membrane fouling. The results also indicated that the irreversible fouling increased as the pH decreased. The addition of calcium to feed solutions led to more severe flux decline and irreversible fouling.

  8. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    Science.gov (United States)

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO{sub 2}-HNTs nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangyong [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); He, Yi, E-mail: heyi@swpu.edu.cn [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Yu, Zongxue; Zhan, Yingqing; Ma, Lan [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Zhang, Lei, E-mail: zgc166929@sohu.com [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2016-05-15

    Highlights: • A novel TiO{sub 2}-HNTs/PVDF ultrafiltration membrane was prepared. • TiO{sub 2} dispersed well in membrane matrix by loading on the surface of HNTs. • The hydrophilicity of membrane was improved with the addition of TiO{sub 2}-HNTs. • TiO{sub 2}-HNTs/PVDF membranes showed good antifouling performance. - Abstract: Novel polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared by blending with different contents of titanium dioxide-halloysite nanotubes (TiO{sub 2}-HNTs) composites into the PVDF matrix. The effects of TiO{sub 2}-HNTs content on the membrane performances, such as hydrophilicity, rejection ratio and antifouling properties were investigated in detail. X-ray diffraction (XRD), thermo-gravimetric analyzer (TGA) and scanning electron microscope (SEM) analyses showed that TiO{sub 2} was loaded on the surface of HNTs successfully and homogeneously by sol-gel method. The morphologies and microstructure of the membranes were characterized by SEM and atomic force microscopy (AFM). The contact angle (CA) tests indicated that the hydrophilicity of membranes was significantly increased with the addition of TiO{sub 2}-HNTs. The pure water flux of 3%TiO{sub 2}-HNTs/PVDF was increased by 264.8% and 35.6%, respectively, compared with pure PVDF membrane and 3%TiO{sub 2}/PVDF membrane, although the rejection of bovine serum albumin (BSA) was slightly decreased. More importantly, TiO{sub 2}-HNTs/PVDF membrane exhibited an excellent anti-fouling performance, which was attributed to the hydrophobic contaminants being resisted by hydrophilic nanoparticles. It can be expected that this work may provide some references to solve the dispersion of nanoparticle in the membrane and improve the anti-fouling performance of membrane in the field of wastewater treatment.

  10. Fouling characterization and control for harvesting microalgae Arthrospira (Spirulina) maxima using a submerged, disc-type ultrafiltration membrane.

    Science.gov (United States)

    Kanchanatip, Ekkachai; Su, Bo-Rung; Tulaphol, Sattrawut; Den, Walter; Grisdanurak, Nurak; Kuo, Chi-Chang

    2016-06-01

    This study characterized the fouling of a novel circular-disc ultrafiltration membrane in a submerged bioreactor system to harvest Arthrospira maxima cells. Flux-stepping study showed that the value of critical flux was below the smallest flux tested at 28.8lm(-2)h(-1), and that the membrane was to operate above the critical flux to sustain the necessary rate of cell concentration. The membrane with similar pore size but greater pore density experienced not only lesser degree of total resistance, but also possessed smaller fraction of irreversible resistance. Membrane fouling was mainly attributed to fragmented cells rather than to soluble or extracellular polymeric substances. Furthermore, flux recovery studies demonstrated that membrane relaxation and surface cleaning could partially recover fluxes for both low (6gl(-1)) and high (40gl(-1)) cell densities, whereas backwashing could fully recover fluxes. Calculation of energy consumption and cell harvesting productivity also favoured membrane filtration with backwashing.

  11. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal.

    Science.gov (United States)

    Montaña, M; Camacho, A; Serrano, I; Devesa, R; Matia, L; Vallés, I

    2013-11-01

    A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Organic micro-pollutants’ removal via anaerobic membrane bioreactor with ultrafiltration and nanofiltration

    KAUST Repository

    Wei, Chun Hai

    2015-12-15

    The removal of 15 organic micro-pollutants (OMPs) in synthetic municipal wastewater was investigated in a laboratory-scale mesophilic anaerobic membrane bioreactor (AnMBR) using ultrafiltration and AnMBR followed by nanofiltration (NF), where powdered activated carbon (PAC) was added to enhance OMPs removal. No significant effects of OMPs spiking and NF connection on bulk organics removal and biogas production were observed. Amitriptyline, diphenhydramine, fluoxetine, sulfamethoxazole, TDCPP and trimethoprim showed readily biodegradable characteristics with consistent biological removal over 80%. Atrazine, carbamazepine, DEET, Dilantin, primidone and TCEP showed refractory characteristics with biological removal below 40%. Acetaminophen, atenolol and caffeine showed a prolonged adaption time of around 45 d, with initial biological removal below 40% and up to 50-80% after this period. Most readily biodegradable OMPs contained a strong electron donating group. Most refractory OMPs contained a strong electron withdrawing group or a halogen substitute. NF showed consistent high rejection of 80-92% with an average of 87% for all OMPs, which resulted in higher OMPs removal in AnMBR-NF than in AnMBR alone, especially for refractory OMPs. Limited sorption performance of PAC for OMPs removal was mainly due to low and batch dosage (100 mg/L) as well as the competitive sorption caused by bulk organics.

  13. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Secondes, Mona Freda N. [Environmental Engineering Graduate Program, Department of Chemical Engineering, University of the Philippines – Diliman, Quezon City (Philippines); Naddeo, Vincenzo, E-mail: vnaddeo@unisa.it [Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano 84084 (Saudi Arabia) (Italy); Belgiorno, Vincenzo [Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano 84084 (Saudi Arabia) (Italy); Ballesteros, Florencio [Environmental Engineering Graduate Program, Department of Chemical Engineering, University of the Philippines – Diliman, Quezon City (Philippines)

    2014-01-15

    Highlights: • Above 99% of the emerging contaminants were removed in the USAMe process. • Influence of PAC dose and US frequency on removal is studied. • Improved performance is due to PAC adsorption enhancement and sonolytic degradation. • US irradiation improved efficiency and delayed declines in the removal of contaminants. • Performance of the hybrid process is better under lower frequency ultrasound irradiation. -- Abstract: Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs.

  14. High-flux Thin-film Nanofibrous Composite Ultrafiltration Membranes Containing Cellulose Barrier Layer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H.; Yoon, K; Rong, L; Mao, Y; Mo, Z; Fang, D; Hollander, Z; Gaiteri, J; Hsiao , B; Chu, B

    2010-01-01

    A novel class of thin-film nanofibrous composite (TFNC) membrane consisting of a cellulose barrier layer, a nanofibrous mid-layer scaffold, and a melt-blown non-woven substrate was successfully fabricated and tested as an ultrafiltration (UF) filter to separate an emulsified oil and water mixture, a model bilge water for on-board ship bilge water purification. Two ionic liquids: 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate, were chosen as the solvent to dissolve cellulose under mild conditions. The regenerated cellulose barrier layer exhibited less crystallinity (determined by wide-angle X-ray diffraction, WAXD) than the original cotton linter pulps, but good thermal stability (determined by thermal gravimetric analysis, TGA). The morphology, water permeation, and mechanical stability of the chosen TFNCmembranes were thoroughly investigated. The results indicated that the polyacrylonitrile (PAN) nanofibrous scaffold was partially imbedded in the cellulose barrier layer, which enhanced the mechanical strength of the top barrier layer. The permeation flux of the cellulose-based TFNCmembrane was significantly higher (e.g. 10x) than comparable commercial UFmembranes (PAN10 and PAN400, Sepro) with similar rejection ratios for separation of oil/water emulsions. The molecular weight cut-off (MWCO) of TFNC membranes with cellulose barrier layer was evaluated using dextran feed solutions. The rejection was found to be higher than 90% with a dextran molecular weight of 2000 KDa, implying that the nominal pore size of the membrane was less than 50 nm. High permeation flux was also observed in the filtration of an emulsified oil/water mixture as well as of a sodium alginate aqueous solution, while high rejection ratio (above 99.5%) was maintained after prolonged operation. A variation of the barrier layer thickness could dramatically affect the permeation flux and the rejection ratio of the TFNCmembranes, while different sources of cellulose

  15. Ultrafiltration performance of PVDF, PES, and cellulose membranes for the treatment of coconut water (Cocos nucifera L.

    Directory of Open Access Journals (Sweden)

    Isabel Cristina do Nascimento Debien

    2013-12-01

    Full Text Available Ultrafiltration (UF inhibits the enzymatic activity which is responsible for color changes of coconut water without the need for heat treatment. In the present study, UF performance in terms of the permeate flux and enzymatic retention of the coconut water was evaluated at laboratory unit (LU and pilot unit (PU. The membranes studied were polyethersulfone 150 kDa (UP150, polyvinylidene fluoride 150 kDa (UV150 and cellulose 30 kDa (UC030. The UP150 membrane showed the best permeate flux. The UC030 membrane showed the lowest flux, but it resulted in 100% enzymatic retention, while the other membranes showed enzymatic retentions between 71 and 85%. The application of the UC030 in the pilot unit (PU resulted in a flux value higher than that obtained in the LU due to the tangential velocity effect. The UC030 membrane has proved adequate for industrial applications.

  16. Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes

    DEFF Research Database (Denmark)

    Gringer, Nina; Hosseini, Seyed Vali; Svendsen, Tore;

    2015-01-01

    on recovery of high value biomolecules such as proteins, fatty acids, minerals, and phenolic compounds. Chemical and biological oxygen demand (COD, BOD5) as well as total suspended solids (TSS) were also measured to follow the performance of the ultrafiltration. The retentates contained 75-82% (95% TSS...... that ceramic ultrafiltration can recover biomolecules from marinated herring brines although pre-filtration optimization is still needed....

  17. Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism

    Institute of Scientific and Technical Information of China (English)

    WANG Jin; WANG Xiao-chang

    2006-01-01

    Experimental and theoretical analysis were made on the natural humic acid removal and the membrane fouling of ultrafiltration (UF) with in-line coagulation. The results showed dissolved organic carbon (DOC) and UV254 removals by the UF with in-line coagulation at pH 7 were increased from 28% to 53% and 40% to 78% in comparison with direct UF treatment respectively. At the same time, the analysis of high performance liquid chromatography showed that UF with coagulation had significant improvement of removal of humic acid with molecular weights less than 6000 Da in particular. Compared to direct UF, the in-line coagulation UF also kept more constant permeate flux and very slight increase of transmembrane pressure during a filtration circle.Two typical membrane fouling models were used by inducing two coefficients Kc and Kp corresponding to cake filtration model and pore narrowing model respectively. It was found that membrane fouling by pore-narrowing effect was effectively alleviated and that by cake-filtration was much decreased by in-line coagulation. Under the condition of coagulation prior to ultrafiltration at pH 7,the cake layer formed on the membrane surface became thicker, but the membrane filtration resistance was lower than that at pH 5 with the extension of operation time.

  18. PREPARATION AND PERFORMANCE STUDIES ON POLYETHERSULFONE ULTRAFILTRATION MEMBRANES MODIFIED WITH GELATIN FOR TREATMENT OF TANNERY AND DISTILLERY WASTEWATER

    Directory of Open Access Journals (Sweden)

    S. Velu

    2015-03-01

    Full Text Available Abstract In this study polyethersulfone ultrafiltration membrane were prepared with the modifier gelatin at 0, 5, 10, 15 and 20 wt % using DMF as solvent by phase inversion process. Morphologies and characteristics of the membranes were investigated through the methods of SEM, XRD, contact angle measurements. The performance of the modified membrane for the treatment of leather and distillery wastewater through a deadend ultrafiltration process was studied. Morphological investigation showed that the 10% gelatin content in 90% PES results in a two layer structure with a porous top and homogeneous sub-layer with uniform number of pores on the surface. The pure water flux of the modified membrane increases with gelatin concentration, which results in better permeation for both leather and distillery wastewater. In addition to 80-90% reduction in BOD and COD, all modified PES UF membranes showed moderate removal of total suspended and dissolved solids, chlorides, sulphate, oil and grease, potassium, sodium and ammonical nitrogen, apart from color removal.

  19. Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes

    Science.gov (United States)

    Madaeni, S. S.; Ghaemi, N.; Alizadeh, A.; Joshaghani, M.

    2011-05-01

    Fouling is one of the most present prominent problems in almost all membrane processes. An increase in the membrane hydrophilicity is one of the effective ways to improve the membrane resistance to fouling. In this research, TiO 2 nanoparticles were deposited on the surface of composite ultrafiltration (UF) membrane, and then irradiated by ultraviolet (UV) light. The coating of the membrane surface with TiO 2 nanoparticles and radiation with (UV) light led to the considerable increase of hydrophilicity on the membrane surface. The deposition of TiO 2 nanoparticles was carried out through coordinance bonds with OH functional groups of the polymer on the membrane surface. The flux through a coated and (UV) light radiated membrane was increased to a large extent compared to a virgin membrane. In this research, the effect of different concentrations of TiO 2 nanoparticles in the presence and absence of (UV) irradiation was investigated, and the role of increasing of hydrophilicity on the anti-fouling property of membranes was studied. In order to characterize the membranes FTIR, XRD, SEM, water contact angle and cross-flow filtration were employed. This procedure is a useful technique for improvement of hydrophilicity to decrease (increase) fouling (anti-fouling performance) and enhance the permeation of membranes.

  20. Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Madaeni, S.S., E-mail: smadaeni@yahoo.com [Membrane Research Center, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Ghaemi, N. [Membrane Research Center, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Alizadeh, A. [Nanoscience and Nanotechnology Research Centre (NNRC), Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Joshaghani, M. [Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2011-05-01

    Fouling is one of the most present prominent problems in almost all membrane processes. An increase in the membrane hydrophilicity is one of the effective ways to improve the membrane resistance to fouling. In this research, TiO{sub 2} nanoparticles were deposited on the surface of composite ultrafiltration (UF) membrane, and then irradiated by ultraviolet (UV) light. The coating of the membrane surface with TiO{sub 2} nanoparticles and radiation with (UV) light led to the considerable increase of hydrophilicity on the membrane surface. The deposition of TiO{sub 2} nanoparticles was carried out through coordinance bonds with OH functional groups of the polymer on the membrane surface. The flux through a coated and (UV) light radiated membrane was increased to a large extent compared to a virgin membrane. In this research, the effect of different concentrations of TiO{sub 2} nanoparticles in the presence and absence of (UV) irradiation was investigated, and the role of increasing of hydrophilicity on the anti-fouling property of membranes was studied. In order to characterize the membranes FTIR, XRD, SEM, water contact angle and cross-flow filtration were employed. This procedure is a useful technique for improvement of hydrophilicity to decrease (increase) fouling (anti-fouling performance) and enhance the permeation of membranes.

  1. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Ahmad, E-mail: ahmadrahimpour@yahoo.com [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Membrane Research Center, Department of Chemical Engineering, Razi University, Kermanshah (Iran, Islamic Republic of); Jahanshahi, Mohsen [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Mansourpanah, Yaghoub [Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad (Iran, Islamic Republic of); Mortazavian, Narmin [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2009-08-30

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  2. Development of a High Performance PES Ultrafiltration Hollow Fiber Membrane for Oily Wastewater Treatment Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Noor Adila Aluwi Shakir

    2015-12-01

    Full Text Available This study attempts to optimize the spinning process used for fabricating hollow fiber membranes using the response surface methodology (RSM. The spinning factors considered for the experimental design are the dope extrusion rate (DER, air gap length (AGL, coagulation bath temperature (CBT, bore fluid ratio (BFR, and post-treatment time (PT whilst the response investigated is rejection. The optimal spinning conditions promising the high rejection performance of polyethersulfone (PES ultrafiltration hollow fiber membranes for oily wastewater treatment are at the dope extrusion rate of 2.13 cm3/min, air gap length of 0 cm, coagulation bath temperature of 30 °C, and bore fluid ratio (NMP/H2O of 0.01/99.99 wt %. This study will ultimately enable the membrane fabricators to produce high-performance membranes that contribute towards the availability of a more sustainable water supply system.

  3. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiaojing [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology 150001 (China); Research Institute of Aerospace Special Materials and Technology, Beijing 100074 (China); Wang, Zhenxing; Quan, Shuai; Xu, Yanchao; Jiang, Zaixing [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology 150001 (China); Shao, Lu, E-mail: odysseynus@hotmail.com [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology 150001 (China)

    2014-10-15

    Graphical abstract: - Highlights: • The synergetic effects of GO and PVP on membrane performance were investigated. • The surface hydrophilicity of membrane was enhanced by the synergistic effects. • The anti-fouling performance was obviously improved in PVDF/GO/PVP membrane. • The optimized performance can be obtained at the stipulated GO and PVP contents. - Abstract: Membrane surface and cross-sectional morphology created during membrane formation is one of the most essential factors determining membrane separation performance. However, the complicated interactions between added nanoparticles and additives influencing membrane morphology and performance during building membrane architectures had been generally neglected. In this study, asymmetric PVDF composite ultrafiltration (UF) membranes containing graphene oxides (GO) were prepared by using N-methyl pyrrolidone (NMP) as solvent and polyvinylpyrrodione (PVP) as the pore forming reagent. In the first time, the effects of mutual interactions between GO and PVP on membranes surface compositions, morphology and performance were investigated in detail. The variation in chemical properties of different membranes and hydrogen bonds in the membrane containing GO and PVP were confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle (CA) were utilized to clarify the synergetic effects of GO and PVP on morphologies and surface hydrophilicity of membranes. Besides, water flux, bovine serum albumin (BSA) rejection and attenuate coefficient were also determined to investigate filtration performance of various membranes. Compared with pure PVDF membrane, the comprehensive performance of PVDF/GO/PVP membrane has been obviously improved. The surface hydrophilicity and anti-fouling performance were enhanced by the synergistic effects of incorporated GO and

  4. Unbound fraction of fluconazole and linezolid in human plasma as determined by ultrafiltration: Impact of membrane type.

    Science.gov (United States)

    Kratzer, Alexander; Kees, Frieder; Dorn, Christoph

    2016-12-15

    Ultrafiltration is a rapid and convenient method to determine the free concentrations of drugs in plasma. Several ultrafiltration devices based on Eppendorf cups are commercially available, but are not validated for such use by the manufacturer. Plasma pH, temperature and relative centrifugal force as well as membrane type can influence the results. In the present work, we developed an ultrafiltration method in order to determine the free concentrations of linezolid or fluconazole, both neutral and moderately lipophilic antiinfective drugs for parenteral as well as oral administration, in plasma of patients. Whereas both substances behaved relatively insensitive in human plasma regarding variations in pH (7.0-8.5), temperature (5-37°C) or relative centrifugal force (1000-10.000xg), losses of linezolid were observed with the Nanosep Omega device due to adsorption onto the polyethersulfone membrane (unbound fraction 75% at 100mg/L and 45% at 0.1mg/L, respectively). No losses were observed with Vivacon which is equipped with a membrane of regenerated cellulose. With fluconazole no differences between Nanosep and Vivacon were observed. Applying standard conditions (pH 7.4/37°C/1000xg/20min), the mean unbound fraction of linezolid in pooled plasma from healthy volunteers was 81.5±2.8% using Vivacon, that of fluconazole was 87.9±3.5% using Nanosep or 89.4±3.3% using Vivacon. The unbound fraction of linezolid was 85.4±3.7% in plasma samples from surgical patients and 92.1±6.2% in ICU patients, respectively. The unbound fraction of fluconazole was 93.9±3.3% in plasma samples from ICU patients.

  5. Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method.

    Science.gov (United States)

    Hua, Helin; Li, Na; Wu, Linlin; Zhong, Hui; Wu, Guangxial; Yuan, Zonghuan; Lin, Xiangwei; Tang, Lianyi

    2008-01-01

    Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV (Ultraviolet-visible) irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact angle on the membrane surface decreases with the increase of methyl acrylate graft degree, which indicated that the hydrophilicity of graft copolymer membranes was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copolymer membranes.

  6. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO2-HNTs nanocomposites

    Science.gov (United States)

    Zeng, Guangyong; He, Yi; Yu, Zongxue; Zhan, Yingqing; Ma, Lan; Zhang, Lei

    2016-05-01

    Novel polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared by blending with different contents of titanium dioxide-halloysite nanotubes (TiO2-HNTs) composites into the PVDF matrix. The effects of TiO2-HNTs content on the membrane performances, such as hydrophilicity, rejection ratio and antifouling properties were investigated in detail. X-ray diffraction (XRD), thermo-gravimetric analyzer (TGA) and scanning electron microscope (SEM) analyses showed that TiO2 was loaded on the surface of HNTs successfully and homogeneously by sol-gel method. The morphologies and microstructure of the membranes were characterized by SEM and atomic force microscopy (AFM). The contact angle (CA) tests indicated that the hydrophilicity of membranes was significantly increased with the addition of TiO2-HNTs. The pure water flux of 3%TiO2-HNTs/PVDF was increased by 264.8% and 35.6%, respectively, compared with pure PVDF membrane and 3%TiO2/PVDF membrane, although the rejection of bovine serum albumin (BSA) was slightly decreased. More importantly, TiO2-HNTs/PVDF membrane exhibited an excellent anti-fouling performance, which was attributed to the hydrophobic contaminants being resisted by hydrophilic nanoparticles. It can be expected that this work may provide some references to solve the dispersion of nanoparticle in the membrane and improve the anti-fouling performance of membrane in the field of wastewater treatment.

  7. Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres

    CSIR Research Space (South Africa)

    Mokhena, Teboho C

    2017-07-01

    Full Text Available of Cleaner Production Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibers Teboho Clement Mokhena a, b, Adriaan Stephanus Luyt c, * a CSIR Materials Science and Manufacturing... stream_source_info Mokhena_2017_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 1910 Content-Encoding ISO-8859-1 stream_name Mokhena_2017_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Journal...

  8. Using an improved 1D boundary layer model with CFD for flux prediction in gas-sparged tubular membrane ultrafiltration.

    Science.gov (United States)

    Smith, R; Taha, T; Cui, Z F

    2005-01-01

    Tubular membrane ultrafiltration and microfiltration are important industrial separation and concentration processes. Process optimisation requires reduction of membrane build-up. Gas slug introduction has been shown to be a useful approach for flux enhancement. However, process quantification is required for design and optimisation. In this work we employ a non-porous wall CFD model to quantify hydrodynamics in the two-phase slug flow process. Mass transfer is subsequently quantified from wall shear stress, which was determined from the CFD. The mass transfer model is an improved one-dimensional boundary layer model, which empirically incorporates effects of wall suction and analytically includes edge effects for circular conduits. Predicted shear stress profiles are in agreement with experimental results and flux estimates prove more reliable than that from previous models. Previous models ignored suction effects and employed less rigorous fluid property inclusion, which ultimately led to under-predictive flux estimates. The presented model offers reliable process design and optimisation criteria for gas-sparged tubular membrane ultrafiltration.

  9. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors

    KAUST Repository

    Liang, Shuai

    2014-08-01

    This study systematically investigates the organic fouling behavior of a superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membrane functionalized via post-fabrication tethering of surface-tailored silica nanoparticles to poly(methacrylic acid)-grafted PVDF membrane surface. Sodium alginate (SA), Suwannee River natural organic matter (SRNOM), and bovine serum albumin (BSA) were used as model organic foulants to investigate the antifouling behavior of the superhydrophilic membrane with combined-fouling (mixture of foulants) and individual-fouling (single foulant) tests. A membrane bioreactor (MBR) plant supernatant was also used to verify the organic antifouling property of the superhydrophilic membrane under realistic conditions. Foulant size distributions and foulant-membrane interfacial forces were measured to interpret the observed membrane fouling behavior. Molecular weight cutoff measurements confirmed that membrane functionalization did not adversely affect the intrinsic membrane selectivity. Both filtration tests with the synthetic foulant-mixture solution (containing SA, SRNOM, and BSA) and MBR plant supernatant demonstrated the reliability and durability of the antifouling property of the superhydrophilic membrane. The conspicuous reduction in foulant-membrane interfacial forces for the functionalized membrane further verified the antifouling properties of the superhydrophilic membrane, suggesting great potential for applications in wastewater treatment. © 2014 Elsevier B.V.

  10. Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method

    Institute of Scientific and Technical Information of China (English)

    HUA Helin; LI Na; WU Linlin; ZHONG Hui; WU Guangxia; YUAN Zonghuan; LIN Xiangwei; TANG Lianyi

    2008-01-01

    Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV(Ultraviolet-visible)irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy(ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact allgle on the membrane surface decreases with the increase of methyl acrylate graftdegree. which indicated that the hydrophilicity of graft copolymer membranes Was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copoly mermembranes.

  11. Preparation of Cu{sub 2}O nanowire-blended polysulfone ultrafiltration membrane with improved stability and antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zehai; Ye, Shuaiju; Fan, Zheng; Ren, Fanghua; Gao, Congjie [Zhejiang University of Technology, Institute of Oceanic and Environmental Chemical Engineering, College of Chemical Engineering and Material Science and College of Ocean, and State Key Lab Breeding Base of Green Chemical Synthesis Technology and Zhejiang Collaborative Innovation Center of Membrane Separation and Water Treatment (China); Li, Qingbiao; Li, Guoqing [Quanzhou Normal University, College of Chemistry and Life Science (China); Zhang, Guoliang, E-mail: membrane86571@163.com, E-mail: guoliangz@zjut.edu.cn [Zhejiang University of Technology, Institute of Oceanic and Environmental Chemical Engineering, College of Chemical Engineering and Material Science and College of Ocean, and State Key Lab Breeding Base of Green Chemical Synthesis Technology and Zhejiang Collaborative Innovation Center of Membrane Separation and Water Treatment (China)

    2015-10-15

    Polysulfone (PSF) membranes have been widely applied in water and wastewater treatment, food-processing and biomedical fields. In this study, we report the preparation of modified PSF membranes by blending PSF with Cu{sub 2}O nanowires (NWs) to improve their stability and antifouling activity. Synthesis of novel Cu{sub 2}O NWs/PSF-blended ultrafiltration membrane was achieved via phase inversion method by dispersing one-dimensional Cu{sub 2}O nanowires in PSF casting solutions. Various techniques such as XRD, SEM, TEM, and EDS were applied to characterize and investigate the properties of nanowires and membranes. The introduced Cu{sub 2}O nanowires can firmly be restricted into micropores of PSF membranes, and therefore, they can effectively prevent the serious leaking problem of inorganic substances in separation process. The blended PSF membranes also provided enhanced antimicrobial activity and superior permeation property compared to pure PSF membrane. The overall work can not only provide a new way for preparation of novel blended membranes with multidimensional nanomaterials, but can also be beneficial to solve the annoying problem of biofouling.

  12. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance

    Science.gov (United States)

    Chang, Xiaojing; Wang, Zhenxing; Quan, Shuai; Xu, Yanchao; Jiang, Zaixing; Shao, Lu

    2014-10-01

    Membrane surface and cross-sectional morphology created during membrane formation is one of the most essential factors determining membrane separation performance. However, the complicated interactions between added nanoparticles and additives influencing membrane morphology and performance during building membrane architectures had been generally neglected. In this study, asymmetric PVDF composite ultrafiltration (UF) membranes containing graphene oxides (GO) were prepared by using N-methyl pyrrolidone (NMP) as solvent and polyvinylpyrrodione (PVP) as the pore forming reagent. In the first time, the effects of mutual interactions between GO and PVP on membranes surface compositions, morphology and performance were investigated in detail. The variation in chemical properties of different membranes and hydrogen bonds in the membrane containing GO and PVP were confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle (CA) were utilized to clarify the synergetic effects of GO and PVP on morphologies and surface hydrophilicity of membranes. Besides, water flux, bovine serum albumin (BSA) rejection and attenuate coefficient were also determined to investigate filtration performance of various membranes. Compared with pure PVDF membrane, the comprehensive performance of PVDF/GO/PVP membrane has been obviously improved. The surface hydrophilicity and anti-fouling performance were enhanced by the synergistic effects of incorporated GO and PVP. When the PVP content was 0.25 wt.% and the GO content was 0.5 wt.%, the optimized performance can be obtained due to the formation of hydrogen bonds between GO and PVP.

  13. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    Science.gov (United States)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  14. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda

    Directory of Open Access Journals (Sweden)

    Alexandra Huttinger

    2015-10-01

    Full Text Available There is a critical need for safe water in healthcare facilities (HCF in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8% and failure of the chlorination mechanism (7%. When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  15. Prediction of power consumption and performance in ultrafiltration of simulated latex effluent using non-uniform pore sized membranes

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Amira; Doan, Huu; Lohi, Ali; Cheng, Chil-Hung [Ryerson University, 350 Victoria Street, Toronto (Canada)

    2016-03-15

    Tha aim of the present study was to develop a series of numerical models for an accurate prediction of the power consumption in ultrafiltration of simulated latex effluent. The developed power consumption model incorporated fouling attachment, as well as chemical and physical factors in membrane fouling, in order to ensure accurate prediction and scale-up. This model was applied to heterogeneous membranes with non-uniform pore sizes at a given operating conditions and membrane surface charges. Polysulfone flat membrane, with a membrane molecular weight cutoff (MWCO) of 60,000 dalton, at different surface charges was used under a constant flow rate and cross-flow mode. In addition, the developed models were examined using various membranes at a variety of surface charges so as to test the overall reliability and accuracy of these models. The power consumption predicted by the models corresponded to the calculated values from the experimental data for various hydrophilic and hydrophobic membranes with an error margin of 6.0% up to 19.1%.

  16. Immobilization of sodium alginate sulfates on polysulfone ultrafiltration membranes for selective adsorption of low-density lipoprotein.

    Science.gov (United States)

    Wang, Wei; Huang, Xiao-Jun; Cao, Jian-Da; Lan, Ping; Wu, Wen

    2014-01-01

    A novel method for the immobilization of sodium alginate sulfates (SAS) on polysulfone (PSu) ultrafiltration membranes to achieve selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylamide on the membrane and the Hofmann rearrangement reaction of grafted acrylamide followed by chemical binding of SAS with glutaraldehyde. The surface modification processes were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy characterization. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu membranes. It was found that the PSu membrane immobilized with sodium alginate sulfates (PSu-SAS) greatly enhanced the selective adsorption of LDL from protein solutions and the absorbed LDL could be easily eluted with sodium chloride solution, indicating a specific and reversible binding of LDL to SAS, mainly driven by electrostatic forces. Furthermore, the PSu-SAS membrane showed good blood compatibility as examined by platelet adhesion. The results suggest that the PSu-SAS membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun

    2016-11-04

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  18. Adsorption and photocatalytic degradation of bisphenol A using TiO2 and its separation by submerged hollowfiber ultrafiltration membrane

    Institute of Scientific and Technical Information of China (English)

    Jae-Wook Lee; Tae-Ouk Kwon; Ramesh Thiruvenkatachari; Il-Shik Moon

    2006-01-01

    This study evaluates the adsorption ability of bisphenol A(BPA) on titanium dioxide(TiO2) and its effect on the photocatalysis by advanced oxidation process using UV radiation and TiO2 photocatalyst. Degradation of BPA was also evaluated for the system without adsorption prior to photocatalytic reaction. The separation of TiO2 from BPA solution treated by pilot-scale photocatalytic reactor (capacity 0.16 m3) was studied using submerged ultrafiltration (UF) membrane. It was found that although adsorption capacity of BPA was not high, adsorption played an important role in improving the efficiency ofphotocatalysis. On the other hand, during the separation of TiO2 particles from aqueous suspension, the permeate flux of the membrane was strongly affected by transmembrane pressure and TiO2 dose. The permeate turbidity was decreased below 1 NTU.

  19. Ultra-wetting graphene-based PES ultrafiltration membrane - A novel approach for successful oil-water separation.

    Science.gov (United States)

    Prince, J A; Bhuvana, S; Anbharasi, V; Ayyanar, N; Boodhoo, K V K; Singh, G

    2016-10-15

    Oil pollution in water and separation of oil from water are receiving much attention in recent years due to the growing environmental concerns. Membrane technology is one of the emerging solutions for oil-water separation. However, there is a limitation in using polymeric membrane for oil water separation due to its surface properties (wetting behaviour), thermal and mechanical properties. Here, we have shown a simple method to increase the hydrophilicity of the polyethersulfone (PES) hollow fibre ultrafiltration (UF) membrane by using carboxyl, hydroxyl and amine modified graphene attached poly acrylonitrile-co-maleimide (G-PANCMI). The prepared membranes were characterized for its morphology, water and oil contact angle, liquid entry pressure of oil (LEPoil), water permeability and finally subjected to a continuous 8 h filtration test of oil emulsion in water. The experimental data indicates that the G-PANCMI play an important role in enhancing the hydrophilicity, permeability and selectivity of the PES membrane. The water contact angle (CAw) of the PES membrane is reduced from 63.7 ± 3.8° to 22.6 ± 2.5° which is 64.5% reduction while, the oil contact angle was increased from 43.6 ± 3.5° to 112.5 ± 3.2° which is 158% higher compared to that of the PES membrane. Similarly, the LEPoil increased 350% from 50 ± 10 kPa of the control PES membrane to 175 ± 25 kPa of PES-G-PANCMI membrane. More importantly, the water permeability increased by 43% with >99% selectivity. Based on our findings we believe that the development of PES-G-PANCMI membrane will open up a solution for successful oil-water separation.

  20. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  1. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes.

    Science.gov (United States)

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-06-21

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  2. Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO 2 nanoparticles

    Science.gov (United States)

    Luo, Ming-Liang; Zhao, Jian-Qing; Tang, Wu; Pu, Chun-Sheng

    2005-08-01

    Membrane fouling is one of the major obstacles for reaching the ultimate goal, which realizes high flux over a prolonged period of ultrafiltration (UF) operation. In this paper, TiO 2 nanoparticles of a quantum size (40 nm or less) in anatase crystal structure were prepared from the controlled hydrolysis of titanium tetraisopropoxide and characterized by X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). The hydrophilic modification of poly(ether sulfone) UF membrane was performed by self-assembly of the hydroxyl group of TiO 2 nanoparticle surface and the sulfone group and ether bond in poly(ether sulfone) structure through coordination and hydrogen bond interaction, which was ascertained by X-ray photoelectron spectroscopy (XPS). The morphology and hydrophilicity were characterized by scanning electron microscopy (SEM) and contact angle test, respectively. The composite UF membrane was also characterized in terms of separation behavior for polyethylene glycol-5000 solute. The experimental results show that the composite UF membrane has good separation performance and offers a strong potential for possible use as a new type of anti-fouling UF membrane.

  3. Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes.

    Science.gov (United States)

    Shao, Jiahui; Hou, Juan; Song, Hongchen

    2011-01-01

    Increasingly stringent regulations for drinking water quality have stimulated the ultrafiltration (UF) to become one of the best alternatives replacing conventional drinking water treatment technologies. However, UF is not very effectively to remove humic acid due to the comparatively larger pore size compared to the size of humic acid. Fouling issue is another factor that restricts its widespread application. In this study, rejection of humic acid and flux decline were compared with essentially neutral, negatively charged version of a regenerated cellulose membrane, in which electrostatic interaction was explored for a better humic acid removal and less fouling. Solution environment, including ionic strength, pH and calcium ion concentration, affecting humic acid removal and flux decline on negatively charged and neutral membranes was also compared. Results indicated that the appropriate charge modification on the neutral UF membrane could be an effective way for better removal of NOM and reduction of the membrane fouling due to the electrostatic interactions with the combination effect of membrane pore size. Electrostatic interactions are significant important to achieve high humic acid removal and less fouling, and to improve the water quality and protect people's health. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Simultaneous determination of free calcium, magnesium, sodium and potassium ion concentrations in simulated milk ultrafiltrate and reconstituted skim milk using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Gao, R.; Temminghoff, E.J.M.; Leeuwen, van H.P.; Valenberg, van H.J.F.; Eisner, M.D.; Boekel, van M.A.J.S.

    2009-01-01

    This study focused on determination of free Ca2+, Mg2+, Na+ and K+ concentrations in a series of CaCl2 solutions, simulated milk ultrafiltrate and reconstituted skim milk using a recently developed Donnan Membrane Technique (DMT). A calcium ion selective electrode was used to compare the DMT results

  5. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xiaojian Zhang; Yonghong Li; Jun Wang; Chao Chen

    2011-01-01

    Particles and natural organic matter (NOM) are two major concerns in surface water,which greatly influence the membrane filtration process.The objective of this article is to investigate the effect of particles,NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF.Particles,NOM and their mixture were spiked in tap water to simulate raw water.Exponential relationship,(JP/JP0 =axexp{-k[t-(n- 1)T]}),was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well.In this equation,coefficient a was determined by the value of Jp/Jp0 at the beginning of a filtration cycle,reflecting the flux recovery after backwashing,that is,the irreversible fouling.The coefficient k reflected the trend of flux dynamics.Integrated total permeability (ΣJp) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios.According to the results,there was an additive effect on membrane flux by NOM and particles during solo UF process.This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant,which further delayed the decrease of membrane flux and benefited flux recovery by backwashing.The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.

  6. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    Science.gov (United States)

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO3(2-) nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  7. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    Science.gov (United States)

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa.

  8. Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: Effect of backwash water composition.

    Science.gov (United States)

    Chang, Haiqing; Liang, Heng; Qu, Fangshu; Ma, Jun; Ren, Nanqi; Li, Guibai

    2016-05-01

    As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration (UF) systems in water treatment processes. In this work, a comparative study was performed to investigate the effects of the composition of backwash water on the hydraulic cleaning performance of UF membranes fouled by humic acid (HA). Various types of backwash water, including UF permeate, Milli-Q water, NaCl solution, CaCl2 solution and HA solution, were compared in terms of hydraulically irreversible fouling index, total surface tension and residual HA. The results indicated that Milli-Q water backwash was superior to UF permeate backwash in cleaning HA-fouled membranes, and the backwash water containing Na(+) or HA outperformed Milli-Q water in alleviating HA fouling. On the contrary, the presence of Ca(2+) in backwash water significantly decreased the backwash efficiency. Moreover, Ca(2+) played an important role in foulant removal, and the residual HA content closely related to the residual Ca(2+) content. Mechanism analysis suggested that the backwash process may involve fouling layer swelling, ion exchange, electric double layer release and competitive complexation. Ion exchange and competitive complexation played significant roles in the efficient hydraulic cleaning associated with Na(+) and HA, respectively.

  9. Performance and Mechanisms of Ultrafiltration Membrane Fouling Mitigation by Coupling Coagulation and Applied Electric Field in a Novel Electrocoagulation Membrane Reactor.

    Science.gov (United States)

    Sun, Jingqiu; Hu, Chengzhi; Tong, Tiezheng; Zhao, Kai; Qu, Jiuhui; Liu, Huijuan; Elimelech, Menachem

    2017-08-01

    A novel electrocoagulation membrane reactor (ECMR) was developed, in which ultrafiltration (UF) membrane modules are placed between electrodes to improve effluent water quality and reduce membrane fouling. Experiments with feedwater containing clays (kaolinite) and natural organic matter (humic acid) revealed that the combined effect of coagulation and electric field mitigated membrane fouling in the ECMR, resulting in higher water flux than the conventional combination of electrocoagulation and UF in separate units (EC-UF). Higher current densities and weakly acidic pH in the EMCR favored faster generation of large flocs and effectively reduced membrane pore blocking. The hydraulic resistance of the formed cake layers on the membrane surface in ECMR was reduced due to an increase in cake layer porosity and polarity, induced by both coagulation and the applied electric field. The formation of a polarized cake layer was controlled by the applied current density and voltage, with cake layers formed under higher electric field strengths showing higher porosity and hydrophilicity. Compared to EC-UF, ECMR has a smaller footprint and could achieve significant energy savings due to improved fouling resistance and a more compact reactor design.

  10. Synthesis of PVDF ultrafiltration membranes supported on polyester fabrics for separation of organic matter from water

    Science.gov (United States)

    Mhlanga, Sabelo D.; Tshabalala, Tumelo G.; Nxumalo, Edward N.; Mamba, Bhekie B.

    2014-08-01

    Polyvinylidene flouride (PVDF) membranes supported on non-woven fabrics (NWF) of polyester are reported. The PVDF membranes were fabricated using the phase inversion method followed by modification of the active top layer of the PVDF thin film by adding polyvinylpyrolidone (PVP) into the cast solution. A PVDF resin was used with N- methyl-2-pyrrolidone (NMP) as a solvent. Sessile drop contact angle measurements and scanning electron microscopy (SEM) were used to study the physical properties of the membranes. Membrane rejection of humic acid was studied using a cross-flow membrane testing unit. The contact angle results revealed that the hydrophilicity of PVDF membranes increased as the PVP concentration was increased from 3 to 10 wt%. SEM analysis of the membranes revealed that the membrane pore sizes increased when PVP was added. AFM analysis also showed that membrane roughness changed when PVP was added. Total organic carbon (TOC) analysis of water samples spiked with humic acid was performed to test the rejection capacity of the membranes. Rejections of up to 97% were achieved for PVDF membranes supported on polyester NWF1, which had smaller thickness and higher permeability compared to polyester NWF2. The NWFs provided the high strength required for the membranes despite the modifications done on the PDVF surface and microstructure.

  11. Magnetization influence on the performance of ferrosoferric oxide: polyacrylonitrile membranes in ultrafiltration of pig blood solution.

    Science.gov (United States)

    Huang, Zheng-Qing; Guo, Xing-Peng; Guo, Chun-Liang; Zhang, Zhi

    2006-05-01

    Three kinds of membranes were prepared from suspensions containing polyacrylonitrile, dimethyl sulfoxide, polyethylene glycol and different amount of Fe3O4 by the phase inversion process. The rejection rate and the flux of membrane were investigated in the filtration of pig blood solution. SEM also studied the morphologies of fouled membranes. The permeate flux and the rejection rate decline fast in the initial several minutes and then change slowly. The magnetized membrane has a higher flux and a relative flux than the corresponding non-magnetized membrane. And the magnetized membrane containing about 3 wt% Fe3O4 has a prominent anti-fouling performance with above 52% relative flux. The results indicate that the magnetized ferrosoferric oxide-polyacrylonitrile membranes are promising in the recovery of blood proteins in the slaughterhouse effluents. In addition, the hydraulic resistance model explained results and the fouling mechanism was also given.

  12. Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance

    KAUST Repository

    Filloux, Emmanuelle

    2014-09-01

    In this study, the impact of membrane properties on membrane fouling and permeate water quality was investigated. Short- and long-term laboratory scale experiments using four commercially available hollow fiber UF membranes were performed to study the impact of membrane properties on reversible and irreversible fouling. No significant differences in terms of permeate quality (i.e. biopolymer rejection) were observed over the four tested membranes. It was found that membrane characteristics including pore size, pore distribution and especially materials had a strong impact on the filtration performances in terms of both reversible and irreversible fouling. The short-term filtration tests showed that due to its specific hydrodynamic condition only the inside-out mode UF membrane was subjected to irreversible fouling. These data demonstrate the importance of membrane selection with appropriate operating conditions for optimum performances. The added value of membrane characterization to lab-scale filtration tests for membrane performance was discussed. © 2014 Elsevier B.V. All rights reserved.

  13. Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Benny Freeman

    2008-08-31

    Polymeric membranes could potentially be the most flexible and viable long-term strategy for treatment of produced water from oil and gas production. However, widespread use of membranes, including reverse osmosis (RO) membranes, for produced water purification is hindered due to fouling caused by the impurities present in the water. Fouling of RO membranes is likely caused by surface properties including roughness, hydrophilicity, and charge, so surface modification is the most widely considered approach to improve the fouling properties of current RO membranes. This project focuses on two main approaches to surface modification: coating and grafting. Hydrophilic coating and grafting materials based on poly(ethylene glycol) (PEG) are applied to commercial RO membranes manufactured by Dow FilmTec and GE. Crossflow filtration experiments are used to determine the fouling resistance of modified membranes, and compare their performance to that of unmodified commercial RO membranes. Grafting and coating are shown to be two alternative methods of producing modified membranes with improved fouling resistance.

  14. Electrokinetic and permeation characterization of hydrolyzed polyacrylonitrile (PAN) hollow fiber ultrafiltration membrane

    Institute of Scientific and Technical Information of China (English)

    BAO WenXuan; XU ZhenLiang; YANG Hu

    2009-01-01

    PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exchange technology. SEM and FT-IP/ATR spectra were employed to analyze the reaction and the presence of the amide groups. The thickness of the polyacrylic acid (PAA) layer on the membrane surface measured by ion-exchange titration technology increased with the reaction time, and that on membrane hydrolyzed for 50 min could reach 10.8 nm. Streaming potential measurement was used to study the influence of the carboxylic and nitrile group on the membrane surface on their separation property. Zeta potential measured in pure water had close relationship with the permeation property. This measurement also proved that there was a maximum zeta potential between zero and the concentration tested. For the ionization or dissociation of the carboxylic group on the membrane sur-face, treated membranes had a more flexible zeta potential range than that of the untreated membrane inflection points of all the membranes were observed in AlCl3 solution for the positive colloid structure of Al(OH)3.

  15. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes.

    Science.gov (United States)

    Yamamura, Hiroshi; Okimoto, Kenji; Kimura, Katsuki; Watanabe, Yoshimasa

    2014-05-01

    Although membrane filtration is a promising technology in the field of drinking water treatment, persistent membrane fouling remains a major disadvantage. For more efficient operation, causative agents of membrane fouling need to be identified. Membrane fouling can be classified into physically reversible and irreversible fouling on basis of the removability of the foulants by physical cleaning. Four types of natural organic matter (NOM) in river water used as a source of drinking water were fractionated into hydrophobic and hydrophilic fractions, and their potential to develop irreversible membrane fouling was evaluated by a bench-scale filtration experiment together with spectroscopic and chromatographic analyses. In this study, only dissolved NOM was investigated without consideration of interactions of NOM fractions with particulate matter. Results demonstrated that despite identical total organic carbon (TOC), fouling development trends were significantly different between hydrophilic and hydrophobic fractions. The hydrophobic fractions did not increase membrane resistance, while the hydrophilic fractions caused severe loss of membrane permeability. These results were identical with the case when the calcium was added to hydrophobic and hydrophilic fractions. The largest difference in NOM characteristics between hydrophobic and hydrophilic fractions was the presence or absence of macromolecules; the primary constituent causing irreversible fouling was inferred to be "biopolymers", including carbohydrates and proteins. In addition, the results demonstrated that the extent of irreversible fouling was considerably different depending on the combination of membrane materials and NOM characteristics. Despite identical nominal pore size (0.1 μm), a polyvinylidene fluoride (PVDF) membrane was found to be more rapidly fouled than a PE membrane. This is probably explained by the generation of strong hydrogen bonding between hydroxyl groups of biopolymers and fluorine

  16. Improvements in permeation and fouling resistance of PVC ultrafiltration membranes via addition of Tetronic-1107 and Triton X-100 as two non-ionic and hydrophilic surfactants.

    Science.gov (United States)

    Rabiee, Hesamoddin; Seyedi, S Mojtaba; Rabiei, Hossein; Alvandifar, Negar

    2016-09-01

    Two non-ionic and hydrophilic surfactant additives, Tetronic-1107 and Triton X-100, were added to poly(vinyl chloride)/NMP polymeric solution to prepare ultrafiltration membranes via immersion precipitation. Surfactants at three different weight percentages up to 6 wt% were added, and the fabricated membranes were characterized and their performance for water treatment in the presence of bovine serum albumin (BSA) as a foulant was assessed. The scanning electron microscopy images indicated remarkable changes in morphology due to higher thermodynamic instability after surfactant addition. The membranes are more porous with more macro-voids in the sub-layer. Plus, the membranes become more hydrophilic. Water flux increases for the modified membranes by nearly two times and the ability of membranes for flux recovery increases from 66% to over 83%. BSA rejection reduces slightly with the addition of surfactants, however this parameter is still almost over 90% for the membranes with the highest amount of surfactants.

  17. Effect of Heat Treatment on Structures and Properties of Polyurethane Blend Ultrafiltration Membranes

    Institute of Scientific and Technical Information of China (English)

    封严; 肖长发

    2004-01-01

    The polyurethane/polyacrylonitrile ( PU/PAN ) and polyurethane/cellulose acetate (PU/CA) blend ultra filtration membranes were prepared based on LoebSourirajan phase transition method. The change of the structures and properties of the PU/PAN and PU/CA membranes with the heat treatment process was studied.The results showed: the water flux decreased and retention increased with the increase of heat treatment temperature of PU/PAN blend membrane, but the water flux of PU/CA blend membrane got the maximum with heat treatment temperature of 60℃ and decreased rapidly with the heat treatment temperature of 100 ℃. The interfacial microvoid structure and its influence on the properties of PU/PAN and PU/CA blend membranes were studied.

  18. Characterization of Natural Organic Matter and Disinfection Byproducts Formation Potential in Pilot-Scale Coagulation-Ultrafiltration Membrane Combined Process in Winter

    Institute of Scientific and Technical Information of China (English)

    张耀宗; 王启山; 何凤华; 丁莎莎

    2010-01-01

    A pilot-scale ultrafiltration membrane plant was set up for treating Luanhe River water with flocculating and precipitation process of waterworks.The aim is to investigate the variation and characteristics of natural organic matter and disinfection byproducts formation potential in the whole process in winter.The results show that dissolved organic matter(DOM),UV254,trihalomethanes formation potential(THMsFP) and haloacetic acids formation potential(HAAsFP) of Luanhe River water were mainly distributed in t...

  19. 磺化聚砜改性超滤膜的制备及性能%Preparation amd Performance Research of the Sulfonated Polysulfone Modified Ultrafiltration Membrane

    Institute of Scientific and Technical Information of China (English)

    董晓静; 胡小玲; 管萍; 岳红; 张新丽

    2003-01-01

    Using sulfonated polysulfone for raw material and complex additive. Adopting the method of the posture transform to preparation sulfonated polysulfone modified ultrafihmtion memebrane. It''s aperture is 400 - 500A°.Structure and separate capability have been investigated. Result show that the sulfonated polysulfone modified ultrafiltration membrane can separate solubility protein in the ferment solution of the erythromycin. Problem of the emulsification in the extraction process of the erythromycin have been resolved.

  20. Application of polyacrylamide flocculation with and without alum coagulation for mitigating ultrafiltration membrane fouling: Role of floc structure and bacterial activity

    OpenAIRE

    Liu, T.; Lian, Y.; Graham, N.; Yu, W.; Rooney, D; Sun, K.

    2016-01-01

    There is a growing interest in the use of ultrafiltration (UF) for the treatment of micro-polluted surface waters for drinking water supplies. Effective pretreatment is required to mitigate membrane fouling and in this paper we have evaluated the application of polyacrylamide (PAM) flocculation with alum coagulation. Bench scale tests were conducted over extended periods with two types of PAM (different molecular weights (MW)) applied with, and without alum coagulation, in order to investigat...

  1. Electrokinetic and permeation characterization of hydrolyzed polyacrylonitrile (PAN) hollow fiber ultrafiltration membrane

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exchange technology. SEM and FT-IR/ATR spectra were employed to analyze the reaction and the presence of the amide groups. The thickness of the polyacrylic acid (PAA) layer on the membrane surface measured by ion-exchange titration technology increased with the reaction time, and that on membrane hydrolyzed for 50 min could reach 10.8 nm. Streaming potential measurement was used to study the influence of the carboxylic and nitrile group on the membrane surface on their separation property. Zeta potential measured in pure water had close relationship with the permeation property. This measurement also proved that there was a maximum zeta potential between zero and the concentration tested. For the ionization or dissociation of the carboxylic group on the membrane surface, treated membranes had a more flexible zeta potential range than that of the untreated membrane in the pH range of 3-9. They were all negative in pure water and 1 g·L-1 KCl solution, while the membranes hydrolyzed for 30 min and 50min had IEPs at pH 5.5 and 6.1 in 1 g·L-1 MgCl2 solution. Special inflection points of all the membranes were observed in AlCl3 solution for the positive colloid structure of Al(OH)3.

  2. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  3. Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide

    Science.gov (United States)

    Shukla, Arun Kumar; Alam, Javed; Alhoshan, Mansour; Dass, Lawrence Arockiasamy; Muthumareeswaran, M. R.

    2017-02-01

    In the present study, graphene oxide (GO) was incorporated as a nanoadditive into a polyphenylsulfone (PPSU) to develop a PPSU/GO nanocomposite membrane with enhanced antifouling properties. A series of membranes containing different concentrations (0.2, 0.5 and 1.0 wt.%) of GO were fabricated via the phase inversion method, using N-methyl pyrrolidone (NMP) as the solvent, deionized water as the non-solvent, and polyvinylpyrrolidone (PVP) as a pore forming agent. The prepared nanocomposite membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and were also characterized with respect to contact angle, zeta potential and porosity, mean pore radius, tortuosity and molecular weight cut-off (MWCO). Thermogravimetric analysis (TGA) and tensile testing were used to measure thermal and mechanical properties. The membrane performance was evaluated by volumetric flux and rejection of proteins, and antifouling properties. According to the results, the optimum addition of 0.5 wt% GO resulted in a membrane with an increased flux of 171 ± 3 Lm‑2h‑1 with a MWCO of ~40 kDa. In addition, the GO incorporation efficiently inhibited the interaction between proteins and the membrane surface, thereby improving the fouling resistance ability by approximately 58 ± 3%. Also, the resulting membranes showed a significant improvement in mechanical and thermal properties.

  4. Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide

    Science.gov (United States)

    Shukla, Arun Kumar; Alam, Javed; Alhoshan, Mansour; Dass, Lawrence Arockiasamy; Muthumareeswaran, M. R.

    2017-01-01

    In the present study, graphene oxide (GO) was incorporated as a nanoadditive into a polyphenylsulfone (PPSU) to develop a PPSU/GO nanocomposite membrane with enhanced antifouling properties. A series of membranes containing different concentrations (0.2, 0.5 and 1.0 wt.%) of GO were fabricated via the phase inversion method, using N-methyl pyrrolidone (NMP) as the solvent, deionized water as the non-solvent, and polyvinylpyrrolidone (PVP) as a pore forming agent. The prepared nanocomposite membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and were also characterized with respect to contact angle, zeta potential and porosity, mean pore radius, tortuosity and molecular weight cut-off (MWCO). Thermogravimetric analysis (TGA) and tensile testing were used to measure thermal and mechanical properties. The membrane performance was evaluated by volumetric flux and rejection of proteins, and antifouling properties. According to the results, the optimum addition of 0.5 wt% GO resulted in a membrane with an increased flux of 171 ± 3 Lm−2h−1 with a MWCO of ~40 kDa. In addition, the GO incorporation efficiently inhibited the interaction between proteins and the membrane surface, thereby improving the fouling resistance ability by approximately 58 ± 3%. Also, the resulting membranes showed a significant improvement in mechanical and thermal properties. PMID:28155882

  5. Enzyme immobilization by fouling in ultrafiltration membranes: Impact of membrane configuration and type on flux behavior and biocatalytic conversion efficacy

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2014-01-01

    and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations...

  6. Studies on carboxylated graphene oxide incorporated polyetherimide mixed matrix ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kaleekkal, Noel Jacob, E-mail: noeljacob89@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Thanigaivelan, A., E-mail: thanichemstar@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Rana, Dipak, E-mail: rana@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario, K1N 6N5 (Canada); Mohan, D., E-mail: mohantarun@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India)

    2017-01-15

    In this work the graphene oxide prepared by the modified Hummers’ method was effectively carboxylated. These carboxylated graphene oxide (c-GO) microsheets was characterized by X-ray diffraction analysis, Raman shift, zeta potential, and their morphology was observed using a high resolution scanning/transmission electron microscopy. Polyetherimide mixed matrix membranes (MMMs) were fabricated by the non-solvent induced phase separation technique with varying concentration of this microsheet. The presence of these microsheets on the membrane surface was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and could also be confirmed visually by optical images. The membranes were further characterized; they showed a greater water flux, higher porosity, and sufficient thermal stability. Incorporation of these microsheets improved the hydrophilicity of the membrane confirmed by the lower contact angle values, which in turn explained the lower interfacial free energy, the increase in work of adhesion, the higher solid-vapor free energy and the spreading coefficient. Membranes loaded with 0.3 wt% of c-GO showed a flux recovery of 94% and only a small flux decline even after 180 min of filtration of humic acid (HA) solution. The efficiency of these membranes in removal of HA, toxic metal ions was also investigated. The bacterial anti-adhesion property of c-GO in the membranes was also explored using Escherichia coli, as a model bio-foulant. The charge of the microsheets and their unique architecture imparts higher hydrophilicity and greater fouling resistance along with improved permeation flux when incorporated into the polymer matrix. - Highlights: • Novel membranes by incorporating carboxylated GO into polyetherimide matrix. • Modified membranes exhibited greater porosity, flux and high humic acid rejection. • Nanoplatelets improved the flux recovery ratio to >94%. • Liquid phase polymer based retention utilized for toxic heavy metal

  7. Coagulation and oxidation for controlling ultrafiltration membrane fouling in drinking water treatment: Application of ozone at low dose in submerged membrane tank.

    Science.gov (United States)

    Yu, Wenzheng; Graham, Nigel J D; Fowler, Geoffrey D

    2016-05-15

    Coagulation prior to ultrafiltration (UF) is widely applied for treating contaminated surface water sources for potable supply. While beneficial, coagulation alone is unable to control membrane fouling effectively in many cases, and there is continuing interest in the use of additional, complementary methods such as oxidation in the pre-treatment of raw water prior to UF. In this study, the application of ozone at low dose in the membrane tank immediately following coagulation has been evaluated at laboratory-scale employing model raw water. In parallel tests with and without the application of ozone, the impact of applied ozone doses of 0.5 mg L(-1) and 1.5 mg L(-1) (approximately 0.18 mg L(-1) and 0.54 mg L(-1) consumed ozone, respectively) on the increase of trans-membrane pressure (TMP) was evaluated and correlated with the quantity and nature of membrane deposits, both as a cake layer and within membrane pores. The results showed that a dose of 0.5 mgO3 L(-1) gave a membrane fouling rate that was substantially lower than without ozone addition, while a dose of 1.5 mgO3 L(-1) was able to prevent fouling effects significantly (no increase in TMP). Ozone was found to decrease the concentration of bacteria (especially the concentration of bacteria per suspended solid) in the membrane tank, and to alter the nature of dissolved organic matter by increasing the proportion of hydrophilic substances. Ozone decreased the concentration of extracellular polymeric substances (EPS), such as polysaccharides and proteins, in the membrane cake layer; the reduced EPS and bacterial concentrations resulted in a much thinner cake layer, although the suspended solids concentration was much higher in the ozone added membrane tank. Ozone also decreased the accumulation and hydrophobicity of organic matter within the membrane pores, leading to minimal irreversible fouling. Therefore, the application of low-dose ozone within the UF membrane tank is a potentially important

  8. Performance and Selectivity of Ceramic Membranes in the Ultrafiltration of Model Emulsion in Saline

    Science.gov (United States)

    Ćwirko, Konrad; Kalbarczyk-Jedynak, Agnieszka

    2017-06-01

    Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application - significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.

  9. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater.

    Science.gov (United States)

    Benítez, F Javier; Acero, Juan L; Leal, Ana I; González, Manuel

    2009-03-15

    Filtration experiments in batch concentration mode (with recycling of the retentate stream) of the cork processing wastewater were performed in laboratory filtration membrane equipment, by using four commercial membranes: two UF membranes with MWCO of 20,000 and 5000 Da, and two NF membranes with an approximate MWCO of 150-300 Da. The filtration experiments of the selected wastewater were performed by modifying the most important operating variables: transmembrane pressure, tangential velocity, temperature, and the nature and MWCO of the membranes. The evolution of the cumulative permeate volumes and permeate fluxes with processing time were analysed, and it was established that the steady-state permeate flux was reached for a volume retention factor of 2. The effect of the mentioned operating conditions on this steady-state permeate flux was discussed. The effectiveness of the filtration treatments was determined by the evaluation of the rejection coefficients for several parameters, which measure the global pollutant content of the effluent: COD, absorbance at 254 nm, tannic content, color, and ellagic acid. Finally, the resistances in series model was used for the evaluation of the resistances to the permeate flux, and it was concluded that the contribution to the total resistance of the fouling resistance (combined external plus internal) was higher than the inherent resistance of the clean membrane.

  10. Removal of Trace Pharmaceuticals from Water using coagulation and powdered activated carbon as pretreatment to ultrafiltration membrane system.

    Science.gov (United States)

    Sheng, Chenguang; Nnanna, A G Agwu; Liu, Yanghe; Vargo, John D

    2016-04-15

    In this study, the efficacy of water treatment technologies: ultra-filtration (UF), powdered activated carbon (PAC), coagulation (COA) and a combination of these technologies (PAC/UF and COA/UF) to remove target pharmaceuticals (Acetaminophen, Bezafibrate, Caffeine, Carbamazepine, Cotinine, Diclofenac, Gemfibrozil, Ibuprofen, Metoprolol, Naproxen, Sulfadimethoxine, Sulfamethazine, Sulfamethoxazole, Sulfathiazole, Triclosan and Trimethoprim) was investigated. Samples of wastewater from municipal WWTPs were analyzed using direct aqueous injection High Performance Liquid Chromatography with Tandem Quadrupole Mass Spectrometric (LC/MS/MS) detection. On concentration basis, results showed an average removal efficiency of 29%, 50%, and 7%, respectively, for the UF, PAC dosage of 50ppm, and COA dosage of 10ppm. When PAC dosage of 100ppm was used as pretreatment to the combined PAC and UF in-line membrane system, a 90.3% removal efficiency was achieved. The removal efficiency of UF in tandem with COA was 33%, an increase of 4% compared with the single UF treatment. The adsorption effect of PAC combined with the physical separation process of UF revealed the best treatment strategy for removing pharmaceutical contaminant from water.

  11. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Salahi, Abdolhamid; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of); Behbahani, Reza Mosayebi [Petroleum University of Technology (PUT), Ahwaz (Iran, Islamic Republic of); Hemmati, Mahmood [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L{sub 16} orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m{sup 2}h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model.

  12. Crude biodiesel refining using membrane ultra-filtration process: An environmentally benign process

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Ceramic membrane separation system was developed to simultaneously remove free glycerol and soap from crude biodiesel. Crude biodiesel produced was ultra-filtered by multi-channel tubular membrane of the pore size of 0.05 μm. The effects of process parameters: transmembrane pressure (TMP, bar, temperature (°C and flow rate (L/min on the membrane system were evaluated. The process parameters were then optimized using Central Composite Design (CCD coupled with Response Surface Methodology (RSM. The best retention coefficients (%R for free glycerol and soap were 97.5% and 96.6% respectively. Further, the physical properties measured were comparable to those obtained in ASTMD6751-03 and EN14214 standards.

  13. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  14. Economic comparison of transverse and longitudinal flow hollow fiber membrane modules for reverse osmosis and ultrafiltration

    NARCIS (Netherlands)

    Futselaar, H.; Zoontjes, R.J.C.; Reith, T.; Racz, I.G.

    1993-01-01

    The presently used hollow fiber membrane modules consist of a bundle of fibers in a cylindrical polymer or metal shell parallel to the shell axis. The feed solution flows either through the lumen or at the outside parallel to the fibers. This paper compares the performance of these modules with a ne

  15. Ultrafiltration-based degumming of crude rice bran oil using a polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sehn, G.A.R.; GonCalves, L.A.G.; Ming, C.C.

    2016-07-01

    Membrane technology has been gaining momentum in industrial processes, especially in food technology. It is believed to simplify processes, reduce energy consumption, and eliminate pollutants. The objective was to study the performance of polyvinylidene fluoride (PVDF) and polyethersulfone (PES) polymeric membranes in the degumming of the miscella of crude rice bran oil by using a bench-scale tangential filtration module. In addition, oil miscella filtration techniques using hexane and anhydrous ethyl alcohol solvents were compared. All membranes showed the retention of phospholipids and high flow rates. However, the best performance was observed using the 50-kDa PVDF membrane in miscella hexane solvent, with a 95.5% retention of the phosphorus concentration (by a factor of 1.4), resulting in a permeate with 29 mg·kg−1 of phosphorus and an average flow rate of 48.1 L·m−2·h−1. This technology can be used as a low-pollution, economical alternative for the de-gumming of crude rice bran oil, being effective in the removal of hydratable and non-hydratable phospholipids, resulting in oils with a low phosphorus content. (Author)

  16. Impacts of epichlorohydrin-dimethylamine on coagulation performance and membrane fouling in coagulation/ultrafiltration combined process with different Al-based coagulants.

    Science.gov (United States)

    Bu, Fan; Gao, Baoyu; Li, Ruihua; Sun, Shenglei; Yue, Qinyan

    2016-09-01

    Two kinds of aluminum-based coagulants and epichlorohydrin-dimethylamine (DAM-ECH) were used in the treatment of humic acid-kaolin simulated water by coagulation-ultrafiltration (C-UF) hybrid process. Coagulation performance, floc characteristics, including floc size, compact degree, and strength were investigated in this study. Ultrafiltration experiments were conducted by a dead-end batch unit to implement the resistance analyses to explore the membrane fouling mechanisms. Results showed that DAM-ECH aid significantly increased the UV254 and DOC removal efficiencies and contributed to the formation of larger and stronger flocs with a looser structure. Aluminum chloride (Al) gave rise to better coagulation performance with DAM-ECH compared with poly aluminum chloride (PACl). The consequences of ultrafiltration experiments showed that DAM-ECH aid could reduce the membrane fouling mainly by decreasing the cake layer resistance. The flux reductions for PACl, Al/DAM-ECH (dosing both Al and DAM-ECH) and PACl/DAM-ECH (dosing both PACl and DAM-ECH) were 62%, 56% and 44%, respectively. Results of this study would be beneficial for the application of PACl/DAM-ECH and Al/DAM-ECH composite coagulants in water treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatlalytic ultrafiltration water treatment under visible light.

    OpenAIRE

    Athanasekou, Chrysoula P.; Sérgio Morales Torres; Vlassis Likodimos; George Em. Romanos; Luisa M. Pastrana-Martínez; Polycarpos Falaras; Dionysiou, Dionysios D.; Joaquim Luís Faria; José Luis Figueiredo; Silva, Adrián M. T.

    2014-01-01

    A highly efficient hybrid photocatalytic/ultrafiltration process is demonstrated for water purificationusing visible light. The process relies on the development of partially reduced graphene oxide/TiO2 compositemembranes and their incorporation into an innovative water purification device that combinesmembrane filtration with semiconductor photocatalysis. Composites consisting of graphene oxide sheetsdecorated with TiO2 nanoparticles were deposited and stabilized into the pores of ultrafiltr...

  18. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  19. Study on performance of ultrafiltration membrane-based pretreatment for application to seawater reverse osmosis desalination.

    Science.gov (United States)

    Tansakul, C; Laborie, S; Cabassud, C

    2010-01-01

    The objective of the work was to study at lab-scale the efficiency of hybrid process- coupling powdered activated carbon (PAC) adsorption or FeCl(3) coagulation and UF- for marine organic matter removal. Regenerated cellulose membrane with 30 kDa and actual seawater from Mediterranean Sea were used. The coagulant was FeCl(3) and adsorbents were two PAC types, with different surface area and pore size distribution. The results showed that PAC adsorption/UF performed higher efficiency in terms of organic removal than FeCl(3) coagulation/UF. Organic matter removal up to 50% was obtained for a PAC dose of 200 mg/L. According to high performance size exclusion chromatography (HP-SEC) analysis, the organics removed by PAC/UF are approximately 10 kDa. Therefore, the effect of PAC adsorption was deeply evaluated in terms of UF membrane fouling rate. The fouling rate was reduced when increasing PAC dose for both PAC types, in particular when PAC with a higher BET surface area and larger fraction of micropores was used. On the other hand, the results showed that UF unit could highly reduce SDI(3) from 26 to 9. The addition of PAC and FeCl(3) to UF allowed a further reduction of SDI(3) from 9 to 4-6.

  20. Simultaneous nitrogen and organics removal using membrane aeration and effluent ultrafiltration in an anaerobic fluidized membrane bioreactor

    KAUST Repository

    Ye, Yaoli

    2017-08-03

    Dissolved methane and a lack of nutrient removal are two concerns for treatment of wastewater using anaerobic fluidized bed membrane bioreactors (AFMBRs). Membrane aerators were integrated into an AFMBR to form an Aeration membrane fluidized bed membrane bioreactor (AeMFMBR) capable of simultaneous removal of organic matter and ammonia without production of dissolved methane. Good effluent quality was obtained with no detectable suspended solids, 93±5% of chemical oxygen demand (COD) removal to 14±11 mg/L, and 74±8% of total ammonia (TA) removal to 12±3 mg-N/L for domestic wastewater (COD of 193±23 mg/L and TA of 49±5 mg-N/L) treatment. Nitrate and nitrite concentrations were always low (< 1 mg-N/L) during continuous flow treatment. Membrane fouling was well controlled by fluidization of the granular activated carbon (GAC) particles (transmembrane pressures maintained <3 kPa). Analysis of the microbial communities suggested that nitrogen removal was due to nitrification and denitrification based on the presence of microorganisms associated with these processes.

  1. Ultrafiltration-based degumming of crude rice bran oil using a polymer membrane

    Directory of Open Access Journals (Sweden)

    Sehn, G. A.R.

    2016-03-01

    Full Text Available Membrane technology has been gaining momentum in industrial processes, especially in food technology. It is believed to simplify processes, reduce energy consumption, and eliminate pollutants. The objective was to study the performance of polyvinylidene fluoride (PVDF and polyethersulfone (PES polymeric membranes in the degumming of the miscella of crude rice bran oil by using a bench-scale tangential filtration module. In addition, oil miscella filtration techniques using hexane and anhydrous ethyl alcohol solvents were compared. All membranes showed the retention of phospholipids and high flow rates. However, the best performance was observed using the 50-kDa PVDF membrane in miscella hexane solvent, with a 95.5% retention of the phosphorus concentration (by a factor of 1.4, resulting in a permeate with 29 mg·kg−1 of phosphorus and an average flow rate of 48.1 L·m−2·h−1. This technology can be used as a low-pollution, economical alternative for the de-gumming of crude rice bran oil, being effective in the removal of hydratable and non-hydratable phospholipids, resulting in oils with a low phosphorus content.La tecnología de membrana ha ido ganando impulso en los procesos industriales, especialmente en tecnología de los alimentos. Se piensa que simplifica los procesos, reduce el consumo de energía, y elimina contaminantes. El objetivo fué estudiar el rendimiento de las membranas poliméricas de fluoruro de polivinilo (PVDF y poliétersulfona (PES en el desgomado de miscelas de aceite de salvado de arroz crudo, mediante el uso de un módulo de filtración de escalado tangencial. Además, se compararon las técnicas de filtración de miscelas de aceite, utilizando como disolventes hexano y alcohol etílico anhidro. Todas las membranas mostraron retención de los fosfolípidos y altas tasas de flujo. Sin embargo, se observó un mejor rendimiento usando la membrana de PVDF de 50-kDa con hexano como disolvente, con una retención del 95

  2. Mixed Matrix PVDF Membranes With in Situ Synthesized PAMAM Dendrimer-Like Particles: A New Class of Sorbents for Cu(II) Recovery from Aqueous Solutions by Ultrafiltration.

    Science.gov (United States)

    Kotte, Madhusudhana Rao; Kuvarega, Alex T; Cho, Manki; Mamba, Bhekie B; Diallo, Mamadou S

    2015-08-18

    Advances in industrial ecology, desalination, and resource recovery have established that industrial wastewater, seawater, and brines are important and largely untapped sources of critical metals and elements. A Grand Challenge in metal recovery from industrial wastewater is to design and synthesize high capacity, recyclable and robust chelating ligands with tunable metal ion selectivity that can be efficiently processed into low-energy separation materials and modules. In our efforts to develop high capacity chelating membranes for metal recovery from impaired water, we report a one-pot method for the preparation of a new family of mixed matrix polyvinylidene fluoride (PVDF) membranes with in situ synthesized poly(amidoamine) [PAMAM] particles. The key feature of our new membrane preparation method is the in situ synthesis of PAMAM dendrimer-like particles in the dope solutions prior to membrane casting using low-generation dendrimers (G0 and G1-NH2) with terminal primary amine groups as precursors and epichlorohydrin (ECH) as cross-linker. By using a combined thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) casting process, we successfully prepared a new family of asymmetric PVDF ultrafiltration membranes with (i) neutral and hydrophilic surface layers of average pore diameters of 22-45 nm, (ii) high loadings (∼48 wt %) of dendrimer-like PAMAM particles with average diameters of ∼1.3-2.4 μm, and (iii) matrices with sponge-like microstructures characteristics of membranes with strong mechanical integrity. Preliminary experiments show that these new mixed matrix PVDF membranes can serve as high capacity sorbents for Cu(II) recovery from aqueous solutions by ultrafiltration.

  3. The importance of pretreatment tailoring on the performance of ultrafiltration membranes to treat two-phase olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Ochando Pulido, J. M.

    2015-03-01

    Full Text Available In this work, the performance of an ultrafiltration (UF membrane in the treatment of the effluents by-produced by olive mills is addressed by applying different pretreatments on the raw effluents. By conducting a photo-catalytic process (UV/TiO2 PC after pH-temperature flocculation (pH-T F higher threshold flux values were observed for all feed stocks than by applying solely the pH-T F process, with an 18.8–34.2% increment. In addition, the performance of the UF membrane was also improved in terms of rejection efficiency, such that higher rejection values were yielded by the membrane for the organic pollutants (RCOD by 48.5 vs. 39.9% and 53.4 vs. 42.0%. The UF membrane performance was also improved in terms of the volume feed recovery factor (VFR, achieving up to 88.2 vs. 87.2% and 90.7 vs. 89.3%. Results in the same line were also observed when the highly polluted olives oil washing wastewater raw stream was previously mixed with the effluent stream coming from the washing of the olives. This permits the UF to permeate, achieving the standard limits to reuse the purified effluent for irrigation purposes (COD values below 1000 mg·L−1, which makes the treatment process cost-effective and results in making the olive oil production process environmentally friendly.En este estudio se aborda el rendimiento de una membrana de ultrafiltración (UF para el tratamiento de los efluentes generados por la industria oleícola, mediante la aplicación de distintos pretratamientos. Tras aplicar un proceso fotocatalítico (UV/TiO2 PC después de una floculación pH-temperatura (pH-T F se observaron flujos límite para todos los efluentes mayores que tras la aplicación únicamente del proceso pH-T F, con incrementos del 18.8–34.2 %. Además, el rendimiento de la membrana de UF mejoró en términos de eficiencia de rechazo, con mayores valores de rechazo respecto de los contaminantes orgánicos (RCOD, 48.5 vs. 39.9 % y 53.4 vs. 42.0 %. El rendimiento de

  4. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant.

    Science.gov (United States)

    Chon, Kangmin; Kim, Seung Joon; Moon, Jihee; Cho, Jaeweon

    2012-04-15

    The effects of the combined coagulation-disk filtration (CC-DF) process on the fouling characteristics and behavior caused by interactions between effluent organic matter (EfOM) and the membrane surfaces of the ultrafiltration (UF) and reverse osmosis (RO) membranes in a pilot plant for municipal wastewater reclamation (MWR) were investigated. The feed water from secondary effluents was treated by the CC-DF process used as a pretreatment for the UF membrane to mitigate fouling formation and the permeate from the CC-DF process was further filtered by two UF membrane units in parallel arrangement and fed into four RO modules in a series connection. The CC-DF process was not sufficient to mitigate biofouling but the UF membrane was effective in mitigating biofouling on the RO membrane surfaces. Fouling of the UF and RO membranes was dominated by hydrophilic fractions of EfOM (e.g., polysaccharide-like and protein-like substances) and inorganic scaling (e.g., aluminum, calcium and silica). The desorbed UF membrane foulants included more aluminum species and hydrophobic fractions than the desorbed RO membrane foulants, which was presumably due to the residual coagulants and aluminum-humic substance complexes. The significant change in the surface chemistry of the RO membrane (a decrease in surface charge and an increase in contact angle of the fouled RO membranes) induced by the accumulation of hydrophilic EfOM onto the negatively charged RO membrane surface intensified the fouling formation of the fouled RO membrane by hydrophobic interaction between the humic substances of EfOM with relatively high hydrophobicity and the fouled RO membranes with decreased surface charge and increased contract angle.

  5. Ultrafiltration of pegylated proteins

    Science.gov (United States)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  6. Effect of pH on floc properties and membrane fouling in coagulation - ultrafiltration process with ferric chloride and polyferric chloride.

    Science.gov (United States)

    Dong, Hongyu; Gao, Baoyu; Yue, Qinyan; Wang, Yan; Li, Qian

    2015-07-01

    Impact of pH on coagulation-ultrafiltration (C-UF) process was investigated with respect to coagulation efficiency, floc characteristics and membrane fouling in this study. Ferric chloride (FeCl3) and polyferric chloride with basicity of 1.0 and 2.2 (denoted as PFC10 and PFC22) were used as coagulants and Fe (III) species in them was measured by a timed complexation spectroscopy method. Floc properties under four pH conditions were evaluated using a laser diffraction particle sizing device. Ultrafiltration experiments were conducted by a dead-end batch unit. The results showed that organic matter removal efficiency was higher under acidic conditions than under other pH conditions and turbidity removal efficiency was higher under alkaline condition. At same pH, FeCl3 containing higher monomeric and polymeric species (Fea and Feb) had better organic matter removal and higher turbidity removal efficiency was obtained by coagulants with larger percentage of polymer or colloidal species (Fec). Flocs formed under acidic ranges were larger, weaker and looser. At pH 4.0, 7.0 and 9.0, flocs by FeCl3 were larger and weaker than these by PFC10, followed by PFC22. In case of FeCl3 and PFC10, acidic pH conditions were helpful to reduce membrane fouling. For PFC22, permeate fluxes were less sensitive to pH variations.

  7. Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes.

    Science.gov (United States)

    Furiga, Aurelie; Pierre, Gwenaelle; Glories, Marie; Aimar, Pierre; Roques, Christine; Causserand, Christel; Berge, Mathieu

    2011-01-01

    Bacteriophage MS2 is widely used as a surrogate to estimate pathogenic virus elimination by membrane filtration processes used in water treatment. Given that this water technology may be conducted with different types of waters, we focused on investigating the effects of ionic strength on MS2 behavior. For this, MS2 was analyzed while suspended in solutions of various ionic strengths, first in a batch experiment and second during membrane ultrafiltration, and quantified using (i) quantitative reverse transcriptase PCR (qRT-PCR), which detects the total number of viral genomes, (ii) qRT-PCR without the RNA extraction step, which reflects only particles with a broken capsid (free RNA), and (iii) the PFU method, which detects only infectious viruses. At the beginning of the batch experiments using solutions containing small amounts of salts, losses of MS2 infectivity (90%) and broken particles (20%) were observed; these proportions did not change during filtration. In contrast, in high-ionic-strength solutions, bacteriophage kept its biological activity under static conditions, but it quickly lost its infectivity during the filtration process. Increasing the ionic strength decreased both the inactivation and the capsid breakup in the feed suspension and increased the loss of infectivity in the filtration retentate, while the numbers of MS2 genomes were identical in both experiments. In conclusion, the effects of ionic strength on MS2 behavior may significantly distort the results of membrane filtration processes, and therefore, the combination of classical and molecular methods used here is useful for an effective validation of the retention efficiency of ultrafiltration membranes.

  8. Effect Study on Performance of Ceramic Membrane in Ultrafiltration of MOFs Nanocrystals%陶瓷膜超滤MOFs纳米晶性能影响研究

    Institute of Scientific and Technical Information of China (English)

    殷娜; 王珂

    2015-01-01

    研究MOFs纳米晶对陶瓷膜超滤过程的具体影响,以探讨陶瓷超滤膜耦合MOFs纳米晶资源化处理重金属废水的可行性。通过陶瓷膜超滤MOFs纳米晶悬浮液,研究纳米晶浓度、温度、压力对陶瓷膜超滤性能的影响。研究结果表明:陶瓷膜对悬浮液中的MOFs纳米晶可近100%截留,渗透液澄清透明且浊度接近去离子水;当纳米晶浓度为0.1 g/L,温度为30oC,操作压力0.125 MPa,pH 为8时,陶瓷超滤膜的渗透通量最大(438 L/m2· h),截留效果最好(99.99%)。因此,陶瓷超滤膜可以很好地实现对MOFs纳米晶的截留。本研究确定陶瓷超滤膜耦合MOFs纳米晶工艺可行,该工艺可将重金属废水中有价值的重金属进行吸附与分离,创造经济价值,并实现水循环利用,为重金属废水的资源化处理提供了一条新工艺。%The specific effects of MOFs nanocrystals on ceramic membrane ultrafiltration process were studied in order to in⁃vestigate the feasibility of resourced treatment of heavy metal wastewater by coupling. MOFs nanocrystals suspension was ultrafil⁃trated by ceramic membrane, the effects of nanocrystals concentration, temperature, pressure, and pH on ceramic membrane ultra⁃filtration were investigated. The results showed that the MOFs nanocrystals in suspension can be rejected nearly 100%by the ce⁃ramic membrane, with a clarified permeate and a near-deionized water turbidity;When the nanocrystals concentration was 0.1 g/L, temperature 30℃, operating pressure 0.125 MPa, and pH 8, the permeate flux of the ceramic ultrafiltration membrane was the larg⁃est (about 438 L/m2·h) and the rejection was the best (99.99%). Therefore, ceramic ultrafiltration membrane can provide a good re⁃jection of MOFs nanocrystals. This study was to determine the feasibility of the technology of ceramic ultrafiltration membrane cou⁃pled with MOFs nanocrystals, and this technology can adsorb and

  9. Research on Ultrafiltration Membrane Fouling Based on Chemical Cleaning%基于化学清洗的超滤膜污染研究

    Institute of Scientific and Technical Information of China (English)

    陈益清; 李凤; 乔铁军; 英海泉; 李文龙; 张金松

    2013-01-01

    先后采用次氯酸钠和盐酸两种药剂对长期运行的超滤膜进行化学清洗,利用基于化学清洗的膜污染研究方法,分析混凝—浸没式超滤组合工艺中造成膜污染的主要物质成分.结果表明,经次氯酸钠清洗后,膜池中UV254 DOG、Al、Fe的浓度增加,增幅分别达到0.146 3 cm-1、4.14mg/L、0.058 mg/L、0.005 mg/L;继续使用盐酸进行化学清洗,膜池中UV254、DOC、Al、Fe的浓度分别增加了0.070 9 cm-、0.83 mg/L、18.293 mg/L、2.673 mg/L.化学清洗后,膜丝表面的C、O、Si、A1的相对含量分别下降5.2%、10.5%、1.8%、0.6%,F的相对含量升高17.8%.长期运行的超滤膜存在严重的有机物污染和Al、Si等无机元素沉积现象,次氯酸钠清洗可有效去除膜的有机物污染,随后的盐酸清洗可解除无机元素的沉积,同时实现有机物的进一步去除,但化学清洗后仍然存在残留污染.%Chemical cleaning of long-term operated ultrafiltration membrane was carried out using sodium hypochlorite and hydrochloric acid,respectively.Research method of ultrafiltration membrane fouling based on chemical cleaning was used to identify the main components causing membrane fouling in the coagulation/immersed ultrafiltration combined process.The results showed that after cleaning with sodium hypochlorite,concentrations of UV254,DOC,Al and Fe in membrane tank increased by 0.146 3cm-1,4.14 mg/L,0.058 mg/L and 0.005 mg/L,respectively,and then after cleaning with hydrochloric acid,concentrations of UV254,DOC,Al and Fe in membrane tank increased by 0.070 9 cm-1,0.83mg/L,18.293 mg/L and 2.673 mg/L,respectively.After the combined chemical cleaning,the relative contents of C,O,Si and Al on membrane surface decreased by 5.2%,10.5%,1.8% and 0.6%,respectively,and F contents increased by 17.8%.The presence of severe organic contamination and deposition of Al,Si and other inorganic elements was observed after long-term operation of the

  10. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Science.gov (United States)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  11. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes.

    Science.gov (United States)

    Hou, Bin; Sun, Jian; Hu, Yong-you

    2011-03-01

    Different microfiltration membrane (MFM), proton exchange membrane (PEM) and ultrafiltration membranes (UFMs) with different molecular cutoff weights of 1K (UFM-1K), 5K (UFM-5K) and 10K (UFM-10K) were incorporated into air-cathode single-chamber microbial fuel cells (MFCs) which were explored for simultaneous azo dye decolorization and electricity generation to investigate the effect of membrane on the performance of the MFC. Batch test results showed that the MFC with an UFM-1K produced the highest power density of 324 mW/m(2) coupled with an enhanced coulombic efficiency compared to MFM. The MFC with UMF-10K achieved the fastest decolorization rate (4.77 mg/L h), followed by MFM (3.61 mg/L h), UFM-5K (2.38 mg/L h), UFM-1K (2.02 mg/Lh) and PEM (1.72 mg/Lh). These results demonstrated the possibility of using various membranes in the system described here, and showed that UFM-1K was the best one based on the consideration of both cost and performance.

  12. Dual effective organic/inorganic hybrid star-shaped polymer coatings on ultrafiltration membrane for bio- and oil-fouling resistance.

    Science.gov (United States)

    Kim, Dong-Gyun; Kang, Hyo; Han, Sungsoo; Lee, Jong-Chan

    2012-11-01

    Amphiphilic organic/inorganic hybrid star-shaped polymers (SPP) were prepared by atom transfer radical polymerization (ATRP) using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and 3-(3,5,7,9,11,13,15-heptacyclohexyl-pentacyclo[9.5.1.1³,⁹.1⁵,¹⁵.1⁷,¹³]-octasiloxane-1-yl)propyl methacrylate (MA-POSS) as monomers and octakis(2-bromo-2-methylpropionoxypropyldimethylsiloxy)-octasilsesquioxane (OBPS) as an initiator. Star-shaped polymers (SPM) having PEGMA and methyl methacrylate (MMA) moieties were also prepared for comparative purposes. Polysulfone (PSf) ultrafiltration membranes coated with the SPP showed higher bio- and oil-fouling resistance and flux-recovery ability than the bare PSf membrane. Moreover, the SPP-coated membranes exhibited better antifouling properties than the SPM-coated membrane when they were used for oil/water emulsion filtration. The dual effective antifouling properties of the SPP were ascribed to the simultaneous enrichment of hydrophilic PEG and hydrophobic POSS moieties on the membrane surfaces resulting in the decrease in interactions with proteins and the increase in repellence to oils.

  13. Effect of adjusted pH prior to ultrafiltration of skim milk on membrane performance and physical functionality of milk protein concentrate.

    Science.gov (United States)

    Luo, X; Vasiljevic, T; Ramchandran, L

    2016-02-01

    Processing conditions during ultrafiltration of skim milk influence properties of the casein micelle and thereby the physical properties of milk protein concentrate (MPC). The aim of the study was to establish the effects of pH adjustment of skim milk feed to obtain MPC with desired emulsification properties. The ultrafiltration was conducted using commercially pasteurized skim milk with the pH adjusted to 6.7 (control), 6.3, 5.9, or 5.5 at 15°C until a volume concentration factor of 5 was reached. Effects of pH adjustment on selected physico-chemical properties (Ca content, particle size, ζ-potential) and functionalities (solubility, heat stability, emulsification capacity, and stability) of MPC were determined. Lowering the feed pH solubilized colloidal calcium phosphate that substantially contributed to modifying the properties of casein. This caused a reduction in the particle size while increasing the net negative charge. The structural modifications in proteins were manifested in the Fourier transform infrared spectra. Subsequent concentration did not induce any further protein structural changes. Such modifications to the casein micelles and colloidal calcium phosphate negatively affected the solubility and heat stability of the corresponding MPC powders. However, the emulsion activity index improved only until the pH of the feed was lowered to 5.9 and declined when pH was dropped to 5.5, followed with the loss of stability. Readjusting the pH of MPC powder dispersions to 6.7 restored their surface properties and thereby their functionality. Lowering the feed pH also negatively affected the membrane performance by clogging the membrane pores and lowering the flux, particularly at pH 5.5. Adjusting pH to 5.9 produced MPC with optimum emulsifying properties with minimal influence on membrane performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Probing the roles of Ca(2+) and Mg(2+) in humic acids-induced ultrafiltration membrane fouling using an integrated approach.

    Science.gov (United States)

    Wang, Long-Fei; He, Dong-Qin; Chen, Wei; Yu, Han-Qing

    2015-09-15

    Membrane fouling induced by natural organic matter (NOM) negatively affects the performance of ultrafiltration (UF) technology in producing drinking water. Divalent cation is found to be an important factor that affects the NOM-induced membrane fouling process. In this work, attenuated total reflection-Fourier transformation infrared spectroscopy (ATR-FTIR) coupled with quartz crystal microbalance (QCM), assisted by isothermal titration calorimetry (ITC), is used to explore the contribution of Mg(2+) and Ca(2+), the two abundant divalent cations in natural water, to the UF membrane fouling caused by humic acid (HA) at a molecular level. The results show that Ca(2+) exhibited superior performance in accelerating fouling compared to Mg(2+). The hydrophobic polyethersulfone (PES) membrane exhibited greater complexation with HA in the presence of Mg(2+) and Ca(2+), compared to the hydrophilic cellulose membrane, as evidenced by the more intense polysaccharide C-O, aromatic C=C and carboxylic C=O bands in the FTIR spectra. The QCM and ITC measurements provide quantitative evidence to support that Ca(2+) was more effective than Mg(2+) in binding with HA and accumulating foulants on the membrane surfaces. The higher charge neutralization capacity and more favorable binding ability of Ca(2+) were found to be responsible for its greater contribution to the NOM-induced membrane fouling than Mg(2+). This work offers a new insight into the mechanism of cation-mediated NOM-induced membrane fouling process, and demonstrates that such an integrated ATR-FTIR/QCM/ITC approach could be a useful tool to explore other complicated interaction processes in natural and engineered environments.

  15. Mechanism of pretreatment using magnetic poly(glycidyl methacrylate) resin in an ultrafiltration membrane system used in algae-rich water treatment.

    Science.gov (United States)

    Liu, Yu; Chen, Wei; Dong, Changlong; Liu, Cheng; Liu, Hai Cheng

    2015-01-01

    Ultrafiltration (UF) membrane fouling brought by algae-rich water controlling has been the research focus in recent years. The pretreatment of magnetic poly(glycidyl methacrylate) (m-PGMA) for sedimental tank effluent was investigated as well as its performance in combined UF processes. The optimal dose of m-PGMA was found to be 5 mL/L, which can bring a significant improvement to the removal efficiency of natural organic matter. With regards to membrane fouling, the use of m-PGMA also resulted in lowered irreversible and reversible membrane resistances in comparison with results obtained when operating without m-PGMA. In addition, four classic filtration models were introduced to analyse the fouling mechanisms. The proportion of standard blocking of pores has been weakened in the mechanism of membrane fouling when the pretreatment of m-PGMA exists. A very loose cake layer and relieved pore blockage were observed by scanning electron microscopy during m-PGMA/UF process.

  16. Impact of organic fractions identified by SEC and fluorescence EEM on the hydraulic reversibility of ultrafiltration membrane fouling by secondary effluents

    KAUST Repository

    Haberkampa, Jens

    2011-05-01

    Loss of membrane filtration performance due to organic fouling is still a significant drawback for the application of low-pressure membranes in tertiary wastewater treatment. The present study investigates the relevance of different organic fractions present in secondary effluents in terms of hydraulically reversible and irreversible fouling of hollow-fibre ultrafiltration membranes. A good correlation between the hydraulically reversible filtration resistance and the total organic biopolymer concentration according to size exclusion chromatography (SEC) was observed. Qualitatively biopolymers consist mainly of polysaccharides as well as proteins with high molecular weight. Polysaccharides are retained by the membrane pores, but can be removed by simple UF backwashing. On the other hand, fluorescence excitation-emission matrix (EEM) analysis indicates that the extent of the hydraulically irreversible fouling correlates with the presence of protein-like substances. Removal of protein-like substances by biological slow sand filtration or chemical coagulation results in the significant reduction of the hydraulically irreversible fouling, which is presumably due to proteins in the molecular range of biopolymers. In contrast to the comparatively low sensitivity of colorimetric methods for the analysis of proteins and polysaccharides, the combined application of size exclusion chromatography and fluorescence EEM analysis is a promising tool for the determination of the organic fouling propensity of secondary effluents. ©2011 Desalination Publications. All rights reserved.

  17. Characterization of Natural Organic Matter and Disinfection Byproducts Formation Potential in Pilot-Scale Coagulation-Ultrafiltration Membrane Combined Process in Winter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yaozong; WANG Qishan; HE Fenghua; DING Shasha

    2010-01-01

    A pilot-scale ultrafiltration membrane plant was set up for treating Luanhe River water with flocculating and precipitation process of waterworks. The aim is to investigate the variation and characteristics of natural organic matter and disinfection byproducts formation potential in the whole process in winter. The results show that dissolved organic matter (DOM), UV254, trihaiomethanes formation potential (THMsFP) and haloacetic acids formation poten-tial (HAAsFP) of Luanhe River water were mainly distributed in the range of molecular weight (MW) <1 kDa, so were the membrane feed water and treated water by membrane. Specifc UV absorbance, specific THMsFP and spe-cific HAAsFP have the maximal value in the MW fraction of 1-3 kDa, except that specific UV absorbance of mem-brane feed water is in the range of 3-10 kDa; DOM of membrane backwash water is mainly distributed in the range of MW30 kDa and MW<1 kDa. It is the DOM in water backwashing in up way that made significant contribution to the higher dissolved organic carbon content in membrane backwash water. However, UV254, THMsFP and HAAsFP were mainly distributed in the range of MW<1 kDa. The highest concentrations of specific THMsFP and specific HAAsFP appeared in the MW fraction of 3-10 kDa. CHCl3 was the major THMs species during MBW chlorination and occupied more than 60% of the total THMsFP. Dichloroacetic acid and trichloroacetic acid were the main compo-nents in HAAsFP. The concentration of THMsFP and HAAsFP in MBW was influenced by operation period.

  18. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water

    Energy Technology Data Exchange (ETDEWEB)

    Mbareck, Chamekh, E-mail: chamec1@yahoo.fr [Universite de Nouakchott, Faculte des Sciences et Techniques, B.P. 5026, Nouakchott (Mauritania, Islamic Republic of); Nguyen, Quang Trong; Alaoui, Ouafa Tahiri [P.B.S. Universite de Rouen, 76821 Mont-Saint-Aignan (France); Barillier, Daniel [ERPCB, EA3914, IUT-UFR Sciences, Universite de Caen, 14032 Caen Cedex (France)

    2009-11-15

    Polysulfone (PSf)/polyacrylic acid ultrafiltration (PSf/PAA) membranes were prepared from a polymer blend in dimethylformamide by coagulation in water according to the wet phase inversion method. Immobilization of water-soluble PAA within the non-soluble PSf matrix was proven by the increase of ion exchange capacity and the intensity of the carboxyl groups' peak with the increase of PAA content as shown by Fourier transform infrared spectra. These results lead to consider that PSf and PAA form a semi-interpenetrating polymer networks. The obtained membranes showed a decrease of mean surface-pore sizes, the overall porosity and the hydraulic permeability with the increase in PAA content. Such results were imputed to the morphologic modifications of PSf film with the immobilization of increasing PAA amount. PSf/PAA membranes showed high lead, cadmium and chromium rejection which reaches 100% at pH superior to 5.7 and a low rejection at low pH. Moreover, the heavy metal rejection decreases with feed solution concentration and applied pressure increases. These behaviors were attributed to the role of carboxylic groups in ion exchange or complexation. As a matter of fact, the strong lead ion-PAA interactions were revealed by the scanning electron microscopy with energy dispersive X-rays (SEM-EDX).

  19. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions

    KAUST Repository

    Zheng, Xing

    2014-11-01

    EfOM has been regarded as a major organic foulant resulting in UF membrane fouling in wastewater reclamation. To investigate fouling potential of different EfOM fractions, the present study isolated EfOM into hydrophobic neutrals (HPO-N), colloids, hydrophobic acids (HPO-A), transphilic neutrals and acids (TPI), and hydrophilics (HPI), and tested their fouling effect in both salt solution and pure water during ultrafiltration (UF). Major functional groups and chemical structure of the isolates were identified using Fourier transform infrared spectroscopy (FT-IR) and solid-state carbon nuclear magnetic resonance (13C NMR) analysis. The influence of the isolation process on the properties of EfOM fractions was minor because the raw and reconstituted secondary effluents were found similar with respect to UV absorbance, molecular size distribution, and fluorescence character. In membrane filtration tests, unified membrane fouling index (UMFI) and hydraulic resistance were used to quantify irreversible fouling potential of different water samples. Results show that under similar DOC level in feed water, colloids present much more irreversible fouling than other fractions. The fouling effect of the isolates is related to their size, chemical properties, and solution chemistry. Further investigations have identified that the interaction between colloids and other fractions also influences the performance of colloids in fouling phenomena. © 2014 Elsevier Ltd.

  20. Titanium tetrachloride for silver nanoparticle-humic acid composite contaminant removal in coagulation-ultrafiltration hybrid process: floc property and membrane fouling.

    Science.gov (United States)

    Zhao, Yanxia; Sun, Yangyang; Tian, Chang; Gao, Baoyu; Wang, Yan; Shon, Hokyong; Yang, Yanzhao

    2017-01-01

    Titanium-based coagulation is expected to achieve both efficient water purification and sludge recycling. This study is the first attempt to use titanium tetrachloride (TiCl4) for silver nanoparticle (AgNP)-humic acid composite contaminant removal in a coagulation-ultrafiltration (C-UF) process, where characterization of flocs and membrane fouling under varied coagulant dose, initial solution pH, and AgNP concentration conditions are the main contents. Results suggested that the TiCl4 achieved high AgNP removal in the form of silver nanoparticle through adsorption and sweep flocculation and simultaneously exerted additional 68.2 % higher dissolved organic carbon removal than Al2(SO4)3. The TiCl4 produced larger and stronger flocs but with weaker recoverability and less compact degree than did Al2(SO4)3. Floc properties were independent of AgNP concentration except floc fractal dimension, which was negatively correlated with AgNP concentration. The TiCl4 precoagulation caused less membrane fouling within wider pH range than Al2(SO4)3 did in the C-UF process. Incorporation of AgNPs during the TiCl4 pretreatment process facilitated the mitigation of membrane fouling, which was, however, negligibly influenced by AgNP concentration in the case of Al2(SO4)3.

  1. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water.

    Science.gov (United States)

    Mbareck, Chamekh; Nguyen, Quang Trong; Alaoui, Ouafa Tahiri; Barillier, Daniel

    2009-11-15

    Polysulfone (PSf)/polyacrylic acid ultrafiltration (PSf/PAA) membranes were prepared from a polymer blend in dimethylformamide by coagulation in water according to the wet phase inversion method. Immobilization of water-soluble PAA within the non-soluble PSf matrix was proven by the increase of ion exchange capacity and the intensity of the carboxyl groups' peak with the increase of PAA content as shown by Fourier transform infrared spectra. These results lead to consider that PSf and PAA form a semi-interpenetrating polymer networks. The obtained membranes showed a decrease of mean surface-pore sizes, the overall porosity and the hydraulic permeability with the increase in PAA content. Such results were imputed to the morphologic modifications of PSf film with the immobilization of increasing PAA amount. PSf/PAA membranes showed high lead, cadmium and chromium rejection which reaches 100% at pH superior to 5.7 and a low rejection at low pH. Moreover, the heavy metal rejection decreases with feed solution concentration and applied pressure increases. These behaviors were attributed to the role of carboxylic groups in ion exchange or complexation. As a matter of fact, the strong lead ion-PAA interactions were revealed by the scanning electron microscopy with energy dispersive X-rays (SEM-EDX).

  2. 纸质复合超滤膜的研究与开发%Preparation and Characteristics of a Paper-based Ultrafiltration Membrane

    Institute of Scientific and Technical Information of China (English)

    蒋晓; 周小凡; 马金霞

    2012-01-01

    A novel paper-based ultrafiltration (UF) composite membrane was developed via paper coating technology. This composite membrane was obtained by coating PVA with glutaraldehyde as crosslinking agent on the surface of the paper sheet which was employed as the support layer. The paper sheet with a base weight of 50 g/m2 was used in this study, and the paper sheet was prepared using the furnish with 80°SR beating degree. The resulting membrane performed with satisfied results when the concentrations of PVA and glutaraldehyde were 0. 5% and 1.0% , the crosslinking reaction was conducted at 60℃ for 5 min, and the sample was dried at 20℃ , respectively. The results showed that the diameters of the pore of the membrane are 30~100 nm, and the membrane has the properties of high retention performance, good mechanical strength, temperature & alkali resistant properties and antifouling ability.%以定量50 g/m2的纸张(浆料打浆度为80°SR)为基膜(多孔支撑层),聚乙烯醇(PVA,质量分数0.5%)为成膜液,戊二醛(质量分数1%)为交联剂,在交联时间5 min、交联温度60℃、干燥温度20℃的条件下,利用造纸涂布工艺开发了一种纸质复合超滤膜.通过扫描电镜分析可知,纸质复合超滤膜孔径约为30 ~ 100 nm,达到超滤水平.纸质复合超滤膜的机械强度和抗污性能良好,且耐高温和耐碱.

  3. 沉淀膜滤组合工艺的研发与应用%Development and application of the sedimentation-ultrafiltration membrane combined process

    Institute of Scientific and Technical Information of China (English)

    张增荣; 邬亦俊; 许嘉炯; 雷挺; 谢进

    2011-01-01

    针对某些净水厂新建或改扩建项目投资有限、用地紧张、原水低温低浊且伴有突发性高浊度和一定程度有机污染的特点,从减少工程投资、节约占地面积、优化水处理流程和提高水处理效果的角度出发,将中置式高密度沉淀池工艺与浸没式超滤膜工艺相结合,研发出一种新型的水处理工艺--沉淀膜滤组合工艺.经过对沉淀膜滤组合工艺内沉淀部分、膜滤部分和辅助部分的布局和功能优化,合理地解决了由于组合工艺承载功能多、构造复杂等所造成的问题.研发成果已设计应用于某地10万m3/d规模净水厂的改扩建项目中,可以预计,该新型组合工艺在老水厂工艺升级改造或新建水厂项目中均具有广泛的应用前景.%According to the characteristics, such as limited investment, limited land, low temperature and turbidity, sudden high turbidity, and organic pollution to some extent in raw water in some newlybuilt water treatment plant(WTP) or extension WTP project, in order to reduce project investment and floor area, optimize water treatment process and improve the treatment effects, a new water treatment process, sedimentation-ultrafiltration membrane combined process, was developed through the combination of intermediate high density sedimentation tank and immersed ultrafiltration membrane process. By optimizing the arrangement and function of high density sedimentation part, immersed membrane part and assistant part in the process, some problems from multi-function and complex structure were resolved. This research result has been adopted in a renovation and expansion project of some WTP with 100 000 m3/d scale. It can be predicted that this new-style process would be widely employed in both the upgrading projects of old WTP and newly-built WTP.

  4. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation

    KAUST Repository

    Karunakaran, Madhavan

    2014-03-01

    A simple and efficient approach towards the fabrication of a skinned membrane with highly ordered pores in the nanometer range is presented here. We successfully combined the self-assembly of PS-b-PEO block copolymer and water induced phase separation for the preparation of isoporous PS-b-PEO block copolymer membranes. We produced for the first time asymmetric isoporous PS-b-PEO membranes with a 100nm thin isoporous separating layer using water at room temperature as coagulant. This was possible by careful selection of the block lengths and the solvent system. FESEM, AFM and TEM measurements were employed to characterize the nanopores of membranes. The pure water fluxes were measured and the flux of membrane was exceptionally high (around 800Lm-2h-1bar-1). Protein rejection measurements were carried out for this membrane and the membrane had a retention of about 67% of BSA and 99% of γ-globulin. © 2013 Elsevier B.V.

  5. Occurrence of N-nitrosodimethylamine precursors in wastewater treatment plant effluent and their fate during ultrafiltration-reverse osmosis membrane treatment.

    Science.gov (United States)

    Farré, M J; Keller, J; Holling, N; Poussade, Y; Gernjak, W

    2011-01-01

    The formation of N-nitrosodimethylamine (NDMA) is of major concern among wastewater recycling utilities practicing disinfection with chloramines. The NDMA formation potential (FP) test is a simple and straightforward method to evaluate NDMA precursor concentrations in waters. In this paper we show the NDMA FP results of a range of tertiary wastewater treatment plants that are also the source for production of recycled water using an Ultrafiltration - Reverse Osmosis (UF-RO) membrane process. The results indicate that the NDMA FP of different source waters range from 350 to 1020±20 ng/L. The fate of these NDMA precursors was also studied across the different stages of two Advanced Water Treatment Plants (AWTP) producing recycled water. These results show that more than 98.5±0.5% of NDMA precursors are effectively removed by the Reverse Osmosis (RO) membranes used at the AWTPs. This drastically reduces any potential for re-formation of NDMA after the RO stage even if chloramines may be present (or added) there.

  6. Analysis of the Influence of Test Conditions on the Rejection of Hollow Fiber Ultra-filtration Membranes%检测条件对中空纤维超滤膜截留率的影响研究

    Institute of Scientific and Technical Information of China (English)

    罗嫣; 张晓慧; 石超英

    2015-01-01

    An experiment was conducted on the testing conditions for hollow fiber ultra-filtration membranes by taking hollow fiber ultra-filtration membranes made from PES as the object and bovine serum albumin andα-chymotrypsin as testing standard reference.Testing conditions for hollow fiber ultra-filtration membranes included temperature of the testing liquid, concentration of testing liquid and the flow velocity.The result showed that testing liquid with a lower concentration and a relatively fast flow velocity could better reflect the rejection of the membrane tested at normal temperature.%以PES中空纤维超滤膜为研究对象,以牛血清白蛋白和α-糜蛋白酶为测试标准物质,对影响中空纤维超滤膜截留率的检测条件—测试液温度、测试液浓度和膜面流速进行了实验研究。结果表明:常温下,选择较低的测试液浓度和较高的膜面流速能更好的反映膜的截留率。

  7. CHARACTERISTICS OF MEMBRANE SURFACE HYDROPHILICITY DURING ULTRAFILTRATION PROCESS OPERATION%超滤运行过程中膜表面亲水性的变化特征

    Institute of Scientific and Technical Information of China (English)

    乔铁军; Doris W T AU; 张锡辉

    2013-01-01

    This paper aims to investigate the variance of membrane hydrophilicity during ultrafiltration (UF) operation.Membrane surface contact angle was studied on various operation conditions in a bench-scale experiment apparatus.The results showed that membrane contact angle decreased during the long term operation.Water backwashing and chemical cleaning both have a little influence on membrane contact angle.Membrane contact angle increased first and then decreased during the filtration period,and decreased with increasing the flux.Compare with sedimentation,granular activated carbon filtration effluent more easily caused the decline of contact angle.Membrane contact angle increased with increasing the pH values.Chemical cleaning led to the increase of contact angle.Contact angle changed a little when cleaned by NaOH,but increased obviously when cleaned by HCl and NaClO.In conclusion,membrane hydrophilicty varied during the UF operation,which was impacted by raw water characteristic,operation parameters and backwashing methods.%为了研究膜亲水性在超滤运行过程中的变化规律,采用小试装置,研究了在不同运行状况下的膜接触角变化.结果表明,在长期的运行过程中,膜接触角均不同程度地下降.单独水反冲洗和化学加强反洗对接触角的影响较小.膜接触角在过滤周期内先升高再降低.随着通量的增加,膜接触角逐渐降低.与沉后水相比,活性炭过滤出水更易引起膜接触角下降.随着pH升高,膜接触角会上升.化学清洗使膜接触角增加,当用NaOH清洗时,接触角变化不大;而用HC1和NaC1O清洗时,接触角明显增加.总之,膜表面亲水性在运行过程中会发生一定变化,并且受到原水水质、操作参数和反冲洗方式等方面影响.

  8. Preliminary Study on the Removal of Steroidal Estrogens Using TiO2-Doped PVDF Ultrafiltration Membranes

    Directory of Open Access Journals (Sweden)

    Mingquan Wang

    2016-04-01

    Full Text Available Steroidal estrogens are a representative type of endocrine-disrupting chemical contaminant that has been detected in surface water. In this paper, modified polyvinylidene fluoride (PVDF membranes were prepared by adding different amounts of polyvinyl pyrrolidone (PVP and nano-TiO2 particles. PVDF-PVP membrane adsorption, UV photolysis and PVDF-PVP-TiO2 membrane photocatalysis performance were investigated by considering the rejection of estrone (E1 and 17β-estradiol (E2 in the cross-flow filtration experiments. The mechanism of photocatalytic degradation on TiO2-doped PVDF membranes was also evaluated. The results from the study indicated that adding PVP and nano-TiO2 appropriately in PVDF membranes could be an effective method for better E1and E2 rejection due to adsorption and photocatalytic degradation.

  9. 芒硝型卤水精制过程中超滤膜的污染与清洗%Ultrafiltration Membrane Polution and Cleaning of Sodium Sulfate Type Brine Refining Process

    Institute of Scientific and Technical Information of China (English)

    张为之; 宫维; 徐卫华

    2015-01-01

    This paper studies on the assessmen t of pollution situation analysis of complex ultrafiltration membrane and cleaning effect in sodium sulfate type brine refining process.%研究芒硝型卤水在精制工艺过程中,用于除杂的超滤膜的污染情况分析及清洗效果评价。

  10. STUDY ON TUBULAR ULTRAFILTRATION MEMBRANE DESALINATION PRETREATMENT TECHNOLOGY OF EXTRACTING MAGNESIUM%管式超滤膜海水淡化提镁预处理工艺中试研究

    Institute of Scientific and Technical Information of China (English)

    赵旭臣; 刘恩华

    2011-01-01

    In the pilot process, we studied the tubular ultrafiltration membrane desalination pretreatment technology of extracting magnesium. The relationship among flux rate, runtime and operating pressure had been investigated. Then, the effect of running time on produced water turbidity was also studied .Tested the effect of magnesium extraction of experimental apparatus, and then tubular ultrafiltration membrane of the cleaning method was proposed. The results indicated that tubular ultrafiltration membrane on magnesium in seawater had very good removal efficiency, the produced water could meet the influent water demands of the reverse osmosis. Cleaning method was simple, the recovery rate was relatively high.%对管式超滤膜海水淡化提镁预处理工艺进行了中试研究.考察了产水流量与运行时间、操作压力之间的关系,以及运行时间对产水浊度的影响.并对试验装置的提镁效果进行了测试,同时,提出了管式超滤膜的清洗方法.结果表明,管式超滤膜对海水中的镁有很好的去除效果,产水中的镁含量符合反渗透原水的标准;清洗方法简便,通量恢复率高.

  11. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide

    Science.gov (United States)

    Li, Mingming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Li, Jing; Lv, Hanming; Qian, Xiaoming; Jiao, Xiaoning

    2017-03-01

    Nanoparticles may have suffered from low modification efficiency in hybrid membranes due to embedding and aggregating in polymer matrix. In order to analyze the modification mechanisms of nanoparticle migration and dispersion on the properties of hybrid membranes, we designed different F/ O ratios ( R F/ O ) of fluorinated graphene oxide (FGO, diameter = 1.5 17.5 μm) by carbon tetrafluoride (CF4) plasma treatment GO for 3, 5, 10, 15, and 20 min and successfully prepared novel PVDF hybrid membranes containing FGO via the phase inversion method. After a prolonged plasma treatment, the R F/ O of FGO was enhanced sharply, indicating an increasing compatibility of FGO with the matrix, especially FGO-20 (GO treated for 20 min). FGO contents in the top layer, sublayer, and the whole of membranes were probed by X-ray photoelectron spectroscopy, energy-dispersive spectrometer, and indirect computation, respectively. In the top layer of membranes, FGO contents declined from 13.14 wt% (PVDF/GO) to 4.00 wt% (PVDF/FGO-10) and 1.96 wt% (PVDF/FGO-20) due to the reduced migration ability of FGO. It is worth mentioning that PVDF/FGO-10 membranes exhibited an excellent water flux and flux recovery rate (up to 406.90 L m-2 h-1 and 88.9%), which were improved by 67.3% and 14.6% and 52.5% and 24.0% compared with those of PVDF/GO and PVDF/FGO-20 membranes, respectively, although the dispersion and migration ability of FGO-10 was maintained at a moderate level. It indicated that the migration and dispersion of FGO in membranes could result in dynamic equilibrium, which played a key role in making the best use of nanomaterials to optimize membrane performance.

  12. CT/PVDF 超滤膜的制备与油水分离应用的研究%Production of CT/PVDF Ultrafiltration Membrane and Its Application to Oil-water Separation

    Institute of Scientific and Technical Information of China (English)

    区文仕; 张国庆; 袁晓娇; 苏攀

    2015-01-01

    以钙钛矿型粉末(CT powder)作为无机添加剂与聚偏氟乙烯(PVDF)共混,采用相转换法合成了有机-无机共混超滤膜。利用平板错流超滤装置对超滤膜进行纯水通量、油水乳化液截留以及抗污染性能测试;通过扫描电子显微镜(SEM)观察了膜的表面形貌、断面结构和污染物分布情况;通过污水实验,测试CT/PVDF超滤膜的抗污染性能及自净性能。结果表明:当添加质量分数为1%CT powder时,可以较大地提高PVDF超滤膜的通量,减缓膜通量下降率,提高其抗污染性能和自净能力。且在油水分离实验中,渗透液水质,如浊度、油含量和化学需氧量等,均达国家排放标准。%The organic-inorganic blended ultrafiltration membrane is synthesized by the phase transforma-tion method, which mixed perovskite powder (CT powder) with polyvinylidene fluoride(PVDF).The pure water flux , oil rejection performance and antifouling property of ultrafiltration membrane were tested by the plate cross-flow ultrafiltration device .The surface morphology , cross-sectional morphology and the pollutants'distribution of membrane were detected by using scanning electron microscope ( SEM ) .The anti-fouling property and self-cleaning performance of CT/PVDF ultrafiltration membrane were tested by sewage experiments .The results show that adding 1%CT powder can greatly improve the flux of PVDF ultrafiltration membrane , slow down the rate of membrane flux decline and improve its anti-fouling prop-erty and self-purification .In the oil-water separation experiment , the quality of penetrating fluid , such as turbidity , oil content and chemical oxygen demand are up to national emission standards .

  13. Evaluating the efficiency of different microfiltration and ultrafiltration membranes used as pretreatment for Red Sea water reverse osmosis desalination

    KAUST Repository

    Almashharawi, Samir

    2013-01-01

    Conventional processes are widely used as pretreatment for reverse osmosis (RO) desalination technology since its development. However, these processes require a large footprint and have some limitation issues such as difficulty to maintain a consistent silt density index, coagulation control at low total suspended solids, and management of higher waste sludge. Recently, there has been a rapid growth in the use of low-pressure membranes as pretreatment for RO systems replacing the conventional processes. However, despite the numerous advantages of using this integrated membrane system mainly providing good and stable water quality to RO membranes, many issues have to be addressed. The primary limitation is membrane fouling which reduces the permeate flux; therefore, higher pumping intensity is required to maintain a consistent volume of product. This paper aims to optimize the permeation flux and cleaning frequency by providing high permeate quality. Different low-pressure polyethersulfone membranes with different pore sizes ranging from 0.1 lm to 50 kDa were tested. Eight different filtration configurations have been applied including the variation of coagulant doses aiming to control membrane fouling. Results showed that all the configurations with/without coagulation, provided permeate with excellent water quality which improves the stability of RO performance. However, more stable fluxes with less-energy consumption were achieved by using the 0.1 lm and 100 kDa membranes with 1 mg/L FeCl3 coagulation. The use of UF membranes, having tight pores, without coagulation also proved to be an excellent option for Red Sea water RO pretreatment. © 2013 Desalination Publications.

  14. An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents.

    Science.gov (United States)

    Khansary, Milad Asgarpour; Mellat, Mostafa; Saadat, Seyed Hassan; Fasihi-Ramandi, Mahdi; Kamali, Mehdi; Taheri, Ramezan Ali

    2017-02-01

    To analyze polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, here an in-through investigation on the suitability and compatibility of various polymers has been carried out. For this work, estradiol, estrone, testosterone, progesterone, estriol, mestranol, and ethinylestradiol were considered. A total number of 452 polymers were analyzed and initially screened using Hansen solubility parameters. The identified good pairs of hormones and polymers then were examined to obtain the equilibrium capacity of hormones removal from water effluents using a modified Flory-Huggins model. A distribution coefficient was defined as the ratio of hormones in water effluent phase and polymer phase. For removal of mestranol, estradiol and ethinylestradiol, no compatible polymer was identified based on initial screening of collected database. Three compatible polymers were identified for estriol. For progesterone, a wide variety of polymers was identified as good matching of polar, dispersion and hydrogen forces contributions can be observed for these pairs. For estrone, only two polymers can be proposed due to the mismatch observed between polar, dispersion and hydrogen forces contributions of other polymers and this hormone. The phase calculations showed that not all the identified good pairs could be used for practical separation applications. The domain of applicability of each good pair was investigated and potential polymers for practical micropollutants removal together with their removal capacity were represented in terms of phase envelops. The theoretical approach follows fundamental chemical thermodynamic equations and then can be simply applied for any system of interest.

  15. Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway.

    Science.gov (United States)

    Roblet, Cyril; Doyen, Alain; Amiot, Jean; Pilon, Geneviève; Marette, André; Bazinet, Laurent

    2014-03-15

    Soy peptides consumption has been associated with beneficial effects in type 2 diabetes patients. However, the peptide fractions responsible for these effects, and their mechanisms of action, have not been identified yet. In this study, we have isolated soybean peptides by electrodialysis with an ultrafiltration membrane (EDUF) at 50 V/100 kDa, and tested them for their capacity to improve glucose uptake in L6 muscle cells. We observed that these fractions were able to significantly enhance glucose uptake in the presence of insulin. The reported bioactivity would be due to the low molecular weight peptides (300-500 Da) recovered. Moreover, we observed that an enhancement of glucose uptake was correlated to the activation of the AMPK enzyme, well known for its capacity to increase glucose uptake in muscle cells. To our knowledge, this is the first time that bioactive peptides with glucose uptake activity have been isolated from a complex soy matrix, and that the implication of AMPK in it is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration.

    Science.gov (United States)

    Nifant'eva, T I; Shkinev, V M; Spivakov, B Y; Burba, P

    1999-02-01

    The assessment of conditional stability constants of aquatic humic substance (HS) metal complexes is overviewed with special emphasis on the application of ultrafiltration methods. Fundamentals and limitations of stability functions in the case of macromolecular and polydisperse metal-HS species in aquatic environments are critically discussed. The review summarizes the advantages and application of ultrafiltration for metal-HS complexation studies, discusses the comparibility and reliability of stability constants. The potential of ultrafiltration procedures for characterizing the lability of metal-HS species is also stressed.

  17. PREPARATION OF POLYETHERSULFONE ULTRAFILTRATION MEMBRANES FOR MILK CONCENTRATION AND EFFECTS OF ADDITIVES ON THEIR MORPHOLOGY AND PERFORMANCE

    Institute of Scientific and Technical Information of China (English)

    S.S. Madaeni; A. Rahimpour

    2005-01-01

    Polyethersulfone membranes were prepared from quaternary systems containing N,N-dimethylacetamide (DMAc) as solvent, polyvinylpyrrolidone (PVP) as constant additive and acetic acid, acetone and water as variable additives. Phase inversion via immersion precipitation was employed for manufacturing of membranes. The prepared films were immersed in the mixture of pure water and 2-propanol (30/70 vol%) as the non-solvent. Acetic acid caused an increment in the flux at high polymer concentration (16wt%) and a decline in the flux at low polymer concentrations (10 wt% and 13 wt%). Acetone and water as the solvent in the casting solution declined the flux at any polymer concentration tested. The morphology and performance of the prepared membranes were investigated by scanning electron microscopy and separation experiments using milk as the feed.

  18. Transparent exopolymer particles (TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling

    KAUST Repository

    Li, Sheng

    2016-07-02

    This study investigated the impact of coagulation on the transformation between colloidal and particulate transparent exopolymer particles (TEP) in seawater; and the effectiveness of a combined pretreatment consisting of coagulation and UF on minimizing TEP fouling of seawater reverse osmosis (SWRO) membranes. Coagulation with ferric chloride at pH 5 substantially transformed colloidal TEP (0.1–0.4) into particulate TEP (>0.4) leading to a better membrane fouling control. Both 50 and 100 kDa molecular weight cut-off (MWCO) UF membranes removed most of particulate and colloidal TEP without the assistance of coagulation, but coagulation is still necessary for better UF fouling control. The improvement of combined SWRO pretreatment with coagulation and 50 kDa UF membranes was not that much significant compared to UF pretreatment with 50 KDa alone. Therefore, the minimal coagulant dosage for seawater containing TEP should be based on the UF fouling control requirements rather than removal efficiency. © 2016 Elsevier Ltd

  19. Comparative experimental study on fouling mechanisms in nano-porous membrane: cheese whey ultrafiltration as a case study.

    Science.gov (United States)

    Torkamanzadeh, Mohammad; Jahanshahi, Mohsen; Peyravi, Majid; Shokuhi Rad, Ali

    2016-12-01

    Determination of fouling mechanisms and accurate quantitative prediction of nano-porous membrane behavior are of great interest in membrane processes. This work has focused on a comprehensive comparison of two classical and new fouling models. Different operational conditions were tested to analyze the level of agreement of these models with experimental observation. Whey solutions of 8, 0.8 and 0.5 g/L were ultrafiltered in transmembrane pressures (TMPs) of 300 and 500 KPa through a synthesized polyethersulfone/copolymer blend membrane. Fouling mechanisms and the effect of different combinations of TMPs and protein concentrations were determined and analyzed by fitting the experimental data to different models. Based on the results obtained from classical models, it was found that the predictions of the cake layer formation model were quite acceptable, followed by the intermediate blocking model. The new combined pore blockage-cake filtration model, however, was found to be very successful in predicting the flux decline over time for every operational condition tested, with all relative errors of prediction less than 5%. The latter also showed a good performance in the transition from the pore blockage mechanism to cake layer formation.

  20. Influencing Factors of Membrane Fouling in Treatment of Effluent from Sedimentation Tank by Ultrafiltration Membrane%超滤膜处理沉淀池出水的膜污染影响因素研究

    Institute of Scientific and Technical Information of China (English)

    汪燕; 魏俊起; 付婉霞; 何凤华; 张顺利

    2011-01-01

    在中试规模下采用超滤膜处理供水厂的沉淀池出水,考察了供水厂原水水质期、混凝剂和助凝剂的种类、膜通量以及过滤周期等因素对膜污染的影响.结果表明,不同水质期的膜污染速度顺序为:低温低浊期>常温常浊期>高温高藻期;混凝剂及助凝剂的种类和投量对膜污染有一定的影响;膜通量越小、过滤周期越短,则膜比通量下降速率和衰减速率越小,膜污染速度越慢.%In a pilot-scale experiment, the ultrafiltration membrane (UF) process was used to treat the effluent from sedimentation tank in waterworks.The influence of water quality phase, types of coagulant and coagulant aid, membrane flux and filtration cycle on the membrane fouling was investigated.The results show that the sequence of membrane fouling rate at different water quality phases is low temperature and turbidity phase > normal temperature and turbidity phase > high temperature and algae phase.The type and dosage of coagulant and coagulant aid influence the membrane fouling.The lower the membrane flux and the shorter filtration cycle are, the smaller the decreasing rate and the decay rate of specific flux are, and the lower the fouling rate is.

  1. Spectral element simulation of ultrafiltration

    DEFF Research Database (Denmark)

    Hansen, M.; Barker, Vincent A.; Hassager, Ole

    1998-01-01

    A spectral element method for simulating stationary 2-D ultrafiltration is presented. The mathematical model is comprised of the Navier-Stokes equations for the velocity field of the fluid and a transport equation for the concentration of the solute. In addition to the presence of the velocity...... vector in the transport equation, the system is coupled by the dependency of the fluid viscosity on the solute concentration and by a concentration-dependent boundary condition for the Navier-Stokes equations at the membrane surface. The spectral element discretization yields a nonlinear algebraic system....... The performance of the spectral element code when applied to several ultrafiltration problems is reported. (C) 1998 Elsevier Science Ltd. All rights reserved....

  2. 超滤膜富集干姜挥发油的工艺优化研究%Enriching technology optimization of volatile oil from Zingiberis Rhizoma by ultrafiltration membrane

    Institute of Scientific and Technical Information of China (English)

    沈洁; 韩志峰; 郭立玮; 樊文玲

    2012-01-01

    Objective To optimize the enriching technology of volatile oil from Zingiberis Rhizoma by ultrafiltration membrane. Methods The oil-water system of Zingiberis Rhizoma was selected as subject, using orthogonal design, taking stable membrane flux and chemical oxygen demand (COD) retention rate as comprehensive evaluation indexes. Results The optimum conditions of YSM-7 × 104 ultrafiltration membrane for oil-water separation of Zingiberis Rhizoma volatile oil were as following: the pressure of 0.15 MPa, temperature at 60 ℃, and the rotation speed at 150 r/min. The sequence for process parameters was: pressure, temperature, and rotation speed. Conclusion Enriching technology for the volatile oil of Zingiberis Rhizoma by ultrafiltration membrane has a broad applying prospect in large-scale production.%目的 确定超滤膜富集干姜挥发油的最佳工艺.方法 以干姜含油水体模拟体系为研究对象,采用正交设计,将稳定膜通量和化学需氧量(COD)截留率的综合值作为评价指标,优化干姜挥发油富集工艺.结果 截留相对分子质量7×104的平板超滤膜用于干姜挥发油油水分离的最佳条件:压力0.15 MPa、温度60℃、转速150 r/min;各工艺参数的主次顺序:压力、温度、转速.结论 超滤膜富集干姜挥发油的工艺,在中药大生产中具有广阔的应用前景.

  3. Nitrile bioconversion by Microbacterium imperiale CBS 498-74 resting cells in batch and ultrafiltration membrane bioreactors.

    Science.gov (United States)

    Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A

    2006-03-01

    The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity.

  4. 超滤膜净化微污染水效果及污染机理分析研究%Purification Effects of Ultrafiltration Membrane on Micro Polluted Water and Analysis on Fouling Mechanism

    Institute of Scientific and Technical Information of China (English)

    王鹏; 夏冬前

    2016-01-01

    粉末活性炭+超滤组合工艺(PAC-UF)对去除微污染水效果明显,实验结果表明此工艺对CODcr、NH3-N、UV254和浊度的去除率分别为80%~92%、40%~70%、71%~95%、95%~97%.在此基础上,进一步研究了不同材质和不同孔径超滤膜的膜污染行为,根据Hermia模型分析膜污染发现,三种材质超滤膜中,PVDF膜具有较好的抗污染性能;而不同孔径的超滤膜所对应的膜污染模型是不同的,分析膜污染模型发现,滤饼层阻力在膜过滤中占有重要地位.%The effect of powder activated carbon combined ultrafiltration( PAC-UF) on micro polluted water was obvious. The experimental results showed that the removal rates of CODcr , NH3 -N, UV254 and turbidity were 80% ~92%,40% ~70%, 71% ~95%,95% ~97%, respectively. On this basis, this paper analyzed the different materials and different aperture ultrafilter membrane fouling behavior, according to Hermia model analysis of membrane fouling found that PVDF membrane had better anti-pollution performance in the three kinds of membrane material. Different diameter of the ultrafiltration membrane corresponding to the membrane pollution model type was different. The analysis model of membrane pollution found that the cake layer resistance in membrane filtration occupied an important position.

  5. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  6. 抗污染PVA/PVDF电纺纳米纤维复合超滤膜的制备及过滤性能%Preparation and Filtration Performance of Antifouling PVA/PVDF Composite Ultrafiltration Membrane Based on Electrospinning Technology

    Institute of Scientific and Technical Information of China (English)

    武凌辉; 汪滨; 王娇娜; 李从举

    2016-01-01

    以聚对苯二甲酸二醇酯( PET)无纺布为基底,聚偏氟乙烯( PVDF)纳米纤维为支撑层,聚乙烯醇(PVA)纳米纤维膜为分离层,采用静电纺丝法制备超滤膜,并用水/丙酮混合溶液对复合纳米纤维膜表面进行溶液处理,再加入戊二醛交联改性得到致密分离层。采用扫描电子显微镜( SEM)和红外光谱( FTIR)表征了复合超滤膜的表面,用水接触角( WCA)表征复合超滤膜的亲水性。在0�02 MPa恒压下死端过滤油/水乳液,测试复合超滤膜的过滤性能。结果表明,最优条件下制备的复合超滤膜死端过滤油/水乳液的通量为(42�50±4�78) L/(m2·h),截留率达到(95�72±0�33)%;循环使用5次后,依然具有较好的过滤性能,常压下死端过滤复合超滤膜的纯水通量为(3469±28) L/(m2·h)。%A composite ultrafiltration membrane containning polyethylene terephthalate ( PET ) non⁃woven fabric substrate and poly(vinylidene fluoride)(PVDF) nanofibers as support layer, polyvinyl alcohol(PVA) nanofiber membrane for barrier layer was prepared using electrospinning method. A mixture of acetone and water solution was used for crosslinking treatment to form the dense barrier layer. The ultrafiltration membranes were characterized by Fourier transform infrared(FTIR) spectroscopy, scanning electron micrograph(SEM) and water contact angle(WCA). Filtration performance of the resulting PVA/PVDF composite ultrafiltration membranes was evaluated by the oil/water emulsions separation system. The results showed that the optimal composite ultrafiltration membrane possessed general flux[(42�50±4�78) L/(m2·h)] and high rejection rate[(95�72±0�33)%] at very low feeding pressure(0�02 MPa), after 5 times recycled, it still has good filter performance. The pure water flux using the dead⁃end filtrationof composite ultrafiltration membrane at atmospheric pressure was

  7. Effect of operation mode on filtration period of ultrafiltration membrane reactor in water supply system%运行条件对给水超滤膜装置工作周期的影响

    Institute of Scientific and Technical Information of China (English)

    曹长春; 崔赟璐; 古川宪治

    2011-01-01

    The interception of impurity and adsorption of organic matters causes the decrease of ultrafiltration membrane flux, frequent chemical cleaning or membrane module replacement enhances the cost of water making. The influences of different operation modes on filtration performance and operation effect of ultrafiltration membrane reactor were compared and discussed. The results showed that: it was too late to carry out the backwashing of ultrafiltration membrane reactor after the stable accumulation of pollutants in membrane module; the effect of a short time backwashing carried out after a certain time interval of filtration was better than that of the backwashing carried out after the stable accumulation of pollutants in membrane module; for the recovery and the stability of membrane filtration flux as well as the extension of filtration period, the cleaning effect of the membrane by the condensed air-filtered water combined process was many times better than that by the filtered water backwashing under the same condition. It could be seen that, intermittent operation of ultrafiltration module was favorable for the membrane flux recovery and the decrease of chemical cleaning frequency. Therefore, to select a suitable operation mode and make full use of the convenience and economy of physical cleaning has significant meaning in both technical and economical aspects.%杂质的截留和有机物的吸附使超滤膜通量降低,频繁的化学清洗或更换膜组件使制水成本上升.试验比较了几种运行方式对超滤膜装置过滤性能的影响,探讨其对延长超滤膜装置运行的效果,研究结果表明:超滤膜装置的反冲洗不能等到膜组件污染物聚集稳定后再进行;在一定的过滤时间间隔后设定短暂的反冲洗,其效果优于膜组件污染稳定后的反冲洗;当膜清洗采用压缩空气和滤后水联合作用,对膜的过滤通量恢复和稳定,过滤周期的延长比相同条件下的滤后水反冲洗效

  8. PAC addition on immersed ultrafiltration membrane for treatment of taste and odor%采用浸没式超滤膜-粉末炭工艺处理含嗅水

    Institute of Scientific and Technical Information of China (English)

    梁爽; 李星; 杨艳玲; 刘玲; 刘永旺; 程振杰; 李波

    2012-01-01

    Hybrid processes of conventional treatment and PAC addition on immersed ultrafiltration membrane was evaluated for the treatment of taste and odor in algal-rich water simulated. The results confirm that in the immersed ultrafiltration membrane bioreactor PAC has sufficient adsorption and long-term biodegradation of dissolved organic materials which cannot be filtrated by ultrafiltration membrane alone. UF-PAC processes could intensify the conventional treatment. Through the advanced treatment of UF-PAC, the algae cells are all removed and the average removal efficiencies of DOC, UV254 and CODmn increase by 19.6%, 30.0% and 28.3% compared with the conventional treatments, respectively. And 2-MIB and geosmin in effluent both fall below the odor threshold, which guarantee the effluent quality. Membrane fouling was mitigated by both conventional treatment and PAC in the membrane bioreactor the transmembrane pressure increases by only 9 kPa in 30 d.%为解决饮用水的嗅味问题,通过实验室配水实验,考察常规处理加浸没式超滤膜-粉末炭组合工艺(UF-PAC)对含嗅高藻水的处理效果.研究结果表明:在浸没式超滤膜生物反应器中,粉末活性炭可以吸附超滤膜无法截留的溶解性有机物,并能充分发挥吸附作用和长期的生物降解作用.浸没式超滤膜-粉末炭组合工艺可以强化常规工艺的处理效果,将藻细胞完全截留,对DOC,UV254和CODMn的去除率在常规处理的基础上分别平均增长19.6%,30.0%和28.3%;经UF-PAC处理后,出水中二甲基异茨醇和土臭素质量浓度均降至10 ng/L以下,出水水质得到保证.常规处理和膜生物反应器中的PAC共同延缓膜污染,运行30 d跨膜压差仅增加9 kPa.

  9. Application of ultrafiltration during extracorporeal membrane oxygenation%体外膜肺氧合期间超滤技术的应用

    Institute of Scientific and Technical Information of China (English)

    赵成秀; 李彤; 段大为; 胡晓旻; 张强; 吴鹏; 稂与恒; 侯跃龙

    2011-01-01

    OBJECTIVE To introduce the connection and effect of extracorporeal memhrane oxygenation ( ECMO ) combination with ultrafiltration in extracorporeal circulation. METHODS 3 severe heart disease patients with anuria and tissue oedema,whose age ranged from 57 years to 78 years ( average 69 years ) and body weight ranged from 63 kg to 89 kg ( average 73. 6 kg ) were treated with Medtronic ECMO circuit to assist cardiac function. The ultrafiltration devise with idio - designed methods was connected at the three - way joint of ECMO circuit and negative pressure site of centrifugal pump. RESULTS The ultrafiltration volume during ECMO assisting ranged from 5 750 ml to 14 850 ml of the three patients. After ECMO assisting combination with ultrafiltration for 36 hours and 42 hours. urinary production of two patients were recovery, who weaned off ECMO after cardiac function recovery and discharged. Another patient gave up treatment after ECMO assisting for 48 hours and left hospital. CONCLUSION For ECMO combination with ultrafiltration in extracorporeal circulation, the conjunction was simple , deflation was thorough and convenient, the effect of filtration was well and safe. Ultrafiltration was fitted for ECMO assist homeochronously.%目的 总结体外膜肺氧合(ECMO)中结合超滤一体化连接方法及应用效果.方法 3例重症心脏病患者,年龄57~78(69)岁,体重63~89(73.6)kg.采用Medtronic ECMO管路行ECMO心功能支持,ECMO前及ECMO期间无尿、组织脏器水肿,在ECMO管路三通板处与离心泵接负压处连接超滤.结果 3例患者在ECMO过程中滤水5 750~14 850 ml,2例患者经过ECMO辅助联合超滤治疗后36 h、42 h尿量逐渐恢复,心功能恢复后撤除ECMO,后康复出院,另1例患者ECMO辅助48 h,家属放弃治疗自动出院.结论 ECMO中结合超滤连接方法简便,排气方便彻底,滤水效果良好、安全,适合ECMO过程中同期使用.

  10. MgAl2O4 Ultrafiltration Ceramic Membrane Derived from Mg-Al Double Alkoxide%铝镁双醇盐制备MgAl2O4尖晶石陶瓷超滤膜

    Institute of Scientific and Technical Information of China (English)

    张国昌; 陈运法; 吴振江; 谢裕生

    2000-01-01

    Spinel (MgAl2O4) ultrafiltration membranes were prepared on porous α-Al2O3 plates via the sol-gel route. Mg-Al double alkoxide [MgAl2(iprO)s] was first synthesized as the precursor, then hydrolyzed and peptized in aqueous solution. The gel layer was coated from the colloidal sol on the intermediate layer (α-Al2O3), which was formerly prepared to modify the porous substrate, and then thermally treated at 900℃. The processing parameters such as pH, temperature and sol composition during the sol preparation were optimized for controlling particle size. The pore size of the 2μm thick top layer is about 13 nm as estimated by both the BSA (Bovine Serum Albumin)retention test and an empirical equation.The water permeability of the obtained spinel membrane is 55~143 kg/(min.cm2.Pa).

  11. Mathematical modeling of methoxyanabasine C11H16N2O polymer solution ultrafiltration

    Science.gov (United States)

    Satayev, Marat; Shakirov, Birzhan; Mutaliyeva, Botagoz; Satayeva, Lazzat; Altynbekov, Rustem; Baiysbay, Omirbek; Alibekov, Ravshanbek

    2012-06-01

    This work covers the mathematical modeling of ultrafiltration with immobile membranes for physiologically-active of methoxyanabasine C11H16N2O polymer solution. Methoxyanabasine is used as low toxic antineoplastic drug. On the basis of theoretical and experimental analysis of mass transfer and hydrodynamics, it is offered the mathematical model of permeability of membranes at an ultrafiltration of polymer solutions. Further the formulas for determination of factor of concentration polarization and ultrafiltration selectivity are calculated.

  12. 磺甲基化聚砜超滤膜的制备及在脱毛废液中的应用%Preparation of sulfomethyl polysulfone ultrafiltration membrane and its application to the treatment of unhairing waste liquid

    Institute of Scientific and Technical Information of China (English)

    张刚; 王鸿儒; 王倩倩; 苏小舟; 黄颖超

    2013-01-01

    Using hydroxymethyl sodium sulfonate as sulfonating agent,polysulfone ultrafiltration membrane has been modified by sulfomethylation and hydrophilization.The optimum modification mixture ratio is n(HOCH2SO3Na)∶n (PSF) =1.5 ∶1,and pH=8.0.When the operation conditions are 0.085 MPa,and temperature 25 ℃,polysulfone ultrafiltration membrane and polysulfone membrane are used respectively for the separation treatment of tannery unhairing waste liquid.Its COD,ash content,sulfide,suspended matter,pH and chroma before and after the treatment are compared.The results show that after being treated with the modified membrane,the chroma and suspended solids of the wastewater are effectively removed.The intercepting rate of COD and sulfide in wastewater could be above 94% and 71%,respectively.%以羟甲基磺酸钠为磺化剂,对聚砜超滤膜进行磺甲基化亲水化改性,最佳改性配比为n(HOCH2SO3Na)∶n(PSF)=1.5∶1,pH=8.0;在0.085 MPa、25℃下将改性聚砜超滤膜和聚砜膜分别用于工业脱毛废水的分离处理,并对比了废液处理前后的COD、灰分、硫化物、悬浮物、pH和色度等.结果表明,改性膜处理后废水的色度、悬浮物都得到有效去除,对废水中COD、硫化物的截留率分别达到了94%、71%以上.

  13. Formation et résistance au transfert d'un dépôt de colloïdes sur une membrane d'ultrafiltration

    OpenAIRE

    Bacchin, Patrice

    1994-01-01

    The aim of this work is the study of the influence of the properties of a colloidal suspension on tangential flow ultrafiltration. Experiments, described in the first chapter, have been performed with a colloidal suspension of clay in the presence of electrolytes. Properties of such a suspension are presented in the second part where the suspension stability is considered as a consequence of electrostatic interaction as in the DLVO theory. The third chapter describes the effect of the suspens...

  14. Influence of powdered activated carbon addition on organic matter removal from seawater using ultrafiltration membrane%投加粉末活性炭对超滤膜去除海水中有机物的影响

    Institute of Scientific and Technical Information of China (English)

    王文华; 赵瑾; 姜天翔; 王静; 张雨山

    2016-01-01

    Ultrafiltration(UF)membrane fouling by organic matter remains a significant challenge in the application of low pressure membrane filtration in the seawater desalination project. Powdered activated carbon(PAC)adsorption is one of the most common pretreatment technologies for seawater ultrafiltration process. In this paper,removal of organic matter from seawater using UF and PAC-UF processes were compared. The influence of PAC addition on organic matter removal was investigated using excitation-emission matrix(EEM) spectroscopy. Flux decline and membrane fouling in seawater ultrafiltration processes with and without PAC addition were also discussed. The experimental results indicated that PAC addition increased turbidity and organic matter removal from seawater. DOC removal by UF increased from 55.1% without PAC to 77.6% when 200mg/L PAC was added. The higher humic acid(HA)substances removal rate by PAC-UF processes can be attribute to PAC adsorption and cake formation on the membrane surface. It was not significantly to decrease the flux decline rate after PAC adding in comparison to ultrafiltration without PAC addition. However,the cake formation on the membrane surface can avoid organic matter contacting directly with the membrane, which is helpful to mitigate irreversible membrane fouling.%超滤膜的有机污染问题是膜法海水预处理技术在海水淡化工程应用面临的重要挑战,粉末活性炭吸附是目前常用的膜前预处理手段之一。本文对比分析了直接超滤和投加粉末活性炭后对海水中有机物的截留能力,利用三维荧光光谱分析了投加粉末活性炭对超滤膜截留有机物的影响机制,并考察了海水超滤过程中通量变化及膜污染情况。研究结果表明,投加粉末活性炭能够强化超滤膜对海水浊度和有机物的去除,当粉末活性炭投量为200mg/L时,整个系统对海水中DOC去除率从直接超滤时的55.1%提高到77.6%。利用粉末活性

  15. Intermediate to long term optimization of dead-end ultrafiltration

    NARCIS (Netherlands)

    Zondervan, Edwin

    2007-01-01

    Ultrafiltration (UF) is increasingly used as a technology for surface water purification. UF membranes have high selectivity and became economically attractive during the last fifteen years. However, membrane performance is influenced by fouling. For this reason frequent cleaning of the membrane is

  16. Intermediate to long term optimization of dead-end ultrafiltration

    NARCIS (Netherlands)

    Zondervan, Edwin

    2007-01-01

    Ultrafiltration (UF) is increasingly used as a technology for surface water purification. UF membranes have high selectivity and became economically attractive during the last fifteen years. However, membrane performance is influenced by fouling. For this reason frequent cleaning of the membrane is

  17. The Fermentation of Pear Vinegar & the Sterilization by Ultrafiltration Membranes%梨醋发酵工艺研究及超滤除菌

    Institute of Scientific and Technical Information of China (English)

    赵敏; 马彬彬; 洪厚胜

    2015-01-01

    以砀山梨为原料,采取自吸式发酵罐深层液态半连续法酿造梨醋,采用单因素和正交试验优化发酵工艺条件,结果表明,果胶酶解处理的最优条件为:pH3.5、温度35℃、果胶酶用量1.8 U/100 mL、酶解3 h;酒精发酵条件:酵母接种量0.35%、原料装液量70%、温度30℃、糖度为20%、发酵4 d;醋酸发酵最佳条件为:半连续发酵,温度为30℃,接种量为10%,分割量为35%,发酵9 d,所得梨醋酸度可达7.0 g/100 mL。膜超滤澄清除菌的操作条件进料温度26℃、压力0.1 MPa、过滤时间1 h。该工艺酿造的梨醋符合国家相关卫生标准,酸味柔和,具有醋香味和梨果的清香,同时保留了梨果中的功能性成分,有一定保健功效。%Pear vinegar was produced by semi-continuous liquid fermentation in self-aspirating fermentation tank with Dangshan pear as raw materials. The fermentation conditions were optimized by single factor test and orthogonal test. The experimental results indicated that, the best processing conditions of pectase hydrolysis included pH3.5, temperature at 35℃, the use level of pectinase was 1.8 U/100 mL, and 3 h hydrolysis;the best fermenting conditions of alcohol included yeast inoculating quantity as 0.35%, liquid filling volume as 70%, temperature at 30℃, sugar content as 20%, and 4 d fermentation;the best fermenting conditions of pear vinegar included semi-continuous fermentation at 30℃for 9 d with the split amount as 35% and the inoculating quantity as 10%. As a result, the acidity of pear vinegar reached up to 7.0 g/100 mL. The conditions for the sterilization by ultrafiltration membrane were as follows:filling temperature was at 26℃, pressure was at 0.1 MPa, and filtration time was 1 h. The produced pear vinegar was in line with national sanitary standards and it had both vinegar aroma and pear aroma. Besides, it reserved the functional components of pear, so it had healthcare

  18. A study on concentration polarization in ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S. [North Carolina Agricultural and Technical State Univ., Greensboro (United States); Govind, R. [Univ. of Cincinnati, OH (United States)

    1993-01-01

    A finite-difference solution of coupled transport equations for momentum and solute continuity is presented to model the concentration polarization in a tubular ultrafiltration (UF) system. The model includes the effects of solute osmotic pressure and solute rejection at the membrane surface, axial pressure drop and resistance of the gel layer. This provides a fundamental understanding of the dynamics of various operating parameters on concentration polarization and transmembrane flux. Simulation results are presented for a wide range of operating variables to show their effects on local variation of solute concentration and transmembrane flux. The numerical results were also compared with previously published experimental data, which shows that a concentration polarization model based on constant membrane permeability (usually obtained from pure water flux data) grossly overestimates the flux behavior. If the effect of gel polarization is included, the model can predict the actual permeate flux very closely. Thus, in modeling ultrafiltration, one needs to be careful in using the appropriate membrane permeability terms. The commonly used intrinsic membrane permeability which is usually a constant, may not describe the true flux behavior in ultrafiltration. Actually the nature of the feed, solute-surface interaction and gel layer formation control the effective permeability, which varies axially along the membrane length.

  19. 我国聚醚砜超滤膜的研发进展综述%Overview of Research Progress at Home on Development of Polyethersulfone(PES)Based Ultrafiltration Membrane

    Institute of Scientific and Technical Information of China (English)

    徐建新; 王松涛; 杨海军; 聂雪川; 赵璨; 仵峰; 侯铮迟

    2016-01-01

    Recent years has witnessed rapid development in ultrafiltration (UF)membrane technology,driven by the industrial demand for membranes with better performance. This paper reviews domestic studies on various factors impacting UF membrane performance such as preparation conditions,composition of the casting solution,additives,surface modification and maintenance method,and on application of UF membranes in food industry,chemical engineering,and waste water treatment,in the hope that such insights would help in optimizing the formula and fabrication process for preparing PES UF membranes with excellent performance.%超滤膜技术在近年发展迅速,市场对其性能的要求也随之提高。文中从成膜环境、膜液中的溶剂和添加剂、成膜材料、亲水性改性方法和维护保养等方面对超滤膜性能的影响以及超滤膜在食品、化工和污水处理方面的应用进行文献综述,为优化配方和成膜工艺提供借鉴,以制备性能更加优良的聚醚砜超滤膜。

  20. A pilot-scale hybrid municipal wastewater reclamation system using combined coagulation and disk filtration, ultrafiltration, and reverse osmosis: removal of nutrients and micropollutants, and characterization of membrane foulants.

    Science.gov (United States)

    Chon, Kangmin; Cho, Jaeweon; Shon, Ho Kyong

    2013-08-01

    A pilot-scale municipal wastewater reclamation system using combined coagulation and disk filtration (CC-DF), ultrafiltration (UF), and reverse osmosis (RO) membrane has been built to investigate removal of water contaminants and fouling mitigation. The reclaimed water using the pilot system could meet draft regulations on wastewater reuse of the California Department of Public Health (DOC: 0.5 mgC/L; TN: 5 mgN/L). The removal of micropolluants by the CC-DF process and UF could not be evaluated by their MW, Log D, and charge characteristics. However, they were identified as governing factors affecting the removal of micropollutants by the RO. The CC-DF process might effectively remove particulate materials capable of contributing to cake layer formation on the UF membrane surfaces but the residual coagulants provided a strong effect on fouling formation of the UF membrane. Thus, hydrophobic fractions of the desorbed UF membrane foulants were higher than those of the desorbed RO membrane foulants.

  1. Design of the postposition submerged ultrafiltration membrane process after horizontal sedimentation tank%平流沉淀池后置浸没式超滤膜工艺方案设计

    Institute of Scientific and Technical Information of China (English)

    肖敏杰

    2011-01-01

    南方某水厂原设计规模10万m3/d,原水为水库水,水质达Ⅱ类水标准.由于需水量增长,需新增3万m3/d产水量,而水厂可供扩建的用地无法设置常规处理工艺的沉淀池和滤池.经方案设计,采用在平流沉淀池后部布置浸没式超滤膜的净水组合工艺,并根据用地特点,因地制宜地布置了膜池辅助车间,使水厂总处理能力达到13万m3/d.详细介绍了平流沉淀池后置浸没式超滤膜工艺设计及膜清洗方式.%The former design scale of some water treatment plant in southern China was 1×105 m3 /d, and the raw water could meet second class water standards. Due to the increase of demand, the production needed to increase by 3×104 m3/d, while the available land for expansion could not place the traditional sedimentation tank and filter tank. In the process design, the postposition submerged ultrafiltration membrane process after horizontal sedimentation tank was employed, and the membrane tank subsidiary workshop was placed according to the local circumstances, so as to increase the total water treatment plant production to 1. 3×105 m3/d. This paper introduced the postposition submerged ultrafiltration membrane process design and cleaning method in detail.

  2. Pilot-scale Experiment on Ultrafiltration Membrane for Process Transformation of Waterworks%超滤膜用于水厂工艺改造的中试研究

    Institute of Scientific and Technical Information of China (English)

    张耀宗; 王启山

    2012-01-01

    采用超滤膜结合水厂的传统处理工艺,考察了絮凝/沉淀/超滤组合工艺(工艺1)和絮凝/沉淀/砂滤/超滤组合工艺(工艺2)对不同水质期的滦河原水的处理效果.结果表明,两种工艺对浊度均具有良好的去除效果,出水浊度都稳定在0.1 NTU以下;相比之下,工艺2对CODMn、UV254、TOC和氨氮的去除效果更好,并且其出水水质更稳定,抗水质冲击能力更强,可用通量和产水率更高;两种工艺对DOM和UV254的去除作用主要体现在分子质量>30 ku的有机物上.%The combined process of flocculation, sedimentation and ultrafiltration membrane (process 1) and the combined process of flocculation, sedimentation, sand filtration and ultrafiltration membrane (process 2 ) were used to treat Luan River water. The treatment efficiency of the two combined processes in different water quality periods was investigated. The results showed that turbidity could be effectively removed by the two combined processes, and the effluent turbidity was all less than 0.1 NTU. Compared with the process 1, the process 2 has better removal rates of CODMnl, UV254, NH3 - N and TOC, a more stable effluent quality, a stronger shock load resistance and a higher membrane flux and permeability. The removal of DOM and UV254 in the two processes was mainly reflected in the molecular weight range of more than 30 ku.

  3. [Exploration of ultrafiltration failure in peritoneal dialysis].

    Science.gov (United States)

    Bellavia, Salvatore; Coche, Emmanuel; Goffin, Eric

    2008-12-01

    Ultrafiltration failure (UFF) is a common complication of peritoneal dialysis (PD). It may be due to a technical problem (PD catheter obstruction or migration, peritoneal leaks or intraperitoneal adhesions) or because of a peritoneal membrane alteration (hyperpermeability, aquaporin dysfunction, peritoneal sclerosis or enhanced lymphatic reabsorption). We, here, present the case of a patient who developed several consecutive PD complications that eventually led to UFF. We also present an algorithm, which may help clinicians to establish a precise etiological diagnosis of UFF.

  4. Experiment of Water Treatment of Direct Filtration under Low Temperature and Low Turbidity with Ultrafiltration Membrane Process%超滤膜直接过滤处理低温低浊水的试验

    Institute of Scientific and Technical Information of China (English)

    傅金祥; 卢善文; 曲明; 郜玉楠

    2014-01-01

    中试采用超滤膜直接过滤处理低温低浊水,考察了超滤膜的除污性能和影响膜污染的各种因素。结果表明超滤膜直接过滤的出水浊度恒低于0.1 NTU,对COD和UV254的平均去除率分别为17%和14%;处理水量越低,过滤周期越短,反洗强度越大,跨膜压差(TMP)增长越缓慢,越有助于缓解膜污染,使超滤膜系统能够长时间稳定运行;低温对膜污染的影响不容忽视。%A pilot experiment of water treatment of direct filtration under low temperature and low turbidity with ultrafiltration membrane was carried out. The result shows that turbidity is always below 0. 1 NTU;removal rates of COD and UV254 are 17% and 14%,respectively. When less water is treated,filtration cycle is shorter,backwashing intensity is greater and TMP grows more slowly, it is more helpful to alleviating membrane fouling and making system run stably. Low temperature on membrane fouling can not be ignored.

  5. Separation of function component of jujube dates by ultrafiltration and nanofiltration membranes%超滤、纳滤技术分离大枣功效成分的研究

    Institute of Scientific and Technical Information of China (English)

    原超; 范三红; 林勤保; 王亚云

    2012-01-01

    The ultrafiltration and nanofiltration membranes were used to separate the crude polysaccharides, crude oligosaccharides and monosaccharide from Ziziphus jujube dates extract. The membranes with different molecular weight cut-off(10000, 5000, 800, 500 u) were screened and the operation conditions were optimized. It turned out that ultrafiltration was performed with 10000 u membrane and 3% of soluble solids at 0.12 MPa. Nanofiltration was carried out with 500 u membrane and 1.0% of soluble solids at 0.54 MPa. The final yield of crude polysaccharides was 5.21%, crude oligosaccharides was 19.24% and the monosaccharide was 58.27%. The purity was up to 52.61%, 54.78 % and 84.00%, respectively.%以大枣汁为材料,研究不同截留分子量(10000、5000、800、500 u)的超滤和纳滤膜分离大枣中粗多糖、粗低聚糖和单糖糖浆的效果,筛选了不同截留分子量的超滤膜和纳滤膜,并分别优化操作条件,得到适宜的工艺条件。结果表明:选用10000 u超滤膜,大枣汁可溶性固形物含量为3%,操作压力0.12 MPa;选用500 u纳滤膜,可溶性固形物含量为1.0%,操作压力0.54MPa。在此条件下,粗多糖、粗低聚糖和单糖糖浆的得率依次为5.21%、19.24%和58.27%,纯度可达到52.61%、54.78%和84.00%。

  6. EFFECT OF TiO2 SOL ON PVDF ULTRAFILTRATION MEMBRANE STRUCTURE AND PERFORMANCE%TiO2纳米粒子对PVDF超滤膜的结构与性能影响研究

    Institute of Scientific and Technical Information of China (English)

    闫勇; 赵长伟; 曾楚怡; 王涛; 栾兆坤

    2011-01-01

    采用溶胶-凝胶法制备了不同纳米TiO2溶胶含量的TiO2/PVDF超滤膜,探讨TiO2溶胶及其含量对膜性能及结构的影响,并利用X射线衍射、扫描电子显微镜、红外光谱和接触角测量仪表征了复合膜的结构.结果表明,经纳米TiO2溶胶改性后,TiO2/PVDF复合膜的孔隙率、接触角和结构等都发生了显著的变化,在TiO2溶胶添加质量分数为4%时条件下,膜的孔隙率为74.5%,水通量为430.6L·m-2·h-1,截留率为82.5%.%Polyvinylidene fluoride (PVDF)/TiO2 hybrid ultrafiltration(UF) membranes with different nano TiO2 sol content were prepared by sol-gel method, the effects of TiO2 sol and its content on the membrane performance and structure were discussed, and the structure of the composite membranes were investigated by XRD, SEM, FT-IR, contact angle goniometer. The results showed that porosity, contact angle and membrane structure of TiO2/PVDF membrane all improve after adding nano TiO2 sol, Under the condition of the addition of TiO2 was 4%, porosity was 74.5%,the flux was 430.6 L·m-2·h-1 and retention rate was 82.5%.

  7. 聚偏氟乙烯/纳米纤维素复合超滤膜的研究%Study on PVDF/nanocelluloses composite ultra-filtration membrane

    Institute of Scientific and Technical Information of China (English)

    白浩龙; 李帅; 张力平

    2011-01-01

    以聚偏氟乙烯为原材料,聚乙烯吡咯烷酮( PVP K30)为添加剂,并向聚偏氟乙烯铸膜液中混入纳米纤维素,采用相转化工艺制备了复合超滤膜.通过正交试验分析了各因素对产品性能的影响,并得出了制备复合超滤膜的最优条件:聚偏氟乙烯质量分数为14%,添加剂PVP K30质量分数为0.5%,纳米纤维素加入量为0.7%,空气中溶剂蒸发时间为10s,凝胶浴为水.测定复合超滤膜的水通量、截留率、平均孔径、孔隙率、力学强度等一系列性能,膜的水通量为40.7 L/(m2·h),对牛血清蛋白的截留率为91.8%,孔隙率为52.3%,平均孔径为15.3 nm.%The composite ultra-filtration membrane is prepared by means of phase inversion process, with polyvinylidene fluoride (PVDF) as raw material, polyvinyl pyrrolidone ( PVP K30) as additive, and nanocellulose is added to PVDF casting solution as well. Through orthogonal test analysis,the optimal conditions are obtained;the content ( mass fraction) of PVDF is 14% , the content of additive PVP K30 is 0. 5% , the content of nanocelluloses is 0.7% , in the air,the solvent evaporation time is 10 seconds,and the coagulation bath medium is water. The properties such as pure water flux,rejection ratio,mean pore size,porosity and mechanical strength of the composite ultra-filtration membrane is tested. In this condition,the composite membrane's pure water flux could reach 40. 7 L/(m2 -h) ,the rejection ratio of the bovine serum albumin (BSA) solution (1 g/L) is 91.8% ,the porosity is 52.3% and the mean pore size is about 15. 3 nm.

  8. Ultrafiltration of Shiitake Polyphenol with Ultrasound Enhancement

    Institute of Scientific and Technical Information of China (English)

    Defang SHI; Hong GAO; Xiuzhi FAN; De YANG; Shujing XUE; Wei CHENG

    2015-01-01

    Ultrafiltration (UF) experiments were subjected to the concentration of Shi-itake polyphenol(SP) with ultrasound (US) enhancement, by which the effects of the main parameters such as ultrasonic power, transmembrane pressure, temperature and axial flow-rate on the membrane fluxes were analyzed, and then the SP of the ultrafiltrate after fol ow-up resin adsorption by HPLC was investigated. The results in-dicated that US could significantly enhance the membrane fluxes. The optimal con-ditions obtained was as fol ows: 0.60 W/cm2 US power, axial flow-rate of 80 L/h, operation temperature 30 ℃, transmembrane pressure 0.10 MPa. US increased the absorption capacity of the absorbent resin during the fol owing stage. The HPLC analysis also showed that catechins were purified to some extent as the ultrafiltrate was treated by US and macroporous resin, indicating the technology of US en-hancement coupled with UF showed the potential for concentration and purification of SP by absorbent resins.

  9. Sequential micro and ultrafiltration of distillery wastewater

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2015-01-01

    Full Text Available Water reuse and recycling, wastewater treatment, drinking water production and environmental protection are the key challenges for the future of our planet. Membrane separation technologies for the removal of all suspended solids and a fraction of dissolved solids from wastewaters, are becoming more and more promising. Also, these processes are playing a major role in wastewater purification systems because of their high potential for recovery of water from many industrial wastewaters. The aim of this work was to evaluate the application of micro and ultrafiltration for distillery wastewater purification in order to produce water suitable for reuse in the bioethanol industry. The results of the analyses of the permeate obtained after micro and ultrafiltration showed that the content of pollutants in distillery wastewater was significantly reduced. The removal efficiency for chemical oxygen demand, dry matter and total nitrogen was 90%, 99.2% and 99.9%, respectively. Suspended solids were completely removed from the stillage.

  10. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...... that EUF is an effective method to filter high concentrated solutions at low crossfiow. The flux improved 3-7 times for enzymes with a significant surface charge at an electric field strength of 1600V/m compared to conventional UF. The greatest improvement is observed at high concentration. Not all enzymes...... can be filtered with EUF, mainly due to a low surface charge and impurities in the feed solution. Using a pulsed electric field did not improve the flux compared to a constant field. Gel electrophoresis experiments of the enzymes appear to be a useful method for estimating the influence...

  11. Modelação matemática e otimização operacional de processos de membrana de ultrafiltração Mathematical modeling and operational optimization of ultrafiltration membrane processes

    Directory of Open Access Journals (Sweden)

    Sandro Rogério Lautenschlager

    2009-06-01

    Full Text Available A utilização de processos de membrana em Engenharia Ambiental tem expandido de forma significativa nos últimos anos e, tendo em vista a importância da possibilidade de otimização da sua operação com vistas à produção máxima de permeado em função do tempo, este trabalho teve por objetivo definir uma técnica de otimização da operação de sistemas de ultrafiltração mediante o estudo de ciclos de operação e lavagem. Os ensaios experimentais foram efetuados tendo-se empregado duas membranas de ultrafiltração com diferentes pesos moleculares de corte e, com base nos resultados experimentais, foi possível a proposição de um modelo matemático que permitiu a otimização da operação de sistemas de ultrafiltração, o que possibilitou o aumento da produção do volume de permeado em cerca de 14%.The utilization of membrane processes in Environmental Engineering has expanded significantly in the last few years. This paper had the primary objective of defining an optimization technique for ultrafiltration (UF membrane operation by studying UF membrane operation and backwashing cycles. The main importance of UF operation optimization is to maximize permeation production as a function of time. Experimental tests were conducted with two UF membranes with different molecular weight cutoff. The experimental results led to the proposition of a mathematical model for the optimization of UF systems; such optimization conducted in practice to an increase of 14% in the permeate volume production.

  12. 陶瓷膜超滤技术浓缩乳清的工艺参数研究%Research of processing parameters of whey protein concentrate by inorganic ceramic membrane ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    高红艳; 刘振民; 莫蓓红

    2012-01-01

    The whey protein concentrate was ultrafiltrated by the inorganic ceramic membrane tubes whose aperture was 20nm to concentrate the by-product cheese whey. The optimal condition of pressure of membrane, temperature of material, and pH were studied.The results showed that the pressure of membrane at 0.25MPa, temperature of material at 51℃, and pH at 6.1, the flux of membrane was 169.37L/m2 · h under the optimal conditions.In addition,the whey protein could be concentrated to 5.4% in whey concentrate liquid, and the whey protein concentrate could reach 38.2% by spray drying.%采用孔径为20nm的无机陶瓷膜超滤干酪副产物乳清,浓缩乳清蛋白。通过对膜过滤压力、温度以及乳清pH三个因素进行单因素分析以及正交实验优化,得到最佳工艺条件:操作压力0.25MPa,温度51℃,pH6.1,此条件下超滤膜渗透通量达到169.37I/m2·h,乳清蛋白可浓缩至5.4%,经喷雾干燥制得WPC蛋白质含量为38.2%。

  13. Genotoxic effects of old landfill leachate on HepG2 cells after nitration/ultrafiltration/reverse osmosis membrane treatment process.

    Science.gov (United States)

    Cheng, Rong; Zhao, Ling; Yin, Pinghe

    2017-06-06

    Toxicity assessment of nitration/ultrafiltration/reverse osmosis (nitration/UF/RO) project, which has recently been widely used as an efficient process with applications in practical leachate treatment, was very limited. In the present study, DNA damage of leachates was investigated before and after the nitration/UF/RO process by a battery of assays with human hepatoma cells. Methyletrazolium assay showed a high cytotoxicity of 97.1% after being exposed to the highest concentration of raw leachate for 24 h, and a cytotoxicity of 26% in effluent at a concentration of 30% (v/v). Both comet assay (24 h) and γH2AX flow cytometer assay (3 h) showed increased levels of DNA damage in cells exposed to raw leachate and after nitration/UF-treated leachate followed by a significant increase of 7-ethoxyresorufin-O-deethylase activity. However, the effluent after nitration/UF/RO treatment showed no significant difference compared to negative control for γH2AX flow cytometer assay but slight DNA damage at concentrations of 20% and 30% (v/v) as well as increase of 7-ethoxyresorufin-O-deethylase. Analysis showed that nitration/UF/RO process exhibited high removal of physicochemical indexes and significant reduction of toxic and genotoxic effects of leachate, but still demands an improvement to reduce all possible negative risks to the environment and humans. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. PAC/UF组合工艺对17α-乙炔基雌二醇的去除效果%Removal of 17α-ethynyestradiol in Drinking Water by Combined Process of Powdered Activated Carbon and Ultrafiltration Membrane

    Institute of Scientific and Technical Information of China (English)

    李青松; 高乃云; 马晓雁; 楚文海

    2011-01-01

    采用活性炭/超滤膜(PAC/UF)组合工艺去除饮用水中的17α-乙炔基雌二醇(EE2),考察了EE2初始浓度、过滤速率、PAC投加量、水体中的阴离子合成洗涤剂及有机物等因素对PAC/UF组合工艺去除水体中EE2的影响.结果表明,单独UF对EE2的截留效果极差,截留率约为5%;PAC/UF组合工艺可有效去除水体中的EE2,且去除率随活性炭投加量的增加而线性增加;水体中的有机物和阴离子合成洗涤剂会降低组合工艺对EE2的去除效果.%The combined process of powdered activated carbon (PAC) and ultrafiltration ( UF) membrane was adopted to remove 17a-ethynyestradiol ( EE2) in drinking water. The influences of the initial concentration of EE2, filtration rate, PAC dosage, anionic synthetic detergent and organic substances in water on removal of EE2 were investigated. The results show that single UF membrane has a poor rejection efficiency of EE2, and the removal rate of EE2 is only 5%. The combined process of PAC and UF membrane can remove EE2 effectively, and the removal rate increases linearly with the increase of PAC dosage. The anionic synthetic detergent and organic substances in water can decrease the removal efficiency of EE2.

  15. 蛋白质对 PVDF 超滤膜污染行为的界面微观作用力解析%Adhesion Force Analysis of Protein Fouling of PVDF Ultrafiltration Membrane Using Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    王旭东; 周淼; 孟晓荣; 王磊; 黄丹曦; 夏四清

    2015-01-01

    To determine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration membrane over a range of pH, atomic force microscopy (AFM) and self-made colloidal probes were used to detect the microscopic adhesion forces of membrane-BSA and BSA-BSA, respectively. The results showed a positive correlation between the flux decline extent and the membrane-foulant adhesion force in the initial filtration stage, whereas the foulant-foulant interaction force was closely related to the membrane fouling in the later filtration stage. Moreover, the membrane-BSA adhesion interaction was stronger than the BSA-BSA adhesion interaction, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and foulant. At the same pH, the adhesion force between PA membrane-BSA was smaller than that of PP membrane-BSA, illustrating the more hydrophilic the membrane was, the better the antifouling ability it had. The adhesion force between BSA-BSA fouled PA membrane was similar to that between BSA-BSA fouled PP membrane. These results confirmed that elimination of the membrane-BSA adhesion force is important to control the protein fouling of membranes.%采用原子力显微镜,结合自制微颗粒探针,对膜-污染物及污染物-污染物间微观作用力进行了检测分析,考察了不同 pH条件下牛血清蛋白(BSA)在不同界面特性 PVDF 超滤膜上的膜污染行为。结果表明,在膜过滤初期,通量剧烈衰减主要由 BSA和膜之间黏附力作用导致,在膜过滤后期,BSA 与 BSA 之间的黏聚作用则是影响后期膜污染行为的主要因素; PA 膜-BSA 和PP 膜-BSA 之间的黏附作用力均大于 BSA-BSA 之间的黏聚作用力,说明在整个膜过滤过程中,BSA 与 PVDF 超滤膜之间的黏附作用对膜污染起主导作用;相同 pH 条件下,PA 膜-BSA 之间的微观作用小于 PP 膜-BSA 之间的相互作用力,说明亲水性较强的 PA 膜具

  16. 两种材质超滤膜在饮用水处理中的比较研究%Comparison of two kinds of ultrafiltration membranes in treatment of drinking water

    Institute of Scientific and Technical Information of China (English)

    方旭东; 赵倩倩; 张茜

    2013-01-01

    In order to contrast the water purifying capacity of two kinds of immersed ultrafiltration (UF) membranes that made of PVC and PVDF,a pilot test on contaminated water source treatment was carried out in a waterwork in southern China.The results showed that,immersed UF membrane process had good removal effect on turbidity,bacteria and organic matters:the effluent turbidity stabilized below 0.1 NTU,the permanganate index was lower than 3 mg/L,and both the total bacteria count and the coliform group count could meet the specification of GB 5749-2006 Sanitar standard for drinking water.Through the comparative analysis between the said two kinds of UF membranes made of different materials,it could be seen that,the purification performances of them was similar.The pollution and energy consumption conditions of the mentioned membranes were also tested,and the results showed that,the UF membrane made of PVDF was superior to the alloy UF membrane made of PVC for its better antifouling ability and lower energy consumption when treating a ton of water.%采用PVC合金和PVDF 2种材质的浸没式超滤膜对南方某水厂受污染的水源进行中试试验,对比2种膜材质在净水处理中的应用性能.结果表明,浸没式超滤膜工艺对浊度、细菌总数和有机物具有较好的去除效果:出水浊度稳定在0.1 NTU以下,高锰酸盐指数低于3 mg/L,细菌总数和大肠菌群数均达到GB 5749-2006《生活饮用水卫生标准》的要求.在净水效能对比分析中,2种材质的超滤膜性能表现基本相当.试验同时对比了2种超滤膜的膜污染及能耗情况,PVDF超滤膜在抗污染性能及吨水能耗上要优于PVC合金超滤膜.

  17. Evaluating the Efficiency of Different Microfiltration and Ultrafiltration Membranes Used as Pre-treatment for Reverse Osmosis Desalination of Red Sea Water

    KAUST Repository

    AlMashharawi, Samer

    2011-07-01

    With the increase in population density throughout the world and the growing water demand, innovative methods of providing safe drinking water are of a very high priority. In 2002, the United Nations stated in their millennium declaration that one of their priority goals was “To reduce by half, by the year 2015, the proportion of people who are unable to reach or to afford safe drinking water” [1]. This goal was set with high standards and requires a great deal of water treatment related research in the coming years. Since 1990’s, drinking water treatment via membrane filtration has been widely accepted as a feasible alternative to conventional drinking water treatment. Nowadays, membrane processes are used for separation applications in many industrial applications. Over the past two decades, there has been a rapid growth in the use of low-pressure membrane for drinking water production. These membrane systems are increasingly being accepted as feasible and sustainable technologies for drinking water treatment. Like any innovative process, it has limitations; the primary limitation is membrane fouling, a phenomenon of particles accumulation on the membrane surface and inside its pores. It has the ability to reduce the permeate flux so that higher pumping intensity is required to maintain a consistent volume of product and increasing the cleaning frequency. This project has investigated the rate of reduction in the flux and the increase of pumping intensity using different membranes. Low pressure membranes with three different pore sizes (0.1μm MF, 100kDa UF, and 50kDa UF) have been tested. Eight different filtration configurations have been applied to the membranes including the variation of coagulant (FeCl3) addition aiming mitigation fouling impact in order to maintain consistent permeate flux, while monitoring several water quality parameters before and after treatment such as turbidity, SDI15, total organic carbon (TOC) and particle size distribution

  18. Comparative Study on Performance and Organic Fouling of ZrO2 Ceramic Membranes in Ultrafiltration of Synthetic Water and Wastewater Treatment Plant Effluent

    KAUST Repository

    Li, Cen

    2011-07-01

    Adsorption of organic matter on ceramic membrane can lead to hydraulic-irreversible fouling, which decreases the permeate flux and the cost-efficiency of membrane devices. In order to optimize the filtration process, detailed information is necessary about the organic fouling mechanisms on ceramic membranes. In this study, dead-end filtration experiments of both synthetic water and secondary effluent from a wastewater treatment plant (WWTP) were conducted on a ZrO2 ceramic membrane. The experiment results of synthetic water showed that humic acid (HA) was able to be adsorbed by the ZrO2 membrane and cause permeate flux decline; and that HA-tryptophan mixture, at the same DOC level, promoted the filtration flux decline; DOC removal in the case of HA-tryptophan was lower than that of HA alone. It seems that hydrophilic organic matter with low molecular weight have some specific contribution to the organic fouling of the ZrO2 membrane. The results also suggest that tryptophan molecules were preferentially adsorbed on the membrane at the beginning, exposing their hydrophobic sides which might further adsorb HA from the feed water. During the filtration of WWTP effluent, protein-like substances (mainly tryptophan-like) were also preferentially adsorbed on the membrane compared with humic-like ones in the initial few cycles of filtration. More humic-like substances were adsorbed in the following filtration cycles due to the increase of membrane hydrophobicity. A significant rise in hydraulic-irreversible flux decline was obtained by decreasing pH from near pHpzc to below pHpzc of the membrane. It suggests that a positively charged surface is preferred for HA adsorption. Ionic strength increase did not affect the filtration of HA, but it lessened the hydraulic-irreversible flux decline of HA-tryptophan filtration. The adsorption of HA-tryptophan can be attributed to outersphere interaction while HA adsorption is mainly caused by inner-sphere interaction. The results of

  19. Fouling mechanism in advanced treatment of dyeing wastewater by ultrafiltration membrane%超滤膜深度处理染整废水的膜污染机理

    Institute of Scientific and Technical Information of China (English)

    付乐乐; 李方; 吴亮; 王歌

    2013-01-01

    实验采用不同规格和材料的超滤膜进行染整二级尾水分离实验,对超滤膜污染机理及影响因素进行了分析.实验采用红外光谱分析了聚醚(PES)膜、聚砜(PSF)膜和聚醚酰亚胺(PEI)膜3种超滤膜材料,对比了污染前后膜面的接触角以及不同切割分子量对膜通量及出水水质的影响,并利用线性化的Herman堵塞模型拟合了不同分子量超滤膜的堵塞模型,初步探讨了超滤膜的污染机理.实验结果表明,膜材料表面亲水性基团的多少与初始膜通量大小成正比,出水COD值随超滤膜切割分子量减小而减小.切割分子量同为2 000 Da的3种超滤膜中,PES膜的处理效果最佳,出水COD平均值为47.81 mg/L;PEI膜通量最高,平衡通量可达50 L/(m2·h);切割分子量为1 000、10 000的超滤膜堵塞机理符合滤饼过滤模型,100 000的超滤膜堵塞机理更接近于完全堵塞模型;1 000的聚醚砜材质膜(PES)更适合此类废水的深度处理.%The fouling mechanism and impact factors of ultrafiltration ( UF) membrane with various membrane materials and types for the dyeing wastewater secondary effluent were analyzed. The membrane materials were analyzed with the ftir spectrum ( FTIR ) and the contact angles of virgin and fouled membranes with poly-ethersulfone ( PES ) , polysulfone ( PSF ) and polyetherimide ( PEI) were compared. The effects of molecular weight cut off (MWCO) on the membrane flux were investigated in the UF experiment. The membrane fouling mechanism was discussed primarily by fitting to the linearized Herman' s blocking models. The results show that the hydrophilic group on the surface of the membrane material is in direct proportion with the size of the initial flux. COD concentration of permeate decreases with the decreasing of MWCO of UF membranes. Among the three membranes with different materials, the separation efficiency of PES is the highest with effluent COD 47.81 mg/L. The membrane flux of PEI is the

  20. 新型抑菌Cu2+固载超滤膜的制备及性能表征%Preparation and Characterization of a Novel Anti-biofouling Ultrafiltration Membrane with Cu2+ Immobilization

    Institute of Scientific and Technical Information of China (English)

    陈培培; 徐佳; 蒋钰烨; 冯晨晨; 高从堦

    2013-01-01

    Polyethylenimine(PEI) polyelectrolyte layer was firstly formed on a polyacrylonitrile ( PAN) substrate. Copper( Ⅱ ) ions were immobilized onto the PEI layer via two different approaches for the anti-biofouling membrane preparation, including static immersion and dynamic electro-deposition. Finally, a novel ultra-filtration membrane with Cu2+ immobilization was obtained. The results indicated that both the PEI layer and Cu2+ on the resulting membrane had relatively high stability. The rejection rate to humic acid of this membrane up to 99. 0% , and this membrane also had an excellent bacteriostatic property, the bacteriostasis rate was 85.7%. In addition, compared to the static immersion method, dynamic electro-deposition method was a much more effective method for immobilizing Cu2+, which could reduce the Cu2+ immobilization time and significantly improve the immobilization efficiency.%将聚乙烯亚胺(PEI)通过静电作用自组装于聚丙烯腈(PAN)多孔基膜表面,形成高分子聚电解质层;进一步通过浸泡法和动态电沉积法,将Cu2+固载于高分子聚电解质层上,制备出新型Cu2+固载超滤膜.研究结果表明,Cu2+固载超滤膜的PEI层和Cu2+均具有较高稳定性;该分离膜对腐植酸的截留率高达99.0%,且具有优良的抑菌性能,抑菌率高达85.7%.此外,相对于静态浸泡法,动态电沉积法是一种更有效的Cu2+固载手段,不仅大幅缩短了固载时间,还显著提高了Cu2+固载率.

  1. Microfiltration and ultrafiltration as a post-treatment of biogas plant digestates for producing concentrated fertilizers

    DEFF Research Database (Denmark)

    Camilleri Rumbau, Maria Salud; Norddahl, Birgir; Wei, Jiang

    2015-01-01

    Biogas plant digestate liquid fractions can be concentrated by microfiltration and ultrafiltration. Two types of microfiltration membranes (polysulphone (PS) and surface-modified polyvinylidene fluoride (PVDF)) were used to process digestate liquid fractions, and to assess their applicability in ...

  2. Class and Home Problems. The Lambert W Function in Ultrafiltration and Diafiltration

    Science.gov (United States)

    Foley, Greg

    2016-01-01

    Novel analytical solutions based on the Lambert W function for two problems in ultrafiltration and diafiltration are described. Example problems, suitable for incorporation into an introductory module in unit operations, membrane processing, or numerical methods are provided in each case.

  3. Protein concentrate production by whey ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Madrid Vicente, A.; Madrid Vicente, R.

    1980-01-01

    This article describes an installation and process in which whey is ultrafiltered to give whey protein concentrate and deproteinized whey, both of which are then concentrated by evaporation and spray dried. Diagrams show the ultrafiltration plant and the complete processing line, including a line for bagging and pelletizing the dried protein concentrate (400 bags of 25 kg/hour). The Romicon fibre membranes can be cleaned by pumping the ultrafiltered liquid in the reverse direction and by closing the outlet for discharge of the deproteinized whey. The deproteinized whey powder can be used for animal feeding.

  4. 浸没式超滤膜池在水库引水山地(高位)水厂的应用前景分析%Submerged Ultrafiltration Membrane Pool Reservoir Diversion Mountain Prospect(High Level)Water Analysis

    Institute of Scientific and Technical Information of China (English)

    陈明辉

    2015-01-01

    Water and mountain water reservoir construction based on the characteristics, by comparing the submerged ultrafiltration cell with a conventional “V” shaped sand filter characteristics, and combined construction and operation analysis in the future, come submerged ultrafiltration membrane pool application of the advantages and disadvantages of mountain water reservoir(high level)water plant.%以水库水源和山地水厂建设特点为基础,通过比较浸没式超滤膜池与常规“V”形沙滤池的特点,结合工程建设及日后运行分析,得出浸没式超滤膜池在水库水源的山地(高位)水厂中应用的优缺点。

  5. Research progress of poly(vinyl alcohol) ultrafiltration membranes%聚乙烯醇为基材的超滤膜研究进展

    Institute of Scientific and Technical Information of China (English)

    魏华; 黄征青

    2012-01-01

    在详细介绍了热处理、接枝、交联、共混、杂化等PVA超滤膜制备方法的基础上,重点介绍了采用界面聚合、电纺丝等新方法制备改性PVA薄层复合超滤膜的研究进展;由于改性PVA薄层复合超滤膜优异的性能使它成为今后PVA超滤膜制备领域的一个发展方向.%The research progress of modified PVA thin film composite UF membrane such as interfacial polymerization, electrospinning was stressed on the basis of detailedly introducing the conventional preparation methods such as heat treatment, crosslinking, blending etc. Preparation of modified PVA thin film composite UF membrane is a development trend in the future.

  6. Fouling behaviour of ultrafiltration membrane by the mixtures of organic and inorganic matter%无机颗粒与腐殖酸复合共存时的超滤膜污染行为研究

    Institute of Scientific and Technical Information of China (English)

    王磊; 高哲; 米娜; 李松山

    2016-01-01

    To further determine the fouling mechanism of the mixtures of inorganic and organic matters. and different sizes of silica and kaolinite were used as the inorganic foulant, humic acid (HA) was used as the organic foulant. Fouling experiments with HA, silica, kaolinite and organic-inorganic mixtures were carried out with PVDF ultrafiltration membranes. The interaction forces be-tween PVDF membrane and each type of foulant and between foulant and foulant were investigated. Results show that the flux de-cline rate and extent of HA-fouled membrane was more seriousl than that for any kind of inorganic-fouled membrane. This was mainly due to the stronger interaction forces among inorganic particles, which resulted in the fact that the inorganic particles aggre-gate into large clusters, and reduced the risk of inorganic particles passing into membrane pores. Compared with single HA foulant, in the experiments results with HA-nano silica mixtures, significant synergistic effects from HA and nano-silica particle enhances membrane fouling. On the contrary, as for the mixtures of HA-micro silica or kaolinite particles, much lower fouling resistance was observed as compared with that of the HA-fouled membrane. Moreover, the fouling behavior of the inorganic -organic mixtures was different during different filtration stages.%选用不同尺寸的二氧化硅及高岭土代表无机膜污染物,腐殖酸(HA)代表有机物膜污染物,分别进行单种污染物及无机-有机污染物共混时的膜污染试验,结合膜-污染物及污染物-污染物间的微观作用力测定,评价无机颗粒与有机物复合共存时对膜污染的机制。结果表明,HA对膜污染幅度明显大于任一种无机颗粒所引起的膜污染幅度,主要是因为无机颗粒之间有较强的相互作用力致使形成较大尺寸的团聚体,不易进入膜孔。与HA污染膜相比,大尺寸的无机颗粒与HA共存时,膜污染减缓,而纳米级二氧化

  7. 两种超滤膜污染舷学清洗方法比较%Comparision of two chemical cleaning processes on ultrafiltration membrane

    Institute of Scientific and Technical Information of China (English)

    盛鹏

    2012-01-01

    某电厂在高参数长周期运行后超滤系统膜组件存在严重的生物污损和铁污染,确定采用碱洗法和酸洗法两种方案清洗滤膜。经两种方案超滤膜化学清洗方案比较发现,酸洗法效果显著,碱洗法效果不明显。经酸洗后,单套超滤膜系统压差降至15~20kPa,产水流量达到100—122t/h。%The problem of serious biofouling and iron contamination on uhrafiltration membrane in make up water treatment system which run under conditions with high-parameter & long-term of one power plant was observied. Two chemical cleaning processes were determined to solve this problem. The results show that the effect of acid washing is much better than alkali washing. After acid wash- ing, the system differential pressures of single membrane element has reduced to 15 ~ 20kPa, while the flux rate reached to 100 - 122T/H.

  8. 气液两相流方法对络合-超滤膜组件污染的清洗%Cleaning for Fouled Membrane Module in Complexation-Ultrafiltration Processes with Gas/Liquid Two-Phase Flow Method

    Institute of Scientific and Technical Information of China (English)

    乔玉柏; 邵嘉慧; 何义亮

    2012-01-01

    Ultrafiltiation (UF) membrane technology has become one of the most promising high-techs in water treatment. However, its applications are significantly limited because of membrane fouling. A gas/liquid two-phase flow cleaning method was put forward and its performance on cleaning membrane modules fouled in the complexation-ultrafiltration process was studied. Effects of cleaning methods (gas flushing, water backflushing, chemical backflushing and gas-liquid two-phase flow with either water or chemical as cleaning solution) on the flux recovery were compared. Results show that the gas/liquid two-phase flow method can recover the membrane flux most with the minimum cleaning time. Effects of gas pulse time (tc), gas pulse interval (ti), velocity ratio of gas to liquid (Rs/t) on gas/liquid two-phase flow performance were investigated. When ti is 10 s and Rg/1 is 20:1, the flux was recovered most with tc of 15 s and 25 s. When tc is 15 s and Rg/1 is 20:1, the flux is recovered most with 20 s ti. When tc is 15 s and ti is 10 s, the two-phase flow cleaning method with water as cleaning solution can recover the flux most with Rg/t = 80:l and the two-phase flow cleaning method with HC1 as cleaning solution can recover the flux most with Rg/1=40:1. Results indicate that the gas/liquid two-phase flow cleaning method can effectively remove UF membrane foulants in the complexation-ultrafiltration process and can be called a green membrane cleaning method.%超滤膜法是目前最有发展前途的水处理技术之一,但使用过程中不可避免的污染问题很大程度上限制了该技术的推广.该文提出特定的气液两相流清洗方法并针对络合-超滤膜组件污染清洗进行研究,比较了气体冲洗、水力反冲洗、化学试剂反冲洗和气液两相流清洗(分别以水和HCl作为清洗液)络合-超滤污染膜组件的效果.结果显示气液两相流方法的清洗效果最好,且用时最短.考察了通气时间tc、气停时间ti和

  9. Water hammer reduces fouling during natural water ultrafiltration.

    Science.gov (United States)

    Broens, F; Menne, D; Pothof, I; Blankert, B; Roesink, H D W; Futselaar, H; Lammertink, R G H; Wessling, M

    2012-03-15

    Today's ultrafiltration processes use permeate flow reversal to remove fouling deposits on the feed side of ultrafiltration membranes. We report an as effective method: the opening and rapid closing of a valve on the permeate side of an ultrafiltration module. The sudden valve closure generates pressure fluctuations due to fluid inertia and is commonly known as "water hammer". Surface water was filtrated in hollow fiber ultrafiltration membranes with a small (5%) crossflow. Filtration experiments above sustainable flux levels (>125 l (m2h)(-1)) show that a periodic closure of a valve on the permeate side improves filtration performance as a consequence of reduced fouling. It was shown that this effect depends on flux and actuation frequency of the valve. The time period that the valve was closed proved to have no effect on filtration performance. The pressure fluctuations generated by the sudden stop in fluid motion due to the valve closure are responsible for the effect of fouling reduction. High frequency recording of the dynamic pressure evolution shows water hammer related pressure fluctuations to occur in the order of 0.1 bar. The pressure fluctuations were higher at higher fluxes (higher velocities) which is in agreement with the theory. They were also more effective at higher fluxes with respect to fouling mitigation.

  10. Influence of Blending Ratio and Polymer Concentration on Miscibility of PVC/PVB and Property & Structure of Flat Ultra-Filtration Membrane%共混比及聚合物浓度对PVC/PVB相容性及超滤膜性能结构的影响

    Institute of Scientific and Technical Information of China (English)

    朱晶逸; 迟莉娜; 张遥遥; Anil Saddat; 张振家

    2012-01-01

    In the experiment, poly-vinyl-chloride (PVC) and poly-vinyl-butyral (PVB) were blended to prepare the PVC ultra-filtration (UF) membrane. To show the compatibility of the system as a partly miscibility system, the compatibility of the PVC/PVB blending system was characterized by dilute -solution viscosity (DSV), dynamic viscosity method and visual method. To further systematically study the blending miscibility of the polymer PVC and PVB in the dilution di -methyl -acetamaide (DMAc), the characteristics of PVC/PVB casting solution and the ultra-filtration membrane prepared by non-solvent induced phase separation (NIPS) in different concentration of polymers, as well as in different ratio of PVC and PVB, was tested. Concentration and ratio of the polymer was also discussed to explore the influence to the structure and its miscibility of separation of the blending ultra-filtration membrane, which provides theory basis for the preparation of ultra-filtration membrane that using PVB to blend modified PVC as material.%通过混合焓的计算,对不同共混比和聚合物浓度的聚氯乙烯(PVC)/聚乙烯醇缩丁醛(PVB)共混比体系的相容性进行预测,并通过稀溶液黏度(DSV)法、运动黏度法和目视法进行相应验证;以N,N-二甲基乙酰胺(DMAc)为溶剂,通过湿相转换法(NIPS)制备PVC/PVB共混平板超滤膜,并对超滤膜的性能和结构进行测试,系统地研究了PVC/PVB共混铸膜液的组成对平板超滤膜的结构及其分离性能的影响,为通过PVB共混改性PVC膜材料制备超滤膜提供了理论依据.

  11. Mechanisms controlling retention during ultrafiltration of charged saccharides: Molecular conformation and electrostatic forces

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Møller, Victor; Prado-Rubio, Oscar A.

    2013-01-01

    and between solute molecules and membrane material are amongst the key factors determining the separation efficiency during ultrafiltration of charged saccharides. Our hypothesis is that the manipulation of pH in addition to the classic pressure control should enhance the ultrafiltration performance...... on the molecules at higher pH. The results obtained in this work demonstrate that it is possible to control the observed retention of charged saccharides during ultrafiltration by manipulating pH and transmembrane pressure. Therefore, beyond operational conditions, specific molecular mechanisms must be taken...

  12. Mass transfer mathematical model for one-side plate steady-state ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    QIU Yun-ren; ZHANG Qi-xiu

    2005-01-01

    A mass transfer mathematical model was developed based on one-side plate steady-state ultrafiltration (UF), and the numerical solution was obtained by Crank-Nicolson finite difference method. The effects of the feed concentration, channel length, axial velocity, and diffusion coefficient on the concentration at membrane surface and the concentration profiles were investigated. Furthermore, the operation parameters and the parameters of membrane module were all transformed into dimensionless ones, and the parameter rejection was included in the mass transfer model, therefore, it can be used to calculate the steady-state ultrafiltration with different rejections. The model was used for the calculation of the ultrafiltration of metal-cutting oil emulsion. The results show that the concentration polarization can be reduced by increasing the axial velocity to some extent, but the reduction of concentration polarization is very small when the resistance of ultrafiltration is very great.

  13. Apple Pectin Behavior Separated by Ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    QIU Nong-xue; TIAN Yu-xia; QIAO Shu-tao; DENG Hong

    2009-01-01

    Separation conditions of ultrafiltration for apple pectin, and relations between apple pectin with different relative molecular weights and their structures and properties are studied. Five kinds of ultrafiltration membranes with different molecular weight cut-offs are used to separate apple pectin. FT-IR and HPGC are used individually to determine the structures and monosaccharide composition of apple pectin with different relative molecular weights. In the case of transmembrane pressure difference of 0.08 MPa, material concentration of 1 g L-1, and temperature of 50℃, 6 kinds of apple pectins with different molecular weights have been obtained. Molecular weight of apple pectin is correspondingly related to its physicochemical properties. The galacturonic acid contents and esterification and gelatination degrees increase relatively with an increase in molecular weight, and the monosaccharide composition relatively increase much more. And at the same time, the ultrafiltratiou has a better role to play in decoloring apple pectin solution. Accordingly, this research can be used as a new method for in-depth exploration of apple pectin.

  14. Flux enhancement during ultrafiltration of produced water using turbulence promoter

    Institute of Scientific and Technical Information of China (English)

    ZHEN Xiang-hua; YU Shui-li; WANG Bei-fu; ZHENG Hai-feng

    2006-01-01

    Concentration polarization and membrane fouling remain one of the major hurdles for the implementation of ultrafiltration of produced water. Although many applications for ultrafiltration were already suggested, only few were implemented on an industrial scale. Among those techniques, turbulence promoter can be more simple and effective in overcoming membrane fouling and enhancing membrane flux. As for the result that turbulence promoter increase fluid velocity, wall shear rates and produce secondary flows or instabilities, the influence of turbulence promoter was investigated on permeate flux during produced water ultrafiltration and the potential application of this arrangement for an industrial development. Experimental investigations were performed on 100 KDa molecular weight cut-off PVDF single-channel tubular membrane module using four kinds of turbulence promoters. It is observed that the significant flux enhancement in the range of 83%-164% was achieved while the hydraulic dissipated power per unit volume of permeate decreased from 31%-42%, which indicated that the using of turbulence promoter is more efficient than operation without the turbulence promoter. The effects of transmembrane pressure and cross-flow velocity with and without turbulence promoter were studied as well. Among the four kinds of turbulence promoters, winding inserts with 20.0 mm pitch and 1.0 mm wire diameter showed better performances than the others did.

  15. Research and development to overcome fouling of membranes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Narang, S.C.; Sharma, S.K.; Hum, G.; Ventura, S.C.; Roberts, D.L.; Gottschlich, D.; Ahner, N.

    1998-11-01

    To overcome fouling of membranes, SRI International is developing a unique piezoelectric backing for ultrafiltration membranes. This backing is capable of producing local turbulence next to the membrane to minimize concentration polarization and the rate of buildup of solutes and particulate matter on the membrane surface. We have studied piezoelectrically assisted ultrafiltration in more detail, with the objective to apply this process to industrial ultrafiltrations. We conducted several ultrafiltration experiments on flat sheet membranes with model dextran solutions and with electrocoat paint to study flux enhancement as a function of parameters such as feed flow rate, feed pressure, as well as the piezodriver-membrane system.

  16. Non-aqueous retention measurements: ultrafiltration behaviour of polystyrene solutions and colloidal silver particles

    NARCIS (Netherlands)

    Beerlage, M.A.M.; Heijnen, M.L.; Mulder, M.H.V.; Smolders, C.A.; Strathmann, H.

    1996-01-01

    The retention behaviour of polyimide ultrafiltration membranes was investigated using dilute solutions of polystyrene in ethyl acetate as test solutions. It is shown that flow-induced deformation of the polystyrene chains highly affects the membrane retention. This coil-stretch transition is not ins

  17. Application of fluidised particles as turbulence promoters in ultrafiltration Improvement of flux and rejection

    NARCIS (Netherlands)

    Noordman, TR; de Jonge, A; Wesselingh, JA; Bel, W; Dekker, M; Ter Voorde, E; Grijpma, SD

    2002-01-01

    To prevent fouling of ultrafiltration membranes during processing of protein solutions, a high degree of turbulence should be introduced in the feed solution, keeping the energy consumption as low as possible. For this purpose, the application of fluidised beds at the upstream side of the membrane c

  18. 新型膜组件及超滤膜在焦化废水处理中的应用%Application of new type membrane module and ultrafiltration membrane in advanced treatment of coke plant wastewater

    Institute of Scientific and Technical Information of China (English)

    罗玉辉; 隋明明

    2015-01-01

    介绍了国产PVDF复合膜及新型外置浸没式膜组件在焦化废水深度处理中的应用。 PVDF复合膜在确保通量的前提下,避免了物理损伤带来的断丝、出水悬浮物超标等问题。新型膜组件具有占地面积小、自动化程度高等优点,其出水可以直接回用或作为反渗透膜的进水。%This paper introduces the application of China-made PVDF composite membrane and new type external submerged membrane module in advanced treatment of coke plant wastewater. PVDF has avoided the problems of wire break and exceeding amount of suspended solid in discharged water on condition of ensuring the flux. The new type membrane module has advantages of less space occu-pation and higher automation level,and the discharged water could be directly reused or used as feed water for reverse osmosis membrane.

  19. Concentration of lemon pectin extract by ultrafiltration

    Directory of Open Access Journals (Sweden)

    Damián Stechina

    2012-09-01

    Full Text Available Current annual lemon production in Argentina is about 900 thousand t. 75% is used industrially to obtain pasteurized juice concentrate. Since 40 - 45 % of citrus fruit content is peel and seeds, the annual lemon residue yield is 360 thousand t. Lemon peel contains about 30% (B.S. of peptic substances with an important commercial value due to its gelling and thickening properties for food, chemical, pharmacological and cosmetic products. Membrane processes have many applications in food manufacture. The objective of this study is to analyze the influence of ultrafiltration operating variables on instant permeate flow (Fp and on the energy requirement for pectin extract concentration from lemon peel. A DDS lab module was used, lab 20-772 model with synthetic material membranes, 9 kDa, shear force, the intrinsic membrane resistance (Rm being 3*1013 m -1 . Results show that Fp decrease caused by polarization induced resistance occurrence and the influence of operating variables on Fp offer relevant data to estimate the energy requirement in relation to feeding flow at constant temperature, which may be compared to pectin concentration increase in the retained flow in relation to initial extract concentration.

  20. Operating considerations of ultrafiltration in enzyme enhanced carbon capture

    DEFF Research Database (Denmark)

    Deslauriers, Maria Gundersen; Gladis, Arne; Fosbøl, Philip Loldrup

    2017-01-01

    capture capacity of 1 MTonn CO2/year, and is here operated for one year continuously. This publication compares soluble enzymes dissolved in a capture solvent with and without the use of ultrafiltration membranes. The membranes used here have an enzyme retention of 90%, 99% and 99.9%. Enzyme retention......Today, enzyme enhanced carbon capture and storage (CCS) is gaining interest, since it can enable the use of energy efficient solvents, and thus potentially reduce the carbon footprint of CCS. However, a limitation of this technology is the high temperatures encountered in the stripper column, which...

  1. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    Science.gov (United States)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  2. Dead-end hollow-fiber ultrafiltration for concentration and enumeration of Escherichia coli and broad-host-range plasmid DNA from wastewater

    Science.gov (United States)

    Asfahl, Kyle L.; Savin, Mary C.

    2012-01-01

    Broad-host-range plasmids can facilitate dissemination of antibiotic resistance determinants among diverse bacterial populations. We evaluated hollow-fiber ultrafiltration for increases in detection efficiency of broad-host-range plasmids and Escherichia coli DNA in wastewater. Ultrafiltration followed by PCR showed limited increases in DNA detection and quantification in effluent compared with membrane filtration alone. PMID:22251424

  3. Study on the retentivity of the volatile components of simulated guava juice using ultrafiltration

    Directory of Open Access Journals (Sweden)

    Saad Hashim Khalil

    2002-11-01

    Full Text Available An experimental investigation on retentivity of major guava juice volatile compounds during ultrafiltration is presented in this paper. Simulated guava juice solutions were used throughout the study and the ultrafiltration was carried out in a batch stirred cell system. Polyethersulfone membranes with MWCO of 100,000 and 500,000 were used. The effects of important process operating parameters such as pressure and pectin concentration were studied. It was found that hydrophobic interactions with the membrane are the major factors, which control the flavor retention. A qualitative correlation between component polarity and retentivity was also observed.

  4. Combination of TiO2-Film Photocatalysis and Ultrafiltration to Treat Wastewater

    Directory of Open Access Journals (Sweden)

    Shu-Hai You

    2013-01-01

    Full Text Available In this study, a combination of TiO2-film photocatalysis reactor and ultrafiltration was used treat the secondary effluent from the manufacturing of thin film transistor-liquid crystal display (TFT-LCD. TiO2 particles, as a photocatalyst, were immobilized on silica glass to form TiO2-film by the sol-gel and dip coating methods. TiO2-film photocatalysis was done within three parameters, including number of coating times of TiO2-film, wavelengths of UV light source, and operating time. During ultrafiltration, the operating pressure and feed water temperature were controlled at 300 KN/m2 and 25°C, respectively. It was found that TiO2-film photocatalysis followed by ultrafiltration increased the removal of total organic carbon (TOC to 47.13% and 49.94% for 5 KDa and 10 KDa membranes, respectively. It was also found that the process increased the permeate flux rate (ca 23% for 10 KDa membrane after 6 hours of operation, since some larger organic matter had been broken into small organic matter and some small organic matter had been mineralized into CO2 following TiO2-film photocatalysis. Therefore, combining TiO2-film photocatalysis reactor and ultrafiltration can improve organic wastewater quality and increase the permeate flux of ultrafiltration membrane, which may enhance the recycling and reuse of wastewater.

  5. An analysis of ultrafiltration applications for the oilsands

    Energy Technology Data Exchange (ETDEWEB)

    Pease, S. [Zenon Environmental Inc., Oakville, ON (Canada)

    2006-07-01

    This presentation examined ultrafiltration technologies in oil sands applications. The Athabasca region has limited water supplies, and regulatory standards regarding waterborne pathogens and disinfectant by-products are increasing. Membrane technologies are now rapidly replacing conventional water filtration technologies as they provide a more reliable means of filtration and use minimal amounts of chemicals. Membrane technologies are capable of removing 99.9 per cent of all Giardia, Cryptosporidium and viral agents from water samples, as well as various metals. ZeeWeed membrane filtration systems use a backpulse system to filter water in combination with a permeation system. Enhanced coagulation systems are used to remove colour, taste, and odours, as well as manganese and iron. The systems have been tested with Athabasca River samples, and are currently being used at several oil sands processing plants. It was concluded that ZeeWeed membrane systems are able to treat difficult waters with high pathogen and metals contents. tabs., figs.

  6. Analysis of ultrafiltration and mass transfer in a bioartificial pancreas.

    Science.gov (United States)

    Jaffrin, M Y; Reach, G; Notelet, D

    1988-02-01

    A bioartificial pancreas is an implantable device which contains insulin secreting cells (Langerhans islets), separated from the circulating blood by a semi-permeable membrane to avoid rejection. This paper describes the operation of such a device and evaluates the respective contributions of diffusion and ultrafiltration to the glucose and insulin mass transfer. It is shown that the pressure drop along the blood channel produces across the first half of the channel an ultrafiltration flux toward the islet compartment followed in the second half by an equal flux in reverse direction from islets to blood. The mass transfer analysis is carried out for an optimal geometry in which a U-shaped blood channel surrounds closely a very thin islet compartment formed by a folded flat membrane. A complete model of insulin release by this device is developed and is compared with in vitro data obtained with rats islets. Satisfactory kinetics is achieved with a polyacrylonitrile membrane used in hemodialysis. But the model shows that the membrane hydraulic permeability should be increased by a factor of 10 to significantly improve the performance.

  7. Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration.

    Science.gov (United States)

    Greening, David W; Simpson, Richard J

    2011-01-01

    The low-molecular weight fraction (LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based biomarkers of disease. This protocol outlines a standardized procedure for the rapid/reproducible LMF profiling of human plasma samples using centrifugal ultrafiltration fractionation, followed by 1D-SDS-PAGE separation and nano-LC-MS/MS. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration and temperature to facilitate >95% recovery, and enrichment of low-M (r) components from human plasma. Using this protocol, >260 unique peptides can be identified from a single plasma profiling experiment using 100 μL of plasma (Greening and Simpson, J Proteomics 73:637-648, 2010). The efficacy of this method is demonstrated by the identification, for the first time, of several plasma proteins (e.g., protein KIAA0649 (Q9Y4D3), rheumatoid factor D5, serine protease inhibitor A3, and transmembrane adapter protein PAG) previously not reported in extant high-confidence Human Proteome Organization Plasma Proteome Project datasets.

  8. [Removal of lead from aqueous solutions by complexation-ultrafiltration with chitosan].

    Science.gov (United States)

    Xie, Zhang-Wang; Shao, Jia-Hui; He, Yi-Liang

    2010-06-01

    Polyethersulphone (PES) membrane was chosen and chitosan was used as complexing agent to remove lead ions by complexation-ultrafiltration. Effects of solution pH, Pb2+/chitosan ratio, ionic strength and Ca2+ on the rejection coefficient of lead were investigated. The effect of concentration time on lead rejection coefficient and membrane flux was also studied. The value of pH was found to be the key parameter in the process of complexation-ultrafiltration. The rejection coefficient of lead goes high to over 99% at pH 6.0 with the Pb2+/chitosan ratio 0.25. The increase of ionic strength and Ca2+ is not beneficial to the lead removal by complexation-ultrafiltration. The chitosan-metal complex was acidified and then the chitosan was regenerated by diafiltration. The regenerated chitosan was used to remove Pb2+ by complexation-ultrafiltration, and the rejection coefficient of lead was found to be 96.2%, which shows no significant difference with that obtained on the fresh chitosan. Results showed that complexation-ultrafiltration can effectively remove lead from aqueous solutions and chitosan can be effectively regenerated.

  9. Optimal Start-Up and Operation Policy for an Ultrafiltration Membrane Unit in Whey Separation The work presented here is generated by the Institute for Sustainable Process Technology (ISPT) project IMPROVISE

    NARCIS (Netherlands)

    Bahadir Saltik, M.; Özkan, Leyla; Jacobs, Marc; Padt, van der Albert

    2016-01-01

    Membrane filtration systems are preferred unit operations in industrial applications due to their mild operating conditions. However the performance of a membrane stack drops over time because of the membrane fouling. This decrease is overcomed by introducing clean membrane stacks. The associated

  10. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating wastewater

  11. Preparation of Composite Ultrafiltration Membrane With Dopamine and Its Application in the Wastewater Treatment in Aquaculture%多巴胺复合超滤膜的制备及其在海水养殖废水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    王栋; 徐佳; 单宝田; 宋迪; 刘瑞聪

    2015-01-01

    将聚砜基膜浸泡在2 g/L 的多巴胺溶液中,在震荡培养箱中涂覆12 h,之后用去离子水震荡清洗24 h 得到多巴胺复合超滤聚砜膜。红外光谱分析结果显示,复合膜为多巴胺聚合在聚砜膜表面形成的复合膜,接触角为63°,较基膜减小21°,亲水性显著加强;在0.10 MPa 压力下,对海水养殖废水进行分离实验,对海水养殖废水总悬浮物(TSS)、化学需氧量(COD)的去除率分别达到100%、83.3%,具有良好的去除效果。%In recent years, the marine aquaculture has been undergoing a rapid development in the quantity and the scale of this industry. The wastewater from marine aquaculture inevitably causes pollution to the adjacent sea water if discharged without proper treatment. In order to meet the criteria of recycling or discharge, currently people have mainly used physical, chemical, and biological methods to remove the suspended solids (SS) and ammonia nitrogen in the wastewater, and to reduce chemical oxygen demand (COD) and biological oxygen demand (BOD). However these traditional methods have certain shortcomings in processing wastewater generated in marine aquaculture. Compared to the traditional treatment, membrane technology has the advantages such as the convenient operation and management and high efficiency, although it brings in membrane pollution during the application. In this study, we coated polysulfone ultrafiltration membrane with dopamine, and examined the properties and the functional performance of the dopamine composite ultrafiltration polysulfone membrane. The preparation of the composite membrane included coating and cleaning. The polysulfone membrane was first immersed in dopamine solution at the concentration of 2 g/L for 12 hours in a concussion incubator. The coated membrane then underwent vibration cleaning with deionized water for 24 hours. Infrared spectroscopy analysis showed that dopamine polymerization formed on the surface of the

  12. Optimisation of ultrafiltration of a highly viscous protein solution using spiral-wound modules

    DEFF Research Database (Denmark)

    Lipnizki, Jens; Casani, S.; Jonsson, Gunnar Eigil

    2005-01-01

    The ultrafiltration process of highly viscous protein process water with spiral-wound modules was optimised by analysing the fouling and developing a strategy to reduce it. It was shown that the flux reduction during filtration is mainly caused by the adsorption of proteins on the membrane and no...

  13. Taking green anti-fouling strategies in dead-end ultrafiltration to the next level

    NARCIS (Netherlands)

    Zondervan, Edwin; Bakker, S.; Nederlof, Maarten; Roffel, Brian

    2009-01-01

    In this work we will introduce a hierarchical framework that can be used to optimize an ultrafiltration process that is used for the purification of surface water. Within the suggested framework modelling and optimization of chemical cleaning of membranes were performed. This paper will discuss the

  14. [Removal of nickel from aqueous solutions using complexation-ultrafiltration process].

    Science.gov (United States)

    Qin, Shu; Shao, Jia-Hui; He, Yi-Liang; Li, Wen-Xi

    2012-04-01

    Polyacrylate (PAANa) and polyethylenimine (PEI) were used as complexing agents to combine with nickel ions. This complexation solution was transferred to the ultrafiltration cell and the separation by polyethersulfone (PES) ultrafiltration membranes was carried out under the pressure of 0.1 MPa. Effects of solution pH and polymer/Ni2+ mass ratio on nickel removal were investigated. The complex reaction equilibrium constants were calculated according to Langmuir isotherm model. Effects of concentration time on nickel removal and membrane flux were also studied. With PAANa as a polymer, the removal rate of nickel went the highest to 99.5% at pH 8 with PAANa/Ni2+ ratio of 5. When PEI was used, the removal rate of nickel ions went highest to 93.0% at pH 7 with PEI/Ni2+ ratio of 5. Best-fit complexation equilibrium constants at different pH values showed that pH 7 was most beneficial to the complex reaction. In addition, the number of nickel ions bound to a single monomer complexing agent increased with increase of pH value. During 12 h ultrafiltration process, the decline of membrane flux was less than 10% with PAANa as the complexing agent, while the membrane flux remains the same when PEI was used. The removal rates of Ni2+ kept constant with both complexing agents. Results showed that complexation-ultrafiltration can effectively remove nickel from aqueous solution at appropriate conditions.

  15. Drinking water production by ultrafiltration of Songhuajiang River with PAC adsorption

    Institute of Scientific and Technical Information of China (English)

    XIA Sheng-ji; LIU Ya-nan; LI Xing; YAO Juan-juan

    2007-01-01

    In recent years, membrane ultrafiltration (UF) of surface water for drinking water treatment has become a more attractive technology worldwide as a possible alternative treatment to conventional clarification. To evaluate the performance of ultrafiltration membranes for treatment of surface water in North China, a 48-m2 low pressure hollow fiber membrane ultrafiltration pilot plant was constructed. Ultrafiltration was operated in cross-flow and with powdered activated carbon (PAC) adsorption. Turbidity was almost completely removed to less than 0.2 NTU (below Chinese standard 1 NTU). It was found that PAC addition enhanced organic matter removal. The combined process of PAC/UF allowed to 41% removal of CODMn, 46% removal of DOC and 57% decrease in UV254 absorbance. The elimination of particles, from average 12000/ml in the raw water to approximately 15/ml in the permeated, was observed. When PAC concentration was below 30 mg/L, backwashing could recovery the membrane flux with backwash interval/backwashing duration of 1/30.

  16. An approximate analytical solution to the ultra-filtration profile in a hemodialysis process between parallel porous plates

    Institute of Scientific and Technical Information of China (English)

    LU JunFeng; LU WenQiang

    2008-01-01

    In a hemodialysis process, the blood that runs through straight channels exchanges substances with the dialysate through a semi-permeable membrane. The waste products, such as urea and creatinine, are therefore removed from the plasma by the membrane. In the analysis of this process, determination of the ultra-filtration profile along the porous membrane surface remains a difficult problem. In this work, an analytical solution to the derivation of such a profile was detailed, and the feasibility of this solution was discussed. The ultra-filtration profile was found to be in a cosine shape.

  17. Adsorption characteristics of zinc ions on sodium dodecyl sulfate in process of micellar-enhanced ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To separate zinc ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used with sodium dodecyl sulfate(SDS) as surfactant. The formation of micellar and the adsorption mechanism were investigated, including the influence of the ratio of SDS to zinc ions on the micelle quantity, the micelle ratio, the gross adsorptive capacity, the rejection of zinc ions and the adsorption isotherm law. The results show that the rejection rate of zinc ions reaches 97% and the adsorption of zinc ions on SDS conforms to the Langmuir adsorption isotherm and the adsorption is a chemical adsorption process.

  18. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF).

    Science.gov (United States)

    Zhang, Wenxiang; Huang, Guohe; Wei, Jia; Li, Huiqin; Zheng, Rubing; Zhou, Ya

    2012-10-15

    Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L(m)) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated that CG surfactant with exceptional structure has favorable prospects in the treatment of phenol wastewater by the micellar-enhanced ultrafiltration. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Tailoring the surface charge of an ultrafiltration hollow fiber by addition of a polyanion to the coagulation bore liquid

    NARCIS (Netherlands)

    Kopec, K.K.; Dutczak, S.M.; Wessling, Matthias; Stamatialis, Dimitrios

    2011-01-01

    In this work, we report a new in-line method to tailor the surface properties of porous ultrafiltration membranes in a one-step spinning process. A highly charged polyimide P84 hollow fiber membrane can be obtained by dissolving as less as 3% of sulphonated poly(ether ether ketone) (SPEEK) in the bo

  20. Tailoring the surface charge of an ultrafiltration hollow fiber by addition of a polyanion to the coagulation bore liquid

    NARCIS (Netherlands)

    Kopec, K.K.; Dutczak, S.M.; Wessling, Matthias; Stamatialis, Dimitrios

    2011-01-01

    In this work, we report a new in-line method to tailor the surface properties of porous ultrafiltration membranes in a one-step spinning process. A highly charged polyimide P84 hollow fiber membrane can be obtained by dissolving as less as 3% of sulphonated poly(ether ether ketone) (SPEEK) in the

  1. A Model for Transport Phenomena in a Cross-Flow Ultrafiltration Module with Microchannels

    Directory of Open Access Journals (Sweden)

    Shiro Yoshikawa

    2010-12-01

    Full Text Available Cross-flow ultrafiltration of macromolecular solutions in a module with microchannels is expected to have the advantages of fast diffusion from the membrane surface and a high ratio of membrane surface area to feed liquid volume. Cross-flow ultrafiltration modules with microchannels are expected to be used for separation and refining and as membrane reactors in microchemical processes. Though these modules can be applied as a separator connected with a micro-channel reactor or a membrane reactor, there have been few papers on their performance. The purpose of this study was to clarify the relationship between operational conditions and performance of cross-flow ultrafiltration devices with microchannels. In this study, Poly Vinyl Pyrrolidone (PVP aqueous solution was used as a model solute of macromolecules such as enzymes. Cross-flow ultrafiltration experiments were carried out under constant pressure conditions, varying other operational conditions. The permeate flux decreased in the beginning of each experiment. After enough time passed, the permeate flux reached a constant value. The performance of the module was discussed based on the constant values of the flux. It was observed that the permeate flux increased with increasing transmembrane pressure (TMP and feed flow rate, and decreased with an increase of feed liquid concentration. A model of the transport phenomena in the feed liquid side channel and the permeation through the membrane was developed based on the concentration and velocity distributions in the feed side channel. The experimental results were compared with those based on the model and the performance of the ultrafiltration module is discussed.

  2. Characterization and utilization of the permeate and retentate obtained after “dead-end” ultrafiltration

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2013-01-01

    Full Text Available In the recent years, with the increase in bioethanol production, the increasing amounts of distillery wastewater are generated. Such wastewater (stillage is one of the most polluted waste product of the food and beverage industries. The present study evaluates the treatment of distillery wastewater by ultrafiltration (UF, in order to reduce its pollution and evaluate the composition of the permeate and retentate. Polyethersulfone ultrafiltration membrane with molecular weight cut-off (MWCO 30000 Da, was used for the experiments. The UF was carried out in dead-end mode. The results of the analyses of the permeate and retentate obtained after ultrafiltration were considered as well as different ways for their further utilization. The pollutant level in the permeate was decreased significantly in comparison to the raw stillage, and suspended solids were completely removed from the stillage. [Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  3. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxiang [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guohe, E-mail: huang@iseis.org [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Wei, Jia [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 (Canada); Li, Huiqin; Zheng, Rubing; Zhou, Ya [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Gemini surfactant micellar enhanced ultrafiltration was used to remove phenol. Black-Right-Pointing-Pointer The effect of different hydrophilic head groups of surfactant was analyzed. Black-Right-Pointing-Pointer SEM, ATR-FTIR and mercury porosimeter were applied to elucidate membrane fouling. Black-Right-Pointing-Pointer Gemini surfactant had superior performance in comparing with conventional surfactant. - Abstract: Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L{sub m}) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated

  4. Ultrafiltration of a polymer-electrolyte mixture

    NARCIS (Netherlands)

    Vonk, P; Noordman, T.R; Schippers, D; Tilstra, B; Wesselingh, J.A

    1997-01-01

    We present a mathematical model to describe the ultrafiltration behaviour of polymer-electrolyte mixtures. The model combines the proper thermodynamic forces (pressure, chemical potential and electrical potential differences) with multicomponent diffusion theory. The model is verified with experimen

  5. Speciation Analysis of Serum Copper by Ultrafiltration Com-bined with Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Hua; MA Hui-Min; MA Quan-Li; LIANG Shu-Chuan

    2001-01-01

    UItrafiltration combined with graphite furnace atomic absorp-tion spectrometry(GFAAS)was used to study protein binding and speciation of copper in human serum..UItrafiltration was carried out using a cell unit ultrafiltration membraoes having a nominal cut-off of 10,000Dalton.The effects of var-ious experimental factors including the kind and concentration of electrolyte,sample storge,pH,pressure and the precon-ditioning of the membranes on the speciation analysis of serum copper by ultrafiltration were examined.It was observed that 4.5±2.3% of the total copper in serum was ultrafiltrable and this value did not seem to be influenced by the total serum ele-mental concentration,the PH (6.5——10) adn the pressure(≤1.5kg/cm2).the preconditioning of the ultrafiltration system with 0.1mol/L calcium nitrate can overcome the adsorption loss of copper effectively,and the addition of tris-HCI sohtion (pH 7.4)to serum accelerates the ultrafiltration.The present method was proved to be suitable for speciation analysis for its simplicity,rapidity,small sample reuqirement and easy con-trol.The results obtained with the method are accurate and reliable.

  6. Determination of endogenous ions in intercellular fluid using capillary ultrafiltration and microdialysis probes.

    Science.gov (United States)

    Linhares, M C; Kissinger, P T

    1993-01-01

    Capillary ultrafiltration probes are novel sampling tools for continuously monitoring small molecules in the extracellular fluid of awake animals. Capillary ultrafiltration uses a vacuum applied to hydrophilic membrane fibres and extracts intercellular fluid and quantitatively recover many small hydrophilic molecules. The effects of continuously removing a small amount of fluid from the interstitial space are not known. The concentration of sodium, potassium, calcium and inorganic phosphorus were determined in the collected ultrafiltrates from subcutaneous tissue. These values were compared to literature values and to concentrations determined for the same animals using microdialysis. The concentrations of sodium, potassium, calcium and inorganic phosphorous were found to be 140 +/- 4, 3.7 +/- 0.1, 1.1 +/- 0.1 and 1.7 +/- 0.1 mM, respectively, in the subcutaneous ultrafiltrates obtained from rats. These corresponded very well with literature values and microdialysates, obtained, using pure water as the perfusate, in subcutaneous tissue. The concentration of sodium and potassium were determined to be 142 +/- 2 mM and 3.6 +/- 0.2 mM, respectively, for the dialysates. Hyperinsulinemic-induced decrease in intercellular potassium levels under a euglycemic clamp were monitored using capillary ultrafiltration probes in rats to further validate this technique for monitoring small molecule dynamics in the intercellular space. The intercellular level of potassium in rats decreased from 3.6 +/- 0.5 to 2.6 +/- 0.3 mM after an acute dose of pork insulin.

  7. Fractionation of proteins with two-sided electro-ultrafiltration.

    Science.gov (United States)

    Käppler, Tobias; Posten, Clemens

    2007-03-10

    Downstream processing is a major challenge in bioprocess industry due to the high complexity of bio-suspensions itself, the low concentration of the product and the stress sensitivity of the valuable target molecules. A multitude of unit operations have to be joined together to achieve an acceptable purity and concentration of the product. Since each of the unit operations leads to a certain product loss, one important aim in downstream-research is the combination of different separation principles into one unit operation. In the current work a dead-end membrane process is combined with an electrophoresis operation. In the past this concept has proven successfully for the concentration of biopolymers. The present work shows that using different ultrafiltration membranes in a two-sided electro-filter apparatus with flushed electrodes brought significant enhancement of the protein fractionation process. Due to electrophoretic effects, the filtration velocity could be kept on a very high level for a long time, furthermore, the selectivity of a binary separation process carried out exemplarily for bovine serum albumin (BSA) and lysozyme (LZ) could be greatly increased; in the current case up to a value of more than 800. Thus the new two-sided electro-ultrafiltration technique achieves both high product purity and short separation times.

  8. Antiradical activities of Salvia officinalis and Viscum album L. extracts concentrated by ultrafiltration process

    Directory of Open Access Journals (Sweden)

    Gabriel Lucian Radu

    2009-09-01

    Full Text Available   Background. In the present study the antioxidant properties were investigated of the medicinal plants Salvia officinalis L. (Labiaceae family and Viscum album L. (Loranthaceae, both of them known for a long time as a remedy in the traditional medicine. The aim of this study was to prove the efficiency of ultrafiltration process for the concentration of herbs extracts and to evaluate the concentrate’s antioxidant activity. Material and methods. The extracts were prepared by maceration, using different solvents. After filtering the extract through Isolab quantitative filter paper “medium”, each of the filtrates was processed by microfiltration (MF; Millipore filters with 45 μm, followed by ultrafiltration (UF. The regenerated cellulose (Millipore, polysulfone and polyacrylonitrile ultrafiltration membranes were used in the experiment. The initial extracts and samples of permeate and retentate after ultrafiltration of extracts have been characterized by determination of the protein total and total phenolic content. Standard methods like ABTS and DPPH assay are used to measure the antioxidant activity. Results. For the three types of tested membranes: Millipore, PSF and PAN, PAN membrane proves to have the greatest efficiency since it shows the highest permeate flux and the greatest retention degree for bioactive compounds. The concentrated extracts obtained after ultrafiltration with polyacrylonitrile membrane had the strongest scavenging activity for all extracts. Conclusions. The results of this study has revealed that the concentrated extracts have a very high radical scavenging activity (TEAC values for sage hydro-alcoholic concentrated extracts in range 351.87-479.04 μmol Trolox/mL extract and for mistletoe concentrated extract E2 in range 345.14-426.18 μmol Trolox/mL extract; the DPPH inhibition values was over 85% for S. officinalis concentrated extracts and ranges between 66.2% and 88.2% DPPH inhibition for V. album

  9. PROTEIN SEPARATION USING ULTRAFILTRATION - AN EXAMPLE OF MULTI-SCALE COMPLEX SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Zhanfeng Cui

    2005-01-01

    In this mini-review, the complexity of protein fractionation using ultrafiltration is discussed. The coupling of the system hydrodynamics, boundary layer transport, membrane permeation, electrostatic and hydrophobic interactions and its effects on protein transmission and membrane selectivity are analysed. Although ultrafiltration is promising for larger scale protein purification and also with outstanding advantages both technically and economically, much needs to be done to derive the.general guidance for membrane selection, process design and system operation. With fine tuning of operational and physiochemical conditions, the process can be greatly improved in terms of process productivity and protein purity. A coupled multi-scale approach might provide a way forward to analyse this complex system and improve the confidence in applying such a promising technology and predictability of the outcome.

  10. FLUX PROFILES AND MATHEMATICAL MODELING OF FOULING MECHANISM FOR ULTRAFILTRATION OF KONJAC GLUCOMANNAN

    Directory of Open Access Journals (Sweden)

    NITA ARYANTI

    2016-07-01

    Full Text Available This study was focused on principles and fouling analysis of konjac glucomannan (KGM separation using ultrafiltration system. Two Polyethersulfone membranes (PES having molecular weight cut-off of 10 and 20 kDa were used. It was found that membrane having larger pore size provided higher flux profiles. Evaluation of different transmembrane pressures resulted on possibility of more severe fouling at higher membrane pressure. With the increase of konjac glucomannan concentration, decrease of profile flux was observed. Further, a simple mathematical modelling of fouling mechanism was analyzed based on Hermia’s model. The images of membrane surfaces and cross-sections obtained by scanning electron microscopy (SEM were examined and being compared with the model. The research found that the fouling mechanisms of KGM ultrafiltration using membrane with pore size of 10 kDa was complete blocking. On the contrary, cake/gel layer formation was a fouling mechanism for ultrafiltration system with pore size of 20kDa.

  11. A PREDICTING MODEL OF THE LIMITING FLUX FOR THE CHARGED SOLUTE IN ULTRAFILTRATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    LUO Ming-liang; GUO Yan; PU Chun-sheng; LU Feng-ji

    2004-01-01

    In the process of ultrafiltration , the occur-rence of the limiting flux is elucidated with the formation of a cake(gel) layer on the membrane surface. Before cake formation, the pressure drop on the concentration polarization layer, as well as the permeate flux, increases with the applied pressure. The pressure drop on the concentration polarization layer, however, will no longer change with the applied pressure after the formation of the cake layer. The limiting flux will be obtained if the hydrodynamic conditions in the filtration channel are not affected by the cake layer. A mathematics model for predicting the limiting flux for the charged solute in ultrafiltration is developed. In this model, a repulsive electric force is taken into account in addition to convection and diffusion when the solute is carrying the same charge as the membrane material. A procedure to correlate the model with experimental ultrafiltration data is also present. The results show that a model in this paper is developed on a more realistic perception of the ultrafiltration system and the predicting data agrees well with experimental data.

  12. A Study of Advanced Treatment for Coking Wastewater by Ultrafiltration Membrane and Reverse Osmosis Technology%双膜法深度处理焦化废水中试研究

    Institute of Scientific and Technical Information of China (English)

    高爱华

    2012-01-01

    A study was made on advanced treatment of coking wastewater by UF(ultrafiltration menbrane) and RO(reverse osmosis).The results showed that the removal efficiency of SS could reach as high as reach 98.8% by UF,and the average removal efficiency of COD,NH3-N,total hardness and Cl-could be obtained as 94.6%,75.9%,98.3% and 98.6% respectively,andby RO with the recovery ratio as 70%.Besides,the whole system run steadily with high-throughput for UF and long cycle of chemical washing for RO.The study shows that the application of UF and RO for advanced treatment of coking wastewater can ensure the water quality meeting the standard of reused water.%采用超滤+反渗透组合技术对某焦化厂焦化废水进行了深度处理试验研究,结果表明浸没式超滤单元对悬浮物去除效果明显,平均去除率达98.8%;反渗透装置在70%回收率的条件下,对水中COD、氨氮、总硬度及Cl-的平均去除率分别达到94.6%,75.9%,98.3%和98.6%.超滤膜产水通量及运行情况稳定,反渗透膜系统运行稳定,化学清洗周期较长.结论表明采用"超滤+反渗透双膜工艺对焦化废水进行深度处理,可以保证出水水质达到回用水标准.

  13. 负载纳米银的埃洛石纳米管/聚醚砜杂化超滤膜的制备及其抗菌性能%Preparation and antibacterial property of halloysite nanotube loaded with silver nanoparticles/polyethersulfone hybrid ultrafiltration membrane

    Institute of Scientific and Technical Information of China (English)

    陈义丰; 王涛; 张亚涛; 杜雷; 李媖; 张浩勤; 刘金盾

    2012-01-01

    Polyethersulfone (PES) ultrafiltration membrane was prepared via phase inversion, using PES as membrane material,N,N-dimethylacetamide (DMAc) as solvent, polyvinylpyrrolidone (PVP) and halloysite nanotube loaded with silver nanoparticles (Ag-HNTs) as additive. The effects of Ag-HNTs concentration in the casting solution dope on the membrane performance were examined. The antibacterial activity of the membrane was tested by an inhibition zone method. The experimental results indicated that the reaction between HNTs and silane coupling agent KH-792 took place successfully, and the grafted amount was 0. 105 g KH-792 (g HNTs)-1. The complex reaction between silylated HNTs and Ag+ occurred successfully with a complex amount of approximately 0. 145 g Ag · (g HNTs)-1. As the content of Ag-HNTs increased, pure water flux also increased whereas the rejection was kept at about 95%. In addition, the membrane showed good antibacterial property against E. coli and .- aureus.%以聚醚砜(PES)为膜材料,N,N-二甲基乙酰胺(DMAc)为溶剂,聚乙烯吡咯烷酮(PVP)和负载纳米银的埃洛石纳米管(Ag-HNTs)为添加剂,采用相转化法制备聚醚砜超滤膜.系统地考察了添加剂(Ag-HNTs)含量对膜性能的影响,并用抑菌圈实验研究了所制膜的抗菌效果.结果表明:硅烷偶联剂KH-792中的甲氧基与HNTs上的羟基发生反应,接枝量为0.105 g KH-792·(g HNTs)-1;改性后的HNTs与Ag发生络合反应,并且络合量近似为0.145 g Ag·(g HNTs)-1;溶剂中负载纳米银的埃洛石纳米管(Ag-HNTs)所占比例的增加能提高膜的水通量,而截留率保持在95%左右.所制备的膜对大肠杆菌和金黄色葡萄球菌有较强的抑制作用.

  14. Combining electrophoresis with detection under ultraviolet light and multiple ultrafiltration for isolation of humic fluorescence fractions.

    Science.gov (United States)

    Trubetskaya, Olga E; Shaloiko, Lubov A; Demin, Dmitrii V; Marchenkov, Victor V; Proskuryakov, Ivan I; Coelho, Christian; Trubetskoj, Oleg A

    2011-04-01

    Polyacrylamide gel electrophoresis of chernozem soil humic acids (HAs) followed by observation under UV (312 nm) excitation light reveals new low molecular weight (MW) fluorescent fractions. Ultrafiltration of HAs sample in 7 M urea on a membrane of low nominal MW retention (NMWR, 5 kDa) was repetitively used for separation of fluorescent and non-fluorescent species. Thirty ultrafiltrates and the final retentate R were obtained. Fluorescence maxima of separate ultrafiltrates were different and non-monotonously changed in the range of 475-505 nm. Fluorescence maxima of less than 490 nm were detected only in the four first utrafiltrates. For further physical-chemical analyses all utrafiltrates were combined into a fraction called UF<5 (NMW<5 kDa). Retentate R demonstrated very weak fluorescence under 270 nm excitation, while fluorescence intensity of UF<5 was about six times higher than of the bulk HAs. Fraction UF<5 was further ultrafiltrated on membranes of MNWR 3 kDa and 1 kDa, yielding three subfractions UF3-5, UF1-3 and UF<1 with NMW 3-5 kDa, 1-3 kDa and <1 kDa, respectively. The validation of the UF procedure was performed by size exclusion chromatography on Sephadex G-25 column. The fluorescence maxima were found to be at 505, 488 and 465 nm for UF3-5, UF1-3 and UF<1, respectively, with increasing of fluorescence intensity from UF3-5 to UF1-3 to UF<1 fraction. EPR analysis showed that the amount of free radicals was the largest in retentate R and drastically decreased in fluorescent ultrafiltrates. The results demonstrate that more than one fluorophore is present in chernozem soil HAs complex.

  15. 粉末活性炭预吸附改善超滤膜通量试验研究%The Improvement of Ultrafiltration Membrane Permeation Flux by Powdered Activated Carbon Pretreatment

    Institute of Scientific and Technical Information of China (English)

    赵珊珊; 许敏; 王志良; 张林生

    2012-01-01

    The effect of the pre-adsorption of Yangtze river water by powder activated carbon (PAC) on the utrafiltration membrane permeation flux was studied in this paper. Two kinds of utrafiltration membrane were used in this experiment, with the molecular weight cutoff of 30 000 and 10 000 Da, respectively. The efficiency of PAC adsorption on organic compounds with different molecular weight and the improvement effects of the membrane flux were emphatically discussed. The experimental results showed that in the filtration of raw water without PAC pretreatinent, the membrane flux declined rapidly. With the PAC pre-adsorption, the fluxes of the two kinds of membrane were improved to some extent. Organic compounds with different molecular weight in the PAC pre-adsorption effluent and membrane effluent were determined, and the results showed that the amount of organic compounds with less than 1 000 Da was higher than the total amount of organic matters with the molecular weight in other range. The smaller pore size of membrane was, the better improvement of permeation flux by PAC pretreatment could be observed.%研究了粉末活性炭(PAC)预处理长江原水对改善超滤膜通量的效果.试验采用截留相对分子质量分别为30000 Da和10 000 Da的2种超滤膜,着重探讨了PAC对长江水中不同分子量有机物的吸附去除效果以及其所带来的膜通量改善.试验结果表明,超滤膜直接过滤原水时,膜通量下降严重;采用PAC预吸附后,2种膜的通量在一定程度上均得到提高.对PAC预吸附和膜后水样进行不同相对分子质量有机物的测定,结果表明:PAC吸附小于1000Da相对分子质量有机物高于其他相对分子质量区间有机物总和;膜表观截留孔径越小,PAC预吸附改善膜通量效果越显著.

  16. Development of a new antithrombogenic continuous ultrafiltration system (ACUS) and its clinical evaluation.

    Science.gov (United States)

    Arakawa, M; Suzuki, Y; Nagao, M; Aoike, I; Koda, Y; Terada, R; Kunitomo, T

    1991-01-01

    A new totally antithrombogenic continuous ultrafiltration system (ACUS), consisting of polyacrylonitrile-polyethyleneoxide (PAN-PEO) membrane and ionically heparin-bound catheter, tubing, and module header was designed and its performance was confirmed through animal experiments and clinical evaluation. Animal experiments revealed that persistent antithrombogenicity and maintained ultrafiltration without systemic heparinisation were observed only when the three major parts--i.e. (1) the catheter and tubing, (2) the header part of a haemofilter module, and (3) the fibre membrane--were all antithrombogenic and connected to each other without uneven structures. ACUS was clinically applied to 15 oliguric patients with various severe conditions. We found that one filter could function for approximately 26 h without systemic anticoagulation, even in the presence of low blood pressure, and that ACUS did not change platelet function. Thus, ACUS seems to be very suitable for the management of volume overload, especially in patients with severe circulatory problems or bleeding tendencies.

  17. Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration-complexation.

    Science.gov (United States)

    Molinari, Raffaele; Gallo, Saverio; Argurio, Pietro

    2004-02-01

    In the present paper a process for removal of ions from wastewater or from washing water of contaminated soil by using the weakly basic water-soluble polymer polyethylenimine (PEI) as chelating agent and the Cu(2+) ion as model in combination with an ultrafiltration process was investigated. The complexing agent was preliminarily tested to establish the best operative conditions of the process. Next, ultrafiltration tests by using five different membranes were realised to check membrane performance like flux and rejection. Finally, the possibility for recovering and recycling the polymer was tested in order to obtain an economically sustainable process. Obtained results showed that complexation conditions depends on pH: indeed, at a pH>6 PEI-Cu(2+) complexes are formed, while at pHultrafiltration process (PAUF) very interesting for metal ion removal from waters.

  18. The Effect of Preoxidation on Ultrafiltration Performance in Drinking Water Treatment

    Science.gov (United States)

    Li, Weiying; Xu, Jingjing; Lu, Junyu; Zhao, Yong; Sun, Xiuli; Dong, Bingzhi

    2010-11-01

    Membrane fouling due to foulants existing in the membrane feed water is an inevitable problem for ultrafiltration (UF) applied to water treatment. A bench-scale study was undertaken to evaluate the anti-fouling effect of different oxidants preoxidation on the dead-end, constant flux UF of surface water. Furthermore, the mechanisms of membrane fouling by natural organic matter (NOM) were examined. The concept of UMFI (unified membrane fouling index) was applied to assess hydraulically reversible and irreversible fouling potential of UF membrane in the bench-scale fouling studies. It was found that preoxidation greatly impacted the membrane fouling potential, which might be the result of changes of NOM characteristics. The transmembrane pressure (TMP) increased slightly and slowly with increasing dosage. The membrane fouled by preoxidation water was more amenable to chlorine-induced permeability recovery, but it was contrary for hydraulically irreversible fouling. Therefore, preoxidation is a promising pretreatment method for UF systems, and needed further determining.

  19. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  20. 浸没式超滤膜用于污水处理厂深度处理的试验%A pilot study on submerged ultrafiltration membrane for advanced treatment of wastewater in wastewater treatment plants

    Institute of Scientific and Technical Information of China (English)

    操家顺; 陆晓光; 方芳

    2013-01-01

    A pilot study was carried out using ultrafiltration (UF) equipment with a treatment scale of 31.2 m3/d for the advanced treatment of the effluent from the secondary settling tank in a wastewater treatment plant in Jiangsu Province.Using UF,the removal efficiencies of the turbidity,suspended solids (SS),chemical oxygen demand (COD),total phosphorus (TP),and fecal coliforms were investigated.The results show the following:(1) the pretreatment technique of adding flocculants improved the removal efficiencies of pollutants and reduced the increase of transmembrane pressure,and the effluent met the water quality requirement when 2 mg/L to 4 mg/L of aluminum sulfate was added; and (2) high removal rates of the turbidity,SS,COD,TP,and fecal coliform were obtained:0.33 NTU,0.9 mg/L,5.3 mg/L,0.32 mg/L,and 0 cells/L,respectively.UF performs better than the original advanced treatment technique,through the following process:micro-flocculation to sand filtration to ozonation to chlorination.The water quality of UF effluent meets the requirement for the circulation cooling water in The Reuse of Urban Recycling Water-Water Quality Standard for Industrial Uses (GB/T 19923-2005).%采用处理规模为31.2 m3/d的超滤中试装置,对江苏省某污水处理厂二沉池出水进行深度处理,着重考察超滤对浑浊度、SS、COD、TP、粪大肠菌群等的去除效果.结果表明:①将投加絮凝剂作为前处理手段可提高超滤时污染物的去除效果并降低跨膜压差增量,投加的硫酸铝质量浓度为2~4mg/L即可满足出水水质要求;②超滤对浑浊度、SS、COD、TP、粪大肠菌群等去除效果较好,出水中这些指标的值分别为0.33 NTU、0.9mg/L、5.3mg/L、0.32 mg/L和0个/L,出水水质优于污水处理厂原深度处理工艺“微絮凝→砂滤→臭氧→氯消毒”的出水水质,满足GB/T 19923-2005《城市污水再生利用工业用水水质》规定的回用作循环冷却水的水质要求.

  1. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  2. A New Concept of Ultrafiltration Fouling Control: Backwashing with Low Ionic Strength Water

    OpenAIRE

    Li, S.

    2011-01-01

    Ultrafiltration (UF) is a proven technology in water treatment nowadays. However, fouling remains a major challenge in the operation of UF, especially in regard to colloidal NOM fouling. In general, a number of colloidal NOM fouling mechanisms may occur, such as adsorption, gel formation. Colloidal NOM fouling is influenced by multivalent cations, ionic strength and pH. In order to control membrane fouling, different pretreatments such as powder activated carbon adsorption, lime softening, io...

  3. A New Concept of Ultrafiltration Fouling Control: Backwashing with Low Ionic Strength Water

    OpenAIRE

    Li, S.

    2011-01-01

    Ultrafiltration (UF) is a proven technology in water treatment nowadays. However, fouling remains a major challenge in the operation of UF, especially in regard to colloidal NOM fouling. In general, a number of colloidal NOM fouling mechanisms may occur, such as adsorption, gel formation. Colloidal NOM fouling is influenced by multivalent cations, ionic strength and pH. In order to control membrane fouling, different pretreatments such as powder activated carbon adsorption, lime softening, io...

  4. Treatment of Effluent from Sedimentation Tank of Waterworks by Ultrafiltration Membrane%超滤膜处理净水厂沉淀池出水的中试研究

    Institute of Scientific and Technical Information of China (English)

    姜宇; 顾平; 王海燕; 何凤华; 韩涛

    2012-01-01

    采用中试规模的内压式超滤膜系统处理水厂沉淀池出水,考察超滤膜系统长期运行的出水水质情况.结果表明,超滤膜系统在处理不同水质期沉淀池出水时具有较高的除浊率,平均除浊率达到93.4%,且99.4%的出水浊度<0.1 NTU,去除效果明显优于同期传统的滤池工艺.超滤膜系统对沉淀池出水中有机物的去除效果有限,对CODMn和UV254的平均去除率分别为17.2%和8.2%,出水CODMn≤2.0 mg/L的保证率在98%以上,膜出水CODMn浓度受进水水质和运行条件的影响不大.膜进水中以小分子质量有机物为主,在MW<1 ku区间内的DOC和UV254占到整体有机物含量的57.3%和53.5%.超滤膜系统对微生物的去除效果良好,膜出水水质大部分时间无需经过消毒就能保证卫生要求,可降低后续消毒的加氯量,从而减少消毒副产物的生成量.%A pilot-scale internal pressure ultraiiltration (UF) membrane system was used to treat effluent from sedimentation tank in a waterworks and the quality of produced water from UF membrane system was investigated for a long time. The results demonstrated that a high removal rate of turbidity was achieved in different water quality periods, with an average removal rate of 93.4%. The guarantee rate of turbidity below 0.1 NTU was 99.4%. The removal efficiency of UF membrane system was significantly better than that of conventional filter process. The removal efficiency of organic matters in the effluent from sedimentation tank by UF membrane system was limited. The average removal rates of CODMn and UV254 were 17.2% and 8. 2% , respectively. The guarantee rate of CODMn≤2 mg/L was above 98%. The CODMn concentration in membrane effluent was little influenced by the influent quality and the operation condition. Organics with low molecular weight were dominant in membrane influent. DOC and UV^ with MW of less than 1 ku accounted for 57.3% and 53.5% of the total organics

  5. OBTAINING FRUCTOOLIGOSACCHARIDES FROM YACON (Smallanthus sonchifolius BY AN ULTRAFILTRATION PROCESS

    Directory of Open Access Journals (Sweden)

    M. L. Brites

    Full Text Available Abstract The objective of this study was to evaluate the separation of fructooligosaccharides (FOS from yacon extract by an ultrafiltration process using membranes of 10 and 30 kDa. The total resistance (Rt, membrane resistance (Rm, fouling resistance (Rf, and concentration polarization (Rc during the separation process were also assessed. The operating pressures were 1.2 and 0.75 bar for UF-10 and UF-30, respectively. The permeate flux increased upon increasing the pressure from 0.5 to 2 bar and the resistance values showed a slight increase with increasing pressure. The fouling percentages were 61.24% and 57.33% for the membranes UF-10 and UF-30, being reversible after the cleaning procedure with acidic and basic solution, resulting in high percentages of flux recovery of 76.46% and 83.56% for U-10 and UF-30, respectively. The FOS retention values were 24.48% and 6.49% for both membranes UF-10 and UF-30, corresponding to 24% and 18.4% purity.

  6. Adsorption combined with ultrafiltration to remove organic matter from seawater.

    Science.gov (United States)

    Tansakul, Chatkaew; Laborie, Stéphanie; Cabassud, Corinne

    2011-12-01

    Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments.

  7. Ultrafiltrate sampling device for continuous monitoring

    NARCIS (Netherlands)

    Moscone, D; Venema, K; Korf, J

    1996-01-01

    A light, portable sampling device for ?he continuous collection and storage of subcutaneous fluid is described. It consists of a hollow-fibre probe for ultrafiltration, a long tube for sample storage and a vacuum tube as driving force. introduction of a restriction in the flow path allows a constant

  8. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    Science.gov (United States)

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  9. Use of an ultrafiltration system in the Gundremmingen nuclear power plant for the treatment of nuclear process water; Einsatz einer Ultrafiltration im Kernkraftwerk Gundremmingen zur Aufbereitung von nuklearen Prozesswaessern

    Energy Technology Data Exchange (ETDEWEB)

    Krumpholz, Udo [Kernkraftwerk Gundremmingen GmbH, Gundremmingen (Germany). Teilbereich Ueberwachung - Chemie/Entsorgung; George, Carsten [Kernkraftwerk Gundremmingen GmbH, Gundremmingen (Germany). Teilbereich Technik - Maschinentechnik; Berger, Joerg [Gruenbeck Wasseraufbereitung GmbH, Hoechstaedt a.d. Donau (Germany). Energiezentralen

    2014-07-01

    Over the years, membrane filtration systems have successfully been used in conventional water treatment systems. The use of an ultrafiltration system has proven effective in the treatment of particle contaminated process water. In 2012 an ultrafiltration system was designed, installed and commissioned for the treatment of particle contaminated backwash and transport water from the condensate polishing system in the Gundremmingen nuclear power plant, units B and C. Performance data surpass the client's requirements with respect to permeate quality, flow-rate and backwash behaviour. The technology applied has proven well. (orig.)

  10. Glomerular ultrafiltration of IGF-I may contribute to increased renal sodium retention in diabetic nephropathy.

    Science.gov (United States)

    Wang, S N; Lapage, J; Hirschberg, R

    1999-08-01

    Insulin-like growth factor-I (IGF-I) is found in plasma at relatively high levels (approximately 40 nmol/L) but 99% is bound to specific binding proteins to form high-molecular-weight complexes of approximately 50 and approximately 150 kd. We hypothesized that in rats with diabetic nephropathy but not in normal animals, IGF-I-containing binding protein complexes undergo glomerular ultrafiltration, allowing the peptide to interact with IGF-I receptors in apical tubular membranes. By this route, ultrafiltered IGF-I may increase tubular epithelial cell sodium absorption in overt diabetic nephropathy. In serum samples from diabetic rats, IGF-I levels (227 +/- 34 ng/mL) were reduced as compared with control levels (319 +/- 33 ng/mL, P = .05), and IGF-binding protein-2 (IGFBP-2) is increased about 2-fold. In diabetic rats, IGF-I undergoes glomerular ultrafiltration and is present in proximal tubular fluid that was collected by nephron micropuncture at 2.54 +/- 0.54 nmol/L but is below the detection limit in tubular fluid from normal rats. IGFBP-1, IGFBP-2, IGFBP-3, and IGFBP-4 are all present in diabetic rat glomerular ultrafiltrate, but IGFBP-2 levels are greater than those of each of the other three IGFBPs. Neither recombinant human IGF-I (1 nmol/L) nor diabetic rat glomerular ultrafiltrate affect sodium transport in cultured mouse proximal tubular cells. In contrast, rhIGF-I and diabetic rat glomerular ultrafiltrate increase the apical-to-basolateral transport of 22Na+ in distal tubule-like A6 cells through mechanisms involving apical IGF-I receptors. In normal rats, luminal infusion with rhIGF-I or with diabetic rat glomerular ultrafiltrate into late proximal tubules increases distal tubular Na+ absorption. These findings indicate that diabetic glomerular sclerosis causes glomerular ultrafiltration of IGF-I, and they suggest that tubular fluid IGF-I may contribute to sodium (and fluid) retention that is commonly observed in patients with severe diabetic nephropathy.

  11. Flexographic newspaper deinking : treatment of wash filtrate effluent by membrane technology

    Science.gov (United States)

    B. Chabot; G.A. Krishnagopalan; S. Abubakr

    1999-01-01

    Ultrafiltration was investigated as a means to remove flexographic ink pigments from wash filtrate effluent generated from various mixtures of flexographic and offset old newspapers from deinking operations. Membrane separation efficiency was assessed from permeate flux, fouling rate, and ease of membrane regeneration (cleaning). Ultrafiltration was capable of...

  12. Feasibility Study of Advanced NOM-Reduction by Hollow Fiber Ultrafiltration and Nanofiltration at a Swedish Surface Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Angelica Lidén

    2016-04-01

    Full Text Available Membrane technology, i.e., ultrafiltration and nanofiltration, is growing in popularity, as it is a space efficient alternative for surface water treatment. Two types of hollow fiber membranes were tested in a fully equipped and automated pilot at a Swedish water treatment plant. Raw water was treated by a nanofilter and by coagulation before an ultrafilter. Operation parameters recorded during these trials have been the basis for cost estimations and assessments of environmental impact, comparing the two membrane modules to the existing conventional treatment. The membranes required lower chemical consumption, but led to increased costs from membrane modules and a higher energy demand. Compared to the existing treatment (0.33 €/m3, the operational costs were estimated to increase 6% for ultrafiltration and 30% for nanofiltration. Considering the low emissions from Nordic energy production, the membrane processes would lower the environmental impact, including factors such as climate and ecosystem health. Greenhouse gas emissions would decrease from 161 g CO2-eq/m3 of the existing process, to 127 g CO2-eq/m3 or 83 g CO2-eq/m3 for ultrafiltration and nanofiltration, respectively. Lower chemical consumption and less pollution from the sludge leaving the water treatment plant lead to lower impacts on the environment.

  13. Inactivating effects of lignin-derived compounds released during lignocellulosic biomass pretreatment on the endo-glucanase catalyzed hydrolysis of carboxymethylcellulose: A study in continuous stirred ultrafiltration-membrane reactor.

    Science.gov (United States)

    Cantarella, Maria; Mucciante, Claudia; Cantarella, Laura

    2014-03-01

    This study focusses on the reversible/irreversible damage that selected phenolic compounds, released during steam-explosion pretreatment, mandatory for cellulose accessibility, causes on both stability and activity of a commercial cellulase (half-life=173h) during carboxymethyl-cellulose hydrolysis. Long-term experiments performed in continuous stirred UF-membrane bioreactors, operating at steady-state regime, in controlled operational conditions, allowed evaluating the inactivation-constant in the phenol presence (kd1) and after its removal (kd2) from the reactor feed. p-Hydroxybenzoic acid (1 and 2g L(-1)) are the extreme limits in the inactivating effect with enzyme half-lives 99.02 and 14.15h, respectively. The inactivation reversibility was assessed for vanillic acid, p-hydroxybenzoic acid, syringaldehyde, p-coumaric acid, being kd1>kd2. p-Hydroxybenzaldehyde and protocatechuic acid irreversibly affected cellulase stability increasing its inactivation with kd2>kd1. p-Hydroxybenzaldehyde, 1g L(-1), syringaldehyde, and vanillin, at 2gL(-1), had similar kd1÷kd2.

  14. Membrane technologies for liquid radioactive waste treatment

    Science.gov (United States)

    Chmielewski, A. G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1999-01-01

    The paper deals with some problems concerning reduction of radioactivity of liquid low-level nuclear waste streams (LLLW). The membrane processes as ultrafiltration (UF), seeded ultrafiltration (SUF), reverse osmosis (RO) and membrane distillation (MD) were examined. Ultrafiltration enables the removal of particles with molecular weight above cut-off of UF membranes and can be only used as a pre-treatment stage. The improvement of removal is achieved by SUF, employing macromolecular ligands binding radioactive ions. The reduction of radioactivity in LLLW to very low level were achieved with RO membranes. The results of experiments led the authors to the design and construction of UF+2RO pilot plant. The development of membrane distillation improve the selectivity of membrane process in some cases. The possibility of utilisation of waste heat from cooling system of nuclear reactors as a preferable energy source can significantly reduce the cost of operation.

  15. Enzyme hydrolysis of plasma proteins in a CSTR ultrafiltration reactor: Performances and modeling.

    Science.gov (United States)

    Bressollier, P; Petit, J M; Julien, R

    1988-05-01

    By investigating the effects of four operating variables-volume (V), Ultrafiltration flux (J), enzyme concentration (E), and substrate concentration (S)-on capacity (K) and conversion rate (epsilon) of a hollow fiber CSTR, the performances of the CSTR and the kinetic constants of the reaction were determined. A model which takes into account the course of fractional conversion (X) according to the modified space-time parameter, tau (integrated form of V, J, S, and E), was devised by employing the relationship to integrate the equation for the reaction rate of the CSTR and the expression of the modified space time. Correlation of this model and the experimentally obtained results demonstrates that the characteristics for an ultrafiltration membrane reactor for enzymatic hydrolysis by alcalase of plasma proteins are close to those of an ideal CSTR. Optimal scaling up, however, remains dependent on the compromise which may be obtained between capacity and the conversion rate.

  16. Removal of chromium from aqueous solution by complexation-ultrafiltration using a water-soluble macroligand.

    Science.gov (United States)

    Aliane, A; Bounatiro, N; Cherif, A T; Akretche, D E

    2001-06-01

    A process for purifying waste waters containing heavy and toxic metal such as chromium has been studied. A batch complexation-ultrafiltration process was used to concentrate and recover chromium from sulphate solution. As the chromium ions are too small to be retained by the filter, they are first complexed with a water-soluble macroligand (polyethylene-imine). Factors affecting the rejection rate and permeate flux such as pH, concentration ligand, chloride and sulphate concentration, membrane pore size, applied pressure and extraction factor were investigated. Best operating conditions can be obtained in order to achieve high levels of removal (> 95%). Then, decomplexation is obtained so that metal can be separated from macroligand by a second ultrafiltration plant to reuse the macroligand.

  17. Hydrolysis and large scale ultrafiltration study of alfalfa protein concentrate enzymatic hydrolysate.

    Science.gov (United States)

    D'Alvise; Lesueur-Lambert; Fertin; Dhulster; Guillochon

    2000-08-01

    Batch enzymatic hydrolysis of insoluble Alfalfa Protein Concentrate by Delvolase was carried out at laboratory and at pilot-plant scale coupled to an ultrafiltration reactor with a mineral tubular membrane. Parametric studies were carried out on the batch system to determine the biochemical and hydrodynamical optimum conditions. The hydrolysis conditions selected were 40 degrees C, pH 9.5, initial substrate level 3 g protein/100 g and the enzyme substrate ratio 152 U/g protein. After 5 h of hydrolysis, 96% of the total amount of initial nitrogen was solubilized. The ultrafiltration conditions selected were a 10 000 Nominal Molecular Weight Cut-Off, a transmembrane pressure of 1.5 bar, a flux velocity of 0.8 m/s. Fifty percent of the initial nitrogen appeared in the permeate.

  18. Replacement of chemical intensive water treatment processes with energy saving membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, M.C.; Goering, S.W.

    1983-11-01

    The project investigated the use of charged ultrafiltration membranes to treat hard water. More specifically, the work was undertaken to (1) make charged ultrafiltration membranes to demonstrate the technical feasibility of the chemical grafting approach; (2) evaluate the market potential for charged ultrafiltration membranes; and (3) evaluate the cost and energy savings for using charged ultrafiltration as compared to lime-based clarification and other treatment methods. The results suggest that chemical grafting is a relatively simple, reproducible and low-cost way to modify existing substrate materials to give them enhanced transport performance. Process studies lead to the identification of good market potential for membrane processes using charged ultrafiltration membranes. Capital and operating costs relative to lime-based clarification are favorable for low- and medium-sized treatment plants. Finally, substantial energy savings are apparent as compared to lime-based precipitation systems which incur substantial energy consumption in the lime production and transportation steps.

  19. Combination of balanced ultrafiltration with modified ultrafiltration attenu-ates pulmonary injury in patients undergoing open heart surgery

    Institute of Scientific and Technical Information of China (English)

    黄惠民; 姚廷俊; 王伟; 朱德明; 张蔚; 陈虹; 付维定

    2003-01-01

    Objective To explore the effects of ultrafiltration technique in preventing and relieving pulmonary injury in children undergoing open heart surgery and cardiopulmonary bypass (CPB).Methods Thirty cases with congenital heart defects were divided into a control group and an experimental group. In the control group, conventional cardiopulmonary bypass was used without ultrafiltration; while in the experimental group, cardiopulmonary bypass with balanced ultrafiltration and modified ultrafiltration were used. Pulmonary static compliance (Cstat), airway resistance (Raw), alveolar-arterial oxygen difference (A-a DO2), hematocrit (HCT), serum albumin (Alb), interleukin-6 (IL-6), endothelia-1 (ET-1) and thromboxane (TXB2) were measured. Results The pulmonary function was improved, HCT and serum albumin concentrations were increased, and some harmful medium-size solutes were decreased in the experimental groups compared with the control group.Conclusions Combination of balanced ultrafiltration with modified ultrafiltration can effectively concentrate blood, exclude harmful inflammatory mediators, and attenuate lung edema and inflammatory responsive pulmonary injury.

  20. Characterization of antibacterial polyethersulfone membranes using the respiration activity monitoring system (RAMOS)

    NARCIS (Netherlands)

    Kochan, J.; Scheidle, M.; Erkel, J. van; Bikel, M.; Büchs, J.; Wong, J.E.; Melin, T.; Wessling, M.

    2012-01-01

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial prope

  1. A REVIEW ON USING MEMBRANE REACTORS IN ENZYMATIC HYDROLYSIS OF CELLULOSE

    National Research Council Canada - National Science Library

    THAOTHY NGUYENHUYNH; RAJESH NITHYANANDAM; CHIEN HWA CHONG; DUDUKU KRISHNAIAH

    2017-01-01

    .... The approach of using ultrafiltration membranes has created an effective way for simultaneously glucose removal and enzyme recovery with two main configurations of membrane reactors developed by many researchers...

  2. Thin stillage fractionation using ultrafiltration: resistance in series model.

    Science.gov (United States)

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2009-02-01

    The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5-10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R(2) > 0.98).

  3. Study on Application of Ultrafiltration in Reclamation of Soy Protein Wastewater

    Institute of Scientific and Technical Information of China (English)

    LV Sihao; CHEN Fuming; QI Peishi; WANG Xiaoyu

    2006-01-01

    This pilot study involved the application of a crossflow ultrafiltration (UF) membrane module employing hollow fiber polysulphone membranes in the reclamation of protein and oligosaccharides from soy protein wastewater.The optimal membrane molecular weight cut-off (MWCO) was selected as 10 ku upon retaining ratios of protein and oligosaccharides as well as the variation of permeate flux. The effects of pretreatment strategy and operating conditions, such as transmembrane pressure (TMP), feed pH and velocity on flux were studied. According to the experimental result, the optimal operating conditions were determined as temperature 45 ℃, pH 4.5, TMP 0.2 MPa and investigated. The experimental result showed that backflushing with pure water could only recover the lost permeate flux by 30%, and the decrease of backflushing interval was helpful in improving UF permeate productivity. Chemical cleaning test revealed that the combination of sodium hydroxide and EDTA was an ideal agent for cleaning the fouled membranes.

  4. Development and Demonstration of Ultrafiltration Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Billing, Justin M.; Peterson, Reid A.; Rinehart, Donald E.; Smith, Harry D.

    2009-02-24

    According to Bechtel National, Inc. (BNI) Test Specification 24590-PTF-TSP-RT-06-006, Rev 0, Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes,” simulants for boehmite, gibbsite, and filtration are to be developed that can be used in subsequent bench and integrated testing of the leaching/filtration processes for the waste treatment plant (WTP). These simulants will then be used to demonstrate the leaching process and to help refine processing conditions which may impact safety basis considerations (Smith 2006). This report documents the results of the filtration simulant development.

  5. Synthesis of polypiperazine-amide thin-film membrane on PPESK hollow fiber UF membrane

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new interfacial polymerization (IP) procedure is developed in order to synthesize polypiperazine-amide thin-film membrane on the inner surface of poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber ultrafiltration (UF) membrane. A hollow fiber composite membrane with good performance was prepared and studied by FT-IR and scanning electron microscopy.

  6. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER membrane was used as pre-treatment for electrochemical process. The obtained permeate from the ultrafiltration process allowed COD removal efficiency of about 96% from OMW. Obtained permeate with an average COD of about 1.1gdm-3 was treated by electrochemical reactor equipped with a reactor with bipolar iron plate electrodes. The effect of the experimental parameters such as current density, pH, surface electrode/reactor volume ratio and NaCl concentration on COD removal was assessed. The results showed that the optimum COD removal rate was obtained at a current density of 93.3Am-2 and pH ranging from 4.5 to 6.5. At the optimum operational parameters for the experiments, electrocoagulation process could reduce COD from 1.1gdm-3 to 78mgdm-3, allowing direct discharge of the treated OMW as that meets the Algerian wastewater discharge standards (<125mgdm-3). © 2010 Elsevier B.V.

  7. Application of ultrafiltration in the pulp and paper industry: metals removal and whitewater reuse.

    Science.gov (United States)

    Oliveira, C R; Silva, C M; Milanez, A F

    2007-01-01

    In the pulp and paper industry, the water use minimization is a constant target. One way to reduce water use is to recycle the effluent in a closed-cycle concept. In paper mills, the main source of liquid effluent is the so-called whitewater, which is the excess water, originated from pulp stock dewatering and other fibre contaminated water. This research studied the reuse of paper mill whitewater after membrane ultrafiltration (UF) in the paper machine and in the pulp bleach plant of an integrated mill. Contaminant removal and flux behaviour of the UF system were evaluated. The treatment by ultrafiltration was technically feasible and the treated whitewater had good potential to be reused in some processes in the paper machine. The reuse of ultrafiltered whitewater in the bleaching plant was not recommended because of the high level of soluble calcium present in this stream. Therefore, a combined treatment of the whitewater using the principle of precipitation and ultrafiltration was proposed showing good results and enabling the use of the treated whitewater in the bleach plant.

  8. Solubilization and separation of p-tert-butylphenol using polyelectrolyte/surfactant complexes in colloid-enhanced ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Hirotaka; Christian, S.D.; Tucker, E.E.; Scamehorn, J.F. (Univ. of Oklahoma, Norman, OK (United States))

    1994-03-15

    Water-soluble polyelectrolyte/surfactant complexes, involving oppositely charged species, can form at quite low thermodynamic activities of the surfactant. This fact can be exploited in colloid-enhanced ultrafiltration separations, where both molecular organic pollutants and toxic ions are to be removed from contaminated aqueous streams. Investigations have been made of (a) the solubilization and ultrafiltration of solutions of organic solutes in polymer/surfactant solutions, for comparison with studies of micellar surfactant solutions in the absence of added polymers; (b) the penetration of surfactant through the membrane (leakage of monomer) in dialysis and ultrafiltration experiments; and (c) the utility of polyelectrolytes as scavengers'' for surfactant species that-enter the permeate or filtrate in colloid-enhanced ultrafiltration separations. The polyelectrolyte chosen for the studies is sodium poly(styrenesulfonate) and the surfactant is cetylpyridinium chloride (hexadecylpyridinium chloride). A detailed study has been made of the solubilization and separation of p-tert-butylphenol in aqueous mixtures of sodium poly(styrenesulfonate) and cetylpyridinium chloride, at polyelectrolyte to surfactant mole ratios of two to one and three to one.

  9. Effect of ozone on biopolymers in biofiltration and ultrafiltration processes.

    Science.gov (United States)

    Siembida-Lösch, Barbara; Anderson, William B; Wang, Yulang Michael; Bonsteel, Jane; Huck, Peter M

    2015-03-01

    The focus of this full-scale study was to determine the effect of ozone on biopolymer concentrations in biofiltration and ultrafiltration (UF) processes treating surface water from Lake Ontario. Ozonation was out of service for maintenance for 9 months, hence, it was possible to investigate ozone's action on biologically active carbon contactors (BACCs) and UF, in terms of biopolymer removal. Given the importance of biopolymers for fouling, this fraction was quantified using a chromatographic technique. Ozone pre-treatment was observed to positively impact the active biomass in biofilters. However, since an increase of the active biomass did not result in higher biopolymer removal, active biomass concentration cannot be a surrogate for biofiltration performance. It was evident that increasing empty bed contact time (EBCT) from 4 to 19 min only had a positive effect on biopolymer removal through BACCs when ozone was out of service. However, as a mass balance experiment showed, ozone-free operation resulted in higher deposition of biopolymers on a UF membrane and slight deterioration in its performance.

  10. Ultrafiltration of charge-stabilized dispersions at low salinity.

    Science.gov (United States)

    Roa, Rafael; Menne, Daniel; Riest, Jonas; Buzatu, Pompilia; Zholkovskiy, Emiliy K; Dhont, Jan K G; Wessling, Matthias; Nägele, Gerhard

    2016-05-18

    We present a comprehensive study of cross-flow ultrafiltration (UF) of charge-stabilized suspensions, under low-salinity conditions of electrostatically strongly repelling colloidal particles. The axially varying permeate flux, near-membrane concentration-polarization (CP) layer and osmotic pressure profiles are calculated using a macroscopic diffusion-advection boundary layer method, and are compared with filtration experiments on aqueous suspensions of charge-stabilized silica particles. The theoretical description based on the one-component macroion fluid model (OCM) accounts for the strong influence of surface-released counterions on the renormalized colloid charge and suspension osmotic compressibility, and for the influence of the colloidal hydrodynamic interactions and electric double layer repulsion on the concentration-dependent suspension viscosity η, and collective diffusion coefficient Dc. A strong electro-hydrodynamic enhancement of Dc and η, and likewise of the osmotic pressure, is predicted theoretically, as compared with their values for a hard-sphere suspension. We also point to the failure of generalized Stokes-Einstein relations describing reciprocal relations between Dc and η. According to our filtration model, Dc is of dominant influence, giving rise to an only weakly developed CP layer having practically no effect on the permeate flux. This prediction is quantitatively confirmed by our UF measurements of the permeate flux using an aqueous suspension of charged silica spheres as the feed system. The experimentally detected fouling for the largest considered transmembrane pressure values is shown not to be due to filter cake formation by crystallization or vitrification.

  11. Investigation of whey protein concentration by ultrafiltration elements designed for water treatment

    Directory of Open Access Journals (Sweden)

    Kukučka Miroslav Đ.

    2013-01-01

    Full Text Available Suitability of polysulfone ultrafiltration membranes (UFM commercial designed for water treatment have been investigated for separation of protein (PR from sweet whey. Ultrafiltration (UF of whey originated from dairy has been realized by self-made pilot plant which has been in service about one year. Influence of two whey temperatures (9 oC and 30 oC on efficiency of protein concentration has been examined. Application of investigated UF elements has given whey protein concentrate (WPC with 5 to 6 times excess amount of protein content in regard to starting one. In the same time the prevalent content of lactose has been removed to permeate. Better results have been occurred during the cold whey filtration. Besides the fact that molecular weight cut-off (MWCO of investigated membranes were 50-100 kDa, results showed very successful concentrating of whey proteins of dominantly lower molar weights than 50-100 kDa. Investigated membranes are beneficial for design and construction of UF plants for exploitation in small dairies.

  12. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production.

    Science.gov (United States)

    Jermann, D; Pronk, W; Meylan, S; Boller, M

    2007-04-01

    Ultrafiltration is an emerging technology for drinking water production, but a main challenge remains the lack of understanding about fouling. This paper investigates the impact of molecular interactions between different natural organic matter (NOM) compounds on ultrafiltration fouling mechanisms. We performed dead-end filtration experiments with individual and mixed humic acid and alginate (polysaccharide). Alginate showed detrimental, but mostly reversible, flux decline and high solute retention. Our results indicate that this was caused by pore blocking transformed into cake building and weak molecular foulant-membrane and foulant-foulant interactions. In the presence of calcium, aggravated fouling was observed, related to complexation of alginate and its subsequently induced gel formation. With humic acid, more severe irreversible fouling occurred due to humic acid adsorption. Minor adsorption of alginate onto the membrane was also observed, which probably caused the substantial irreversible flux decline. The fouling characteristics in the mixtures reflected a combination of the individual humic acid and alginate experiments and we conclude, that the individual fouling mechanisms mutually influence each other. A model elucidates this interplay of the individual fouling mechanisms via hydrophobic and electrostatic interactions. In our study such an interplay resulted in an alginate cake, or gel in the presence of calcium, which is relatively irreversibly adsorbed onto the membrane by humic acid associations. This study shows the importance of mutual influences between various foulants for improved understanding of fouling phenomena. Furthermore it shows that substances with a minor individual influence might have a large impact in mixed systems such as natural water.

  13. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use.

  14. Comparison of epichlorohydrin-dimethylamine with other cationic organic polymers as coagulation aids of polyferric chloride in coagulation-ultrafiltration process.

    Science.gov (United States)

    Sun, Shenglei; Gao, Baoyu; Yue, Qinyan; Li, Ruihua; Song, Wen; Bu, Fan; Zhao, Shuang; Jia, Ruibao; Song, Wuchang

    2016-04-15

    Epichlorohydrin-dimethylamine (DAM-ECH) copolymer was acquired by polycondensation of hazardous reagents: epichlorohydrin (analytical reagent, A.R.) and dimethylamine (A.R.) with ethanediamine (A.R.) as cross-linker. Its coagulation and membrane performance as coagulation aid of polyferric chloride (PFC) was evaluated by comparing with other two cationic coagulation aids: poly dimethyl diallyl ammonium chloride (PDMDAAC) and polyacrylamide (PAM) in humic acid-kaolin (HA-Kaolin) simulated water treatment. Firstly, optimum dosages of PFC&DAM-ECH, PFC&PDMDAAC and PFC&PAM were identified according to their coagulation performance. Then their impacts (under optimum dosages) on membrane fouling of regenerated cellulose (RC) ultra-membrane disc in coagulation-ultrafiltration (C-UF) process were reviewed. Results revealed that small addition of DAM-ECH was the effective on turbidity and DOC removal polymer. Furthermore, in the following ultra-filtration process, external membrane fouling resistance was demonstrated to be the dominant portion of the total membrane fouling resistance under all circumstances. Meanwhile, the internal membrane fouling resistance was determined by residual of micro-particles(1) that cannot be intercepted by cake layer or ultrafiltration membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Removal of Metal Iron from Groundwater Using Aceh Natural Zeolite and Membrane Filtration

    Science.gov (United States)

    Mulyati, S.; Arahman, N.; Syawaliah; Mukramah

    2017-03-01

    The adsorption and the ultrafiltration processes were combined for removal of Fe2+ in water sample solution. Aceh natural zeolite used as an adsorbent, and three kind of ultrafiltration membranes (M10K, M30K, and MPVP) were used in this study. The concentration of Fe2+ in the product of adsorption and ultrafiltration is about 0.254 mg/L. This value is below the permissible limit of ferrous metal (0.3 mg/L) in drinking water. The combination of adsorption and ultrafiltration can be used as an alternative treatment of excess iron content in groundwater

  16. Gyroid Membranes made from Nanoporous Blck Copolymers

    DEFF Research Database (Denmark)

    Szewczykowski, Piotr Plzemystaw; Vigild, Martin Etchells; Ndoni, Sokol;

    2007-01-01

    of the membrane and its nanoporosity is e.g. obtained by cross-linking the majority blocks and selectively etching the minority blocks. Here we report on ultrafiltration membranes prepared from a 1,2-polybutadiene-b-polydimethylsiloxane diblock copolymer with gyroid structure. Different experimental methods...

  17. EDTA fouling in dead-end ultrafiltration of low level radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Lixia [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Zhang, Xue [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Zhao, Xuan, E-mail: zhxinet@mail.tsinghua.edu.cn [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Hu, Hongying [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China)

    2015-12-15

    Highlights: • EDTA in LLRW caused unrecoverable UF membrane fouling. • The rejection of nuclides by UF was significantly enhanced with EDTA addition. • The nuclide (except Ag) deposition on membrane increased with EDTA addition. • Reducing EDTA in the feed water or alkaline/ultrasonic washing were suggested. - Abstract: EDTA is widely used as a detergent, and finally enters into wastewater. The influence of EDTA on ultrafiltration of low level radioactive wastewater (LLRW) was investigated under different operation conditions. As the main organic pollutant, EDTA led to unrecoverable membrane fouling and the normalized flux decreased from 100% to 85% depending on its concentration. The clogging caused by EDTA increased the surface roughness of the membrane, leading to the flux reduction. Both nuclide rejections and depositions on the membrane surfaces were enhanced with EDTA addition, due to the strong complexation of the nuclides with EDTA. However, Ag deposition on the membrane decreased slightly in the presence of EDTA, which may be caused by the stronger attraction of Ag to the unmodified membrane than that to the EDTA-modified one. Transmembrane pressure (TMP) and molecular weight cut off (MWCO) of membranes had negligible effects on membrane fouling, while the nuclide rejections by membrane and the depositions of nuclides on membrane both decreased significantly when the TMP increased to 0.2 MPa and MWCO increased from 5 kDa to 30 kDa. Based on these results, it clearly showed that EDTA even at a low concentration had strong effects on the performance of UF treating LLRW. Therefore, it is suggested for industrial application that pretreatments to reduce EDTA or alkaline/ultrasonic washing involved in UF process were necessary to reduce the nuclide depositions on the membrane surfaces and irradiation dose of membrane surface.

  18. Enantiomer separation by ultrafiltration of enantioselective micelles in multistage systems

    NARCIS (Netherlands)

    Overdevest, P.E.M.

    2000-01-01

    The Food and Bioprocess Engineering Group of Wageningen University, The Netherlands, is developing a new enantiomer separation system that is based on ultrafiltration (UF) of enantioselective micelles containing chiral selector molecules. Enantiomer molecules are optical isomers (mirror images), and

  19. Enantiomer separation in a cascaded micellar-enhanced ultrafiltration system

    NARCIS (Netherlands)

    Overdevest, P.E.M.; Hoenders, M.H.J.; Riet, van 't K.; Padt, van der A.; Keurentjes, J.T.F.

    2002-01-01

    The increasing demand for optically pure compounds (enantiomers) stimulates the development of new enantiomer separation processes on an industrial scale. The separation of enantiomers by ultrafiltration of enantioselective micelles was studied in a cascaded system. The feasibility of this separatio

  20. Proteolysis of prato type cheese produced using ultrafiltration

    OpenAIRE

    Spadoti Leila Maria; Dornellas José Raimundo Ferreira; Roig Salvador Massaguer

    2005-01-01

    The application of milk ultrafiltration technology for cheese manufacture presents several advantages. However, it also influences proteolysis and, consequently, cheese ripening. The effects of five different processing methods for Prato cheese were evaluated with respect to the time evolution of the extent and depth of proteolysis indexes (EPI and DPI). The following treatments (T) for cheese production were studied: T1 - without ultrafiltration (standard); T2, T3, T4 and T5 - using milk con...

  1. Recovery of Tungsten (VI) from Aqueous Solutions by Complexation- ultrafiltration Process with the Help of Polyquaternium%Recovery of Tungsten (VI) from Aqueous Solutions by Complexation- ultrafiltration Process with the Help of Polyquaternium

    Institute of Scientific and Technical Information of China (English)

    曾坚贤; 孙霞辉; 郑立锋; 贺勤程; 李书

    2012-01-01

    Polyquaternium-6 (PQ6) as the water-soluble polymer was used for complexing the anion forms of tungsten (Ⅵ) before ultrafiltration. Tungsten (Ⅵ)-PQ6 complex was retained by polysulfone hollow fiber ultrafiltration membrane in the complexation-ultrafiltration process. Effects of various operating parameters such as polymer metal ratio(PMR), pH and chloride ion concentration on permeate flux (J) and tungsten rejection coefficient (R) were investigated. The integration of four experiments including concentration, decomplexation, diafiltration and reuse of regenerated polymer was carried out. In the process of concentration, J declines slowly and R is about 1 at PMR of 3 and pH of 7. Tungsten concentration in the retentate increases linearly with volume concentration factor. Tungsten is concentrated efficiently with the membrane. The concentrated retentate was used further for the decomplexation. It takes about 6 min to reach the decomplexation equilibrium at chloride ion concentration of 50 mg·L-1 . The decomplexation percentage of tungsten (Ⅵ)-PQ6 complex reaches 56.1%. In the diafiltration process, tungsten (Ⅵ) can be extracted effectively by using 50 mg·L-1 chloride ion solution, and the purification of the regenerated PQ6 is acceptably satisfactory. The regenerated PQ6 was used to bind tungsten (Ⅵ) at various pH values. The binding capacity of the regenerated PQ6 is close to that of fresh PQ6, and the recovery percentage of binding capacity is higher than 90%.

  2. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianxian [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China) and College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: zengjianxian@163.com; Ye Hongqi [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hu Zhongyu [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2009-01-30

    Complexation-ultrafiltration process was investigated for mercury and cadmium removal from aqueous solutions by using poly(acrylic acid) sodium salt (PAASS) as a complexing agent. The kinetics of complexation reactions of PAASS with the metal ions were studied under a large excess PAASS and pH 5.5. It takes 25 and 50 min for mercury and cadmium to get the complexation equilibrium, respectively, and the reaction kinetics can be described by a pseudo-first-order equation. Effects of various operating parameters such as loading ratios, pH values, etc. on metal rejection coefficients (R) were investigated. In the process of concentration, membrane fluxes decline slowly and R values are about 1. The concentrated retentates were used further for the decomplexation. The decomplexation ratio of mercury-PAASS complex is about 30%, whereas that of cadmium-PAASS complex reaches 93.5%. After the decomplexation, diafiltration experiments were carried out at pH 2.5. Cadmium can be diafiltrated satisfactorily from the retentate, but for mercury it is the contrary. Selective separation of the both metal ions was studied from a binary solution at pH 5. When mercury, cadmium and PAASS concentrations are 30, 30 and 40 mg L{sup -1}, respectively, mercury is retained by ultrafiltration while almost all cadmium passes through the membrane.

  3. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions.

    Science.gov (United States)

    Zeng, Jianxian; Ye, Hongqi; Hu, Zhongyu

    2009-01-30

    Complexation-ultrafiltration process was investigated for mercury and cadmium removal from aqueous solutions by using poly(acrylic acid) sodium salt (PAASS) as a complexing agent. The kinetics of complexation reactions of PAASS with the metal ions were studied under a large excess PAASS and pH 5.5. It takes 25 and 50 min for mercury and cadmium to get the complexation equilibrium, respectively, and the reaction kinetics can be described by a pseudo-first-order equation. Effects of various operating parameters such as loading ratios, pH values, etc. on metal rejection coefficients (R) were investigated. In the process of concentration, membrane fluxes decline slowly and R values are about 1. The concentrated retentates were used further for the decomplexation. The decomplexation ratio of mercury-PAASS complex is about 30%, whereas that of cadmium-PAASS complex reaches 93.5%. After the decomplexation, diafiltration experiments were carried out at pH 2.5. Cadmium can be diafiltrated satisfactorily from the retentate, but for mercury it is the contrary. Selective separation of the both metal ions was studied from a binary solution at pH 5. When mercury, cadmium and PAASS concentrations are 30, 30 and 40 mg L(-1), respectively, mercury is retained by ultrafiltration while almost all cadmium passes through the membrane.

  4. Quantification and clinical application of carboplatin in plasma ultrafiltrate.

    Science.gov (United States)

    Downing, Kim; Jensen, Berit Packert; Grant, Sue; Strother, Matthew; George, Peter

    2017-05-10

    Carboplatin is a chemotherapy drug used in a variety of cancers with the primary toxicity being exposure-dependant myelosuppression. We present the development and validation of a simple, robust inductively coupled plasma mass spectrometry (ICP-MS) method to measure carboplatin in plasma ultrafiltrate. Plasma ultrafiltrates samples were prepared using Amicon Ultra 30,000da cut-off filters and then diluted with ammonia EDTA before ICP-MS analysis. The assay was validated in the range 0.19-47.5mg/L carboplatin in ultrafiltrate. The assay was linear (r(2)>0.9999), accurate (plasma ultrafiltrate and aqueous platinum calibrators and recovery was complete. The assay was applied to 10 clinical samples from patients receiving carboplatin. Incurred sample reanalysis showed reproducible values over 3 analysis days (plasma stability prior to ultrafiltration has been a major concern in previous clinical studies this was studied extensively at room temperature (22°C) over 24h. Carboplatin was found to be stable in both spiked plasma (n=3) and real patient samples (n=10) at room temperature for up to 8h before ultrafiltration. This makes routine measurement of carboplatin concentrations in clinical settings feasible. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Modified Fouling Index Ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems

    KAUST Repository

    Salinas-Rodriguez, Sergio G.

    2015-02-18

    Reliable methods for measuring and predicting the fouling potential of reverse osmosis (RO) feed water are important in preventing and diagnosing fouling at the design stage, and for monitoring pre-treatment performance during plant operation. The Modified Fouling Index Ultrafiltration (MFI-UF) constant flux is a significant development with respect to assessing the fouling potential of RO feed water. This research investigates (1) the variables influencing the MFI-UF test at constant flux filtration (membrane pore size, membrane material, flux rate); and (2) the application of MFI-UF into pre-treatment assessment and RO fouling estimation. The dependency of MFI on flux, means that to assess accurately particulate fouling in RO systems, the MFI should be measured at a flux similar to a RO system (close to 20 L/m2/h) or extrapolated from higher fluxes. The two studied membrane materials showed reproducible results; 10% for PES membranes and 6.3% for RC membranes. Deposition factors (amount of particles that remain on the surface of membrane) were measured in a full-scale plant ranging between 0.2 and 0.5. The concept of “safe MFI” is presented as a guideline for assessing pre-treatment for RO systems.

  6. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. part 1: optimization of complexation conditions.

    Science.gov (United States)

    Cojocaru, Corneliu; Zakrzewska-Trznadel, Grazyna; Jaworska, Agnieszka

    2009-09-30

    The polymer assisted ultrafiltration process combines the selectivity of the chelating agent with the filtration ability of the membrane acting in synergy. Such hybrid process (complexation-ultrafiltration) is influenced by several factors and therefore the application of experimental design for process optimization using a reduced number of experiments is of great importance. The present work deals with the investigation and optimization of cobalt ions removal from aqueous solutions by polymer enhanced ultrafiltration using experimental design and response surface methodological approach. Polyethyleneimine has been used as chelating agent for cobalt complexation and the ultrafiltration experiments were carried out in dead-end operating mode using a flat-sheet membrane made from regenerated cellulose. The aim of this part of experiments was to find optimal conditions for cobalt complexation, i.e. the influence of initial concentration of cobalt in feed solution, polymer/metal ratio and pH of feed solution, on the rejection efficiency and binding capacity of the polymer. In this respect, the central compositional design has been used for planning the experiments and for construction of second-order response surface models applicable for predictions. The analysis of variance has been employed for statistical validation of regression models. The optimum conditions for maximum rejection efficiency of 96.65% has been figured out experimentally by gradient method and was found to be as follows: [Co(2+)](0)=65 mg/L, polymer/metal ratio=5.88 and pH 6.84.

  7. Treatment of oily wastewater by ultrafiltration: The effect of different operating and solution conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hesampour, M

    2009-07-01

    In many industries, such as petroleum production, and the petrochemical, metal, food and cosmetics industries, wastewaters containing an emulsion of oil in water are often produced. The emulsions consist of water (up to 90%), oils (mineral, animal, vegetable and synthetic), surfactants and other contaminates. In view of its toxic nature and its deleterious effects on the surrounding environment (soil, water) such wastewater needs to be treated before release into natural water ways. Membrane-based processes have successfully been applied in industrial applications and are considered as possible candidates for the treatment of oily wastewaters. Easy operation, lower cost, and in some cases, the ability to reduce contaminants below existing pollution limits are the main advantages of these systems. The main drawback of membranes is flux decline due to fouling and concentration polarisation. The complexity of oil-containing systems demands complementary studies on issues related to the mitigation of fouling and concentration polarisation in membranebased ultrafiltration. In this thesis the effect of different operating conditions (factors) on ultrafiltration of oily water is studied. Important factors are normally correlated and, therefore, their effect should be studied simultaneously. This work uses a novel approach to study different operating conditions, like pressure, flow velocity, and temperature, and solution properties, like oil concentration (cutting oil, diesel, kerosene), pH, and salt concentration (CaCl{sub 2} and NaCl)) in the ultrafiltration of oily water, simultaneously and in a systematic way using an experimental design approach. A hypothesis is developed to describe the interaction between the oil drops, salt and the membrane surface. The optimum conditions for ultrafiltration and the contribution of each factor in the ultrafiltration of oily water are evaluated. It is found that the effect on permeate flux of the various factors studied strongly

  8. Optimal separation of jojoba protein using membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Nabetani, Hiroshi; Abbott, T.P.; Kleiman, R. [National Center for Agricultural Utilization Research, Peoria, IL (United States)

    1995-05-01

    The efficiency of a pilot-scale membrane system for purifying and concentrating jojoba protein was estimated. In this system, a jojoba extract was first clarified with a microfiltration membrane. The clarified extract was diafiltrated and the protein was purified with an ultrafiltration membrane. Then the protein solution was concentrated with the ultrafiltration membrane. Permeate flux during microfiltration was essentially independent of solids concentration in the feed, in contrast with the permeate flux during ultrafiltration which was a function of protein concentration. Based on these results, a mathematical model which describes the batchwise concentration process with ultrafiltration membranes was developed. Using this model, the combination of batchwise concentration with diafiltration was optimized, and an industrial-scale process was designed. The effect of ethylenediaminetetraacetic acid (EDTA) on the performance of the membrane system was also investigated. The addition of EDTA increased the concentration of protein in the extract and improved the recovery of protein in the final products. The quality of the final product (color and solubility) was also improved. However, EDTA decreased permeate flux during ultrafiltration.

  9. Role of Diuretics and Ultrafiltration in Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Jo Ann Lindenfeld

    2013-07-01

    Full Text Available Volume overload in heart failure (HF results from neurohumoral activation causing renal sodium and water retention secondary to arterial underfilling. Volume overload not only causes signs and symptoms of congestion, but can impact myocardial remodeling and HF progression. Thus, treating congestion is a cornerstone of HF management. Loop diuretics are the most commonly used drugs in this setting. However, up to 30% of the patients with decompensated HF present with loop-diuretic resistance. A universally accepted definition of loop diuretic resistance, however, is lacking. Several approaches to treat diuretic-resistant HF are available, including addition of distal acting thiazide diuretics, natriuretic doses of mineralocorticoid receptor antagonists (MRAs, or vasoactive drugs. Slow continuous veno-venous ultrafiltration is another option. Ultrafiltration, if it is started early in the course of HF decompensation, may result in prominent decongestion and a reduction in re-hospitalization. On the other hand, ultrafiltration in HF patients with worsening renal function and volume overload after aggressive treatment with loop diuretics, failed to show benefit compared to a stepwise pharmacological approach, including diuretics and vasoactive drugs. Early detection of congested HF patients for ultrafiltration treatment might improve decongestion and reduce readmission. However, the best patient characteristics and best timing of ultrafiltration requires further evaluation in randomized controlled studies.

  10. Role of Diuretics and Ultrafiltration in Congestive Heart Failure

    Science.gov (United States)

    Shchekochikhin, Dmitry; Al Ammary, Fawaz; Lindenfeld, JoAnn; Schrier, Robert

    2013-01-01

    Volume overload in heart failure (HF) results from neurohumoral activation causing renal sodium and water retention secondary to arterial underfilling. Volume overload not only causes signs and symptoms of congestion, but can impact myocardial remodeling and HF progression. Thus, treating congestion is a cornerstone of HF management. Loop diuretics are the most commonly used drugs in this setting. However, up to 30% of the patients with decompensated HF present with loop-diuretic resistance. A universally accepted definition of loop diuretic resistance, however, is lacking. Several approaches to treat diuretic-resistant HF are available, including addition of distal acting thiazide diuretics, natriuretic doses of mineralocorticoid receptor antagonists (MRAs), or vasoactive drugs. Slow continuous veno-venous ultrafiltration is another option. Ultrafiltration, if it is started early in the course of HF decompensation, may result in prominent decongestion and a reduction in re-hospitalization. On the other hand, ultrafiltration in HF patients with worsening renal function and volume overload after aggressive treatment with loop diuretics, failed to show benefit compared to a stepwise pharmacological approach, including diuretics and vasoactive drugs. Early detection of congested HF patients for ultrafiltration treatment might improve decongestion and reduce readmission. However, the best patient characteristics and best timing of ultrafiltration requires further evaluation in randomized controlled studies. PMID:24276318

  11. THE INFLUENCE OF MIEX® RESIN FOR WATER TREATMENT EFFICIENCYIN A HYBRID MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    Mariola Rajca

    2014-10-01

    Full Text Available The paper presents the results of studies related to the effectiveness of removal of natural organic matter (NOM from water using hybrid membrane reactor in which ion exchange and ultrafiltration processes were performed. MIEX® resin by Orica Watercare and immersed ultrafiltration polyvinylidene fluoride capillary module ZeeWeed 1 (ZW 1 by GE Power&Water operated at negative pressure were used. The application of multifunctional reactor had a positive effect on the removal of contaminants and enabled the production of high quality water. Additionally, in refer to single stage ultrafiltration it minimalized the occurrence of membrane fouling.

  12. Cake layer reduction by gas sparging cross flow ultrafiltration of skim latex serum

    Directory of Open Access Journals (Sweden)

    Harunsyah Nik Meriam Sulaiman

    2002-11-01

    Full Text Available A gas sparged method was investigated for reducing cake layer formation and enhancing the crossflow ultrafiltration process. The injection of nitrogen gas promotes turbulence and increases the permeate flux of the process fluid. Experiments were carried out using a tubular membrane (100 kDa MWCO,mounted vertically with skim latex serum, which results from the coagulation of skim latex by-product. The objective of this research was focused mainly on the observed reversible cake resistance during the cross flow ultrafiltration of skim latex serum. The effect of operating parameters, including feed flow rate, flowrate gas sparging and transmembrane pressure ware investigated. Results obtained thus far show that the use of gas sparged technique has been able to enhance total permeate flux in the range 8.29% to 145.33% compared to non-gas sparged condition. In this research optimum permeate flux was obtained at a feed flowrate of 1400 ml/min, a flowrate gas sparging of 500 ml/min and a transmembrane pressure of 0.89 barg.

  13. A new way to apply ultrasound in cross-flow ultrafiltration: application to colloidal suspensions.

    Science.gov (United States)

    Hengl, N; Jin, Y; Pignon, F; Baup, S; Mollard, R; Gondrexon, N; Magnin, A; Michot, L; Paineau, E

    2014-05-01

    A new coupling of ultrasound device with membrane process has been developed in order to enhance cross-flow ultrafiltration of colloidal suspensions usually involved in several industrial applications included bio and agro industries, water and sludge treatment. In order to reduce mass transfer resistances induced by fouling and concentration polarization, which both are main limitations in membrane separation process continuous ultrasound is applied with the help of a vibrating blade (20 kHz) located in the feed channel all over the membrane surface (8mm between membrane surface and the blade). Hydrodynamic aspects were also taking into account by the control of the rectangular geometry of the feed channel. Three colloidal suspensions with different kinds of colloidal interaction (attractive, repulsive) were chosen to evaluate the effect of their physico-chemical properties on the filtration. For a 90 W power (20.5 W cm(-2)) and a continuous flow rate, permeation fluxes are increased for each studied colloidal suspension, without damaging the membrane. The results show that the flux increase depends on the initial structural properties of filtered dispersion in terms of colloidal interaction and spatial organizations. For instance, a Montmorillonite Wyoming-Na clay suspension was filtered at 1.5 × 10(5)Pa transmembrane pressure. Its permeation flux is increased by a factor 7.1, from 13.6 L m(-2)h(-1) without ultrasound to 97 L m(-2)h(-1) with ultrasound.

  14. [Pilot study on the treatment of ultrafiltration for laundry wastewater recycling and reuse].

    Science.gov (United States)

    Wang, Jin; Jiang, Jin-Hui

    2007-02-01

    A pilot study of the treatment for laundry wastewater recycling and reuse on the spot was carried out by ultrafiltration (UF) with different membrane material of PAN, PS and PP. According to the analysis of membrane fouling combined with UF effluent quality, PAN membrane was superior to the others. It removed the turbidity, suspended solid, fat oil and grease effectively, but kept anionic surfactant (LAS) to a certain degree in the UF effluent which is beneficial to recycling and reuse. By correlation analysis, it was found the high COD concentration of effluent was caused by LAS remained. The whiteness and softness of cotton cloth washed by UF effluent for a long-term was not different with that washed by tap water. The removal of bacteria and E. coli by UF membrane was not very high, and so UF effluent was disinfected by ultraviolet (UV) further. As the dosage of UV was not less than 3 750 J/m2, the microbial level reached the China national standard of drinking water. The optimal UF operation condition is to backwash two minutes every thirty minutes' filtration. Adopted alkali liquor of pH 11 to 13 to carry out chemical cleaning, the membrane flux was recovered completely.

  15. Stirred cell ultrafiltration of lignin from black liquor generated from South African kraft mills

    Directory of Open Access Journals (Sweden)

    Paul Kekana

    2016-11-01

    Full Text Available Ultrafiltration of lignin from black liquor was carried out in a stirred batch cell using polyethersulfone membranes. Parameters such as operating pressure, feed concentration, stirring rate and membrane cut-off size were varied and their effects on lignin retention and permeate flux were investigated. The operating pressure, feed concentration and stirring rate were varied in the ranges 150-350 kPa, 3-9% and 200-400 rpm, respectively. The membranes used had cut-off sizes of 5 kDa, 10 kDa and 20 kDa. A one-factor-at-a-time experimental design approach was applied in this study. Retention of lignin increased with increases in operating pressure, feed concentration and stirring rate, but decreased with an increase in molecular cut-off size of the membrane. Permeate flux on the other hand increased with increases in pressure, stirring rate and molecular cut-off size of the membrane but decreased with an increase in feed concentration. The extraction of lignin from black liquor was successfully carried out and extraction efficiencies as high as 86% could be achieved depending on the experimental conditions. The study was concluded with the recommendation of conducting additional experiments using a pilot plant in a continuous mode.

  16. Proteolysis of prato type cheese produced using ultrafiltration

    Directory of Open Access Journals (Sweden)

    Spadoti Leila Maria

    2005-01-01

    Full Text Available The application of milk ultrafiltration technology for cheese manufacture presents several advantages. However, it also influences proteolysis and, consequently, cheese ripening. The effects of five different processing methods for Prato cheese were evaluated with respect to the time evolution of the extent and depth of proteolysis indexes (EPI and DPI. The following treatments (T for cheese production were studied: T1 - without ultrafiltration (standard; T2, T3, T4 and T5 - using milk concentrated by ultrafiltration (UFCM and respectively: T2 - without pre-fermentation of the UFCM; T3 - pre-fermentation of 10% of the UFCM; T4 - pre-fermentation of 20% of the UFCM, and T5 - pre-fermentation of 20% of the UFCM plus indirect heating. Treatments affected the EPI and DPI of the cheeses (T1 lower values for EPI and DPI and T4 higher values for EPI and DPI. The time influenced the extent and depth of proteolysis indexes.

  17. Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration.

    Science.gov (United States)

    Dasgupta, J; Singh, M; Sikder, J; Padarthi, V; Chakraborty, S; Curcio, S

    2015-11-01

    Retention of toxic dyes with molecular weights lower than the molecular weight cut-off (MWCO) of the ultrafiltration membranes can be improved through selective binding of the target dyes to a water-soluble polymer, followed by ultrafiltration of the macromolecular complexes formed. This method, often referred to as polymer enhanced ultrafiltration (PEUF), was investigated in the present study, using polyethyleneimine (PEI) as the chelating agent. Model azo dye Reactive Red 120 was selected as the poorly biodegradable, target contaminant, because of its frequent recalcitrant presence in colored effluents, and its eventual ecotoxicological impacts on the environment. The effects of the governing process factors, namely, cross flow rate, transmembrane pressure polymer to dye ratio and pH, on target dye rejection efficiency were meticulously examined. Additionally, each parameter level was statistically optimized using central composite design (CCD) from the response surface methodology (RSM) toolkit, with an objective to maximize performance efficiency. The results revealed high dye retention efficiency over 99%, accompanied with reasonable permeate flux over 100L/m(2)h under optimal process conditions. The estimated results were elucidated graphically through response surface (RS) plots and validated experimentally. The analyses clearly established PEUF as a novel, reasonably efficient and economical route for recalcitrant dye treatment.

  18. Flux, rejection and fouling during microfiltration and ultrafiltration of sugar palm sap using a pilot plant scale

    Directory of Open Access Journals (Sweden)

    Wanichapichart, P.

    2006-07-01

    Full Text Available The possibility of using a pilot plant scale microfiltration (MF and ultrafiltration (UF to clarify and reduce number of bacteria, yeast and mould of sugar palm sap was studied. The membrane used was multi channel tubular ceramic membrane (ZrO2-TiO2 with membrane pore size 0.2 and 0.1 μm and molecular weight cut off (MWCO 300 and 50 kDa for microfiltration and ultrafiltration respectively. The experiment was carried out to investigate the rejection of the components in sugar palm sap, permeate flux and fouling characteristics. The results showed that the turbidity, the total solid, the viscosity and the numbers of bacteria, yeast and mould in the permeate obtained by MF and UF were reduced significantly compared to those of fresh sugar palm sap. The total soluble solid, total sugar, reducing sugar and pH were not affected by MF and UF. The permeate fluxes for all membranes were reduced greatly as the volume concentration ratio (VCR increased due to severe fouling. The irreversible fouling on membrane surface and/or inside the membrane tended to increase with increasing membrane pore size or MWCO. The result also suggested that protein and small particle in the sugar palm sap were probably responsible for the internal fouling of large pore size membrane. According to the physical, chemical and microorganism quality results, both MF and UF showed the potential use for improving the quality of sugar palm sap but flux reduction due to fouling was a major problem affecting the process performance.

  19. Solvent-resistant microporous polymide membranes

    Science.gov (United States)

    Miller, Warren K.; McCray, Scott B.; Friesen, Dwayne T.

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  20. Methodological aspects of glucose monitoring with a slow continuous subcutaneous and intravenous ultrafiltration system in rats

    NARCIS (Netherlands)

    Kaptein, WA; Kemper, RHA; Ruiters, MHJ; Venema, K; Tiessen, RG; Korf, J

    1997-01-01

    A method for the continuous ultrafiltration of venous blood or subcutaneous fluid is demonstrated with glucose monitoring in the living rat. Ultrafiltrate was withdrawn at a constant flow rate of approximately 100 nl/min. Glucose content of the ultrafiltrates was electrochemically determined with a

  1. Radiocarbon dating of VIRI bone samples using ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Masayo, E-mail: minami@nendai.nagoya-u.ac.jp [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan); Yamazaki, Kana [Faculty of Science, Nagoya University, Nagoya 464-8602 (Japan); Omori, Takayuki [University Museum, University of Tokyo, Tokyo 113-0033 (Japan); Nakamura, Toshio [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan)

    2013-01-15

    Ultrafiltration can effectively remove low-molecular-weight (LMW) contaminants from bone gelatin to extract high-molecular-weight (HMW) proteins that are derived from original bone collagen, though it cannot remove HMW collagen crosslinked with humic acids. Therefore, ultrafiltration is often used to obtain more accurate {sup 14}C dates of bones. However, ultrafiltration may introduce new contaminants to bone gelatins, mainly from ultrafilters used. To study the effects of ultrafiltration on {sup 14}C age, we analyzed the C/N ratio, {delta}{sup 13}C{sub PDB} and {delta}{sup 15}N{sub AIR} values, and {sup 14}C ages of acid-soluble bone collagen obtained by decalcification, gelatin extracted from acid-insoluble bone collagen, and the HMW gelatin and LMW fractions produced during ultrafiltration of the extracted gelatin. Bone samples from the Fifth International Radiocarbon Intercomparison (VIRI) were used: VIRI-E (mammoth), -F (horse), -G (human), and -I (whale). In this study, carbon and nitrogen content and gelatin yields were used to evaluate collagen preservation in the VIRI bone samples. Radiocarbon ages, {delta}{sup 13}C{sub PDB} and {delta}{sup 15}N{sub AIR} values of unfiltered and HMW gelatins were obtained and compared with the published consensus values. The LMW fraction was found to exhibit different values from those of the other fractions, indicating the possible presence of extraneous contamination. The Vivaspin Trade-Mark-Sign 6 ultrafilters used in this study were analyzed and radiocarbon dated both before and after cleaning. We present evidence to suggest that LMW fraction contaminants could be derived from the ultrafilters rather than humic substances. Excessively long ultrafiltration time was suspected to have contaminated the bone samples with material from the ultrafilter, because those samples exhibited older {sup 14}C ages than did those filtered for shorter durations. The results in this study indicate that {sup 14}C ages of unfiltered

  2. Removal of phenolic compounds in pomegranate juices using ultrafiltration and laccase-ultrafiltration combinations.

    Science.gov (United States)

    Alper, Neslihan; Acar, Jale

    2004-06-01

    Phenolic compounds of fruit juices are responsible for haze and sediment formation as well as for color, bitterness and astringency. The influence of ultrafiltration (UF) and laccase-UF combination was investigated on phenolic contents of pomegranate juices and on filtration output. Laccase-treated and then ultrafiltered pomegranate juices have shown a rapid increase in their color, when compared to only ultrafiltered (control) samples. Kinetic parameters of laccase were also determined. During the oxidation period, the changes occurring in pomegranate juices were estimated from phenolic contents, color and anthocyanin measurements. Results have shown that laccase oxidation produced a significant decrease in phenolic content of pomegranate juices while juice color the increased. However, in recent literatures, the possibility to remove polyphenols in apple juices was reported. We decided in this study that laccase treatment can not be applied due to the loss of natural red color and unwanted dark brownish color formation in pomegranate juice.

  3. Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure

    DEFF Research Database (Denmark)

    Zarebska, Agata; Amor, Angel Cid; Ciurkot, Klaudia

    2015-01-01

    . This study investigates preliminary fouling of polypropylene (PP) and polytetrafluoroethylene (PTFE) membranes. A model manure solution was used as feed. In addition cleaning efficiencies with deionized water, NaOH/citric acid, and Novadan agents were studied. Further microfiltration and ultrafiltration were...... additionally contained carboxylates, free fatty acids and lignin. Among the tested cleaning strategies, Novadan agents were the most successful in removing proteins and carbohydrates from the PTFE membrane while it only removed proteins from the PP membrane. Using microfiltration or ultrafiltration...... as a pretreatment prior to MD doubled the ammonia mass transfer coefficient for the PTFE membrane, while for the PP membrane, the ammonia mass transfer coefficient was increased 4-fold....

  4. Effect of transmembrane pressure control on energy efficiency during skim milk concentration by ultrafiltration at 10 and 50°C.

    Science.gov (United States)

    Méthot-Hains, S; Benoit, S; Bouchard, C; Doyen, A; Bazinet, L; Pouliot, Y

    2016-11-01

    The efficiency of the ultrafiltration process during skim milk concentration was studied using both dynamic and constant (465 or 672kPa) transmembrane pressure experiments at refrigerated temperature (10°C) and high temperature (50°C). The pilot-scale module was equipped with a 10-kDa polyethersulfone spiral-wound membrane element with a surface area of 2.04m(2). Permeation flux, resistance-in-series model, mineral and protein rejection, and energy consumption were studied as a function of temperature and transmembrane pressure applied. Higher permeation flux values were systematically obtained at 50°C. Also, a significant temperature effect was found for calcium rejection, which was lower at 10°C compared with 50°C. Total hydraulic resistance and reversible fouling resistance were higher at 50°C than at 10°C. No change in protein rejection was observed, depending on the operating mode studied. Permeation flux, which was higher at 50°C, had lower pumping energy consumption compared with ultrafiltration at the colder temperature. Also, the low ultrafiltration temperature required a higher total energy consumption to reach the 3.6× retentate compared with ultrafiltration at 50°C. Overall, our study shows that the operating parameters and temperature can be optimized using an energy efficiency ratio.

  5. Application of Ultrafiltration in Producting Milk Concentrated Protein%超滤在生产浓缩乳蛋白类产品中的应用

    Institute of Scientific and Technical Information of China (English)

    李明浩; 李晓东; 王洋

    2012-01-01

    超滤技术是一种先进的膜分离技术,其作为一种分离和浓缩的工具已经被广泛应用于乳品工业.本文对超滤技术进行了概述,综述了其在生产乳蛋白浓缩物及浓缩乳清蛋白产品中的研究及应用现状,同时对如何通过超滤过程中条件的选择以提高膜过滤性能进行了阐述,并且对该领域的未来发展趋势做了展望.%Ultrafiltration is an advanced membrane separation technology,as a kind of separation and concentration tool,having been widely used in the dairy industry. This paper made a summary of the ultrafiltration technology and reviewed the present situation of research and application of ultrafiltration in producting milk protein concentration and whey protein concentration. At the same time,how to improve the filtration performance by selecting the conditions in the process of ultrafiltration is expounded and the trend of the future development in this filed is also discussed.

  6. Maximal pore size in UF membranes

    NARCIS (Netherlands)

    Arkhangelsky, E.; Duek, A.; Gitis, V.

    2012-01-01

    The ultrafiltration membrane rejection capability is most often characterized by molecular weight cutoff (MWCO). The value is found by rejection of organic solutes and the evaluation of particle retention requires a conversion of either MWCO to pore size or particle diameter to molecular weight. The

  7. Continuous transformation of benzaldehyde to benzyl alcohol by Rhodotorula mucilaginosa immobilized in an ultrafiltration cell

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, J.; Winnicki, T.; Majewska, K.

    1982-06-01

    Microbiological transformation of benzaldehyde accomplished by the fungus Rhodotorula mucilaginosa immobilized in the ultrafiltration cell was studied. A polysulfone membrane formed on a sintered PVC support was used for the separation of the transformation product from the cellular material. Kinetic investigations have led to results which are typical of continuously fed stirred tank reactors (CFSTR)-the value of the maximum reaction rate (Vmax) and apparent Michaelis constant (K'm) are practically independent of the substrate retention time (calculated in terms of the flow intensity value). A strong relationship was found to occur between Vmax and biomass concentration in the reactor. Study of the apparent enzyme stability shows that the decrease in the biocatalyst activity is chiefly caused by penetration of the cells through the membrane. The experimental results were approximated in terms of the adopted mathematical model. Based on this model, the half-lives (t1/2) of enzyme activities were determined. The t1/2 value varies from 35 to 82 days and depends both on the permeate flux through the membrane and on the separation properties of the membrane. (Refs. 15).

  8. ACE-I Inhibitory Activity from Phaseolus lunatus and Phaseolus vulgaris Peptide Fractions Obtained by Ultrafiltration.

    Science.gov (United States)

    Betancur-Ancona, David; Dávila-Ortiz, Gloria; Chel-Guerrero, Luis Antonio; Torruco-Uco, Juan Gabriel

    2015-11-01

    The involvement of angiotensin-I-converting enzyme (ACE-I) as one of the mechanisms controlling blood pressure is being studied to find alternative means of control of hypertension on human beings. On the market there are synthetic drugs that can control it, but these can cause undesirable health side effects. In this work was assessed the fractionation by ultrafiltration of the Lima bean (Phaseolus lunatus) and Jamapa bean (Phaseolus vulgaris), protein hydrolysates obtained with Alcalase(®) and Flavourzyme(®) on ACE-I inhibitory activity. Four membranes of different molecular cutoffs (10, 5, 3, and 1 kDa) were used. Fractions that had a higher inhibitory activity in both legumes were denominated as E (obtaining and utilizing these peptide fractions in the development and innovation of a functional product that helps with treatment and/or prevention of hypertension.

  9. Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration

    NARCIS (Netherlands)

    Wijmans, J.G.; Nakao, S.; Berg, van den J.W.A.; Troelstra, F.R.; Smolders, C.A.

    1985-01-01

    The influence of concentration polarization on the permeate flux in the ultrafiltration of aqueous Dextran T70 solutions can be described by (i) the osmotic pressure model and (ii) the boundary layer resistance model. In the latter model the hydrodynamic resistance of the non-gelled boundary layer i

  10. Rheology of defatted ultrafiltration-diafiltration soy proteins

    Science.gov (United States)

    The linear and non-linear rheological properties of defatted soy proteins produced by ultrafiltration-diafiltration were investigated at three temperatures. Five concentrations ranging from 10% to 30% of the defatted ultrafiltered-diafiltered (DUD) soy proteins were prepared. The properties of DUD...

  11. Application of combined ultrafiltration and vaccum-assisted venous drainage in extracorporeal circulation for open heart surgery in infants

    Directory of Open Access Journals (Sweden)

    Tao ZHANG

    2014-03-01

    Full Text Available Objective To summarize the managerial experiences in the application of combined ultrafiltration and vaccum-assisted venous drainage (VAVD in extracorporeal circulation (ECC for congenital heart diseases operation in infants. Methods The clinical data of 72 infants [42 males and 30 females, aged 14d to 24 months (13.1±6.2 months, body weight 3.4- 10(8.18±1.88kg], who underwent operation to correct congenital heart diseases from Jan 2011 to Dec 2012, were retrospectively analyzed. Forty-four of the 72 infants were suffering from simple congenital heart diseases (atrial or interventricular septal defect, and 28 with complicated congenital heart diseases (tetralogy of Fallot, partial/complete atrioventricular canal, double outlet of right ventricle, etc.. Membrane oxygenator (Terumo Baby-RX or Maquet VKMO 10000 was used in ECC, and the volume of priming solution (Ringer lactate solution and human serum albumin was 250-450ml. During ECC, the perfusion flow rate was 90-150ml/ (kg.min, mean arterial pressure was maintained at 35-50mmHg, hematocrit (Hct at 0.20-0.30, and rectal temperature at 25- 32℃. Histidine-Tryptophan-Ketoglutarate (HTK solution was used for myocardial preservation during the operation. VAVD was routinely used in ECC with negative pressure of –10 to –30mmHg. The combined ultrafiltration technique was also routinely used, i.e. conventional ultrafiltration was applied in ECC and modified ultrafiltration was applied after ECC. Results The ECC time was 30-174 (82.6±31.2min and aortic clamping time was 6-125 (51.7±30.1min. The peripheral circulation and arterial blood gas values were normal during ECC in 72 infants, and the cardiac spontaneous resuscitation rate was 94.4%(68/72 cases. The volume of conventional ultrafiltration during ECC was 60-380ml and the volume of modified ultrafiltration after ECC was 50-230ml. After the end of modified ultrafiltration, Hct was 0.32±0.11. The volume of intraoperative red blood cell

  12. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes.

    Science.gov (United States)

    Huang, Hubiao; Song, Zhigong; Wei, Ning; Shi, Li; Mao, Yiyin; Ying, Yulong; Sun, Luwei; Xu, Zhiping; Peng, Xinsheng

    2013-01-01

    Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes.

  13. MECHANISM OF LIQUID MEMBRANES AND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Filiz Nuran ACAR

    2002-02-01

    Full Text Available It has been considerably studied on the recycling of waste materials in the source besides of wastewater treatment in the last years. It has been important developments on the using of semiconductor membranes in the recycling of toxic materials such as heavy metals, intensifying the environment protection measures especially in the west countries. Wastewater treatment has been achieved with liquid membranes as it has been achieved with polymeric membrane systems such as ultrafiltration, microfiltration, electrodialysis. At the same time, liquid membranes are used for removal of metal ions in hydrometallurgy. Liquid membranes are also used in biotechnology, medical areas and gas separation process.

  14. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    Science.gov (United States)

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  15. Experimental studies on pore size change of porous ceramic membranes after modification

    NARCIS (Netherlands)

    Lin, Y.S.; Lin, Y.S.; Burggraaf, A.J.; Burggraaf, Anthonie

    1993-01-01

    Experimental results on pore size change of a microfiltration (MF) -alumina membrane and an ultrafiltration (UF) γ-alumina membrane after modification by chemical vapor deposition (CVD) of solid oxides in the membrane pores are presented and explained using the results of a theoretical analysis. Wit

  16. Exploring the structure-properties relationships of novel polyamide thin film composite membranes

    DEFF Research Database (Denmark)

    Briceño, Kelly; Javakhishvili, Irakli; Guo, Haofei

    Polysulfone (PSU) is a material widely used in the fabrication of membranes for ultrafiltration and as a support for nanofiltration and reverse osmosis membranes. Interfacial polymerization usually combines amine and acid chloride monomers for the fabrication of thin film composite membranes[1...

  17. 磺化聚醚砜/纳米TiO2复合超滤膜制备及其抗污染机理%Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism*

    Institute of Scientific and Technical Information of China (English)

    罗明良; 温庆志; 刘佳林; 刘洪见; 贾自龙

    2011-01-01

    Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltrafion (UF) process. In this study, a sulfonated-polyethersulfone (SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods. The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS) and FT-IR spectrometer. The morphology and hydrophilicity were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle goniometer, respectively. The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface. The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.

  18. Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration.

    Science.gov (United States)

    Chomiak, A; Traber, J; Morgenroth, E; Derlon, N

    2015-11-15

    We investigated the influence of biofouling of ultrafiltration membranes on the removal of organic model foulants and ultimately on the quality of permeate. Gravity Driven Membrane ultrafiltration (GDM) membrane systems were operated with modified river water during five weeks without control of the biofilm formation. Three GDM systems were studied: two systems with biofilms exposed to (A) variable or (B) constant load of organic foulants, and (C) one system operated without biofilm and exposed to constant foulant loading. Biodegradable dextran or non-biodegradable polystyrene sulfonate model foulants were tested. Substrate biodegradability was confirmed by Size Exclusion Chromatography (SEC) and by degradation batch tests (D). The GDM systems (A) and (B) were fed with pre-filtered river water supplemented with dextran (Dex) of 1, 150 or 2000 kDa, or polystyrene sulfonate (PSS) of 1 or 80 kDa at concentrations of 2-3.5 mgC L(-1). In exp. (C) the feed water consisted of deionized water with 25 mgC L(-1) of either PSS 1, 80 kDa or Dex 2000 kDa. The biofilm formation on UF membrane surfaces controlled the foulant permeation and thus the permeate quality. Biofilms exposed to continuous foulant loading (exp. B) degraded low molecular weight (LMW) biodegradable foulants (1 kDa Dex), which improved the permeate quality. For high molecular weight (HMW) substrates (150, 2000 kDa Dex), the improvement of the permeate quality was observed after 7 days of biofilm formation, and resulted from the foulant hydrolysis followed by degradation. For non-biodegradable foulants, an improvement of 20% of the retention was observed for the polystyrene (1, 80 kDa PSS) due to the presence of biofilms on membrane surfaces. For variable foulant loading (exp. A) the biofilms hydrolysed the large biodegradable foulants but did not degraded them fully, which resulted a deterioration of the permeate quality (except for the LMW dextran (1 kDa) that was fully degraded). Overall, the "biofilm

  19. Use of icodextrin during nocturnal automated peritoneal dialysis allows sustained ultrafiltration while reducing the peritoneal glucose load: a randomized crossover study.

    Science.gov (United States)

    Rodríguez-Carmona, Ana; Pérez Fontán, Miguel; García López, Elvia; García Falcón, Teresa; Díaz Cambre, Helena

    2007-01-01

    Optimization of ultrafiltration and preservation of the peritoneal membrane are desirable objectives in peritoneal dialysis (PD) patients. Mixtures of glucose- and non-glucose-based solutions may help to meet both targets simultaneously. To analyze the effects, in terms of ultrafiltration and peritoneal glucose load, of including icodextrin-based dialysate in the nocturnal schedule of patients undergoing automated PD (APD). Following a randomized crossover design, 17 APD patients underwent two 10-day study periods under identical prescription (including amino acid-based solution for the night schedule), except for the substitution of 2 L glucose-based dialysate in the nocturnal mixture (control) by a similar amount of icodextrin-based dialysate (icodextrin phase) in one period. Dependent variables included ultrafiltration, sodium removal, peritoneal glucose load, and residual renal function. We measured serum and urine levels of icodextrin metabolites at the end of each phase. Ultrafiltration was marginally higher during the icodextrin phase (median 815 vs 763 mL/day, p = 0.07), while peritoneal sodium removal was similar in both phases (74 vs 71 mmol/L/day). Peritoneal glucose load (median 67.5 vs 104.0 g/day, p icodextrin phase. Diuresis was also modestly lower during the icodextrin phase (500 vs 600 mL/day, p icodextrin metabolites were moderately higher in the icodextrin phase (p icodextrin. Inclusion of amino acid- and icodextrin-based solutions in the nocturnal schedule of APD patients may allow sustained ultrafiltration and sodium removal while significantly reducing the peritoneal glucose load in these patients.

  20. Retreatment of silicon slurry by membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Testa, F. [Universite Paul Cezanne Aix Marseille, Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2 - UMR-CNRS 6181), Europole de l' Arbois, BP. 80, Batiment Laennec, Hall C, 13545 Aix en Provence Cedex 04 (France); KEMESYS, 125 ZA Verdalai, 13790 Peynier (France); Coetsier, C.; Carretier, E. [Universite Paul Cezanne Aix Marseille, Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2 - UMR-CNRS 6181), Europole de l' Arbois, BP. 80, Batiment Laennec, Hall C, 13545 Aix en Provence Cedex 04 (France); Ennahali, M.; Laborie, B. [KEMESYS, 125 ZA Verdalai, 13790 Peynier (France); Serafino, C.; Bulgarelli, F. [Rockwood Wafer reclaim France, ZI des Pradeaux, 13850 Greasque (France); Moulin, P., E-mail: philippe.moulin@univ-cezanne.fr [Universite Paul Cezanne Aix Marseille, Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2 - UMR-CNRS 6181), Europole de l' Arbois, BP. 80, Batiment Laennec, Hall C, 13545 Aix en Provence Cedex 04 (France)

    2011-08-30

    Highlights: {yields} Membrane processes were used to regenerate Silicon CMP slurry effluent {yields} A two-step ultrafiltration process was performed at laboratory and industrial scales {yields} A new hybrid process (membrane ultrafiltration and chemical addition) is developed {yields} A ratio of 0.65 of dissolved chemicals allows RR and TTV to be within specifications {yields} At industrial scale, the hybrid process enables the reuse of electronic effluents. - Abstract: The purpose of the present study is to develop a process to regenerate the polish liquid used in Chemical and Mechanical Polishing (CMP), called 'slurry', and more specifically Silicon CMP slurry. Physico-chemical analyses show a considerable dilution of slurry through washing waters used in polishing. Thus, this effluent has been characterised for a better identification of the deviations from the slurry of reference (Point Of Use). Hence, the principle is to regenerate this effluent by membrane processes. The ultrafiltration results obtained at laboratory scale have led to the development of an industrial prototype. An optimal utilisation of this treatment allows completing a two-step process: the reconcentration by ultrafiltration and a chemical adjustment by addition of concentrated slurry. A stable behaviour of the slurry at the different steps of the process has been observed. Polishing results are similar with retreated and POU slurries. Furthermore, the functioning at industrial scale permits to maintain the performances obtained on the laboratory pilot.

  1. Characterization of powder from the permeate of yacon extract by ultrafiltration and dehydrated by spray drying

    Directory of Open Access Journals (Sweden)

    Marcela Lazzare Brites

    Full Text Available ABSTRACT Yacon root is a functional food which contains antioxidants and prebiotics compounds. This study aimed to evaluate the physical, chemical and prebiotic characteristics of a yacon extract powder obtained by ultrafiltration (UF with membranes of 10 and 30 kDa and encapsulation of the resulting permeate by spray drying. Drying air temperatures of 140 and 160 ºC and concentrations of gum arabic of 10 and 15% were tested. The samples had solubility values greater than 90% while the hygroscopicity decreased with increasing gum concentration and drying temperature. Electron microscopy showed a strong tendency to agglomeration of smaller particles around the larger ones, mainly at a temperature of 140 ºC. Regarding color, the parameter L* showed that drying at 160 ºC produced darker samples and the parameters a* and b* indicated that all samples were greenish yellow. The concentration of inulin decreased during drying, whereas the levels of glucose and fructose increased due to the thermolysis reaction, which led to degradation of inulin chains at drying temperature. The permeates and retentates from the UF membranes had prebiotic activity, while only the encapsulated product from UF-30 membrane, metabolized by Lactobacillus acidophilus LA-5(r, presented activity scores without significant difference to that of glucose.

  2. 平衡超滤能否有效滤除炎性介质%Balanced ultrafiltration: inflammatory mediator removal capacity

    Institute of Scientific and Technical Information of China (English)

    管玉龙; 郭建涛; 万彩红; 王仕刚; 孙鹏; 龙村

    2011-01-01

    目的 在体外循环模拟实验中,对平衡超滤的炎性介质滤除效果进行测定.方法 建立体外循环体外模拟环路,使用健康供体人血与乳酸林格液预充体外循环管路,最终红细胞比容控制于0.24~0.28.体外循环2 h后开始平衡超滤,超滤速度控制在12 ml/min.平衡超滤时间为45 min,每隔5 min取血样5 ml和超滤液60 ml,测定样本及超滤液中炎性介质浓度:包括白细胞介素(IL)-1、IL-6、IL-10、中性粒细胞弹性蛋白酶(NE)以及肿瘤坏死因子(TNF)-α.结果 超滤液中可以检测到所有类型的炎性介质,证实血液浓缩器可以滤除炎性介质.对炎性介质的动态检测发现,血液样本和超滤液中NE的浓度最高(P<0.001);血中IL-1浓度最低,而超滤液中TNF-α浓度低于其他类型的炎性介质(P<0.001).超滤液中的炎性介质浓度与血液样本中浓度并非呈现线性关系.综合考虑超滤液中炎性介质浓度以及超滤液体积提示,血液浓缩器对于炎性介质的滤除率不超过5%.结论 平衡超滤可以选择性地滤除血液中的炎性介质,综合超滤液中炎性介质浓度和体积显示,对于患者体内的炎性介质浓度及总量,平衡超滤作用有限.%Objective Ultrafiltration with hemoconcentrator may remove excess fluid load and alleviate tissue edema, and has been universally adopted in extracorporeal circulation ( ECC ) protocols during pediatric cardiac surgery. Balanced ultrafiltration is advocated to remove inflammatory mediators generated during surgery. However, whether balanced ultrafiltration could remove all or a portion of the inflammatory mediator load be remaining unclear. The inflammatory mediator removal capacity of zero - balanced ultrafiltration was measured during pediatric ECC in vitro. Methods ECC consisted of cardiotomy reservoir, membrane oxygenator and arterial filter. Hemoconcentrator BC 20 plus was placed between arterial purge line and oxygenator venous reservoir. Fresh

  3. Novel cellobiose 2-epimerases for the production of epilactose from milk ultrafiltrate containing lactose.

    Science.gov (United States)

    Krewinkel, Manuel; Kaiser, Jana; Merz, Michael; Rentschler, Eva; Kuschel, Beatrice; Hinrichs, Jörg; Fischer, Lutz

    2015-06-01

    A selected number of enzymes have recently been assigned to the emerging class of cellobiose 2-epimerases (CE). All CE convert lactose to the rare sugar epilactose, which is regarded as a new prebiotic. Within this study, the gene products of 2 potential CE genes originating from the mesophilic bacteria Cellulosilyticum lentocellum and Dysgonomonas gadei were recombinantly produced in Escherichia coli and purified by chromatography. The enzymes have been identified as novel CE by sequence analysis and biochemical characterizations. The biochemical characterizations included the determination of the molecular weight, the substrate spectrum, and the kinetic parameters, as well as the pH and temperature profiles in buffer and food matrices. Both identified CE epimerize cellobiose and lactose into the C2 epimerization products glucosylmannose and epilactose, respectively. The epimerization activity for lactose was maximal at pH 8.0 or 7.5 and 40°C in defined buffer systems for the CE from C. lentocellum and the CE from D. gadei, respectively. In addition, biotransformations of the foodstuff milk ultrafiltrate containing lactose were demonstrated. The CE from D. gadei was produced in a stirred-tank reactor (12 L) and purified using an automatic system. Enzyme production and purification in this scale indicates that a future upscaling of CE production is possible. The bioconversions of lactose in milk ultrafiltrate were carried out either in a batch process or in a continuously operated enzyme membrane reactor (EMR) process. Both processes ran at an industrially relevant low temperature of 8°C to reduce undesirable microbial growth. The enzyme was reasonably active at the low process temperature because the CE originated from a mesophilic organism. An epilactose yield of 29.9% was achieved in the batch process within 28 h of operation time. In the continuous EMR process, the epilactose yield in the product stream was lower, at 18.5%. However, the enzyme productivity

  4. Iron and copper isotope fractionation during filtration and ultrafiltration of boreal organic-rich waters

    Science.gov (United States)

    Ilina, Svetlana M.; Viers, Jerome; Pokrovsky, Oleg S.; Poitrasson, Franck; Lapitsky, Sergey A.; Alekhin, Yuriy V.

    2010-05-01

    Typical feature of all boreal surface waters is high concentration of dissolved (complexes. Organic and organo-mineral colloids are the most likely carriers of trace metals such as Cu in rivers of the boreal zone. This work addresses colloidal speciation of Cu and Fe using conventional size separation technique, on-site frontal ultrafiltration. Specifically, we aimed to test the possibility of the presence of different pools of metal having specific isotopic signatures in different colloidal fractions using stable isotope measurements. We have chosen Cu for its high affinity to colloidal DOM and Fe for its tendency to form stable organo-mineral colloids of various size. Samples of natural waters were collected from small rivers, lakes, bogs, groundwater and soil environments in the Northern Karelia (NW Russia) during summer baseflow period. Large volumes (20-40 L) of water were filtered in the field through progressively decreasing pore size filters: 20, 10, 5, 0.8, 0.45, 0.22, 0.1 µm and 100, 10 and 1 kDa (1 kDa ~ 1 nm) using nylon and regenerated cellulose membranes and frontal ultrafiltration (Millipore, Amicon) devises. The homogeneity of the sample was verified by tracing radiogenic Sr isotopes in each fraction. In all filtrates and ultrafiltrates (permeates), and in selected retentates, stable isotopic composition of Cu and Fe was measured using double focusing high resolution MC-ICP MS (Neptune). We observe rather constant Cu isotopic ratio in all filtrate series and a systematic enrichment of heavy isotope of Fe with decreasing poresize. These preliminary results can be explained by strong complexation of Cu with small-size organic ligands of fulvic nature and its partial association with organo-mineral colloids. Both Fe(III) - OM complxeation and Fe(III) oxyhydroxides precipitation can be invoked to explain Fe isotope fractionation. This work allows, for the first, time, multi-isotopic approach to trace the origin of colloids in surficial waters and it

  5. Ultrafiltration followed by haemodialysis. A longterm trial and acute studies.

    Science.gov (United States)

    Pierides, A M; Kurtz, S B; Johnson, W J

    1978-01-01

    Separate ultrafiltration followed by haemodialysis (U.F.-H.D.) using Gambro Major or Cordis-Dow hollow-fiber dialyzers were evaluated in 10 dialysis patients over a mean period of 4 1/2 months and 455 U.F.-H.D. procedures. Fluid control was facilitated in oedematous patients but the number of hypotensive episodes during the combined procedure requiring intravenous 5% saline did not significantly decrease. No significant improvement in hypertension was noted. Ultrafiltration (U.F.) alone for acutely water overloaded, azotaemic patients proved very useful. Two to five liters of oedema fluid could be removed asymptomatically in one to three hours using transmembrane pressures of 250 to 500 mmHg and U.F. rates of 10 to 42 ml/min. Two patients became acutely and symptomatically hypotensive. One was an insulin dependent diabetic in whom 3800 ml were removed in 75 minutes and the other a hypertensive patient undergoing treatment with Minoxidil and propranolol.

  6. The determination of ultrafiltrable calcium and magnesium in serum.

    Science.gov (United States)

    Danielson, B G; Pallin, E; Sohtell, M

    1982-01-01

    Ultrafiltrate of human serum was investigated in order to evaluate the serum content of calcium and magnesium. The acid and base concentrations and pH of the serum was altered through titration with HCl- or NaOH-solutions. The Pco2 was varied in the titrated serum using different carbon dioxide tensions. This was performed when serum was filtered in a recycling system. It is shown that the analysis of calcium and magnesium have to be done under anaerobic conditions or at standardized pH and Pco2 situations, as the concentrations vary with both pH and Pco2. The concentration ratio between ultrafiltrate and serum for calcium and magnesium was found to be 0.56 and 0.74 respectively at pH=7.41 and Pco2=40 mmHg.

  7. Effects of total suspended solids loading on short-term fouling in the treatment of secondary effluent by an immersed ultrafiltration pilot system.

    Science.gov (United States)

    Citulski, Joel A; Farahbakhsh, Khosrow; Kent, Fraser C

    2009-12-01

    This study examined the performance of a pilot-scale immersed ultrafiltration system using secondary effluent as a feed source, with particular emphasis on the role played by total suspended solids (TSS) on short-term fouling rates within permeation cycles. Key secondary effluent quality characteristics, such as ionic composition and total/ colloidal organic carbon content, remained reasonably stable during the course of the study. However, TSS loads in the secondary effluent were correlated with the extent of within-cycle fouling. This relationship existed irrespective of membrane packing density or the operating flux, although the latter parameter did control the rate at which within-cycle fouling occurred. Although the complex causes of ultrafiltration membrane fouling during tertiary treatment over the long term remain poorly understood, TSS levels in the feed may offer a simple means of better predicting within-cycle spikes in transmembrane pressure. Based on historical and seasonal trends, or both, of TSS loads in the secondary clarifiers of a given wastewater treatment plant, periods requiring an increased frequency of backpulses or recovery cleanings may be identified before implementation of full-scale tertiary ultrafiltration systems.

  8. 超滤膜技术组合工艺对饮用水氯消毒的生物稳定性试验%Experiments with Different Combinations of Ultrafiltration Membrane Technological Processes for Biological Stability of Chlorine Disinfection in Drinking Water Treatment

    Institute of Scientific and Technical Information of China (English)

    李春敏; 李星; 杨艳玲; 郭栋; 郭利霞; 相坤; 安东子

    2012-01-01

    以某水库微污染水源水为试验水样,比较了以超滤为核心的不同组合工艺的净水效果,考察了各组合工艺出水氯消毒对异养菌的灭活效果、持续消毒能力,研究了余氯的衰减、消毒副产物的生成以及对水质生物稳定的影响,从生物安全性和化学安全性两个方面对不同超滤组合工艺出水氯消毒安全性进行综合评价.结果表明,混凝沉淀-粉末活性炭-超滤组合工艺具有最佳的净水效果:该工艺能100%的去除水中的细菌总数、大肠杆菌;持续消毒能力强,72 h后水中余氯量为0.5 mg/L,对细菌总数、大肠杆菌的去除率仍为100%,且HPC小于100CFU/mL,符合生活饮用水卫生标准;消毒副产物的生成量控制在10 μg/L以下;出水AOC含量低于100 μgac-C/L,符合氯化消毒生物稳定性的要求.%Using a reservoir's micro-polluted water as the test water sample, compared the effects between different ultrafiltration combinations process, investigated chlorine disinfection effect on the inactivation of heterotrophic bacteria and continuous disinfection capability, studied residual chlorine decay, the concentration of disinfection by-products and biological stability, comprehensively e-valuated the safety of chlorine disinfection about bio-security and chemical safety. The results show, coagulation-powder activated carbon - ultrafiltration has the best effection, which can remove 100 % total bacteria and E.coil. It has strong continued disinfection capability, after 72 h the amount of residual chlorine in water is 0.5 mg/L, the total bacteria and E. Coil removal rate is still 100 %, and HPC is less than 100 CFU/mL, meeting drinking water health standards. Its THMs concentration is under 10 μg/L, AOC is lower than 100μgac-C/L, consistent with the requirements of biological stability of chlorination.

  9. Impact of fill volume on ultrafiltration with icodextrin in children on chronic peritoneal dialysis.

    Science.gov (United States)

    Rousso, Sharon; Banh, Tonny M; Ackerman, Susan; Piva, Elizabeth; Licht, Christoph; Harvey, Elizabeth A

    2016-10-01

    Icodextrin is a solution of glucose polymers developed to provide sustained ultrafiltration over an extended dwell. Our aim was to determine whether or not fill volume with icodextrin contributes to the ability to achieve ultrafiltration in children. The charts of all children on chronic peritoneal dialysis between January 2000 and July 2014 were screened for the use of an icodextrin day dwell. Data were extracted from the electronic chart and the HomeChoice™ Pro card and corrected for body surface area (BSA). Fifty children had an icodextrin day dwell. A linear correlation was found between the daytime fill volume and net ultrafiltration (p Icodextrin was well tolerated. Our observations reveal that the larger the fill volume the higher the likelihood of achieving ultrafiltration with icodextrin and suggest that a minimum day dwell volume of 550 ml/m(2) BSA seems to facilitate ultrafiltration in children. To our knowledge this is the largest study addressing ultrafiltration with icodextrin in children.

  10. Clay filter-aid in ultrafiltration (UF) of humic acid solution

    KAUST Repository

    Pontié, M.

    2012-04-01

    Fouling studies with three different molecular weight cut-off (MWCO) (100. kDa, 30. kDa and 10. kDa) membranes in regenerated cellulose were carried out in the presence of Acros humic acids (HA) at pH 3.0, 6.7 and 9.5. It was shown that the tighter membranes were less fouled compared with the higher MWCO membranes. 100. kDa membrane showed the highest degree of fouling. The role of pH showed that the highest degree of fouling happened at a neutral pH (pH 6.7) and the lowest degree of fouling happened at a basic pH (pH 9.5).Effectiveness of a novel pre-treatment method was applied to the 100kDa membrane. We added in the HA solution clay particles, homemade synthetized from natural bentonite and denoted Mont-CTAB. We observed a gain in productivity of 25%. 2D-fractal dimension parameter decreased under 1.5, showing a de-organization of the cake due to clay particles in/on the cake and a specific resistance of 4.4×10 11m/kg was obtained in presence of clays versus 3.6×10 14m/kg with HA alone. Finally the development of clay assisted ultrafiltration process changes the cake morphology limiting fouling impact and it is hope that for long term experiments, formation of a gel-layer should be limited. © 2012 Elsevier B.V..

  11. A new wastewater treatment technology—micellar-enhanced ultrafiltration%废水处理新技术—胶团强化超滤

    Institute of Scientific and Technical Information of China (English)

    彭跃莲; 纪树兰; 姚仕仲; 高以烜

    2001-01-01

    80年代,国外开始研究一种新的水处理技术,以去除废水中的微量有机污染物和金属离子,即胶团强化超滤法(Micellar-enhancedUltrafiltration,简称MEUF).这是一种将表面活性剂和超滤膜结合起来的新技术,国内还没有深入的研究报道,国外也还处于研究阶段.%Micellar-enhanced ultrafiltration is a new purification techniquecombining surfactants and ultrafiltration membranes, and can be used to remove trace organic matter and metal ions from wastewater.

  12. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  13. Impact of selected wastewater constituents on the removal of sulfonamide antibiotics via ultrafiltration and micellar enhanced ultrafiltration.

    Science.gov (United States)

    Exall, Kirsten; Balakrishnan, Vimal K; Toito, John; McFadyen, Renée

    2013-09-01

    To better understand the environmental mobility of sulfonamide antibiotics and develop improved processes for their removal during wastewater treatment, stirred cell ultrafiltration (UF) experiments were conducted using both synthetic and real wastewater effluent. The interactions between selected sulfonamides (sulfaguanidine, sulfathiazole and sulfamerazine), solids and dissolved organic matter were systematically explored. The further impact of micellar enhanced ultrafiltration (MEUF), a process in which surfactants are added at micellar concentrations to enhance removal of various trace contaminants from aqueous streams, was then explored by using a cationic surfactant, cetyltrimethylammonium bromide (CTAB). Ultrafiltration of sulfonamides in the absence of other materials generally removed only 15-20% of the antibiotics. The presence of micellar solutions of CTAB generally improved removal of sulfonamides over UF alone, with rejections ranging from 20 to 74%. Environmental solids (sediment) further increased retention of sulfonamides using both UF and MEUF, but the presence of DOM did not influence rejection. Similar trends were observed on UF and MEUF of real effluent samples that had been spiked with the sulfonamides, confirming the environmental relevance of the observed interactions between sulfonamides, surfactant, and wastewater constituents. The results demonstrate that MEUF processes can be designed for the selective removal of such trace contaminants as sulfonamide antibiotics.

  14. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  15. Chemical composition and properties of spray-dried sugar beet concentrate obtained after ultrafiltration of diffusion juice

    Directory of Open Access Journals (Sweden)

    Regiec Piotr

    2015-03-01

    Full Text Available Ultrafiltration of diffusion juice is a method that can reduce environmental pollution during the production of sugar. A by-product (concentrate of ultrafiltration contains a large amount of sucrose, but due to its properties, it is difficult to manage. The aim of this study was to determine the effects of the temperature used during drying of diffusion juice concentrates on the content of certain components and characteristics of resultant preparations. Diffusion juice obtained from one of the Polish sugar plants was subjected to ultrafiltration and the obtained concentrates were dried in a spray dryer. In the dried samples, the following parameters were analyzed: dry mass, sucrose, total ash, protein, crude fiber and color. It has been declared that the degree of concentration and drying temperature influenced the chemical composition and the properties of the dehydrated diffusion juice concentrates. An increase in drying temperature was accompanied by the increased content of dry mass, protein, ash and fiber content in the preparations. The greater the degree of juice concentration, the greater was the content of dry mass, ash, and fiber. Inversely, the greater the degree of juice concentration, the lower the content of sucrose. The brightest color of the dehydrated product was observed at the drying temperature of 200°C. Spray-drying may be used for waste management after the diffusion juice membrane filtration, and the resultant preparations might be used in the production of feedstuff or food industry in general e.g. as sucrose source, in fermentation processes or in microorganisms propagation.

  16. Membrane Fouling in Cu2+ Removal Process of Ultrafiltration of PEI-Cu2+ Complex in Water%聚乙烯亚胺(PEI)络合-超滤处理水中Cu2+过程中的膜污染

    Institute of Scientific and Technical Information of China (English)

    赵倩

    2011-01-01

    该文依据膜流动电位及zeta电位的测定原理设计了一套试验装置,可对中空纤维膜的流动电位进行测定.通过该装置研究了聚偏氟乙烯(PVDF)中空纤维超滤膜的动电现象在聚乙烯亚胺(PEI)络合-超滤处理水中Cu2+过程中的作用及规律,以此分析膜污染发生的过程与机理,为如何减轻和清洗超滤膜污染提供了依据.%According to the theories of membrane streaming potential and zeta potential, an experimental device was designed to measure streaming potential of hollow fiber membranes. By this design, the process of uItrafiltration of PEI-Cu2+ complex in water, changes of removal rate of Cu2* and streaming potential of the membrane were examined. The electrokinetic phenomenon and mechanism of poly vinylidine fluoride (PVDF) hollow fiber membrane pollution were studied and data for the reduction and cleaning of the membrane contamination were given in this paper.

  17. Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater.

    Science.gov (United States)

    El-Abbassi, Abdelilah; Khayet, Mohamed; Hafidi, Abdellatif

    2011-10-01

    Olive mill wastewater (OMW) is an important environmental pollution problem, especially in the Mediterranean, which is the main olive oil production region worldwide. Environmental impact of OMW is related to its high organic load and particularly to the phytotoxic and antibacterial action of its phenolic content. In fact, polyphenols are known as powerful antioxidants with interesting nutritional and pharmaceutical properties. In the present work, the efficiency of OMW Micellar Enhanced Ultrafiltration (MEUF) treatment for removal and concentration of polyphenols was investigated, using an anionic surfactant (Sodium Dodecyl Sulfate salt, SDS) and a hydrophobic poly(vinyldene fluoride) (PVDF) membrane. The effects of the process experimental conditions on the permeate flux were investigated, and the secondary membrane resistance created by SDS molecules was evaluated. The initial fluxes of OMW processing by MEUF using SDS were 25.7 and 44.5 l/m2 h under transmembrane pressures of 3.5 and 4.5 bar, respectively. The rejection rate of polyphenols without using any surfactant ranged from 5 to 28%, whereas, it reached 74% when SDS was used under optimum pH (pH 2). The MEUF provides a slightly colored permeate (about 88% less dark), which requires clearly less chemical oxygen demand (COD) for its oxidation (4.33% of the initial COD). These results showed that MEUF process can efficiently be applied to the treatment of OMW and for the concentration and recovery of polyphenols.

  18. RECOVERY OF PROTEIN FROM MUNG BEAN STARCH PROCESSING WASTEWATER BY ROTATING ULTRAFILTRATION

    Directory of Open Access Journals (Sweden)

    PENPORN SRINIWORN

    2016-07-01

    Full Text Available Mung bean wastewater containing valuable protein is very potential to be recovered for reuse. In this study, rotary disk ultrafiltration was employed to recover this protein. The effects of transmembrane pressure (TMP and membrane rotational speeds on process efficiency were studied and the optimum condition was chosen based on membrane permeate flux and protein retention. The results suggested that the use of TMP of 1.2 bar and rotating speed of 1,683 rpm under total recycle mode tended to achieve highest permeate flux (43 L/m3h compared to those using lower TMP and rotating speeds. The permeate fluxes under total recycle mode and batch concentration mode tended to increase with processing time, indicating the effectiveness of rotating shear force. In addition, the effect of stabilization technique on process performance under batch concentration mode was also studied. However, the variable did not show positive impacts on permeate flux and protein retention improvement. The optimum condition to achieve volume concentration factor (VCF of 5 was TMP of 1.2 bar and rotating speed of 1,403 rpm without stabilization. Under this condition, the average flux, protein retention and energy consumption were 42 L/m2h, 96% and 81 kWh/m3, respectively.

  19. Separation and characterization of alpha-chain subunits from tilapia (Tilapia zillii) skin gelatin using ultrafiltration.

    Science.gov (United States)

    Chen, Shulin; Tang, Lanlan; Su, Wenjin; Weng, Wuyin; Osako, Kazufumi; Tanaka, Munehiko

    2015-12-01

    Alpha-chain subunits were separated from tilapia skin gelatin using ultrafiltration, and the physicochemical properties of obtained subunits were investigated. As a result, α1-subunit and α2-subunit could be successfully separated by 100 kDa MWCO regenerated cellulose membranes and 150 kDa MWCO polyethersulfone membranes, respectively. Glycine was the most dominant amino acid in both α1-subunit and α2-subunit. However, the tyrosine content was higher in α2-subunit than in α1-subunit, resulting in strong absorption near 280 nm observed in the UV absorption spectrum. Based on the DSC analysis, it was found that the glass transition temperatures of gelatin, α1-subunit and α2-subunit were 136.48 °C, 126.77 °C and 119.43 °C, respectively. Moreover, the reduced viscosity and denaturation temperature of α1-subunit were higher than those of α2-subunit, and the reduced viscosity reached the highest when α-subunits were mixed with α1/α2 ratio of approximately 2, suggesting that α1-subunit plays a more important role in the thermostability of gelatin than α2-subunit.

  20. Lignin Peroxidase from Streptomyces viridosporus T7A: Enzyme Concentration Using Ultrafiltration

    Science.gov (United States)

    Gottschalk, Leda M. F.; Bon, Elba P. S.; Nobrega, Ronaldo

    It is well known that lignin degradation is a key step in the natural process of biomass decay whereby oxidative enzymes such as laccases and high redox potential ligninolytic peroxidases and oxidases play a central role. More recently, the importance of these enzymes has increased because of their prospective industrial use for the degradation of the biomass lignin to increase the accessibility of the cellulose and hemicellulose moieties to be used as renewable material for the production of fuels and chemicals. These biocatalysts also present potential application on environmental biocatalysis for the degradation of xenobiotics and recalcitrant pollutants. However, the cost for these enzymes production, separation, and concentration must be low to permit its industrial use. This work studied the concentration of lignin peroxidase (LiP), produced by Streptomyces viridosporus T7A, by ultrafiltration, in a laboratory-stirred cell, loaded with polysulfone (PS) or cellulose acetate (CA) membranes with molecular weight cutoffs (MWCO) of 10, 20, and 50 KDa. Experiments were carried out at 25 °C and pH 7.0 in accordance to the enzyme stability profile. The best process conditions and enzyme yield were obtained using a PS membrane with 10 KDa MWCO, whereby it was observed a tenfold LiP activity increase, reaching 1,000 U/L and 90% enzyme activity upholding.

  1. RESEARCH SPECIFIC FLUX OF SOLVENT IN THE PROCESSES OF ULTRAFILTRATION AND REVERSE OSMOSIS OF BIOLOGICAL SOLUTIONS SEPARATION IN BIOCHEMICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    S. I. Lazarev

    2015-01-01

    Full Text Available This work is devoted to the study of specific solvent stream in baro membrane separation processes in the biochemical industry. The main indicators, which characterize baromembranes technology, are productivity and quality division. Performance of baromembrane separation is estimated by the specific output or specific solvent stream, which is equal to the permeate flow per unit working area of the membrane per unit of time, and also determines the speed of the process of baromembrane division. This parameter depends on the material of the membrane, the nature of the solutes and their concentrations in the solution, the operating pressure, temperature and hydrodynamic processes. The article analyzed the specific solvent flow, which mathematically described by the equation based on Darcy's Law. This law establishes proportional dependence on the driving force of the process, the concentration and type of membrane. For the research was used following technique. The initial stage was to preliminary cleaning of membranes from impurities, checking the integrity of individual units, launching in work mode for a time period of 18 hours. Then there was a preliminary experience for the establishment of a permanent performance with a factor of retention membranes. After that was done a series of basic experiments, the results of which were used for calculate of specific solvent stream. As a result of investigations made certain conclusions. Specific solvent stream decreases with increasing concentration. In ultrafiltration membranes the specific solvent stream is higher than in reverse osmosis membranes. This phenomenon depends on the type of membrane. When the pressure increases the flow of the solvent and performance of baromembrane separation of solutions increases too. Specific solvent stream are influenced by concentrating polarization, gelation and sedimentation, which are formed as a result of increasing pressure and adsorption on the membrane

  2. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  3. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  4. Effect of ultrafiltration of yeast extracts on their ability to promote lactic acid bacteria growth.

    Science.gov (United States)

    Gaudreau, H; Champagne, C P; Conway, J; Degré, R

    1999-11-01

    Five yeast extracts (YE) were fractionated by ultrafiltration (UF) with 1, 3, and 10 kDa molecular weight cutoff membranes, concentrated by freeze-drying, and the resulting powders of yeast extract filtrates (YEF) were evaluated for their growth-promoting properties on nine cultures of lactic acid bacteria (LAB). There was an increase in alpha-amino nitrogen content of the YEF powders as the pore size of the UF membranes used to filter the YE solutions decreased. The source of YE had a much greater effect than UF on the growth of LAB. This was also the case for the YEF contents in total and alpha-amino nitrogen. Growth curves of the LAB showed that maximum growth rate (mumax) data were on average 30% higher with bakers' YE than with brewers' YE, while maximum optical density (ODmax) values were on average 16% higher with bakers' YE. This could be related to the higher nitrogen content of the bakers' YE used in this study. Modification by UF of the YE had no significant influence on the growth of 4 of the 9 LAB strains. The three strains of Lactobacillus casei were negatively influenced by UF, as they did not grow as well in the media containing the YEF obtained after filtering with 1 and 3 kDa membranes. On a total solids basis, the 2.5 x retentates from the 10 kDa membrane gave, on average, 4% lower mumax and 5% lower ODmax values as compared to cultures where the corresponding YEF was used as medium supplement. This could also be partially related to the different nitrogen contents of the filtrates and retentates.

  5. Effect of polyethylene glycol on characteristics of chitosan membranes

    Directory of Open Access Journals (Sweden)

    Puthai, W.

    2005-07-01

    Full Text Available This work reports the influence of polyethylene glycol (PEG on characteristics of chitosan membranes. Parameters used for membrane characterization were hydraulic permeability (Lp, molecular weight cut off (MWCO, and membrane impedance (Z. The results obtained from LP and Z imply that larger a amount of PEG addition enhances membrane porosity and enlarges the pore size. The prepared membranes were ultrafiltration type, with MWCO slightly greater than 35 kDa. Membranes without PEG additioncould be nanofiltration type with Lp value of 0.4x10-11 m3 N-1 s-1, 10-20 times smaller than the other.

  6. PENJERNIHAN NIRA TEBU MENGGUNAKAN MEMBRAN UL TRAFIL TRASI DENGAN SISTEM ALI RAN SILANG

    Directory of Open Access Journals (Sweden)

    Suprihatin

    2007-08-01

    Full Text Available Membrane ultrafiltration is one alternative technology to produce a high quality cane sugar with reasonable cost, because its ability to produce a brighter color and lower impurities as well as sulphur free of product. This technology can reduce process steps, chemical and energy demand, so that the production cost is potentially reduced significantly. This research work was aimed to study the performance of various membrane filtrations in the application for clarifying sugar cane juice, covering the achievable flux, membrane rejection againstimpurities, and quality of the filtered juice. The experiments were conducted according to the principle of cross flow using three different transmembrane pressures of 0.7, 1.4, and 2.1 bar and cross flow rate of 0.42 m/s. Various membranes were studied in this experiments both commercial ultrafiltration membrane and ultrafiltration membrane prepared in our laboratory. Sugar cane juice before and after clarification were characterized by measuring the parameters of brix, sucrose concentration, solution color, clarity, and pH. Thepolisulfone membrane, which was prepared in our laboratory, produced fluxes in the range of 25-30 L/m2.h at the transmembrane pressures of 0.7-2.1 bar. The membranes increased clarity of the juice from app. 10 to 60% of transmition and reduced color up to 80-90%, comparable with the results of the commercial ultrafiltration membrane

  7. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy.

    Science.gov (United States)

    Wang, S N; LaPage, J; Hirschberg, R

    2000-03-01

    The present in vivo and in vivo experiments were performed to test the hypothesis that in rats with glomerular proteinuria, the bioactive growth factors transforming growth factor-beta (TGF-beta) and hepatocyte growth factor (HGF) are ultrafiltered into tubular fluid, can interact with respective receptors in apical tubular cell membranes, increase the expression and basolateral secretion of C-C-chemokines, which interact with cells in the renal interstitium and indirectly cause myofibroblasts to increase the expression of extracellular matrix proteins. HGF and TGF-beta were measured by Western blot and bioassay in glomerular ultrafiltrate that was collected by nephron micropuncture from rats with diabetic nephropathy and control rats. Proximal tubular and collecting duct cells were incubated with diluted proximal tubular fluid or recombinant human HGF (rhHGF) or rhTGF-beta and expression of C-C-chemokines was measured by RT-PCR and ELISA. Interactions of tubular cell chemokines with macrophages and indirectly with myofibroblasts were also examined using cell culture models. In rats with glomerular proteinuria due to diabetic nephropathy mature, bioactive HGF as well as active and latent TGF-beta were detected in early proximal tubular fluid. Specific HGF- and TGF-beta type II receptors were expressed in apical tubular membranes more in diabetic compared to control rats. Incubation of cultured mouse proximal tubular cells (mPTC) or medullary collecting duct cells (mIMCD-3) with diabetic rat proximal tubular fluid increased MCP-1 and RANTES mRNA levels as well as secreted peptide up to threefold. In contrast, high glucose (450 mg/dL), bovine serum albumin (BSA) or rat albumin (each at 100 micrograms/mL) or 10 nmol/L insulin-like growth factor-I (IGF-I; which was also present in glomerular ultrafiltrate in rats with diabetic nephropathy) did not affect expression of these chemokines. Recombinant human TGF-beta as well as rhHGF each increased MCP-1 and RANTES mRNA as

  8. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2013-11-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  9. Proteins causing membrane fouling in membrane bioreactors.

    Science.gov (United States)

    Miyoshi, Taro; Nagai, Yuhei; Aizawa, Tomoyasu; Kimura, Katsuki; Watanabe, Yoshimasa

    2015-01-01

    In this study, the details of proteins causing membrane fouling in membrane bioreactors (MBRs) treating real municipal wastewater were investigated. Two separate pilot-scale MBRs were continuously operated under significantly different operating conditions; one MBR was a submerged type whereas the other was a side-stream type. The submerged and side-stream MBRs were operated for 20 and 10 days, respectively. At the end of continuous operation, the foulants were extracted from the fouled membranes. The proteins contained in the extracted foulants were enriched by using the combination of crude concentration with an ultrafiltration membrane and trichloroacetic acid precipitation, and then separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The N-terminal amino acid sequencing analysis of the proteins which formed intensive spots on the 2D-PAGE gels allowed us to partially identify one protein (OmpA family protein originated from genus Brevundimonas or Riemerella anatipestifer) from the foulant obtained from the submerged MBR, and two proteins (OprD and OprF originated from genus Pseudomonas) from that obtained from the side-stream MBR. Despite the significant difference in operating conditions of the two MBRs, all proteins identified in this study belong to β-barrel protein. These findings strongly suggest the importance of β-barrel proteins in developing membrane fouling in MBRs.

  10. Effects of the addition of nano-sized SiO2 on the structure and performance of PVDF/SiO2ultrafiltration membrane%纳米SiO2的加入对PVDF/SiO2超滤膜结构和性能的影响

    Institute of Scientific and Technical Information of China (English)

    张晶; 李雪茹; 樊文玲; 李磊

    2012-01-01

    将普通纳米SiO2、疏水纳米SiO2、亲水纳米SiO2分别加入到聚偏氟乙烯(PVDF)铸膜液中,通过相转化法制得PVDF/SiO2杂化超滤膜,重点探讨了SiO2加入量及上述三种类型纳米SiO2对PVDF杂化超滤膜水通量、截留率和抗污染性能的影响.结果表明:膜的孔隙率、平均孔径、水通量、截留率和抗污染性随SiO2含量增加而先增大后减少;SiO2含量为2%时,膜水通量由大至小为:普通纳米SiO2杂化膜、疏水纳米SiO2杂化膜、亲水纳米SiO2杂化膜,抗污染性由大至小为:亲水纳米SiO2杂化膜、普通纳米SiO2杂化膜、疏水纳米SiO2杂化膜.%The unmodified, hydrophilic and hydrophobic nano-sized SiOz were added into the PVDF casting solution respectively, and the PVDF/SiO2 hybrid membranes were prepared by phase inversion method. The effects of SiC>2 concentration and the above-mentioned three types of SiO2 on the PVDF membrane performances such as pure water flux, rejection ratio, anti-fouling capability were examined. The experimental results indicated that membrane porosity, mean membrane pore size, pure water flux, rejection ration, anti-fouling capability increased with rising SiO2 concentration firstly and then decreased. Besides, when the SiO2 concentration was 2%, in terms of pure water flux, unmodified nano-sized SiO2 hybrid membrane was the best, followed by hydrophobic nano-sized SiO2 hybrid membrane and hydrophilic nano-sized SiO2 hybrid membrane. Inversely, in terms of anti-fouling capability, hydrophilic nano-sized SiO2 hybrid membrane was the optimal, followed by unmodified nano-sized SiO2 hybrid membrane and hydrophobic nano-sized SiO2 hybrid membrane.

  11. 复合物理场强化的全自动多级超滤系统%Multi-Stage Automatic Ultrafiltration System Enhanced with Complex Physical Fields

    Institute of Scientific and Technical Information of China (English)

    傅晓琴; 李琳; 李冰; 陈玲

    2011-01-01

    Proposed in this paper is an automatic ultrafiltration system enhanced with ultrasonic and pulse electric field, which is used to overcome the concentration polarization and membrane fouling during the ultrafiltration and improve the automation level of ultrafiltration process. The system consists of a crude filtration loop, two ultrafiltration loops, a cleaning loop and a heat-exchange loop, and possesses excellent operation flexibility because it can simultaneously perform multi-stage or separately perform single-stage ultrafiltration. It also possesses a multi-layer distributed automatic control subsystem based on Kunlun MGCS configuration, which adopts an industrial personal computer and a Simens S7-200 PLC as the system hardware. The application of the proposed system to the concentration of pumpkin polysaccharides shows that, in the adopted experimental conditions, the average permeation flux increases by 1.15 ~2. 53 times and the rejection by 15 points of percentage, which means that the system greatly improves the ultrafiltration efficiency and effect.%为克服超滤过程中的浓差极化,防止膜污染,同时提高超滤生产的自动化水平,设计了超声场和脉冲电场复合强化的全自动超滤系统.该系统包括粗滤回路、一级和二级超滤回路、清洗回路和热交换回路,可同时或分别进行多级或单级过滤/超滤,具有较好的操作灵活性.采用分布式分级控制的方式,以工业控制计算机、Simens S7-200 PLC作为控制系统的硬件,基于昆仑MGCS组态环境,实现了超滤过程的自动控制.在南瓜多糖超滤浓缩中的应用表明,所设计的系统可显著提高分离效率和效果,在文中实验条件下,平均膜通量增加了1.15~2.53倍,截留率增幅达15个百分点.

  12. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  13. Use of ligand-modified micellar-enhanced ultrafiltration to selectively separate copper ions from wastewater streams

    Energy Technology Data Exchange (ETDEWEB)

    Shadizadeh, S.B.

    1992-12-31

    The selective removal of target ions from an aqueous solution containing ions of like charge by ligand-modified micellar-enhanced ultrafiltration (LM-MEUF), is presented. In LM-MEUF, surfactant and specially tailored ligand are added to the contaminated stream. The surfactant forms aggregates called micelles, the hydrocarbon core of which the ligand complexed with the target species will solubilize. The surfactant is chosen to have the same charge type as the target ion; therefore, other ions (with similar charge) will not associate with the micelle, which makes the separation of the target ion selective. The solution is then processed by ultrafiltration, using a membrane with pore size small enough to block the passage of the micelles. In this study the divalent copper is the target ion in the solution containing divalent calcium. The surfactant is cetylpyridinium chloride (CPC) and the ligand is 4-hexadecyloxybenzyliminodiacetic acid (C{sub 16}BIDA). Experiments were conducted with batch stirred cells and the results have been compared to separation that take place under a variety of conditions in the LM-MEUF process. Rejections of copper of up to 99.8% are observed, with almost no rejection of calcium, showing that LM-MEUF has excellent selectivity and separation efficiency.

  14. Ultrasonic assisted cross-flow ultrafiltration of starch and cellulose nanocrystals suspensions: characterization at multi-scales.

    Science.gov (United States)

    Jin, Y; Hengl, N; Baup, S; Pignon, F; Gondrexon, N; Sztucki, M; Romdhane, A; Guillet, A; Aurousseau, M

    2015-06-25

    This study investigates for the first time the behaviors of starch and cellulose nanocrystals (SNC and CNC) suspensions which are simultaneously subjected to pressure, shear flow and ultrasound (US) during cross-flow ultrafiltration. This multi-forces process was characterized from macro-scales to nano-scales, with a custom designed "SAXS Cross-Flow US-coupled Filtration Cell". In addition, rheological behaviors of SNC samples at different concentrations/temperatures have been investigated. In both cases (ultrafiltration of SNC and CNC suspensions), better performances were observed with US. The in-situ SAXS measurements revealed that for SNC suspensions, no structure change occurred at the length scales range from 10 to 60nm in this multi-forces process, while CNC particles exhibited an ordered arrangement within the concentrated layer during the same process. SNC particles accumulated on the membrane surface forming a "fragile" concentrated layer which was removed very quickly by subsequent applied US. In contrary, the CNC particles accumulation was very severe, the additional ultrasonic force led to a disruption but not a totally removal of the CNC concentrated layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Characterization of natural low-methoxyl pectin from sunflower head extracted by sodium citrate and purified by ultrafiltration.

    Science.gov (United States)

    Kang, Jiaqi; Hua, Xiao; Yang, Ruijin; Chen, Ying; Yang, Hui

    2015-08-01

    Sunflower head pectin was extracted by 0.6% (w/v) sodium citrate under 85°C, 3.5h with a solid to liquid ratio of 1:40, giving the maximum uronic acid yield of 16.90% (w/w). The extract was purified by an ultrafiltration membrane with the molecular weight cut-off of 8000 Da and dried by spray-drying to obtain SFHP(A) powders with particle diameters of 2-5 μm. In comparison to the SFHP(B) extracted by ammonium oxalate and isolated by alcohol, SFHP(A) had a close DM (22.56%) but a considerably lower DAm (3.42%). HPSEC-MALLS analysis suggested that SFHP(A) has undergo a deeper degradation resulting in smaller Mw and Mn. HPAEC-PAD showed that SFHP(A) contains more neutral sugars since the degraded RG fragments have been retained during ultrafiltration. Finally, pectin aggregation in aqueous was investigated by FEG-SEM, which reveals that pectin network structure is constructed by microfilaments via coiling, intertwining and crosslinking.

  16. A Pilot-scale Study on Coal Gasification Wastewater Reclamation Using Pretreatment Alternatives Combined with Ultrafiltration and Reverse Osmosis

    Institute of Scientific and Technical Information of China (English)

    Qian Zhao; Hongjun Han; Fang Fang; Peng Xu; Kun Li; Dexin Wang

    2015-01-01

    Aims to investigate the performance of the pilot⁃scale reclamation plant for coal gasification wastewater ( CGW) using ultrafiltration and reverse osmosis with appropriate pretreatment alternatives, different pre⁃treatment alternatives⁃coagulation, adsorption, and ozonation methods were employed to treat the secondary effluent of coal gasification wastewater ( SECGW ) in a pilot⁃scale pressurized membrane system. The performance was compared to choose the most suitable pre⁃treatment alternative for the SECGW reclamation. Ozone reaction achieved highest COD removal efficiency (79.6%-91.0%), resulting in the stable normalized parameters of the subsequent ultrafiltration and reverse osmoses. In contrast, the coagulation and adsorption processes achieved only 32. 8%-45. 7% and 53. 1%-64. 6% decreases in COD, respectively. The residual organic pollutants in the reverse osmosis feed water led to an increase in normalized pressure drop and a decrease in normalized permeability ( or membrane transference coefficient) . The hydrophobic fraction was the main constituent ( approx. 70% of DOC ) in pretreated SECGW, and the hydrophobic⁃neutral fraction contributed mostly to the UV absorbance ( 53%) . Fluorescence excitation emission matrices revealed that ozonation removed most of the hydrophobic and aromatic proteins such as tyrosine and tryptophan which dominated in raw wastewater. The recalcitrant compounds such as phenolic compounds, heterocyclic compounds, especially long⁃chain hydrocarbons, which were easily attached to the membrane surface and contributed to organic fouling, could be oxidized and mineralized by ozone. Among the three pretreatments, ozonation showed highest removal efficiencies of hydrophobic and aromatic proteins, therefore resulting in highest normalized permeability.

  17. Ultra-Thin Self-Assembled Protein-Polymer Membranes : A New Pore Forming Strategy

    NARCIS (Netherlands)

    van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Mougin, Nathalie C.; Park, Hyunji; Hein, Christopher; Schuerings, Marco P.; Boeker, Alexander

    2014-01-01

    Self-assembled membranes offer a promising alternative for conventional membrane fabrication, especially in the field of ultrafiltration. Here, a new pore-making strategy is introduced involving stimuli responsive proteinpolymer conjugates self-assembled across a large surface area using dryingmedia

  18. All the same: isoporous membranes for water purification

    NARCIS (Netherlands)

    Vriezekolk, Erik

    2016-01-01

    In this thesis, the focus is on three approaches that allow fabrication of films and membranes that contain ordered and uniform pores with pore sizes in the ultrafiltration range. Special attention is given to the tuning of pore sizes by varying simple parameters during the fabrication process.

  19. Accuracy assessment on the analysis of unbound drug in plasma by comparing traditional centrifugal ultrafiltration with hollow fiber centrifugal ultrafiltration and application in pharmacokinetic study.

    Science.gov (United States)

    Zhang, Lin; Zhang, Zhi-Qing; Dong, Wei-Chong; Jing, Shao-Jun; Zhang, Jin-Feng; Jiang, Ye

    2013-11-29

    In present study, accuracy assessment on the analysis of unbound drug in plasma was made by comparing traditional centrifugal ultrafiltration (CF-UF) with hollow fiber centrifugal ultrafiltration (HFCF-UF). We used metformin (MET) as a model drug and studied the influence of centrifugal time, plasma condition and freeze-thaw circle times on the ultrafiltrate volume and related effect on the measurement of MET. Our results demonstrated that ultrafiltrate volume was a crucial factor which influenced measurement accuracy of unbound drug in plasma. For traditional CF-UF, the ultrafiltrate volume cannot be well-controlled due to a series of factors. Compared with traditional CF-UF, the ultrafiltrate volume by HFCF-UF can be easily controlled by the inner capacity of the U-shaped hollow fiber inserted into the sample under enough centrifugal force and centrifugal time, which contributes to a more accurate measurement. Moreover, the developed HFCF-UF method achieved a successful application in real plasma samples and exhibited several advantages including high precision, extremely low detection limit and perfect recovery. The HFCF-UF method offers the advantage of highly satisfactory performance in addition to being simple and fast in pretreatment, with these characteristics being consistent with the practicability requirements in current scientific research.

  20. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng

    2012-09-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  1. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water.

    Science.gov (United States)

    Liu, Ting; Chen, Zhong-lin; Yu, Wen-zheng; Shen, Ji-min; Gregory, John

    2011-08-01

    A novel two-stage coagulant addition strategy applied in a coagulation-ultrafiltration (UF) process for treatment of humic-rich water at neutral pH was investigated in this study. When aluminum sulfate (alum) doses were set at a ratio of 3:1 added during rapid mix stage and half way through flocculation stage, the integrated process of two-stage alum addition achieved almost the same organic matter removal as that of conventional one-stage alum addition at the same overall dose. Whereas membrane fouling could be effectively mitigated by the two-stage addition exhibited by trans-membrane pressure (TMP) developments. The TMP developments were found to be primarily attributed to external fouling on membrane surface, which was closely associated with floc characteristics. The results of jar tests indicated that the average size of flocs formed in two-stage addition mode roughly reached one half larger than that in one-stage addition mode, which implied a beneficial effect on membrane fouling reduction. Moreover, the flocs with more irregular structure and lower effective density resulted from the two-stage alum addition, which caused higher porosity of cake layer formed by such flocs on membrane surface. Microscopic observations of membrane surface demonstrated that internal fouling in membrane pores could be also remarkably limited by two-stage alum addition. It is likely that the freshly formed hydroxide precipitates were distinct in surface characteristics from the aged precipitates due to formation of more active groups or adsorption of more labile aluminum species. Consequently, the flocs could further connect and aggregate to contribute to preferable properties for filtration performance of the coagulation-UF process. As a simple and efficient approach, two-stage coagulant addition strategy could have great practical significance in coagulation-membrane processes.

  2. Changes of Resistance During Polyelectrolyte-enhanced Stirred Batch Ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    ZHU Xin-Sheng; Kwang-Ho CHOO

    2007-01-01

    The permeation flux or the resistance in the ultrafiltration process is mainly limited by osmotic pressure,and it may originate from various kinds of polymer interactions. However, the real origin of permeation resistance hasn't been clarified yet in the light of polymer solution nature. The removal of nitrate contamination by polyelectrolytes was carried out with stirred batch ultrafiltration. The polyelectrolyte concentrations both in permeate and retentate were analyzed with total organic carbon analyzer and permeate mass was acquired by electronic balance connected with computer. The total resistance was calculated and interpreted based on the osmotic pressures in three concentration regimes. In the dilute region, the resistance was proportional to polymer concentration; in the semidilute region, the resistance depended on polymer concentration in the parabolic relationship; in the highly concentrated solution regime, the osmotic pressure factor (OPF) would dominate the total resistance; and the deviation from OPF control could come from the electrostatic repulsion between the tightly compacted and charged polyelectrolyte particles at extremely concentrated solution regime. It was first found that dilute and semidilute concentration regions can be easily detected by plotting the log-log curves of the polymer concentration versus the ratio of the total resistance to polymer concentration. The new concept OPF was defined and did work well at highly concentrated regime.

  3. Ultra-filtration measurement using CT imaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Lu Junfeng [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.2 Beiyitiao Street, Zhongguancun, Haidian District, Beijing, 100190 (China); Lu Wenqiang, E-mail: junfenglu@mail.ipc.ac.c [Graduate University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049 (China)

    2009-02-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  4. Research Progress of Ultrafiltration and Reverse Osmosis Technology Applied in Sugar Industry%超滤、反渗透技术在制糖业应用的研究进展

    Institute of Scientific and Technical Information of China (English)

    蒙丽霞; 李凯; 陆登俊; 陆海勤; 杭方学; 谢彩锋; 梁欣泉

    2014-01-01

    超滤、反渗透技术是应用较广泛的膜分离技术。本文介绍了超滤、反渗透技术的基本原理、发展历程及应用领域,概述了这2种膜分离技术在制糖业应用的研究进展并展望了它们在制糖业的前景。%Ultrafiltration and reverse osmosis are a widely used membrane separation technology. The fundamental principle, development and application of ultrafiltration and reverse osmosis technology are introduced, the research progress of these membrane technologies applied in the sugar industry are summarized, the outlook in future in sugar industry are put forward.

  5. 超滤装置运行工况探索研究%Exploration of Ultrafiltration Device Operation Condition in Boiler Feedwater System

    Institute of Scientific and Technical Information of China (English)

    马知敬; 刘秀娟; 宋英豪

    2015-01-01

    As the important equipment in boiler feedwater system, ultrafiltration device can effectively remove the organic matters in water, bacteria, viruses and colloidal substances, and effectively prevent the following reverse osmosis membrane pollutions. When the water source is resurgent water, the ultrafiltration membrane is usually contamination and block up because of the complex of water quality. It will affect the normal operation of the system. Through exploring the influences that ultrafiltration water production, trans membrane pressure, water inflow and other factors in operation conditions of different water qualities, the operation mode was found out that the water quality and operation condition were proportion. It can ensure the efficient economic system operates safely and stably.%超滤装置作为火力发电厂锅炉补给水系统主要的工艺设备,可以有效去除水中的悬浮物、有机物、细菌、病毒及胶体物质,有效防止后续反渗透膜污染。当采用中水作为水源时,由于水质复杂,长期造成超滤膜的污堵,影响系统正常运行。本文通过探索不同水质条件下所对应的运行工况,对超滤产水、跨膜压差、进水流量等因素的影响,找出进水水质与运行工况相匹配的运行方式,保证了系统安全稳定高效经济运行。

  6. Composite perfluorohydrocarbon membranes, their preparation and use

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  7. Enzymatic membrane reactor for full saccharification of ionic liquid-pretreated microcrystalline cellulose.

    Science.gov (United States)

    Lozano, Pedro; Bernal, Berenice; Jara, Antonio G; Belleville, Marie-Pierre

    2014-01-01

    Ultrafiltration reactors based on polymeric or ceramic membranes were shown to be suitable catalytic systems for fast enzymatic saccharification of cellulose, allowing the full recovery and reuse of enzymes. By pre-treating cellulose with the IL 1-butyl-3-methylimidazolium chloride, the suitability of this substrate for enzymatic saccharification in a reactor based on polymeric ultrafiltration membranes was demonstrated, leading to 95% cellulose hydrolysis in 4h at 50°C. The filtration process gave a clear glucose solution (up to 113 mM) at constant permeate flow (24.7 L h(-1) m(-2)), allowing the enzyme to be reused for 9 operation cycles under semi-continuous operation, without any loss of enzyme activity. Under continuous operation mode and using ceramic ultrafiltration membranes at different residence times, the enzymatic reactor showed constant profiles in both the permeate flow rate and the glucose concentration, demonstrating the excellent suitability of the proposed approach for the saccharification of cellulose.

  8. Ultrafiltration (UF Pilot Plant for Municipal Wastewater Reuse in Agriculture: Impact of the Operation Mode on Process Performance

    Directory of Open Access Journals (Sweden)

    Dario Falsanisi

    2010-11-01

    Full Text Available Following increasing interest in the use of UltraFiltration (UF membrane processes as an alternative advanced disinfection technique, the performance of a UF pilot plant was investigated under two opposite operating conditions (“stressed operating condition” versus “conventional operating condition”. The results indicate that for both conditions, the reclaimed effluent complied with the Italian regulations for unrestricted wastewater reuse (i.e., Total Suspended Solids (TSS < 10 mg/L; Chemical Oxygen Demand (COD < 100 mg/L and Escherichia coli < 10 CFU/100 mL. On the other hand, when compared with the Title 22 of the California Wastewater Reclamation Criteria, only the effluent produced under the “conventional operating condition” met the stipulated water quality standards (i.e., TSS and turbidity undetectable and total coliforms < 2.2 CFU/100 mL. It should be noted that, in spite of the nominal cut-off size, total coliforms breakthrough was indeed occasionally observed. A localized membrane pore micro-enlargement mechanism was hypothesized to explain the total coliforms propagation in the ultrafiltered effluent, as monitoring of the membrane permeability and transmembrane pressure highlighted that gel/cake formation had only a minor contribution to the overall membrane fouling mechanism with respect to pore plugging and pore narrowing mechanisms.

  9. Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pre-treatment

    Science.gov (United States)

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2015-08-01

    A coagulation (FeCl3)-ultrafiltration process was used to treat two different raw waters with/without the presence of Fe3O4 nanoparticle contaminants. The existence of Fe3O4 nanoparticles in the raw water was found to increase both irreversible and reversible membrane fouling. The trans-membrane pressure (TMP) increase was similar in the early stages of the membrane runs for both raw waters, while it increased rapidly after about 15 days in the raw water with Fe3O4 nanoparticles, suggesting the involvement of biological effects. Enhanced microbial activity with the presence of Fe3O4 nanoparticles was evident from the measured concentrations of extracellular polymeric substances (EPS) and deoxyribonucleic acid (DNA), and fluorescence intensities. It is speculated that Fe3O4 nanoparticles accumulated in the cake layer and increased bacterial growth. Associated with the bacterial growth is the production of EPS which enhances the bonding with, and between, the coagulant flocs; EPS together with smaller sizes of the nano-scale primary particles of the Fe3O4-CUF cake layer, led to the formation of a lower porosity, more resilient cake layer and membrane pore blockage.

  10. 超滤在荔枝汁澄清中的应用%Application of Ultrafiltration in Clarified Litchi Juice

    Institute of Scientific and Technical Information of China (English)

    陈穗; 谌国莲; 孙远明

    2001-01-01

    Litchi juice was clarified by hollow fiber membrane ultrafilter. After ultrafiltration, the juice was very clear and its transmittance was 99.5 %. Some nutritional ingredients and aroma compounds basically remained in the ultrafiltered juice. The effects of operating parameters on the permeate flux of the ultrafilter were also studied.%首次采用聚砜中空纤维膜对荔枝汁进行超滤澄清处理,超滤后果汁澄清透明,透光率达99.5%,无混浊现象,较好地保持了原汁的营养成分与风味,试验还探讨了超滤工艺参数对膜透过速率的影响。

  11. Treatment of a waste oil-in-water emulsion from a copper-rolling process by ultrafiltration and vacuum evaporation.

    Science.gov (United States)

    Gutiérrez, Gemma; Lobo, Alberto; Benito, José M; Coca, José; Pazos, Carmen

    2011-01-30

    A process is proposed for the treatment of a waste oil-in-water (O/W) emulsion generated in an industrial copper-rolling operation. The use of demulsifier agents improves the subsequent treatment by techniques such as ultrafiltration (UF) or evaporation. The effluent COD is reduced up to 50% when the O/W emulsion is treated by UF using a flat 30 nm TiO(2) ceramic membrane (ΔP = 0.1 MPa) and up to 70% when it is treated by vacuum evaporation, after an emulsion destabilization pretreatment in both cases. Increases in the UF permeate flux and in the evaporation rate are observed when a chemical demulsifier is used in the pretreatment step. A combined process consisting of destabilization/settling, UF, and vacuum evaporation can yield a very high-quality aqueous effluent that could be used for process cooling or emulsion reformulation.

  12. Central treatment of different emulsion wastewaters by an integrated process of physicochemically enhanced ultrafiltration and anaerobic-aerobic biofilm reactor.

    Science.gov (United States)

    Zhang, Weijun; Xiao, Ping; Wang, Dongsheng

    2014-05-01

    The feasibility of an integrated process of ultrafiltration (UF) enhanced by combined chemical emulsion breaking with vibratory shear and anaerobic/aerobic biofilm reactor for central treatment of different emulsion wastewaters was investigated. Firstly, it was found that calcium chloride exhibited better performance in oil removal than other inorganic salts. Chemical demulsification pretreatment could efficiently improve oil removal and membrane filtration in emulsion wastewater treatment by VSEP. According to aerobic batch bioassay, UF permeate exhibited good biodegradability and could be further treated with biological process. Additionally, pilot test indicated that anaerobic-aerobic biofilm exhibited an excellent ability against rise in organic loading and overall chemical oxygen demand (COD) removal efficiency of biological system was more than 93% of which 82% corresponded to the anaerobic process and 11% to the aerobic degradation. The final effluent of integrated process could meet the "water quality standards for discharge to municipal sewers" in China.

  13. Effects of Wheat Gluten Hydrolysate and Its Ultrafiltration Fractions on Dough Properties and Bread Quality

    Directory of Open Access Journals (Sweden)

    Mouming Zhao

    2007-01-01

    Full Text Available Two fractions (50-K and permeate from a proteolytic hydrolysate (degree of hydrolysis, DH=3.8 % of wheat gluten were separated using ultrafiltration (UF membrane with molecular mass cut-off of 50 kDa. The effects of the wheat gluten hydrolysate (WGH and its UF fractions on the mixing behaviour and viscoelastic properties of wheat dough were presented. The WGH and its UF fractions modified the mixing properties of dough. The addition of these fractions improved the viscoelastic characteristics of wheat dough. A significant (p<0.05 effect of 50-K fraction on these characteristics of wheat dough was observed. After adding these fractions, the bread was considered acceptable by the sensory panel. Also, 50-K fraction resulted in significant (p<0.05 increase in the crumb firmness, while the bread made with wheat flour with WGH and permeate (P fraction showed softer crumbs compared to that of wheat flour. Moreover, these fractions had anti-staling properties for bread during storage. Hence, the wheat gluten hydrolysate and its UF fractions are the products with promising potential in the baking products.

  14. Experimental comparison of point-of-use filters for drinking water ultrafiltration.

    Science.gov (United States)

    Totaro, M; Valentini, P; Casini, B; Miccoli, M; Costa, A L; Baggiani, A

    2017-06-01

    Waterborne pathogens such as Pseudomonas spp. and Legionella spp. may persist in hospital water networks despite chemical disinfection. Point-of-use filtration represents a physical control measure that can be applied in high-risk areas to contain the exposure to such pathogens. New technologies have enabled an extension of filters' lifetimes and have made available faucet hollow-fibre filters for water ultrafiltration. To compare point-of-use filters applied to cold water within their period of validity. Faucet hollow-fibre filters (filter A), shower hollow-fibre filters (filter B) and faucet membrane filters (filter C) were contaminated in two different sets of tests with standard bacterial strains (Pseudomonas aeruginosa DSM 939 and Brevundimonas diminuta ATCC 19146) and installed at points-of-use. Every day, from each faucet, 100 L of water was flushed. Before and after flushing, 250 mL of water was collected and analysed for microbiology. There was a high capacity of microbial retention from filter C; filter B released only low Brevundimonas spp. counts; filter A showed poor retention of both micro-organisms. Hollow-fibre filters did not show good micro-organism retention. All point-of-use filters require an appropriate maintenance of structural parameters to ensure their efficiency. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. Demonstrating ultra-filtration and reverse osmosis performance using size exclusion chromatography.

    Science.gov (United States)

    Henderson, R K; Stuetz, R M; Khan, S J

    2010-01-01

    Advanced water treatment plants employing ultrafiltration (UF) and reverse osmosis (RO) membrane processes are frequently implemented for the production of high-quality recycled water. It is important that process performance is able to be quantified and assessed to ensure it is fit for purpose. This research utilizes size exclusion chromatography with organic carbon, organic nitrogen and UV(254) detection to determine the change in both DOC concentration and character through a UF/3 stage-RO pilot plant. It was determined that 97% of the influent DOC was removed on average to produce a water of less than 0.5 mg L(-1) as C. The UF process removed more than half of the biopolymer fraction, equating to 4.5% DOC removal, while the RO process generally removed all DOC except a small proportion of the low MW humics and acids and low MW neutral fraction. While not changing significantly in concentration, the Stage 3 RO permeate typically contained low concentrations of humic fraction, indicating a change in character and therefore a change in rejection mechanism. Overall, it was determined that while TOC monitoring is important in advanced water treatment systems, improved understanding of the character of the TOC present lends greater insight into the assessment of process performance.

  16. Ultrafiltration capacity and peritoneal fluid kinetics in continuous ambulatory peritoneal dialysis patients.

    Science.gov (United States)

    Zhe, Xing-wei; Tian, Xin-kui; Cheng, Lei; Wang, Tao

    2008-01-01

    Volume control is critical for peritoneal dialysis. Although peritoneal equilibration test (PET) has been used to clarify the peritoneal membrane characteristics, it is not able to adequately predict peritoneal fluid removal and optimize appropriately the dwell time. In the present study, we applied computer simulation and performed a more detailed evaluation of the fluid kinetics in patients with different ultrafiltration (UF) capacity. Patients who used three to four exchanges of 2.27% glucose dialysate per day (poor UF capacity group), and patients who used three to four exchanges of 1.36% glucose dialysate per day (good UF capacity group) to achieve adequate amount of peritoneal fluid removal were included in the present analysis. All included patients were asked to record appropriately their dialysis exchanges for the assessment of their peritoneal fluid transport characteristics. Seventeen continuous ambulatory peritoneal dialysis patients were selected in the present study, nine in poor UF capacity group and eight in good UF capacity group. Patients in poor UF capacity group had significantly higher daily glucose exposure, higher dialysate-to-plasma ratio of creatinine (D/P creatinine) values, and higher peritoneal fluid absorption rate, K(e), as compared to patients with good UF capacity. Our results suggest that patients with poor UF capacity have significant higher peritoneal small solute transport rate, and more importantly, higher peritoneal fluid absorption rate as compared to patients with good UF capacity.

  17. Application of response surface methodology to the chemical cleaning process of ultrafiltration membrane☆

    Institute of Scientific and Technical Information of China (English)

    Caihong Wang; Aishu Wei; Hao Wu; Fangshu Qu; Weixiong Chen; Heng Liang; Guibai Li

    2016-01-01

    A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo-ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Response Sur-face Method (RSM) and Central Composite Design (CCD). The factors considered in the experimental design were sodium hydroxide (NaOH) concentration, sodium hypochlorite concentration (NaClO), citric acid concentration and cleaning duration. The interactions between the factors were investigated with the numerical model. Humic acid (20 mg·L−1) was used as the model foulant, and chemical enhanced backflush (CEB) was employed to sim-ulate the chemical cleaning process. The concentrations of sodium hydroxide, sodium hypochlorite, citric acid and cleaning duration tested during the experiments were in the range of 0.1%–0.3%, 100–300 mg·L−1, 1%–3%and 0.5–1.5 h, respectively. Among the variables, the sodium hypochlorite concentration and the cleaning dura-tion showed a positive relationship involving the increased efficiency of the chemical cleaning. The chemical cleaning efficiency was hardly improved with increasing concentrations of sodium hydroxide. However, the data was sharply decreased when at a low level of sodium hydroxide concentration. In total, 54 sets of cleaning schemes with 80%to 100%cleaning efficiency were observed with the RSM model after calibration.

  18. Using Zero Balance Ultrafiltration with Dialysate as a Replacement Fluid for Hyperkalemia during Cardiopulmonary Bypass.

    Science.gov (United States)

    Heath, Michele; Raghunathan, Karthik; Welsby, Ian; Maxwell, Cory

    2014-09-01

    Avoiding or managing hyperkalemia during cardiac surgery, especially in a patient with chronic renal insufficiency, can be challenging. Hyperkalemic cardioplegia solution is usually administered to achieve and maintain an electrical arrest of the heart. This solution eventually mixes in with the systemic circulation, contributing to elevated systemic potassium levels. Administration of packed red blood cells, hemolysis, tissue damage, and acidosis are also common causes of hyperkalemia. Current strategies to avoid or manage hyperkalemia include minimizing the volume of cardioplegia administered, shifting potassium from the extracellular into the intracellular space (by the administration of sodium bicarbonate when the pH is low and/or dextrose-insulin when effects relatively independent of serum pH are desired), using zero-balanced ultrafiltration (Z-BUF) with normal saline as the replacement fluid (to remove potassium from the body rather than simply shift the electrolyte across cellular membranes), and, occasionally, hemodialysis (1). We report the application of Z-BUF using an electrolyte-balanced, low potassium dialysate solution rather than isotonic saline to avoid a high chloride load and the potential for hyperchloremic acidosis to successfully treat hyperkalemia while on cardiopulmonary bypass.

  19. A study of colloid-enhanced ultrafiltration. Final report, March 1984--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Scamehorn, J.F.; Christian, S.D.

    1994-02-01

    Over the past nine years of funding by DOE Office of Basic Energy Sciences, the authors have developed a whole family of methods under the umbrella of colloid-enhanced ultrafiltration techniques. These methods can be used for removal of either dissolved organics or multivalent ions from water or both simultaneously. They have gone from very fundamental studies of the ultrafiltration process to a field test using actual polluted groundwater. The orientation of this research has been the ultimate development of a workable, economical process. To do this, the authors have tried to understand the underlying fundamental phenomena involved in the separation and in potential solutions to technological bottlenecks and developed new scientific knowledge in the process. However, the thrust of the investigations have been focused on bringing the technology to a successful adoption by industry. This report summarizes the following: micellar-enhanced ultrafiltration; polyelectrolyte-enhanced ultrafiltration; ion-expulsion ultrafiltration; ligand-modified micellar-enhanced ultrafiltration; polyelectrolyte/surfactant-enhanced ultrafiltration, supporting research, and relation to energy. 61 refs.

  20. Preparation of Polyvinylidene Fluoride (PVDF Hollow Fiber Hemodialysis Membranes

    Directory of Open Access Journals (Sweden)

    Qinglei Zhang

    2014-02-01

    Full Text Available In this study, the polyvinylidene fluoride (PVDF hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS. The influences of PVDF membrane thickness and polyethylene glycol (PEG content on membrane morphologies, pore size, mechanical and permeable performance were investigated. It was found that membrane thickness and PEG content affected both the structure and performance of hollow fiber membranes. The tensile strength and rejection of bovine serum albumin (BSA increased with increasing membrane thickness, while the Ultrafiltration flux (UF flux of pure water was the opposite. The tensile strength, porosity and rejection of BSA increased with increasing PEG content within a certain range. Compared with commercial F60S membrane, the PVDF hollow fiber membrane showed higher mechanical and permeable performance. It was proven that PVDF material had better hydrophilicity and lower BSA adsorption, which was more suitable for hemodialysis. All the results indicate that PVDF hollow fiber membrane is promising as a hemodialysis membrane.

  1. Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane.

    Science.gov (United States)

    Derakhsheshpoor, Reza; Homayoonfal, Maryam; Akbari, Ahmad; Mehrnia, Mohammad Reza

    2013-06-13

    In this study, high permeability flat sheet polysulfone nanofiltration membranes were prepared for amoxicillin (AMX) recovery from pharmaceutical wastewater. Membrane fabrication includes two steps: raw ultrafiltration membrane synthesis by phase inversion method and nanaofiltration membrane synthesis by surface photopolymerization. Raw ultrafiltration membranes were synthesized using different molecular weights of polyethylene glycol (PEG) as pore former and different coagulation bath temperatures (CBTs). The synthesized ultrafiltration membranes were modified using UV-assisted polymerization technique and their performance in the separation of AMX at different pHs, were studied. The results showed that the more irradiation time, the smaller surface pore size. Moreover, the membranes made with higher molecular weight of PEG and coagulation bath temperatures were more susceptible for UV-modification at these conditions; fabricated membranes had higher flux as well as relatively high AMX separation. Moreover, pH enhancement increased AMX rejection by 85%. The effect of irradiation on membrane surface morphology was studied by SEM surface images and the morphological effects of pore former and coagulation bath temperatures on membrane structure were confirmed by SEM cross section images. A fairly comprehensive discussion about the effects of PEG, coagulation bath temperature and irradiation time on membrane structure and AMX recovery performance was represented in this study.

  2. Amoxicillin Separation from Pharmaceutical Wastewater by High Permeability Polysulfone Nanofiltration Membrane

    Directory of Open Access Journals (Sweden)

    Reza Derakhsheshpoor

    2013-06-01

    Full Text Available In this study, high permeability flat sheet polysulfone nanofiltration membranes were prepared for amoxicillin (AMX recovery from pharmaceutical wastewater. Membrane fabrication includes two steps: raw ultrafiltration membrane synthesis by phase inversion method and nanaofiltration membrane synthesis by surface photopolymerization. Raw ultrafiltration membranes were synthesized using different molecular weights of polyethylene glycol (PEG as pore former and different coagulation bath temperatures (CBTs. The synthesized ultrafiltration membranes were modified using UV-assisted polymerization technique and their performance in the separation of AMX at different pHs, were studied. The results showed that the more irradiation time, the smaller surface pore size. Moreover, the membranes made with higher molecular weight of PEG and coagulation bath temperatures were more susceptible for UV-modification at these conditions; fabricated membranes had higher flux as well as relatively high AMX separation. Moreover, pH enhancement increased AMX rejection by 85%. The effect of irradiation on membrane surface morphology was studied by SEM surface images and the morphological effects of pore former and coagulation bath temperatures on membrane structure were confirmed by SEM cross section images. A fairly comprehensive discussion about the effects of PEG, coagulation bath temperature and irradiation time on membrane structure and AMX recovery performance was represented in this study.

  3. From lab to full-scale ultrafiltration in microalgae harvesting

    Science.gov (United States)

    Wenten, I. G.; Steven, S.; Dwiputra, A.; Khoiruddin; Hakim, A. N.

    2017-07-01

    Ponding system is generally used for microalgae cultivation. However, selection of appropriate technology for the harvesting process is challenging due to the low cell density of cultivated microalgae from the ponding system and the large volume of water to be handled. One of the promising technologies for microalgae harvesting is ultrafiltration (UF). In this study, the performance of UF during harvesting of microalgae in a lab- and a full-scale test is investigated. The performances of both scales are compared and analyzed to provide an understanding of several aspects which affect the yield produced from lab and actual conditions. Furthermore, a unique self-standing non-modular UF is introduced in the full-scale test. The non-modular UF exhibits several advantages, such as simple piping and connection, single pump for filtration and backwashing, and smaller footprint. With those advantages, the non-modular UF could be a promising technology for microalgae harvesting in industrial-scale.

  4. Concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    Science.gov (United States)

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2010-10-12

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  5. Ultrafiltration Technology and Its Application in Cardiopulmonary Bypass

    Directory of Open Access Journals (Sweden)

    Zhang Kun

    2017-01-01

    Full Text Available The application of cardiopulmonary bypass (CPB technology makes it possible to safely conduct open-heart surgery. However, as an invasive adjuvant therapeutic measure, it cures and greatly injures a human body simultaneously. In CPB, hemodilution, the contact between blood and the surface of foreign matter and other various factors activate the stress response in the body and causes tissue edema, increase in total body water and systemic inflammatory response syndrome (SIRS; in severe cases, they may give rise to organ dysfunction. Ultrafiltration (UF not only can remove the redundant moisture effectively from the body after CPB, concentrate blood cells and recover body fluid equilibrium, but also can clear away part of inflammatory medium, improve postoperative organ function and enhance the clinical effect after an open-heart surgery.

  6. [Membrane technologies in medicine and ecology].

    Science.gov (United States)

    Makarov, D A; Malyshev, V V; Kononova, S V

    2010-01-01

    The paper considers the state-of-the-art of membrane technologies, as applied to the needs of medicine and ecology, the major benefits of membranes for microfiltration and ultrafiltration, and perspectives for the application of new membranes based on new materials. A number of membranes based on aromatic polyamide imides (PAs) have been investigated using rotavirus models. Due to the good solubility of PAs in amide solvents, their based asymmetric membranes can be formed in one step, by applying a water setting bath. The one-stage procedure developed at the Institute of High Molecular Compounds, Russian Academy of Sciences, for the synthesis of aromatic PAs allows one to prepare polymers with required viscosity and strength characteristics. This gives rise to a membrane as porous films of digitiform morphology and asymmetric porous structure.

  7. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach: part 2: Optimization of hydrodynamic conditions for a crossflow ultrafiltration module with rotating part.

    Science.gov (United States)

    Cojocaru, Corneliu; Zakrzewska-Trznadel, Grazyna; Miskiewicz, Agnieszka

    2009-09-30

    Application of shear-enhanced crossflow ultrafiltration for separation of cobalt ions from synthetic wastewaters by prior complexation with polyethyleneimine has been investigated via experimental design approach. The hydrodynamic conditions in the module with tubular metallic membrane have been planned according to full factorial design in order to figure out the main and interaction effects of process factors upon permeate flux and cumulative flux decline. It has been noticed that the turbulent flow induced by rotation of inner cylinder in the module conducts to growth of permeate flux, normalized flux and membrane permeability as well as to decreasing of permeate flux decline. In addition, the rotation has led to self-cleaning effect as a result of the reduction of estimated polymer layer thickness on the membrane surface. The optimal hydrodynamic conditions in the module have been figured out by response surface methodology and overlap contour plot, being as follows: DeltaP=70 kPa, Q(R)=108 L/h and W=2800 rpm. In such conditions the maximal permeate flux and the minimal flux decline has been observed.

  8. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit

    Energy Technology Data Exchange (ETDEWEB)

    Benhabiles, M.S.; Abdi, N. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Drouiche, N., E-mail: nadjibdrouiche@yahoo.fr [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Silicon Technology Development Unit (UDTS) 2, Bd Frantz Fanon BP140, Alger-7 Merveilles, 16000 (Algeria); Lounici, H. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Pauss, A. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France); Goosen, M.F.A. [Alfaisal University, Riyadh (Saudi Arabia); Mameri, N. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France)

    2012-05-01

    The aims of the study were to optimize the production a fish protein hydrolysate (FPH) by enzymatic hydrolysis of sardine solid waste using crude pepsin, and to scale up the process in a bioreactor coupled to an ultrafiltration unit for product recovery. Results showed that the crude pepsin prepared by autolysis of the mucous membranes of a sheep stomach at optimal conditions (i. e. pH = 1.5-2 and incubation time of 6 h) could be satisfactory used for the enzymatic hydrolysis of fish solid waste. The optimal conditions for enzymatic reaction were: temperature 48 Degree-Sign C, and pH 1.5. The scale up of the enzymatic hydrolysis and the coupling of the reactor an ultrafiltration unit to concentrate the hydrolysate gave good results with a rejection coefficient for the protein hydrolysate product in the range of 90%. The volumetric concentration factor was 2.5, with a permeate flux of 200 L m{sup -2} bar{sup -1}. However, the results also suggest that the ultrafiltration product concentration process may be operating beyond the critical flux at which point irreversible membrane fouling occurs. - Highlights: Black-Right-Pointing-Pointer Evaluating to produce a (FPH) by enzymatic hydrolysis of sardine solid wastes was achieved. Black-Right-Pointing-Pointer Investigation of key parameters for optimal conditions for enzymatic hydrolysis have been studied. Black-Right-Pointing-Pointer Valorization of sardine waste was realized by enzymatic hydrolysis process. Black-Right-Pointing-Pointer Performances of this enzyme gave comparable results to those obtained with commercial pepsin. Black-Right-Pointing-Pointer The nutritional quality of the FPH produced appears to be satisfactory.

  9. Tight ceramic UF membrane as RO pre-treatment: The role of electrostatic interactions on phosphate rejection

    NARCIS (Netherlands)

    Shang, R.; Verliefde, A.R.D.; Hu, J.; Zeng, Z.; Lu, L.; Kemperman, A.J.B.; Deng, H.; Nijmeijer, K.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can poten

  10. Concentration of Rutin Model Solutions from Their Mixtures with Glucose Using Ultrafiltration

    Directory of Open Access Journals (Sweden)

    Zaid S. Saleh

    2010-02-01

    Full Text Available Separation of polyphenolic phytochemical compounds from their mixtures with sugars is necessary to produce an added-value sugar-reduced extract with high biological activity from fruit juice processing industry waste streams. The separation characteristics of a binary mixture of rutin and glucose using a Pellicon-2 regenerated cellulose ultrafiltration membrane with an area of 0.1 m2 having nominal MWCO of 1,000 Da were investigated, to demonstrate the separation of phenolic compounds from sugars. The effects of the operating variables–transmembrane pressure, feed solution temperature and pH, initial feed concentration and feed flow rate–on the permeate flux and enrichment of rutin, were determined. The permeate flux increased with the increase in transmembrane pressure up to a certain limit and after that the flux remained more or less constant. The optimum transmembrane pressure was within 4–5 bar. The flux increased with the increase in feed solution temperature because of reduced feed viscosity, and better solubility. The concentration of rutin was optimum at lower temperature (30ºC, with an enrichment factor of 1.3. The effect of pH on permeate flux was less obvious. Lowering the feed solution pH increased the retention of rutin and the optimum separation was obtained within pH 3–4. The permeate flux decreased with the increase in feed concentration of rutin (concentration range 0.1–0.5 g/L. The enrichment of rutin was significant in the glucose concentration range 0.35–0.5 g/L. The feed flow rate had a significant effect on the flux and separation characteristics. Higher cross-flow through the membrane reduced the fouling by providing a shear force to sweep away deposited materials from the membrane surface. At high feed flow rate, more rutin was retained by the membrane with less sugar permeating through. The optimum feed flow rate was 1.5 L/min. For the separation of rutin (in the retentate and glucose (in the permeate, the

  11. Concentration of rutin model solutions from their mixtures with glucose using ultrafiltration.

    Science.gov (United States)

    Wei, Swallow; Hossain, Md M; Saleh, Zaid S

    2010-02-09

    Separation of polyphenolic phytochemical compounds from their mixtures with sugars is necessary to produce an added-value sugar-reduced extract with high biological activity from fruit juice processing industry waste streams. The separation characteristics of a binary mixture of rutin and glucose using a Pellicon-2 regenerated cellulose ultrafiltration membrane with an area of 0.1 m(2) having nominal MWCO of 1,000 Da were investigated, to demonstrate the separation of phenolic compounds from sugars. The effects of the operating variables-transmembrane pressure, feed solution temperature and pH, initial feed concentration and feed flow rate-on the permeate flux and enrichment of rutin, were determined. The permeate flux increased with the increase in transmembrane pressure up to a certain limit and after that the flux remained more or less constant. The optimum transmembrane pressure was within 4-5 bar. The flux increased with the increase in feed solution temperature because of reduced feed viscosity, and better solubility. The concentration of rutin was optimum at lower temperature (30 degrees C), with an enrichment factor of 1.3. The effect of pH on permeate flux was less obvious. Lowering the feed solution pH increased the retention of rutin and the optimum separation was obtained within pH 3-4. The permeate flux decreased with the increase in feed concentration of rutin (concentration range 0.1-0.5 g/L). The enrichment of rutin was significant in the glucose concentration range 0.35-0.5 g/L. The feed flow rate had a significant effect on the flux and separation characteristics. Higher cross-flow through the membrane reduced the fouling by providing a shear force to sweep away deposited materials from the membrane surface. At high feed flow rate, more rutin was retained by the membrane with less sugar permeating through. The optimum feed flow rate was 1.5 L/min. For the separation of rutin (in the retentate) and glucose (in the permeate), the best results were

  12. Celecoxib treatment reduces peritoneal fibrosis and angiogenesis and prevents ultrafiltration failure in experimental peritoneal dialysis

    NARCIS (Netherlands)

    Fabbrini, Paolo; Schilte, Margot N.; Zareie, Mammad; ter Wee, Piet M.; Keuning, Eelco D.; Beelen, Robert H. J.; van den Born, Jaap

    2009-01-01

    Background. Daily peritoneal exposure to peritoneal dialysis fluid (PDF) induces severe morphological alterations including fibrosis and angiogenesis that lead to a loss of peritoneal ultrafiltration (UF) capacity. Since cyclooxygenase (COX)-2 is involved in fibrosis and angiogenesis, we investigate

  13. Intraperitoneal heparin reduces peritoneal permeability and increases ultrafiltration in peritoneal dialysis patients

    National Research Council Canada - National Science Library

    Sjøland, Jonas Angel; Smith Pedersen, Robert; Jespersen, Jørgen; Gram, Jørgen

    2004-01-01

    Patients on long-term treatment with peritoneal dialysis (PD) suffer from increasing peritoneal permeability and loss of ultrafiltration as a result of persistent inflammation, which may be triggered by bioincompatible dialysis fluids...

  14. Pengaruh Rasio Aditif Polietilen Glikol Terhadap Selulosa Asetat pada Pembuatan Membran Selulosa Asetat Secara Inversi Fasa

    Directory of Open Access Journals (Sweden)

    Cut Meurah Rosnelly

    2012-06-01

    Full Text Available Preparation of cellulose acetate (CA membranes with ultrafiltration process had be done by phase inversion using dimethylformamide (DMF as solvent. Poliethylene glycol (PEG 1450 Da, as additive, was added with 10, 20, and 30% rasio of celluose acetate. The thin film of polymer solution was immersed on water bath coagulation at room temperature. The analysis of membrane morphology structure by Scanning Electron Microscope (SEM JSM – 5310 LV, Jeol-Japan showed the asymetric of membrane. The addition of PEG can improve the performance of the membrane. In resulting flux is higher than membranes without PEG. Increasing of PEG/CA ratio resulted in the higher flux with lower of rejection. The higher fluxes of water, dextran, and BSA are 146, 114, and 96 L/m2hr with 52,938 and 75,716% rejection for dextran and BSA. Keywords: cellulose acetate membranes, polyethylene glycol, ultrafiltration

  15. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    Science.gov (United States)

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc.

  16. EFFICIENCY OF VIRAL CONCENTRATION IN FOOD SAMPLES: COMPARISON BETWEEN PEG AND ULTRAFILTRATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    F Brindani

    2013-02-01

    Full Text Available Norovirus is the most prevalent causative agent of foodborne diseases. However, the detection of this virus in foods other than shellfish is often time-consuming and unsuccessful. The objective of this study is to compare PEG and ultrafiltration techniques for viral concentration in bivalve molluscs. An experiment with Coxsackie B5 and feline Calicivirus strain F is conduct to determine the efficiency of each virus concentration. Ultrafiltration technique is the most indicated.

  17. Technical membranes in biotechnology. Technische Membranen in der Biotechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Kula, M.R.; Schuegerl, K.; Wandrey, C.

    1986-01-01

    The 25 papers comprised in this book are to give the reader an idea of the wide range o