WorldWideScience

Sample records for heterotrophic bacteria aggregate

  1. Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics

    DEFF Research Database (Denmark)

    Grossart, H.P.; Kiørboe, Thomas; Tang, K.W.

    2006-01-01

    as well as abundance, colonization behaviour, and community composition of bacteria during the growth of 2 marine diatoms (Thalassiosira weissflogii and Navicula sp.) under axenic and non-axenic conditions. Community composition of free-living and attached bacteria during phytoplankton growth...... and aggregation was studied by amplification of 16S rRNA gene fragments and denaturing gradient gel electrophoresis (DGGE). Our results show that the presence of bacteria was a prerequisite for aggregation of T. weissflogii but not of Navicula sp. Occurrences of distinct populations of free-living and attached...

  2. Association of heterotrophic bacteria with aggregated Arthrospira platensis exopolysaccharides: implications in the induction of axenic cultures.

    Science.gov (United States)

    Shiraishi, Hideaki

    2015-01-01

    Inducing an axenic culture of the edible cyanobacterium Arthrospira (Spirulina) platensis using differential filtration alone is never successful; thus, it has been thought that, in non-axenic cultures, a portion of contaminating bacteria is strongly associated with Arthrospira cells. However, examination of the behavior of these bacteria during filtration revealed that they were not associated with Arthrospira cells but with aggregates of exopolysaccharides present in the medium away from the Arthrospira cells. Based on this finding, a rapid and reliable method for preparing axenic trichomes of A. platensis was established. After verifying the axenicity of the resulting trichomes on enriched agar plates, they were individually transferred to fresh sterile medium using a handmade tool, a microtrowel, to produce axenic cultures. With this technique, axenic cultures of various A. platensis strains were successfully produced. The technique described in this study is potentially applicable to a wider range of filamentous cyanobacteria.

  3. Antibiotic resistance among heterotrophic bacteria in Lagos Lagoon ...

    African Journals Online (AJOL)

    Antibiotic-resistant bacteria in the aquatic environment are considered reservoirs for drug-resistant genes. Therefore, culturable heterotrophic bacteria isolated from Lagos Lagoon surface waters between 2011 and 2012 were screened for their susceptibility to 14 commonly used antibiotics belonging to six major classes.

  4. Removal of crude petroleum hydrocarbons by heterotrophic bacteria ...

    African Journals Online (AJOL)

    Nitrogenous fertilizer (NPK) plant effluents from NAFCON were used in amending plots of land experimentally polluted with crude oil. Counts of heterotrophic bacteria (THBC) and fungi (TF), and of petroleum utilizing bacteria (PUB) and fungi (PUF) were monitored during an 8 weeks period. Counts obtained showed that ...

  5. Modeling heterotrophic bacteria in plumbing system of drinking water.

    Science.gov (United States)

    Chowdhury, Shakhawat; Al-Zahrani, Muhammad

    2014-06-01

    This study investigated occurrences of heterotrophic (HPC) bacteria and developed predictive models for HPC bacteria in plumbing pipes (PP) and hot water tanks (HWT) of two houses in Dhahran (Saudi Arabia). Heterotrophic bacteria in PP and HWT were observed to be 2.4 to 5.3 and 0.4 to 5.9 times the HPC bacteria in water distribution system (WDS), respectively. Three linear, one nonlinear, and one neural network models were investigated to predict HPC bacteria in PP and HWT. Significant factors for bacteria regrowth in PP and HWT were identified through numerical and graphical techniques. The R2 values of the models varied between 0.57 and 0.96, indicating moderate to excellent predictive ability for HPC bacteria in PP and HWT. The models were found to be statistically significant, which were also validated using additional data. These models can be used to predict HPC bacteria regrowth from WDS to PP and HWT, and could help to predict exposure and risks.

  6. Heterotrophic bacteria in drinking water distribution system: a review.

    Science.gov (United States)

    Chowdhury, Shakhawat

    2012-10-01

    The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS.

  7. Responses of Diverse Marine Heterotrophic Bacteria to Changing Copper Availability.

    Science.gov (United States)

    Posacka, A. M.; Maldonado, M. T.

    2016-02-01

    Copper (Cu) is essential to a variety of metabolic pathways in marine prokaryotes, including cellular respiration and degradation of complex organic substrates. Yet, its nutritional role in marine heterotrophic bacteria remains poorly understood. Our goal was to investigate the effects of Cu availability on growth and metabolism of diverse classes of marine heterotrophic bacteria (α -, Ɣ- proteobacteria and Flavobacteriia), including a number of strains isolated from the Northeast Pacific Ocean (Pseudoalteromonas sp., Alteromondales; and Dokdonia sp., Flavobacteriales) and a model bacterium from the Roseobacter clade Ruegeria pomeroyi (ATCC 700808). Our preliminary results indicate that Pseudoalteromonas sp may have a low metabolic requirement for Cu as their growth rates were only slightly reduced under Cu deficiency (10-25% µmax). In contrast, the growth of the flavobacterium Dokdonia sp is severely limited by low Cu levels (up to 90% µmax) and follows a Monod-type kinetics from 0 - 50nM Cu in EDTA-buffered media. Metabolic responses to changing Cu availability include an increase in intracellular sulfur content with decreasing Cu concentrations, while maintaining constant C:N stoichiometry. Bacterial growth efficiency (BGE, %) was directly correlated with Cu suggesting that carbon utilization in this organism is regulated by Cu availability. Our results indicate that Cu affects growth and metabolism of marine heterotrophic bacteria, and highlight the physiological differences in copper requirements among different bacterial groups.

  8. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters.

    Science.gov (United States)

    Farnelid, Hanna; Harder, Jens; Bentzon-Tilia, Mikkel; Riemann, Lasse

    2014-10-01

    The wide distribution of diverse nitrogenase (nifH) genes affiliated with those of heterotrophic bacteria in marine and estuarine waters indicates ubiquity and an ecologically relevant role for heterotrophic N2 -fixers (diazotrophs) in aquatic nitrogen (N) cycling. However, the lack of cultivated representatives currently precludes an evaluation of their N2 -fixing capacity. In this study, microoxic or anoxic N-free media were inoculated with estuarine Baltic Sea surface water to select for N2 -fixers. After visible growth and isolation of single colonies on oxic plates or in anoxic agar tubes, nifH gene amplicons were obtained from 64 strains and nitrogenase activity, applying the acetylene reduction assay, was confirmed for 40 strains. Two strains, one Gammaproteobacterium affiliated with Pseudomonas and one Alphaproteobacterium affiliated with Rhodopseudomonas were shown to represent established members of the indigenous diazotrophic community in the Baltic Sea, with abundances of up to 7.9 × 10(4) and 4.7 × 10(4)  nifH copies l(-1) respectively. This study reports media for successful isolation of heterotrophic diazotrophs. The applied methodology and the obtained strains will facilitate future identification of factors controlling heterotrophic diazotrophic activity in aquatic environments, which is a prerequisite for understanding and evaluating their ecology and contribution to N cycling at local and regional scales. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria

    Directory of Open Access Journals (Sweden)

    Hiroyuki Iguchi

    2015-04-01

    Full Text Available Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO2, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs and heterotrophic bacteria. Some plants emit methane and methanol from their leaves, and provide methylotrophs with habitats. Methanol-utilizing methylotrophs in the genus Methylobacterium are abundant in the phyllosphere and have the ability to promote the growth of some plants. Methanotrophs also inhabit the phyllosphere, and methanotrophs with high methane oxidation activities have been found on aquatic plants. Both plant and environmental factors are involved in shaping the methylotroph community on plants. Methanotrophic activity can be enhanced by heterotrophic bacteria that provide growth factors (e.g., cobalamin. Information regarding the biological interaction of methylotrophs with other organisms will facilitate a better understanding of the carbon cycle that is driven by methylotrophs.

  10. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    Science.gov (United States)

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (Pcoliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  11. Genomics and Ecophysiology of Heterotrophic Nitrogen-Fixing Bacteria Isolated from Estuarine Surface Water.

    Science.gov (United States)

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H; Riemann, Lasse

    2015-07-07

    The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas stutzeri strain BAL361 and Raoultella ornithinolytica strain BAL286, which are gammaproteobacteria, and Rhodopseudomonas palustris strain BAL398, an alphaproteobacterium. Genome sequencing revealed that all were metabolically versatile and that the gene clusters encoding the N2 fixation complex varied in length and complexity between isolates. All three isolates could sustain growth by N2 fixation in the absence of reactive N, and this fixation was stimulated by low concentrations of oxygen in all three organisms (≈ 4 to 40 µmol O2 liter(-1)). P. stutzeri BAL361 did, however, fix N at up to 165 µmol O2 liter(-1), presumably accommodated through aggregate formation. Glucose stimulated N2 fixation in general, and reactive N repressed N2 fixation, except that ammonium (NH4 (+)) stimulated N2 fixation in R. palustris BAL398, indicating the use of nitrogenase as an electron sink. The lack of correlations between nitrogenase reductase gene expression and ethylene (C2H4) production indicated tight posttranscriptional-level control. The N2 fixation rates obtained suggested that, given the right conditions, these heterotrophic diazotrophs could contribute significantly to in situ rates. The biological process of importing atmospheric N2 is of paramount importance in terrestrial and aquatic ecosystems. In the oceans, a diverse array of prokaryotes seemingly carry the genetic capacity

  12. BACTERIOLOGICAL PROPERTIES OF MARINE WATER IN ADRIATIC FISH FARMS: ENUMERATION OF HETEROTROPHIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Emin Teskeredžić

    2012-12-01

    Full Text Available Aquaculture is currently one of the fastest growing food production sectors in the world. Increase in nutrients and organic wastes lead to general deterioration of water quality. The problem of water quality is associated with both physical and chemical factors, as well as microbiological water quality. Heterotrophic bacteria play an important role in the process of decomposition of organic matter in water environment and indicate eutrophication process. Here we present our experience and knowledge on bacterial properties of marine water in the Adriatic fish farms with European sea bass (Dicentrarchus labrax L., 1758, with an emphasis on enumeration of heterotrophic bacteria in marine water. We applied two temperatures of incubation, as well as two methods for enumeration of heterotrophic bacteria: substrate SimPlate® test and spread plate method on conventional artificial media (Marine agar and Tryptic Soy agar with added NaCl. The results of analysis of bacteriological properties of marine water in the Adriatic fish farms showed that enumeration of heterotrophic bacteria in marine water depends on the applied incubation temperature and media for enumeration. At the same time, the incubation temperature of 22C favours more intense growth of marine heterotrophic bacteria, whereas a SimPlate test gives higher values of heterotrophic bacteria. Volatile values of heterotrophic bacteria during this research indicate a possible deterioration of microbiological water quality in the Adriatic fish farms and a need for regular monitoring of marine water quality.

  13. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    OpenAIRE

    AMANIDAZ, Nazak; Ali ZAFARZADEH; Mahvi, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks.Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal stre...

  14. Allelopathic interactions between phytoplankton species : the roles of heterotrophic bacteria and mixing intensity

    NARCIS (Netherlands)

    Hulot, F.; Huisman, J.

    2004-01-01

    Toxin-producing phytoplankton species may compensate for competitive disadvantages by secreting chemicals that affect toxin-sensitive phytoplankton species. Heterotrophic bacteria, however, may, in turn, degrade the toxins produced by allelopathic phytoplankton, thus confounding allelopathic

  15. Heterotrophic bacteria in soils of Larsemann Oasis of East Antarctica

    Science.gov (United States)

    Churilin, Nikita; Soina, Vera

    2015-04-01

    The study of diversity and functional state of microorganisms in subsurface rocks layers, their participation in the biochemical weathering and formation of organic horizons of soils is important for understanding ecology and microorganisms in Antarctic soils. The study of cultured forms of microorganisms and their potential viability is still relevant to characterize the physiological state, biological activity and resilience of microorganisms involved in the initial soil formation. Improvement of isolation techniques of viable bacteria from the extreme habitats has a particular importance for rising the efficiency of environmental monitoring. The aim of the study was to investigate the viable heterotrophic bacteria involved in the formation of soils from wet valleys Larsemann Oasis, which is one of the warmest ice-free space of East Antarctica. Soil samples were taken from the intermountain humid valleys, where silt-gravelly substrates formed moss, algae, lichen cover. We used nutrient solutions (trypticase soy, R2A and glucose-peptone) to isolate cultured bacteria and study their morphological types in the light microscope. The total number of microorganisms was determined by fluorescent microscopy with acridine orange. SEM was used for morphological studies of bacterial communities in situ. To activate the growth processes we added into nutrient solutions various regulatory metabolites that have dose-dependence and operate at the community level. Physiological and functional conditions were determined by the duration of the lag phase and specific growth rate of bacterial communities in nutrient solutions containing various organic substrates. Soils form under protection of «stone pavement» and organisms leave the surface, so the forming organo-mineral horizon occurs inside of rock, thus the microprofile can form on both sides of the organic horizons. UV radiation, lack of moisture and strong wind are main limiting factors for microorganisms' growth in

  16. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Dual Energy-Limited Chemostats.

    Science.gov (United States)

    Verhagen, F J; Laanbroek, H J

    1991-11-01

    The absence of nitrification in soils rich in organic matter has often been reported. Therefore, competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis was studied in the presence of Nitrobacter winogradskyi in continuous cultures at dilution rates of 0.004 and 0.01 h. Ammonium limitation of A. globiformis was achieved by increasing the glucose concentration in the reservoir stepwise from 0 to 5 mM while maintaining the ammonium concentration at 2 mM. The numbers of N. europaea and N. winogradskyi cells decreased as the numbers of heterotrophic bacteria rose with increasing glucose concentrations for both dilution rates. Critical carbon-to-nitrogen ratios of 11.6 and 9.6 were determined for the dilution rates of 0.004 and 0.01 h, respectively. Below these critical values, coexistence of the competing species was found in steady-state situations. Although the numbers were strongly reduced, the nitrifying bacteria were not fully outcompeted by the heterotrophic bacteria above the critical carbon-to-nitrogen ratios. Nitrifying bacteria could probably maintain themselves in the system above the critical carbon-to-nitrogen ratios because they are attached to the glass wall of the culture vessels. The numbers of N. europaea decreased more than did those of N. winogradskyi. This was assumed to be due to heterotrophic growth of the latter species on organic substrates excreted by the heterotrophic bacteria.

  17. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...

  18. Incidence of Legionella and heterotrophic bacteria in household rainwater tanks in Azumino, Nagano prefecture, Japan.

    Science.gov (United States)

    Kobayashi, Michiko; Oana, Kozue; Kawakami, Yoshiyuki

    2014-01-01

    Many administrative agencies in Japan are encouraging installation of household rainwater-storage tanks for more effective use of natural rainwater. Water samples were collected periodically from 43 rainwater tanks from 40 households and tested for the presence of Legionella species and the extent of heterotrophic bacteria in Azumino city, Nagano prefecture, Japan. PCR assays indicated the presence of Legionella spp. in 12 (30%) of the 43 tank water samples. Attempts were made to identify correlations between PCR positive samples, topography, pH, chemical oxygen demand (COD), atmospheric temperature and the numbers of heterotrophic bacteria. Between June and October, 2012, the numbers of heterotrophic bacteria in rainwater tanks and the values of COD positively correlated with the presence of Legionella species. In most of the Legionella-positive cases, heterotrophic bacterial cell counts were >10(4) CFU/mL. Moreover, Legionella species were less frequently detected when the COD value was >5 mg KMnO(4)/L. Therefore, at least in Azumino, Japan between June and October 2012, both heterotrophic bacterial counts and COD values may be considered index parameters for the presence of Legionella cells in rainwater tanks. Much more accumulation of such data is needed to verify the accuracy of these findings. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  19. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment.

    Science.gov (United States)

    Arandia-Gorostidi, Nestor; Weber, Peter K; Alonso-Sáez, Laura; Morán, Xosé Anxelu G; Mayali, Xavier

    2017-03-01

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  20. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2016-12-06

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  1. Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.

    2000-01-01

    The uptake of ammonium, nitrate, amino acids and urea was examined in the nitrate-rich Thames estuary and adjacent area in the North Sea during February 1999. The majority of uptake was by heterotrophic bacteria, as demonstrated by addition of a prokaryotic inhibitor that lowered uptake rates by 82,

  2. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Continuously Percolated Soil Columns.

    Science.gov (United States)

    Verhagen, F J; Duyts, H; Laanbroek, H J

    1992-10-01

    Although the absence of nitrate formation in grassland soils rich in organic matter has often been reported, low numbers of nitrifying bacteria are still found in these soils. To obtain more insight into these observations, we studied the competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis in the presence of Nitrobacter winogradskyi with soil columns containing calcareous sandy soil. The soil columns were percolated continuously at a dilution rate of 0.007 h, based on liquid volumes, with medium containing 5 mM ammonium and different amounts of glucose ranging from 0 to 12 mM.A. globiformis was the most competitive organism for limiting amounts of ammonium. The numbers of N. europaea and N. winogradskyi cells were lower at higher glucose concentrations, and the potential ammonium-oxidizing activities in the uppermost 3 cm of the soil columns were nonexistent when at least 10 mM glucose was present in the reservoir, although 10 nitrifying cells per g of dry soil were still present. This result demonstrated that there was no correlation between the numbers of nitrifying bacteria and their activities. The numbers and activities of N. winogradskyi cells decreased less than those of N. europaea cells in all layers of the soil columns, probably because of heterotrophic growth of the nitrite-oxidizing bacteria on organic substrates excreted by the heterotrophic bacteria or because of nitrate reduction at reduced oxygen concentrations by the nitrite-oxidizing bacteria. Our conclusion was that the nitrifying bacteria were less competitive than the heterotrophic bacteria for ammonium in soil columns but that they survived as viable inactive cells. Inactive nitrifying bacteria may also be found in the rhizosphere of grassland plants, which is rich in organic carbon. They are possibly reactivated during periods of net mineralization.

  3. The Biology of Heterotrophic N2-fixing Bacteria in Marine and Estuarine Waters

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel

    marine systems as well. Their role and ecological significance is, however currently unknown. By combining in situ analyses of the distribution and activity of diazotrophs in various marine environments with culture-­based examinations of the potential of N2 fixation and its regulation in representative...... the potential to fix significant amounts of N2 at cell densities equivalent to densities observed in the environment from which they were isolated. Hence, N2 fixation by heterotrophic bacteria are likely important in some marine environments. However, the scale and spatial extent of the heterotrophic N2...

  4. Response of marine microalgae, heterotrophic bacteria and their relationship to enhanced UV-B radiation

    Science.gov (United States)

    Zhou, Wenli; Tang, Xuexi; Xiao, Hui; Wang, You; Wang, Renjun

    2009-03-01

    Ozone depletion in the stratosphere has enhanced solar UV-B radiation reaching the Earth surface and has brought about significant effects to marine ecosystems. The effects of enhanced UV-B radiation on marine microalgae, heterotrophic bacteria and the interaction between them are discussed. The effects on marine microalgae have been proved to occur at molecular, cellular and population levels. Enhanced UV-B radiation increases microalgal flavonoid content but decreases their chlorophyll content and photosynthesis rate; this radiation induces genetic change and results in DNA damage and change of protein content. There have been fewer studies on the effects of UV-B radiation on marine heterotrophic bacteria. Establishment of a microalgal ecological dynamic model at population and community levels under UV-B radiation has gradually become a hotspot. The effects of enhanced UV-B radiation on microalgae communities, heterotrophic bacterial populations and interaction between them will become a focus in the near future. This paper will make an overview on the studies concerning the effects of enhanced UV-B radiation on marine microalgae and heterotrophic bacteria and the interaction between them.

  5. Resource islands predict the distribution of heterotrophic bacteria in chihuahuan desert soils.

    Science.gov (United States)

    Herman, R P; Provencio, K R; Herrera-Matos, J; Torrez, R J

    1995-05-01

    The resource island hypothesis predicts that soil resources such as nitrogen, phosphorus, and water will be distributed evenly in grasslands but have a patchy distribution focused around plants in shrublands. This hypothesis predicts that microorganism numbers will follow resources and be (i) evenly distributed in grasslands, (ii) concentrated around individual plants in shrublands, and (iii) higher where resources are higher when comparing the same vegetation type. This study enumerated total heterotrophic bacteria and a subset of these, the nitrogen-efficient guild (NEG), in three shrublands (playa fringe mesquite, tar bush, and creosote) and two grasslands (playa and bajada). Both heterotrophs and NEG members followed the distribution pattern predicted by the resource island hypothesis. There were no significant differences in heterotroph or NEG numbers comparing at-plant and interplant samples for both the playa and bajada grasslands. Furthermore, populations were generally higher in nutrient-rich playa grasslands than nutrient-poor bajada grasslands. In contrast, both heterotroph and NEG numbers were higher at shrubs than between shrubs in all three shrub sites. These results suggest that resource abundance in resource islands predicts the distribution of heterotrophic bacterial numbers in desert soils.

  6. Aggregation Patterns in Stressed Bacteria

    CERN Document Server

    Tsimring, L S; Aranson, I S; Ben-Jacob, E; Cohen, I; Shochet, O; Tsimring, Lev; Levine, Herbert; Aranson, Igor; Ben-Jacob, Eshel; Cohen, Inon; Shochet, Ofer

    1995-01-01

    We study the formation of spot patterns seen in a variety of bacterial species when the bacteria are subjected to oxidative stress due to hazardous byproducts of respiration. Our approach consists of coupling the cell density field to a chemoattractant concentration as well as to nutrient and waste fields. The latter serves as a triggering field for emission of chemoattractant. Important elements in the proposed model include the propagation of a front of motile bacteria radially outward form an initial site, a Turing instability of the uniformly dense state and a reduction of motility for cells sufficiently far behind the front. The wide variety of patterns seen in the experiments is explained as being due the variation of the details of the initiation of the chemoattractant emission as well as the transition to a non-motile phase.

  7. Stoichiometric flexibility in diverse aquatic heterotrophic bacteria is coupled to differences in cellular phosphorus quotas

    Directory of Open Access Journals (Sweden)

    Casey Michael Godwin

    2015-02-01

    Full Text Available It is frequently presumed that heterotrophic bacteria from aquatic environments have low carbon (C content, high phosphorus (P content, and maintain homeostasis at low C:P in their biomass. Dissolved and particulate organic matter from primary producers in terrestrial and aquatic environments typically has high C:P ratios, suggesting that heterotrophic bacteria consuming this resource experience stoichiometric imbalance in C and P. The strength of elemental homeostasis is important for understanding how heterotrophic bacteria couple C and P cycles in response to environmental change, yet these generalizations are based upon data from only a few species that might not represent the physiology of bacteria in freshwaters. However, recent research has indicated that some strains of bacteria isolated from freshwaters have flexible C:P stoichiometry and can acclimate to changes in resource C:P. Although it is apparent that strains differ in their biomass C:P and flexibility, the basis for these characteristics has not been explained. We evaluated biomass C:P homeostasis in 24 strains of bacteria isolated from temperate lakes using a uniform relative growth rate in chemostats. Overall, the strains exhibited a range of homeostatic regulation from strong homeostasis to highly flexible biomass stoichiometry, but strains that were isolated using P-rich media formulations were more homeostatic than strains isolated using P-poor media. Strains exhibiting homeostatic biomass C:P had high cellular C and P content and showed little morphological change between C and P limitation. In contrast, stoichiometrically flexible strains had low P quotas and increased their C quotas and cell size under P limitation. Because stoichiometric flexibility is closely coupled to absolute P content in bacteria, anthropogenic inputs of P could lead to prevalence of more homeostatic bacteria, reducing the ability of natural assemblages to buffer changes in the availability of P

  8. Some reflections on microbial competitiveness among heterotrophic bacteria.

    Science.gov (United States)

    Gottschal, J C

    1985-01-01

    The results of a large number of studies on microorganisms subjected to various degrees of substrate limitation have led to the idea that many species are particularly well adapted to growth at a very low rate at extremely low nutrient concentrations. The possible similarity between this type of bacteria and oligotrophic species is discussed. Some attention is paid to the problem of predicting the competitiveness of microbial species. To this end the apparent specific affinity of an organism for a given substrate is discussed in some detail. It is attempted to bring terminology used in describing this parameter in line with that commonly used in microbial physiology and ecology. Using one particular field study as an example the possible usefulness and limitations of this concept in field studies are discussed.

  9. Isolation and life cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Chan, Amy; Bertelsen, Sif Koldborg

    2010-01-01

    Basic knowledge on viruses infecting heterotrophic bacteria and cyanobacteria is key to future progress in understanding the role of viruses in aquatic systems and the influence of virus–host interactions on microbial mortality, biogeochemical cycles, and genetic exchange. Such studies require...... infecting such hosts. In addition to the isolation procedures, methods for life cycle characterization (one-step growth experiments) of bacteriophages and cyanophages are described. Finally, limitations and drawbacks of the proposed methods are assessed and discussed...

  10. Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production

    OpenAIRE

    Vázquez, Susana; Tropeano, Mauro; Coria, Silvia; Turjanski, Adrían; Cicero, Daniel; Bercovich, Andrés; Mac Cormack, Walter

    2012-01-01

    Affiliations of the dominant culturable bacteria isolated from Potter Cove, South Shetland Islands, Antarctica, were investigated together with their production of cold-active hydrolytic enzymes. A total of 189 aerobic heterotrophic bacterial isolates were obtained at 4°C and sorted into 63 phylotypes based on their amplified ribosomal DNA restriction analysis profiles. The sequencing of the 16S rRNA genes of representatives from each phylotype showed that the isolates belong to the phyla Pro...

  11. Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary

    OpenAIRE

    J. J. Middelburg; Nieuwenhuize, J.

    2000-01-01

    The uptake of ammonium, nitrate, amino acids and urea was examined in the nitrate-rich Thames estuary and adjacent area in the North Sea during February 1999. The majority of uptake was by heterotrophic bacteria, as demonstrated by addition of a prokaryotic inhibitor that lowered uptake rates by 82, 66, 49 and 86 % for ammonium, nitrate, amino acids and urea, respectively. Amino acids were preferred over ammonium and urea, which in turn were preferred over nitrate. Urea was not important as n...

  12. Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria.

    Science.gov (United States)

    Tsuneda, S; Park, S; Hayashi, H; Jung, J; Hirata, A

    2001-01-01

    The possibility of enhancing nitrifying biofilm formation rate with the aid of selected EPS produced by heterotrophic bacteria was investigated. When EPS production characteristics were examined for four kinds of heterotrophs isolated from a domestic wastewater treatment reactor, two strains obtained from biofilms (B1, B2) exhibited a higher polysaccharide production rate than those from suspended flocs (A1, A2). Among EPS components, the concentration of uronic acids gave a good correlation with flocculation ability, which suggests that acidic polysaccharides play a major role in bioaggregate formation. Addition of 1 g/L D-glucuronic acid as an EPS substitute enhanced the homocoagulation rate of autotrophic Nitrosomonas europaea and altered its zeta potential from ñ30.4 mV to +4.3 mV, which indicates a possibility that particular EPS components produced by heterotrophs are utilized as neutralising reagents for nitrifying biofilm formation. Moreover, when heterotrophic isolates with Nitrobacter winogradskyi were cultured in batch with fabric supports, biofilm formed on the substratum. These experimental results suggest the application of selected EPS for enhancing nitrifying biofilm formation.

  13. Influence of river discharge on abundance and dissemination of heterotrophic, indicator and pathogenic bacteria along the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, V.R.; Srinivas, T.N.R.; Sarma, V.V.S.S.

    In order to examine the influence of discharge from different rivers from peninsular India and urban sewage on intensity and dissemination of heterotrophic, indicator and pathogenic bacteria, a study was carried out during peak discharge period...

  14. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine; Nissen, Erling; Arvin, Erik

    2012-01-01

    . aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria...

  15. Unicellular cyanobacteria Synechocystis accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties.

    Science.gov (United States)

    Abdulaziz, Anas; Sageer, Saliha; Chekidhenkuzhiyil, Jasmin; Vijayan, Vijitha; Pavanan, Pratheesh; Athiyanathil, Sujith; Nair, Shanta

    2016-08-01

    The interactions between heterotrophic bacteria and primary producers have a profound impact on the functioning of marine ecosystem. We characterized the enzymatic and metal resistance properties of fourteen heterotrophic bacteria isolated from a unicellular cyanobacterium Synechocystis sp. that came from a heavy metal contaminated region of Cochin estuary, southwest coast of India. Based on 16S rRNA gene sequence similarities, the heterotrophic bacteria were grouped into three phyla: namely Actinobacteria, Firmicute, and Proteobacteria. Overall Proteobacteria showed a higher level of enzyme expression while Actinobacteria and Firmicutes showed higher tolerance to heavy metals. Among Proteobacteria, an isolate of Marinobacter hydrocarbonoclasticus (MMRF-584) showed highest activities of β-glucosidase (1.58 ± 0.2 μMml(-1)  min(-1) ) and laminarinase (1170.17 ± 95.4 μgml(-1)  min(-1) ), while other two isolates of M. hydrocarbonoclasticus, MMRF-578 and 581, showed highest phosphatase (44.71 ± 0.2 μMml(-1)  min(-1) ) and aminopeptidase (33.22 ± 0 μMml(-1)  min(-1) ) activities respectively. Among Firmicutes, the Virgibacillus sp. MMRF-571 showed exceptional resistance against the toxic heavy metals Cd (180 mM), Pb (150 mM), and Hg (0.5 mM). Bacillus cereus, MMRF-575, showed resistance to the highest concentrations of Co (250 mM), Cd (150 mM), Pb (180 mM), Hg (0.5 mM), Ni (280 mM), and Zn (250 mM) tested. Our results show that heterotrophic bacteria with varied enzymatic and metal resistance properties are associated with Synechocystis sp. Further studies to delineate the role of these heterotrophic bacteria in protecting primary producers from toxic effects of heavy metals and their potential application in bioremediation will be appreciated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes.

    Science.gov (United States)

    Zhang, Songhe; Han, Bing; Gu, Ju; Wang, Chao; Wang, Peifang; Ma, Yanyan; Cao, Jiashun; He, Zhenli

    2015-09-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process.

    Science.gov (United States)

    Bothe, Harald; Møller Jensen, K; Mergel, A; Larsen, J; Jørgensen, C; Bothe, Hermann; Jørgensen, L

    2002-06-01

    The methanotrophic bacterium Methylococcus capsulatus (Bath) grows on pure methane. However, in a single cell protein production process using natural gas as methane source, a bacterial consortium is necessary to support growth over longer periods in continuous cultures. In different bioreactors of Norferm Danmark A/S, three bacteria consistently invaded M. capsulatus cultures growing under semi-sterile conditions in continuous culture. These bacteria have now been identified as a not yet described member of the Aneurinibacillus group, a Brevibacillus agri strain, and an acetate-oxidiser of the genus Ralstonia. The physiological roles of these bacteria in the bioreactor culture growing on natural, non-pure methane gas are discussed. The heterotrophic bacteria do not have the genetic capability to produce either the haemolytic enterotoxin complex HBL or non-haemolytic enterotoxin.

  18. The ecological distributions of N, P utilizing bacteria and heterotrophic bacteria in the moderate hypoxia zone of the Changjiang Estuary

    Science.gov (United States)

    Liu, Jingjing; Du, Ping; Zeng, Jiangning; Chen, Quanzhen; Shou, Lu; Liao, Yibo; Jiang, Zhibing

    2013-12-01

    The distributions of N utilizing bacteria (denitrifying bacteria and ammonifying bacteria), P utilizing bacteria (organic phosphobacteria and inorganic phosphobacteria) and heterotrophic bacteria in the Changjiang Estuary, and the roles of main environmental factors in distributing bacteria, are explored with observations from two cruises in June and August 2006. Comparisons between the two important periods of initial hypoxia phase (June) and developed hypoxia phase (August) show differences in both bacterial distributions and the associated main environmental factors. First, the primary group of ammonifying bacteria has larger magnitude with spatial maximum value in the hypoxic stations related to sediment in August. The phosphobacterial abundance and detection rates in August are much lower than those in June, but the denitrifying bacterial abundance becomes greater in August. However, the difference of heterotrophic bacterial abundance between June and August is not obvious. Second, main environmental factors influencing bacteria vary from initial hypoxia phase to developed hypoxia phase. Two parameters (salinity and NO3 -) in surface water and five environmental parameters (pH, salinity, PO4 3-, NO3 - and temperature) in bottom water and surface sediment play major roles in the bacterial abundance in June, while different parameter combinations (salinity and PO4 -) in surface water and different parameter combinations (DO, DOC, NO3 -, PO4 3- and pH) in bottom water and surface sediment play major roles in August. Moreover, the bottom bacteria distributions in area south of 31°N are related to the position of the Taiwan Warm Current in June. The bacterial abundance and distribution may respond to the environmental change in the hypoxia processes of initial phase and developed phase. During the hypoxia processes, the whole structure of bacterial functional groups probably turns to different states, causing the recycling of nutrient regeneration and aggravating

  19. Effects of Grazing by Flagellates on Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Chemostats.

    Science.gov (United States)

    Verhagen, F J; Laanbroek, H J

    1992-06-01

    The enhanced mineralization of organic nitrogen by bacteriophagous protozoa is thought to favor the nitrification process in soils, in which nitrifying bacteria have to compete with heterotrophic bacteria for the available ammonium. To obtain more insight into this process, the influence of grazing by the bacteriovorous flagellate Adriamonas peritocrescens on the competition for limiting amounts of ammonium between the ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis was studied in the presence of Nitrobacter winogradskyi in continuous cultures at dilution rates of 0.004 and 0.01 h. The ammonium concentration in the reservoir was maintained at 2 mM, whereas the glucose concentration was increased stepwise from 0 to 7 mM. A. globiformis won the competition for limiting amounts of ammonium when the glucose concentration in the reservoirs increased, in agreement with previously described experiments in which the flagellates were not included. The numbers of nitrifying bacteria decreased as the numbers of heterotrophic bacteria rose with increasing glucose concentrations. Critical C/N ratios, i.e., ratios between glucose and ammonium in the reservoirs at which no nitrate was found in the culture vessels, of 12.5 and 10.5 were determined at dilution rates of 0.004 and 0.01 h, respectively. Below these critical values, coexistence of the competing species was found. The numbers of nitrifying bacteria decreased more in the presence of flagellates than in their absence, presumably by selective predation on the nitrifying bacteria, either in the liquid culture or on the glass wall of the culture vessels. Despite this, the rate of nitrate production did not decrease more in the presence of flagellates than in their absence. This demonstrates that no correlation has to be expected between numbers of nitrifying bacteria and their activity and that a constant nitrification rate per cell cannot be assumed for nitrifying

  20. Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage.

    Science.gov (United States)

    Costa, Bruna Zucoloto da; Rodrigues, Viviane Drumond; Oliveira, Valéria Maia de; Ottoboni, Laura Maria Mariscal; Marsaioli, Anita Jocelyne

    Copper mine drainages are restricted environments that have been overlooked as sources of new biocatalysts for bioremediation and organic syntheses. Therefore, this study aimed to determine the enzymatic activities (esterase, epoxide hydrolase and monooxygenase) of 56 heterotrophic bacteria isolated from a neutral copper mine drainage (Sossego Mine, Canaã dos Carajás, Brazil). Hydrolase and monooxygenase activities were detected in 75% and 20% of the evaluated bacteria, respectively. Bacterial strains with good oxidative performance were also evaluated for biotransformation of organic sulfides. Fourteen strains with good enzymatic activity were identified by 16S rRNA gene sequencing, revealing the presence of three genera: Bacillus, Pseudomonas and Stenotrophomonas. The bacterial strains B. megaterium (SO5-4 and SO6-2) and Pseudomonas sp. (SO5-9) efficiently oxidized three different organic sulfides to their corresponding sulfoxides. In conclusion, this study revealed that neutral copper mine drainages are a promising source of biocatalysts for ester hydrolysis and sulfide oxidation/bioremediation. Furthermore, this is a novel biotechnological overview of the heterotrophic bacteria from a copper mine drainage, and this report may support further microbiological monitoring of this type of mine environment. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Unicellular cyanobacteria synechocystis accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Sageer, S.; Jasmin, C.; Vijayan, V.; Pavanan, P.; Athiyanathil, S.; Nair, S.

    was done with ABI PRISM BigDye terminator ready reaction mix (Life Technologies, USA). The cycle extension products were purified following ethanol/EDTA/sodium acetate precipitation. The products were analyzed on an Applied Biosystems ABI 3730�l DNA..., followed by cycle denaturation at 95 °C for 40 s, annealing at 54 °C for 40 s for cyanobacteria/55 °C for 40 s for heterotrophic bacteria, extension at 72 °C for 1.5min for a total of 30 cycles and a final extension for 10min at 72 °C. PCR products were...

  2. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae

    Directory of Open Access Journals (Sweden)

    Ana Patrícia Graça

    2015-05-01

    Full Text Available Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23 % to Actinobacteria and 19 % to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7 % were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and five days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I and nonribosomal peptide synthetases (NRPSs genes were detected in seventeen and thirty isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds.

  3. Microbial pollution indicators and culturable heterotrophic bacteria in a Mediterranean area (Southern Adriatic Sea Italian coasts)

    Science.gov (United States)

    Stabili, L.; Cavallo, R. A.

    2011-05-01

    In the present study we evaluated the degree of microbial water pollution along the coast line between Brindisi and Santa Maria di Leuca (Southern Adriatic Sea) as well as the culturable heterotrophic bacteria abundances and biodiversity in relation to the microbiological quality of the water. A total of 3773 colonies were isolated, subcultured and identified by several morphological, cultural and biochemical methods including the standardized API 20 E and API 20 NE tests. Along the examined coastal tract the microbial pollution indicators were always below the tolerance limits for bathing waters defined by the CEE directive, suggesting a good sanitary quality. Concerning culturable heterotrophic bacteria, different temporal density trends were observed in the four sites in relation to their geographical position. A positive relationship between the bacterial abundances and the temperature was observed in S. Cataldo and Otranto. The culturable bacterial community was mainly composed of the genera Aeromonas, Pseudomonas, Photobacterium and Flavobacterium. The Enterobacteriaceae family represented a conspicuous component of the bacterial community too. Bacilli were predominant among the Gram-positive bacteria. Of interest is the isolation of yeasts (2% at the surface and 1% at the bottom) taking into account their capability of biodegradation of various materials. Because of the low level of microbial pollution recorded, our results are indicative of the natural variation and diversity of the culturable bacterial community in such an oligotrophic ecosystem and could represent a good point of comparison with other ecosystems as well as a baseline for long term studies aimed to evaluate the effects of environmental fluctuations and human impacts on this aspect of biodiversity in coastal areas.

  4. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria

    Science.gov (United States)

    Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.

    2009-09-01

    Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.

  5. Influence of river discharge on abundance and dissemination of heterotrophic, indicator and pathogenic bacteria along the East Coast of India.

    Science.gov (United States)

    Prasad, V R; Srinivas, T N R; Sarma, V V S S

    2015-06-15

    In order to examine the influence of discharge from different rivers from peninsular India and urban sewage on intensity and dissemination of heterotrophic, indicator and pathogenic bacteria, a study was carried out during peak discharge period along coastal Bay of Bengal. The coastal Bay received freshwater inputs from the river Ganges while Godavari and Krishna contributed to the south. Contrasting difference in salinity, temperature, nutrients and organic matter was observed between north and south east coast of India. The highest heterotrophic, indicator and pathogenic bacterial abundance was observed in the central coastal Bay that received urban sewage from the major city. Intensity and dissemination of heterotrophic, indicator and pathogenic bacteria displayed linear relation with magnitude of discharge. The coliform load was observed up to 100km from the coast suggesting that marine waters were polluted during the monsoon season and its impact on the ecosystem needs further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Massive Regime Shifts and High Activity of Heterotrophic Bacteria in an Ice-Covered Lake

    Science.gov (United States)

    Bižić-Ionescu, Mina; Amann, Rudolf; Grossart, Hans-Peter

    2014-01-01

    In winter 2009/10, a sudden under-ice bloom of heterotrophic bacteria occurred in the seasonally ice-covered, temperate, deep, oligotrophic Lake Stechlin (Germany). Extraordinarily high bacterial abundance and biomass were fueled by the breakdown of a massive bloom of Aphanizomenon flos-aquae after ice formation. A reduction in light resulting from snow coverage exerted a pronounced physiological stress on the cyanobacteria. Consequently, these were rapidly colonized, leading to a sudden proliferation of attached and subsequently of free-living heterotrophic bacteria. Total bacterial protein production reached 201 µg C L−1 d−1, ca. five times higher than spring-peak values that year. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis at high temporal resolution showed pronounced changes in bacterial community structure coinciding with changes in the physiology of the cyanobacteria. Pyrosequencing of 16S rRNA genes revealed that during breakdown of the cyanobacterial population, the diversity of attached and free-living bacterial communities were reduced to a few dominant families. Some of these were not detectable during the early stages of the cyanobacterial bloom indicating that only specific, well adapted bacterial communities can colonize senescent cyanobacteria. Our study suggests that in winter, unlike commonly postulated, carbon rather than temperature is the limiting factor for bacterial growth. Frequent phytoplankton blooms in ice-covered systems highlight the need for year-round studies of aquatic ecosystems including the winter season to correctly understand element and energy cycling through aquatic food webs, particularly the microbial loop. On a global scale, such knowledge is required to determine climate change induced alterations in carbon budgets in polar and temperate aquatic systems. PMID:25419654

  7. Automated measurement and quantification of heterotrophic bacteria in water samples based on the MPN method.

    Science.gov (United States)

    Fuchsluger, C; Preims, M; Fritz, I

    2011-01-01

    Quantification of heterotrophic bacteria is a widely used measure for water analysis. Especially in terms of drinking water analysis, testing for microorganisms is strictly regulated by the European Drinking Water Directive, including quality criteria and detection limits. The quantification procedure presented in this study is based on the most probable number (MPN) method, which was adapted to comply with the need for a quick and easy screening tool for different kinds of water samples as well as varying microbial loads. Replacing tubes with 24-well titer plates for cultivation of bacteria drastically reduces the amount of culture media and also simplifies incubation. Automated photometric measurement of turbidity instead of visual evaluation of bacterial growth avoids misinterpretation by operators. Definition of a threshold ensures definite and user-independent determination of microbial growth. Calculation of the MPN itself is done using a program provided by the US Food and Drug Administration (FDA). For evaluation of the method, real water samples of different origins as well as pure cultures of bacteria were analyzed in parallel with the conventional plating methods. Thus, the procedure described requires less preparation time, reduces costs and ensures both stable and reliable results for water samples.

  8. A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions.

    Science.gov (United States)

    Ronholm, J; Schumann, D; Sapers, H M; Izawa, M; Applin, D; Berg, B; Mann, P; Vali, H; Flemming, R L; Cloutis, E A; Whyte, L G

    2014-11-01

    Precipitation of calcium carbonate (CaCO3(s) ) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro-organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high-resolution transmission electron microscopy, and micro-X-ray diffraction (μ-XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid-like epitaxial plates, rhomboid-like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by μ-XRD, and calcite and aragonite were also identified based on TEM lattice-fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal-encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying

  9. The abundance and diversity of heterotrophic bacteria as a function of harvesting frequency of duckweed (Lemna minor L.) in recirculating aquaculture systems.

    Science.gov (United States)

    Ardiansyah, A; Fotedar, R

    2016-07-01

    Duckweed (Lemna minor L.) is a potential biofilter for nutrient removal and acts as a substrate for heterotrophic bacteria in recirculating aquaculture systems (RAS). Here, we determined the effects of harvesting frequency of duckweed on heterotrophic bacteria in RAS. Twelve independent RAS consisting of fish-rearing tank, biofilter tank and waste-collection tank were used to study the interactions between duckweed harvest frequencies up to 6 days and the composition, abundance and diversity of heterotrophic bacteria. After 36 days, heterotrophic bacteria in the biofilter tank were primarily Gram-negative cocci or ovoid, coccobacilli, Gram-negative bacilli and Gram-positive bacilli. Most bacterial genera were Bacillus and Pseudomonas while the least common was Acinetobacter. Duckweed harvested after every 2 days produced the highest specific growth rates (SGR) and total harvested biomass of duckweed, but harboured less abundant bacteria, whereas 6-day harvests had a higher growth index (GI) of duckweed than 2-day harvests, but caused a poor relationship between SGR and biomass harvest with the abundance and diversity of heterotrophic bacteria. Stronger correlations (R(2)  > 0·65) between duckweed SGR and biomass harvest with the heterotrophic bacteria diversity were observed at 4-day harvest frequency and the control. This study provides significant information on the interaction between the harvest frequency of duckweed and the composition, abundance and diversity of heterotrophic bacteria in recirculating aquaculture systems (RAS). Different harvest frequencies significantly influence the abundance and diversity of heterotrophic bacteria, which in turn may influence the nitrogen uptake efficiency of the system. The research is useful in improving the efficiency of removing nitrogenous metabolites in RAS directly by the duckweed and associated heterotrophic bacteria. © 2016 The Society for Applied Microbiology.

  10. Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp.

    Science.gov (United States)

    Dolinšek, Jan; Lagkouvardos, Ilias; Wanek, Wolfgang; Wagner, Michael; Daims, Holger

    2013-03-01

    Chemolithoautotrophic nitrifying bacteria release soluble organic compounds, which can be substrates for heterotrophic microorganisms. The identities of these heterotrophs and the specificities of their interactions with nitrifiers are largely unknown. In this study, we incubated nitrifying activated sludge with (13)C-labeled bicarbonate and used stable isotope probing of 16S rRNA to monitor the flow of carbon from uncultured nitrifiers to heterotrophs. To facilitate the identification of heterotrophs, the abundant 16S rRNA molecules from nitrifiers were depleted by catalytic oligonucleotides containing locked nucleic acids (LNAzymes), which specifically cut the 16S rRNA of defined target organisms. Among the (13)C-labeled heterotrophs were organisms remotely related to Micavibrio, a microbial predator of Gram-negative bacteria. Fluorescence in situ hybridization revealed a close spatial association of these organisms with microcolonies of nitrite-oxidizing sublineage I Nitrospira in sludge flocs. The high specificity of this interaction was confirmed by confocal microscopy and a novel image analysis method to quantify the localization patterns of biofilm microorganisms in three-dimensional (3-D) space. Other isotope-labeled bacteria, which were affiliated with Thermomonas, colocalized less frequently with nitrifiers and thus were commensals or saprophytes rather than specific symbionts or predators. These results suggest that Nitrospira spp. are subject to bacterial predation, which may influence the abundance and diversity of these nitrite oxidizers and the stability of nitrification in engineered and natural ecosystems. In silico screening of published next-generation sequencing data sets revealed a broad environmental distribution of the uncultured Micavibrio-like lineage.

  11. Analysis the Existence of Heterotrophic Bacteria in Active Water Desalination Plant Output of Kashan City, Iran

    Directory of Open Access Journals (Sweden)

    Hosseindoost Gh. MSc,

    2015-12-01

    Full Text Available Aims One of the consequences of taking ground water into surface is changing its chemical quality, specially increasing the concentration of dissolved salts. This research was performed in order to analyze growth possibility of heterotrophic bacteria in the membrane of active desalination plants in Kashan City, Iran. Instrument & Methods This descriptive cross-sectional study was done on water output of 20 active desalination plants in 2013 in Kashan City, Iran and 200 specimens of input and output water was randomly extracted from desalination plants. Awareness and education level of system operators, filter changing intervals, HPC of input and output water and chlorine concentration of input and output water were measured and recorded. Obtained data were analyzed statistically with SPSS 18 software using one-way ANOVA, Chi-square, McNemar and one-sample T tests. Findings There was a significant relation between the interval time and output HPC level of the plants (p0.05. The mean concentration of chlorine in samples of 20 desalination plants was 0.76±0.44mg/l in input water and 0.64±0.52mg/l in output water (p>0.05. Level of awareness had significant relation with the output water pollution with HPC (p0.05. Conclusion The mean level of HPC

  12. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Science.gov (United States)

    Vander Schaaf, Nicole A.; Cunningham, Anna M. G.; Cluff, Brandon P.; Kraemer, CodyJo K.; Reeves, Chelsea L.; Riester, Carli J.; Slater, Lauren K.; Madigan, Michael T.; Sattley, W. Matthew

    2015-01-01

    The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m) are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes. PMID:27682095

  13. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  14. Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production

    Directory of Open Access Journals (Sweden)

    Mauro Tropeano

    2012-12-01

    Full Text Available Affiliations of the dominant culturable bacteria isolated from Potter Cove, South Shetland Islands, Antarctica, were investigated together with their production of cold-active hydrolytic enzymes. A total of 189 aerobic heterotrophic bacterial isolates were obtained at 4°C and sorted into 63 phylotypes based on their amplified ribosomal DNA restriction analysis profiles. The sequencing of the 16S rRNA genes of representatives from each phylotype showed that the isolates belong to the phyla Proteobacteria (classes Alpha- and Gamma-proteobacteria, Bacteroidetes (class Flavobacteria, Actinobacteria (class Actinobacteria and Firmicutes (class Bacilli. The predominant culturable group in the site studied belongs to the class Gammaproteobacteria, with 65 isolates affiliated to the genus Pseudoalteromonas and 58 to Psychrobacter. Among the 189 isolates screened, producers of amylases (9.5%, pectinases (22.8%, cellulases (14.8%, CM-cellulases (25.4%, xylanases (20.1% and proteases (44.4% were detected. More than 25% of the isolates produced at least one extracellular enzyme, with some of them producing up to six of the tested extracellular enzymatic activities. These results suggest that a high culturable bacterial diversity is present in Potter Cove and that this place represents a promising source of biomolecules.

  15. Seasonal variation in population density and heterotrophic activity of attached and free-living bacteria in coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Iriberri, J.; Unanue, M.; Barcina, I.; Egea, L.

    1987-10-01

    The abundance and heterotrophic activity of attached and free-living bacteria was examined seasonally in coastal water. Heterotrophic activity was determined by the uptake of (/sup 14/C)glucose. The density of attached bacteria was always minor, not showing a seasonal variation, whereas the free-living bacteria were more numerous and showed a marked seasonal variation, their density being higher under warmer conditions. The contribution of the attached bacteria to the total assimilation of (/sup 14/C)glucose was lower than that of the free-living bacteria, neither of them showing a seasonal variation. On a cellular basis, attached bacteria were more active, since they assimilated more (/sup 14/C)glucose and showed, under warmer conditions, a higher cellular volume. The authors consider that the factors responsible for these observations were the amount and quality of the particulate material, the different availability of organic matter for the two types of bacteria, and in a fundamental way, the variation in water temperature.

  16. Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the Indian Ocean

    Science.gov (United States)

    Shiozaki, Takuhei; Ijichi, Minoru; Kodama, Taketoshi; Takeda, Shigenobu; Furuya, Ken

    2014-10-01

    Diazotrophy in the Indian Ocean is poorly understood compared to that in the Atlantic and Pacific Oceans. We first examined the basin-scale community structure of diazotrophs and their nitrogen fixation activity within the euphotic zone during the northeast monsoon period along about 69°E from 17°N to 20°S in the oligotrophic Indian Ocean, where a shallow nitracline (49-59 m) prevailed widely and the sea surface temperature (SST) was above 25°C. Phosphate was detectable at the surface throughout the study area. The dissolved iron concentration and the ratio of iron to nitrate + nitrite at the surface were significantly higher in the Arabian Sea than in the equatorial and southern Indian Ocean. Nitrogen fixation in the Arabian Sea (24.6-47.1 μmolN m-2 d-1) was also significantly greater than that in the equatorial and southern Indian Ocean (6.27-16.6 μmolN m-2 d-1), indicating that iron could control diazotrophy in the Indian Ocean. Phylogenetic analysis of nifH showed that most diazotrophs belonged to the Proteobacteria and that cyanobacterial diazotrophs were absent in the study area except in the Arabian Sea. Furthermore, nitrogen fixation was not associated with light intensity throughout the study area. These results are consistent with nitrogen fixation in the Indian Ocean, being largely performed by heterotrophic bacteria and not by cyanobacteria. The low cyanobacterial diazotrophy was attributed to the shallow nitracline, which is rarely observed in the Pacific and Atlantic oligotrophic oceans. Because the shallower nitracline favored enhanced upward nitrate flux, the competitive advantage of cyanobacterial diazotrophs over nondiazotrophic phytoplankton was not as significant as it is in other oligotrophic oceans.

  17. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water.

    Science.gov (United States)

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2012-10-15

    Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A. aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni decreased over time, following a first order decay with half lives of 5.3, 18.4 and 1.3 days, respectively. A. aquaticus did not affect survival of indicators and pathogens substantially whereas HPC were influenced by presence of dead A. aquaticus. Growth rates increased with an average of 48% for bacteria grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were A. aquaticus associated heterotrophic bacteria (>1.8*10(4) CFU per living and >6*10(4) CFU per dead A. aquaticus). A. aquaticus did not serve as an optimised habitat that increased survival of indicators and pathogens, since A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were only measured as long as the bacteria were also present in the water and sediment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Biogeochemistry and Genetic Potential related to Denitrification of Heterotrophic Bacteria isolated from Lake Vida Cryobrine

    Science.gov (United States)

    Trubl, G.; Kuhn, E.; Ichimura, A.; Fritsen, C. H.; Murray, A. E.

    2012-12-01

    Lake Vida, one of the largest lakes in McMurdo Dry Valleys, Antarctica, is a thick block of ice permeated by brine channels below 16 m that contain the highest levels of nitrous oxide (N2O) that have been reported from a terrestrial environment (86.6 ± 5.9 μM). The subzero -13.4oC brine (18% salinity) has an unusual geochemistry with high levels of iron, dissolved organic carbon, nitrate, and ammonium. A number of heterotrophic bacteria were cultivated from this unusual, extreme ecosystem that has been isolated for at least three thousand years. The aim of this research was to phylogenetically characterize the bacterial isolates (using 16S ribosomal RNA analysis) and investigate their denitrifying abilities and genetic potential related to key reactions in the denitrification cycle. Fifteen phylotypes were isolated from Lake Vida brine among three phyla: Gammaproteobacteria, Actinobacteria, and Firmicutes. Based on the 16S ribosomal RNA analysis, Marinobacter was the most abundant (56%) genus identified among the 57 isolates. The other isolates were related to the genera Psychrobacter, Exiguobacterium, Kocuria, and Microbacterium. Representatives of each phylotype were characterized and verified for: (1) Nitrate (NO3-) reduction to either N2O or dinitrogen (N2) by Gas Chromatography; (2) presence of the genes nirK or nirS for NO3- reduction and nosZ for nitric oxide (NO) reduction by polymerase chain reaction (PCR); and (3) growth response to salinity and temperature gradients. Thirty five of the Lake Vida isolates produced either N2O or N2 coupled to cell growth. All 57 isolates have grown across a 32°C temperature range (-10°C to 22°C) and 54 isolates were halotolerant bacteria (growing in 0% to 16% salinity), while the last three isolates were halophilic. Electron microscopy revealed membrane vesicles and extracellular polymeric substances (EPS) around the Lake Vida isolates, which may be a survival adaptation. Investigating the denitrification and other

  19. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    Directory of Open Access Journals (Sweden)

    R. Thyrhaug

    2008-07-01

    Full Text Available The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2: 350 μatm (1×CO2, 700 μatm (2×CO2 and 1050 μatm (3×CO2. The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP of free-living and attached bacteria as well as cell-specific BPP (csBPP of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  20. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-Cyanobacteria consortia in the low-nitrogen Indian Ocean

    DEFF Research Database (Denmark)

    Farnelid, H.; Tarangkoon, Woraporn; Hansen, Gert

    2010-01-01

    that the symbionts fix gaseous nitrogen (N2). Individual heterotrophic dinoflagellates containing cyanobacterial symbionts were isolated from the open Indian Ocean and off Western Australia, and characterized using light microscopy, transmission electron microscopy (TEM), and nitrogenase (nifH) gene amplification......, cloning, and sequencing. Cyanobacteria, heterotrophic bacteria and eukaryotic algae were recognized as symbionts of the heterotrophic dinoflagellates. nifH gene sequences were obtained from 23 of 37 (62%) specimens of dinoflagellates (Ornithocercus spp. and Amphisolenia spp.). Interestingly, only 2...... specimens contained cyanobacterial nifH sequences, while 21 specimens contained nifH genes related to heterotrophic bacteria. Of the 137 nifH sequences obtained 68% were most similar to Alpha-, Beta-, and Gammaproteobacteria, 8% clustered with anaerobic bacteria, and 5% were related to second alternative...

  1. Gut bacteria mediate aggregation in the German cockroach

    Science.gov (United States)

    Wada-Katsumata, Ayako; Zurek, Ludek; Nalyanya, Godfrey; Roelofs, Wendell L.; Zhang, Aijun; Schal, Coby

    2015-01-01

    Aggregation of the German cockroach, Blattella germanica, is regulated by fecal aggregation agents (pheromones), including volatile carboxylic acids (VCAs). We demonstrate that the gut microbial community contributes to production of these semiochemicals. Chemical analysis of the fecal extract of B. germanica revealed 40 VCAs. Feces from axenic cockroaches (no microorganisms in the alimentary tract) lacked 12 major fecal VCAs, and 24 of the remaining compounds were represented at extremely low amounts. Olfactory and aggregation bioassays demonstrated that nymphs strongly preferred the extract of control feces over the fecal extract of axenic cockroaches. Additionally, nymphs preferred a synthetic blend of 6 fecal VCAs over a solvent control or a previously identified VCA blend. To test whether gut bacteria contribute to the production of fecal aggregation agents, fecal aerobic bacteria were cultured, isolated, and identified. Inoculation of axenic cockroaches with individual bacterial taxa significantly rescued the aggregation response to the fecal extract, and inoculation with a mix of six bacterial isolates was more effective than with single isolates. The results indicate that the commensal gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community. Our results highlight the pivotal role of gut bacteria in mediating insect–insect communication. Moreover, because the gut microbial community reflects the local environment, local plasticity in fecal aggregation pheromones enables colony-specific odors and fidelity to persistent aggregation sites. PMID:26644557

  2. Tracking heterotrophic and autotrophic carbon cycling by magnetotactic bacteria in freshwater sediments using DNA stable isotope probing

    Science.gov (United States)

    Kürşat Coşkun, Ömer; Roud, Sophie; He, Kuang; Petersen, Nikolai; Gilder, Stuart; Orsi, William D.

    2017-04-01

    Magnetotactic bacteria (MTB) are diverse, widespread, motile prokaryotes which biomineralize nanosize magnetic minerals, either magnetite or gregite, under highly conserved genetic control and have magnetotaxis to align their position in aquatic environment according to Earth's magnetic field. They play important roles on some geobiological cycle of important minerals such as iron, sulphur, nitrogen and carbon. Yet, to date, their importance in carbon cycle and carbon source in their natural environment have not been previously studied. In this study, we focused on freshwater benthic carbon cycling of MTB and total bacteria using DNA stable isotope probing (DNA-SIP) technique coupled with quantitative PCR (qPCR). Pond sediments from Unterlippach (Germany) were amended with 13C-labelled sodium bicarbonate and 13C-labelled organic matter, and incubated in the dark over a two week time period. Applying separate qPCR assays specific for total bacteria and MTB, respectively, allowed us to estimate the contribution of MTB to total heterotrophic and autotrophic carbon cycling via DNA-SIP. After one week, there was a slight degree of autotrophic activity which increased markedly after two weeks. Comparing total DNA to the qPCR data revealed that changes in the buoyant density of DNA was due mainly to autotrophic bacterial production. DNA-SIP also identified heterotrophic utilization of 13C-labelled organic matter by MTB after 1 week. The qPCR data also allowed us to estimate uptake rates based on the incubation times for heterotrophic and autotrophic MTB. High-throughput DNA sequencing of 16S rRNA genes showed that most of the MTB involved in carbon cycling were related to the Magnetococcus genus. This study sheds light on the carbon sources for MTB in a natural environment and helps unravel their ecological role in the carbon cycle.

  3. Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach

    Science.gov (United States)

    Podgórska, B.; Mudryk, Z. J.

    2003-03-01

    The potential capability to decompose macromolecular compounds, and the level of extracellular enzyme activities were determined in heterotrophic bacteria isolated from a sandy beach in Sopot on the Southern Baltic Sea coast. Individual isolates were capable of hydrolysing a wide spectrum of organic macromolecular compounds. Lipids, gelatine, and DNA were hydrolyzed most efficiently. Only a very small percentage of strains were able to decompose cellulose, and no pectinolytic bacteria were found. Except for starch-hydrolysis, no significant differences in the intensity of organic compound decomposition were recorded between horizontal and vertical profiles of the studied beach. Of all the studied extracellular enzymes, alkaline phosphatase, esterase lipase, and leucine acrylaminidase were most active; in contrast, the activity α-fucosidase, α-galactosidase and β-glucouronidase was the weakest. The level of extracellular enzyme activity was similar in both sand layers.

  4. Cultivable bacteria from bulk water, aggregates, and surface sediments of a tidal flat ecosystem

    Science.gov (United States)

    Stevens, Heike; Simon, Meinhard; Brinkhoff, Thorsten

    2009-04-01

    Most-probable-number (MPN) dilution series were used to enumerate and isolate bacteria from bulk water, suspended aggregates, the oxic layer, and the oxic-anoxic transition zone of the sediment of a tidal flat ecosystem in the southern North Sea. The heterotrophic aerobic bacteria were able to grow on agar-agar, alginate, cellulose, chitin, dried and ground Fucus vesiculosus, Marine Broth 2216, palmitate, and starch. MPN counts of bulk water and aggregate samples ranged between 0.18 × 101 and 1.1 × 106 cells per milliliter and those of the sediment surface and the transition zone between 0.8 × 101 and 5.1 × 107 cells per gram dry weight. Marine Broth and F. vesiculosus yielded the highest values of all substrates tested and corresponded to 2.3-32% of 4,6-diamidinophenyl indole cell counts. Strains of seven phylogenetic classes were obtained: Actinobacteria, Bacilli, α- and γ-Proteobacteria, Sphingobacteria, Flavobacteria, and Planctomycetacia. Only with agar-agar as substrate could organisms of all seven classes be isolated.

  5. Relatively high antibiotic resistance among heterotrophic bacteria from arctic fjord sediments than water - Evidence towards better selection pressure in the fjord sediments

    Science.gov (United States)

    Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.

    2015-12-01

    The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p coliform bacteria. Though the coliforms showed significantly high level of antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.

  6. The Biology of Heterotrophic N2-fixing Bacteria in Marine and Estuarine Waters

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel

    Biological nitrogen (N)2 fixation is of paramount importance for marine N cycling and for life in the oceans in general. It represents the sole mechanism by which microorganisms can channel inert atmospheric N2 gas into biomass and hence it may fuel a significant fraction of primary production...... cyanobacterial endosymbionts of diatoms, and recently also unicellular cyanobacteria, have been considered the dominant marine diazotrophs. However, phylogenetic analyses of the functional genes involved in N2 fixation seem to suggest that heterotrophic N2-fixing organisms are present and active in various...... marine systems as well. Their role and ecological significance is, however currently unknown. By combining in situ analyses of the distribution and activity of diazotrophs in various marine environments with culture-­based examinations of the potential of N2 fixation and its regulation in representative...

  7. Effects of Grazing by Flagellates on Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Soil Columns.

    Science.gov (United States)

    Verhagen, F J; Duyts, H; Laanbroek, H J

    1993-07-01

    The enhanced mineralization of immobilized nitrogen by bacteriophagous protozoa has been thought to favor the nitrification process in soils in which nitrifying bacteria must compete with heterotrophic bacteria for the available ammonium. To obtain more insight into this process, the influence of grazing by the flagellate Adriamonas peritocrescens on the competition for ammonium between the chemolithotrophic species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis in the presence of Nitrobacter winogradskyi was studied in soil columns, which were continuously percolated with media containing 5 mM ammonium and different amounts of glucose at a dilution rate of 0.007 h (liquid volumes). A. globiformis won the competition for ammonium. The grazing activities of the flagellates had two prominent effects on the competition between N. europaea and A. globiformis. First, the distribution of ammonium over the profile of the soil columns was more uniform in the presence of flagellates than in their absence. In the absence of flagellates, relatively high amounts of ammonium accumulated in the upper layer (0 to 3 cm), whereas in the underlying layers the ammonium concentrations were low. In the presence of flagellates, however, considerable amounts of ammonium were found in the lower layers, whereas less ammonium accumulated in the upper layer. Second, the potential ammonium-oxidizing activity of N. europaea was stimulated in the presence of flagellates. The numbers of N. europaea at different glucose concentrations in the presence of flagellates were comparable to those in the absence of protozoa. However, in the presence of flagellates, the potential ammonium-oxidizing activities were four to five times greater than those in the absence of protozoa.

  8. Nutrient Loading Impacts on Culturable E. coli and other Heterotrophic Bacteria Fate in Simulated Stream Mesocosms

    Science.gov (United States)

    Understanding fecal indicator bacteria persistence in aquatic environments is important when making management decisions to improve instream water quality. Routinely, bacteria fate and transport models that rely on published kinetic decay constants are used to inform such decision making. The object...

  9. Seasonal variations of virus- and nanoflagellate-mediated mortality of heterotrophic bacteria in the coastal ecosystem of subtropical western Pacific

    Directory of Open Access Journals (Sweden)

    A. Y. Tsai

    2013-05-01

    Full Text Available Since viral lysis and nanoflagellate grazing differ in their impact on the aquatic food web, it is important to assess the relative importance of both bacterial mortality factors. In this study, an adapted version of the modified dilution method was applied to simultaneously estimate the impact of both virus and nanoflagellate grazing on the mortality of heterotrophic bacteria. A series of experiments was conducted monthly from April to December 2011 and April to October 2012. The growth rates of bacteria we measured ranged from 0.078 h−1 (April 2011 to 0.42 h−1 (September 2011, indicating that temperature can be important in controlling the seasonal variations of bacterial growth. Furthermore, it appeared that seasonal changes in nanoflagellate grazing and viral lysis could account for 34% to 68% and 13% to 138% of the daily removal of bacterial production, respectively. We suggest that nanoflagellate grazing might play a key role in controlling bacterial biomass and might exceed the impact of viral lysis during the summer period (July to August because of the higher abundance of nanoflagellates at that time. Viral lysis, on the other hand, was identified as the main cause of bacterial mortality between September and December. Based on these findings in this study, the seasonal variations in bacterial abundance we observed can be explained by a scenario in which both growth rates and loss rates (grazing + viral lysis influence the dynamics of the bacteria community.

  10. EFFECTS OF LIGHT REDUCTION ON GROWTH OF THE SUBMERGED MACROPHYTE VALLISNERIA AMERICANA AND THE COMMUNITY OF ROOT-ASSOCIATED HETEROTROPHIC BACTERIA

    Science.gov (United States)

    A shading experiment was conducted over a growing season to measure the effects of light reduction on Vallisneria americana in Perdido Bay on the Florida-Alabama border, and to determine the response of heterotrophic bacteria in the rhizosphere. Plants subjected to 92% light redu...

  11. Densities, cellulases, alginate and pectin lyases of luminous and other heterotrophic bacteria associated with marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chandramohan, D.

    enzymes. No luminous bacteria examined produced cellulases, but both V. harveyi and V. fischeri strains produced substantial amounts of alginate and pectin lyases. In contrast, cellulase activities were pronounced in non-luminous vibrio, pseudomonad...

  12. Culturable heterotrophic bacteria from the euphotic zone of the Indian Ocean ocean during the summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    three orders of magnitude higher than VC. @iPseudomonas/Alteromonas@@ group 1 was dominant in both nearshore and offshore regions. Pigmented bacteria were more abundant in offshore stations and showed multiple antibiotic resistence. Statistically...

  13. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production.

    Science.gov (United States)

    Weiss, Taylor L; Young, Eric J; Ducat, Daniel C

    2017-10-20

    We previously reported that Synechococcus elongatus PCC 7942, engineered with the sucrose transporter CscB, can export up to 85% of its photosynthetically-fixed carbon as sucrose and shows considerable promise as an alternative carbohydrate source. One approach to effectively utilize this cyanobacterium is to generate synthetic, light-driven consortia in which sucrose-metabolizing heterotrophs catalyze the conversion of the low-value carbohydrate into higher-value compounds in co-culture. Here, we report an improved synthetic photoautotroph/chemoheterotroph consortial design in which sucrose secreted by S. elongatus CscB directly supports the bacterium Halomonas boliviensis, a natural producer of the bioplastic precursor, PHB. We show that alginate encapsulation of S. elongatus CscB enhances sucrose-export rates ~2-fold within 66h, to ~290mg sucrose L(-1)d(-1) OD750(-1) and enhances the co-culture stability. Consortial H. boliviensis accumulate up to 31% of their dry-weight as PHB, reaching productivities up to 28.3mg PHB L(-1)d(-1). This light-driven, alginate-partitioned co-culture platform achieves PHB productivities that match or exceed those of traditionally engineered cyanobacterial monocultures. Importantly, S. elongatus CscB/H. boliviensis co-cultures were continuously productive for over 5 months and resisted invasive microbial species without the application of antibiotics or other chemical selection agents. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Growth of heterotrophic bacteria and algal extracellular products in oligotrophic waters.

    Science.gov (United States)

    McFeters, G A; Stuart, S A; Olson, S B

    1978-02-01

    The unexpected observation of 200 to 400 coliform bacteria per 100 ml in an unpolluted pristine stream was studied within Grand Teton National Park, Wyo. The high numbers of waterborne bacteria occurred in mid- to late summer at a location where there was a coincidental bloom of an algal mat community. Periphyton samplers were used to measure the algal growth that coincided with the increase in number of bacteria. Laboratory studies followed the growth of various coliform bacteria in the supernatant obtained from a Chlorella culture isolated from the mat community. Mixed natural bacterial populations from the stream and pure cultures of water-isolated fecal and nonfecal coliforms increased by two to three orders of magnitude at 13 degrees C when grown in the algal supernatant. Radioactive algal products were obtained by feeding an axenic Chlorella culture C-labeled bicarbonate under laboratory cultivation at 13 degrees C with illumination. Radioactive organic material from the algae became incorporated into the particulate fraction of pure cultures of coliform bacteria as they reproduced and was later released as they died.

  15. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR.

    Science.gov (United States)

    Chen, Qian; Ni, Jinren; Ma, Tao; Liu, Tang; Zheng, Maosheng

    2015-05-01

    PCN bacteria capable of heterotrophic-aerobic nitrogen removal was successfully applied for bioaugmented treatment of municipal wastewater in a pilot-scale SBR. At an appropriate COD/N ratio of 8, the bioaugmentation system exhibited stable and excellent carbon and nutrients removal, the averaged effluent concentrations of COD, NH4(+)-N, TN and TP were 20.6, 0.69, 14.1 and 0.40 mg/L, respectively, which could meet the first class requirement of the National Municipal Wastewater Discharge Standards of China (COD<50 mg/L, TN<15 mg/L, TP<0.5 mg/L). Clone library and real-time PCR analysis revealed that the introduced bacteria greatly improved the structure of original microbial community and facilitated their aerobic nutrients removal capacities. The proposed emerging technology was shown to be an alternative technology to establish new wastewater treatment systems and upgrade or retrofit conventional systems from secondary-level to tertiary-level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cycling of DOC and DON by Novel Heterotrophic and Photoheterotrophic Bacteria in the Ocean: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, David L. [Univ. of Delaware, Newark, DE (United States)

    2008-12-09

    The flux of dissolved organic matter (DOM) through aquatic bacterial communities is a major process in carbon cycling in the oceans and other aquatic systems. Our work addressed the general hypothesis that the phylogenetic make-up of bacterial communities and the abundances of key types of bacteria are important factors influencing the processing of DOM in aquatic ecosystems. Since most bacteria are not easily cultivated, the phylogenetic diversity of these microbes has to be assessed using culture-independent approaches. Even if the relevant bacteria were cultivated, their activity in the lab would likely differ from that under environmental conditions. This project found variation in DOM uptake by the major bacterial groups found in coastal waters. In brief, the data suggest substantial differences among groups in the use of high and molecular weight DOM components. It also made key discoveries about the role of light in affecting this uptake especially by cyanobacteria. In the North Atlantic Ocean, for example, over half of the light-stimulated uptake was by the coccoid cyanobacterium, Prochlorococcus, with the remaining uptake due to Synechococcus and other photoheterotrophic bacteria. The project also examined in detail the degradation of one organic matter component, chitin, which is often said to be the second most abundant compound in the biosphere. The findings of this project contribute to our understanding of DOM fluxes and microbial dynamics supported by those fluxes. It is possible that these findings will lead to improvements in models of the carbon cycle that have compartments for dissolved organic carbon (DOC), the largest pool of organic carbon in the oceans.

  17. Biodiversity of aerobic heterotrophic bacteria from Baron beach, Gunung Kidul, Yogyakarta

    Directory of Open Access Journals (Sweden)

    AGUS IRIANTO

    2003-07-01

    Full Text Available Baron beach is a specific habitat due its characteristic as a narrow beach with outlet of sub-surface rivers. This research had been done in order to know its microbial characteristic. Research used survey method and bacterial identification was done based on comparative description. The research showed that during high tide of seawater, the total bacterial count was 1.0 to 6.0 x 107 cfu/ml on NA and 2.0 to 7.0 x 107 cfu/ml on NA+0.5% NaCl. Furthermore, during the low tide of sea water, the total bacterial count was 1.4 to 8.8 x 108 cfu/ml on NA, and 3.2 to 9.0 106 cfu/ml on NA+0,5% NaCl. This study found 14 genera of bacteria and dominated by Gram-negative bacteria. The result indicated seawater influenced the number of bacteria present in this environment.

  18. Responses of heterotrophic bacteria abundance and activity to Asian dust enrichment in the low nutrients and low chlorophyll (LNLC) region of the Northwestern Pacific Ocean

    Science.gov (United States)

    Shi, Dongwan; Li, Kuiran; Tian, Yanzhao; Zhang, Xiaohao; Bai, Jie

    2017-05-01

    Bacteria, as an essential part of microbial food web, play a significant role in the marine ecosystem. Dust deposits into the surface ocean carrying with vital nutrient such as Inorganic nitrogen and phosphorus etc., which has an important influence on the life activities of heterotrophic bacteria. The microcosm experiments with Asian dust deposition was carried out on board in the station K3 (26.18°N, 136.73°E) in April 2015, aiming to estimate the impact of dust deposition on the oligotrophic Northwestern pacific Sea, the main goal of the present paper was to assess how dust deposition events affect the abundance and activity of heterotrophic bacteria in low nutrient and low chlorophyll (LNLC) sea area. Station K3 located in the central northwestern Pacific Ocean, which has the characteristic of low nutrient and low chlorophyll. The study shows that there was an N-P co-limitation in station K3, and the deposition of Asian dust can increase the abundance, and promote the activity of heterotrophic bacteria in the station K3.

  19. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study.

    Science.gov (United States)

    Landa, M; Cottrell, M T; Kirchman, D L; Kaiser, K; Medeiros, P M; Tremblay, L; Batailler, N; Caparros, J; Catala, P; Escoubeyrou, K; Oriol, L; Blain, S; Obernosterer, I

    2014-06-01

    Dissolved organic matter (DOM) and heterotrophic bacteria are highly diverse components of the ocean system, and their interactions are key in regulating the biogeochemical cycles of major elements. How chemical and phylogenetic diversity are linked remains largely unexplored to date. To investigate interactions between bacterial diversity and DOM, we followed the response of natural bacterial communities to two sources of phytoplankton-derived DOM over six bacterial generation times in continuous cultures. Analyses of total hydrolysable neutral sugars and amino acids, and ultrahigh resolution mass spectrometry revealed large differences in the chemical composition of the two DOM sources. According to 454 pyrosequences of 16S ribosomal ribonucleic acid genes, diatom-derived DOM sustained higher levels of bacterial richness, evenness and phylogenetic diversity than cyanobacteria-derived DOM. These distinct community structures were, however, not associated with specific taxa. Grazing pressure affected bacterial community composition without changing the overall pattern of bacterial diversity levels set by DOM. Our results demonstrate that resource composition can shape several facets of bacterial diversity without influencing the phylogenetic composition of bacterial communities, suggesting functional redundancy at different taxonomic levels for the degradation of phytoplankton-derived DOM. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    Directory of Open Access Journals (Sweden)

    Dey Satarupa

    2013-01-01

    Full Text Available Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gramnegative (58% bacteria. The phenotypically distinguishable bacterial isolates (130 showed wide degree of tolerance to chromium (2-8 mM when tested in peptone yeast extract glucose agar medium. Isolates (92 tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6-17.8 mM, the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate.

  1. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria

    Science.gov (United States)

    Liu, Lin; Choi, Seokheun

    2017-04-01

    Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.

  2. Competition for Ammonium between Plant-Roots and Nitrifying and Heterotrophic Bacteria and the Effects of Protozoan Grazing

    NARCIS (Netherlands)

    Verhagen, F.J.M.; Laanbroek, H.J.; Woldendorp, J.W.

    1995-01-01

    The competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea, the heterotrophic species Arthrobacter globiformis and roots of Plantago lanceolata (Ribwort plantain) was studied in a series of model systems of increasing complexity,

  3. Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria.

    Science.gov (United States)

    Qin, Wen; Li, Wei-Guang; Zhang, Duo-Ying; Huang, Xiao-Fei; Song, Yang

    2016-03-01

    We sought to confirm whether use of Acinetobacter strains Y7 and Y16, both strains of heterotrophic nitrifying bacteria, was practical for removing ammonium (NH4 (+)-N) from drinking water at low temperatures. To test this, ammonium-containing drinking water was treated with strains Y7 and Y16 at 8 and 2 °C. Continuous ammonium treatment was conducted in order to evaluate the performance of three biologically enhanced activated carbon (BEAC) filters in removing ammonium. The three BEAC filters were inoculated with strain Y7, strain Y16, and a mixture of strains Y7 and Y16, respectively. A granular activated carbon (GAC) filter, without inoculation by any strains, was tested in parallel with the BEAC filters as control. The results indicated that NH4 (+)-N removal was significant when a BEAC filter was inoculated with the mixture of strains Y7 and Y16 (BEAC-III filter). Amounts of 0.44 ± 0.05 and 0.25 ± 0.05 mg L(-1) NH4 (+)-N were removed using the BEAC-III filter at 8 and 2 °C, respectively. These values were 2.8-4.0-fold higher than the values of ammonium removal acquired using the GAC filter. The synergistic effect of using strains Y7 and Y16 in concert was the cause of the high-ammonium removal efficiency achieved by using the BEAC-III filter at low temperatures. In addition, a high C/N ratio may promote NH4 (+)-N removal efficiency by improving biomass and microbial activity. This study provides new insight into the use of biofilters to achieve biological removal of ammonium at low temperature.

  4. Platelet Activation by Streptococcus pyogenes Leads to Entrapment in Platelet Aggregates, from Which Bacteria Subsequently Escape

    Science.gov (United States)

    Svensson, Lisbeth; Baumgarten, Maria; Mörgelin, Matthias

    2014-01-01

    Platelet activation and aggregation have been reported to occur in response to a number of Gram-positive pathogens. Here, we show that platelet aggregates induced by Streptococcus pyogenes were unstable and that viable bacteria escaped from the aggregates over time. This was not due to differential activation in response to the bacteria compared with physiological activators. All the bacterial isolates induced significant platelet activation, including integrin activation and alpha and dense-granule release, at levels equivalent to those induced by potent physiological platelet activators that induced stable aggregates. The ability to escape the aggregates and to resist the antibacterial effects of platelets was dependent on active protein synthesis by the bacteria within the aggregate. We conclude that S. pyogenes bacteria can temporarily cover themselves with activated platelets, and we propose that this may facilitate survival of the bacteria in the presence of platelets. PMID:25069984

  5. The Sterilization Effect of Cooperative Treatment of High Voltage Electrostatic Field and Variable Frequency Pulsed Electromagnetic Field on Heterotrophic Bacteria in Circulating Cooling Water

    Science.gov (United States)

    Gao, Xuetong; Liu, Zhian; Zhao, Judong

    2018-01-01

    Compared to other treatment of industrial circulating cooling water in the field of industrial water treatment, high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization technology, an advanced technology, is widely used because of its special characteristics--low energy consumption, nonpoisonous and environmentally friendly. In order to get a better cooling water sterilization effect under the premise of not polluting the environment, some experiments about sterilization of heterotrophic bacteria in industrial circulating cooling water by cooperative treatment of high voltage electrostatic field and variable frequency pulsed electromagnetic field were carried out. The comparison experiment on the sterilization effect of high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization on heterotrophic bacteria in industrial circulating cooling water was carried out by change electric field strength and pulse frequency. The results show that the bactericidal rate is selective to the frequency and output voltage, and the heterotrophic bacterium can only kill under the condition of sweep frequency range and output voltage. When the voltage of the high voltage power supply is 4000V, the pulse frequency is 1000Hz and the water temperature is 30°C, the sterilization rate is 48.7%, the sterilization rate is over 90%. Results of this study have important guiding significance for future application of magnetic field sterilization.

  6. Temporal changes in community composition of heterotrophic bacteria during in situ iron enrichment in the western subarctic Pacific (SEEDS-II)

    Science.gov (United States)

    Kataoka, Takafumi; Suzuki, Koji; Hayakawa, Maki; Kudo, Isao; Higashi, Seigo; Tsuda, Atsushi

    2009-12-01

    Little is known about the effects of iron enrichment in high-nitrate low-chlorophyll (HNLC) waters on the community composition of heterotrophic bacteria, which are crucial to nutrient recycling and microbial food webs. Using denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments, we investigated the heterotrophic eubacterial community composition in surface waters during an in situ iron-enrichment experiment (SEEDS-II) in the western subarctic Pacific in the summer of 2004. DGGE fingerprints representing the community composition of eubacteria differed inside and outside the iron-enriched patch. Sequencing of DGGE bands revealed that at least five phylotypes of α-proteobacteria including Roseobacter, Cytophaga-Flavobacteria- Bacteroides (CFB), γ-proteobacteria, and Actinobacteria occurred in almost all samples from the iron-enriched patch. Diatoms did not bloom during SEEDS-II, but the eubacterial composition in the iron-enriched patch was similar to that in diatom blooms observed previously. Although dissolved organic carbon (DOC) accumulation was not detected in surface waters during SEEDS-II, growth of the Roseobacter clade might have been particularly stimulated after iron additions. Two identified phylotypes of CFB were closely related to the genus Saprospira, whose algicidal activity might degrade the phytoplankton assemblages increased by iron enrichment. These results suggest that the responses of heterotrophic bacteria to iron enrichment could differ among phylotypes during SEEDS-II.

  7. Olivine dissolution in the presence of heterotrophic bacteria (Pseudomonas reactants) extracted from Icelandic groundwater of the CO2 injection pilot site

    Science.gov (United States)

    Shirokova, Liudmila; Pokrovsky, Oleg; Benezeth, Pascale; Gerard, Emmanuelle; Menez, Benedicte; Alfredsson, Helgi

    2010-05-01

    This work is aimed at experimental modeling of the effect of heterotrophic bacteria on dissolution of important rock-forming mineral, olivine, at the conditions of CO2 storage and sequestration. Heterotrophic aerobic gram-negative bacteria were extracted from deep underground water (HK31, 1700 m deep and, t = 25-30°C) of basaltic aquifer located within the Hellisheidi CO2 injection pilot site (Iceland). Following this sampling, we separated, using culture on nutrient agar plates, four different groups of gram-negative aerobic bacteria. The enzymatic activity of studied species has been evaluated using Biolog Ecoplates and their genetic identification was performed using 18-S RNA analysis. The optimal growth conditions of bacteria on Brain Hearth Broth nutrient have been determined as 5 to 37°C and growth media pH varied from 7.0-8.2. Culturing experiments allowed determining the optimal physico-chemical conditions for bacteria experiments in the presence of basic Ca, Mg-containing silicates. Olivine (Fo92) was chosen as typical mineral of basalt, widely considered in carbon dioxide sequestration mechanisms. Dissolution experiments were performed in constant-pH (7 to 9), bicarbonate-buffered (0.001 to 0.05 M) nutrient-diluted media in batch reactors at 0-30 bars of CO2 in the presence of various biomass of Pseudomonas reactants. The release rate of magnesium, silica and iron was measured as a function of time in the presence of live, actively growing, dead (autoclaved or glutaraldehyde-treated) cells and bacteria exometabolites. Both nutrient media diluted 10 times (to 100 mg DOC/L) and inert electrolyte (NaCl, no DOC) were used. Our preliminary results indicate that the pH and dissolved organic matter are the first-order parameters that control the element release from olivine at far from equilibrium conditions. The SEM investigation of reacted surfaces reveal formation of surface roughness with much stronger mineral alteration in the presence of live bacteria

  8. Protein aggregation in bacteria: the thin boundary between functionality and toxicity.

    Science.gov (United States)

    Bednarska, Natalia G; Schymkowitz, Joost; Rousseau, Frederic; Van Eldere, Johan

    2013-09-01

    Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and type II diabetes--all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides--all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.

  9. Seasonal-related effects on ammonium removal in activated carbon filter biologically enhanced by heterotrophic nitrifying bacteria for drinking water treatment.

    Science.gov (United States)

    Qin, Wen; Li, Wei-Guang; Gong, Xu-Jin; Huang, Xiao-Fei; Fan, Wen-Biao; Zhang, Duoying; Yao, Peng; Wang, Xiao-Ju; Song, Yang

    2017-08-01

    To determine the potential effects of seasonal changes on water temperature and water quality upon removal of ammonium and organic carbon pollutants and to characterize the variations in microbial characteristics, a pilot-scale activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria was investigated for 528 days. The results show that 69.2 ± 28.6% of ammonium and 23.1 ± 11.6% of the dissolved organic carbon were removed by the biologically enhanced activated carbon (BEAC) reactor. It is shown that higher biodegradable dissolved organic carbon enhances ammonium removal, even at low temperatures. The C/N ratio consumed by the BEAC reactor reached a steady value (i.e., 3.3) after 2 months of operation. Despite seasonal fluctuations and competition of the indigenous community, the heterotrophic nitrifying bacteria (Acinetobacter sp. HRBLi 16 and Acinetobacter harbinensis strain HITLi 7) remained relatively stable. The amount of carbon source was the most significant environmental parameter and dramatically affected the microbial community compositions in the BEAC reactor. The present study provides new insights into the application of a BEAC reactor for ammonium removal from drinking water, resisting strong seasonal changes.

  10. Agglutination of bacteria using poyvalent nanoparticles of aggregation-induced emissive thiophthalonitrile dyes

    NARCIS (Netherlands)

    Schmidt, B.; Sankaran, S.; Stegemann, L.; Strassert, C.A.; Jonkheijm, Pascal; Voskuhl, Jens

    2016-01-01

    A novel class of aggregation-induced emissive bis(phenylthio)phthalonitrile dyes were synthesized. These dyes assembled into nanoparticles that were equipped with mannose units. The nanoparticles underwent selective interactions with lectins and bacteria. The bright fluorescent aggregates aid in the

  11. Absorption and dichroism spectra of cylindrical J aggregates and chlorosomes of green bacteria

    NARCIS (Netherlands)

    Didraga, Cătălin; Knoester, Jasper

    We study the absorption and linear and circular dichroism spectra of molecular aggregates having the shape of a cylinder. Examples are the chlorosomes of green bacteria and recently synthesized cyanine J aggregates, called amphipipes. We use a Frenkel exciton model and exploit the cylinder symmetry

  12. Storage induced changes in coliform, heterotrophic groups of bacteria and nutrient levels of human urine for its safe use in biological production.

    Science.gov (United States)

    Jana, B B; Lahiri, Susmita; Sarkar, D; Rana, Sukanta; Bhakta, J N; Paul, Dipak

    2016-08-01

    Human urine is a potential source of various nutrients, minerals and trace elements. Its use as a fertilizer is growing popular among farmers. Here, we examined the pattern of changes in the counts of coliform, heterotrophic bacteria as well as physico-chemical characteristics of human urine during different days of storage under closed conditions at ambient temperature. We observed that after 253 days of storage under closed condition, the coliform counts were reduced significantly and remained within the safe limit to be used as fertilizer. With increase in storage period, the concentration of phosphate showed decline coupled with rise in pH, alkalinity and electrical conductance. Our study revealed that human urine can be used as safe fertilizer after 8 months of storage under closed conditions at ambient temperature ranging 25-35ºC.

  13. Macroalgal blooms favor heterotrophic diazotrophic bacteria in nitrogen-rich and phosphorus-limited coastal surface waters in the Yellow Sea

    Science.gov (United States)

    Zhang, Xiaoli; Song, Yanjing; Liu, Dongyan; Keesing, John K.; Gong, Jun

    2015-09-01

    Macroalgal blooms may lead to dramatic changes in physicochemical variables and biogeochemical cycling in affected waters. However, little is known about the effects of macroalgal blooms on marine bacteria, especially those functioning in nutrient cycles. We measured environmental factors and investigated bacterial diazotrophs in two niches, surface waters that were covered (CC) and non-covered (CF) with massive macroalgal canopies of Ulva prolifera, in the Yellow Sea in the summer of 2011 using real-time PCR and clone library analysis of nifH genes. We found that heterotrophic diazotrophs (Gammaproteobacteria) dominated the communities and were mostly represented by Vibrio-related phylotypes in both CC and CF. Desulfovibrio-related phylotypes were only detected in CC. There were significant differences in community composition in these two environments (p microbiological mechanisms behind this scenario are discussed.

  14. A decadal (2002-2014 analysis for dynamics of heterotrophic bacteria in an Antarctic coastal ecosystem: variability and physical and biogeochemical forcings

    Directory of Open Access Journals (Sweden)

    Hyewon Kim

    2016-11-01

    Full Text Available We investigated the dynamics of heterotrophic bacteria in the coastal western Antarctic Peninsula (WAP, using decadal (2002-2014 time series of two bacterial variables, bacterial production (BP via 3H-leucine incorporation rates and bacterial biomass (BB via bacterial abundance, collected at Palmer Antarctica Long Term Ecological Research (LTER Station B (64.8°S, 64.1°W over a full austral growing season (October-March. Strong seasonal and interannual variability in the degree of bacterial coupling with phytoplankton processes were observed with varying lags. On average, BP was only 4% of primary production (PP, consistent with low BP:PP ratios observed in polar waters. BP was more strongly correlated with chlorophyll (Chl, than with PP, implying that bacteria feed on DOC produced from a variety of trophic levels (e.g. zooplankton sloppy feeding and excretion as well as directly on phytoplankton-derived DOC. The degree of bottom-up control on bacterial abundance was moderate and relatively consistent across entire growing seasons, suggesting that bacteria in the coastal WAP are under consistent DOC limitation. Temperature also influenced BP rates, though its effect was weaker than DOC. We established generalized linear models (GLMs for monthly composites of BP and BB via stepwise regression to explore a set of physical and biogeochemical predictors. Physically, high BP and large BB were shaped by a stratified water-column, similar to forcing mechanisms favoring phytoplankton blooms, but high sea surface temperature (SST also significantly promoted bacterial processes. High BP and large BB were influenced by high PP and bulk DOC concentrations. Based on these findings, we suggest an increasingly important role of marine heterotrophic bacteria in the coastal WAP food-web as climate change introduces a more favorable environmental setting for promoting BP, with increased DOC from retreating glaciers, a more stabilized upper water-column from ice

  15. Phylogenetic assessment of heterotrophic bacteria from a water distribution system using 16S rDNA sequencing

    National Research Council Canada - National Science Library

    Tokajian, Sima T; Hashwa, Fuad A; Hancock, Ian C; Zalloua, Pierre A

    2005-01-01

    .... The present study had to use phylogenetic analysis, which was simplified by determining and using the first 500-bp sequence of the 16S rDNA, to successfully identify the type and species of bacteria...

  16. Investigation of Heterotrophic Bacteria, Legionella and Free-Living Amoeba in Cooling Tower Samples by FISH and Culture Methods

    OpenAIRE

    Zeybek, Zuhal; Dogruoz Gungor, Nihal; Turetgen, Irfan

    2018-01-01

    Themicroorganisms living in the cooling towers water can affect both human healththrough inhalation of aerosolized water as well as industrial processes. Inorder to analyse such man-made water systems, microbiological tests that cangive results in a short time are needed. In this study, the presence ofheterotrophic bacteria, Legionella bacteria and free - living amoeba, FLA,including Acanthamoeba, in cooling-tower water and biofilm samples wereinvestigated using two different methods, fluores...

  17. Bacteria dialog with Santa Rosalia: Are aggregations of cosmopolitan bacteria mainly explained by habitat filtering or by ecological interactions?

    Science.gov (United States)

    Pascual-García, Alberto; Tamames, Javier; Bastolla, Ugo

    2014-12-04

    that may play a role in bacterial speciation. We hope that these results stimulate experimental verification of the putative cooperative interactions between cosmopolitan bacteria, and we suggest several groups of aggregated cosmopolitan bacteria that are interesting candidates for such an investigation.

  18. Polyphasic approach to characterize heterotrophic bacteria of biofilms and patina on walls of the Suburban Bath of the Herculaneum's archaeological excavations in Italy

    Science.gov (United States)

    Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.

    2012-04-01

    Built between the walls of Herculaneum excavations, one of the world's most important archaeological sites, and the sea in the early 1st cent. AD, the Suburban Bath is one of the best thermal complexes better preserved in ancient times. The entrance opens onto a large courtyard that leads into a hallway well lit by a skylight, impluvium, with a portrait of "Apollo". From this room you can access various parts of the thermae, all beautifully preserved. A single room, mostly occupied by the pool, serving both apodyterium (dressing room) that frigidarium. Among tepidarium and frigidarium there's a room elegantly decorated with stucco and marble. The vestibule opens to the right, through a corridor, onto a waiting room with a floor in signinum opus and into a praefurnium (oven for heating). A large pool of tepidarium, connected with laconicum, a small circular room for the baths sweat, is also present. The calidarium, as usual, has a small tank for hot water and a basin for washing in cold water. Behind the calidarium is the praefurnium, an environment with the boiler for heating the bath. Although the suburban baths are well preserved, unfortunately in you can observe the development of visible microbial coatings. During the biodeterioration process, secondary colonization of wall is due to heterotrophic bacteria and fungi that induce deterioration cause structural as well as aesthetic damage such as the discoloration of materials, the formation of crusts on surfaces and the loss of material. This investigation was carried out sampling the surfaces of walls of different rooms in the Suburban Thermae according to Italian legal procedures. Depending on the samples typology, sampling was carry out using sterile nitrocellulose membranes pressed on the surface of the walls, sterile swabs or with sterile tweezers by tearing out surface material. The samples were suspended in physiological solution and immediately refrigerated until analysis. Isolated colonies grown on PCA

  19. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres.

    Science.gov (United States)

    Bajaj, Mini; Winter, Josef

    2014-11-26

    Selenium and Tellurium have many common chemical properties as both belong to group 16 of the periodic table. High toxicities of Se and Te oxyanions cause environmental problems in contaminated soils and waters. Three strains (C4, C6 and C7) of selenite reducing and nanoparticle forming aerobic bacteria which were isolated from agricultural soils of India containing high concentrations of Se were investigated after 3.5 months of freeze-storage for their resistance against the toxic oxyanion tellurite and its reduction to non toxic elemental form Te(0) as well as nanoparticles formation. Strains C4, C6 and C7 reduced tellurite at maximum reduction rates of 2.3, 1.5 and 2.1 mg Te (IV)/L/d, respectively and produced extracellular Te(0) nanospheres as revealed from SEM-EDX analysis. Production of extracellular Te nanospheres has been described seldom. Further, concurrent reduction of both selenite and tellurite by bacteria was examined as these toxic oxyanions are often present together in natural environments, mine tailings or wastewater from copper refining. Interestingly, bioreduction of 100 mg/L selenite in shake flasks was not much affected by the presence of 10 mg/L tellurite but tellurite reduction rate increased 13 fold with selenite in the medium. The concurrent reduction of these oxyanions resulted in rarely described bioformation of extracellular nanoparticles composed of both Se and Te, reported first time for aerobically growing heterotrophic non-halophilic bacterial cultures. Duganella violacienigra, the closely related strain to C4 was also found to be resistant to oxyanions of Se and Te. Selenite reducing heterotrophic non-halophilic aerobic bacteria revived from 3.5 months freeze storage could successfully reduce toxic tellurite to non toxic elemental form and produced extracellular nanospheres during detoxification. Presence of relatively less toxic selenite in the medium triggers bioreduction of more toxic tellurite leading to formation of

  20. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates.

    Science.gov (United States)

    López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie

    2014-01-01

    Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.

  1. Phytoplankton, Bacteria and Heterotrophic Nanoflagellate studies using ship and OCM-2 data along a coastal transect in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Basu, S.; Parab, S.G.; Pednekar, S.; Niyati Hede, N; Dwivedi, R.M.; Raman, M.; Babu, K.N; Shukla, A; Shirdhankar, M.M.

    in shelf waters (R2 = 0.839, n=13, p less than 0.0001). Further, HNF as grazer showed a negative pattern with the bacteria and hence the phytoplankton biomass. The bacterial load showed an appreciably higher relationship with CDOM in the shelf waters off...

  2. Exploring New Biological Functions of Amyloids: Bacteria Cell Agglutination Mediated by Host Protein Aggregation

    Science.gov (United States)

    Torrent, Marc; Pulido, David; Nogués, M. Victòria; Boix, Ester

    2012-01-01

    Antimicrobial proteins and peptides (AMPs) are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala) can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance. PMID:23133388

  3. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation.

    Directory of Open Access Journals (Sweden)

    Marc Torrent

    Full Text Available Antimicrobial proteins and peptides (AMPs are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance.

  4. Characterization of the aggregates formed during recombinant protein expression in bacteria

    Directory of Open Access Journals (Sweden)

    de Marco Ario

    2005-05-01

    pattern of a recombinant protein expressed in bacteria and to characterize biochemically the different aggregate subclasses. Furthermore, we have obtained evidence that the cellular environment plays a role in the development of the aggregates and the problem of the artifact generation of aggregates has been discussed using in vitro models. Finally, the possibility of separating aggregate fractions with different complexities offers new options for biotechnological strategies aimed at improving the yield of folded and active recombinant proteins.

  5. Variation of a benthic heterotrophic bacteria community with different respiratory metabolisms in Coyuca de Benítez coastal lagoon (Guerrero, Mexico

    Directory of Open Access Journals (Sweden)

    María Jesús Ferrara-Guerrero

    2007-03-01

    Full Text Available The fluctuations of the number, biomass and composition of the heterotrophic community were studied daily for two days, according to depth, pH, Eh, O2 and organic carbon concentration within a zone of the canal between the Coyuca de Benítez lagoon (Guerrero, Mexico and the coastal waters. At the three moments of the day studied (6 am, 2 pm and 10 pm, the oxygen concentrations in the overlying water and in the superficial sediment layer were near air-saturation in the diurnal samplings (582 µM at 6 am and 665 µM at 2 pm, and sub-satured during the night (158 µM. In the sediments, the models of vertical distribution of Eh and organic carbon distributions were very irregular due to the bio-perturbation of the benthic, meio- and macrofauna, whose activity allows the superficial organic carbon to migrate towards sediment deeper layers. Vertical distribution of the different viable bacteria populations seems to be related to the hydrodynamic patterns of the communicating canal and sediments heterogeneity. In the sediment column, the heterotrophic bacteria total number varied from 6.8 to 20.3 x 108 cells cm-3. The highest heterotrophic bacterial biomass values were encountered during the diurnal samplings (39.2 µgC.l-1 at 6 am and 34.4 µgC.l-1 at 2 pm and the lowest during the night (9.7 µgC.l-1. The fluctuations of viable heterotrophic bacteria populations with different respiratory metabolisms (aerobic, microaerophilic and anaerobic can be explained by the existence of suboxic microniches that appear when particles of sediment are resuspended due to the water circulation and the benthic infauna excavating activity, that allows the supernatant water oxygen to penetrate through its galleries towards deeper sediment zones. The statistical analysis (Multiple lineal regression model r²≥ 0.5 showed that the on the whole, the hydrological parameters are not influence over the bacterial number and bacterial biomass distribution (r²≤ 0

  6. Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation

    Science.gov (United States)

    Herrmann, I. K.; Bertazzo, S.; O'Callaghan, D. J. P.; Schlegel, A. A.; Kallepitis, C.; Antcliffe, D. B.; Gordon, A. C.; Stevens, M. M.

    2015-08-01

    Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (sepsis diagnosis and introduces microvesicle-bacteria aggregation as a potentially useful parameter for making early clinical management decisions.Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (sepsis diagnosis and introduces microvesicle-bacteria aggregation as a potentially useful parameter for making early clinical management decisions. Electronic supplementary information (ESI) available: Fig. S1: Markers of inflammation and microvesicle characteristics in patient plasma samples, Fig. S2: Experimental sepsis model, Table S1: Patient characteristics. Table S2: Inclusion/exclusion criteria. See DOI: 10.1039/c5nr01851j

  7. Monitoring and spatial distribution of heterotrophic bacteria and fecal coliforms in the Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Lutterbach Márcia T. S.

    2001-01-01

    Full Text Available The distribution of heterothrophic bacteria and fecal coliforms was monitored at four sampling stations located near the shore of the Rodrigo de Freitas Lagoon, in the city of Rio de Janeiro, Brazil. Water samples were collected, monthly from October 1994 through September 1998. The highest heterothrophic count (6.5x10 7 CFU/100mL was recorded at stations 2 and 4 during August 1998 and the lowest (10 ³ CFU/100 mL at station 3 during February 1995. With respect to fecal coliforms, the highest and lowest counts were 1.6x10 5 coliforms/100mL at station 3 during March 1997 and <1 coliform/100mL at all the stations during February 1995 and September 1997 as well as station 3 during February 1998. The data indicated a percentage increase of the microorganisms surveyed over time at all the sampling stations studied.

  8. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria.

    Science.gov (United States)

    Thomas, Dennis G; Jaramillo-Riveri, Sebastian; Baxter, Douglas J; Cannon, William R

    2014-12-26

    We have applied a new stochastic simulation approach to predict the metabolite levels, material flux, and thermodynamic profiles of the oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on modeling states using statistical thermodynamics and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the self-organization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow, and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals.

  9. Localization of aggregating proteins in bacteria depends on the rate of addition

    Directory of Open Access Journals (Sweden)

    Karl eScheu

    2014-08-01

    Full Text Available Many proteins are observed to localize to specific subcellular regions within bacteria. Recent experiments have shown that proteins that have self-interactions that lead them to aggregate tend to localize to the poles. Theoretical modeling of the localization of aggregating protein within bacterial cell geometries shows that aggregates can spontaneously localize to the pole due to nucleoid occlusion. The resulting polar localization, whether it be to a single pole or to both was shown to depend on the rate of protein addition. Motivated by these predictions we selected a set of genes from E. coli, whose protein products have been reported to localize when tagged with GFP, and explored the dynamics of their localization. We induced protein expression from each gene at different rates and found that in all cases unipolar patterning is favored at low rates of expression whereas bipolar is favored at higher rates of expression. Our findings are consistent with the predictions of the model, suggesting that localization may be due to aggregation plus nucleoid occlusion. When we expressed GFP by itself under the same conditions, no localization was observed. These experiments highlight the potential importance of protein aggregation, nucleoid occlusion and rate of protein expression in driving polar localization of functional proteins in bacteria.

  10. Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms

    Directory of Open Access Journals (Sweden)

    Pahala G. Jayathilake

    2017-09-01

    Full Text Available The production of extracellular polymeric substance (EPS is important for the survival of biofilms. However, EPS production is costly for bacteria and the bacterial strains that produce EPS (EPS+ grow in the same environment as non-producers (EPS− leading to competition between these strains for nutrients and space. The outcome of this competition is likely to be dependent on factors such as initial attachment, EPS production rate, ambient nutrient levels and quorum sensing. We use an Individual-based Model (IbM to study the competition between EPS+ and EPS− strains by varying the nature of initial colonizers which can either be in the form of single cells or multicellular aggregates. The microbes with EPS+ characteristics obtain a competitive advantage if they initially colonize the surface as smaller aggregates and are widely spread-out between the cells of EPS−, when both are deposited on the substratum. Furthermore, the results show that quorum sensing-regulated EPS production may significantly reduce the fitness of EPS producers when they initially deposit as aggregates. The results provide insights into how the distribution of bacterial aggregates during initial colonization could be a deciding factor in the competition among different strains in biofilms.

  11. Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms

    Science.gov (United States)

    Jayathilake, Pahala G.; Jana, Saikat; Rushton, Steve; Swailes, David; Bridgens, Ben; Curtis, Tom; Chen, Jinju

    2017-01-01

    The production of extracellular polymeric substance (EPS) is important for the survival of biofilms. However, EPS production is costly for bacteria and the bacterial strains that produce EPS (EPS+) grow in the same environment as non-producers (EPS−) leading to competition between these strains for nutrients and space. The outcome of this competition is likely to be dependent on factors such as initial attachment, EPS production rate, ambient nutrient levels and quorum sensing. We use an Individual-based Model (IbM) to study the competition between EPS+ and EPS− strains by varying the nature of initial colonizers which can either be in the form of single cells or multicellular aggregates. The microbes with EPS+ characteristics obtain a competitive advantage if they initially colonize the surface as smaller aggregates and are widely spread-out between the cells of EPS−, when both are deposited on the substratum. Furthermore, the results show that quorum sensing-regulated EPS production may significantly reduce the fitness of EPS producers when they initially deposit as aggregates. The results provide insights into how the distribution of bacterial aggregates during initial colonization could be a deciding factor in the competition among different strains in biofilms. PMID:29021783

  12. The impact of cellulose nanocrystals on the aggregation and initial adhesion of Pseudomonas fluorescens bacteria.

    Science.gov (United States)

    Sun, Xiaohui; Lu, Qingye; Boluk, Yaman; Liu, Yang

    2014-11-28

    Deposition on silica surfaces of two Pseudomonas fluorescens strains (CHA0 and CHA19-WS) having different extracellular polymeric substance (EPS) producing capacities was studied in the absence and presence of cellulose nanocrystals (CNCs). Batch (batch soaking) and continuous flow (quartz crystal microbalance with dissipation) methods were used to evaluate the impact of CNCs on bacterial initial adhesion. This study demonstrated that bacterial initial adhesion to solid surfaces can be significantly hindered by CNCs using both methods. In the presence of CNCs, it was observed that bacteria with more EPS aggregated more significantly compared to bacteria with less EPS, and that bacterial deposition under this condition decreased to a greater extent. The classic DLVO theory failed to predict bacterial adhesion behavior in this study. A detailed discussion is provided regarding potential antibacterial adhesion mechanisms of CNCs.

  13. Antenna organization in green photosynthetic bacteria. Aggregated bacteriochlorophyll C as a model for chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, Tsunenori; Hatano, Masahiro; Brune, D.C.; Blankenship, R.E.

    1988-04-10

    Green photosynthetic bacteria contain an antenna organization called as of which size is 110nm length, 30nm width and 10nm thickness. The function is to absorb photo energy and to transfer energy to adjoining synthetic film. Chloroplasts are consisted of protein, carotenoid and bactriochlorophyll (BChl) c but their structures are not yet clear. (BChl) c was extracted from Chloroflexus aurantiacus, a kind of green photosynthetic bacteria and the structure was determined with NMR, mass spectroscopy and other spectrochemical analyses. The lifetime of fluorescence from the 740nm absorbing BChl c aggregate was about 80ps. This results suggests that energy transfer from BChl c antenna in chloroplasts must be very fast for it to be efficient. (9 figs, 2 tabs, 22 refs)

  14. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Mujawar, Liyakat Hamid; Shahzad, Tanvir; Almeelbi, Talal; Ismail, Iqbal M I; Oves, Mohammad

    2016-02-01

    Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Numerical contribution of phytoplanktonic cells, heterotrophic particles and bacteria to size fractionated POC in the Cananéia estuary (25ºS 48ºW, Brazil

    Directory of Open Access Journals (Sweden)

    Hilda de Souza Lima Mesquita

    1985-01-01

    Full Text Available Oxidable POC, at two stations in the Cananéia estuary, was found to be largely dependent upon the smallest size POC. The correlation factors between POC and the numerical abundance of cells, heterotrofic particles and bacteria, in each of the size categories studied, were generally low and non-significant for both stations, with a few exceptions. At St. I the number of heterotrophic particles seems to account for some of the POC variation over the year. At St. II, the only significant correlation found was between the number of the largest and intermediate size classes bacteria and the equivalent size classes POC. At this station the importance of the detritus component is suggested. The differences found between the stations, concerning the numerical contribution of cells, particles and bacteria to total POC, have been attributed to the differential hydrodynamic conditions acting upon material coming from land, due to diverse location of the stations. Sampling date and the collection of different water masses have also been considered as factors that may greatly affect the relationships studied.

  16. [Model of aggregation of pigments in the chlorosomal antenna of the green bacteria Chloroflexus aurantiacus].

    Science.gov (United States)

    Mauring, K; Novoderezhkin, V I; Taisova, A S; Fetisova, Z G

    2004-01-01

    Independent experimental and theoretical evaluation was performed for the adequacy of our previously proposed general molecular model of structural organization of light-harvesting pigments in chlorosomal bacteriochlorophyll (BChl) c/d/e-containing superantenna of different green bacteria. Simultaneous measurement of hole burning in the optical spectra of chlorosomal BChl c and temperature dependence of steady-state fluorescence spectra of BChl c was accomplished in intact cells of photosynthetic green bacterium Chloroflexus aurantiacus; this allows unambiguous determination of the structure of exciton levels of BChl c oligomers in this natural antenna, which is a fundamental criterion for adequacy of any molecular model for in vivo aggregation of antenna pigments. Experimental data were shown to confirm our model of organization of oligometric pigments in chlorosomal BChl c antenna of green bacterium Chloroflexus aurantiacus. This model, which is based on experimental data and our theory of spectroscopy of oligomeric pigments, implies that the unit building block of BChl c antenna is a cylindrical assembly containing six excitonically coupled linear pigment chains whose exciton structure with intense upper levels provides for the optimal spectral properties of the light-harvesting antenna.

  17. Microbial heterotrophic metabolic rates constrain the microbial carbon pump

    Digital Repository Service at National Institute of Oceanography (India)

    Robinson, C.; Ramaiah, N.

    The respiration of dissolved organic matter by heterotrophic bacteria and Archaea represents the largest sink in the global marine biological carbon cycle, an important constraint on organic carbon supply, and the major driver of global elemental...

  18. Ecology of an uncultured heterotrophic flagellate lineage: MAST-4

    OpenAIRE

    Rodriguez-Martínez, Raquel

    2012-01-01

    Programa de oceanografía [EN] Heterotrophic flagellates are fundamental in marine microbial food webs. They play a key role in channeling bacteria to higher trophic levels as well as in nutrient recycling. Despite this recognized ecological importance, and contrasting with the significant advances achieved with marine bacteria and archaea, little is known on the diversity of marine heterotrophic flagellates. This heterogeneous group of cells is weakly captured by microscopic an...

  19. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Jose, J.; Giridhar, R.; Anas, A.; LokaBharathi, P.A.; Nair, S.

    ) operating manual (MIDI, USA). Briefly, the whole cell fatty acids of the bacteria were extracted and methylated according to MIDI protocol and analyzed using gas chromatography system (Agilent GC 6950) and the peaks were compared with the library... was observed between environmental metal concentration and microbial community tolerance (Diaz-Ravinaet al., 1994; Pennanenet al., 1996; Lock and Janssen, 2005). Thus metal resistance among the bacterial isolates is a direct indication of the exposure...

  20. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Ding, Jie; Wang, Qilin; Ma, Chao; Zhou, Xu; Ren, Nan-Qi

    2016-12-01

    Poor flocculation of photo fermentative bacteria resulting in continuous biomass washout from photobioreactor is a critical challenge to achieve rapid and stable hydrogen production. In this work, the aggregation of Rhodopseudomonas faecalis RLD-53 was successfully developed in a photobioreactor and the effects of different carbon sources on hydrogen production and aggregation ability were investigated. Extracellular polymeric substances (EPS) production by R. faecalis RLD-53 cultivated using different carbon sources were stimulated by addition of L-cysteine. The absolute ζ potentials of R. faecalis RLD-53 were considerably decreased with addition of L-cysteine, and aggregation barriers based on DLVO dropped to 15-43 % of that in control groups. Thus, R. faecalis RLD-53 flocculated effectively, and aggregation abilities of strain RLD-53 cultivated with acetate, propionate, lactate and malate reached 29.35, 32.34, 26.07 and 24.86 %, respectively. In the continuous test, hydrogen-producing activity was also promoted and reached 2.45 mol H2/mol lactate, 3.87 mol H2/mol propionate and 5.10 mol H2/mol malate, respectively. Therefore, the aggregation of R. faecalis RLD-53 induced by L-cysteine is independent on the substrate types, which ensures the wide application of this technology to enhance hydrogen recovery from wastewater dominated by different organic substrates.

  1. Effects of biodegradable plastics on the predominant culturable bacteria associated with soil aggregate formation and stability after 9 months of incubation in natural soil

    Science.gov (United States)

    An in vitro study of the effects of biodegradable plastics on the predominant soil aggregating bacteria associated to soil aggregate formation and stability after 9 months of incubation in soil. Caesar-TonThat TC, Fukui R*, Caesar AJ., Lartey, RT, and Gaskin, JF. USDA-Agricultural Research Service, ...

  2. Influence of Bizerte city wastewater treatment plant (WWTP) on abundance and antibioresistance of culturable heterotrophic and fecal indicator bacteria of Bizerte Lagoon (Tunisia).

    Science.gov (United States)

    Souissi, Mariem; Laabidi, Rached; Aissa, Patricia; Pringault, Olivier; Said, Olfa Ben

    2018-02-01

    The waste water treatment plant (WWTP) of the city of Bizerte concentrates different types of chemical and biological pollutants in the Bizerte lagoon (Tunisia). Considering four upstream and downstream WWTP discharge stations, seventy nine, culturable bacterial strains were isolated and identified from water and sediment as fecal coliforms, fecal streptococci, pathogenic staphylococci and non-enterobacteriacea. Fecal coliforms were most abundant (2.5 105 bacteria/mg) in sediment of WWTP discharge. Leuconostoc spp (23.1%) and Chryseomonasluteola (23.1%) were the most prevalent culturable fecal indicator bacteria (FIB) isolated at the upstream discharge stations. However, Staphylococcus xylosus (13.9%) was the most prevalent culturable FIB isolated at the WWTP discharge stations. Moreover, high antibioticresistance phenotypes were present in all sampling stations, but especially in WWTP discharge station in both water and sediment. Resistance levels in water and sediment, respectively were amoxicillin (58.8%; 34.8%), penicillin (50%; 31.6%), oxacillin (60%; 33.3%), cefotaxim (55.2%; 39.1%), ceftazidim (66.7%; 50%), gentamycin (42.9%; 38.9%), tobramycin (50%; 25%), vancomycin (33.3; 71.4%), amikacin (66.7%; 0%) and ciprofloxacin (100%; 100%). Interestingly, ß-lactam antibiotic resistant FIB were mostly isolated from water as well as from sediments of upstream and WWTP discharge station. Canonical correspondence analysis CCA correlating antibiotic resistance profile with the abiotic data showed that, in water column, culturable bacterial strains isolated in upstream WWTP discharge stations were interestingly correlated with the resistance to amikacin, oxacillin, cefotaxim, ciprofloxacin and gentamycin, however, in sediment, they were correlated with the resistance to amoxicillin, oxacillin, céfotaxim and vancomycin. Serious ß-lactams and aminoglycosides acquired resistance appeared mainly in fecal streptococci and pathogen staphylococci groups. Copyright © 2017

  3. Anoxic aggregates - an ephemeral phenomenon in the pelagic environment? RID A-1977-2009

    DEFF Research Database (Denmark)

    Ploug, H.; Kuhl, M.; BuchholzCleven, B.

    1997-01-01

    .2 in the surrounding water to 7.4 in the center of an anoxic aggregate. Sulfide was not detectable by use of sulfide microelectrodes in anoxic aggregates, and methanogenic bacteria could not be detected after PCR (polymerase chain reaction) amplification using archaebacterial-specific primers. The oxygen respiration...... rate decreased exponentially over time with a T-1/2 of 2.3 d. Theoretical calculations of the volumetric oxygen respiration rate needed to deplete oxygen inside aggregates was compared to the density of organic matter in natural marine aggregates. These calculations showed that carbon limitation...... of heterotrophic processes would limit anoxic conditions to occurring only over a few hours, depending on the size of the aggregates. Therefore slow-growing obligate anaerobic microorganisms such as sulfate reducing bacteria and methanogenic bacteria may be limited by the relatively short persistence of anoxia...

  4. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Fontaina, E., E-mail: eduardo.fernandez.fontaina@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Gomes, I.B. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Aga, D.S. [Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Omil, F.; Lema, J.M.; Carballa, M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2016-01-15

    The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. - Highlights: • The removal of pharmaceuticals in nitrifying activated sludge (NAS) was studied. • Nitrifying activity increases biotransformation rate of ibuprofen and naproxen. • Hydroxylation of ibuprofen by ammonia monooxygenase of ammonia oxidizing bacteriaHeterotrophic activity enhances biotransformation of sulfamethoxazole in NAS. • Recalcitrance of trimethoprim, diclofenac, carbamazepine and diazepam in NAS.

  5. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    Directory of Open Access Journals (Sweden)

    Wolf Sarah

    2011-09-01

    Full Text Available Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2 and Fibrisoma limi (BUZ 3 with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82 were studied in mixed cultures under nutrient rich (carbon source present in medium and poor (carbon source absent in medium conditions. Findings F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  6. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Svercel, Miroslav; Saladin, Bianca; van Moorsel, Sofia J; Wolf, Sarah; Bagheri, Homayoun C

    2011-09-13

    Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2) and Fibrisoma limi (BUZ 3) with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82) were studied in mixed cultures under nutrient rich (carbon source present in medium) and poor (carbon source absent in medium) conditions. F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action.The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc.The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  7. An approach to measure ciliate grazing on living heterotrophic nanoflagellates

    DEFF Research Database (Denmark)

    Christoffersen, K.; González, J. M.

    2003-01-01

    The complicated routes by which organic material is channelled up to higher trophic levels via bacteria and protozoans is a major issue in aquatic microbial ecology. Because of the fragile nature of protists it is not straightforward to perform experimental studies of prey–predator interactions. ...... a direct approach to measure ciliate grazing specifically on living heterotrophic nanoflagellates.......The complicated routes by which organic material is channelled up to higher trophic levels via bacteria and protozoans is a major issue in aquatic microbial ecology. Because of the fragile nature of protists it is not straightforward to perform experimental studies of prey–predator interactions....... Here we present an approach for the assessment of ciliate grazing on living heterotrophic nanoflagellates. Stationary phase cultures of a heterotrophic nanoflagellate (Cafeteria sp.) were live-stained by allowing them to take up fluorescently labelled macromolecules. Controls revealed that this label...

  8. Heterotrophic protists in the Central Arctic Ocean

    Science.gov (United States)

    Sherr, Evelyn B.; Sherr, Barry F.; Fessenden, Lynne

    Distribution, general composition and activity of heterotrophic protists, as well as the distribution of bacteria, were assessed in the upper water column of the central Arctic Ocean during the Arctic Ocean Section, July-September 1994. Bacterial biomass varied from 5 to > 25 mg C 1 -1, with the highest values occurring in the Chukchi Sea. Protist biomass was highest (5-107 mg Cl -1) in the upper 50 m of the water column. Higher integrated (0-50 m) protist biomass values (average 910±250 mg C m -2, range 580-1370 mg C m -2) were found in the Chukchi Sea, compared to the central Arctic Ocean (average 480±320 mg C m -2, range 120-1120 mg C m -2). Heterotrophic dinoflagellates were more abundant than ciliates in the >20 μm size class at all stations. In the central Arctic Ocean, the cryptomonads and diatoms, as well as pico-autotrophs. Clearance rates of 10-100 μm sized ciliates and dinoflagellates, based on the uptake of 1-5 μm fluorescent microspheres, were similar to rates reported for herbivorous protists in temperate waters. In terms of ecosystem carbon flow, we infer that phagotrophic protists in the Arctic Ocean are important consumers of phytoplankton and bacteria, and may represent a significant food resource for zooplankton.

  9. Heterotrophic and Autotrophic Microbial Populations in Cold Perennial Springs of the High Arctic ▿ †

    OpenAIRE

    Perreault, Nancy N.; Greer, Charles W.; Andersen, Dale T.; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G.

    2008-01-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates we...

  10. Heterotrophic bacteria abundances in Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil Abundância bacteriana heterotrófica na Lagoa Rodrigo de Freitas (Rio de Janeiro, Brasil

    Directory of Open Access Journals (Sweden)

    Alessandra M. Gonzalez

    2006-12-01

    Full Text Available The Rodrigo de Freitas Lagoon (RJ, Brazil is an important coastal ecosystem that has been submitted to an accelerated degradation process. The aim of this work was to determine the abundance and the spatial distribution of total heterotrophic (by flow cytometry and cultivated bacteria ("pour plate" method on R2A agar. Another objective was to evaluate the lagoon's influence on water quality of Ipanema and Leblon beaches. Physical and chemical data were acquired too. Sub-superficial water samples were taken monthly, from December 1999 to October 2000. On lagoon, the cultivated bacteria abundance varied from 6.9x10(5 to 5.0x10(7 CFU.100 mL-1. On Ipanema and Leblon beaches, this parameter yielded 1.4x10(5 and 2.8x10(6 CFU.100 mL-1, respectively. Total bacterial abundance varied from 2.9x10(7 to 3.2x10(7 cells.mL-1 on lagoon. On Ipanema and Leblon, this parameter yielded 8.7x10(6 and 1.1x10(7 cells.mL-1, respectively. Two sub-groups were determined with dominance of HNA cells. Samples were added latter to better understand the bacteria present on these environments. Bacterial abundance were analyzed only by flow cytometry and the results varied from 8.3x10(6 to 2.5x10(7 cells.mL-1 on lagoon. On the beach, this parameter yielded 6.9x10(6 cells. mL-1. Two bacterial sub-groups were also observed, with dominance of HNA on lagoon and LNA on the beach. The results showed that the Rodrigo de Freitas Lagoon is an eutrophic ecosystem where the bacterial populations and the physical and chemical parameters do not differ spatially. The data also confirmed that the outflow of the lagoon's polluted waters affect the sanitary conditions of Ipanema and Leblon beaches.A Lagoa Rodrigo de Freitas (RJ, Brasil é um importante ecossistema que vêm sendo submetido a um acelerado processo de degradação. O objetivo desse estudo foi determinar a abundância e a distribuição espacial das bactérias heterotróficas totais (citometria em fluxo e cultivadas ("pour plate

  11. Population structure of manganese-oxidizing bacteria in stratified soils and properties of manganese oxide aggregates under manganese-complex medium enrichment.

    Directory of Open Access Journals (Sweden)

    Weihong Yang

    Full Text Available Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II-oxidizing isolates (>50 mM MnO2 were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II-oxidizing bacterial genera (species, namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II to Mn(III/IV by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the

  12. Population structure of manganese-oxidizing bacteria in stratified soils and properties of manganese oxide aggregates under manganese-complex medium enrichment.

    Science.gov (United States)

    Yang, Weihong; Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Ali, Muhammad; Liu, Fan; Li, Lin

    2013-01-01

    Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II)-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II)-oxidizing isolates (>50 mM MnO2) were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II)-oxidizing bacterial genera (species), namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II) and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II)-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II)-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II) and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II) to Mn(III/IV) by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II)-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the enrichment

  13. Population Structure of Manganese-Oxidizing Bacteria in Stratified Soils and Properties of Manganese Oxide Aggregates under Manganese–Complex Medium Enrichment

    Science.gov (United States)

    Zhang, Zhongming; Chen, Hong; Liu, Jin; Ali, Muhammad; Liu, Fan; Li, Lin

    2013-01-01

    Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II)-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II)-oxidizing isolates (>50 mM MnO2) were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II)-oxidizing bacterial genera (species), namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II) and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II)-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II)-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II) and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II) to Mn(III/IV) by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II)-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the enrichment

  14. Distribution and species composition of planktonic luminous bacteria in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chandramohan, D.

    Distribution of the total viable heterotrophic bacteria and the luminous bacteria in the neretic and oceanic waters of the west coast of India was studied. Counts of viable heterotrophs fluctuated widely, generally with a decrease in their number...

  15. Effects of salinity on the accumulation of hemocyte aggregates and bacteria in the gills of Callinectes sapidus, the Atlantic blue crab, injected with Vibrio campbellii.

    Science.gov (United States)

    Ikerd, Jennifer L; Burnett, Karen G; Burnett, Louis E

    2015-05-01

    In addition to respiration and ion regulation, crustacean gills accumulate and eliminate injected particles, along with hemocyte aggregates that form in response to those particles. Here we report that the dose of Vibrio campbellii previously shown to induce a decrease in respiration and hemolymph flow across the gill in the Atlantic blue crab, Callinectes sapidus, also triggered the formation of aggregates containing four or more hemocytes in the gills, compared with saline-injected controls. More bacteria were trapped and rendered non-culturable per unit weight by anterior respiratory gills than posterior gills specialized for ion regulation. Further, more bacteria accumulated in the anterior gills of animals held at 30 ppt than those at 10 ppt. Thus, the role of the gills in immune defense comes at an energetic cost to this and likely to other crustaceans; this cost is influenced by acclimation salinity and the position and specialized function of individual gills. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Factors limiting heterotrophic bacterial production in the southern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    F. Van Wambeke

    2008-05-01

    Full Text Available The role of potential factors limiting bacterial growth was investigated along vertical and longitudinal gradients across the South Eastern Pacific Gyre. The effects of glucose, nitrate, ammonium and phosphate additions on heterotrophic bacterial production (using leucine technique were studied in parallel in unfiltered seawater samples incubated under natural daily irradiance. The enrichments realized on the subsurface showed three types of responses. From 141° W (Marquesas plateau to approx 125° W, bacteria were not bottom-up controlled, as confirmed by the huge potential of growth in non-enriched seawater (median of enhancement factor×39 in 24 h. Within the Gyre (125° W–95° W, nitrogen alone stimulated leucine incorporation rates (median×4.2, but rapidly labile carbon (glucose became a second limiting factor (median×37 when the two elements were added. Finally from the border of the gyre to the Chilean upwelling (95° W–73° W, labile carbon was the only factor stimulating heterotrophic bacterial production. Interaction between phytoplankton and heterotrophic bacterial communities and the direct versus indirect effect of iron and macronutrients on bacterial production were also investigated in four selected sites: two sites on the vicinity of the Marquesas plateau, the centre of the gyre and the Eastern border of the gyre. Both phytoplankton and heterotrophic bacteria were limited by availability of nitrogen within the gyre, but not by iron. Iron limited phytoplankton at Marquesas plateau and at the eastern border of the gyre. However 48 h enrichment experiments were not sufficient to show any clear limitation of heterotrophic bacteria within Marquesas plateau and showed a limitation of these organisms by labile carbon in the eastern border of the Gyre.

  17. Self-aggregation behavior of synthetic zinc 3-hydroxymethyl-13/15-carbonyl-chlorins as models of main light-harvesting components in photosynthetic green bacteria.

    Science.gov (United States)

    Tamiaki, Hitoshi; Yoshimura, Hideaki; Shimamura, Yasuhide; Kunieda, Michio

    2008-01-01

    Zinc complexes of 3-hydroxymethyl-13/15-carbonyl-chlorins having a six-membered lactone as the E-ring were prepared by modifying purpurin-18 as models of bacteriochlorophyll-d, one of the chlorophyllous pigments in the main light-harvesting antenna systems (chlorosomes) of green photosynthetic bacteria. The synthetic 13-carbonylated compound self-aggregated in 1%(v/v) tetrahydrofuran and hexane to give large oligomers possessing red-shifted and broadened electronic absorption bands and intense circular dichroism bands at the shifted Q ( y ) region, indicating that the supramolecular structure of the resulting self-aggregate was similar to those of natural and artificial chlorosomal aggregates. The red-shift value observed here was smaller than the reported values in chlorosomal pigments having a five-membered keto-ring, which was ascribable to a weaker intermolecular hydrogen-bonding of 13-C=O with 3(1)-OH in a supramolecule of the former self-aggregate and suppression of the pi-pi interaction among the composite chlorins. On the other hand, the isomeric 15-carbonylated molecule was monomeric even in the nonpolar organic solvent, confirming the reported proposal that the linear orientation of three interactive moieties, OH, C=O and Zn, in a molecule is requisite for its chlorosomal self-aggregation.

  18. Aggregation-Induced-Emission Materials with Different Electric Charges as an Artificial Tongue: Design, Construction, and Assembly with Various Pathogenic Bacteria for Effective Bacterial Imaging and Discrimination.

    Science.gov (United States)

    Liu, Guang-Jian; Tian, Sheng-Nan; Li, Cui-Yun; Xing, Guo-Wen; Zhou, Lei

    2017-08-30

    Imaging-based total bacterial count and type identification of bacteria play crucial roles in clinical diagnostics, public health, biological and medical science, and environmental protection. Herein, we designed and synthesized a series of tetraphenylethenes (TPEs) functionalized with one or two aldehyde, carboxylic acid, and quaternary ammonium groups, which were successfully used as fluorescent materials for rapid and efficient staining of eight kinds of representative bacterial species, including pathogenic bacteria Vibrio cholera, Klebsiella pneumoniae, and Listeria monocytogenes and potential bioterrorism agent Yersinia pestis. By comparing the fluorescence intensity changes of the aggregation-induced-emission (AIE) materials before and after bacteria incubation, the sensing mechanisms (electrostatic versus hydrophobic interactions) were simply discussed. Moreover, the designed AIE materials were successfully used as an efficient artificial tongue for bacteria discrimination, and all of the bacteria tested were identified via linear discriminant analysis. Our current work provided a general method for simultaneous broad-spectrum bacterial imaging and species discrimination, which is helpful for bacteria surveillance in many fields.

  19. [Leaching of uranium containing phosphorites with heterotrophic microorganisms].

    Science.gov (United States)

    Kullmann, K H; Schwartz, W

    1982-01-01

    The problem of heterotrophic leaching of metals was tested with uranium-containing phosphorites under laboratory conditions with regard to possible technical applications. As leaching agents we used the acids of citric and lactic acid fermentation, carried out with a strain of Aspergillus niger in sulfite liquor under different conditions and with lactic acid bacteria in wheye. Up to 12% uranium were soluted with citric acid fermentation of Marocco phosphorite containing 153 ppm U in Aspergillus niger cultures within 27 days.

  20. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    OpenAIRE

    Wolf Sarah; van Moorsel Sofia J; Saladin Bianca; Svercel Miroslav; Bagheri Homayoun C

    2011-01-01

    Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2) and Fibrisoma limi (BUZ 3) with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82) were studied in mixed cultures under nutrient rich (carbon source present in medium) and poor (carbon source absent in medium) conditions. Findings F. aes...

  1. Simultaneous removal of organic carbon and nitrogen pollutants in the Yangtze estuarine sediment: The role of heterotrophic nitrifiers

    Science.gov (United States)

    Jin, Qiang; Lu, Jian; Wu, Jun; Luo, Yongming

    2017-05-01

    The Yangtze Estuary is one of the most eutrophic coastal areas in the world. The engagement of heterotrophic nitrification bacteria in the simultaneous removal of organic carbon and ammonium in the Yangtze estuarine sediment was investigated. The specific nitrification rate in the selective autotrophic nitrification inhibition treatment was about 25% of that in the control without autotrophic nitrification inhibition, suggesting that heterotrophic nitrification, in addition to autotrophic nitrification, was an important nitrification process in the sediment. The increase of heterotrophic nitrification can offset the decrease in autotrophic nitrification, which subsequently leads to the high tolerance of nitrification to the organic carbon. The number of heterotrophic nitrification bacteria was 7.1 × 107 MPN g-1 in sediment collected from Site 1 while that of autotrophic nitrification bacteria was 4.2 × 108 MPN g-1. The isolation of heterotrophic nitrification bacteria provides direct evidence of the engagement of heterotrophs in the nitrification of the Yangtze estuarine sediment. The results show that nitrification is catalyzed by both the autotrophs and the heterotrophs, indicating functional redundancy of nitrification in sediment. Since organic carbon usually coexists with ammonium, these findings indicate an alternative bioprocess for the simultaneous removal of organic carbon and ammonium in Yangtze estuarine sediment.

  2. An in vitro evaluation of the antibacterial properties of three mineral trioxide aggregate (MTA) against five oral bacteria.

    Science.gov (United States)

    Kim, Ryan Jin-Young; Kim, Myung-Ook; Lee, Ki-Sun; Lee, Dong-Yul; Shin, Joo-Hee

    2015-10-01

    The purpose of this study was to evaluate the antibacterial ability of three MTA (MTA-Angelus, Endocem MTA, and ProRoot MTA) against five typical oral bacteria (Streptococcus mutans, Enterococcus faecalis, Lactobacillus rhamnosus, Lactobacillus paracasei, and Porphyromonas gingivalis). For disc diffusion test, each test material was placed into agar plates after inoculation of each bacterial strain. The zones of inhibition of bacterial growth were then measured. Antibacterial broth test was performed by adding the test material into the media. Colony-forming units were counted after incubation with bacteria. The data were analyzed using ANOVA and the Tukey's test. Disc diffusion test showed that the antibacterial activity against S. mutans, L. rhamnosus, L. paracasei, and P. gingivalis ranked in decreasing order of MTA-Angelus>ProRoot MTA>Endocem MTA (pMTA. Antibacterial broth test showed that the antibacterial activity against all bacteria was Endocem MTA>MTA-Angelus>ProRoot MTA (pMTA-Angelus and Endocem MTA being most effective, respectively. Both tests revealed that the most resistant bacteria was E. faecalis, which was not susceptible at all, except to Endocem MTA in disc diffusion test. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Metagenomic analysis reveals symbiotic relationship among bacteria in Microcystis-dominated community

    Directory of Open Access Journals (Sweden)

    Meili eXie

    2016-02-01

    Full Text Available Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.

  4. Heterotrophic microbial communities use ancient carbon following glacial retreat.

    Science.gov (United States)

    Bardgett, Richard D; Richter, Andreas; Bol, Roland; Garnett, Mark H; Bäumler, Rupert; Xu, Xinliang; Lopez-Capel, Elisa; Manning, David A C; Hobbs, Phil J; Hartley, Ian R; Wanek, Wolfgang

    2007-10-22

    When glaciers retreat they expose barren substrates that become colonized by organisms, beginning the process of primary succession. Recent studies reveal that heterotrophic microbial communities occur in newly exposed glacial substrates before autotrophic succession begins. This raises questions about how heterotrophic microbial communities function in the absence of carbon inputs from autotrophs. We measured patterns of soil organic matter development and changes in microbial community composition and carbon use along a 150-year chronosequence of a retreating glacier in the Austrian Alps. We found that soil microbial communities of recently deglaciated terrain differed markedly from those of later successional stages, being of lower biomass and higher abundance of bacteria relative to fungi. Moreover, we found that these initial microbial communities used ancient and recalcitrant carbon as an energy source, along with modern carbon. Only after more than 50 years of organic matter accumulation did the soil microbial community change to one supported primarily by modern carbon, most likely from recent plant production. Our findings suggest the existence of an initial stage of heterotrophic microbial community development that precedes autotrophic community assembly and is sustained, in part, by ancient carbon.

  5. Survey on Heterotrophic Bacterial Contamination in Bottled Mineral Water by Culture Method

    Directory of Open Access Journals (Sweden)

    Essmaeel Ghorbanalinezhad

    2014-12-01

    Full Text Available Background and Aim: This project focuses on the level of heterotrophic baceria in bottled mineral water which could be a health concern for the elderly, infants, pregnant women and immuno-compromised patients. Materials and Methods: Different brands of bottled water samples were selected randomly and evaluated for their bacteriological quality, using different specific culture media and biochemical tests. Water samples were analyzed within 24 hours of their purchase/collection. Samples were filtered with 0.45 micron and filters were plated in different media. Then media were incubated at 37˚C for 24-48 hours. Results: Morphological study and biochemical tests revealed a number of bacteria in different   brands of  bottled water. Heterotrophic bacteria(Gram positive cocci, Spore forming gram positive bacilli, non spore forming gram positive bacilli, gram negative bacilli, and gram negative coccobacilli; Pseudomonas and Stenotrophomonas counted in 70% of bottled water samples. There were no cases of fecal contamination or the presence of E.coli. Conclusions: Bottled water is not sterile and contains trace amounts of bacteria naturally present or introduced during processing. Testing drinking water for all possible pathogens is complex, time-consuming, and expensive. If only total coliform bacteria are detected in drinking water, the source is probably environmental. Since the significance of non-pathogenic heterotrophic bacteria in relation to health and diseases is not understood, there is an urgent need to establish a maximum limit for the heterotrophic count in the bottled mineral water. Growth conditions play a critical role in the recovery of heterotrophic bacteria in bottled drinking water.

  6. About the order in aerobic heterotrophic microbial communities from hydrocarbon-contaminated sites

    NARCIS (Netherlands)

    Becker, P.M.

    1999-01-01

    The organizational structure of communities of aerobic heterotrophic bacteria was studied by means of physiological and molecular typing of the members of arbitrary samples of isolates, ASsI. The isolate sample assay (ISA) was applied to three different hydrocarbon-polluted sites: a dry windrow pile

  7. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size....... By their ability to store vast quantities of both nitrate and elemental sulfur in the cells, these bacteria have become independent of the coexistence of their substrates. In fact, a close relative, T. namibiensis, can probably respire in the sulfidic mud for several months before again filling up their large...

  8. Bioalteration of synthetic Fe(III)-, Fe(II)-bearing basaltic glasses and Fe-free glass in the presence of the heterotrophic bacteria strain Pseudomonas aeruginosa: Impact of siderophores

    Science.gov (United States)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Huguenot, David; Fourdrin, Chloé; Verney-Carron, Aurélie; van Hullebusch, Eric D.; Guyot, François

    2016-09-01

    This study aims to evaluate the role of micro-organisms and their siderophores in the first steps of the alteration processes of basaltic glasses in aqueous media. In this regard, three different types of glasses - with or without iron, in the reduced Fe(II) or oxidized Fe(III) states - were prepared on the basis of a simplified basaltic glass composition. Control and Pseudomonas aeruginosa inoculated experiments were performed in a buffered (pH 6.5) nutrient depleted medium to stimulate the production of the pyoverdine siderophore. Results show that the presence of P. aeruginosa has an effect on the dissolution kinetics of all glasses as most of the calculated elemental release rates are increased compared to sterile conditions. Reciprocally, the composition of the glass in contact with P. aeruginosa has an impact on the bacterial growth and siderophore production. As an essential nutrient for this microbial strain, Fe notably appears to play a central role during biotic experiments. Its presence in the glass stimulates the bacterial growth and minimizes the synthesis of pyoverdine. Moreover the initial Fe2+/Fe3+ ratio in the glasses modulates this synthesis, as pyoverdine is not detected at all in the system in contact with Fe(III)-bearing glass. Finally, the dissolution rates appear to be correlated to siderophore concentrations as they increase with respect to sterile experiments in the order Fe(III)-bearing glass siderophores and Fe or Al for Fe(II)-bearing glass or Fe-free glass, respectively. The dissolution of an Fe-free glass is significantly improved in the presence of bacteria, as initial dissolution rates are increased by a factor of 3. This study attests to the essential role of siderophores in the P. aeruginosa-promoted dissolution processes of basaltic glasses as well as to the complex relationships between the nutritional potential of the glass and its dissolution rates.

  9. Newly discovered role of the heterotrophic nanoflagellate Katablepharis japonica, a predator of toxic or harmful dinoflagellates and raphidophytes.

    Science.gov (United States)

    Kwon, Ji Eun; Jeong, Hae Jin; Kim, So Jin; Jang, Se Hyeon; Lee, Kyung Ha; Seong, Kyeong Ah

    2017-09-01

    Heterotrophic nanoflagellates are ubiquitous and known to be major predators of bacteria. The feeding of free-living heterotrophic nanoflagellates on phytoplankton is poorly understood, although these two components usually co-exist. To investigate the feeding and ecological roles of major heterotrophic nanoflagellates Katablepharis spp., the feeding ability of Katablepharis japonica on bacteria and phytoplankton species and the type of the prey that K. japonica can feed on were explored. Furthermore, the growth and ingestion rates of K. japonica on the dinoflagellate Akashiwo sanguinea-a suitable algal prey item-heterotrophic bacteria, and the cyanobacteria Synechococcus sp., as a function of prey concentration were determined. Among the prey tested, K. japonica ingested heterotrophic bacteria, Synechococcus sp., the prasinophyte Pyramimonas sp., the cryptophytes Rhodomonas salina and Teleaulax sp., the raphidophytes Heterosigma akashiwo and Chattonella ovata, the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum donghaiense, Alexandrium minutum, Cochlodinium polykrikoides, Gymnodinium catenatum, A. sanguinea, Coolia malayensis, and the ciliate Mesodinium rubrum, however, it did not feed on the dinoflagellates Alexandrium catenella, Gambierdiscus caribaeus, Heterocapsa triquetra, Lingulodinium polyedra, Prorocentrum cordatum, P. micans, and Scrippsiella acuminata and the diatom Skeletonema costatum. Many K. japonica cells attacked and ingested a prey cell together after pecking and rupturing the surface of the prey cell and then uptaking the materials that emerged from the ruptured cell surface. Cells of A. sanguinea supported positive growth of K. japonica, but neither heterotrophic bacteria nor Synechococcus sp. supported growth. The maximum specific growth rate of K. japonica on A. sanguinea was 1.01 d(-1). In addition, the maximum ingestion rate of K. japonica for A. sanguinea was 0.13ngC predator(-1)d(-1) (0.06 cells predator(-1)d(-1

  10. Heterotrophic bacterial production on solid fish waste: TAN and nitrate as nitrogen source under practical RAS conditions

    NARCIS (Netherlands)

    Schneider, O.; Sereti, V.; Eding, E.H.; Verreth, J.A.J.

    2007-01-01

    The drumfilter effluent from a recirculation aquaculture system (RAS) can be used as substrate for heterotrophic bacteria production. This biomass can be re-used as aquatic feed. RAS effluents are rich in nitrate and low in total ammonia nitrogen (TAN). This might result in 20% lower bacteria

  11. Heterotrophic bacterial populations in tropical sandy beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; LokaBharathi, P.A.

    Distribution pattern of heterotrophic bacterial flora of three sandy beaches of the west coast of India was studied. The population in these beaches was microbiologically different. Population peaks of halotolerant and limnotolerant forms were...

  12. Effect of free ammonium and free nitrous acid on the activity, aggregate morphology and extracellular polymeric substance distribution of ammonium oxidizing bacteria in partial nitrification.

    Science.gov (United States)

    Yao, Qian; Peng, Dangcong; Wang, Bo; Chen, Yuanyuan; Li, Jiaqi; Zhao, Qiaodi; Wang, Binbin

    2017-09-01

    Successful partial nitrification not only guarantees the inhibition of nitrite oxidation, but also does not excessively retard the ammonia oxidation rate. Therefore, the performance of ammonium oxidizing bacteria (AOB) during partial nitrification is fundamental to this process. In this study, two lab-scale partial nitrification bioreactors containing different inhibition conditions-one with free ammonium (FA) inhibition, the other with free nitrous acid (FNA) inhibition-were used to compare the differences between activity, quantity, aggregation morphology and extracellular polymeric substance (EPS) distribution of AOB. The results showed that although stable, long-term, partial nitrification was achieved in both reactors, there were differences in AOB activity, microbial spatial distribution and EPS characteristic. In the FA bioreactor, FA concentration was conducted at more than 40 mg/L, which had a strong impact on the metabolism of AOB. The activity and quantity decreased by 50%. Higher EPS (42.44 ± 2.31 mg g-1 mixed liquor volatile suspended solids [MLVSS]) and protein were introduced into the EPS matrix. However, in the FNA bioreactor, the FNA concentration was about 0.23 mg/L. It did not reach a level to affect AOB metabolism. The AOB activity and quantity were maintained at high levels and the total EPS content was 28.29 ± 2.04 mg g-1 MLVSS. Additionally, the microscopic results showed that in the FA bioreactor, AOB cells aggregated in microcolonies, while they appeared to be self-flocculating with no specific conformation in the other reactor. β-polysaccharides located inside sludge flocs in the FA bioreactor but only accumulated around the outer layer of activated sludge flocs in the FNA condition. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers

    Science.gov (United States)

    Schuerger, Andrew C.; Richards, Jeffrey T.; Hintze, Paul E.; Kern, Roger G.

    2005-01-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  14. Degradation of alkenones by aerobic heterotrophic bacteria: Selective or not ?

    Digital Repository Service at National Institute of Oceanography (India)

    Rontani, J-F.; Harji, R.; Guasco, S.; Prahl, F.G.; Volkman, J.K.; Bhosle, N.B.; Bonin, P.

    Four bacterial communities were isolated from Emiliania huxleyi strain TWP1 cultures before and after the algal cells had been treated with different antibiotics. Incubation of E. huxleyi with these bacterial communities resulted in dramatically...

  15. Removal of crude petroleum hydrocarbons by heterotrophic bacteria ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... Lloyd GJ, Lau PCK (1997). Gluthion S – Transferase Encoding Gene as. Potential Probe for Environmental Bacterial Isolates Capable of. Degrading Polycyclic Aromatic Hydrocarbons. Appl. Environ. Microbiol. 63(8): 3286–3290. Murphy HF (1929). Some effects of crude petroleum on nitrate production.

  16. Role of Heterotrophic Bacteria in Marine Ecological Processes

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.

    and Karl, 1984; Robarts et al.,1993), it is the most widely used method for estimating bacterial production (Kemp et al., 1993). The bacterial production ranges from as low as 5.5 to as high as 285 mg C m-2 d-1 in the euphotic zones of the world oceans... Production Growth rates (m) (mg C m-2-2-2-2-2) (mg C m-2-2-2-2-2d-1-1-1-1-1) Arabian Sea 74 1148 257 0.18 N. Atlantic 50 1000 275 0.30 Equatorial Pacific, spring 120 1467 176 0.12 Sub North Pacific 80 1142 257 0.18 Ross Sea 45...

  17. Temporal variations in the abundance of heterotrophic bacteria in ...

    African Journals Online (AJOL)

    Statistical analysis of the data revealed that several Physico-chemical parameters (Lab pH, air temperature, water temperature, conductivity, rainfall, BOD, CO2, alkalinity, hardness, ca, Mg, PO4, CL2, NO3, SO4, Total Anion of Strong Acid, Total Solids, Total Dissolved Solids and Total Suspended Solids) (p < .05) were ...

  18. Temporal variations in the abundance of heterotrophic bacteria in ...

    African Journals Online (AJOL)

    Administrator

    Aquatic Microbial Ecology Research Laboratory, Department of Studies in Zoology, University of Mysore,. Manasagangotri, Mysore- 570 006, Karnataka State, India ... grown on the artificial nutrient agar media and the comparative proportion in groundwater under the industrial area was 3.60 and 4.69% in the domestic area.

  19. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard

    2005-01-01

    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  20. Heterotrophic nitrification and aerobic denitrification bacterium ...

    African Journals Online (AJOL)

    A special strain of Alcaligenes denitrificans, designated as WY200811, with heterotrophic nitrification and aerobic denitrification ability was novel isolated from an anaerobic/anoxic/oxic treatment system and characterized. The average ammonia nitrogen (NH4+-N) and TN (total nitrogen) removal rates of the strain were ...

  1. Shrubs stimulate heterotrophic respiration in arctic soils

    Science.gov (United States)

    Phillips, C. A.; Wurzburger, N.

    2016-12-01

    The response of arctic ecosystems to global change will have critical effects on future climate. Climate warming has already triggered the expansion of shrubs across tundra, raising questions about how shrubs will affect ecosystem carbon balance. Shrub litter quality and mycorrhizal symbionts may accelerate the activity of soil microorganisms that facilitate the release of large stores of soil carbon. We investigated how shrubs affect the activity of soil microorganisms by creating soil mesocosms from areas with and without shrub species as dominants of the plant community in arctic Alaska. We hypothesized that relative to their non-shrub counterparts, heterotrophic respiration of shrub soils would: (1) be greater, (2) demonstrate greater response to additions of shrub litter, and (3) be less nutrient limited. We created mesocosms with root-free soils at constant moisture and temperature, and quantified basal heterotrophic soil respiration rates, and the response of respiration to litter and nutrient inputs in a series of laboratory experiments inputs. (1) We found that the presence of shrubs generally produced higher rates of basal soil respiration in both horizons, suggesting that shrubs stimulate microbial activity. (2) Litter addition increased respiration across both horizons with no differences in response between shrub and non-shrub soils. (3) N additions did not increase heterotrophic respiration, but P and N+P additions induced a short respiratory pulse in all soils, suggesting mild P limitation. Collectively, these findings provide evidence that shrubs stimulate heterotrophic microbial activity to enhance carbon loss, but generate new questions about the mechanisms driving these patterns.

  2. Models for the pigment organization in the chlorosomes of photosynthetic bacteria. Diastereoselective control of in-vitro bacteriochlorophyll c[sub s] aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Chiefari, J.; Griebenow, K.; Griebenow, N.; Balaban, T.; Silvan, H.; Alfred, R.; Schaffner, K. (Max-Planck-Inst. fuer Strahlenchemie, Muelheim an der Rahr (Germany))

    1995-01-26

    The (3[sup 1]R)- and (3[sup 1]S)-epimeric stearyl bacteriochlorophyllides c (BChl-c[sub s]) are contained, together with other bacteriochlorophyllide-c esters, in the form of large aggregates in the chlorosomes, the light-harvesting antennae, of the photosynthetic green bacterium Chloroflexus aurantiacus. Their dynamic in-vitro aggregation was studied in dichloromethane and chloroform solutions by FT-IR, NMR, and UV-vis spectroscopy. Aggregate formation was spontaneous with both the separate epimers and the (R:S) mixture of ca. 2:1 which occurs naturally. A large chlorosome-type aggregate, of type II, possesses a piggy-back' stack geometry and involves coordination of the C-3[sup 1] hydroxy group of one BChl-c molecule to the central magnesium atom of a second BChl-c, with simultaneous hydrogen bonding to the C-13[sup 1] keto group of a third molecule, i.e., Mg-O-H-O-C <, as the two main interactions. The type II aggregate is in equilibrium with the monomers which, in turn, reversibly form dimers and relatively small oligomers (type I) thereof. The extent of aggregation and the ratio of type I to type II aggregates depend on the nature of the solvent, the concentration of BChl-C[sub 2], and the epimeric composition. In particular, the (3[sup 1]S) epimer preferentially gives type II aggregates whereas (3[sup 1]R) and the (R $PLU S) mixture tend to form preferentially type I oligomers. 44 refs., 11 figs., 2 tabs.

  3. Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev.

    Science.gov (United States)

    Rüger, H J; Höfle, M G

    1992-01-01

    Two new species of aerobic, gram-negative, peritrichously flagellated or nonmotile marine bacteria usually forming star-shaped aggregates were isolated from northeastern Atlantic Ocean bottom sediments. These organisms resembled eight star-shaped-aggregate-forming bacterial species from the Baltic Sea originally ascribed to the genus Agrobacterium but not included on the Approved Lists of Bacterial Names because of their questionable relationships to true agrobacteria. These two sets of star-shaped-aggregate-forming bacteria were compared by means of phenotypic data, DNA base compositions, DNA-DNA relatedness, and one-dimensional electrophoretic analysis of low-molecular-weight RNAs (5S rRNA and tRNA). According to the results of genotyping, the northeastern Atlantic Ocean isolates and three of the Baltic Sea species formed a group of closely related bacteria that could not be excluded from the genus Agrobacterium with certainty. Until more genotypic data are available, these five marine species are regarded as a distinct subdivision of the genus Agrobacterium consisting of Agrobacterium atlanticum sp. nov. (type strain, 1480T = DSM 5823T), A. meteori sp. nov. (type strain, 1513T = DSM 5824T), A. ferrugineum sp. nov. nom. rev. emend. (type strain, ATCC 25652T), A. gelatinovorum sp. nov. nom. rev. emend. (type strain, ATCC 25655T), and A. stellulatum sp. nov. nom. rev. emend. (type strain, ATCC 15215T). "A. aggregatum" proved to be a later subjective synonym of A. stellulatum, which had priority. The remaining four Baltic Sea species, "A. agile," "A. kieliense," "A. luteum," and "A. sanguineum," could not be placed in the new subdivision of Agrobacterium.

  4. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  5. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.

    Science.gov (United States)

    Perreault, Nancy N; Greer, Charles W; Andersen, Dale T; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G

    2008-11-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.

  6. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae.

    Directory of Open Access Journals (Sweden)

    Ana Patrícia Graça

    Full Text Available Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA, Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus, fish pathogen (Aliivibrio fischeri and environmentally relevant bacteria (Vibrio harveyi. The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%, Vibrio (22.7% and Bacillus (7.6%. Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I and nonribosomal peptide synthetases (NRPSs genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.

  7. Antimicrobial Activity of Heterotrophic Bacterial Communities from the Marine Sponge Erylus discophorus (Astrophorida, Geodiidae)

    Science.gov (United States)

    Graça, Ana Patrícia; Bondoso, Joana; Gaspar, Helena; Xavier, Joana R.; Monteiro, Maria Cândida; de la Cruz, Mercedes; Oves-Costales, Daniel; Vicente, Francisca; Lage, Olga Maria

    2013-01-01

    Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA), Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus), fish pathogen (Aliivibrio fischeri) and environmentally relevant bacteria (Vibrio harveyi). The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%), Vibrio (22.7%) and Bacillus (7.6%). Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I) and nonribosomal peptide synthetases (NRPSs) genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds. PMID:24236081

  8. Adhesion and surface-aggregation of Candida albicans from saliva on acrylic surfaces with adhering bacteria as studied in a parallel plate flow chamber

    NARCIS (Netherlands)

    Millsap, KW; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    Adhesive interactions between Candida albicans and oral bacteria are generally thought to play a crucial role in the microbial colonization of denture acrylic, which may lead to denture stomatitis. This study investigated the influence of saliva on the adhesive interactions between C. albicans and

  9. Microrganismos heterotróficos mesófilos e bactérias do grupo do Bacillus cereus em leite integral submetido a ultra alta temperatura Mesophilic heterotrophic microorganisms and spore forming bacteria from Bacillus cereus group in ultra high temperature milk

    Directory of Open Access Journals (Sweden)

    A.M.C. Vidal-Martins

    2005-06-01

    Full Text Available Cento e dez amostras de 11 diferentes marcas de leite ultra alta temperatura (UAT, comercializadas em São José do Rio Preto - SP, foram submetidas à contagem de microrganismos heterotróficos mesófilos viáveis e à pesquisa de bactérias do grupo do Bacillus cereus. A população de microrganismos mesófilos variou de ´10² UFC/ml a >1,0´10(6 UFC/ml. Bactérias do grupo do Bacillus cereus foram verificadas em 13 (11,8% amostras. Os resultados evidenciaram elevada população de microrganismos indicadores mesófilos.One hundred and ten ultra high temperature (UHT milk samples, from 11 different brands retailed in São José do Rio Preto - SP were analysed for mesophilic heterotrophic microorganisms counting, as well as for the presence of Bacillus cereus. Mesophilic heterotrophic microorganisms ranged from ´10² CFU/ml to >1.0´10(6 CFU/ml. Bacillus cereus was detected in 13 (11.8% samples. The results demonstrated high countings of mesophilic microorganisms.

  10. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Science.gov (United States)

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  11. Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches.

    Science.gov (United States)

    Pepe, O; Sannino, L; Palomba, S; Anastasio, M; Blaiotta, G; Villani, F; Moschetti, G

    2010-01-01

    The Campania region in southern Italy is noted for its large number of churches that harbour invaluable frescoes, dated from the beginnings of the 4th up to the 13th century. The wall paintings represent an integral part of the monuments, and their deterioration constitutes a potentially significant loss for the world's cultural heritage. Heterotrophic microorganisms such as bacteria and mould can grow on the surface of paintings that contain a wide range of organic and inorganic constituents, and provide different ecological niches that are exploited by a large variety of microbial species. We isolated and identified the heterotrophic microorganisms found in the biodegraded medieval wall paintings of seven historical churches in Campania. The paintings showed different levels of microbial contamination. Microbiological analysis of different paintings gave an overview of the different heterotrophic microorganisms. Bacteria and moulds were isolated from 77% of the sampling points analysed, in which the most common type of alteration was discolouration often associated with detachment of the paint layer. Bacterial strains were identified by 16S rRNA partial sequence analysis. The Bacillus genus was isolated in all churches, even though the type of species was variable, whereas all actinomycetes strains, isolated in five of the seven churches analysed, could be referred to the Streptomyces genus. The similarity of the sequences analysed of the 42 Bacillus spp., 2 Paenibacillus spp. and reference strains of different species showed that these bacteria differentiated in 14 groups. The most frequently occurring taxa were most closely related to Bacillus cereus/thurigiensis/anthracis and Bacillus pumilus groups. Thirteen Streptomyces spp. were differentiated in seven groups on the basis of neighbor-joining analysis of 16S rRNA. Fungi belonging to the genera Penicillium, Aspergillus, Fusarium and Alternaria were also isolated from deteriorated wall paintings.

  12. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    Science.gov (United States)

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment.

  13. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    Directory of Open Access Journals (Sweden)

    David Barrie Johnson

    2012-09-01

    Full Text Available Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC. Glycolic acid was identified as a significant component (12- 14% of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days. Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella, and mannitol and glucose (Euglena. These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp. though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate- reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed.

  14. Significant N₂ fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries.

    Science.gov (United States)

    Bentzon-Tilia, Mikkel; Traving, Sachia J; Mantikci, Mustafa; Knudsen-Leerbeck, Helle; Hansen, Jørgen L S; Markager, Stiig; Riemann, Lasse

    2015-02-01

    Nitrogen (N) fixation is fueling planktonic production in a multitude of aquatic environments. In meso- and poly-haline estuaries, however, the contribution of N by pelagic N₂ fixation is believed to be insignificant due to the high input of N from land and the presumed absence of active N₂-fixing organisms. Here we report N₂ fixation rates, nifH gene composition and nifH gene transcript abundance for key diazotrophic groups over 1 year in two contrasting, temperate, estuarine systems: Roskilde Fjord (RF) and the Great Belt (GB) strait. Annual pelagic N₂ fixation rates averaged 17 and 61 mmol N m(-2) per year at the two sites, respectively. In RF, N₂ fixation was mainly accompanied by transcripts related to heterotrophic (for example, Pseudomonas sp.) and photoheterotrophic bacteria (for example, unicellular diazotrophic cyanobacteria group A). In the GB, the first of two N₂ fixation peaks coincided with a similar nifH-expressing community as in RF, whereas the second peak was synchronous with increased nifH expression by an array of diazotrophs, including heterotrophic organisms as well as the heterocystous cyanobacterium Anabaena. Thus, we show for the first time that significant planktonic N₂ fixation takes place in mesohaline, temperate estuaries and that the importance of heterotrophic, photoheterotrophic and photosynthetic diazotrophs is clearly variable in space and time.

  15. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries

    Science.gov (United States)

    Bentzon-Tilia, Mikkel; Traving, Sachia J; Mantikci, Mustafa; Knudsen-Leerbeck, Helle; Hansen, Jørgen LS; Markager, Stiig; Riemann, Lasse

    2015-01-01

    Nitrogen (N) fixation is fueling planktonic production in a multitude of aquatic environments. In meso- and poly-haline estuaries, however, the contribution of N by pelagic N2 fixation is believed to be insignificant due to the high input of N from land and the presumed absence of active N2-fixing organisms. Here we report N2 fixation rates, nifH gene composition and nifH gene transcript abundance for key diazotrophic groups over 1 year in two contrasting, temperate, estuarine systems: Roskilde Fjord (RF) and the Great Belt (GB) strait. Annual pelagic N2 fixation rates averaged 17 and 61 mmol N m−2 per year at the two sites, respectively. In RF, N2 fixation was mainly accompanied by transcripts related to heterotrophic (for example, Pseudomonas sp.) and photoheterotrophic bacteria (for example, unicellular diazotrophic cyanobacteria group A). In the GB, the first of two N2 fixation peaks coincided with a similar nifH-expressing community as in RF, whereas the second peak was synchronous with increased nifH expression by an array of diazotrophs, including heterotrophic organisms as well as the heterocystous cyanobacterium Anabaena. Thus, we show for the first time that significant planktonic N2 fixation takes place in mesohaline, temperate estuaries and that the importance of heterotrophic, photoheterotrophic and photosynthetic diazotrophs is clearly variable in space and time. PMID:25026373

  16. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge.

    Science.gov (United States)

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Bajic, Vladimir; Qian, Pei-Yuan

    2014-11-01

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Abundance and distribution of phototrophic and heterotrophic nano- and microplankton in the southern Ross Sea

    Science.gov (United States)

    Dennett, Mark R.; Mathot, Sylvie; Caron, David A.; Smith, Walker O.; Lonsdale, Darcy J.

    Phototrophic and heterotrophic nanoplankton (PNAN, HNAN; 2-20 μm protists) and microplankton (PMIC, HMIC; 20-200 μm protists and micrometazoa) are major taxa involved in partitioning carbon and energy within the pelagic food web. In the Ross Sea, Antarctica, plankton biomass appears to be controlled by the seasonal recession of the sea ice and the formation of the Ross Sea polynya during the short austral spring-summer period. During four cruises in 1996-1997 within the southern Ross Sea as part of the US JGOFS program, we determined the abundances and biomasses of phototrophic and heterotrophic nanoplankton and microplankton primarily along a transect at 76°30'S. The colonial prymnesiophyte Phaeocystis antarctica (excluding mucus carbon) contributed significantly to community structure during both non-bloom and bloom periods (˜25% and 90%, respectively, of microbial biomass). However, shifts occurred both seasonally and spatially between a diatom/heterotrophic dinoflagellate and a colonial P. antarctica-dominated assemblage. While nanoplankton biomass varied <50% during any particular cruise, PNAN and HNAN biomass ranged more than three orders of magnitude among the four cruises (0.1-359 and 1.5-268 mmol C m -2, respectively). Cruise averages of PMIC biomass ranged from 2.5 to 530 mmol C m -2, and a maximum biomass of 1530 mmol C m -2 was observed during the bloom of colonial P. antarctica in summer. Average heterotrophic biomass was <30% of the total microbial biomass (excluding bacteria) from early austral spring through summer. This value rose to ≈87% in autumn following the decline and disappearance of P. antarctica. The contribution of total nano- and microplankton biomass to POC in the upper 60 m over the three sampled seasons varied from 7% to 52.4% with an overall average of 21.8% for all four cruises which is comparable to contributions of these assemblages in other oceans even with the strong seasonal dominance of P. antarctica.

  19. Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests

    Science.gov (United States)

    Perakis, Steven; Pett-Ridge, Julie C.; Catricala, Christina E.

    2017-01-01

    Multiple nutrient cycles regulate biological nitrogen (N) fixation in forests, yet long-term feedbacks between N-fixation and coupled element cycles remain largely unexplored. We examined soil nutrients and heterotrophic N-fixation across a gradient of 24 temperate conifer forests shaped by legacies of symbiotic N-fixing trees. We observed positive relationships among mineral soil pools of N, carbon (C), organic molybdenum (Mo), and organic phosphorus (P) across sites, evidence that legacies of symbiotic N-fixing trees can increase the abundance of multiple elements important to heterotrophic N-fixation. Soil N accumulation lowered rates of heterotrophic N-fixation in organic horizons due to both N inhibition of nitrogenase enzymes and declines in soil organic matter quality. Experimental fertilization of organic horizon soil revealed widespread Mo limitation of heterotrophic N-fixation, especially at sites where soil Mo was scarce relative to C. Fertilization also revealed widespread absence of P limitation, consistent with high soil P:Mo ratios. Responses of heterotrophic N-fixation to added Mo (positive) and N (negative) were correlated across sites, evidence that multiple nutrient controls of heterotrophic N-fixation were more common than single-nutrient effects. We propose a conceptual model where symbiotic N-fixation promotes coupled N, C, P, and Mo accumulation in soil, leading to positive feedback that relaxes nutrient limitation of overall N-fixation, though heterotrophic N-fixation is primarily suppressed by strong negative feedback from long-term soil N accumulation.

  20. Detecting nonculturable bacteria in the active mycorrhizal zone of the pine mushroom Tricholoma matsutake.

    Science.gov (United States)

    Kataoka, Ryota; Siddiqui, Zaki Anwar; Kikuchi, Junichi; Ando, Masaki; Sriwati, Rina; Nozaki, Ai; Futai, Kazuyoshi

    2012-04-01

    The fungus Tricholoma matsutake forms an ectomycorrhizal relationship with pine trees. Its sporocarps often develop in a circle, which is commonly known as a fairy ring. The fungus produces a solid, compact, white aggregate of mycelia and mycorrhizae beneath the fairy ring, which in Japanese is called a 'shiro'. In the present study, we used soil dilution plating and molecular techniques to analyze the bacterial communities within, beneath, and outside the T. matsutake fairy ring. Soil dilution plating confirmed previous reports that bacteria and actinomycetes are seldom present in the soil of the active mycorrhizal zone of the T. matsutake shiro. In addition, the results showed that the absence of bacteria was strongly correlated with the presence of T. matsutake mycorrhizae. The results demonstrate that bacteria, especially aerobic and heterotrophic forms, and actinomycetes, are strongly inhibited by T. matsutake. Indeed, neither bacteria nor actinomycetes were detected in 11.3% of 213 soil samples from the entire shiro area by culture-dependent methods. However, molecular techniques demonstrated that some bacteria, such as individual genera of Sphingomonas and Acidobacterium, were present in the active mycorrhizal zone, even though they were not detected in soil assays using the dilution plating technique.

  1. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria.

    Science.gov (United States)

    Bruckner, Christian G; Rehm, Charlotte; Grossart, Hans-Peter; Kroth, Peter G

    2011-04-01

    Phototrophic epilithic biofilms harbour a distinct assemblage of heterotrophic bacteria, cyanobacteria and photoautotrophic algae. Secretion of extracellular polymeric substances (EPS) by these organisms and the physicochemical properties of the EPS are important factors for the development of the biofilms. We have isolated representative diatom and bacteria strains from epilithic biofilms of Lake Constance. By pairwise co-cultivating these strains we found that diatom growth and EPS secretion by diatoms may depend on the presence of individual bacteria. Similar results were obtained after addition of spent bacterial medium to diatom cultures, suggesting that soluble substances from bacteria have an impact on diatom physiology. While searching for putative bacterial signal substances, we found that concentrations of various dissolved free amino acids (DFAA) within the diatom cultures changed drastically during co-cultivation with bacteria. Further, the secretion of extracellular carbohydrates and proteins can be influenced by bacteria or their extracellular substances. We have performed mass spectrometric peptide mapping to identify proteins which are secreted when co-cultivating the diatom Phaeodactylum tricornutum Bohlin and Escherichia coli. The identified proteins are possibly involved in signalling, extracellular carbohydrate modification and uptake, protein and amino acid modification, and cell/cell aggregation of diatom and bacteria strains. Our data indicate that diatom-bacteria biofilms might be regulated by a complex network of chemical factors involving EPS, amino acid monomers and other substances. Thus interactions with bacteria can be considered as one of the main factors driving biofilm formation by benthic diatoms. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Autotrophic and heterotrophic characteristics in a polluted tropical estuarine complex

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam; Ramaiah, N.; Chandramohan, D.; Nair, V.R.

    Some species of microbial heterotrophic communities (14C glucose uptake and respiration; viable nad total bacterial numbers) and autotrophic communities (primary production rate, chlorophyll a, phytoplankton cell counts and generic diversity) were...

  3. Initial nitrogen enrichment conditions determines variations in nitrogen substrate utilization by heterotrophic bacterial isolates.

    Science.gov (United States)

    Ghosh, Suchismita; Ayayee, Paul A; Valverde-Barrantes, Oscar J; Blackwood, Christopher B; Royer, Todd V; Leff, Laura G

    2017-04-04

    The nitrogen (N) cycle consists of complex microbe-mediated transformations driven by a variety of factors, including diversity and concentrations of N compounds. In this study, we examined taxonomic diversity and N substrate utilization by heterotrophic bacteria isolated from streams under complex and simple N-enrichment conditions. Diversity estimates differed among isolates from the enrichments, but no significant composition were detected. Substrate utilization and substrate range of bacterial assemblages differed within and among enrichments types, and not simply between simple and complex N-enrichments. N substrate use patterns differed between isolates from some complex and simple N-enrichments while others were unexpectedly similar. Taxonomic composition of isolates did not differ among enrichments and was unrelated to N use suggesting strong functional redundancy. Ultimately, our results imply that the available N pool influences physiology and selects for bacteria with various abilities that are unrelated to their taxonomic affiliation.

  4. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria

    NARCIS (Netherlands)

    Ilyas, Sadia; Anwar, Munir A.; Niazi, Shahida B.; Ghauri, M. Afzal

    The present work was aimed at studying the bioleachability of metals from electronic scrap by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans and an unidentified acidophilic

  5. [Study and evaluation of effect on the parameters of heterotrophic plate counts in drinking water in distribution networks].

    Science.gov (United States)

    Wu, Qing; Zhao, Xinhua

    2007-05-01

    To study of effect on conditions and parameters of heterotrophic plate counts. chlorine, turbidity, total ferric, total organic carbon etc of distribution network were determinted in a northern city in China. HPC (heterotrophic plate counts) got from R2A medium with longer culture time can reflect the real situation of bacteria in drinking water well. Water temperature was positively related with HPC. Free chlorine was better negatively related with HPC. The results of turbidity and total ferric were better positively related with HPC. TOC content was positively related with HPC. There are many parameters affecting dringing water quality especially in the residential area with complex water power condition, it can't be represented by one parameter and it should be thought about with all parameters synthetically.

  6. Effect of hydrostatic pressure on prokaryotic heterotrophic activity in the dark ocean

    Science.gov (United States)

    Amano, C.; Sintes, E.; Utsumi, M.; Herndl, G. J.

    2016-02-01

    The pioneering work of ZoBell in the 1940s revealed the existence of piezophilic bacteria in the deep ocean, capable of growing only under high-pressure conditions. However, it is still unclear to what extent the bulk prokaryotic community inhabiting the deep ocean is affected by hydrostatic pressure. Essentially, the fractions of the bulk microbial community being piezophilic, piezotolerant and piezosensitive remain unknown. To determine the influence of hydrostatic pressure on the heterotrophic microbial activity, an in situ microbial incubator (ISMI) was deployed in the North Atlantic Ocean at depths down to 3200 m. Natural prokaryotic communities were incubated under both in situ hydrostatic pressure and atmospheric pressure conditions at in situ temperature following the addition of 5 nM 3H-leucine. Bulk leucine incorporation rates and single cell activity assessed by microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) were determined. Prokaryotic leucine incorporation rates obtained under in situ pressure conditions were generally lower than under atmospheric pressure conditions, suggesting that hydrostatic pressure inhibits overall heterotrophic activity in the deep sea. The ratio of leucine incorporation rates obtained under in situ pressure conditions to atmospheric pressure conditions decreased with depth for the bulk prokaryotic community. Moreover, MICRO-CARD-FISH revealed that specific prokaryotic groups are apparently more affected by hydrostatic pressure than others. Taken together, our results indicate varying sensitivities of prokaryotic groups to hydrostatic pressure.

  7. Vertical transmission and successive location of symbiotic bacteria during embryo development and larva formation in Corticium candelabrum (Porifera: Demospongiae)

    NARCIS (Netherlands)

    Caralt Bosch, de S.; Uriz, M.J.; Wijffels, R.H.

    2007-01-01

    This study reports on the transfer of heterotrophic bacteria from parental tissue to oocytes in the Mediterranean bacteriosponge Corticium candelabrum (Homosclerophorida) and the description of the successive locations of the microsymbionts during embryo development through transmission and scanning

  8. Identification of nif genes of heterotrophic and endophytic ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... Identification of nif genes of heterotrophic and endophytic diazotrophs associated with rice (Oryza sativa L.,) by targeted DNA finger printing. T. C. Kumari Sugitha and K. Kumar*. Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641 003 Coimbatore, India. Accepted 30 May, 2008.

  9. Responses of heterotrophs in polyculture ponds under various ...

    African Journals Online (AJOL)

    The study was carried out to determine the composition and responses of heterotrophs that received varying levels of chicken droppings in polyculture ponds between January and December 2005. Data were analyzed using descriptive statistics, Chi square test and ANOVA. A total of thirty-seven (37) taxa was recorded with ...

  10. Experimental determination of the heterotroph anoxic yield in anoxic ...

    African Journals Online (AJOL)

    This paper describes experimental research to directly quantify the ordinary heterotrophic organism (OHO) cell yield coefficient under anoxic and aerobic conditions with real wastewater as substrate. Until recently these two values were assumed equal in activated sludge models, despite theoretical predictions that the ...

  11. Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth

    NARCIS (Netherlands)

    Stockar, von U.; Marison, I.; Janssen, M.G.J.; Patino, R.

    2011-01-01

    A simple stoichiometric model is proposed linking the biomass yield to the enthalpy and Gibbs energy changes in chemo-heterotrophic, mixotrophic, and photo-autotrophic microbial growth. A comparison with calorimetric experiments on the algae Chlorella vulgaris and Chlorella sorokiniana confirmed the

  12. Lipid Accumulation Mechanisms in Auto- and Heterotrophic Microalgae.

    Science.gov (United States)

    Chen, Hao-Hong; Jiang, Jian-Guo

    2017-09-20

    Microalgae lipids have attracted great attention in the world as a result of their potential use for biodiesel productions. Microalgae are cultivated in photoautotrophic conditions in most cases, but several species are able to grow under heterotrophic conditions, in which microalgae are cultivated in the dark where the cell growth and reproduction are supported by organic carbons. This perspective is covering the related studies concerning the difference between hetero- and autotrophic cultivation of microalgae. The auto- and heterotrophic central carbon metabolic pathways in microalgae are described, and the catalyzing reactions of several key metabolic enzymes and their corresponding changes in the protein level are summarized. Under adverse environmental conditions, such as nutrient deprivation, microalgae have the ability to highly store energy by forming triacylglycerol (TAG), the reason for which is analyzed. In addition, the biosynthesis of fatty acids and TAGs and their difference between auto- and heterotrophic conditions are compared at the molecular level. The positive regulatory enzymes, such as glucose transporter protein, fructose-1,6-bisphosphate aldolase, and glycerol-3-phosphate dehydrogenase, and the negative regulation enzymes, such as triose phosphate isomerase, played a crucial role in the lipid accumulation auto- and heterotrophic conditions.

  13. Comparative effects of autotrophic and heterotrophic growth on ...

    African Journals Online (AJOL)

    The free radical scavenging activity (RSA) was significantly higher for autotrophic cells than heterotrophic only at low concentrations (25 and 50 μl) of algal extract, but no significant difference was recorded at high concentration (100 μl). This result indicates non parallel relationship between the tested vitamins and RSA ...

  14. Microbial aggregates in anaerobic wastewater treatment.

    Science.gov (United States)

    Kosaric, N; Blaszczyk, R

    1990-01-01

    The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent

  15. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S [Friedrich Schiller University Jena, Jena Germany; Chourey, Karuna [ORNL; REICHE, M [Friedrich Schiller University Jena, Jena Germany; Nietzsche, S [Friedrich Schiller University Jena, Jena Germany; Shah, Manesh B [ORNL; Hettich, Robert {Bob} L [ORNL; Kusel, K [Friedrich Schiller University Jena, Jena Germany

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  16. Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Pellicer i Nàcher, Carles; Petersen, Morten S.

    2017-01-01

    Nitrous oxide (N2O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N2O emissions, often including AOB as the main N2O producer. Several...... model structures have been proposed without consensus calibration procedures. Here, we present a new experimental design that was used to calibrate AOB-driven N2O dynamics of a mixed culture. Even though AOB activity was favoured with respect to HB, oxygen uptake rates indicated HB activity. Hence......, rigorous experimental design for calibration of autotrophic N2O production from mixed cultures is essential. The proposed N2O production pathways were examined using five alternative process models confronted with experimental data inferred. Individually, the autotrophic and heterotrophic denitrification...

  17. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    Science.gov (United States)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  18. Responses of heterotrophic bacterial populations to pH changes in coal ash effluent

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, R.K. (Univ. of Texas, Houston); Cherry, D.S.; Singleton, F.L.

    1978-08-01

    Total culturable heterotrophic bacteria in a coal ash basin and drainage system were monitored over a period of two years. In the first year heavy (bottom) ash was sluiced to the basin resulting in a pH of 6.5. During the second year fly ash was precipitated and added to the sluice lowering the basin pH to 4.6. Sulfate concentrations during 1975 ranged from 16 to 73 ppM (mean 33) and in 1976 from 44 to 88 ppM (mean 72). Mean annual basin temperatures were 28.8 and 26.0/sup 0/C, respectively. Approximately 1500 m in the receiving swamp below the basin, mean pH and temperature were 6.8 and 22.2/sup 0/C for the first year, and 5.4 and 22.1/sup 0/C for the second. Total culturable bacteria and diversity (colony types) were reduced at all sampling stations by 44 and 30%, respectively, whereas the percentage of the population comprised of chromagenic bacteria increased by 51% at the lower pH. Data indicated the pH had a greater effect than did water temperature when temperature was within the range of 15 to 25/sup 0/C. The predominant genera within the system in the first year were Bacillus, Sarcina, Achromobacter, Flavobacterium, and Pseudomonas. In the second year, at the lower pH, predominant genera were Pseudomonas, Flavobacterium, Chromobacterium, Bacillus, and Brevibacterium.

  19. Vertical transmission and successive location of symbiotic bacteria during embryo development and larva formation in Corticium candelabrum (Porifera: Demospongiae)

    OpenAIRE

    Caralt Bosch, de, S.; Uriz, M. J.; Wijffels, R.H.

    2007-01-01

    This study reports on the transfer of heterotrophic bacteria from parental tissue to oocytes in the Mediterranean bacteriosponge Corticium candelabrum (Homosclerophorida) and the description of the successive locations of the microsymbionts during embryo development through transmission and scanning electron microscopy. Eight different types of symbiotic bacteria are described morphologically. These eight bacteria morphotypes are found in both adult individuals and larvae. Sym...

  20. Interactions between Diatoms and Bacteria

    Science.gov (United States)

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  1. Interactions between diatoms and bacteria.

    Science.gov (United States)

    Amin, Shady A; Parker, Micaela S; Armbrust, E Virginia

    2012-09-01

    Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.

  2. Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms.

    Science.gov (United States)

    Park, Beom Gi; Kim, Minsuk; Kim, Joonwon; Yoo, Heewang; Kim, Byung-Gee

    2017-01-01

    Heterotrophic oleaginous microorganisms continue to draw interest as they can accumulate a large amount of lipids which is a promising feedstock for the production of biofuels and oleochemicals. Nutrient limitation, especially nitrogen limitation, is known to effectively trigger the lipid production in these microorganisms. For the aim of developing improved strains, the mechanisms behind the lipid production have been studied for a long time. Nowadays, system-level understanding of their metabolism and associated metabolic switches is attainable with modern systems biology tools. This work reviews the systems biology studies, based on (i) top-down, large-scale 'omics' tools, and (ii) bottom-up, mathematical modeling methods, on the heterotrophic oleaginous microorganisms with an emphasis on further application to metabolic engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Isolation and Characterization of Hydrocarbon-utilizing Bacteria from ...

    African Journals Online (AJOL)

    The isolation and characterization of hydrocarbon-utilizing bacteria from petroleum oily sludge collected from crude oil processing plant in Rivers State, Nigeria was carried out. Microbiological analysis of the sludge sample showed that the microbial load consisted average of 2.5 x 106 cfu/g total heterotrophic bacterial ...

  4. Nutrient and media recycling in heterotrophic microalgae cultures.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-02-01

    In order for microalgae-based processes to reach commercial production for biofuels and high-value products such as omega-3 fatty acids, it is necessary that economic feasibility be demonstrated at the industrial scale. Therefore, process optimization is critical to ensure that the maximum yield can be achieved from the most efficient use of resources. This is particularly true for processes involving heterotrophic microalgae, which have not been studied as extensively as phototrophic microalgae. An area that has received significant conceptual praise, but little experimental validation, is that of nutrient recycling, where the waste materials from prior cultures and post-lipid extraction are reused for secondary fermentations. While the concept is very simple and could result in significant economic and environmental benefits, there are some underlying challenges that must be overcome before adoption of nutrient recycling is viable at commercial scale. Even more, adapting nutrient recycling for optimized heterotrophic cultures presents some added challenges that must be identified and addressed that have been largely unexplored to date. These challenges center on carbon and nitrogen recycling and the implications of using waste materials in conjunction with virgin nutrients for secondary cultures. The aim of this review is to provide a foundation for further understanding of nutrient recycling for microalgae cultivation. As such, we outline the current state of technology and practical challenges associated with nutrient recycling for heterotrophic microalgae on an industrial scale and give recommendations for future work.

  5. Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: a laboratory incubation study.

    Directory of Open Access Journals (Sweden)

    Weiping Zhou

    Full Text Available The temperature sensitivity (Q10 of soil heterotrophic respiration (Rh is an important ecological model parameter and may vary with temperature and moisture. While Q10 generally decreases with increasing temperature, the moisture effects on Q10 have been controversial. To address this, we conducted a 90-day laboratory incubation experiment using a subtropical forest soil with a full factorial combination of five moisture levels (20%, 40%, 60%, 80%, and 100% water holding capacity--WHC and five temperature levels (10, 17, 24, 31, and 38°C. Under each moisture treatment, Rh was measured several times for each temperature treatment to derive Q10 based on the exponential relationships between Rh and temperature. Microbial biomass carbon (MBC, microbial community structure and soil nutrients were also measured several times to detect their potential contributions to the moisture-induced Q10 variation. We found that Q10 was significantly lower at lower moisture levels (60%, 40% and 20% WHC than at higher moisture level (80% WHC during the early stage of the incubation, but became significantly higher at 20%WHC than at 60% WHC and not significantly different from the other three moisture levels during the late stage of incubation. In contrast, soil Rh had the highest value at 60% WHC and the lowest at 20% WHC throughout the whole incubation period. Variations of Q10 were significantly associated with MBC during the early stages of incubation, but with the fungi-to-bacteria ratio during the later stages, suggesting that changes in microbial biomass and community structure are related to the moisture-induced Q10 changes. This study implies that global warming's impacts on soil CO2 emission may depend upon soil moisture conditions. With the same temperature rise, wetter soils may emit more CO2 into the atmosphere via heterotrophic respiration.

  6. Unusual rise in mercury-resistant bacteria in coastal environs

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; De, J.

    . When compared with other biota, the responses of heterotrophic bacteria to environmental changes are rapid and consistent [40]. Monitoring of bacterial responses is useful for assessing marine microbial heterotrophy [30] and environmental quality [31..., 41, 42]. Thus, for a long time now, many investigations have been using bacterial indicators (e.g., coliform groups) to assess effluent discharges in to coastal/ marine environment. Observations on occurrence and distribution of native bacteria...

  7. Role of inorganic carbon in lactic acid bacteria metabolism

    OpenAIRE

    Arsène-Ploetze, Florence; Bringel, Françoise

    2004-01-01

    International audience; Capnophiles are bacteria stimulated by bicarbonate and CO$_2$, the two major forms of inorganic carbon (IC) in physiological neutral liquids. Capnophiles are often pathogenic heterotrophs found in IC-rich ecological niches such as human cavities. Like capnophiles, the growth of lactic acid bacteria (LAB) such as Lactobacillus plantarum and Enterococcus faecalis is stimulated by IC. CO$_2$ or HCO$^{-}_3$ are substrates in carbamoyl phosphate (CP) synthesis and other car...

  8. Living bacteria in silica gels

    Science.gov (United States)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  9. Temporal dynamics of phytoplankton and heterotrophic protists at station ALOHA

    Science.gov (United States)

    Pasulka, Alexis L.; Landry, Michael R.; Taniguchi, Darcy A. A.; Taylor, Andrew G.; Church, Matthew J.

    2013-09-01

    Pico- and nano-sized autotrophic and heterotrophic unicellular eukaryotes (protists) are an important component of open-ocean food webs. To date, however, no direct measurements of cell abundance and biomass of these organisms have been incorporated into our understanding of temporal variability in the North Pacific Subtropical Gyre (NPSG). Based primarily on epifluoresence microscopy augmented with flow cytometry, we assessed the abundance and biomass of autotrophs and heterotrophic protists at Station ALOHA between June 2004 and January 2009. Autotrophic eukaryotes (A-EUKS) were more abundant in both the upper euphotic zone and deep chlorophyll maximum layer (DCML) during winter months, driven mostly by small flagellates. A higher ratio of A-EUKS to heterotrophic protists (A:H ratio) and a structural shift in A-EUKS to smaller cells during the winter suggests a seasonal minimum in grazing pressure. Although Prochlococcus spp. comprised between 30% and 50% of autotrophic biomass in both the upper and lower euphotic zone for most of the year, the community structure and seasonality of nano- and micro-phytoplankon differed between the two layers. In the upper layer, Trichodesmium spp. was an important contributor to total biomass (20-50%) in the late summer and early fall. Among A-EUKS, prymnesiophytes and other small flagellates were the dominant contributors to total biomass in both layers regardless of season (10-20% and 13-39%, respectively). Based on our biomass estimates, community composition was less seasonally variable in the DCML relative to the upper euphotic zone. In surface waters, mean estimates of C:Chl a varied with season—highest in the summer and lowest in the winter (means=156±157 and 89±32, respectively); however, there was little seasonal variability of C:Chl a in the DCML (100 m mean=29.9±9.8). Biomass of heterotrophic protists peaked in the summer and generally declined monotonically with depth without a deep maximum. Anomalous patterns

  10. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    Science.gov (United States)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  11. Nitrate and bromate removal by autotrophic and heterotrophic denitrification processes: batch experiments

    National Research Council Canada - National Science Library

    Sevgi Demirel; Ibrahim Bayhan

    2013-01-01

    .... At stoichiometrically sufficient methanol concentration as an external carbon source, nitrate and bromate were reduced to below US EPA drinking water limits in heterotrophic denitrification conditions...

  12. Genomics and ecophysiology of heterotrophic nitrogen-fixing bacteria isolated from estuarine surface water

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars Hestbjerg

    2015-01-01

    ABSTRACT The ability to reduce atmospheric nitrogen (N 2) to ammonia, known as N 2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N 2-fixing...

  13. Genomics and ecophysiology of heterotrophic nitrogen fixing bacteria isolated from estuarine surface water

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H.

    2015-01-01

    The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrop......The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing...

  14. Low affinity of heterotrophic bacteria to loose deposits in drinking water distribution systems

    NARCIS (Netherlands)

    Poças, A.; Napier, V.; Neto, C.; Ferreira, E.; Benoliel, M.J.; Rietveld, L.C.; Vreeburg, J.; Menaia, J.

    2015-01-01

    Loose deposits (LD) accumulate in drinking water distribution systems (DWDS) and may lead to tap water discoloration incidents upon resuspension. While inconvenient for the consumers and the water companies, discoloration may be accompanied by degradation of the microbiological quality of the

  15. Diversity and bioactive potentials of culturable heterotrophic bacteria from the surficial sediments of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Nilayangod, C.; Jasmin, C.; Vinothkumar, S.; Parameswaran, P.S.; Nair, S.

    extension products were purified following ethanol/EDTA/sodium acetate precipitation. The products were analysed on an Applied Biosystems ABI 3730xl DNA analyzer. Sequence data obtained were analysed and edited using Sequencher V4.10.1 (GeneCodes, USA...; Santos-Gandelman et al. 2014). Oxygen minimum zones (OMZ) are subsurface oceanic regions characterized by lethargic circulation of oxygen- poor waters (\\8 lM), high primary productivity, intense denitrification and high oxygen demand due to decaying...

  16. Final Report - Cycling of DOC and DON by novel heterotrophic and photoheterotrophic bacteria in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Royer, David F

    2011-06-10

    This report describes a collaboration between Lincoln University and the College of Earth, Ocean and Environment at the University of Delaware and was funded under the Department of Energy Biological Investigations – Ocean Margins Program (BI-OMP). The principal outcomes of the grant are (1) the opportunity for Lincoln students to participate in marine research at the University of Delaware, (2) the opportunity for participating students to present their research at a variety of scientific meetings, (3) the establishment of an environmental science major and a microbial ecology course at Lincoln, (4) the upgrade of research capabilities at Lincoln, and (5) the success of participating students in graduate and professional school.

  17. Resource Islands Predict the Distribution of Heterotrophic Bacteria in Chihuahuan Desert Soils

    OpenAIRE

    Herman, R P; Provencio, K. R.; Herrera-Matos, J.; Torrez, R. J.

    1995-01-01

    The resource island hypothesis predicts that soil resources such as nitrogen, phosphorus, and water will be distributed evenly in grasslands but have a patchy distribution focused around plants in shrublands. This hypothesis predicts that microorganism numbers will follow resources and be (i) evenly distributed in grasslands, (ii) concentrated around individual plants in shrublands, and (iii) higher where resources are higher when comparing the same vegetation type. This study enumerated tota...

  18. The uptake of organic compounds by heterotrophic bacteria in relation to growth rate

    OpenAIRE

    Sepers, Antonie B.j.

    1982-01-01

    La souche bactérienne HIS 42 a été cultivée dans un chemostat histidine-limité à des taux de croissance de 0,01, 0,05 et 0,1 h-1. Sur des échantillons de cette culture l'uptake de différents composés organiques a été mesuré avec des substrats 14C. La souche bactérienne HIS 53 a été cultivée dans un chemostat aspartate-limité a des taux de croissance de 0,003 et 0,001 h-1. Sur des échantillons de cette culture l'uptake de différents acides aminés a été déterminé par la mesure du taux de consom...

  19. Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the Indian Ocean

    National Research Council Canada - National Science Library

    Shiozaki, Takuhei; Ijichi, Minoru; Kodama, Taketoshi; Takeda, Shigenobu; Furuya, Ken

    2014-01-01

    .... We first examined the basin‐scale community structure of diazotrophs and their nitrogen fixation activity within the euphotic zone during the northeast monsoon period along about 69°E from 17°N to 20...

  20. SCALE FOR CONSTRUCTIVE AGGREGATION

    OpenAIRE

    Sujitha Mary; Alaguraj, V.; Krishnaswamy, S

    2014-01-01

    Aggregation is an inherent property of proteins. Both ordered and disordered proteins have a tendency to aggregate. Protein folding itself starts from the partially folded intermediates. The formation of native structures from these intermediates may be called as constructive aggregation. We describe the design of an intrinsic aggregation scale and its efficiency in finding hot-spots for constructive aggregation. In this paper, we are proposing a new aspect of aggregation, wherein...

  1. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lønborg, Christian

    2016-06-07

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  2. Effects of intense agricultural practices on heterotrophic processes in streams

    Energy Technology Data Exchange (ETDEWEB)

    Piscart, Christophe [Universite Claude Bernard Lyon 1 - Laboratoire d' Ecologie des Hydrosystemes Fluviaux - UMR CNRS 5023 - Campus Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Universite de Rennes 1 - UMR CNRS ECOBIO 6553 - Campus Beaulieu, 263 Av. du General Leclerc, 35042 Rennes Cedex (France)], E-mail: christophe.piscart@univ-lyon1.fr; Genoel, Romuald [Universite de Rennes 1 - UMR CNRS ECOBIO 6553 - Campus Beaulieu, 263 Av. du General Leclerc, 35042 Rennes Cedex (France); Doledec, Sylvain [Universite Claude Bernard Lyon 1 - Laboratoire d' Ecologie des Hydrosystemes Fluviaux - UMR CNRS 5023 - Campus Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Chauvet, Eric [Universite Paul Sabatier de Toulouse - Laboratoire EcoLab - UMR CNRS 5245, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Marmonier, Pierre [Universite Claude Bernard Lyon 1 - Laboratoire d' Ecologie des Hydrosystemes Fluviaux - UMR CNRS 5023 - Campus Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Universite de Rennes 1 - UMR CNRS ECOBIO 6553 - Campus Beaulieu, 263 Av. du General Leclerc, 35042 Rennes Cedex (France)

    2009-03-15

    In developed countries, changes in agriculture practices have greatly accelerated the degradation of the landscape and the functioning of adjacent aquatic ecosystems. Such alteration can in turn impair the services provided by aquatic ecosystems, namely the decomposition of organic matter, a key process in most small streams. To study this alteration, we recorded three measures of heterotrophic activity corresponding to microbial hydrolasic activity (FDA hydrolysis) and leaf litter breakdown rates with (k{sub c}) and without invertebrates (k{sub f}) along a gradient of contrasted agricultural pressures. Hydrolasic activity and k{sub f} reflect local/microhabitat conditions (i.e. nutrient concentrations and organic matter content of the sediment) but not land use while k{sub c} reflects land-use conditions. k{sub c}, which is positively correlated with the biomass of Gammaridae, significantly decreased with increasing agricultural pressure, contrary to the taxonomic richness and biomass of Trichoptera and Plecoptera. Gammaridae may thus be considered a key species for organic matter recycling in agriculture-impacted streams. - This study highlights the consequences of intensive agricultural practices on heterotrophic processes in streams along a strong gradient of perturbation.

  3. Sulfate-reducing bacteria from the Arabian Sea - their distribution in relation to thiosulfate-oxidising and heterotrophic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    - FormateStations Lactate Acctate Ethanol vale· nate Butyrate Lagoon-water (27yt 92.6 40.7 55.6 3.7 48.1 44.4 51.9 Lagoon-sediment (35) 97.0 40.0 42.9 28.6 28.6 40.0 51.4 Near shore-water (29) 75.9 55.2 13.8 51.7 24.1 24.1 55.2 Mud banks-vvater (8) 100.0 50..., however, which could not only oxidize propionate but also formate, lactate and ethanol, with concomitant sulfate-reduction, but have been included 628 BULLETIN OF MAR!?'," SCIENCE. VOL. 47, NO. J, 1990 under Desu/fococcus more for their physiology than...

  4. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments.

    Directory of Open Access Journals (Sweden)

    Xuexia Jiang

    Full Text Available Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB. In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III. Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating

  5. Microbial properties of soil aggregates created by earthworms and other factors: spherical and prismatic soil aggregates from unreclaimed post-mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Frouz, J.; Kristufek, V.; Liveckova, M.; van Loo, D.; Jacobs, P.; Van Hoorebeke, L. [Charles University of Prague, Prague (Czech Republic). Inst. of Environmental Studies

    2011-01-15

    Soil aggregates between 2 and 5 mm from 35- and 45-year-old unreclaimed post-mining sites near Sokolov (Czech Republic) were divided into two groups: spherical and prismatic. X-ray tomography indicated that prismatic aggregates consisted of fragments of claystone bonded together by amorphous clay and roots while spherical aggregates consisted of a clay matrix and organic fragments of various sizes. Prismatic aggregates were presumed to be formed by plant roots and physical processes during weathering of Tertiary mudstone, while earthworms were presumed to contribute to the formation of spherical aggregates. The effects of drying and rewetting and glucose addition on microbial respiration, microbial biomass, and counts of bacteria in these aggregates were determined. Spherical aggregates contained a greater percentage of C and N and a higher C-to-N ratio than prismatic ones. The C content of the particulate organic matter was also higher in the spherical than in the prismatic aggregates. Although spherical aggregates had a higher microbial respiration and biomass, the growth of microbial biomass in spherical aggregates was negatively correlated with initial microbial biomass, indicating competition between bacteria. Specific respiration was negatively correlated with microbial biomass. Direct counts of bacteria were higher in spherical than in prismatic aggregates. Bacterial numbers were more stable in the center than in the surface layers of the aggregates. Transmission electron microscopy indicated that bacteria often occurred as individual cells in prismatic aggregates but as small clusters of cells in spherical aggregates. Ratios of colony forming units (cultivatable bacteria) to direct counts were higher in spherical than in prismatic aggregates. Spherical aggregates also contained faster growing bacteria.

  6. Bacteria in non-woven textile filters for domestic wastewater treatment.

    Science.gov (United States)

    Spychała, Marcin; Starzyk, Justyna

    2015-01-01

    The objective of this study was preliminary identification of heterotrophic and ammonia oxidizing bacteria (AOB) cell concentration in the cross-sectional profile of geotextile filters for wastewater treatment. Filters of thicknesses 3.6 and 7.2 mm, made of non-woven textile TS20, were supplied with septic tank effluent and intermittently dosed and filtered under hydrostatic pressure. The cumulative loads of chemical oxygen demand (COD) and total solids were about 1.36 and 1.06 kg/cm2, respectively. The filters under analysis reached a relatively high removal efficiency for organic pollution 70-90% for biochemical oxygen demand (BOD5) and 60-85% for COD. The ammonia nitrogen removal efficiency level proved to be unstable (15-55%). Biomass samples for dry mass identification were taken from two regions: continuously flooded with wastewater and intermittently flooded with wastewater. The culturable heterotrophic bacteria were determined as colony-forming units (CFUs) on microbiological-selective media by means of the plate method. AOB and nitrite oxidizing bacteria (NOB) were examined using the FISH technique. A relatively wide range of heterotrophic bacteria was observed from 7.4×10(5)/cm2 to 3.8×10(6)/cm2 in geotextile layers. The highest concentration of heterotrophic bacteria (3.8×10(6)/cm2) was observed in the first layer of the textile filter. AOB were identified occasionally--about 8-15% of all bacteria colonizing the last filter layer, but occasionally much higher concentrations and ammonia nitrogen efficiency were achieved. Bacteria oxidizing nitrite to nitrate were not observed. The relation of total and organic fraction of biomass to culturable heterotrophic bacteria was also found.

  7. Heterotrophic bacterial growth and substrate utilization in the oligotrophic Eastern Mediterranean (Aegean Sea

    Directory of Open Access Journals (Sweden)

    U. CHRISTAKI

    2003-06-01

    Full Text Available Heterotrophic bacterial growth and substrate utilization were studied in March and September of 1997 in the oligotrophic Aegean Sea. Maximum velocities of ectoproteolytic activity (ectoaminopeptidase ctivity, EAP, as well as amino acid assimilation and respiration rates (AA-A, AA-R were measured along with bacterial production (protein synthesis. At the northern stations which are influenced by the input of the Black Sea waters, rates at 5 m depth of EAP, AA-A and bacterial production were 2 to 3 times higher than at southern stations. Influenced by the Black Sea water, mean bacterial numbers in the 0-100 m layer showed typical oceanic concentrations averaging 0.7 x 10 6 cells ml -1 . These values, along with low bacterial production rates (30 ng C l -1 h -1 implied slow growth for bacteria and/or that a large number among them were inactive. Neither bacterial abundance nor production were correlated with primary production. The percentage of amino acids respired was higher in September compared to March, particularly in the northern Aegean (mean 69 %. The enzyme kinetic analysis showed a biphasic model, the transition between the high and low affinity enzymes being obtained at 50 ΜM. Ectoaminopeptidase activity was weakly correlated with bacterial production (p < 0.05, but strongly correlated with respiration rates of amino acids (p < 0.001, suggesting that the substrate used was devoted to maintain energy requirements.

  8. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    Science.gov (United States)

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Heterotrophic free-living and particle-bound bacterial cell size in the ...

    Indian Academy of Sciences (India)

    Regression analysis revealed that 18% of the variation in mean heterotrophic free-living bacterial cell size was due to biological oxygen demand (BOD) in the river Arkavathy, 11% due to surface water velocity (SWV) in the river Cauvery and 11% due to temperature in the river Kapila. Heterotrophic particle-bound bacterial ...

  10. Shaping the Growth Behaviour of Bacterial Aggregates in Biofilms

    CERN Document Server

    Melaugh, Gavin; Kragh, Kasper Nørskov; Irie, Yasuhiko; Roberts, Aled; Bjarnsholt, Thomas; Diggle, Steve P; Gordon, Vernita; Allen, Rosalind J

    2015-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase meaning it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the role of aggregate shape, we find that the degree of spreading of an aggregate on a surface can play a key role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding bacterial cells is low, while initially rounded aggregates perform better when competition is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the...

  11. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring

    KAUST Repository

    Van Nevel, S.

    2017-02-08

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  12. Utilization of Dissolved Nitrogen by Heterotrophic Bacterioplankton: a Comparison of Three Ecosystems

    Science.gov (United States)

    Kroer, Niels; Jørgensen, Niels O. G.; Coffin, Richard B.

    1994-01-01

    The contributions of different organic and inorganic nitrogen and organic carbon sources to heterotrophic bacterioplankton in batch cultures of oceanic, estuarine, and eutrophic riverine environments were compared. The importance of the studied compounds was surprisingly similar among the three ecosystems. Dissolved combined amino acids (DCAA) were most significant, sustaining from 10 to 45% of the bacterial carbon demands and from 42 to 112% of the bacterial nitrogen demands. Dissolved free amino acids (DFAA) supplied 2 to 7% of the carbon and 6 to 24% of the nitrogen incorporated into the bacterial biomass, while dissolved DNA (D-DNA) sustained less than 5 and 12% of the carbon and nitrogen requirements, respectively. Ammonium was the second most important source of nitrogen, meeting from 13 to 45% of the bacterial demand in the oceanic and estuarine cultures and up to 270% of the demand in riverine cultures. Nitrate was taken up in the oceanic cultures (uptake equaled up to 46% of the nitrogen demand) but was released in the two others. Assimilation of DCAA, DFAA, and D-DNA combined supplied 43% of the carbon demand of the bacteria in the oceanic cultures, while approximately 25% of the carbon requirements were met by the three substrates at the two other sites. Assimilation of nitrogen from DCAA, DFAA, D-DNA, NH4+, and NO3-, on the other hand, exceeded production of particulate organic nitrogen in one culture at 27 h and in all cultures over the entire incubation period (50 h). These results suggest that the studied nutrient sources may fully support the nitrogen needs but only partially support the carbon needs of microbial communities of geographically different ecosystems. Furthermore, a comparison of the initial concentrations of the different substrates indicated that relative pool sizes of the substrates seemed to influence which substrates were primarily being utilized by the bacteria. PMID:16349439

  13. Heterotrophic nutrition of the marine pennate diatom Navicula pavillardi Hustedt.

    Science.gov (United States)

    Lewin, J; Hellebust, J A

    1975-09-01

    Navicula pavillardi Hustedt, a marine, littoral, pennate diatom, can grow in the dark on glutamate or on the complex organic supplements tryptone or yeast extract. Growth on glutamate in the dark took place without an initial lag phase, whereas growth on tryptone began only after a 2-day lag phase that could be abolished by the simultaneous presence of glucose. Lactate inhibited growth in the dark on glutamate, but not photoautotrophic growth. Relatively low concentrations of glutamine inhibited photoautotrophic growth. The observed doubling time for heterotrophic growth on glutamate or tryptone was about 70 h, compared with a doubling time of 24 h under optimal photoautotrophic conditions. Glucose did not decrease the doubling time in the dark on tryptone. The assimilation efficiency for glutamate was 41%. The estimated necessary uptake rate for glutamate to account for the observed heterotrophic doubling time on glutamate was close to those measured with isotope techniques. The kinetic parameters for glutamate uptake, which followed Michelis-Menten kinetics, were Ks = 0.018 mM, and Vmax = 7.0 X 10(-10) mumol per cell per minute. Although several amino acids served as sole nitrogen sources for photoautotrophic growth and were demonstrated by the use of isotope techniques to enter the cells, they could not be used as substrates for growth in the dark. Glucose was not taken up to a significant extent except by cells grown in the presence of tryptone. Lactate was taken up only by dark-grown cells. Results of preliminary studies on the metabolic fate of several uniformly labeled amino acids are presented.

  14. Production Response and Digestive Enzymatic Activity of the Pacific White Shrimp Litopenaeus vannamei (Boone, 1931 Intensively Pregrown in Microbial Heterotrophic and Autotrophic-Based Systems

    Directory of Open Access Journals (Sweden)

    Manuel J. Becerra-Dórame

    2012-01-01

    Full Text Available Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control, an autotrophic system (AS based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp.

  15. Production Response and Digestive Enzymatic Activity of the Pacific White Shrimp Litopenaeus vannamei (Boone, 1931) Intensively Pregrown in Microbial Heterotrophic and Autotrophic-Based Systems

    Science.gov (United States)

    Becerra-Dórame, Manuel J.; Martínez-Porchas, Marcel; Martínez-Córdova, Luis R.; Rivas-Vega, Martha E.; Lopez-Elias, José A.; Porchas-Cornejo, Marco A.

    2012-01-01

    Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control), an autotrophic system (AS) based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS) based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp. PMID:22649317

  16. Aggregation of organic matter by pelagic tunicates

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, L.R. (Univ. of Georgia, Athens); Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  17. Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment.

    Science.gov (United States)

    Castro-Barros, Celia M; Jia, Mingsheng; van Loosdrecht, Mark C M; Volcke, Eveline I P; Winkler, Mari K H

    2017-06-01

    Anammox bacteria can perform dissimilatory nitrate reduction to ammonium (DNRA) with nitrite as intermediate coupled to the oxidation of volatile fatty acids (VFA). Batch tests with enriched anammox and a co-culture of anammox and heterotrophic bacteria showed the capacity of Candidatus 'Brocadia fulgida' to perform the DNRA coupled to the anammox reaction (DNRA-anammox) at a high rate although the culture was not previously adapted to VFA. From thermodynamic calculations it could be stated that low COD/N influent ratios favour the DNRA-anammox transformation over heterotrophic conversions since more free energy is gained. A process scheme is proposed for an innovative nitrogen removal system in which the nitrate produced by nitrite oxidizing bacteria and/or anammox bacteria is converted during DNRA-anammox pathway, resulting in a sustainable nitrogen removal from municipal wastewater while circumventing the troublesome out-selection of nitrite oxidizing bacteria encountered in mainstream applications. Copyright © 2017. Published by Elsevier Ltd.

  18. Bacterial Flora in the Seto Inland Sea : Ⅱ. Relation of Heterotrophic Bcateria with the Physico-Chemical Properties in the Coastal Sea Water of the Fukuyama Bay

    OpenAIRE

    川上, 英之; 中野, 宏幸; 松谷, 市郎; 大宅, 啓二; 林, 則博; 橋本, 秀夫

    1981-01-01

    For the evaluation of the sea water in the Seto Inland Sea, the total of heterotrophic bacteria in the coastal sea water of the Fukuyama bay were investigated and discussed from the standpoint of the relation of these bacterial flora with the amount of chlorophyll a. Results were summarized : 1. A big amount of chlorophyll a were detected at the time of water temperatures of 20℃ to 26℃. They were in correlation with the concentration of COD and of total phosphate. 2. Bacteriological investiga...

  19. Diversity and distribution of heterotrophic dinoflagellates from the coastal waters of Port Blair, South Andaman.

    Science.gov (United States)

    Sai Elangovan, S; Padmavati, G

    2017-11-06

    The interaction between the environment and heterotrophic dinoflagellates inhabiting coastal waters of South Andaman was studied based on year round collections made during September 2012-August 2013 in the bay, eastern, and western region of South Andaman. The distribution pattern of microzooplankton in South Andaman showed high abundance in eutrophic waters (bay region) and gradually decreased towards the off shore region. Microzooplankton community comprised of six different taxa, viz. tintinnids, heterotrophic dinoflagellates, non-loricate ciliates, Foraminifera, Rotifera, and Copepoda (nauplii). Tintinnids were the major component of the microzooplankton (43.8 ± 7%) followed by heterotrophic dinoflagellates (34 ± 12%) and copepod nauplii (18.8 ± 4.0%). This study focused on heterotrophic dinoflagellates which ranked next to tintinnids in overall abundance and contributed 38-42% in the bay, 22-37% in the eastern, and 15-29% in the western region to the microzooplankton community. Dinoflagellates showed a positive correlation with salinity and a negative correlation with dissolved oxygen and chlorophyll a (r = - 0.3). Abundance of heterotrophic dinoflagellates in this area may be due to their diverse and advantageous mode of nutrition. A total of 35 species belonging to 8 genera of heterotrophic dinoflagellates were recorded during the study period. Heterotrophic dinoflagellates showed a great potential to thrive in low oxygenated and low productive area (p population was found in the bay region (avg. H' = 3.46).

  20. Thermodynamics of Protein Aggregation

    Science.gov (United States)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  1. Cubital tunnel syndrome due to heterotrophic ossification caused by radial head fracture: A case report

    Directory of Open Access Journals (Sweden)

    Seyitali Gumustas

    2014-04-01

    Full Text Available Compression of the ulnar nerve in the cubital tunnel is the second most common nerve entrapment syndrome in the upper extremity after carpal tunnel syndrome. Although various etiologies have been described, heterotrophic ossification is rarely seen. Heterotrophic ossification should be kept in mind as a cause of ulnar nerve entrapment after elbow trauma. Early diagnosis and surgical intervention are important in such cases before completion of the maturation phase. We report a case of heterotrophic ossification due to elbow trauma that caused cubital tunnel syndrome. [Hand Microsurg 2014; 3(1.000: 24-28

  2. [Bioaugmentation for shortcut nitrification in SBR treating for sewage containing sea water by nitrification-aerobic denitrification bacteria].

    Science.gov (United States)

    Qu, Yang; Zhang, Pei-Yu; Yu, De-Shuang; Guo, Sha-Sha; Yang, Rui-Xia

    2010-10-01

    The feasibility of heterotrophic nitrification-aerobic denitrification bacteria applied in shortcut nitrification system was studied. Four heterotrophic nitrification-aerobic denitrification strains mixed with halotolerant activated sludge was added into SBR in order to test their bioaugmentation ability for shortcut nitrification system, which was treating for sewage containing sea water, and the difference between bioaugmentation system and original system was compared. The results showed that the maximum accumulation of NO2(-) -N in bioaugmentation system was 34.92% lower than that in original system, and the time of maximum accumulation of NO2(-) -N was 2 hours earlier than that in original system. The TN and COD was continuously decreasing in the later phase of nitrification in bioaugmentation system, and finally the removal rate of TN and COD were 15.24% and 5.39% higher than that in original system respectively, as well as the removal rate of NH4(+) -N and the nitrosation rate were 6.85% and 14.47% higher than that in original system. And the pH was 0.46 higher than that in original system, whereas the ORP was 25.84 mV lower. It was considered that the function of heterotrophic nitrification-aerobic denitrification bacteria should strengthen the performance of bioaugmentation system. When the seawater content raised to 70%, the stability of bioaugmentation system was better than that in original system, and the current that transforming shortcut nitrification to complete nitrification was restrained by heterotrophic nitrification-aerobic denitrification bacteria effectively. The number of heterotrophic nitrification-aerobic denitrification bacteria was changed when bioaugmentation system and original system ran in different phase and the bacteria had a great loss with the discharge of activated sludge. These results may provide a theoretical reference about the feasibility that the heterotrophic nitrification-aerobic denitrification bacteria applied in

  3. A New Heterotrophic Cryptomonad: Hemiarma marina n. g., n. sp.

    Science.gov (United States)

    Shiratori, Takashi; Ishida, Ken-Ichiro

    2016-11-01

    We report a new heterotrophic cryptomonad Hemiarma marina n. g., n. sp. that was collected from a seaweed sample from the Republic of Palau. In our molecular phylogenetic analyses using the small subunit ribosomal RNA gene, H. marina formed a clade with two marine environmental sequences, and the clade was placed as a sister lineage of the freshwater cryptomonad environmental clade CRY1. Alternatively, in the concatenated large and small subunit ribosomal RNA gene phylogeny, H. marina was placed as a sister lineage of Goniomonas. Light and electron microscopic observations showed that H. marina shares several ultrastructural features with cryptomonads, such as flattened mitochondrial cristae, a periplast cell covering, and ejectisomes that consist of two coiled ribbon structures. On the other hand, H. marina exhibited unique behaviors, such as attaching to substrates with its posterior flagellum and displaying a jumping motion. H. marina also had unique periplast arrangement and flagellar transitional region. On the basis of both molecular and morphological information, we concluded that H. marina should be treated as new genus and species of cryptomonads. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  4. Global abundance of planktonic heterotrophic protists in the deep ocean.

    Science.gov (United States)

    Pernice, Massimo C; Forn, Irene; Gomes, Ana; Lara, Elena; Alonso-Sáez, Laura; Arrieta, Jesus M; del Carmen Garcia, Francisca; Hernando-Morales, Victor; MacKenzie, Roy; Mestre, Mireia; Sintes, Eva; Teira, Eva; Valencia, Joaquin; Varela, Marta M; Vaqué, Dolors; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2015-03-01

    The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml(-1) in mesopelagic waters down to 11±1 cells ml(-1) in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml(-1). The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean's microbial food web.

  5. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Nanette R Boyle

    Full Text Available Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.

  6. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.

    2003-01-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions(1). The conversion of nitrate to N(2) by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean(2)...

  7. Distinguishing aggregate formation and aggregate clearance using cell based assays

    NARCIS (Netherlands)

    E. Eenjes, E.; J.M. Dragich; H. Kampinga (Harm); A. Yamamoto, A.

    2016-01-01

    textabstractThe accumulation of ubiquitinated proteinaceous inclusions represents a complex process, reflecting the disequilibrium between aggregate formation and aggregate clearance. Although decreasing aggregate formation or augmenting aggregate clearance will ultimately lead to diminished

  8. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates

    DEFF Research Database (Denmark)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.

    2016-01-01

    Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species...... store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom-bacteria...... in concentrations > 60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2-3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions...

  9. Studies on mangrove swamps of Goa 1. Heterotrophic bacterial flora from mangrove swamps

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Mathani, S.; Mavinkurve, S.

    Heterotrophic bacterial flora from the mangrove swamps of Goa consisted of physiologically active organisms exhibiting cellulolytic, pectinolytic, amylolytic, proteolytic and H2S forming activities, throughout the year. Coryneform and Bacillus were...

  10. Bacterial abundance, communities and heterotrophic activities in the coastal waters off Tamil Nadu

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Raghukumar, C.; Sheelu, G.; Chandramohan, D.

    abundance of CAHB and TDC was observed in most locations. Microbial heterotrophic uptake and respiration rates of labelled glucose were high (except off Madras) suggesting a highly active microflora at most of these locations. Many bacterial genera were seen...

  11. Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways.

    Science.gov (United States)

    Jennifer L. Greenwood; Amy D. Rosemond; J. Bruce Wallace; Wyatt F. Cross; Holly S. Weyers

    2009-01-01

    Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-...

  12. Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production.

    Science.gov (United States)

    Jia, Zongchao; Liu, Ying; Daroch, Maurycy; Geng, Shu; Cheng, Jay J

    2014-08-01

    This article presents a study on screening of microalgal strains from the Peking University Algae Collection and heterotrophic cultivation for biodiesel production of a selected microalgal strain. Among 89 strains, only five were capable of growing under heterotrophic conditions in liquid cultures and Chlorella sp. PKUAC 102 was found the best for the production of heterotrophic algal biodiesel. Composition of the growth medium was optimised using response surface methodology and optimised growth conditions were successfully used for cultivation of the strain in a fermentor. Conversion of algal lipids to fatty acid methyl esters (FAMEs) showed that the lipid profile of the heterotrophically cultivated Chlorella sp. PKUAC 102 contains fatty acids suitable for biodiesel production.

  13. Autotrophic potential in mesophilic heterotrophic bacterial isolates from Sino-Pacific marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Cao, W.; Das, A.; Saren, G.; Jiang, M.; Zhang, H.; Yu, X.

    Microbial carbon fixation is a paramount process in the ocean especially below the photic zone both in water and sedimentary ecosystems. Autotrophic microbes that fix carbon dioxide are renowned. However, the question whether heterotrophs can also...

  14. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni.

    Science.gov (United States)

    Tareb, Raouf; Bernardeau, Marion; Gueguen, Marielle; Vernoux, Jean-Paul

    2013-04-01

    Bacterial aggregation and/or adhesion are key factors for colonization of the digestive ecosystem and the ability of probiotic strains to exclude pathogens. In the present study, two probiotic strains, Lactobacillus rhamnosus CNCM-I-3698 and Lactobacillus farciminis CNCM-I-3699, were evaluated as viable or heat-killed forms and compared with probiotic reference Lactobacillus strains (Lb. rhamnosus GG and Lb. farciminis CIP 103136). The autoaggregation potential of both forms was higher than that of reference strains and twice that of pathogenic strains. The coaggregation potential of these two beneficial micro-organisms was evaluated against several pathogenic agents that threaten the global safety of the feed/food chain: Escherichia coli, Salmonella spp., Campylobacter spp. and Listeria monocytogenes. The strongest coaggregative interactions were demonstrated with Campylobacter spp. by a coaggregation test, confirmed by electron microscopic examination for the two forms. Viable forms were investigated for the nature of the bacterial cell-surface molecules involved, by sugar reversal tests and chemical and enzymic pretreatments. The results suggest that the coaggregation between both probiotic strains and C. jejuni CIP 70.2(T) is mediated by a carbohydrate-lectin interaction. The autoaggregation potential of the two probiotics decreased upon exposure to proteinase, SDS or LiCl, showing that proteinaceous components on the surface of the two lactobacilli play an important role in this interaction. Adhesion abilities of both Lactobacillus strains were also demonstrated at significant levels on Caco-2 cells, mucin and extracellular matrix material. Both viable and heat-killed forms of the two probiotic lactobacilli inhibited the attachment of C. jejuni CIP 70.2(T) to mucin. In conclusion, in vitro assays showed that Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, as viable or heat-killed forms, are adherent to different intestinal matrix models and are

  15. Heterotrophic bacterial responses to the winter–spring phytoplankton bloom in open waters of the NW Mediterranean

    KAUST Repository

    Gomes, Ana

    2014-12-03

    The response of planktonic heterotrophic prokaryotes to the NW Mediterranean winter–spring offshore phytoplankton bloom was assessed in 3 cruises conducted in March, April–May and September 2009. Bulk measurements of phytoplankton and bacterioplankton biomass and production were complemented with an insight into bacterial physiological structure by single-cell analysis of nucleic acid content [low (LNA) vs. high (HNA)] and membrane integrity (“Live” vs. “Dead” cells). Bacterial production empirical conversion factors (0.82±0.25 SE kg C mol leucine−1) were almost always well below the theoretical value. Major differences in most microbial variables were found among the 3 periods, which varied from extremely high phytoplankton biomass and production during the bloom in March (>1 g C m−2 d−1 primary production) to typically oligotrophic conditions during September stratification (<200 mg C m−2 d−1). In both these periods bacterial production was ~30 mg C m−2 d−1 while very large bacterial production (mean 228, with some stations exceeding 500 mg C m−2 d−1) but low biomass was observed during the April–May post-bloom phase. The contribution of HNA (30–67%) and “Live” cells (47–97%) were temporally opposite in the study periods, with maxima in March and September, respectively. Different relationships were found between physiological structure and bottom-up variables, with HNA bacteria apparently more responsive to phytoplankton only during the bloom, coinciding with larger average cell sizes of LNA bacteria. Moderate phytoplankton–bacterioplankton coupling of biomass and activity was only observed in the bloom and post-bloom phases, while relationships between both compartments were not significant under stratification. With all data pooled, bacteria were only weakly bottom-up controlled. Our analyses show that the biomass and production of planktonic algae and bacteria followed opposite paths in the transition from bloom to

  16. Direct and Indirect Evidence of Size-Selective Grazing on Pelagic Bacteria by Freshwater Nanoflagellates

    OpenAIRE

    Šimek, Karel; Chrzanowski, Thomas H.

    1992-01-01

    Size-selective grazing of three heterotrophic nanoflagellates (with cell sizes of 21, 44, and 66 μm3) isolated from Lake Arlington, Texas was examined by using a natural mixture of fluorescence labelled lake bacteria. Sizes of ingested bacteria in food vacuoles were directly measured. Larger bacterial cells were ingested at a frequency much higher than that at which they occurred in the assemblage, indicating preferential flagellate grazing on the larger size classes within the lake bacteriop...

  17. Retrieved bacteria from Noctiluca miliaris (green) bloom of the northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Basu, S.; Matondkar, S.G.P.; Furtado, I.

    has come to light. Examples of these bacteria have been found from the pelagic ocean (Mimura and Nagata, 2000) to the extreme deep-sea and hydrothermal vent ecosystems (Kaye et al., 2003; Kaye et al., 2011), including marine sediments (Diaz et al...., 2000; Raghavan and Furtado, 2004), and from high-organic oil-spill environments (Diaz et al., 2000; Al-Awadhi et al., 2007). The reasons for such widespread occurrence of halophilicity or halotolerance among common heterotrophic bacteria from non...

  18. Marine Microscale Interactions: Exploring the Ecological Relationships Between a Cosmopolitan Eukaryotic Diatom Thalassiosira rotula and its Associated Heterotrophic Bacterial Assemblage

    Science.gov (United States)

    Ahern, O. M.; Williams, T.; Whittaker, K. A.; Hunt, D.; Rynearson, T. A.

    2016-02-01

    Interspecies microscale interactions between eukaryotic marine diatoms and heterotrophic bacteria play a role in global oceanic biogeochemical cycling by influencing nutrient and carbon cycling, rates of primary production, and phytoplankton community structure. Studies have shown that marine diatoms carry a specific bacterial assemblage in their phycosphere, but little research has been done to identify these bacterial species and to characterize their ecological relationships despite their strong potential to regulate diatom growth and production. In order to further explore ecological interactions between bacteria and diatoms, we are characterizing the taxonomic composition of phycosphere communities from isolates of the cosmopolitan marine diatom Thalassiosira rotula collected from around the globe and identifying whether environmental factors, different host T. rotula strains, space or season correlate with different phycosphere communities. For our initial analyses, we amplified and sequenced the 16S rDNA v34 region of the phycosphere assemblage of 53 T. rotula isolates from eight locations around the globe and obtained > 420,000 paired-end sequences. We identified > 250 different bacterial operational taxonomic units (OTUs). Although many OTUs were shared across populations which identified to members of Alphaproteobacteria and Gammaproteobacteria, we identified distinct bacterial assemblages associated with different locations. The presence of distinct phycosphere bacterial communities may regulate diatom growth which potentially affects rates of primary production, nutrient bioavailablity, and, ultimately, energy transfer to higher trophic levels.

  19. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    Science.gov (United States)

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  20. Effects of Long-Term Kerosene Spillage on Heterotrophic ...

    African Journals Online (AJOL)

    Kerosene contaminated soil was obtained from four different locations in Calabar while pristine soil served as control. Bacterial species isolated from kerosene contaminated soil samples included species of Bacillus, Pseudomonas, Micrococcus and Serratia while bacteria isolated from pristine soil samples comprised of ...

  1. Effects of Long-Term Kerosene Spillage on Heterotrophic ...

    African Journals Online (AJOL)

    Michael Horsfall

    This revealed that long-term kerosene slippage had a selecting effect on soil bacteria as opposed to soil ... The oil industry is the main stay of Nigerian economy ... using auger borer. Preparation and incubation of soil samples: The soil samples obtained for analysis were bulked, air dried and passed through a 2mm sieve to ...

  2. Colonization of marine snow aggregates by invertebrate zooplankton : Abundance, scaling, and possible role

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2000-01-01

    I compiled literature observations of abundances of invertebrate zooplankters associated with marine snow aggregates in the euphotic zone. Abundances, normalized with ambient concentrations of colonizers, scale with equivalent aggregate radius raised to power 2.27. Different taxonomic groups showed...... different affinities for aggregates and copepods and crustacean nauplii were the dominant groups on aggregates. The encounter volumes (volume searched to find one aggregate) are substantial, e.g., >1 liter for a l-cm aggregate, suggesting that some zooplankters actively search for aggregates. The scaling...... of the enrichment of invertebrates in aggregates over ambient water with aggregate radius (r) was significantly different from that of bacteria, proportional to r(-0.73) and proportional to r(-2.25) respectively, and for aggregates larger than 0.1 cm radius, invertebrates were one to several orders of magnitude...

  3. Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: a review.

    Science.gov (United States)

    Wu, Yonghong; Li, Tianling; Yang, Linzhang

    2012-03-01

    With the public's enhanced awareness of eco-safety, environmentally benign measures based on microorganisms and microbial aggregates have become more accepted as methods of removing pollutants from aquatic systems. In this review, the application of microorganisms and microbial aggregates for removing pollutants from aqueous solutions is introduced and described based on mechanisms such as assimilation, adsorption, and biodegradation. The advantages of and future studies regarding the use of microorganisms and microbial aggregates to remove pollutants are discussed. Due to the limitation of a single microorganism species in adapting to heterogeneous conditions, this review demonstrates that the application of microbial aggregates consisting of multiple photoautotrophic and heterotrophic microorganisms, is a promising method of removing multiple pollutants from complex wastewaters and warrants further research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.

    Science.gov (United States)

    Sun, Zhilan; Dou, Xiao; Wu, Jun; He, Bing; Wang, Yuancong; Chen, Yi-Feng

    2016-01-01

    Microalgae possess higher photosynthetic efficiency and accumulate more neutral lipids when supplied with high-dose CO2. However, the nature of lipid accumulation under conditions of elevated CO2 has not been fully elucidated so far. We now revealed that the enhanced lipid accumulation of Chlorella in high-dose CO2 was as efficient as under heterotrophic conditions and this may be attributed to the driving of enlarged carbon source. Both photoautotrophic and heterotrophic cultures were established by using Chlorella sorokiniana CS-1. A series of changes in the carbon fixation, lipid accumulation, energy conversion, and carbon-lipid conversion under high-dose CO2 (1-10%) treatment were characterized subsequently. The daily carbon fixation rate of C. sorokiniana LS-2 in 10% CO2 aeration was significantly increased compared with air CO2. Correspondingly, double oil content (28%) was observed in 10% CO2 aeration, close to 32.3% produced under heterotrophic conditions. In addition, with 10% CO2 aeration, the overall energy yield (Ψ) in Chlorella reached 12.4 from 7.3% (with air aeration) because of the enhanced daily carbon fixation rates. This treatment also improved the energetic lipid yield (Ylipid/Es) with 4.7-fold, tending to the heterotrophic parameters. More significantly, 2.2 times of carbon-lipid conversion efficiency (ηClipid/Ctotal, 42.4%) was observed in 10% CO2 aeration, towards to 53.7% in heterotrophic cultures, suggesting that more fixed carbon might flow into lipid synthesis under both 10% CO2 aeration and heterotrophic conditions. Taken together, all our evidence showed that 10% CO2 may push photoautotrophic Chlorella to display heterotrophic-like efficiency at least in lipid production. It might bring us an efficient model of lipid production based on microalgal cells with high-dose CO2, which is essential to sustain biodiesel production at large scales.

  5. Bacteria associated with granular activated carbon particles in drinking water.

    Science.gov (United States)

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-09-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies.

  6. Identification of nif genes of heterotrophic and endophytic ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... bacteria in the plant rhizosphere (Chalk, 1991; Mark and .... saline. The serially diluted homogenate was poured in tubes with N- free medium (Dobereiner and Day, 1976) consisting of (per liter) malic acid (5 g), K2HPO4 (0.5 g), MgSo4, ... with 2.5 volume of cold ethanol and 1/10 volume of 3 M sodium.

  7. Platelet activation and aggregation

    DEFF Research Database (Denmark)

    Jensen, Maria Sander; Larsen, O H; Christiansen, Kirsten

    2013-01-01

    This study introduces a new laboratory model of whole blood platelet aggregation stimulated by endogenously generated thrombin, and explores this aspect in haemophilia A in which impaired thrombin generation is a major hallmark. The method was established to measure platelet aggregation initiated...

  8. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  9. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates

    DEFF Research Database (Denmark)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.

    2016-01-01

    Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species...... store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom...... in concentrations > 60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2-3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions...

  10. New Insights on the Ecology of Free-living, Heterotrophic Nanoflagellates Based on the Use of Molecular Biological Approaches

    National Research Council Canada - National Science Library

    Lim, Lin

    1997-01-01

    .... Restriction fragment length polymorphism (RFLP) analysis of small subunit rDNA differentiated cultures of heterotrophic nanoflagellates according to established taxonomic classification at the generic and species level...

  11. Aggregates from mineral wastes

    Directory of Open Access Journals (Sweden)

    Baic Ireneusz

    2016-01-01

    Full Text Available The problem concerning the growing demand for natural aggregates and the need to limit costs, including transportation from remote deposits, cause the increase in growth of interest in aggregates from mineral wastes as well as in technologies of their production and recovery. The paper presents the issue related to the group of aggregates other than natural. A common name is proposed for such material: “alternative aggregates”. The name seems to be fully justified due to adequacy of this term because of this raw materials origin and role, in comparison to the meaning of natural aggregates based on gravel and sand as well as crushed stones. The paper presents characteristics of the market and basic application of aggregates produced from mineral wastes, generated in the mining, power and metallurgical industries as well as material from demolished objects.

  12. Heterotrophic components of soil respiration in pastures and forests in southwestern Amazonia, Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Eric Atlas Davidson

    2008-12-01

    Full Text Available In this paper we present data on soil microbial biomass and heterotrophic respiration in pastures, mature and secondary forests, in order to elucidate their contribution to total CO2 flux from soil to atmosphere. The research was conducted in Southwestern Amazonia, Acre State, Brazil. Microbial biomass was estimated using a variation of the traditional fumigation-extraction method and heterotrophic respiration was measured using respirometry flasks attached to an infrared gas analyzer. Soil microbial biomass and heterotrophic respiration did not differ statistically among pastures, mature and secondary forests. These laboratory results indicate that higher CO2 fluxes from pasture soils measured in situ are probably due to higher root respiration by pasture grasses.

  13. Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis.

    Science.gov (United States)

    Xu, Guihua; Peng, Jingjing; Feng, Cuijie; Fang, Fang; Chen, Shaohua; Xu, Yuanjian; Wang, Xingzu

    2015-08-01

    This study demonstrated that a combined heterotrophic and autotrophic denitrification (HAD) process is highly effective for the simultaneous removal of acetate, nitrate, and sulfide at an efficiency of 100, 80, and 100 %, respectively. In the HAD system, simultaneous sulfide, acetate, and nitrate removals were observed, which indicated that heterotrophic and autotrophic denitrification occurred simultaneously. When the sulfide was existed in HAD reactor, the main product of sulfide biooxidation was S(0). Once the sulfide was exhausted, the sulfate concentration in the HAD reactor increased and became the main end product. These results provided an alternative method to control the end sulfide biooxidation product by online monitoring sulfide concentration. Nearly half (43 %) of the total clones in our mix-trophic reactor were amphitrophy denitrifiers. The autotrophic denitrifiers, heterotrophic denitrifiers, and amphitrophy denitrifiers coexisted in the HAD reactor to complete the denitrification process. Retrieved bacterial 16S rRNA gene clones affiliated with uncultured Xanthomonadaceae, Thauera, Thiobacillus, and Chromatiales were dominant.

  14. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.

    Science.gov (United States)

    Smetana, Sergiy; Sandmann, Michael; Rohn, Sascha; Pleissner, Daniel; Heinz, Volker

    2017-12-01

    The lack of protein sources in Europe could be reduced with onsite production of microalgae with autotrophic and heterotrophic systems, owing the confirmation of economic and environmental benefits. This study aimed at the life cycle assessment (LCA) of microalgae and cyanobacteria cultivation (Chlorella vulgaris and Arthrospira platensis) in autotrophic and heterotrophic conditions on a pilot industrial scale (in model conditions of Berlin, Germany) with further biomass processing for food and feed products. The comparison of analysis results with traditional benchmarks (protein concentrates) indicated higher environmental impact of microalgae protein powders. However high-moisture extrusion of heterotrophic cultivated C. vulgaris resulted in more environmentally sustainable product than pork and beef. Further optimization of production with Chlorella pyrenoidosa on hydrolyzed food waste could reduce environmental impact in 4.5 times and create one of the most sustainable sources of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities.

    Science.gov (United States)

    Fu, Guiping; Yu, Tianyu; Huangshen, Linkun; Han, Jingyi

    2017-11-21

    An experimental vertical-flow constructed wetland (CW) was tested to treat salt-containing sewage. CW clogging deposits and withered Pontederia cordata L. were collected into a complex fermentation broth to serve as the carbon source and its effects on the denitrification capacity and microbial composition of the CW were examined. Addition of the complex fermentation broth into the CW influent (1.8% salinity) led to high removal efficiencies of NH 4 + -N > 99.82 ± 0.00% and TN > 90.39 ± 0.05%. Heterotrophic nitrifiers and aerobic denitrifiers were entirely dominant in the middle and upper layers of the CW, where obligate halophilic, aerobic denitrifiers Zobellella occurred. The CW successfully cultivated and enriched heterotrophic nitrifying-aerobic denitrifying bacteria, overcoming the effects of salinity and insufficient organic carbon sources on the denitrification capacity of CW. This type of complex carbon sources can also facilitate the utilization of waste resources, such as CW clogging deposits and withered wetland plants. Copyright © 2017. Published by Elsevier Ltd.

  16. The Role of Heterotrophic Microbial Communities in Estuarine C Budgets and the Biogeochemical C Cycle with Implications for Global Warming: Research Opportunities and Challenges.

    Science.gov (United States)

    Anderson, O Roger

    2016-05-01

    Estuaries are among the most productive and economically important marine ecosystems at the land-ocean interface and contribute significantly to exchange of CO2 with the atmosphere. Estuarine microbial communities are major links in the biogeochemical C cycle and flow of C in food webs from primary producers to higher consumers. Considerable attention has been given to bacteria and autotrophic eukaryotes in estuarine ecosystems, but less research has been devoted to the role of heterotrophic eukaryotic microbes. Current research is reviewed here on the role of heterotrophic eukaryotic microbes in C biogeochemistry and ecology of estuaries, with particular attention to C budgets, trophodynamics, and the metabolic fate of C in microbial communities. Some attention is given to the importance of these processes in climate change and global warming, especially in relation to sources and sinks of atmospheric CO2 , while also documenting the current paucity of research on the role of eukaryotic microbes that contribute to this larger question of C biogeochemistry and the environment. Some recommendations are made for future directions of research and opportunities of applying newer technologies and analytical approaches to a more refined analysis of the role of C in estuarine microbial community processes and the biogeochemical C cycle. © 2015 The Author Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  17. Aggregated Computational Toxicology Online Resource

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aggregated Computational Toxicology Online Resource (AcTOR) is EPA's online aggregator of all the public sources of chemical toxicity data. ACToR aggregates data...

  18. Recycled aggregates concrete: aggregate and mix properties

    Directory of Open Access Journals (Sweden)

    González-Fonteboa, B.

    2005-09-01

    Full Text Available This study of structural concrete made with recycled concrete aggregate focuses on two issues: 1. The characterization of such aggregate on the Spanish market. This involved conducting standard tests to determine density, water absorption, grading, shape, flakiness and hardness. The results obtained show that, despite the considerable differences with respect to density and water absorption between these and natural aggregates, on the whole recycled aggregate is apt for use in concrete production. 2. Testing to determine the values of basic concrete properties: mix design parameters were established for structural concrete in non-aggressive environments. These parameters were used to produce conventional concrete, and then adjusted to manufacture recycled concrete aggregate (RCA concrete, in which 50% of the coarse aggregate was replaced by the recycled material. Tests were conducted to determine the physical (density of the fresh and hardened material, water absorption and mechanical (compressive strength, splitting tensile strength and modulus of elasticity properties. The results showed that, from the standpoint of its physical and mechanical properties, concrete in which RCA accounted for 50% of the coarse aggregate compared favourably to conventional concrete.

    Se aborda el estudio de hormigones estructurales fabricados con áridos reciclados procedentes de hormigón, incidiéndose en dos aspectos: 1. Caracterización de tales áridos, procedentes del mercado español. Para ello se llevan a cabo ensayos de densidad, absorción, granulometría, coeficiente de forma, índice de lajas y dureza. Los resultados obtenidos han puesto de manifiesto que, a pesar de que existen diferencias notables (sobre todo en cuanto a densidad y absorción con los áridos naturales, las características de los áridos hacen posible la fabricación de hormigones. 2. Ensayos sobre propiedades básicas de los hormigones: se establecen parámetros de dosificaci

  19. Protein Colloidal Aggregation Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  20. Optical absorption in dipolar aggregates with a biological application

    Science.gov (United States)

    Apell, P.; Brånander, J.-O.; Gillbro, T.

    1993-07-01

    Based on a two-dimensional description of interacting dipoles and a standard optical effective medium model we estimate structural properties of bacteriochlorophyll c in chlorosome aggregates of Chloroflexus bacteria. The main aim is to see what detailed structural information one can get out of an optical experiment. The measured optical spectrum turns out to be compatible with a distribution of aggregated pigment molecules approximately 9 Å apart from each other. Their interaction is responsible for the red-shift in peak position. A more random distribution of the aggregates in turn gives a broader and slightly asymmetric line shape. These results are in line with available structural determinations using other methods.

  1. Effect of different heterotrophic plate count methods on the estimation of the composition of the culturable microbial community

    Directory of Open Access Journals (Sweden)

    Eva Theres Gensberger

    2015-03-01

    Full Text Available Heterotrophic plate counts (HPC are routinely determined within the scope of water quality assessment. However, variable HPC methods with different cultivation parameters (i.e., temperature and media type are applied, which could lead to significant effects in the outcome of the analysis. Therefore the effect of different HPC methods, according to DIN EN ISO 6222 and EPA, on the culturable microbial community composition was investigated by 16S rRNA gene sequence analysis and statistical evaluation was performed. The culturable community composition revealed significant effects assigned to temperature (p < 0.01, while for media type no statistical significance was observed. However, the abundance of certain detected bacteria was affected. Lower temperature (22 °C showed the abundance of naturally occurring Pseudomonadaceae and Aeromonadaceae, whereas at high temperature (37 °C numerous Enterobacteriaceae, Citrobacter spp. and Bacilli were identified. The highest biodiversity was detected at lower temperature, especially on R2A medium. These results indicate that different temperatures (low and high should be included into HPC measurement and selection of media should, ideally, be adjusted to the monitored water source. Accordingly, it can be inferred that the HPC method is more suitable for continuous monitoring of the same water source than for single assessments of a water sample.

  2. Bacterial biomass, heterotrophic production and utilization of dissolved organic matter photosynthetically produced in the Almeria-Oran front

    Science.gov (United States)

    Fernández, Margarita; Bianchi, Micheline; Van Wambeke, France

    1994-08-01

    Bacterial biomass, bacterial production and the quantitative importance of the heterotrophic assimilation of photosynthetically produced dissolved organic carbon (PDOC) were examined in relation to the hydrodynamical and biological conditions in the Almeria-Oran front area (Alboran Sea, Western Mediterranean). Although, including all data, bacterial abundance correlated with chlorophyll a ( r = 0.49), the bacteria/phytoplankton carbon ratio decreased in the core of the Atlantic jet. Bacterial integrated secondary production ranged from 124 to 199 mg C m -2 d -1. Bacterial generation times averaged 3.2 d (S.D.= 1.3) in frontal sites above the pycnocline and 25 d (S.D. = 11) under the pycnocline. In the adjacent Mediterranean waters, bacterial generation times displayed homogenous values from the surface to 150 m (mean 2.7;d; S.D. = 1.5). An isolated Atlantic water mass, at the right side of the jet, showed the longest average bacterial generation times (9.5 d). In the chlorophyll maximum layers, percent extracellular release represented 23.5% of total net primary production in the oligotrophic sites and only 6.5% in the core of the Atlantic jet. The contribution of PDOC to bacterial production exhibited large variations (17-100%). Dissimilarities among sites and hydrodynamical structures of the water masses were mostly observed in bacterial generation times and phytoplankton extracellular release.

  3. Toxicological benchmarks for screening potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    Energy Technology Data Exchange (ETDEWEB)

    Will, M.E.; Suter, G.W. II

    1994-09-01

    One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as {open_quotes}contaminants of potential concern.{close_quotes} This process is termed {open_quotes}contaminant screening.{close_quotes} It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerning effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern.

  4. Aggregation of retail stores

    Science.gov (United States)

    Jensen, Pablo; Boisson, Jean; Larralde, Hernán

    2005-06-01

    We propose a simple model to understand the economic factors that induce aggregation of some businesses over small geographical regions. The model incorporates price competition with neighboring stores, transportation costs and the satisfaction probability of finding the desired product. We show that aggregation is more likely for stores selling expensive products and/or stores carrying only a fraction of the business variety. We illustrate our model with empirical data collected in the city of Lyon.

  5. Disruption of narH, narJ, and moaE Inhibits Heterotrophic Nitrification in Pseudomonas Strain M19

    OpenAIRE

    Nemergut, D.R.; Schmidt, S K

    2002-01-01

    Interruptions in three nitrate reductase-related genes, narH, narJ, and moaE, inhibited heterotrophic nitrification in Pseudomonas strain M19. No nitrate was detected in the medium, and nitrification proceeded in the presence of a nitrate reductase inhibitor. Heterotrophic nitrification was greatly stimulated by the addition of nitrate.

  6. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production.

    Science.gov (United States)

    Liu, Jin; Huang, Junchao; Sun, Zheng; Zhong, Yujuan; Jiang, Yue; Chen, Feng

    2011-01-01

    The objective of this study was to document and compare the lipid class and fatty acid composition of the green microalga Chlorella zofingiensis cultivated under photoautotrophic and heterotrophic conditions. Compared with photoautotrophic cells, a 900% increase in lipid yield was achieved in heterotrophic cells fed with 30 g L(-1) of glucose. Furthermore heterotrophic cells accumulated predominantly neutral lipids (NL) that accounted for 79.5% of total lipids with 88.7% being triacylglycerol (TAG); whereas photoautotrophic cells contained mainly the membrane lipids glycolipids (GL) and phospholipids (PL). Together with the much higher content of oleic acid (C18:1) (35.2% of total fatty acids), oils from heterotrophic C. zofingiensis appear to be more feasible for biodiesel production. Our study highlights the possibility of using heterotrophic algae for producing high quality biodiesel. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Functional amyloids in bacteria.

    Science.gov (United States)

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  8. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    Anaerobic ammonium oxidation (Anammox) is a cost-effective new process to treat high-strength nitrogenous wastewater. In this work, the microbial interactions of anaerobic ammonium oxidizers and heterotrophs through the exchange of soluble microbial products (SMP) in Anammox biofilm...

  9. Dynamic metabolic modeling of heterotrophic and mixotrophic microalgal growth on fermentative wastes.

    Directory of Open Access Journals (Sweden)

    Caroline Baroukh

    2017-06-01

    Full Text Available Microalgae are promising microorganisms for the production of numerous molecules of interest, such as pigments, proteins or triglycerides that can be turned into biofuels. Heterotrophic or mixotrophic growth on fermentative wastes represents an interesting approach to achieving higher biomass concentrations, while reducing cost and improving the environmental footprint. Fermentative wastes generally consist of a blend of diverse molecules and it is thus crucial to understand microalgal metabolism in such conditions, where switching between substrates might occur. Metabolic modeling has proven to be an efficient tool for understanding metabolism and guiding the optimization of biomass or target molecule production. Here, we focused on the metabolism of Chlorella sorokiniana growing heterotrophically and mixotrophically on acetate and butyrate. The metabolism was represented by 172 metabolic reactions. The DRUM modeling framework with a mildly relaxed quasi-steady-state assumption was used to account for the switching between substrates and the presence of light. Nine experiments were used to calibrate the model and nine experiments for the validation. The model efficiently predicted the experimental data, including the transient behavior during heterotrophic, autotrophic, mixotrophic and diauxic growth. It shows that an accurate model of metabolism can now be constructed, even in dynamic conditions, with the presence of several carbon substrates. It also opens new perspectives for the heterotrophic and mixotrophic use of microalgae, especially for biofuel production from wastes.

  10. Feeding, growth and metabolism of the marine heterotrophic dinoflagellate Gyrodinium dominans

    DEFF Research Database (Denmark)

    Schmoker, Claire; Thor, Peter; Hernández-león, Santiago

    2011-01-01

    may inflict high metabolic costs. Gross growth efficiencies (GGEs), determined for G. dominans in both food availability conditions, were within the range of values reported for other heterotrophic protozoans, and while GGE decreased when concentrations of food were high in organisms fed a single...

  11. Evaluating the usability of nineteen effluents for heterotrophic cultivation of microalgal consortia as biodiesel feedstock

    Science.gov (United States)

    A key reason inhibiting commercialization of algal oil, as biodiesel feedstock, is cultivation cost. For this reason, the usability of nineteen readily available industrial effluents (autoclaved and non-autoclaved) to support heterotrophic growth and lipid accumulation was evaluated using six mixed ...

  12. Circadian cycles in growth and feeding rates of heterotrophic protist plankton

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Strom, S.L.

    2004-01-01

    Growth and feeding rates of four species of planktonic marine heterotrophic protists showed pronounced diel cycles. In most cases, rates were higher during the day and lower at night. However, for the ciliate Strobilidium sp., growth was highest at night. In another ciliate species, Balanion coma...... predator-prey cycles in the euphotic zone....

  13. NITRIFICATION AT LOW PH BY AGGREGATED CHEMOLITHOTROPHIC BACTERIA

    NARCIS (Netherlands)

    Boer, W. de; Klein Gunnewiek, P.J.A.; Veenhuis, M.; Bock, E.; Laanbroek, H.J.

    1991-01-01

    A study was performed to gain insight into the mechanism of acid-tolerant, chemolithotrophic nitrification. Microorganisms that nitrified at pH 4 were enriched from two Dutch acid soils. Nitrate production in the enrichment cultures was indicated to be of a chemolithoautotrophic nature as it was (i)

  14. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  15. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-06-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  16. Gram-positive bacteria persisting in the food production environment

    DEFF Research Database (Denmark)

    Knøchel, Susanne; Harmsen, Morten; Knudsen, Bettina

    2008-01-01

    Many gram-positive bacteria are able to form aggregates or biofilms and resist external stress factors and some gram-positive pathogenic bacteria such as Listeria monocytogenes and Bacillus cereus may persist in the food production environment for extended periods. Most research has focussed...... on the gram-negative bacteria and, in general, less is known abourt the gram poritives. At present much conflicting evidence has been presented perhaps because so many internal and external factors influence the ability to adhere. Some of the present knowledge of biofilm or aggregation forming properties...

  17. Biology of Moderately Halophilic Aerobic Bacteria

    Science.gov (United States)

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  18. Quantifying Dictyostelium discoideum Aggregation

    Science.gov (United States)

    McCann, Colin; Kriebel, Paul; Parent, Carole; Losert, Wolfgang

    2008-03-01

    Upon nutrient deprivation, the social amoebae Dictyostelium discoideum enter a developmental program causing them to aggregate into multicellular organisms. During this process cells sense and secrete chemical signals, often moving in a head-to-tail fashion called a `stream' as they assemble into larger entities. We measure Dictyostelium speed, shape, and directionality, both inside and outside of streams, and develop methods to distinguish group dynamics from behavior of individual cells. We observe an overall increase in speed during aggregation and a decrease in speed fluctuations once a cell joins a stream. Initial results indicate that when cells are in close proximity the trailing cells migrate specifically toward the backs of leading cells.

  19. Importance of the exopolysaccharide matrix in antimicrobial tolerance of Pseudomonas aeruginosa aggregates

    DEFF Research Database (Denmark)

    Goltermann, Lise; Tolker-Nielsen, Tim

    2017-01-01

    of the production of extracellular matrix components, and that they do not rely on an extracellular matrix for antimicrobial tolerance. However, we show here that biofilm matrix overexpression, as displayed by various clinical isolates, significantly protects P. aeruginosa aggregates against antimicrobial treatment......, and Psl, do play a role in the tolerance toward antimicrobials when bacteria grow as aggregates....

  20. Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile.

    Science.gov (United States)

    Lara, José; Escudero González, Lorena; Ferrero, Marcela; Chong Díaz, Guillermo; Pedrós-Alió, Carlos; Demergasso, Cecilia

    2012-05-01

    Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H(2), H(2)S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.

  1. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    Directory of Open Access Journals (Sweden)

    K. Ziervogel

    2010-03-01

    Full Text Available Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater. Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawaters relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements

  2. Aggregates, broccoli and cauliflower

    Science.gov (United States)

    Grey, Francois; Kjems, Jørgen K.

    1989-09-01

    Naturally grown structures with fractal characters like broccoli and cauliflower are discussed and compared with DLA-type aggregates. It is suggested that the branching density can be used to characterize the growth process and an experimental method to determine this parameter is proposed.

  3. Towards General Temporal Aggregation

    DEFF Research Database (Denmark)

    Boehlen, Michael H.; Gamper, Johann; Jensen, Christian Søndergaard

    2008-01-01

    Most database applications manage time-referenced, or temporal, data. Temporal data management is difficult when using conventional database technology, and many contributions have been made for how to better model, store, and query temporal data. Temporal aggregation illustrates well the problem...

  4. Occurrence of Bacteria and Viruses on Elementary Classroom Surfaces and the Potential Role of Classroom Hygiene in the Spread of Infectious Diseases

    Science.gov (United States)

    Bright, Kelly R.; Boone, Stephanie A.; Gerba, Charles P.

    2010-01-01

    The presence of microorganisms on common classroom contact surfaces (fomites) was determined to identify the areas most likely to become contaminated. Six elementary classrooms were divided into control and intervention groups (cleaned daily with a quaternary ammonium wipe) and tested for heterotrophic bacteria. Three classrooms were also tested…

  5. Indigenous Halomonas spp., the Potential Nitrifying Bacteria for Saline Ammonium Waste Water Treatment.

    Science.gov (United States)

    Sangnoi, Yutthapong; Chankaew, Sunipa; O-Thong, Sompong

    2017-01-01

    Toxic nitrogen compounds are one cause decreasing of shrimp production and water pollution. Indigenous Halomonas spp., isolated from Pacific white shrimp farm are benefitted for saline ammonium waste water treatment. This study aimed to isolate the heterotrophic-halophilic Halomonas spp. and investigate their ammonium removal efficiency. Halomonas spp., were isolated by culturing of samples collected from shrimp farm into modified Pep-Beef-AOM medium. Ammonium converting ability was tested and monitored by nitrite reagent. Ammonium removal efficiency was measured by the standard colorimetric method. Identification and classification of Halomonas spp., were studied by morphological, physiological and biochemical characteristics as well as molecular information. There were 5 strains of heterotrophic-halophilic nitrifying bacteria including SKNB2, SKNB4, SKNB17, SKNB20 and SKNB22 were isolated. The identification result based on 16S rRNA sequence analysis indicated that all 5 strains were Halomonas spp., with sequence similarity values of 91-99 %. Ammonium removal efficiency of all strains showed a range of 23-71%. The production of nitrite was low detected of 0.01-0.15 mg-N L-1, while the amount of nitrate was almost undetectable. This might suggest that the indigenous Halomonas spp., as nitrifying bacteria involved biological nitrification process for decreasing and transforming of ammonia. Due to being heterotrophic, halophilic and ammonium removing bacteria, these Halomonas spp., could be developed for use in treatment of saline ammonium waste water.

  6. Autotrophic and heterotrophic activity in Arctic first-year sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    We present a study of autotrophic and heterotrophic activities of Arctic sea ice (Malene Bight, SW Greenland) as measured by 2 different approaches: (1) standard incubation techniques (H14CO3– and [3H]thymidine incubation) on sea ice cores brought to the laboratory and (2) cores incubated in situ...... in plastic bags with subsequent melting and measurements of changes in total O2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period was followed...... March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m– 2, reflecting the net result of a sea ice-related gross primary production...

  7. The moisture response of soil heterotrophic respiration: interaction with soil properties

    DEFF Research Database (Denmark)

    Moyano, F E; Vasilyeva, N; Bouckaert, L

    2012-01-01

    the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4% in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data......-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main effects...... predictions of the response of soil carbon to future climate scenarios will require the integration of soil-dependent moisture-respiration functions coupled with realistic representations of soil water dynamics....

  8. Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives.

    Science.gov (United States)

    Venkata Mohan, S; Rohit, M V; Chiranjeevi, P; Chandra, Rashmi; Navaneeth, B

    2015-05-01

    Microalgae are inexhaustible feedstock for synthesis of biodiesel rich in polyunsaturated fatty acids (PUFA) and valuable bioactive compounds. Their cultivation is critical in sustaining the global economy in terms of human consumption of food and fuel. When compared to autotrophic cultivation, heterotrophic systems are more suitable for producing high cell densities of microalgae for accumulation of large quantities of lipids (triacylglycerols) which can be converted into biodiesel. Consorted efforts are made in this communication to converge recent literature on heterotrophic cultivation systems with simultaneous wastewater treatment and algal oil production. Challenges faced during large scale production and limiting factors which hinder the microalgae growth are enumerated. A strategic deployment of integrated closed loop biorefinery concept with multi-product recovery is proposed to exploit the full potential of algal systems. Sustainable algae cultivation is essential to produce biofuels leading to green future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biochemical System Analysis of Lutein Production by Heterotrophic Chlorella pyrenoidosa in a Fermentor

    Directory of Open Access Journals (Sweden)

    Zheng-Yun Wu

    2009-01-01

    Full Text Available Chlorella is a promising alternative source of lutein, as it can be cultivated heterotrophically with high efficiency. In this study, the carotenoids in Chlorella pyrenoidosa heterotrophically cultivated in a 19-litre fermentor have been analyzed and determined by using HPLC and HPLC-MS. A biochemical system theory (BST model was developed for understanding the regulatory features of carotenoid metabolism during the batch cultivation. Factors that influence lutein production by C. pyrenoidosa were discussed based on the model. It shows that low flux for lycopene formation is the major bottleneck for lutein production, while by-product syntheses and inhibitions affect the cellular lutein content much less. However, with further increase of the cellular lutein content, the inhibition on lycopene formation by lutein may become a limiting factor. Although speculative, these results may provide useful information for further elucidation of the regulatory mechanisms of carotenoid biosynthesis in Chlorella and modifying its metabolic network to enhance lutein production.

  10. Formalising a mechanistic linkage between heterotrophic feeding and thermal bleaching resistance

    Science.gov (United States)

    Wooldridge, Scott A.

    2014-12-01

    In this paper, I utilise the CO2 (sink) limitation model of coral bleaching to propose a new biochemical framework that explains how certain (well-adapted) coral species can utilise heterotrophic carbon acquisition to combat the damaging algal photoinhibition response sequence that underpins thermal bleaching, thereby increasing thermal bleaching resistance. This mechanistic linkage helps to clarify a number of previously challenging experimental responses arising from feeding (versus starved) temperature stress experiments, and isotope labelling (tracer) experiments with heterotrophic carbon sources (e.g., zooplankton). In an era of rapidly warming surface ocean temperatures, the conferred fitness benefits arising from such a mechanistic linkage are considerable. Yet, various ecological constraints are outlined which caution against the ultimate benefit of the mechanism for raising bleaching thresholds at the coral community (reef) scale. Future experiments are suggested that can strengthen these proposed arguments.

  11. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  12. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation.

    Science.gov (United States)

    Fan, Jianhua; Zheng, Lvhong

    2017-09-01

    Salt stress has been proven very effective in enhancing the lipid content among many photoautotrophically grown microalgae species including marine and freshwater algae. Nevertheless, its effect on heterotrophic grown cells and lipid accumulation is scarcely known. This study sought to demonstrate a new train of thought for cost-effective biofuels production by heterotrophic culture of Chlamydomonas reinhardtii coupling with subsequent salt and light stress. NaCl treatments (25-200 mM) gradually suppressed the cell growth. After one day's acclimation, the cells restored slow growth with light supplement (200 μmol/m2/s) in low salt concentration (0-50 mM). However, high concentration of NaCl (200 mM) dose caused permanent damage, with over 47% cells death after 3 days treatment. The highest lipid content of 35.8% and lipid productivity of 28.6 mg/L/d were achieved by 50 mM NaCl stress and light treatment upon heterotrophic grown cells. Cells lost their green pigmentation and became yellowish under 100-200 mM NaCl conditions, whereas cells grown in 0-50 mM NaCl retained their dark-green pigmentation. Variable-to-maximum fluorescence ratio (Fv/Fm) and non-photochemical quenching (NPQ) value were markedly influenced under salt and light stress, indicating that severe inhibition of photosynthetic ability was occurred. Moreover, we further demonstrated the dynamic changes of cell growth and lipid accumulation would potentially be caused by the increase of intracellular redox state. To our knowledge, this study is the first instance in which C. reinhardtii was applied to oil accumulation by using combination of heterotrophic culture and multiple stress, and opened up a new territory for the further development of microalgae-based biofuels production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations

    OpenAIRE

    Bumbak, Fabian; Cook, Stella; Zachleder, Vilém; Hauser, Silas; Kovar, Karin

    2011-01-01

    Microalgae of numerous heterotrophic genera (obligate or facultative) exhibit considerable metabolic versatility and flexibility but are currently underexploited in the biotechnological manufacturing of known plant-derived compounds, novel high-value biomolecules or enriched biomass. Highly efficient production of microalgal biomass without the need for light is now feasible in inexpensive, well-defined mineral medium, typically supplemented with glucose. Cell densities of more than 100 g l−1...

  14. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  15. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters.

    Science.gov (United States)

    Yoo, Yeong Du; Seong, Kyeong Ah; Jeong, Hae Jin; Yih, Wonho; Rho, Jung-Rae; Nam, Seung Won; Kim, Hyung Seop

    2017-09-01

    Cryptophytes are ubiquitous and one of the major phototrophic components in marine plankton communities. They often cause red tides in the waters of many countries. Understanding the bloom dynamics of cryptophytes is, therefore, of great importance. A critical step in this understanding is unveiling their trophic modes. Prior to this study, several freshwater cryptophyte species and marine Cryptomonas sp. and Geminifera cryophila were revealed to be mixotrophic. The trophic mode of the common marine cryptophyte species, Teleaulax amphioxeia has not been investigated yet. Thus, to explore the mixotrophic ability of T. amphioxeia by assessing the types of prey species that this species is able to feed on, the protoplasms of T. amphioxeia cells were carefully examined under an epifluorescence microscope and a transmission electron microscope after adding each of the diverse prey species. Furthermore, T. amphioxeia ingestion rates heterotrophic bacteria and the cyanobacterium Synechococcus sp. were measured as a function of prey concentration. Moreover, the feeding of natural populations of cryptophytes on natural populations of heterotrophic bacteria was assessed in Masan Bay in April 2006. This study reported for the first time, to our knowledge, that T. amphioxeia is a mixotrophic species. Among the prey organisms offered, T. amphioxeia fed only on heterotrophic bacteria and Synechococcus sp. The ingestion rates of T. amphioxeia on heterotrophic bacteria or Synechococcus sp. rapidly increased with increasing prey concentrations up to 8.6×106 cells ml-1, but slowly at higher prey concentrations. The maximum ingestion rates of T. amphioxeia on heterotrophic bacteria and Synechococcus sp. reached 0.7 and 0.3 cells predator-1 h-1, respectively. During the field experiments, the ingestion rates and grazing coefficients of cryptophytes on natural populations of heterotrophic bacteria were 0.3-8.3 cells predator-1h-1 and 0.012-0.033d-1, respectively. Marine cryptophytes

  16. Assessing ultraphytoplankton and heterotrophic prokaryote composition by flow cytometry in a Mediterranean lagoon.

    Science.gov (United States)

    Dhib, Amel; Denis, Michel; Ziadi, Boutheina; Barani, Aude; Turki, Souad; Aleya, Lotfi

    2017-05-01

    In the eutrophic Ghar El Melh Lagoon (GML, Tunisia), the distribution of heterotrophic prokaryotes, pico- and nanophytoplankton was studied at five stations in November 2012 at the single cell level, along with environmental factors. Flow cytometry analysis of ultraplankton (<10 μm) resolved (i) two heterotrophic prokaryote groups, low and high nucleic acid contents (LNA and HNA, respectively), and (ii) eight to nine ultraphytoplankton groups (cryptophyte-like cells, two nanoeukaryote subgroups, two picoeukaryote subgroups and three Synechococcus-like cells subgroups). Prochlorococcus was not detected. According to redundancy analysis (RDA), a significant difference was found in the distribution of the ultraplankton between stations (F = 2.61, p < 0.05); maximum proliferations of heterotrophic prokaryotes were observed in the inner parts of the lagoon at stations 3, 4 and 5 affected by urban, agricultural and industrial discharges. Ultraphytoplankton concentrations were the highest near the outlet of the lagoon at stations 1 and 2 influenced by freshwater outflow and oligotrophic Mediterranean water inflow, respectively. At station 1, the large ultraphytoplankton concentration derives from the high abundance of cryptophyte-like cells favoured by the freshwater outflow whereas at station 2, the input of oligotrophic Mediterranean water enhanced the abundance of Synechococcus and picoeukaryotes at the expense of nanoeukaryotes. Two trophic regimes were thus differentiated in GML.

  17. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B.; Fansler, Sarah J.; Fredrickson, James K.; Moran, James J.

    2017-10-01

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: 1) How does species diversity relate to the rates of primary and heterotrophic productivity? 2) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline Lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope incorporation that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose and acetate, respectively. Bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, energy constraints imposed by changing irradiance over a diel cycle.

  18. Factor driving heterotrophic dinoflagellate in relation to environment conditions in Kerkennah Islands (eastern coast of Tunisa

    Directory of Open Access Journals (Sweden)

    Mounir Ben Brahim

    2015-09-01

    Full Text Available Objective: To study the seasonal variability of heterotrophic dinoflagellate in the station of Cercina (southern coast of Tunisia. Methods: Sampling was done in 2007 in Cercina station located in the western coast of Kerkennah (34°41'27'' N; 11°07'45'' E (Southern Tunisia. Three replicates of water samples were taken during 10 days of each month. Environmental variables and nutrients were measured in situ. Results: A significant seasonal difference was observed for temperature and water salinity. The highest values were observed in spring and summer. No significant seasonal difference was, however, detected for nitrite, nitrate, ammonia, silica and phosphate. Sixty-five species of dinoflagellate were identified in the station of Cercina. Abundance of dinoflagellates fluctuated between seasons with values showing a significant seasonal and monthly difference. The highest mean abundance was recorded in spring in April, while the lowest abundance was detected in December in winter. Protoperidinium granii was the main species contributing to the dissimilarity between spring and winter with 13.98% followed by Peridinium sp. with 12.5% of dissimilarity and by Polykrikos sp. with 10.58%. Conclusions: Heterotrophic dinoflagellates proliferate in spring and summer. This increase was justified by the nutrient availability. Protoperidinium granii and Polykrikos kofoidii were the main heterotrophic dinoflagellate making difference between seasons and their densities were positively correlated with both temperature and salinity.

  19. Stoichiometric Network Analysis of Cyanobacterial Acclimation to Photosynthesis-Associated Stresses Identifies Heterotrophic Niches

    Directory of Open Access Journals (Sweden)

    Ashley E. Beck

    2017-06-01

    Full Text Available Metabolic acclimation to photosynthesis-associated stresses was examined in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 using integrated computational and photobioreactor analyses. A genome-enabled metabolic model, complete with measured biomass composition, was analyzed using ecological resource allocation theory to predict and interpret metabolic acclimation to irradiance, O2, and nutrient stresses. Reduced growth efficiency, shifts in photosystem utilization, changes in photorespiration strategies, and differing byproduct secretion patterns were predicted to occur along culturing stress gradients. These predictions were compared with photobioreactor physiological data and previously published transcriptomic data and found to be highly consistent with observations, providing a systems-based rationale for the culture phenotypes. The analysis also indicated that cyanobacterial stress acclimation strategies created niches for heterotrophic organisms and that heterotrophic activity could enhance cyanobacterial stress tolerance by removing inhibitory metabolic byproducts. This study provides mechanistic insight into stress acclimation strategies in photoautotrophs and establishes a framework for predicting, designing, and engineering both axenic and photoautotrophic-heterotrophic systems as a function of controllable parameters.

  20. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7.

    Science.gov (United States)

    Zhang, Qing-Ling; Liu, Ying; Ai, Guo-Min; Miao, Li-Li; Zheng, Hai-Yan; Liu, Zhi-Pei

    2012-03-01

    Bacillus methylotrophicus strain L7, exhibited efficient heterotrophic nitrification-aerobic denitrification ability, with maximum NH(4)(+)-N and NO(2)(-)-N removal rate of 51.58 mg/L/d and 5.81 mg/L/d, respectively. Strain L7 showed different gaseous emitting patterns from those strains ever described. When (15)NH(4)Cl, or Na(15)NO(2), or K(15)NO(3) was used, results of GC-MS indicated that N(2)O was emitted as the intermediate of heterotrophic nitrification or aerobic denitrification, while GC-IRMS results showed that N(2) was produced as end product when nitrite was used. Single factor experiments suggested that the optimal conditions for heterotrophic nitrification were sodium succinate as carbon source, C/N 6, pH 7-8, 0 g/L NaCl, 37 °C and a wide range of NH(4)(+)-N from 80 to 1000 mg/L. Orthogonal tests showed that the optimal conditions for aerobic denitrification were C/N 20, pH 7-8, 10 g/L NaCl and DO 4.82 mg/L (shaking speed 50 r/min) when nitrite was served as substrate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat.

    Science.gov (United States)

    Bernstein, Hans C; Brislawn, Colin J; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B; Fansler, Sarah J; Fredrickson, James K; Moran, James J

    2017-10-01

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing irradiance over a diel cycle. © FEMS 2017.

  2. Alexandr I. Oparin and the Origin of Life: A Historical Reassessment of the Heterotrophic Theory.

    Science.gov (United States)

    Lazcano, Antonio

    2016-12-01

    The heterotrophic origin of life proposed by A. I. Oparin in the 1920s was part of a Darwinian framework that assumed that living organisms were the historical outcome of a gradual transformation of lifeless matter. Eighty years ago, he presented a much more detailed scheme of the processes that may have led to life. As argued here, the development of the heterotrophic theory has been shaped by an entangled scenario in which a number of technical and scientific developments concur, as well as non-scientific issues including the Stalinist period and the tensions of the Cold War atmosphere. What has been largely ignored until now is the key role played by Haeckel's ideas in shaping Oparin's theory. The heterotrophic theory has been erroneously described as a metabolism-first hypothesis in which genetic material was not included due to ideological pressures of the Soviet government. As shown here, both characterizations are mistaken. The development of Oparin's views and the ensuing debates cannot be understood without considering the confrontation between Mendelism and Darwinism during the first three decades of the past century, combined with the doubts surrounding the existence of genes.

  3. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations.

    Science.gov (United States)

    Bumbak, Fabian; Cook, Stella; Zachleder, Vilém; Hauser, Silas; Kovar, Karin

    2011-07-01

    Microalgae of numerous heterotrophic genera (obligate or facultative) exhibit considerable metabolic versatility and flexibility but are currently underexploited in the biotechnological manufacturing of known plant-derived compounds, novel high-value biomolecules or enriched biomass. Highly efficient production of microalgal biomass without the need for light is now feasible in inexpensive, well-defined mineral medium, typically supplemented with glucose. Cell densities of more than 100 g l(-1) cell dry weight have been achieved with Chlorella, Crypthecodinium and Galdieria species while controlling the addition of organic sources of carbon and energy in fedbatch mode. The ability of microalgae to adapt their metabolism to varying culture conditions provides opportunities to modify, control and thereby maximise the formation of targeted compounds with non-recombinant microalgae. This review outlines the critical aspects of cultivation technology and current best practices in the heterotrophic high-cell-density cultivation of microalgae. The primary topics include (1) the characteristics of microalgae that make them suitable for heterotrophic cultivation, (2) the appropriate chemical composition of mineral growth media, (3) the different strategies for fedbatch cultivations and (4) the principles behind the customisation of biomass composition. The review confirms that, although fundamental knowledge is now available, the development of efficient, economically feasible large-scale bioprocesses remains an obstacle to the commercialisation of this promising technology.

  4. A "footprint" of plant carbon fixation cycle functions during the development of a heterotrophic fungus.

    Science.gov (United States)

    Lyu, Xueliang; Shen, Cuicui; Xie, Jiatao; Fu, Yanping; Jiang, Daohong; Hu, Zijin; Tang, Lihua; Tang, Liguang; Ding, Feng; Li, Kunfei; Wu, Song; Hu, Yanping; Luo, Lilian; Li, Yuanhao; Wang, Qihua; Li, Guoqing; Cheng, Jiasen

    2015-08-11

    Carbon fixation pathway of plants (CFPP) in photosynthesis converts solar energy to biomass, bio-products and biofuel. Intriguingly, a large number of heterotrophic fungi also possess enzymes functionally associated with CFPP, raising the questions about their roles in fungal development and in evolution. Here, we report on the presence of 17 CFPP associated enzymes (ten in Calvin-Benson-Basham reductive pentose phosphate pathway and seven in C4-dicarboxylic acid cycle) in the genome of Sclerotinia sclerotiorum, a heterotrophic phytopathogenic fungus, and only two unique enzymes: ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK) were absent. This data suggested an incomplete CFPP-like pathway (CLP) in fungi. Functional profile analysis demonstrated that the activity of the incomplete CLP was dramatically regulated during different developmental stages of S. sclerotiorum. Subsequent experiments confirmed that many of them were essential to the virulence and/or sclerotial formation. Most of the CLP associated genes are conserved in fungi. Phylogenetic analysis showed that many of them have undergone gene duplication, gene acquisition or loss and functional diversification in evolutionary history. These findings showed an evolutionary links in the carbon fixation processes of autotrophs and heterotrophs and implicated the functions of related genes were in course of continuous change in different organisms in evolution.

  5. [Heterotrophic Nitrification and Aerobic Denitrification of the Hypothermia Aerobic Denitrification Bacterium: Arthrobacter arilaitensis].

    Science.gov (United States)

    He, Teng-xia; Ni, Jiu-pai; Li, Zhen-lun; Sun, Quan; Ye Qing; Xu, Yi

    2016-03-15

    High concentrations of ammonium, nitrate and nitrite nitrogen were employed to clarify the abilities of heterotrophic nitrification and aerobic denitrification of Arthrobacter arilaitensis strain Y-10. Meanwhile, by means of inoculating the strain suspension into the mixed ammonium and nitrate, ammonium and nitrite nitrogen simulated wastewater, we studied the simultaneous nitrification and denitrification ability of Arthrobacter arilaitensis strain Y-10. In addition, cell optical density was assayed in each nitrogen removal process to analyze the relationship of cell growth and nitrogen removal efficiency. The results showed that the hypothermia denitrification strain Arthrobacter arilaitensis Y-10 exhibited high nitrogen removal efficiency during heterotrophic nitrification and aerobic denitrification. The ammonium, nitrate and nitrite removal rates were 65.0%, 100% and 61.2% respectively when strain Y-10 was cultivated for 4 d at 15°C with initial ammonium, nitrate and nitrite nitrogen concentrations of 208.43 mg · L⁻¹, 201.16 mg · L⁻¹ and 194.33 mg · L⁻¹ and initial pH of 7.2. Nitrite nitrogen could only be accumulated in the medium containing nitrate nitrogen during heterotrophic nitrification and aerobic denitrification process. Additionally, the ammonium nitrogen was mainly removed in the inorganic nitrogen mixed synthetic wastewater. In short, Arthrobacter arilaitensis Y-10 could conduct nitrification and denitrification effectively under aerobic condition and the ammonium nitrogen removal rate was more than 80.0% in the inorganic nitrogen mixed synthetic wastewater.

  6. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists.

    Directory of Open Access Journals (Sweden)

    Shuyang Sun

    Full Text Available Protozoan grazing is a major mortality factor faced by bacteria in the environment. Vibrio cholerae, the causative agent of the disease cholera, is a natural inhabitant of aquatic ecosystems, and its survival depends on its ability to respond to stresses, such as predation by heterotrophic protists. Previous results show that grazing pressure induces biofilm formation and enhances a smooth to rugose morphotypic shift, due to increased expression of Vibrio polysaccharide (VPS. In addition to negatively controlling vps genes, the global quorum sensing (QS regulator, HapR, plays a role in grazing resistance as the ΔhapR strain is efficiently consumed while the wild type (WT is not. Here, the relative and combined contributions of VPS and QS to grazing resistance were investigated by exposing VPS and HapR mutants and double mutants in VPS and HapR encoding genes at different phases of biofilm development to amoeboid and flagellate grazers. Data show that the WT biofilms were grazing resistant, the VPS mutants were less resistant than the WT strain, but more resistant than the QS mutant strain, and that QS contributes to grazing resistance mainly in mature biofilms. In addition, grazing effects on biofilms of mixed WT and QS mutant strains were investigated. The competitive fitness of each strain in mixed biofilms was determined by CFU and microscopy. Data show that protozoa selectively grazed the QS mutant in mixed biofilms, resulting in changes in the composition of the mixed community. A small proportion of QS mutant cells which comprised 4% of the mixed biofilm biovolume were embedded in grazing resistant WT microcolonies and shielded from predation, indicating the existence of associational protection in mixed biofilms.

  7. Isolation and characterisation of the marine ultramicrobacterium Sphingomonas sp. strain RB2256

    NARCIS (Netherlands)

    Schut, F; Gottschal, J.C; Prins, R.A

    Indigenous heterotrophic marine bacteria are of great importance to global nutrient cycling. Predominant native bacteria are of ultramicrobacterial dimensions, are not associated with aggregates and must have truly remarkable abilities for substrate capture. Agar media are unsuited for the isolation

  8. Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant.

    Science.gov (United States)

    Huang, Jing-Jing; Hu, Hong-Ying; Tang, Fang; Li, Yi; Lu, Sun-Qin; Lu, Yun

    2011-04-01

    Reports state that chlorination of drinking water and wastewater affects the proportions of antibiotic-resistant bacteria by potentially assisting in microbial selection. Studies on the effect of chlorination on like species of antibiotic-resistant bacteria, however, have shown to be conflicting; furthermore, few studies have inspected the regrowth or reactivation of antibiotic-resistant bacteria after chlorination in wastewater. To understand the risks of chlorination resulting from potentially selecting for antibiotic-resistant bacteria, inactivation and reactivation rates of both total heterotrophic bacteria and antibiotic-resistant bacteria (including penicillin-, ampicillin-, tetracycline-, chloramphenicol-, and rifampicin-resistant bacteria) were examined after chlorinating secondary effluent samples from a municipal wastewater treatment plant in this study. Our experimental results indicated similar inactivation rates of both total heterotrophic bacteria and antibiotic-resistant bacteria. Microbial community composition, however, was affected by chlorination: treating samples with 10 mg Cl(2)/L for 10 min resulted in chloramphenicol-resistant bacteria accounting for nearly 100% of the microbial population in contrast to 78% before chlorination. This trend shows that chlorination contributes to selection of some antibiotic-resistant strains. Reactivation of antibiotic-resistant bacteria occurred at 2.0 mg Cl(2)/L for 10 min; specifically, chloramphenicol-, ampicillin-, and penicillin-resistant bacteria were the three prevalent groups present, and the reactivation of chloramphenicol-resistant bacteria exceeded 50%. Regrowth and reactivation of antibiotic-resistant bacteria in secondary effluents after chlorination with a long retention time could threaten public health security during wastewater reuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Familial Aggregation of Insomnia.

    Science.gov (United States)

    Jarrin, Denise C; Morin, Charles M; Rochefort, Amélie; Ivers, Hans; Dauvilliers, Yves A; Savard, Josée; LeBlanc, Mélanie; Merette, Chantal

    2017-02-01

    There is little information about familial aggregation of insomnia; however, this type of information is important to (1) improve our understanding of insomnia risk factors and (2) to design more effective treatment and prevention programs. This study aimed to investigate evidence of familial aggregation of insomnia among first-degree relatives of probands with and without insomnia. Cases (n = 134) and controls (n = 145) enrolled in a larger epidemiological study were solicited to invite their first-degree relatives and spouses to complete a standardized sleep/insomnia survey. In total, 371 first-degree relatives (Mage = 51.9 years, SD = 18.0; 34.3% male) and 138 spouses (Mage = 55.5 years, SD = 12.2; 68.1% male) completed the survey assessing the nature, severity, and frequency of sleep disturbances. The dependent variable was insomnia in first-degree relatives and spouses. Familial aggregation was claimed if the risk of insomnia was significantly higher in the exposed (relatives of cases) compared to the unexposed cohort (relatives of controls). The risk of insomnia was also compared between spouses in the exposed (spouses of cases) and unexposed cohort (spouses of controls). The risk of insomnia in exposed and unexposed biological relatives was 18.6% and 10.4%, respectively, yielding a relative risk (RR) of 1.80 (p = .04) after controlling for age and sex. The risk of insomnia in exposed and unexposed spouses was 9.1% and 4.2%, respectively; however, corresponding RR of 2.13 (p = .28) did not differ significantly. Results demonstrate evidence of strong familial aggregation of insomnia. Additional research is warranted to further clarify and disentangle the relative contribution of genetic and environmental factors in insomnia.

  10. Concrete produced with recycled aggregates

    OpenAIRE

    Tenório,J. J. L.; Gomes,P. C. C.; Rodrigues,C. C.; Alencar,T. F. F. de

    2012-01-01

    This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC) for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW), which were d...

  11. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  12. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retained in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.

  13. Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra.

    Science.gov (United States)

    Prokhorenko, V I; Steensgaard, D B; Holzwarth, A R

    2003-11-01

    The interior of chlorosomes of green bacteria forms an unusual antenna system organized without proteins. The steady-spectra (absorption, circular dichroism, and linear dichroism) have been modeled using the Frenkel Hamiltonian for the large tubular aggregates of bacteriochlorophylls with geometries corresponding to those proposed for Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. For the Cf. aurantiacus aggregates we apply a structure used previously (V. I. Prokhorenko., D. B. Steensgaard, and A. R. Holzwarth, Biophys: J. 2000, 79:2105-2120), whereas for the Cb. tepidum aggregates a new extended model of double-tube aggregates, based on recently published solid-state nuclear magnetic resonance studies (B.-J. van Rossum, B. Y. van Duhl, D. B. Steensgaard, T. S. Balaban, A. R. Holzwarth, K. Schaffner, and H. J. M. de Groot, Biochemistry 2001, 40:1587-1595), is developed. We find that the circular dichroism spectra depend strongly on the aggregate length for both types of chlorosomes. Their shape changes from "type-II" (negative at short wavelengths to positive at long wavelengths) to the "mixed-type" (negative-positive-negative) in the nomenclature proposed in K. Griebenow, A. R. Holzwarth, F. van Mourik, and R. van Grondelle, Biochim: Biophys. Acta 1991, 1058:194-202, for an aggregate length of 30-40 bacteriochlorophyll molecules per stack. This "size effect" on the circular dichroism spectra is caused by appearance of macroscopic chirality due to circular distribution of the transition dipole moment of the monomers. We visualize these distributions, and also the corresponding Frenkel excitons, using a novel presentation technique. The observed size effects provide a key to explain many previously puzzling and seemingly contradictory experimental data in the literature on the circular and linear dichroism spectra of seemingly identical types of chlorosomes.

  14. Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: A promising way for promotion of chemoautotrophic denitrification.

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Zhang, Meng; Zhao, He-Ping; Ji, Jun-Yuan; Zhou, Xiao-Xin; Li, Wei

    2015-12-01

    Nitrate-dependent anaerobic ferrous oxidation (NAFO) is a new and valuable bio-process for the treatment of wastewaters with low C/N ratio, and the NAFO process is in state of the art. The heterotrophic denitrifying sludge (HDS), possessing NAFO activity, was used as bioaugmentation to enhance NAFO efficiency. At a dosage of 6% (V/V), the removal of nitrate and ferrous was 2.4 times and 2.3 times of as primary, and the volumetric removal rate (VRR) of nitrate and ferrous was 2.4 times and 2.2 times of as primary. Tracing experiments of HDS indicated that the bioaugmentation on NAFO reactor was resulted from the NAFO activity by HDS itself. The predominant bacteria in HDS were identified as Thauera (52.5%) and Hyphomicrobium (20.0%) which were typical denitrifying bacteria and had potential ability to oxidize ferrous. In conclusion, HDS could serve as bioaugmentation or a new seeding sludge for operating high-efficiency NAFO reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Diatoms and bacteria diversity: study of their relationships in the Southern Adriatic Sea

    Directory of Open Access Journals (Sweden)

    C. CAROPPO

    2003-12-01

    Full Text Available In the Southern Adriatic Sea (Italian coasts bacterial and diatom diversity was studied over an annual cycle and the relationships between these two microbial components were analyzed. As regards the culturable heterotrophic bacteria, Aeromonas was the predominant genus among the Gram-negative bacteria. The presence of Enterobacteriaceae, Cytophaga, Pseudomonas, Acinetobacterand Photobacteriumwas also remarkable. Flexibacter, Moraxella, Chromobacterium, Flavobacteriumand Vibriowere present at less than 5%. Of the 92 diatom species determined, 16 were the most abundant representing the 96% of this phytoplankton group. The results obtained demonstrated that several bacterial genera were significantly related to the most abundant and representative diatoms ( Chaetocerosspp., Pseudo-nitzschia pseudodelicatissimaand Rhizosoleniaspp..

  16. Dynamics of fire ant aggregations

    Science.gov (United States)

    Tennenbaum, Michael; Hu, David; Fernandez-Nieves, Alberto

    Fire ant aggregations are an inherently active system. Each ant harvests its own energy and can convert it into motion. The motion of individual ants contributes non-trivially to the bulk material properties of the aggregation. We have measured some of these properties using plate-plate rheology, where the response to an applied external force or deformation is measured. In this talk, we will present data pertaining to the aggregation behavior in the absence of any external force. We quantify the aggregation dynamics by monitoring the rotation of the top plate and by measuring the normal force. We then compare the results with visualizations of 2D aggregations.

  17. Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors.

    Science.gov (United States)

    Lakaniemi, Aino-Maija; Intihar, Veera M; Tuovinen, Olli H; Puhakka, Jaakko A

    2012-09-01

    The aim of this study was to test three flat-plate photobioreactor configurations for cultivation of marine green alga Dunaliella tertiolecta under non-axenic growth conditions and to characterize and quantify the associated bacteria. The photobioreactor cultivations were conducted using tap water-based media. Static mixers intended to enhance mixing and light utilization did not generally increase algal growth at the low light intensities used. The maximum biomass concentration (measured as volatile suspended solids) and maximum specific growth rate achieved in the flat plate with no mixer were 2.9 g l⁻¹ and 1.3 day⁻¹, respectively. Based on quantitative polymerase chain reaction, bacterial growth followed the growth of D. tertiolecta. Based on 16S rDNA amplification and denaturing gradient gel electrophoresis profiling, heterotrophic bacteria in the D. tertiolecta cultures mainly originated from the non-axenic algal inocula, and tap water heterotrophs were not enriched in high chloride media (3 % salinity). Bacterial communities were relatively stable and reproducible in all flat-plate cultivations and were dominated by Gammaproteobacteria, Flavobacteria, and Alphaproteobacteria.

  18. Shaping the growth behaviour of biofilms initiated from bacterial aggregates

    DEFF Research Database (Denmark)

    Melaugh, Gavin; Hutchison, Jaime; Kragh, Kasper Nørskov

    2016-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase so that it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell ag...... outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the social evolution of biofilm communities....

  19. Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates

    Science.gov (United States)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.; Thamdrup, Bo; Glud, Ronnie N.

    2016-01-01

    Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly in concentrations >60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2–3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions. Thirty-one percent of the diatom-derived nitrate was converted to nitrogen gas, indicating that a substantial fraction of the intracellular nitrate pool of S. marinoi becomes available to the aggregate-associated bacterial community. Only 5% of the intracellular nitrate was reduced to ammonium, while 59% was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before the aggregates have settled onto the seafloor could fuel benthic nitrogen transformations. PMID:27847498

  20. Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates

    Directory of Open Access Journals (Sweden)

    Anja Kamp

    2016-11-01

    Full Text Available Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly in concentrations > 60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2-3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions. Thirty-one percent of the diatom-derived nitrate was converted to nitrogen gas, indicating that a substantial fraction of the intracellular nitrate pool of S. marinoi becomes available to the aggregate-associated bacterial community. Only 5% of the intracellular nitrate was reduced to ammonium, while 59% was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before the aggregates have settled onto the seafloor could fuel benthic nitrogen transformations.

  1. Making Graphene Resist Aggregation

    Science.gov (United States)

    Luo, Jiayan

    Graphene-based sheets have stimulated great interest in many scientific disciplines and shown promise for wide potential applications. Among various ways of creating single atomic layer carbon sheets, a promising route for bulk production is to first chemically exfoliate graphite powders to graphene oxide (GO) sheets, followed by reduction to form chemically modified graphene (CMG). Due to the strong van der Waals attraction between graphene sheets, CMG tends to aggregate. The restacking of sheets is largely uncontrollable and irreversible, thus it reduces their processability and compromises properties such as accessible surface area. Strategies based on colloidal chemistry have been applied to keep CMG dispersed in solvents by introducing electrostatic repulsion to overcome the van der Waals attraction or adding spacers to increase the inter-sheet spacing. In this dissertation, two very different ideas that can prevent CMG aggregation without extensively modifying the material or introducing foreign spacer materials are introduced. The van der Waals potential decreases with reduced overlapping area between sheets. For CMG, reducing the lateral dimension from micrometer to nanometer scale should greatly enhance their colloidal stability with additional advantages of increased charge density and decreased probability to interact. The enhanced colloidal stability of GO and CMG nanocolloids makes them especially promising for spectroscopy based bio-sensing applications. For potential applications in a compact bulk solid form, the sheets were converted into paper-ball like structure using capillary compression in evaporating aerosol droplets. The crumpled graphene balls are stabilized by locally folded pi-pi stacked ridges, and do not unfold or collapse during common processing steps. They can tightly pack without greatly reducing the surface area. This form of graphene leads to scalable performance in energy storage. For example, planer sheets tend to aggregate and

  2. Structure of Viral Aggregates

    Science.gov (United States)

    Barr, Stephen; Luijten, Erik

    2010-03-01

    The aggregation of virus particles is a particular form of colloidal self-assembly, since viruses of a give type are monodisperse and have identical, anisotropic surface charge distributions. In small-angle X-ray scattering experiments, the Qbeta virus was found to organize in different crystal structures in the presence of divalent salt and non-adsorbing polymer. Since a simple isotropic potential cannot explain the occurrence of all observed phases, we employ computer simulations to investigate how the surface charge distribution affects the virus interactions. Using a detailed model of the virus particle, we find an asymmetric ion distribution around the virus which gives rise to the different phases observed.

  3. Distinguishing aggregate formation and aggregate clearance using cell-based assays

    NARCIS (Netherlands)

    Eenjes, Evelien; Dragich, Joanna M.; Kampinga, Harm H.; Yamamoto, Ai

    2016-01-01

    The accumulation of ubiquitylated proteinaceous inclusions represents a complex process, reflecting the disequilibrium between aggregate formation and aggregate clearance. Although decreasing aggregate formation or augmenting aggregate clearance will ultimately lead to a diminished aggregate burden,

  4. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    Science.gov (United States)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  5. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    Directory of Open Access Journals (Sweden)

    Jessica K Cole

    2014-04-01

    Full Text Available Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural

  6. Science ... bacteria ... art ...

    OpenAIRE

    Dimech, Anne Marie; Zammit, Gabrielle

    2015-01-01

    Bacteria are everywhere, from the top of the windswept cliffs of Dwejra, Gozo, right to the core of the ancient catacombs in Rabat, Malta. Anne Marie Dimech met Dr Gabrielle Zammit to learn about the unique bacteria discovered growing on artworks in ancient Maltese temples and how these bacteria could be useful to medicine. http://www.um.edu.mt/think/science-bacteria-art/

  7. Inference of Interactions in Cyanobacterial-Heterotrophic Co-Cultures via Transcriptome Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Beliaev, Alex S.; Romine, Margaret F.; Serres, Margaret; Bernstein, Hans C.; Linggi, Bryan E.; Markillie, Lye Meng; Isern, Nancy G.; Chrisler, William B.; Kucek, Leo A.; Hill, Eric A.; Pinchuk, Grigoriy; Bryant, Donald A.; Wiley, H. S.; Fredrickson, Jim K.; Konopka, Allan

    2014-04-29

    We employed deep sequencing technology to identify transcriptional adaptation of the euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 and the marine facultative aerobe Shewanella putrefaciens W3-18-1 to growth in a co-culture and infer the effect of carbon flux distributions on photoautotroph-heterotroph interactions. The overall transcriptome response of both organisms to co-cultivation was shaped by their respective physiologies and growth constraints. Carbon limitation resulted in the expansion of metabolic capacities which was manifested through the transcriptional upregulation of transport and catabolic pathways. While growth coupling occurred via lactate oxidation or secretion of photosynthetically fixed carbon, there was evidence of specific metabolic interactions between the two organisms. On one hand, the production and excretion of specific amino acids (methionine and alanine) by the cyanobacterium correlated with the putative downregulation of the corresponding biosynthetic machinery of Shewanella W3-18-1. On the other hand, the broad and consistent decrease of mRNA levels for many Fe-regulated Synechococcus 7002 genes during co-cultivation suggested increased Fe availability as well as more facile and energy-efficient mechanisms for Fe acquisition by the cyanobacterium. Furthermore, evidence pointed at potentially novel interactions between oxygenic photoautotrophs and heterotrophs related to the oxidative stress response as transcriptional patterns suggested that Synechococcus 7002 rather than Shewanella W3-18-1 provided scavenging functions for reactive oxygen species under co-culture conditions. This study provides an initial insight into the complexity of photoautotrophic-heterotrophic interactions and brings new perspectives of their role in the robustness and stability of the association.

  8. Effects of forest age on soil autotrophic and heterotrophic respiration differ between evergreen and deciduous forests.

    Science.gov (United States)

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Yang, Yuanhe; Zeng, Hui

    2013-01-01

    We examined the effects of forest stand age on soil respiration (SR) including the heterotrophic respiration (HR) and autotrophic respiration (AR) of two forest types. We measured soil respiration and partitioned the HR and AR components across three age classes ~15, ~25, and ~35-year-old Pinus sylvestris var. mongolica (Mongolia pine) and Larix principis-rupprechtii (larch) in a forest-steppe ecotone, northern China (June 2006 to October 2009). We analyzed the relationship between seasonal dynamics of SR, HR, AR and soil temperature (ST), soil water content (SWC) and normalized difference vegetation index (NDVI, a plant greenness and net primary productivity indicator). Our results showed that ST and SWC were driving factors for the seasonal dynamics of SR rather than plant greenness, irrespective of stand age and forest type. For ~15-year-old stands, the seasonal dynamics of both AR and HR were dependent on ST. Higher Q10 of HR compared with AR occurred in larch. However, in Mongolia pine a similar Q10 occurred between HR and AR. With stand age, Q10 of both HR and AR increased in larch. For Mongolia pine, Q10 of HR increased with stand age, but AR showed no significant relationship with ST. As stand age increased, HR was correlated with SWC in Mongolia pine, but for larch AR correlated with SWC. The dependence of AR on NDVI occurred in ~35-year-old Mongolia pine. Our study demonstrated the importance of separating autotrophic and heterotrophic respiration components of SR when stimulating the response of soil carbon efflux to environmental changes. When estimating the response of autotrophic and heterotrophic respiration to environmental changes, the effect of forest type on age-related trends is required.

  9. Effects of forest age on soil autotrophic and heterotrophic respiration differ between evergreen and deciduous forests.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available We examined the effects of forest stand age on soil respiration (SR including the heterotrophic respiration (HR and autotrophic respiration (AR of two forest types. We measured soil respiration and partitioned the HR and AR components across three age classes ~15, ~25, and ~35-year-old Pinus sylvestris var. mongolica (Mongolia pine and Larix principis-rupprechtii (larch in a forest-steppe ecotone, northern China (June 2006 to October 2009. We analyzed the relationship between seasonal dynamics of SR, HR, AR and soil temperature (ST, soil water content (SWC and normalized difference vegetation index (NDVI, a plant greenness and net primary productivity indicator. Our results showed that ST and SWC were driving factors for the seasonal dynamics of SR rather than plant greenness, irrespective of stand age and forest type. For ~15-year-old stands, the seasonal dynamics of both AR and HR were dependent on ST. Higher Q10 of HR compared with AR occurred in larch. However, in Mongolia pine a similar Q10 occurred between HR and AR. With stand age, Q10 of both HR and AR increased in larch. For Mongolia pine, Q10 of HR increased with stand age, but AR showed no significant relationship with ST. As stand age increased, HR was correlated with SWC in Mongolia pine, but for larch AR correlated with SWC. The dependence of AR on NDVI occurred in ~35-year-old Mongolia pine. Our study demonstrated the importance of separating autotrophic and heterotrophic respiration components of SR when stimulating the response of soil carbon efflux to environmental changes. When estimating the response of autotrophic and heterotrophic respiration to environmental changes, the effect of forest type on age-related trends is required.

  10. Factors controlling extremely productive heterotrophic bacterial communities in shallow soda pools.

    Science.gov (United States)

    Eiler, A; Farnleitner, A H; Zechmeister, T C; Herzig, A; Hurban, C; Wesner, W; Krachler, R; Velimirov, B; Kirschner, A K T

    2003-07-01

    Dilute soda lakes are among the world's most productive environments and are usually dominated by dense blooms of cyanobacteria. Up to now, there has been little information available on heterotrophic bacterial abundance, production, and their controlling factors in these ecosystems. In the present study the main environmental factors responsible for the control of the heterotrophic bacterial community in five shallow soda pools in Eastern Austria were investigated during an annual cycle. Extremely high cyanobacterial numbers and heterotrophic bacterial numbers up to 307 x 10(9) L(-1) and 268 x 10(9) L(-1) were found, respectively. Bacterial secondary production rates up to 738 micro g C L(-1) h(-1) and specific growth rates up to 1.65 h(-1) were recorded in summer and represent the highest reported values for natural aquatic ecosystems. The combination of dense phytoplankton blooms, high temperature, high turbidity, and nutrient concentration due to evaporation is supposed to enable the development of such extremely productive microbial populations. By principal component analysis containing the data set of all five investigated pools, two factors were extracted which explained 62.5% of the total variation of the systems. The first factor could be interpreted as a turbidity factor; the second was assigned to as concentration factor. From this it was deduced that bacterial and cyanobacterial abundance were mainly controlled by wind-induced sediment resuspension and turbidity stabilized by the high pH and salinity and less by evaporative concentration of salinity and dissolved organic carbon. Bacterial production was clustered with temperature in factor 3, showing that bacterial growth was mainly controlled by temperature. The concept of describing the turbid water columns of the shallow soda pools as "fluid sediment" is discussed.

  11. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata.

    Directory of Open Access Journals (Sweden)

    Gwang Hoon Kim

    Full Text Available The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value

  12. Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle

    Directory of Open Access Journals (Sweden)

    W. Koeve

    2010-08-01

    Full Text Available The conversion of fixed nitrogen to N2 in suboxic waters is estimated to contribute roughly a third to total oceanic losses of fixed nitrogen and is hence understood to be of major importance to global oceanic production and, therefore, to the role of the ocean as a sink of atmospheric CO2. At present heterotrophic denitrification and autotrophic anammox are considered the dominant sinks of fixed nitrogen. Recently, it has been suggested that the trophic nature of pelagic N2-production may have additional, "collateral" effects on the carbon cycle, where heterotrophic denitrification provides a shallow source of CO2 and autotrophic anammox a shallow sink. Here, we analyse the stoichiometries of nitrogen and associated carbon conversions in marine oxygen minimum zones (OMZ focusing on heterotrophic denitrification, autotrophic anammox, and dissimilatory nitrate reduction to nitrite and ammonium in order to test this hypothesis quantitatively. For open ocean OMZs the combined effects of these processes turn out to be clearly heterotrophic, even with high shares of the autotrophic anammox reaction in total N2-production and including various combinations of dissimilatory processes which provide the substrates to anammox. In such systems, the degree of heterotrophy (ΔCO2:ΔN2, varying between 1.7 and 6.5, is a function of the efficiency of nitrogen conversion. On the contrary, in systems like the Black Sea, where suboxic N-conversions are supported by diffusive fluxes of NH4+ originating from neighbouring waters with sulphate reduction, much lower values of ΔCO2:ΔN2 can be found. However, accounting for concomitant diffusive fluxes of CO2, the ratio approaches higher values similar to those computed for open ocean OMZs. Based on this analysis, we question the significance of collateral effects concerning the trophic

  13. Constrained partitioning of autotrophic and heterotrophic respiration reduces model uncertainties of forest ecosystem carbon fluxes but not stocks

    Science.gov (United States)

    Carbone, Mariah S.; Richardson, Andrew D.; Chen, Min; Davidson, Eric A.; Hughes, Holly; Savage, Kathleen E.; Hollinger, David Y.

    2016-09-01

    We partitioned the soil carbon dioxide flux (Rs) into its respective autotrophic and heterotrophic components in a mature temperate-boreal forest (Howland Forest in Maine, USA). We combined automated chamber measurements of Rs with two different partitioning methods: (1) a classic root trenching experiment and (2) a radiocarbon (14C) mass balance approach. With a model-data fusion approach, we used these data to constrain a parsimonious ecosystem model (FöBAAR), and we investigated differences in modeled C fluxes and pools under both current and future climate scenarios. The trenching experiment indicated that heterotrophic respiration accounted for 53 ± 11% of total Rs. In comparison, using the 14C method, the heterotrophic contribution was 42 ± 9%. For both current and future model runs, incorporating the partitioning data as constraints substantially reduced the uncertainties of autotrophic and heterotrophic respiration fluxes. Moreover, with best fit model parameters, the two partitioning methods yielded fundamentally different estimates of the relative contributions of autotrophic and heterotrophic respiration to total Rs, especially at the annual time scale. Surprisingly, however, modeled soil C and biomass C pool size trajectories did not differ significantly between model runs based on the different methods. Instead, model differences in partitioning were compensated for by changes in C allocation, resulting in similar, but still highly uncertain, soil C pool trajectories. Our findings show that incorporating constraints on the partitioning of Rs can reduce model uncertainties of fluxes but not pools, and the results are sensitive to the partitioning method used.

  14. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    Science.gov (United States)

    Linchangco, Richard

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed. PMID:25580463

  15. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    Directory of Open Access Journals (Sweden)

    Miguel Ramirez

    2014-01-01

    Full Text Available Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2 and nitrous oxide (N2O while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1 was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  16. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy.

    Science.gov (United States)

    Xie, Tonghui; Xia, Yun; Zeng, Yu; Li, Xingrui; Zhang, Yongkui

    2017-06-01

    Protein production from microalgae requires both high cell density during cultivation and high protein content in cells. Heterotrophic microalgae can achieve high cell density, and yet are confronted with the problem of low protein content. Based on over-compensation strategy, a new concentration-shift method was proposed to cultivate heterotrophic Chlorella vulgaris, aiming to increase protein content. With a prior starvation period, microalgae utilized more nitrate and accumulated more proteins compared to one-stage cultivation. Considering the convenience of operation, nitrate-added culture was adopted for producing heterotrophic microalgae, rather than sterile centrifugal culture. Operating parameters including nitrate concentration in N-deficient medium, N-starved time and nitrate concentration in N-rich medium were optimized, which were 0.18gl(-1), 38h and 2.45gl(-1), respectively. Under the optimized conditions, protein content in heterotrophic Chlorella reached 44.3%. Furthermore, the heterotrophic microalga was suggested to be a potential single-cell protein source according to the amino acid composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics

    National Research Council Canada - National Science Library

    Yang, Zhou; Zhang, Lu; Zhu, Xuexia; Wang, Jun; Montagnes, David J S

    2016-01-01

    .... However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises...

  18. Platelet aggregation following trauma

    DEFF Research Database (Denmark)

    Windeløv, Nis A; Sørensen, Anne M; Perner, Anders

    2014-01-01

    We aimed to elucidate platelet function in trauma patients, as it is pivotal for hemostasis yet remains scarcely investigated in this population. We conducted a prospective observational study of platelet aggregation capacity in 213 adult trauma patients on admission to an emergency department (ED......). Inclusion criteria were trauma team activation and arterial cannula insertion on arrival. Blood samples were analyzed by multiple electrode aggregometry initiated by thrombin receptor agonist peptide 6 (TRAP) or collagen using a Multiplate device. Blood was sampled median 65 min after injury; median injury...... severity score (ISS) was 17; 14 (7%) patients received 10 or more units of red blood cells in the ED (massive transfusion); 24 (11%) patients died within 28 days of trauma: 17 due to cerebral injuries, four due to exsanguination, and three from other causes. No significant association was found between...

  19. Prion protein dynamics before aggregation

    National Research Council Canada - National Science Library

    Srivastava, Kinshuk Raj; Lapidusa, Lisa J

    2017-01-01

      Prion diseases, like Alzheimer's disease and Parkinson disease, are rapidly progressive neurodegenerative disorders caused by misfolding followed by aggregation and accumulation of protein deposits in neuronal cells...

  20. Novel aspects of platelet aggregation

    Directory of Open Access Journals (Sweden)

    Roka-Moya Y. M.

    2014-01-01

    Full Text Available The platelet aggregation is an important process, which is critical for the hemostatic plug formation and thrombosis. Recent studies have shown that the platelet aggregation is more complex and dynamic than it was previously thought. There are several mechanisms that can initiate the platelet aggregation and each of them operates under specific conditions in vivo. At the same time, the influence of certain plasma proteins on this process should be considered. This review intends to summarize the recent data concerning the adhesive molecules and their receptors, which provide the platelet aggregation under different conditions.

  1. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jackson, G.A.

    2001-01-01

    Leaking organic solutes form an elongated plume in the wake of a sinking aggregate. These solutes may both be assimilated by suspended bacteria and guide bacteria with chemokinetic swimming behavior toward the aggregate. We used modifications of previously published models of the flow...... and concentration fields around sinking aggregates and of chemokinetic behavior of bacteria to identify the behavior that optimizes aggregate colonization and plume utilization. The optimal solution is governed by physical constraints and is a trade off between a high sensitivity to chemical signals and a long...... signal integration time. For a run-and-tumble swimming behavior, the predicted tumbling frequency is between 1 and 10 s(-1), similar to that reported for marine bacteria. The predicted optimal sensitivity to chemical signals is similar to or greater than that known for Escherichia coli. The optimal...

  2. Draft Genome Sequence of Donghicola sp. Strain KarMa, a Model Organism for Monomethylamine-Degrading Nonmethylotrophic Bacteria.

    Science.gov (United States)

    Zecher, Karsten; Suleiman, Marcel; Wibberg, Daniel; Winkler, Anika; Philipp, Bodo; Kalinowski, Jörn

    2017-02-16

    The C1-compound monomethylamine can serve as a nitrogen, carbon, and energy source for heterotrophic bacteria. The marine alphaproteobacterium Donghicola sp. strain KarMa can use monomethylamine as a source only for nitrogen and not for carbon. Its draft genome sequence is presented here and reveals putative gene clusters for the methylamine dehydrogenase and the N-methylglutamate pathways for monomethylamine metabolism. Copyright © 2017 Zecher et al.

  3. Prey-Specific Growth Responses of Freshwater Flagellate Communities Induced by Morphologically Distinct Bacteria from the Genus Limnohabitans

    OpenAIRE

    Grujčić, Vesna; Kasalický, Vojtěch; Šimek, Karel

    2015-01-01

    Because their large growth potential is counterbalanced with grazing by heterotrophic nanoflagellates (HNF), bacteria of the genus Limnohabitans, which are common in many freshwater habitats, represent a valuable model for examining bacterial carbon flow to the grazer food chain. We conducted experiments with natural HNF communities taken from two distinct habitats, the meso-eutrophic Římov Reservoir and the oligo-mesotrophic Lake Cep (South Bohemia). HNF communities from each habitat at dist...

  4. Marine snow microbial communities: scaling of abundances with aggregate size

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2003-01-01

    Marine aggregates are inhabited by diverse microbial communities, and the concentration of attached microbes typically exceeds concentrations in the ambient water by orders of magnitude. An extension of the classical Lotka-Volterra model, which includes 3 trophic levels (bacteria, flagellates......, ciliates) and considers colonization, detachment, growth and predator-prey interactions on the surface of the particle, was used to examine the processes that govern abundances of attached micro-organisms. Effects of sinking on colonization rates as well as the fractal nature of natural aggregates were...... also taken into account. As input for the model, I used experimentally determined encounter and detachment rates, and density-dependent growth and grazing rates, as well as information on relevant properties of natural aggregates, all taken from the literature. The model reproduces the temporal...

  5. Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci: An in vitro study

    DEFF Research Database (Denmark)

    Keller, Mette Kirstine; Hassl F, Pamela; Stecks N-Blicks, Christina

    2011-01-01

    Abstract Objective. Co-aggregation and growth inhibition abilities of probiotic bacteria may play a key role in their interference with the oral biofilm. The aim was to investigate the in vitro ability of selected commercial probiotic lactobacilli to co-aggregate and inhibit growth of oral mutans...

  6. Estimated abundance and diversity of heterotrophic protists in South African biocrusts

    Directory of Open Access Journals (Sweden)

    Kenneth Dumack

    2016-07-01

    Full Text Available Biological soil crusts (biocrusts occur widely in the uppermost millimeters of the soil in arid and semi-arid systems. Worldwide they cover large terrestrial areas and play a major role in the global terrestrial carbon and nitrogen cycles. However, knowledge of the microbial decomposer foodwebs within biocrusts is particularly scarce. Heterotrophic protists in soil are predominantly bacterivores, and because of their high biomass compared with other soil fauna and fast turnover rates, protists are considered an important factor for soil nutrient cycling and energy fluxes. Thus, knowledge of their biodiversity, abundance and functional roles is important to understand soil ecosystem functions. We investigated the diversity and abundance of heterotrophic soil protists in different types of biocrusts from the Succulent Karoo, South Africa. With an overall diversity of 23 distinct morphotypes, soil protist biodiversity was shown to be high. The most abundant groups were Spumella-like chrysomonads, gliding bodonids, glissomonads and heteroloboseans. Protist abundance was highly variable among samples. The abundance and diversity did not differ significantly among different types of biocrusts, indicating that microscale differences, but not macroscopic soil crust builders (e.g. cyanobacteria, lichens and bryophytes, have a major impact on the protist community.

  7. Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production.

    Science.gov (United States)

    Ivušić, Franjo; Šantek, Božidar

    2015-06-01

    Heterotrophic cultivation of Euglena gracilis was carried out on synthetic (Hutner medium) and complex cultivation media in order to optimize production of β-1,3-glucan (paramylon). For preparation of complex media, various industrial by-products (e.g., molasses, corn steep solid, yeast extract, and beef extract) were used with or without addition of pure compounds [glucose, galactose, fructose, lactose, maltose, sucrose, and (NH4)2HPO4]. Heterotrophic cultivation of E. gracilis was performed in Erlenmeyer flasks and additionally confirmed during research in the stirred tank bioreactor. The results clearly show that E. gracilis can easily metabolize glucose and fructose as carbon sources and corn steep solid as complex nitrogen and growth factors source for biomass growth and paramylon synthesis. Furthermore, it was also proved that addition of (NH4)2HPO4, beef extract, or gibberellic acid did not have positive effect on the biomass growth and paramylon synthesis. After optimization of complex medium composition and verification in the stirred tank bioreactor, it was concluded that medium composed of glucose (20 g/L) and corn steep solid (30 g/L) is the most suitable complex medium for industrial cultivation of E. gracilis and paramylon production.

  8. Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum

    Science.gov (United States)

    Choi, Okkyoung; Kim, Taeyeon; Woo, Han Min; Um, Youngsoon

    2014-01-01

    Although microbes directly accepting electrons from a cathode have been applied for CO2 reduction to produce multicarbon-compounds, a high electron demand and low product concentration are critical limitations. Alternatively, the utilization of electrons as a co-reducing power during fermentation has been attempted, but there must be exogenous mediators due to the lack of an electroactive heterotroph. Here, we show that Clostridium pasteurianum DSM 525 simultaneously utilizes both cathode and substrate as electron donors through direct electron transfer. In a cathode compartment poised at +0.045 V vs. SHE, a metabolic shift in C. pasteurianum occurs toward NADH-consuming metabolite production such as butanol from glucose (20% shift in terms of NADH consumption) and 1,3-propandiol from glycerol (21% shift in terms of NADH consumption). Notably, a small amount of electron uptake significantly induces NADH-consuming pathways over the stoichiometric contribution of the electrons as reducing equivalents. Our results demonstrate a previously unknown electroactivity and metabolic shift in the biochemical-producing heterotroph, opening up the possibility of efficient and enhanced production of electron-dense metabolites using electricity. PMID:25376371

  9. Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria.

    Science.gov (United States)

    Sørensen, Laila; Hantke, Andrea; Eriksen, Niels T

    2013-09-01

    The phycobiliprotein C-phycocyanin (C-PC) is used in cosmetics, diagnostics and foods and also as a nutraceutical or biopharmaceutical. It is produced in the cyanobacterium Arthrospira platensis grown phototrophically in open cultures. C-PC may alternatively be produced heterotrophically in the unicellular rhodophyte Galdieria sulphuraria at higher productivities and under improved hygienic standards if it can be purified as efficiently as C-PC from A. platensis. Ammonium sulfate fractionation, aqueous two-phase extraction, tangential flow ultrafiltration and anion exchange chromatography were evaluated with respect to the purification of C-PC from G. sulphuraria extracts. Galdieria sulphuraria C-PC showed similar properties to those described for cyanobacterial C-PC with respect to separation by all methodologies. The presence of micelles in G. sulphuraria extracts influenced the different procedures. Only chromatography was able to separate C-PC from a second phycobiliprotein, allophycocyanin. C-PC from heterotrophic G. sulphuraria shows similar properties to cyanobacterial C-PC and can be purified to the same standards, despite initial C-PC concentrations being low and impurity concentrations high in G. sulphuraria extracts. © 2013 Society of Chemical Industry.

  10. Heterotrophic cultivation of Nannochloropsis salina for enhancing biomass and lipid production

    Directory of Open Access Journals (Sweden)

    Thangapandi Marudhupandi

    2016-06-01

    Full Text Available Response surface methodology (RSM was used to enhance the biomass and lipid content in Nannochloropsis salina due to its economic importance. Preliminary screening results revealed that the heterotrophically cultivated N. salina with various carbon and nitrogen sources yielded higher biomass (0.91 ± 0.0035 g/L and lipid content (37.1 ± 0.49 mg/L than that of the photoautotrophical cultivation (0.21 ± 0.009 g/L and 22.16 ± 0.27 mg/L. Significant sources that greatly influenced on biomass and lipid content of the alga were optimized through RSM. The medium consisting of glucose (7.959 g/L, sodium acetate (1.46 g/L, peptone (7.6 g/L and sodium thiosulphate (1.05 g/L was found to be the optimal concentration for heterotrophic cultivation by response optimizer. Confirmation experiment results for the RSM optimized concentration yielded the biomass of 1.85 g/L and total lipid content of 48.6 mg/L. In this study, we provide with a strategy for enhancing the biomass and lipid content in N. salina.

  11. Heterotrophic cultivation of Nannochloropsis salina for enhancing biomass and lipid production.

    Science.gov (United States)

    Marudhupandi, Thangapandi; Sathishkumar, Ramamoorthy; Kumar, Thipramalai Thankappan Ajith

    2016-06-01

    Response surface methodology (RSM) was used to enhance the biomass and lipid content in Nannochloropsis salina due to its economic importance. Preliminary screening results revealed that the heterotrophically cultivated N. salina with various carbon and nitrogen sources yielded higher biomass (0.91 ± 0.0035 g/L) and lipid content (37.1 ± 0.49 mg/L) than that of the photoautotrophical cultivation (0.21 ± 0.009 g/L and 22.16 ± 0.27 mg/L). Significant sources that greatly influenced on biomass and lipid content of the alga were optimized through RSM. The medium consisting of glucose (7.959 g/L), sodium acetate (1.46 g/L), peptone (7.6 g/L) and sodium thiosulphate (1.05 g/L) was found to be the optimal concentration for heterotrophic cultivation by response optimizer. Confirmation experiment results for the RSM optimized concentration yielded the biomass of 1.85 g/L and total lipid content of 48.6 mg/L. In this study, we provide with a strategy for enhancing the biomass and lipid content in N. salina.

  12. Heterotrophic Microbial Stimulation through Biosolids Addition for Enhanced Acid Mine Drainage Control

    Directory of Open Access Journals (Sweden)

    Omy T. Ogbughalu

    2017-06-01

    Full Text Available The effective control and treatment of acid mine drainage (AMD from sulfide-containing mine wastes is of fundamental importance for current and future long-term sustainable and cost-effective mining industry operations, and for sustainable management of legacy AMD sites. Historically, AMD management has focused on the use of expensive neutralising chemicals to treat toxic leachates. Accordingly, there is a need to develop more cost-effective and efficient methods to prevent AMD at source. Laboratory kinetic leach column experiments, designed to mimic a sulfide-containing waste rock dump, were conducted to assess the potential of organic waste carbon supplements to stimulate heterotrophic microbial growth, and supress pyrite oxidation and AMD production. Microbiological results showed that the addition of biosolids was effective at maintaining high microbial heterotroph populations and preventing AMD generation over a period of 80 weeks, as verified by leachate chemistry and electron microscopy analyses. This research contributes to the ongoing development of a cost effective, multi-barrier geochemical-microbial control strategy for reduced mineral sulfide oxidation rates at source.

  13. Floating mucus aggregates derived from benthic microorganisms on rocky intertidal reefs: Potential as food sources for benthic animals

    Science.gov (United States)

    Tamura, Y.; Tsuchiya, M.

    2011-09-01

    Mucus films, flocs or foams consisting of fine sand, algae and detritus frequently occur in the surface waters of rocky intertidal reef flats during incoming tide. These masses are referred to as mucus aggregates. We examined the developmental process of mucus aggregates and their abundance, distribution, migration and trophic composition. The trophic composition of mucus aggregates was then compared to those of sediments to evaluate their potential nutritional value for benthic animals. The organic matter content, chlorophyll a concentration, microalgal density and bacteria-derived fatty acid contents of mucus aggregates were higher than those observed in sediment, suggesting that mucus aggregates contain not only high levels of organic matter but also dense concentrations of microalgae and bacteria; therefore, mucus aggregates may serve as a qualitatively more energetic food source for benthic fauna compared to sediments. Benthic diatoms were the most abundant organisms in mucus aggregates. Large numbers of diatoms were trapped in fine mineral particles and mucilage-like strings, suggesting that a portion of the mucus is secreted by these benthic microalgae. Mucus aggregate accounted for only 0.01-3.9% of the daily feeding requirements of the dominant detritivore, Ophiocoma scolopendrina (Echinodermata: Ophiuroidea) over the entire sampling area. In contrast, for the species population on the back reef, where mucus aggregates ultimately accumulate, mucus aggregates provided from 0.4 to 113.3% of food for this species. These results suggest that mucus aggregate availability varies spatiotemporally and that they do not always provide adequate food sources for O. scolopendrina populations.

  14. Autotrophic and heterotrophic activity in Arctic first-year sea-ice: Seasonal study from Marlene Bight, SW Greenland

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in situ in plastic bags with subsequent melting and measurements of changes in total O-2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period...... was followed by an algal bloom in late March and April, leading to a net autotrophic community. During February and March, the oxygen level in the bag incubations remained constant, validating the low balanced heterotrophic and autotrophic activity. As the autotrophic activity exceeded the heterotrophic...... activity in late March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m(-2), reflecting the net result of a sea ice-related gross...

  15. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, S. J.

    2001-01-01

    This study investigates the effect of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. The changes in diversity were monitored in soil microcosms, enriched with 25 mug Hg(II) g(-1) soil, over a period of 3 months. The cult......This study investigates the effect of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. The changes in diversity were monitored in soil microcosms, enriched with 25 mug Hg(II) g(-1) soil, over a period of 3 months...... by purification of total soil DNA and amplification of bacterial 16S rDNA fragments by polymerase chain reaction. Concentrations of bioavailable and total mercury were measured throughout the experiment. The effect on the culturable heterotrophic and genetic diversity was very similar, showing an immediate...

  16. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors

    Directory of Open Access Journals (Sweden)

    Mariana Manzoni Maroneze

    2014-12-01

    Full Text Available Microalgal heterotrophic bioreactors are a potential technological development that can convert organic matter, nitrogen and phosphorus of wastewaters into a biomass suitable for energy production. The aim of this work was to evaluate the performance of microalgal heterotrophic bioreactors in the secondary treatment of cattle-slaughterhouse wastewater and the reuse of microalgal sludge for biodiesel production. The experiments were performed in a bubble column bioreactor using the microalgae Phormidium sp. Heterotrophic microalgal bioreactors removed 90 % of the chemical oxygen demand, 57 % of total nitrogen and 52 % of total phosphorus. Substantial microalgal sludge is produced in the process (substrate yield coefficient of 0.43 mg sludge mg chemical oxygen demand−¹, resulting in a biomass with high potential for producing biodiesel (ester content of more than 99 %, cetane number of 55, iodine value of 73.5 g iodine 100 g−¹, unsaturation degree of ~75 % and a cold filter plugging point of 5 ºC.

  17. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2014-01-01

    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude...... to 0.37 mu g-oil mg-C-dino (-1) d(-1), which could represent similar to 17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux...... of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills....

  18. Exciton dynamics in molecular aggregates

    NARCIS (Netherlands)

    Augulis, R.; Pugžlys, A.; Loosdrecht, P.H.M. van; Pugzlys, A

    2006-01-01

    The fundamental aspects of exciton dynamics in double-wall cylindrical aggregates of cyanine dyes are studied by means of frequency resolved femtosecond pump-probe spectroscopy. The collective excitations of the aggregates, resulting from intermolecular dipole-dipole interactions have the

  19. Collective Rationality in Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.

    2014-01-01

    Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the

  20. Heterotrophic monitoring at a drinking water treatment plant by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry after different drinking water treatments.

    Science.gov (United States)

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2017-10-01

    The aim of this work was to assess the suitability of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for routine heterotrophic monitoring in a drinking water treatment plant. Water samples were collected from raw surface water and after different treatments during two campaigns over a 1-year period. Heterotrophic bacteria were studied and isolates were identified by MALDI-TOF MS. Moreover, the diversity index and the coefficient of population similarity were also calculated using biochemical fingerprinting of the populations studied. MALDI-TOF MS enabled us to characterize and detect changes in the bacterial community composition throughout the water treatment plant. Raw water showed a large and diverse population which was slightly modified after initial treatment steps (sand filtration and ultrafiltration). Reverse osmosis had a significant impact on the microbial diversity, while the final chlorination step produced a shift in the composition of the bacterial community. Although MALDI-TOF MS could not identify all the isolates since the available MALDI-TOF MS database does not cover all the bacterial diversity in water, this technique could be used to monitor bacterial changes in drinking water treatment plants by creating a specific protein profile database for tracking purposes.

  1. Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Song Jin et al

    2007-01-01

    Full Text Available We have identified synthetic layered double hydroxides (LDH nanocomposites as an effective group of material for removing bacteria and viruses from water. In this study, LDH nanocomposites were synthesized and tested for removing biological contaminants. LDH was used to remove MS2 and X174 (indicator viruses, and Escherichia coli (an indicator bacterium from synthetic groundwater and to remove mixed communities of heterotrophic bacteria from raw river water. Our results indicate that LDH composed of magnesium–aluminium or zinc–aluminium has a viral and bacterial adsorption efficiency ≥99% at viral concentrations between 5.9×106 and 9.1×106 plaque forming units (pfu/L and bacterial concentrations between 1.6×1010 and 2.6×1010 colony forming units (cfu/L when exposed to LDH in a slurry suspension system. Adsorption densities of viruses and bacteria to LDH in suspension ranged from 1.4×1010 to 2.1×1010 pfu/kg LDH and 3.2×1013–5.2×1013 cfu/kg LDH, respectively. We also tested the efficiency of LDH in removing heterotrophic bacteria from raw river water. While removal efficiencies were still high (87–99%, the adsorption capacities of the two kinds of LDH were 4–5 orders of magnitude lower than when exposed to synthetic groundwater, depending on if the LDH was in suspension or a packed column, respectively.

  2. Aggregating energy flexibilities under constraints

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Pedersen, Torben Bach; Abello, Alberto

    2016-01-01

    The flexibility of individual energy prosumers (producers and/or consumers) has drawn a lot of attention in recent years. Aggregation of such flexibilities provides prosumers with the opportunity to directly participate in the energy market and at the same time reduces the complexity of scheduling...... the energy units. However, aggregated flexibility should support normal grid operation. In this paper, we build on the flex-offer (FO) concept to model the inherent flexibility of a prosumer (e.g., a single flexible consumption device such as a clothes washer). An FO captures flexibility in both time...... and amount dimensions. We define the problem of aggregating FOs taking into account grid power constraints. We also propose two constraint-based aggregation techniques that efficiently aggregate FOs while retaining flexibility. We show through a comprehensive evaluation that our techniques, in contrast...

  3. Organic aggregates formed by benthopleustophyte brown alga Acinetospora crinita (Acinetosporaceae, Ectocarpales).

    Science.gov (United States)

    Giani, Michele; Sartoni, Gianfranco; Nuccio, Caterina; Berto, Daniela; Ferrari, Carla Rita; Najdek, Mirjana; Sist, Paola; Urbani, Ranieri

    2016-08-01

    This work presents the elemental, polysaccharide, and fatty acid compositions of benthic aggregates formed by the filamentous brown alga Acinetospora crinita, which are widely spread on the rocky bottoms of the Mediterranean Sea. The aggregates can be characterized as mineralized centers in which regeneration of nutrients and recycling of dissolved organic matter actively occur and favor the development of an abundant phytoplankton community. Analyses of the stable isotopes of C and N display their marine origin and could provide evidence of the processes that occur inside/outside of the aggregates. The monosaccharide compositions of Adriatic and Tyrrhenian mucilages produced by brown alga A. crinita were quite similar. In particular, the Adriatic sample compositions resembled the average composition of the Tyrrhenian high molecular weight exopolymers, and the observed differences could be ascribed to different degradation stages. The fatty acid patterns found for the aggregates were similar to those observed in the isolated A. crinita algae with variable contributions from embedded diatom species. The bacterial contribution to the fatty acid pool was quite low, most likely due to the known poor conditions for their heterotrophic growth. © 2016 Phycological Society of America.

  4. Orthogonal flexible Rydberg aggregates

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2016-02-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali-metal atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable nonadiabatic effects. A joint exciton-motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K. Leonhardt et al., Phys. Rev. Lett. 113, 223001 (2014), 10.1103/PhysRevLett.113.223001]. In this article we discuss the underlying complex dynamics in detail, characterize the switch, and derive our isotropic interaction model from a realistic anisotropic one with the addition of a magnetic bias field.

  5. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  6. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: implications for marine carbon and nitrogen cycling.

    Science.gov (United States)

    Lidbury, Ian D E A; Murrell, J Colin; Chen, Yin

    2015-03-01

    Bacteria of the marine Roseobacter clade are characterised by their ability to utilise a wide range of organic and inorganic compounds to support growth. Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are methylated amines (MA) and form part of the dissolved organic nitrogen pool, the second largest source of nitrogen after N2 gas, in the oceans. We investigated if the marine heterotrophic bacterium, Ruegeria pomeroyi DSS-3, could utilise TMA and TMAO as a supplementary energy source and whether this trait had any beneficial effect on growth. In R. pomeroyi, catabolism of TMA and TMAO resulted in the production of intracellular ATP which in turn helped to enhance growth rate and growth yield as well as enhancing cell survival during prolonged energy starvation. Furthermore, the simultaneous use of two different exogenous energy sources led to a greater enhancement of chemoorganoheterotrophic growth. The use of TMA and TMAO primarily as an energy source resulted in the remineralisation of nitrogen in the form of ammonium, which could cross feed into another bacterium. This study provides greater insight into the microbial metabolism of MAs in the marine environment and how it may affect both nutrient flow within marine surface waters and the flux of these climatically important compounds into the atmosphere.

  7. Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates

    Science.gov (United States)

    Nakajima, Ryota; Tanaka, Yasuaki; Guillemette, Ryan; Kurihara, Haruko

    2017-12-01

    Exudates derived from hermatypic corals were incubated with dark conditions for 96 h to quantify the growth of both bacteria and HNF in response to coral-derived dissolved organic matter (DOM). The addition of coral-derived DOM caused significantly higher growth rates and production of bacteria and HNF compared to those in control seawater without coral exudates. During the incubation, HNF exhibited their peak in abundance 24-48 h after the peak abundance of bacteria. The growth efficiencies of both bacteria and HNF were significantly higher with coral-derived DOM, suggesting higher transfer efficiency from bacteria that is fueled by coral organic matter to HNF. Therefore, trophic transfer of coral-derived DOM from bacteria to HNF can contribute to efficient carbon flow through the microbial food web.

  8. Distinguishing aggregate formation and aggregate clearance using cell-based assays

    NARCIS (Netherlands)

    Eenjes, E. (Evelien); Dragich, J.M. (Joanna M.); H. Kampinga (Harm); Yamamoto, A. (Ai)

    2016-01-01

    textabstractThe accumulation of ubiquitylated proteinaceous inclusions represents a complex process, reflecting the disequilibrium between aggregate formation and aggregate clearance. Although decreasing aggregate formation or augmenting aggregate clearance will ultimately lead to a diminished

  9. Effect of bacteria and dissolved organics on mineral dissolution kinetics:

    Science.gov (United States)

    Pokrovsky, Oleg; Shirokova, Liudmila; Benezeth, Pascale; Zabelina, Svetlana

    2010-05-01

    Quantification of the effect of microorganisms and associated organic ligands on mineral dissolution rate is one among the last remaining challenges in modeling of water-rock interactions under earth surface and subsurface environments. This is especially true for deep underground settings within the context of CO2 capture, sequestration and storage. First, elevated CO2 pressures create numerous experimental difficulties for performing robust flow-through experiments at a given saturation state. Second, reactivity of main rock-forming minerals in abiotic systems at pCO2 >> 1 atm and circumneutral pH is still poorly constrained. And third, most of microbial habitats of the subsurface biosphere are not suitable for routine culturing in the laboratory, many of them are anaerobic and even strictly anaerobic, and many bacteria and archae cultures can live only in the consortium of microorganisms which is very hard to maintain at a controlled and stable biomass concentration. For experimental modeling of bio-mineral interactions in the laboratory, two other main conceptual challenges exist. Typical concentration of dissolved organic carbon that serves as a main nutrient for heterotrophic bacteria in underground waters rarely exceeds 3-5 mg/L. Typical concentration of DOC in nutrient media used for bacteria culturing is between 100 and 10,000 mg/L. Therefore, performing mineral-bacteria interactions in the laboratory under environmentally-sound conditions requires significant dilution of the nutrient media or the use of flow-through reactors. Concerning the effect of organic ligands and bacterial excudates on rock-forming mineral dissolution, at the present time, mostly empirical (phenomenological) approach can be used. Indeed, the pioneering studies of Stumm and co-workers have established a firm basis for modeling the catalyzing and inhibiting effects of ligands on metal oxide dissolution rate. This approach, very efficient for studying the interaction of organic and

  10. Draft genome sequence of Microbacterium oleivorans strain Wellendorf implicates heterotrophic versatility and bioremediation potential

    Directory of Open Access Journals (Sweden)

    Anton P. Avramov

    2016-12-01

    Full Text Available Microbacterium oleivorans is a predominant member of hydrocarbon-contaminated environments. We here report on the genomic analysis of M. oleivorans strain Wellendorf that was isolated from an indoor door handle. The partial genome of M. oleivorans strain Wellendorf consists of 2,916,870 bp of DNA with 2831 protein-coding genes and 49 RNA genes. The organism appears to be a versatile mesophilic heterotroph potentially capable of hydrolysis a suite of carbohydrates and amino acids. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of glucose, fructose, rhamnose, galactose, xylose, arabinose, alanine, aspartate, asparagine, glutamate, serine, glycine, threonine and cysteine. This is the first detailed analysis of a Microbacterium oleivorans genome.

  11. Lipid production for biofuels from hydrolyzate of waste activated sludge by heterotrophic Chlorella protothecoides.

    Science.gov (United States)

    Wen, Qinxue; Chen, Zhiqiang; Li, Pengfei; Duan, Ran; Ren, Nanqi

    2013-09-01

    Microalga Chlorella protothecoides can accumulate high proportion of lipids during the heterotrophic growth with glucose as the carbon source. However, its commercial application is restricted due to the high cost of the carbon source. In this study, the wasted activated sludge (WAS) was hydrolyzed after ultrasonic pre-treatment and the hydrolyzate obtained was used as an alternative carbon source for algal biomass and biodiesel production. The results indicate that C. protothecoides can proliferate in the WAS hydrolyzate and accumulate biolipid. The final lipid content of the culture fed with the hydrolyzate was 21.5±1.44% (weight percent) after 156 h cultivation in flasks and the maximum biomass obtained was 0.5 g L(-1). Acetic acid and isovaleric acid were favorable carbon sources for cell growth. The soluble microbial products (SMP) presents in the hydrolyzate can also be used as a carbon source for cell growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Solazyme Integrated Biorefinery (SzIBR): Diesel Fuels from Heterotrophic Algae

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, David [Solazyme, Inc., South San Francisco, CA (United States)

    2014-12-23

    Under Department of Energy Award Number DE-EE0002877 (the “DOE Award”), Solazyme, Inc. (“Solazyme”) has built a demonstration scale “Solazyme Integrated Biorefinery (SzlBR).” The SzIBR was built to provide integrated scale-up of Solazyme’s novel heterotrophic algal oil biomanufacturing process, validate the projected commercial-scale economics of producing multiple algal oils, and to enable Solazyme to collect the data necessary to complete the design of its first commercial-scale facility. Solazyme’s technology enables it to convert a range of low-cost plant-based sugars into high-value oils. Solazyme’s renewable products replace or enhance oils derived from the world’s three existing sources—petroleum, plants, and animal fats. Solazyme tailors the composition of its oils to address specific customer requirements, offering superior performance characteristics and value. This report summarizes history and the results of the project.

  13. ZOOINDICATION AND PHYTOINDICATION OF AUTOTROPHIC AND HETEROTROPHIC CONSORTIA OF BIOGEOCOENOSES ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Kunah O. N.

    2014-08-01

    Full Text Available The main results of ecomorfology structure of soil mesofauna in the adjacent area of Dneprovsko-Orylskiy Natural Reserve (Ireland Pogorily ore Dyka Kosa have been presented by the methods of OMI- and RLQ – analysis. The components of variability of the soil animal world (in colony of Ardea cinerea L., which is conditioned by auto- and heterotrophic consortia and also by influence of edaphically properties of biogeocoenoses were determined. Also we registered the high level and dynamics of mineral feed and presence of nitrogen in the soil. The results of description of taxonomic and ecological diversity in association of mesopedobionts were presented. We proved that the coenomorphic type of the animals was bog-forest. On the basic of joint measuring of edaphically descriptions and features of fauna structure we estimated the properties of ecological niche of soil mesofauna.

  14. Influence of temperature in phosphate removal by microalgae in heterotrophic bioreactors

    Directory of Open Access Journals (Sweden)

    Maria Isabel Queiroz

    2012-08-01

    Full Text Available The removal of total dissolved phosphate by the cyanobacteria Aphanothece microscopica Nägeli cultivated heterotrophically in dairy processing wastewater was investigated in this work. The experiments were carried out in bioreactors operating in a batch mode, fed with 4.5 L of wastewater. The experimental conditions were as follows: initial cell concentration of 0.2 g/L, pH adjusted to 7.6, isothermal reactor operating at temperatures of 10, 20 and 30ºC with absence of light and continuous aeration of 1 VVM. The results showed that phosphate removal is strongly dependent on process temperature. A. microscopica Nägeli was effective in the removal phosphate achieving removal rates of 3.77 mg/L.h, which reflected in the conversion of 98.4% in hydraulic detention times of 24 h.

  15. A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants.

    Science.gov (United States)

    Preiss, Katja; Gebauer, Gerhard

    2008-12-01

    The stable isotopes (15)N and (13)C can be used to investigate the nutritional mode of terrestrial orchids and pyroloids (Monotropoideae, Ericaceae). Some of these plants are putatively autotrophic but meet their nitrogen and carbon demands by gaining organic compounds (e.g. amino acids) from mycorrhizal fungi. This so-called partially myco-heterotrophic nutrition is reflected by their isotope signature. The application of a two-source linear mixing model on delta values of such plants allows calculating the percentage of N and C derived from their associated mycorrhizal fungi. Here we present an approach to improve estimates of the plants' degree of myco-heterotrophy. Due to the presented conversion of delta values into enrichment factors (epsilon), results obtain a better resolution and data from various studies become normalised which facilitates combined representations and meta-analyses.

  16. Biology of the Marine Heterotrophic Dinoflagellate Oxyrrhis marina: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Sheng Liu

    2013-10-01

    Full Text Available Heterotrophic dinoflagellates are prevalent protists in marine environments, which play an important role in the carbon cycling and energy flow in the marine planktonic community. Oxyrrhis marina (Dinophyceae, a widespread heterotrophic dinoflagellate, is a model species used for a broad range of ecological, biogeographic, and evolutionary studies. Despite the increasing research effort on this species, there lacks a synthesis of the existing data and a coherent picture of this organism. Here we reviewed the literature to provide an overview of what is known regarding the biology of O. marina, and identify areas where further studies are needed. As an early branch of the dinoflagellate lineage, O. marina shares similarity with typical dinoflagellates in permanent condensed chromosomes, less abundant nucleosome proteins compared to other eukaryotes, multiple gene copies, the occurrence of trans-splicing in nucleus-encoded mRNAs, highly fragmented mitochondrial genome, and disuse of ATG as a start codon for mitochondrial genes. On the other hand, O. marina also exhibits some distinct cytological features (e.g., different flagellar structure, absence of girdle and sulcus or pustules, use of intranuclear spindle in mitosis, presence of nuclear plaque, and absence of birefringent periodic banded chromosomal structure and genetic features (e.g., a single histone-like DNA-associated protein, cob-cox3 gene fusion, 5′ oligo-U cap in the mitochondrial transcripts of protein-coding genes, the absence of mRNA editing, the presence of stop codon in the fused cob-cox3 mRNA produced by post-transcriptional oligoadenylation, and vestigial plastid genes. The best-studied biology of this dinoflagellate is probably the prey and predators types, which include a wide range of organisms. On the other hand, the abundance of this species in the natural waters and its controlling factors, genome organization and gene expression regulation that underlie the unusual

  17. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.; Liu, Yuanyuan; Bond-Lamberty, Ben; Bailey, Vanessa L.

    2016-11-15

    The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.

  18. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, iain J.; Dharmarajan, Lakshmi; Rodriguez, Jason; Hooper, Sean; Porat, Iris; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Sun, Hui; Land, Miriam; Lapidus, Alla; Lucas, Susan; Barry, Kerrie; Huber, Harald; Zhulin, Igor B.; Whitman, William B.; Mukhopadhyay, Biswarup; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2008-09-05

    Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced - Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

  19. Soil heterotrophic respiration responses to meteorology, soil types and cropping systems in a temperate agricultural watershed.

    Science.gov (United States)

    Buysse, Pauline; Viaud, Valérie; Fléchard, Chris

    2015-04-01

    Within the context of Climate Change, a better understanding of soil organic matter dynamics is of considerable importance in agro-ecosystems, due to their large mitigation potential. This study aims at better understanding the process of soil heterotrophic respiration at the annual scale and at the watershed scale, with these temporal and spatial scales allowing an integration of the most important drivers: cropping systems and management, topography, soil types, soil organic carbon content and meteorological conditions. Twenty-four soil CO2 flux measurement sites - comprising three PVC collars each - were spread over the Naizin-Kervidy catchment (ORE AgrHys, 4.9 km², W. France) in March 2014. These sites were selected in order to represent most of the diversity in drainage classes, soil types and cropping systems. Soil CO2 flux measurements were performed about every ten to fifteen days at each site, starting from 20 March 2014, using the dynamic closed chamber system Li-COR 8100. Soil temperature and soil moisture content down to 5 cm depth were measured simultaneously. An empirical model taking the influence of meteorological drivers (soil temperature and soil water content) on soil CO2 fluxes was applied to each site and the different responses were analyzed with regard to site characteristics (topography, soil organic carbon content, soil microbial biomass, crop type, crop management,…) in order to determine the most important driving variables of soil heterotrophic respiration. The modeling objective is then to scale the fluxes measured at all sites up to the full watershed scale.

  20. Modeling of simultaneous growth and storage kinetics variation under unsteady feast conditions for aerobic heterotrophic biomass.

    Science.gov (United States)

    Insel, Güçlü; Yavaşbay, Ateş; Ozcan, Onur; Cokgor, Emine Ubay

    2012-10-01

    The heterotrophic biomass has the capacity of utilizing substrate predominantly for growth or storage processes under steady-state conditions. In this study, the short-term variations in growth and storage kinetics of activated sludge under disturbed feeding conditions were analyzed using a multi-component biodegradation model. The variations in growth and storage kinetics were investigated with the aid of multi-response modeling and identifiability analysis. It was found that the heterotrophic biomass is able to increase its direct growth activity together with reducing the substrate storage capability under the availability of external substrate. Reducing the sludge age (SRT) from 10 to 2 days increased the maximum specific growth rate, μ (OHO,Max) from 3.9 to 7.0 day(-1), but did not considerably affected the maximum storage rate, k (Stor,OHO). The alteration of sludge age also elevated the half-saturation constant for growth (K (S,OHO)) from 5 to 25 mg COD/L. The increase in primary growth metabolism together with reduced storage rate was validated by model for two different sludge ages in the availability of external substrate. Aside from having a lower storage capability, the biomass had fast adaptation ability to direct growth process at low SRTs. The alteration of feed conditions was found to have different impacts on storage and growth kinetics. These results are significant and advance the field of activated sludge modeling under dynamic conditions by incorporation of short-term effects. Appropriate modifications including short-term effects in model structure may also reduce dynamic model recalibration efforts in the future.

  1. Relationships between meiofaunal biodiversity and prokaryotic heterotrophic production in different tropical habitats and oceanic regions.

    Directory of Open Access Journals (Sweden)

    Antonio Pusceddu

    Full Text Available Tropical marine ecosystems are among the most diverse of the world oceans, so that assessing the linkages between biodiversity and ecosystem functions (BEF is a crucial step to predict consequences of biodiversity loss. Most BEF studies in marine ecosystems have been carried out on macrobenthic diversity, whereas the influence of the meiofauna on ecosystem functioning has received much less attention. We compared meiofaunal and nematode biodiversity and prokaryotic heterotrophic production across seagrass, mangrove and reef sediments in the Caribbean, Celebes and Red Seas. For all variables we report the presence of differences among habitats within the same region, and among regions within the same habitat. In all regions, the richness of meiofaunal taxa in reef and seagrass sediments is higher than in mangrove sediments. The sediments of the Celebes Sea show the highest meiofaunal biodiversity. The composition of meiofaunal assemblages varies significantly among habitats in the same region. The nematode beta diversity among habitats within the same region is higher than the beta diversity among regions. Although one site per habitat was considered in each region, these results suggest that the composition of meiofaunal assemblages varies primarily among biogeographic regions, whereas the composition of nematode assemblages varies more considerably among habitats. Meiofauna and nematode biodiversity and prokaryotic heterotrophic production, even after the removal of covariate effects linked with longitude and the quantity and nutritional quality of organic matter, are positively and linearly linked both across regions and within each habitat type. Our results confirm that meiofauna and nematode biodiversity may influence benthic prokaryotic activity, which, in turn, implies that diversity loss could have negative impacts on ecosystem functioning in these systems.

  2. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota

    Directory of Open Access Journals (Sweden)

    Barry Kerrie

    2009-04-01

    Full Text Available Abstract Background Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. Results The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced – Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. Conclusion The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

  3. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Lakshmi, Lakshmi Dharmarajan [Virginia Polytechnic Institute and State University (Virginia Tech); Rodriquez, Jason [Virginia Polytechnic Institute and State University (Virginia Tech); Hooper, Sean [U.S. Department of Energy, Joint Genome Institute; Porat, I. [University of Georgia, Athens, GA; Ulrich, Luke [ORNL; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Sun, Hui [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Huber, Harald [Universitat Regensburg, Regensburg, Germany; Zhulin, Igor B [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Whitman, W. B. [University of Georgia, Athens, GA; Mukhopadhyay, Biswarup [Virginia Polytechnic Institute and State University (Virginia Tech); Woese, Carl [University of Illinois, Urbana-Champaign; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Background Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. Results The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. Conclusion The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

  4. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota.

    Science.gov (United States)

    Anderson, Iain J; Dharmarajan, Lakshmi; Rodriguez, Jason; Hooper, Sean; Porat, Iris; Ulrich, Luke E; Elkins, James G; Mavromatis, Kostas; Sun, Hui; Land, Miriam; Lapidus, Alla; Lucas, Susan; Barry, Kerrie; Huber, Harald; Zhulin, Igor B; Whitman, William B; Mukhopadhyay, Biswarup; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-04-02

    Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced -- Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

  5. DIRECT FLOW-CYTOMETRY OF ANAEROBIC-BACTERIA IN HUMAN FECES

    NARCIS (Netherlands)

    VANDERWAAIJ, LA; MESANDER, G; LIMBURG, PC; VANDERWAAIJ, D

    1994-01-01

    We describe a flow cytometry method for analysis of noncultured anaerobic bacteria present in human fecal suspensions. Nonbacterial fecal compounds, bacterial fragments, and large aggregates could be discriminated from bacteria by staining with propidium iodide (PI) and setting a discriminator on PI

  6. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.

    Science.gov (United States)

    Kim, Sunjin; Park, Jeong-eun; Cho, Yong-Beom; Hwang, Sun-Jin

    2013-09-01

    This study sought to investigate the growth rate and organic carbon and nutrient removal efficiency of Chlorella sorokiniana under autotrophic, heterotrophic and mixotrophic conditions. Growth rates of the microalgae were 0.24 d(-1), 0.53 d(-1) and 0.44 d(-1) in autotrophic, heterotrophic and mixotrophic conditions, respectively. The growth rate of C. sorokiniana was significantly higher for that grown under heterotrophic conditions. The nitrogen removal rates were 13.1 mg-N/L/day, 23.9 mg-N/L/day and 19.4 mg-N/L/day, respectively. The phosphorus removal rates reached to 3.4 mg-P/L/day, 5.6 mg-P/L/day and 5.1 mg-P/L/day, respectively. Heterotrophic conditions were superior in terms of the microalgae growth and removal of nitrogen and phosphorus compared to autotrophic and mixotrophic conditions, suggesting that microalgae cultured under this condition would be most useful for application in wastewater treatment systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Tracking the dynamics of heterotrophs and nitrifiers in moving-bed biofilm reactors operated at different COD/N ratios

    NARCIS (Netherlands)

    Bassin, J.P.; Abbas, B.; Vilela, C.L.S.; Kleerebezem, R.; Muyzer, G.; Rosado, A.S.; van Loosdrecht, M.C.M.; Dezotti, M.

    2015-01-01

    In this study, the impact of COD/N ratio and feeding regime on the dynamics of heterotrophs and nitrifiers in moving-bed biofilm reactors was addressed. Based on DGGE analysis of 16S rRNA genes, the influent COD was found to be the main factor determining the overall bacterial diversity. The

  8. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems

    NARCIS (Netherlands)

    Hicks Pries, C.E.; van Logtestijn, R.S.P; Schuur, E.A.G.; Natali, S.M.; Cornelissen, J.H.C.; Aerts, R.; Dorrepaal, E.

    2015-01-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change

  9. Comparison of the effect of salinity on the D/H ratio of fatty acids of heterotrophic and photoautotrophic microorganisms

    NARCIS (Netherlands)

    Heinzelmann, S.M.; Chivall, David; M'Boule, D.; Sinke-Schoen, Daniëlle; Villanueva, Laura; Sinninghe Damste, J.S.; Schouten, Stefan; Van der Meer, Marcel T J

    2015-01-01

    The core metabolism of microorganisms has a major influence on the hydrogen isotopic composition of their fatty acids. Heterotrophic microorganisms produce fatty acids with a deuterium to hydrogen (D/H) ratio either slightly depleted or enriched in D compared to the growth water, while photo- and

  10. Acoustic manipulation of bacteria cells suspensions

    Science.gov (United States)

    GutiéRrez-Ramos, Salomé; Hoyos, Mauricio; Aider, Jean Luc; Ruiz, Carlos; Acoustofluidics team Team; Soft; Bio group Collaboration

    An acoustic contacless manipulation gives advantages in the exploration of the complex dynamics enviroment that active matter exhibits. Our works reports the control confinement and dispersion of Escherichia coliRP437-pZA3R-YFP suspensions (M9Glu-Ca) via acoustic levitation.The manipulation of the bacteria bath in a parallel plate resonator is achieved using the acoustic radiation force and the secondary radiation force. The primary radiation force generates levitation of the bacteria cells at the nodal plane of the ultrasonic standing wave generated inside the resonator. On the other side, secondary forces leads to the consolidation of stable aggregates. All the experiments were performed in the acoustic trap described, where we excite the emission plate with a continuous sinusoidal signal at a frequency in the order of MHz and a quartz slide as the reflector plate. In a typical experiment we observed that, before the input of the signal, the bacteria cells exhibit their typical run and tumble behavior and after the sound is turned on all of them displace towards the nodal plane, and instantaneously the aggregation begins in this region. CNRS French National Space Studies, CONACYT Mexico.

  11. Characterization of Boron Atom Aggregation

    National Research Council Canada - National Science Library

    Maier, John P

    2005-01-01

    ... in matrices ranging from neon to those doped with hydrogen. The studies of the aggregation properties were hampered by the lack of spectroscopic knowledge on the electronic transitions of the polyatomic boron molecules and their ions...

  12. Aggregated Computational Toxicology Resource (ACTOR)

    Science.gov (United States)

    The Aggregated Computational Toxicology Resource (ACTOR) is a database on environmental chemicals that is searchable by chemical name and other identifiers, and by chemical structure. This information is consolidated from more than 200 publicly available sources of data.

  13. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?

    Science.gov (United States)

    Levas, Stephen; Grottoli, Andréa G.; Schoepf, Verena; Aschaffenburg, Matthew; Baumann, Justin; Bauer, James E.; Warner, Mark E.

    2016-06-01

    Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral— Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11-36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.

  14. Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?

    Directory of Open Access Journals (Sweden)

    Adam D Hughes

    Full Text Available Thermally induced bleaching has caused a global decline in corals and the frequency of such bleaching events will increase. Thermal bleaching severely disrupts the trophic behaviour of the coral holobiont, reducing the photosynthetically derived energy available to the coral host. In the short term this reduction in energy transfer from endosymbiotic algae results in an energy deficit for the coral host. If the bleaching event is short-lived then the coral may survive this energy deficit by depleting its lipid reserves, or by increasing heterotrophic energy acquisition. We show for the first time that the coral animal is capable of increasing the amount of heterotrophic carbon incorporated into its tissues for almost a year following bleaching. This prolonged heterotrophic compensation could be a sign of resilience or prolonged stress. If the heterotrophic compensation is in fact an acclimatization response, then this physiological response could act as a buffer from future bleaching by providing sufficient heterotrophic energy to compensate for photoautotrophic energy losses during bleaching, and potentially minimizing the effect of subsequent elevated temperature stresses. However, if the elevated incorporation of zooplankton is a sign that the effects of bleaching continue to be stressful on the holobiont, even after 11 months of recovery, then this physiological response would indicate that complete coral recovery requires more than 11 months to achieve. If coral bleaching becomes an annual global phenomenon by mid-century, then present temporal refugia will not be sufficient to allow coral colonies to recover between bleaching events and coral reefs will become increasingly less resilient to future climate change. If, however, increasing their sequestration of zooplankton-derived nutrition into their tissues over prolonged periods of time is a compensating mechanism, the impacts of annual bleaching may be reduced. Thus, some coral species

  15. Simple electric powered plankton wheel for the production of aggregates in seawater on-board ship

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, V.S.; Khalap, S.; Seshagiri, R.

    including prokaryotes, microalgae and macroalgae release copious amounts of dissolved organic carbon in the form of extracellular polymeric substances (EPS) 2,3,4. Mucilaginous carbohydrates surrounding the cells of flagellates also contribute to EPS... and aggregates in laboratory Source References Bacteria Biddanda 198512 Diatoms / their extracellular products Prieto et al. 200113, Unanue et al. 199814, Mari 199915 EPS of bacteria and diatoms Bhaskar et al. 200516 Macroalgal deritus, exudates Thornton...

  16. Bioaccessible Porosity in Soil Aggregates and Implications for Biodegradation of High Molecular Weight Petroleum Compounds.

    Science.gov (United States)

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-15

    We evaluated the role of soil aggregate pore size on biodegradation of essentially insoluble petroleum hydrocarbons that are biodegraded primarily at the oil-water interface. The size and spatial distribution of pores in aggregates sampled from biodegradation experiments of a clayey, aggregated, hydrocarbon-contaminated soil with relatively high bioremediation end point were characterized by image analyses of X-ray micro-CT scans and N2 adsorption. To determine the bioaccessible pore sizes, we performed separate experiments to assess the ability of hydrocarbon degrading bacteria isolated from the soil to pass through membranes with specific sized pores and to access hexadecane (model insoluble hydrocarbon). Hexadecane biodegradation occurred only when pores were 5 μm or larger, and did not occur when pores were 3 μm and smaller. In clayey aggregates, ∼ 25% of the aggregate volume was attributed to pores larger than 4 μm, which was comparable to that in aggregates from a sandy, hydrocarbon-contaminated soil (~23%) scanned for comparison. The ratio of volumes of inaccessible pores (4 μm) in the clayey aggregates was 0.32, whereas in the sandy aggregates it was approximately 10 times lower. The role of soil microstructure on attainable bioremediation end points could be qualitatively assessed in various soils by the aggregate characterization approach outlined herein.

  17. Effect of saliva viscosity on the co-aggregation between oral streptococci and Actinomyces naeslundii.

    Science.gov (United States)

    Kitada, Katsuhiro; Oho, Takahiko

    2012-06-01

    The co-aggregation of oral bacteria leads to their clearance from the oral cavity. Poor oral hygiene and high saliva viscosity are common amongst the elderly; thus, they frequently suffer from pneumonia caused by the aspiration of oral microorganisms. To examine the direct effect of saliva viscosity on the co-aggregation of oral streptococci with actinomyces. Fifteen oral streptococcal and a single actinomyces strain were used. Co-aggregation was assessed by a visual assay in phosphate buffer and a spectrophotometric assay in the same buffer containing 0-60% glycerol or whole saliva. Nine oral streptococci co-aggregated with Actinomyces naeslundii ATCC12104 in the visual assay and were subsequently used for the spectrophotometric analysis. All tested strains displayed a decrease in co-aggregation with increasing amounts of glycerol in the buffer. The co-aggregation of Streptococcus oralis with A. naeslundii recovered to baseline level following the removal of glycerol. The per cent co-aggregation of S. oralis with A. naeslundii was significantly correlated with the viscosity in unstimulated and stimulated whole saliva samples (correlation coefficients: -0.52 and -0.48, respectively). This study suggests that saliva viscosity affects the co-aggregation of oral streptococci with actinomyces and that bacterial co-aggregation decreases with increasing saliva viscosity. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  18. [Soil heterotrophic respiration and its sensitivity to soil temperature and moisture in Liquidambar formosana and Pinus massoniana forests in hilly areas of southeast Hubei Province, China].

    Science.gov (United States)

    Wang, Chuan-hua; Chen, Fang-qing; Wang, Yuan; Li, Jun-qing

    2011-03-01

    Field monitoring was conducted to study the annual dynamics of soil heterotrophic respiration and soil temperature and moisture in Liquidambar formosana and Pinus massoniana forests in hilly areas of southeast Hubei Province, China. At the same time, laboratory experiment was performed to study the heterotrophic respiration rate along soil profile, and the sensitivity of surface soil (0-5 cm) heterotrophic respiration to soil temperature and moisture. Then, a model was established to valuate the potential effects of warming change on the soil heterotrophic respiration in study area. In L. formosana and P. massoniana forests, the soil heterotrophic respiration rate in 0-5 cm layer was 2.39 and 2.62 times, and 2.01 and 2.94 times of that in 5-10 cm and 10-20 cm layers, respectively, illustrating that soil heterotrophic respiration mainly occurred in 0-5 cm surface layer. The temperature sensitivity factor (Q10) of soil heterotrophic respiration in 0-5 cm, 5-10 cm, and 10-20 cm layers was 2.10, 1.86, and 1.78 in L. formosana forest, and 1.86, 1.77, and 1.44 in P. massoniana forest, respectively. The relationship between surface soil heterotrophic respiration and temperature (T) well fitted exponential function R = alphaexp (beta3T), and that between surface soil heterotrophic respiration and moisture (W) well fitted quadratic function R = a+bW+cW2. Therefore, the relationship of surface soil heterotrophic respiration with soil temperature and moisture could be described by the model lnR = a+bW+cW2 +dT+eT2, which suggested that the response of soil heterotrophic respiration to soil moisture was depended on soil temperature, i.e., the sensitivity decreased with decreasing soil temperature. The calculation of the annual soil heterotrophic respiration rate in the two forests with the established model showed that the calculated respiration rate was a slightly higher in L. formosana forest but close to the measured one in P. massoniana forest, illustrating the applied

  19. A method for analysing phosphatase activity in aquatic bacteria at the single cell level using flow cytometry.

    Science.gov (United States)

    Duhamel, Solange; Gregori, Gerald; Van Wambeke, France; Mauriac, Romain; Nedoma, Jirí

    2008-10-01

    It has been demonstrated that ELF97-phosphate (ELF-P) is a useful tool to detect and quantify phosphatase activity of phytoplankton populations at a single cell level. Recently, it has been successfully applied to marine heterotrophic bacteria in culture samples, the cells exhibiting phosphatase activity being detected using epifluorescence microscopy. Here, we describe a new protocol that enables the detection of ELF alcohol (ELFA), the product of ELF-P hydrolysis, allowing the detection of phosphatase positive bacteria, using flow cytometry. Bacteria from natural samples must be disaggregated and, in oligotrophic waters, concentrated before they can be analyzed by flow cytometry. The best efficiency for disaggregating/separating bacterial cell clumps was obtained by incubating the sample for 30 min with Tween 80 (10 mg l(-1), final concentration). A centrifugation step (20,000 g; 30 min) was required in order to recover all the cells in the pellet (only 7+/-2% of the cells were recovered from the supernatant). The cells and the ELFA precipitates were resistant to these treatments. ELFA-labelled samples were stored in liquid nitrogen for up to four months before counting without any significant loss in total or ELFA-labelled bacterial cell abundance or in the ELFA fluorescence intensity. We describe a new flow cytometry protocol for detecting and discriminating the signals from both ELFA and different counterstains (4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI)) necessary to distinguish between ELFA-labelled and non ELFA-labelled heterotrophic bacteria. The method has been successfully applied in both freshwater and marine samples. This method promises to improve our understanding of the physiological response of heterotrophic bacteria to P limitation.

  20. Levoglucosan-assimilating bacteria was isolated from levoglucosan treated soil suspension

    Energy Technology Data Exchange (ETDEWEB)

    Xie, H.J. [Shandong Univ., Jinan (China). Environment Research Inst.; Chinese Academy of Sciencess, Beijing (China). Dept. of Environmental Biotechnology, Research Center for Eco-Environmental Sciences; Zhuang, X.L.; Bai, Z.H.; Zhang, H.X. [Chinese Academy of Sciencess, Beijing (China). Dept. of Environmental Biotechnology, Research Center for Eco-Environmental Sciences

    2008-07-01

    Levoglucosan (LG) is emitted into the environment only during the combustion of wood and cigarettes. As such, it is a useful tracer for wood smoke in the atmosphere. It also has potential use as a fermentative carbon and energy resource in the fermentation industry. Depending on the initial cellulose content of woody feedstocks, the yield of LG may range from 38 to 58 per cent. This study examined whether the LG-assimilating bacterium could be isolated or not under LG treatment. The study also addressed the impact of the LG on the genetic diversity and the diversity of the cultivable fraction of the bacterial community in soil suspension. Genetic diversity was analyzed by Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. The changes in diversity were monitored by two different methods following a 90 day incubation period for 20 mg of LG per mL of soil suspension. The cultivable heterotrophic diversity was investigated by colony morphology on solid 1/5 lactobacillus medium. The results of the cultivable heterotrophic diversity and genetic diversity showed that there was an obvious decrease in diversity, and the amount of levoglucosan-assimilating bacteria also decreased. The application of LG had an obvious impact on Bacillus spp and Marinibacillus spp. Through cultivable analysis, five levoglucosan-assimilating bacteria were isolated from an LG treated soil suspension. Phylogenetic analysis of 16S rRNA gene sequences revealed that levoglucosan-assimilating bacteria belong to Bacillus and Marinibacillus. 2 refs., 2 tabs., 3 figs.

  1. Antibacterial Activity of Marine and Black Band Disease Cyanobacteria against Coral-Associated Bacteria

    Science.gov (United States)

    Gantar, Miroslav; Kaczmarsky, Longin T.; Stanić, Dina; Miller, Aaron W.; Richardson, Laurie L.

    2011-01-01

    Black band disease (BBD) of corals is a cyanobacteria-dominated polymicrobial disease that contains diverse populations of heterotrophic bacteria. It is one of the most destructive of coral diseases and is found globally on tropical and sub-tropical reefs. We assessed ten strains of BBD cyanobacteria, and ten strains of cyanobacteria isolated from other marine sources, for their antibacterial effect on growth of heterotrophic bacteria isolated from BBD, from the surface mucopolysaccharide layer (SML) of healthy corals, and three known bacterial coral pathogens. Assays were conducted using two methods: co-cultivation of cyanobacterial and bacterial isolates, and exposure of test bacteria to (hydrophilic and lipophilic) cyanobacterial cell extracts. During co-cultivation, 15 of the 20 cyanobacterial strains tested had antibacterial activity against at least one of the test bacterial strains. Inhibition was significantly higher for BBD cyanobacteria when compared to other marine cyanobacteria. Lipophilic extracts were more active than co-cultivation (extracts of 18 of the 20 strains were active) while hydrophilic extracts had very limited activity. In some cases co-cultivation resulted in stimulation of BBD and SML bacterial growth. Our results suggest that BBD cyanobacteria are involved in structuring the complex polymicrobial BBD microbial community by production of antimicrobial compounds. PMID:22073011

  2. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  3. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    Science.gov (United States)

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  4. Dynamic clustering in suspension of motile bacteria

    Science.gov (United States)

    Chen, Xiao; Yang, Xiang; Yang, Mingcheng; Zhang, H. P.

    2015-09-01

    Bacteria suspension exhibits a wide range of collective phenomena, arising from interactions between individual cells. Here we show Serratia marcescens cells near an air-liquid interface spontaneously aggregate into dynamic clusters through surface-mediated hydrodynamic interactions. These long-lived clusters translate randomly and rotate in the counterclockwise direction; they continuously evolve, merge with others and split into smaller ones. Measurements indicate that long-ranged hydrodynamic interactions have strong influences on cluster properties. Bacterial clusters change material and fluid transport near the interface and hence may have environmental and biological consequences.

  5. Fractal Aggregates in Tennis Ball Systems

    Science.gov (United States)

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  6. A Functional Reference Architecture for Aggregators

    DEFF Research Database (Denmark)

    Bondy, Daniel Esteban Morales; Heussen, Kai; Gehrke, Oliver

    2015-01-01

    Aggregators are considered to be a key enabling technology for harvesting power system services from distributed energy resources (DER). As a precondition for more widespread use of aggregators in power systems, methods for comparing and validating aggregator designs must be established. This paper...... proposes a functional reference architecture for aggregators to address this requirement....

  7. Aggregated Recommendation through Random Forests

    Directory of Open Access Journals (Sweden)

    Heng-Ru Zhang

    2014-01-01

    Full Text Available Aggregated recommendation refers to the process of suggesting one kind of items to a group of users. Compared to user-oriented or item-oriented approaches, it is more general and, therefore, more appropriate for cold-start recommendation. In this paper, we propose a random forest approach to create aggregated recommender systems. The approach is used to predict the rating of a group of users to a kind of items. In the preprocessing stage, we merge user, item, and rating information to construct an aggregated decision table, where rating information serves as the decision attribute. We also model the data conversion process corresponding to the new user, new item, and both new problems. In the training stage, a forest is built for the aggregated training set, where each leaf is assigned a distribution of discrete rating. In the testing stage, we present four predicting approaches to compute evaluation values based on the distribution of each tree. Experiments results on the well-known MovieLens dataset show that the aggregated approach maintains an acceptable level of accuracy.

  8. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    Gianluca eCorno

    2014-07-01

    Full Text Available The release of antibiotics (AB into the environment poses several threats for human health due to potential development of ABresistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold.These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of

  9. Channel Aggregation Schemes for Cognitive Radio Networks

    Science.gov (United States)

    Lee, Jongheon; So, Jaewoo

    This paper proposed three channel aggregation schemes for cognitive radio networks, a constant channel aggregation scheme, a probability distribution-based variable channel aggregation scheme, and a residual channel-based variable channel aggregation scheme. A cognitive radio network can have a wide bandwidth if unused channels in the primary networks are aggregated. Channel aggregation schemes involve either constant channel aggregation or variable channel aggregation. In this paper, a Markov chain is used to develop an analytical model of channel aggregation schemes; and the performance of the model is evaluated in terms of the average sojourn time, the average throughput, the forced termination probability, and the blocking probability. Simulation results show that channel aggregation schemes can reduce the average sojourn time of cognitive users by increasing the channel occupation rate of unused channels in a primary network.

  10. Transformation of organo-ferric peat colloids by a heterotrophic bacterium

    Science.gov (United States)

    Oleinikova, Olga V.; Shirokova, Liudmila S.; Gérard, Emmanuele; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.

    2017-05-01

    Bacterial mineralization of allochthonous (soil) dissolved organic matter (DOM) in boreal waters governs the CO2 flux from the lakes and rivers to the atmosphere, which is one of the main factor of carbon balance in high latitudes. However, the fate of colloidal trace element (TE) during bacterial processing of DOM remains poorly constrained. We separated monoculture of Pseudomonas saponiphila from a boreal creek and allowed it to react with boreal Fe-rich peat leachate of approximate colloidal (3 kDa-0.45 μm) composition C1000Fe12Al3.3Mg2Ca3.7P1.2Mn0.1Ba0.5 in nutrient-free media. The total net decrease of Dissolved Organic Carbon (DOC) concentration over 4 day of exposure was within 5% of the initial value, whereas the low molecular weight fraction of Corg (LMW<3 kDa) yielded a 16%-decrease due to long-term bio-uptake or coagulation. There was a relative depletion in Fe over Corg of 0.45 μm, colloidal and LMW fraction in the course of peat leachate interaction with P. saponiphila. Al, Mn, Ni, Cu, Ga, REEs, Y, U were mostly affected by bacterial presence and exhibited essentially the adsorption at the cell surface over first hours of reaction, in contrast to Fe, Ti, Zr, and Nb that showed both short-term adsorption and long-term removal by physical coagulation/coprecipitation with Fe hydroxide. The low molecular weight fraction (LMW<3 kDa) of most TE was a factor of 2-5 less affected by microbial presence via adsorption or removal than the high molecular weight (HMW) colloidal fractions (<0.45 μm and <50 kDa). The climate change-induced acceleration of heterotrophic bacterial activity in boreal and subarctic waters may lead to preferential removal of Fe over DOC from conventionally dissolved fraction and the decrease of the proportion of LMW < 3 kDa fraction and the increase of HMW colloids. Enhanced heterotrophic mineralization of organo-ferric colloids under climate warming scenario may compensate for on-going "browning" of surface waters.

  11. Autotrophic and heterotrophic microbial activity in sediments underlying the ultra-oligotrophic South Pacific Gyre

    Science.gov (United States)

    Ferdelman, T. G.; Ziebis, W.; Patel, A.; Krupke, A.; IODP Expedition 329 Shipboard Scientific Party, T.; IODP Expedition 329 Shipboard Science Party

    2011-12-01

    The South Pacific Gyre (SPG) comprises Earth's largest oceanic province and represents one of the largest scientifically unexplored region of seafloor. The sediments underlying this ultra-oligotrophic gyre exhibit extreme low sedimentation rates and cell abundances at or near the detection limit. Dissolved oxygen penetrations measured during the 2006-7 site survey expedition, reached depths of several meters suggesting that microbial activities in these sediments are persistently low (D'Hondt S et al. 2009, Proc. Nat. Acad. Sci.,106, 11651-11656). In 2011, IODP Expedition 329 drilled at seven sites ranging from 3739 to 5707 meters water depth and covering 6655 nautical miles across the gyre. Sediments were recovered along a northern transect (U1365 - U1368) from the gyre edge (24°S, 166°W) towards the center (28°S, 123°W), a southern transect (U1368 - U1370) back to the gyre edge (42°S, 153°W), and included a drill site just outside the gyre (U1371; 46°S, 163°W). One of the fundamental Expedition 329 objectives was to test how oceanographic factors control variation in sub-seafloor sedimentary habitats, activities and communities from gyre center to gyre margin. We present results of our post-expedition studies to evaluate metabolic activities and their distributions across the oxic South Pacific Gyre sediment ecosystem. Incubation experiments using sensitive stable and radioisotope approaches were performed onboard Expedition 329 to test for potential autotrophic versus heterotrophic metabolisms. A protocol was developed to extract and concentrate intact cells for the determination of substrate uptake and single cell analyses (e.g. nanoSIMS). Here we report results from the C-14 turnover and uptake experiments (acetate and bicarbonate). At all sites we observed C-14 acetate label turnover and oxidation to dissolved inorganic carbon. There was a trend of greater turnover of labeled acetate towards the gyre edges. Labeled acetate uptake into extracted

  12. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate

    KAUST Repository

    Ren, Lijiao

    2014-08-05

    © 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic

  13. Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors

    Science.gov (United States)

    2012-01-01

    Background The amyloid-β peptide (Aβ42) is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD). The mechanism by which Aβ42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. Results Here we describe a rapid and high-throughput screening method to identify molecules able to modulate amyloid aggregation. The approach exploits the inclusion bodies (IBs) formed by Aβ42 when expressed in bacteria. We have shown previously that these aggregates retain amyloid structural and functional properties. In the present work, we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic interest. Conclusions Because IBs can be produced at high levels and easily purified, the method overcomes one of the main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble synthetic peptides. PMID:22553999

  14. Customer Aggregation: An Opportunity for Green Power?

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.; Bird, L.

    2001-02-26

    We undertook research into the experience of aggregation groups to determine whether customer aggregation offers an opportunity to bring green power choices to more customers. The objectives of this report, therefore, are to (1) identify the different types of aggregation that are occurring today, (2) learn whether aggregation offers an opportunity to advance sales of green power, and (3) share these concepts and approaches with potential aggregators and green power advocates.

  15. Thermal Aggregation of Calcium-Fortified Skim Milk Enhances Probiotic Protection during Convective Droplet Drying.

    Science.gov (United States)

    Wang, Juan; Huang, Song; Fu, Nan; Jeantet, Romain; Chen, Xiao Dong

    2016-08-03

    Probiotic bacteria have been reported to confer benefits on hosts when delivered in an adequate dose. Spray-drying is expected to produce dried and microencapsulated probiotic products due to its low production cost and high energy efficiency. The bottleneck in probiotic application addresses the thermal and dehydration-related inactivation of bacteria during process. A protective drying matrix was designed by modifying skim milk with the principle of calcium-induced protein thermal aggregation. The well-defined single-droplet drying technique was used to monitor the droplet-particle conversion and the protective effect of this modified Ca-aggregated milk on Lactobacillus rhamnosus GG. The Ca-aggregated milk exhibited a higher drying efficiency and superior protection on L. rhamnosus GG during thermal convective drying. The mechanism was explained by the aggregation in milk, causing the lower binding of water in the serum phase and, conversely, local concentrated milk aggregates involved in bacteria entrapment in the course of drying. This work may open new avenues for the development of probiotic products with high bacterial viability and calcium enrichment.

  16. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates

    DEFF Research Database (Denmark)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.

    2016-01-01

    -bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly...

  17. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages

    DEFF Research Database (Denmark)

    Grossart, H.P.; Tang, K.W.; Kiørboe, Thomas

    2007-01-01

    Marine snow aggregates are microbial hotspots that support high bacterial abundance and activities. We conducted laboratory experiments to compare cell-specific bacterial protein production (BPP) and protease activity between free-living and attached bacteria. Natural bacterial assemblages attached...... were clustered around the agar-embedded diatom cells, indicating a chemosensing response. Increased protease activity and BPP allow attached bacteria to quickly exploit aggregate resources upon attachment, which may accelerate remineralization of marine snow and reduce the downward carbon fluxes...

  18. SHAPE CHARACTERIZATION OF CONCRETE AGGREGATE

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2011-05-01

    Full Text Available As a composite material, the performance of concrete materials can be expected to depend on the properties of the interfaces between its two major components, aggregate and cement paste. The microstructure at the interfacial transition zone (ITZ is assumed to be different from the bulk material. In general, properties of conventional concrete have been found favoured by optimum packing density of the aggregate. Particle size is a common denominator in such studies. Size segregation in the ITZ among the binder particles in the fresh state, observed in simulation studies by concurrent algorithm-based SPACE system, additionally governs density as well as physical bonding capacity inside these shell-like zones around aggregate particles. These characteristics have been demonstrated qualitatively pertaining also after maturation of the concrete. Such properties of the ITZs have direct impact on composite properties. Despite experimental approaches revealed effects of aggregate grain shape on different features of material structure (among which density, and as a consequence on mechanical properties, it is still an underrated factor in laboratory studies, probably due to the general feeling that a suitable methodology for shape characterization is not available. A scientific argument hindering progress is the interconnected nature of size and shape. Presently, a practical problem preventing shape effects to be emphasized is the limitation of most computer simulation systems in concrete technology to spherical particles. New developments at Delft University of Technology will make it possible in the near future to generate jammed states, or other high-density fresh particle mixtures of non-spherical particles, which thereupon can be subjected to hydration algorithms. This paper will sketch the outlines of a methodological approach for shape assessment of loose (non-embedded aggregate grains, and demonstrate its use for two types of aggregate, allowing

  19. How honey kills bacteria

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria

  20. Platelet aggregates and ADP-induced platelet aggregation in ...

    African Journals Online (AJOL)

    Hypertension is a condition characterized by haemodynamic vascular stress and abnormal blood flow under high pressure and it is associated with complications that are, paradoxically, thrombotic rather than haemorrhagic. Spontaneous platelet aggregation has been known to be present in hypertension which predicts ...

  1. Environmentalism and natural aggregate mining

    Science.gov (United States)

    Drew, L.J.; Langer, W.H.; Sachs, J.S.

    2002-01-01

    Sustaining a developed economy and expanding a developing one require the use of large volumes of natural aggregate. Almost all human activity (commercial, recreational, or leisure) is transacted in or on facilities constructed from natural aggregate. In our urban and suburban worlds, we are almost totally dependent on supplies of water collected behind dams and transported through aqueducts made from concrete. Natural aggregate is essential to the facilities that produce energy-hydroelectric dams and coal-fired powerplants. Ironically, the utility created for mankind by the use of natural aggregate is rarely compared favorably with the environmental impacts of mining it. Instead, the empty quarries and pits are seen as large negative environmental consequences. At the root of this disassociation is the philosophy of environmentalism, which flavors our perceptions of the excavation, processing, and distribution of natural aggregate. The two end-member ideas in this philosophy are ecocentrism and anthropocentrism. Ecocentrism takes the position that the natural world is a organism whose arteries are the rivers-their flow must not be altered. The soil is another vital organ and must not be covered with concrete and asphalt. The motto of the ecocentrist is "man must live more lightly on the land." The anthropocentrist wants clean water and air and an uncluttered landscape for human use. Mining is allowed and even encouraged, but dust and noise from quarry and pit operations must be minimized. The large volume of truck traffic is viewed as a real menace to human life and should be regulated and isolated. The environmental problems that the producers of natural aggregate (crushed stone and sand and gravel) face today are mostly difficult social and political concerns associated with the large holes dug in the ground and the large volume of heavy truck traffic associated with quarry and pit operations. These concerns have increased in recent years as society's demand for

  2. Balancing energy flexibilities through aggregation

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2014-01-01

    in both energy production and consumption, is the key to solving these problems. Flexibilities can be expressed as flex-offers, which due to their high number need to be aggregated to reduce the complexity of energy scheduling. In this paper, we discuss balance aggregation techniques that already during......One of the main goals of recent developments in the Smart Grid area is to increase the use of renewable energy sources. These sources are characterized by energy fluctuations that might lead to energy imbalances and congestions in the electricity grid. Exploiting inherent flexibilities, which exist...

  3. Heterotrophic bacterium Pseudomonas saponiphila and sunlight as impact factors on organo-mineral colloids transformations in boreal humic waters

    Science.gov (United States)

    Oleinikova, Olga; Drozdova, Olga; Shirokova, Liudmila; Lapitskiy, Sergey; Bychkov, Andrew; Pokrovsky, Oleg

    2017-04-01

    Two of the main factors of carbon balance in high latitudes, known to govern the CO2 flux from the lakes and rivers to the atmosphere, are bacterial mineralization (respiration) of allochthonous dissolved organic matter (DOM) and photochemical degradation of DOM. Yet, in contrast to large numbers of experimental and field studies on these factors impact on the utilization of DOM of different origin, the fate of metals bound to colloids during bacterial processing of DOM and behavior of trace element (TE) during photodegradation of DOM remains poorly constrained. This is especially important in view of essentially organic and organo-mineral colloidal status of TE in most boreal waters. To answer this questions, a monoculture of Pseudomonas saponiphila from a boreal creek in NW Karelia (Russia) was separated and allowed to interact with boreal peat leachate in nutrient-free media. We quantified colloidal transformation of the peat leachate during 5-days activity of live bacteria using 3 kDa, 50 kDa Amicon® centrifugal filtration and 0.45 µm syringe filtration. The total net decrease of the concentration of Dissolved Organic Carbon (DOC) over 93 h of exposure was within 5% of the initial value for all fractions except low molecular weight one (< 3 kDa), which yielded a 16%-decrease due to long-term bio-uptake or coagulation. Elements most affected by bacterial presence were Al, Mn, (Ni), Cu, Ga, REEs, Y, U which exhibited essentially the adsorption at the cell surface over first hrs of reaction, and Fe, Ti, (Zr), and Nb showing short-term adsorption and long-term assimilation. Towards a better understanding of concentration, size fractionation and speciation change of TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water from pristine zone of Northern Karelia (Russian subarctic). After 5 days of exposure, the DOM in stream photodegraded in a much smaller degree than that in the bog water with 25

  4. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm.

    Directory of Open Access Journals (Sweden)

    Morten Alhede

    Full Text Available For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non-aggregated

  5. Engineering the heterotrophic carbon sources utilization range of Ralstonia eutropha H16 for applications in biotechnology.

    Science.gov (United States)

    Volodina, Elena; Raberg, Matthias; Steinbüchel, Alexander

    2016-12-01

    Ralstonia eutropha H16 is an interesting candidate for the biotechnological production of polyesters consisting of hydroxy- and mercaptoalkanoates, and other compounds. It provides all the necessary characteristics, which are required for a biotechnological production strain. Due to its metabolic versatility, it can convert a broad range of renewable heterotrophic resources into diverse valuable compounds. High cell density fermentations of the non-pathogenic R. eutropha can be easily performed. Furthermore, this bacterium is accessible to engineering of its metabolism by genetic approaches having available a large repertoire of genetic tools. Since the complete genome sequence of R. eutropha H16 has become available, a variety of transcriptome, proteome and metabolome studies provided valuable data elucidating its complex metabolism and allowing a systematic biology approach. However, high production costs for bacterial large-scale production of biomass and biotechnologically valuable products are still an economic challenge. The application of inexpensive raw materials could significantly reduce the expenses. Therefore, the conversion of diverse substrates to polyhydroxyalkanoates by R. eutropha was steadily improved by optimization of cultivation conditions, mutagenesis and metabolic engineering. Industrial by-products and residual compounds like glycerol, and substrates containing high carbon content per weight like palm, soybean, corn oils as well as raw sugar-rich materials like molasses, starch and lignocellulose, are the most promising renewable substrates and were intensively studied.

  6. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.

    Directory of Open Access Journals (Sweden)

    Stephen Gang Wu

    2016-04-01

    Full Text Available 13C metabolic flux analysis (13C-MFA has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM, k-Nearest Neighbors (k-NN, and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.

  7. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chunfang; Zhai, Yan; Ding, Yi; Wu, Qingyu [School of Life Science, Tsinghua University, Beijing 100084 (China)

    2010-03-15

    Microalga Chlorella protothecoides can grow heterotrophically with glucose as the carbon source and accumulate high proportion of lipids. The microalgal lipids are suitable for biodiesel production. To further increase lipid yield and reduce biodiesel cost, sweet sorghum juice was investigated as an alternative carbon source to glucose in the present study. When the initial reducing sugar concentration was 10 g L{sup -1} in the culture medium, the dry cell yield and lipid content were 5.1 g L{sup -1} and 52.5% using enzymatic hydrolyzates of sweet sorghum juice as the carbon source after 120 h-culture in flasks. The lipid yield was 35.7% higher than that using glucose. When 3.0 g L{sup -1} yeast extract was added to the medium, the dry cell yield and lipid productivity was increased to 1.2 g L{sup -1} day{sup -1} and 586.8 mg L{sup -1} day{sup -1}. Biodiesel produced from the lipid of C. protothecoides through acid catalyzed transesterification was analyzed by GC-MS, and the three most abundant components were oleic acid methyl ester, cetane acid methyl ester and linoleic acid methyl ester. The results indicate that sweet sorghum juice could effectively enhance algal lipid production, and its application may reduce the cost of algae-based biodiesel. (author)

  8. Microwhip scorpions (Palpigradi) feed on heterotrophic cyanobacteria in Slovak caves--a curiosity among Arachnida.

    Science.gov (United States)

    Smrž, Jaroslav; Kováč, Ĺubomír; Mikeš, Jaromír; Lukešová, Alena

    2013-01-01

    To date, only morphological and anatomical descriptions of microwhip scorpions (Arachnida: Palpigradi) have been published. This very rare group is enigmatic not only in its relationships to other arachnids, but especially due to the fact that these animals dwell only underground (in caves, soil, and interstitial spaces). We observed the curious feeding habit of the microwhip scorpion Eukoenenia spelaea over the course of one year in Ardovská Cave, located in Slovakia's Karst region. We chose histology as our methodology in studying 17 specimens and based it upon Masson's triple staining, fluorescent light and confocal microscopy. Single-celled cyanobacteria (blue-green algae) were conspicuously predominant in the gut of all studied palpigrades. Digestibility of the consumed cyanobacteria was supported by the presence of guanine crystals, glycogen deposits and haemocytes inside the palpigrade body. Cyanobacteria, the oldest cellular organisms on Earth, are very resistant to severe conditions in caves, including even darkness. Therefore, the cyanobacteria are able to survive in dark caves as nearly heterotrophic organisms and are consumed by cave palpigrades. Such feeding habit is extraordinary within the almost wholly predacious orders of the class Arachnida, and particularly so due to the type of food observed.

  9. Microwhip Scorpions (Palpigradi) Feed on Heterotrophic Cyanobacteria in Slovak Caves – A Curiosity among Arachnida

    Science.gov (United States)

    Smrž, Jaroslav; Kováč, Ĺubomír; Mikeš, Jaromír; Lukešová, Alena

    2013-01-01

    To date, only morphological and anatomical descriptions of microwhip scorpions (Arachnida: Palpigradi) have been published. This very rare group is enigmatic not only in its relationships to other arachnids, but especially due to the fact that these animals dwell only underground (in caves, soil, and interstitial spaces). We observed the curious feeding habit of the microwhip scorpion Eukoenenia spelaea over the course of one year in Ardovská Cave, located in Slovakia's Karst region. We chose histology as our methodology in studying 17 specimens and based it upon Masson's triple staining, fluorescent light and confocal microscopy. Single-celled cyanobacteria (blue-green algae) were conspicuously predominant in the gut of all studied palpigrades. Digestibility of the consumed cyanobacteria was supported by the presence of guanine crystals, glycogen deposits and haemocytes inside the palpigrade body. Cyanobacteria, the oldest cellular organisms on Earth, are very resistant to severe conditions in caves, including even darkness. Therefore, the cyanobacteria are able to survive in dark caves as nearly heterotrophic organisms and are consumed by cave palpigrades. Such feeding habit is extraordinary within the almost wholly predacious orders of the class Arachnida, and particularly so due to the type of food observed. PMID:24146804

  10. Optimization of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris.

    Science.gov (United States)

    Jeon, Jin Young; Kwon, Ji-Sue; Kang, Soon Tae; Kim, Bo-Ra; Jung, Yuchul; Han, Jae Gap; Park, Joon Hyun; Hwang, Jae Kwan

    2014-01-01

    Lutein is a carotenoid with a purported role in protecting eyes from oxidative stress, particularly the high-energy photons of blue light. Statistical optimization was performed to growth media that supports a higher production of lutein by heterotrophically cultivated Chlorella vulgaris. The effect of media composition of C. vulgaris on lutein was examined using fractional factorial design (FFD) and central composite design (CCD). The results indicated that the presence of magnesium sulfate, EDTA-2Na, and trace metal solution significantly affected lutein production. The optimum concentrations for lutein production were found to be 0.34 g/L, 0.06 g/L, and 0.4 mL/L for MgSO4 ·7H2 O, EDTA-2Na, and trace metal solution, respectively. These values were validated using a 5-L jar fermenter. Lutein concentration was increased by almost 80% (139.64 ± 12.88 mg/L to 252.75 ± 12.92 mg/L) after 4 days. Moreover, the lutein concentration was not reduced as the cultivation was scaled up to 25,000 L (260.55 ± 3.23 mg/L) and 240,000 L (263.13 ± 2.72 mg/L). These observations suggest C. vulgaris as a potential lutein source. © 2014 American Institute of Chemical Engineers.

  11. Measuring the activity of heterotrophic microorganism in membrane bioreactor for drinking water treatment.

    Science.gov (United States)

    Han, Zheng-Shuang; Tian, Jia-Yu; Liang, Heng; Ma, Jun; Yu, Hua-Rong; Li, Kai; Ding, An; Li, Gui-Bai

    2013-02-01

    In order to quantify the activity of heterotrophic microorganism in membrane bioreactor (MBR) for drinking water treatment, biomass respiration potential (BRP) test and 2,3,5-triphenyl tetrazolium chloride-dehydrogenase activity (TTC-DHA) test were introduced and modified. A sludge concentration ratio of 5:1, incubation time of 2h, an incubation temperature that was close to the real operational temperature, and using a mixture of main AOC components as the substrate were adopted as the optimum parameters for determination of DHA in drinking water MBR. A remarkable consistency among BDOC removal, BRP and DHA for assessing biological performance in different MBRs was achieved. Moreover, a significant correlation between the BRP and DHA results of different MBRs was obtained. However, the TTC-DHA test was expected to be inaccurate for quantifying the biomass activity in membrane adsorption bioreactor (MABR), while the BRP test turned out to be still feasible in that case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Microwhip scorpions (Palpigradi feed on heterotrophic cyanobacteria in Slovak caves--a curiosity among Arachnida.

    Directory of Open Access Journals (Sweden)

    Jaroslav Smrž

    Full Text Available To date, only morphological and anatomical descriptions of microwhip scorpions (Arachnida: Palpigradi have been published. This very rare group is enigmatic not only in its relationships to other arachnids, but especially due to the fact that these animals dwell only underground (in caves, soil, and interstitial spaces. We observed the curious feeding habit of the microwhip scorpion Eukoenenia spelaea over the course of one year in Ardovská Cave, located in Slovakia's Karst region. We chose histology as our methodology in studying 17 specimens and based it upon Masson's triple staining, fluorescent light and confocal microscopy. Single-celled cyanobacteria (blue-green algae were conspicuously predominant in the gut of all studied palpigrades. Digestibility of the consumed cyanobacteria was supported by the presence of guanine crystals, glycogen deposits and haemocytes inside the palpigrade body. Cyanobacteria, the oldest cellular organisms on Earth, are very resistant to severe conditions in caves, including even darkness. Therefore, the cyanobacteria are able to survive in dark caves as nearly heterotrophic organisms and are consumed by cave palpigrades. Such feeding habit is extraordinary within the almost wholly predacious orders of the class Arachnida, and particularly so due to the type of food observed.

  13. Simultaneous Heterotrophic Nitrification and Aerobic Denitrification by Chryseobacterium sp. R31 Isolated from Abattoir Wastewater

    Science.gov (United States)

    Kundu, Pradyut; Pramanik, Arnab; Dasgupta, Arpita; Mukherjee, Somnath; Mukherjee, Joydeep

    2014-01-01

    A heterotrophic carbon utilizing microbe (R31) capable of simultaneous nitrification and denitrification (SND) was isolated from wastewater of an Indian slaughterhouse. From an initial COD value of 583.0 mg/L, 95.54% was removed whilst, from a starting NH4 +-N concentration of 55.7 mg/L, 95.87% was removed after 48 h contact. The concentrations of the intermediates hydroxylamine, nitrite, and nitrate were low, thus ensuring nitrogen removal. Aerobic denitrification occurring during ammonium removal by R31 was confirmed by utilization of both nitrate and nitrite as nitrogen substrates. Glucose and succinate were superior while acetate and citrate were poor substrates for nitrogen removal. Molecular phylogenetic identification, supported by chemotaxonomic and physiological properties, assigned R31 as a close relative of Chryseobacterium haifense. The NH4 +-N utilization rate and growth of strain R31 were found to be higher at C/N = 10 in comparison to those achieved with C/N ratios of 5 and 20. Monod kinetic coefficients, half saturation concentration (K s), maximum rate of substrate utilization (k), yield coefficient, (Y) and endogenous decay coefficient (K d) indicated potential application of R31 in large-scale SND process. This is the first report on concomitant carbon oxidation, nitrification, and denitrification in the genus Chryseobacterium and the associated kinetic coefficients. PMID:24991552

  14. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana

    DEFF Research Database (Denmark)

    van Wagenen, Jonathan Myerson; De Francisci, Davide; Angelidaki, Irini

    2015-01-01

    to autotrophic growth. Chlorella sorokiniana was cultivated in medium supplemented with sodium acetate in concentrations equivalent to the volatile fatty acid concentration found in anaerobic digester effluent. Flat-panel photobioreactors were operated using 16:8 light:dark cycles, with different strategies...... for acetate addition. Acetate was added during the light period for the mixotrophic strategy and during the dark one for the cyclic autotrophic/heterotrophic strategy. Autotrophic productivity of up to 0.99 g L−1 day−1 was obtained using the optimal tested dilution rate of 0.031 h−1. The highest mixotrophic...... productivity was 1.04 g L−1 day−1. When a constant dilution rate was applied throughout the day, cyclic heterotrophy/autotrophy (1.2 g L−1 day−1) showed higher productivity than during mixotrophic growth, while using only half as much acetate. By diluting and adding acetate only during the eight dark hours...

  15. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests.

    Science.gov (United States)

    Högberg, Peter; Nordgren, Anders; Högberg, Mona N; Ottosson-Löfvenius, Mikaell; Bhupinderpal-Singh; Olsson, Per; Linder, Sune

    2005-01-01

    Soil-surface CO2 efflux ('soil respiration') accounts for roughly two-thirds of forest ecosystem respiration, and can be divided into heterotrophic and autotrophic components. Conventionally, the latter is defined as respiration by plant roots. In Boreal forests, however, fine roots of trees are invariably covered by ectomycorrhizal fungi, which by definition are heterotrophs, but like the roots, receive sugars derived from photosynthesis. There is also a significant leaching of labile carbon compounds from the ectomycorrhizal roots. It is, therefore, more meaningful in the context of carbon balance studies to include mycorrhizal fungi and other mycorrhizosphere organisms, dependent on the direct flux of labile carbon from photosynthesis, in the autotrophic component. Hence, heterotrophic activity becomes reserved for the decomposition of more complex organic molecules in litter and other forms of soil organic matter. In reality, the complex situation is perhaps best described as a continuum from strict autotrophy to strict heterotrophy. As a result of this, and associated methodological problems, estimates of the contribution of autotrophic respiration to total soil respiration have been highly variable. Based on recent stand-scale tree girdling experiments we have estimated that autotrophic respiration in boreal forest accounts for up to 50-65% of soil respiration during the snow-free part of the year. Girdling experiments and studies of the delta(13)C of the soil CO2 efflux show that there is a lag of a few days between the carbon uptake by photosynthesis and the release by autotrophic soil respiration of the assimilated carbon. In contrast, estimates of 'bomb 14C' and other approaches have suggested that it takes years to decades between carbon uptake via photosynthesis and the bulk of soil heterotrophic activity. Temperature is normally used as a driver in models of soil processes and it is often assumed that autotrophic soil activity is more sensitive to

  16. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction.

    Science.gov (United States)

    Sahinkaya, Erkan; Kilic, Adem

    2014-03-01

    Nitrate and chromate can be present together in water resources as nitrate is a common co-contaminant in surface and ground waters. This study aims at comparatively evaluating simultaneous chromate and nitrate reduction in heterotrophic and sulfur-based autotrophic denitrifying column bioreactors. In sulfur-based autotrophic denitrification process, elemental sulfur and nitrate act as an electron donor and an acceptor, respectively, without requirement of organic supplementation. Autotrophic denitrification was complete and not adversely affected by chromate up to 0.5 mg/L. Effluent chromate concentration was reduction was attained up to 10 mg/L. Although autotrophic denitrification rate was much lower compared with heterotrophic one, it may be preferred in drinking water treatment due to the elimination of organic supplementation and the risk of treated effluent contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System.

    Science.gov (United States)

    Chen, Lihua; Zhu, Xuan; Zhang, Menglu; Wang, Yuxin; Lv, Tianyu; Zhang, Shenghua; Yu, Xin

    2017-05-28

    Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of 2.14 × 10 7 copies/100 ml in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

  18. ActA Promotes Listeria monocytogenes Aggregation, Intestinal Colonization and Carriage

    Science.gov (United States)

    Travier, Laetitia; Guadagnini, Stéphanie; Gouin, Edith; Dufour, Alexandre; Chenal-Francisque, Viviane; Cossart, Pascale; Olivo-Marin, Jean-Christophe; Ghigo, Jean-Marc; Disson, Olivier; Lecuit, Marc

    2013-01-01

    Listeria monocytogenes (Lm) is a ubiquitous bacterium able to survive and thrive within the environment and readily colonizes a wide range of substrates, often as a biofilm. It is also a facultative intracellular pathogen, which actively invades diverse hosts and induces listeriosis. So far, these two complementary facets of Lm biology have been studied independently. Here we demonstrate that the major Lm virulence determinant ActA, a PrfA-regulated gene product enabling actin polymerization and thereby promoting its intracellular motility and cell-to-cell spread, is critical for bacterial aggregation and biofilm formation. We show that ActA mediates Lm aggregation via direct ActA-ActA interactions and that the ActA C-terminal region, which is not involved in actin polymerization, is essential for aggregation in vitro. In mice permissive to orally-acquired listeriosis, ActA-mediated Lm aggregation is not observed in infected tissues but occurs in the gut lumen. Strikingly, ActA-dependent aggregating bacteria exhibit an increased ability to persist within the cecum and colon lumen of mice, and are shed in the feces three order of magnitude more efficiently and for twice as long than bacteria unable to aggregate. In conclusion, this study identifies a novel function for ActA and illustrates that in addition to contributing to its dissemination within the host, ActA plays a key role in Lm persistence within the host and in transmission from the host back to the environment. PMID:23382675

  19. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls

    KAUST Repository

    Moran, Xose Anxelu G.

    2017-04-19

    Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom-up), predation and viral lysis (top-down) or temperature will help in future carbon cycling predictions. We conducted an extensive survey across subtropical and tropical waters of the Atlantic, Indian and Pacific Oceans during the Malaspina 2010 Global Circumnavigation Expedition and assessed indices for these three types of controls at 109 stations (mostly from the surface to 4000 m depth). Temperature control was approached by the apparent activation energy in eV (ranging from 0.46 to 3.41), bottom-up control by the slope of the log-log relationship between biomass and production rate (ranging from -0.12 to 1.09) and top-down control by an index that considers the relative abundances of heterotrophic nanoflagellates and viruses (ranging from 0.82 to 4.83). We conclude that temperature becomes dominant (i.e. activation energy >1.5 eV) within a narrow window of intermediate values of bottom-up (0.3-0.6) and top-down 0.8-1.2) controls. A pervasive latitudinal pattern of decreasing temperature regulation towards the Equator, regardless of the oceanic basin, suggests that the impact of global warming on marine microbes and their biogeochemical function will be more intense at higher latitudes. Our analysis predicts that 1°C ocean warming will result in increased biomass of heterotrophic prokaryoplankton only in waters with <26°C of mean annual surface temperature. This article is protected by copyright. All rights reserved.

  20. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls.

    Science.gov (United States)

    Morán, Xosé Anxelu G; Gasol, Josep M; Pernice, Massimo C; Mangot, Jean-François; Massana, Ramon; Lara, Elena; Vaqué, Dolors; Duarte, Carlos M

    2017-09-01

    Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom-up), predation and viral lysis (top-down) or temperature will help in future carbon cycling predictions. We conducted an extensive survey across subtropical and tropical waters of the Atlantic, Indian and Pacific Oceans during the Malaspina 2010 Global Circumnavigation Expedition and assessed indices for these three types of controls at 109 stations (mostly from the surface to 4,000 m depth). Temperature control was approached by the apparent activation energy in eV (ranging from 0.46 to 3.41), bottom-up control by the slope of the log-log relationship between biomass and production rate (ranging from -0.12 to 1.09) and top-down control by an index that considers the relative abundances of heterotrophic nanoflagellates and viruses (ranging from 0.82 to 4.83). We conclude that temperature becomes dominant (i.e. activation energy >1.5 eV) within a narrow window of intermediate values of bottom-up (0.3-0.6) and top-down 0.8-1.2) controls. A pervasive latitudinal pattern of decreasing temperature regulation towards the Equator, regardless of the oceanic basin, suggests that the impact of global warming on marine microbes and their biogeochemical function will be more intense at higher latitudes. Our analysis predicts that 1°C ocean warming will result in increased biomass of heterotrophic prokaryoplankton only in waters with <26°C of mean annual surface temperature. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  1. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  2. Studies on the production of indole-3-acetic acid with auxin-heterotrophic mutants derived from cultured crown gall cells

    OpenAIRE

    Shigeaki, Atsumi; Department of Biology, College of General Education, University of Tokyo

    1980-01-01

    Mutants in the indole-3-acetic acid metabolism derived from cultured crown gall cells were tested to see whether they could utilize any one of eight indolic compounds in place of indole-3-acetic acid. Two auxin-heterotrophic mutant cell lines could not utilize indolepyruvic acid, but growth recovered when there was a supplement of indole-3-acetic acid. Indoleacetonitril and indoleacetaldoxime inhibited the growth of mutant cell lines and their parental crown gall cells. Cultured crown gall ce...

  3. Fractal dimensions and porosities of Zoogloea ramigera and Saccharomyces cerevisae aggregates.

    Science.gov (United States)

    Logan, B E; Wilkinson, D B

    1991-08-05

    The fractal nature microbial aggregates is a function of the type of microorganism and mixing conditions used to develop aggregates. We determined fractal dimensions from length-projected area (D(2)) and length-number scaling (D(3)) relationships. Aggregates of Zoogloea ramigera developed in rotating test tubes were both surface and mass fractals, with fractal dimensions of D(2) = 1.69 +/- 0.11 and D(3)= 1.79 +/- 0.28 (+/-standard deviation), respectively. When we grew this bacteria in a bench-top fermentor, aggregates maintained their surface fractal characteristics (D(2) = 1.78 +/- 0.11) but lost their mass fractal characteristics (D(3) = 2.99 +/- 0.36). Yeast aggregates (Saccharomyces cerevisae) grown in rotating tests tubes had higher average fractal dimensions than bacterial aggregates grown under physically identical conditions, and were also considered fractal (D(2) = 1.92 +/- 0.08 and D(3) = 2.66 +/- 0.34). Aggregates porosity can be expressed in term of a fractal dimensions, but average porosities are higher than expected. The porosities of yeast aggregates (0.9250-0.9966) were similar to porosities of bacterial aggregates (0.9250-0.9966) cultured under the same physical conditions, although bacterial aggregates developed in the reactor had higher average porosities (0.9857-0.9980). These results suggest that that scaling relationships based on fractal geometry may be more useful than equations derived from Euclidean geometry for quantifying the effects of different fluid mechanical environments on aggregates morphology and characteristics such as density, porosity, and projected surface area.

  4. Bacterial aggregates in the tentacles of the sea anemone Metridium senile

    Science.gov (United States)

    Schuett, Christian; Doepke, Hilke; Grathoff, Annette; Gedde, Michael

    2007-09-01

    This paper provides first information on organ-like bacterial aggregates in the tentacles of the sea anemone Metridium senile. The specimens were collected from waters near Helgoland (German Bight, North Sea) and the Orkney Islands. Tentacles were prepared for morphological inspection by light and scanning electron microscopy as well as for the phylogenetic analysis of endocytic bacteria. Bacterial aggregates are located in caverns of the tentacles’ epidermis. The aggregates are enwrapped in thin envelopes, which contain coccoid and/or rod-shaped tightly packed bacteria of different division states. Most of the bacterial cells are connected by fine filamentous structures. The phylogenetic determination is based on the sequence data of the 16S rDNA derived from tentacle material. Sequence analysis revealed three different subgroups of intratentacular proteobacteria. The dominant band, detected in all of the samples tested, showed a close relationship (98%) to a gram-negative Endozoicimonas elysicola. Two bands, only detected in tentacles of M. senile from Helgoland were assigned to Pseudomonas saccherophilia (99%), a knallgas bacterium, and to Ralstonia pickettii (100%). The bacteria represent a specific bacterial community. Their DGGE profiles do not correspond to the profiles of the planktonic bacteria generated from seawater close to the habitats of the anemones. The allocation of DNA sequences to the different morphotypes, their isolation, culturing and the elucidation of the physiological functions of intratentacular bacteria are in progress.

  5. Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with Rhodotorula glutinis.

    Science.gov (United States)

    Wang, Shikai; Wu, Yong; Wang, Xu

    2016-11-01

    Heterotrophic cultivation of microalgae is a feasible alternative strategy to avoid the light limitation of photoautotrophic culture, but the heterotrophic utilization of disaccharides is difficult for microalgae. Aimed at this problem, a co-culture system was developed by mix culture of C. pyrenoidosa and R. glutinis using sucrose as the sole carbon source. In this system, C. pyrenoidosa could utilize glucose and fructose which were hydrolyzed from sucrose by R. glutinis. The highest specific growth rate and final cell number proportion of algae was 1.02day(-1) and 45%, respectively, when cultured at the initial algal cell number proportion of 95.24% and the final algal cell density was 111.48×10(6)cells/mL. In addition, the lipid content was also promoted due to the synergistic effects in mix culture. This study provides a novel approach using sucrose-riched wastes for the heterotrophic culture of microalgae and may effectively decrease the cost of carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A “footprint” of plant carbon fixation cycle functions during the development of a heterotrophic fungus

    Science.gov (United States)

    Lyu, Xueliang; Shen, Cuicui; Xie, Jiatao; Fu, Yanping; Jiang, Daohong; Hu, Zijin; Tang, Lihua; Tang, Liguang; Ding, Feng; Li, Kunfei; Wu, Song; Hu, Yanping; Luo, Lilian; Li, Yuanhao; Wang, Qihua; Li, Guoqing; Cheng, Jiasen

    2015-01-01

    Carbon fixation pathway of plants (CFPP) in photosynthesis converts solar energy to biomass, bio-products and biofuel. Intriguingly, a large number of heterotrophic fungi also possess enzymes functionally associated with CFPP, raising the questions about their roles in fungal development and in evolution. Here, we report on the presence of 17 CFPP associated enzymes (ten in Calvin-Benson-Basham reductive pentose phosphate pathway and seven in C4-dicarboxylic acid cycle) in the genome of Sclerotinia sclerotiorum, a heterotrophic phytopathogenic fungus, and only two unique enzymes: ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK) were absent. This data suggested an incomplete CFPP-like pathway (CLP) in fungi. Functional profile analysis demonstrated that the activity of the incomplete CLP was dramatically regulated during different developmental stages of S. sclerotiorum. Subsequent experiments confirmed that many of them were essential to the virulence and/or sclerotial formation. Most of the CLP associated genes are conserved in fungi. Phylogenetic analysis showed that many of them have undergone gene duplication, gene acquisition or loss and functional diversification in evolutionary history. These findings showed an evolutionary links in the carbon fixation processes of autotrophs and heterotrophs and implicated the functions of related genes were in course of continuous change in different organisms in evolution. PMID:26263551

  7. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    Science.gov (United States)

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  8. Micro-electrolysis/retinervus luffae-based simultaneous autotrophic and heterotrophic denitrification for low C/N wastewater treatment.

    Science.gov (United States)

    Li, Jinlong; Li, Desheng; Cui, Yuwei; Xing, Wei; Deng, Shihai

    2017-07-01

    Nitrogen bioremediation in organic insufficient wastewater generally requires an extra carbon source. In this study, nitrate-contaminated wastewater was treated effectively through simultaneous autotrophic and heterotrophic denitrification based on micro-electrolysis carriers (MECs) and retinervus luffae fructus (RLF), respectively. The average nitrate and total nitrogen removal rates reached 96.3 and 94.0% in the MECs/RLF-based autotrophic and heterotrophic denitrification (MRAHD) system without ammonia and nitrite accumulation. The performance of MRAHD was better than that of MEC-based autotrophic denitrification for the wastewater treatment with low carbon nitrogen (COD/N) ratio. Real-time quantitative polymerase chain reaction (qPCR) revealed that the relative abundance of nirS-type denitrifiers attached to MECs (4.9%) and RLF (5.0%) was similar. Illumina sequencing suggested that the dominant genera were Thiobacillus (7.0%) and Denitratisoma (5.7%), which attached to MECs and RLF, respectively. Sulfuritalea was discovered as the dominant genus in the middle of the reactor. The synergistic interaction between autotrophic and heterotrophic denitrifiers played a vital role in the mixotrophic substrate environment.

  9. Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition.

    Science.gov (United States)

    Zhang, Tian-Yuan; Wu, Yin-Hu; Zhu, Shu-feng; Li, Feng-min; Hu, Hong-Ying

    2013-12-01

    Cultivating microalgae heterotrophically could overcome the light dependency, and thus increase the yield of microalgal lipid per unit area. In this study, three newly isolated strains of microalgae (Scenedesmus sp. ZTY2, Scenedesmus sp. ZTY3 and Chlorella sp. ZTY4) from a domestic wastewater treatment plant were heterotrophically cultivated in domestic wastewater with no illumination. During the cultivation, the algal densities of Scenedesmus species and Chlorella species were increased by 203.0% and 60.5% comparing with the initial densities, respectively. After 11-day cultivation, the lipid contents of Scenedesmus sp. ZTY2, Scenedesmus sp. ZTY3 and Chlorella sp. ZTY4 reached 69.1%, 55.3% and 79.2%, respectively. The DOC removal efficiencies of these three strains were 63.4%, 52.9% and 64.4%, and the biomass yield were 1.65, 1.98 and 2.31mg biomass/mg DOC, respectively. This is the first report about the heterotrophic cultivation of microalgae strains for domestic wastewater treatment and lipid production under dark condition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Shape characterization of concrete aggregate

    NARCIS (Netherlands)

    Stroeven, P.; Hu, J.

    2006-01-01

    As a composite material, the performance of concrete materials can be expected to depend on the properties of the interfaces between its two major components, aggregate and cement paste. The microstructure at the interfacial transition zone (ITZ) is assumed to be different from the bulk material. In

  11. POLYAMINES IN MODULATING PROTEIN AGGREGATION

    Directory of Open Access Journals (Sweden)

    Rimpy K. Chowhan

    2012-12-01

    Full Text Available Polyamines are ubiquitous aliphatic polycations with multiple molecular and cellular functions. They were first indentified by Leeuwenhoek in 1678. Since then many investigations had been done to understand the physiological significance of these molecules. Being cationic at physiologic pH, they interact with various biomolecules including DNA, RNA, proteins, and help in many cellular functions. Apart from their vast number of physiological functions, they are also implicated in modulation of protein aggregation or amyloid formation. It is now important to combine and analyze all of the findings on polyamine-induced aggregation, come to a conclusion, and relate the phenomenon of this protein aggregation to the physiology of the cellular function. Through this review, we had tried to cover almost all the investigations that had been done to-date, to explore the roles of polyamines in aggregation of various proteins. We have also incorporated future research avenues that might be of interest to many cellular biologist and protein chemists.

  12. Diversity, intent, and aggregated search

    NARCIS (Netherlands)

    de Rijke, M.

    2014-01-01

    Diversity, intent and aggregated search are three core retrieval concepts that receive significant attention. In search result diversification one typically considers the relevance of a document in light of other retrieved documents. The goal is to identify the probable "aspects" of an ambiguous

  13. Aggregation Methods in Food Chains.

    NARCIS (Netherlands)

    Kooi, B.W.; Poggiale, J.C.; Auger, P.

    1998-01-01

    The aim of this paper is to apply aggregation methods to food chains under batch and chemostat conditions. These predator-prey systems are modelled using ODEs, one for each trophic level. Because the models are based on mass conservation laws, they are conservative and this allows perfect

  14. Excitons in tubular molecular aggregates

    NARCIS (Netherlands)

    Didraga, C; Knoester, J

    2004-01-01

    We present a brief overview of recent work on the optical properties of molecular aggregates with a tubular (cylindrical) shape. The exciton states responsible for these properties can be distinguished with regard to a transverse wave number, which directly relates to optical selection rules and

  15. Aggregating and Disaggregating Flexibility Objects

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Valsomatzis, Emmanouil; Hose, Katja

    2015-01-01

    of such objects while preserving flexibility. Hence, this paper formally defines the concept of flexibility objects (flex-objects) and provides a novel and efficient solution for aggregating and disaggregating flex-objects. Out of the broad range of possible applications, this paper will focus on smart grid...... the energy domain show that the proposed solutions provide good performance while satisfying the strict requirements....

  16. Studies on recycled aggregates-based concrete.

    Science.gov (United States)

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  17. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  18. Microalgae-bacteria biofilms: a sustainable synergistic approach in remediation of acid mine drainage.

    Science.gov (United States)

    Abinandan, Sudharsanam; Subashchandrabose, Suresh R; Venkateswarlu, Kadiyala; Megharaj, Mallavarapu

    2018-02-01

    Microalgae and bacteria offer a huge potential in delving interest to study and explore various mechanisms under extreme environments. Acid mine drainage (AMD) is one such environment which is extremely acidic containing copious amounts of heavy metals and poses a major threat to the ecosystem. Despite its extreme conditions, AMD is the habitat for several microbes and their activities. The use of various chemicals in prevention of AMD formation and conventional treatment in a larger scale is not feasible under different geological conditions. It implies that microbe-mediated approach is a viable and sustainable alternative technology for AMD remediation. Microalgae in biofilms play a pivotal role in such bioremediation as they maintain mutualism with heterotrophic bacteria. Synergistic approach of using microalgae-bacteria biofilms provides supportive metabolites from algal biomass for growth of bacteria and mediates remediation of AMD. However, by virtue of their physiology and capabilities of metal removal, non-acidophilic microalgae can be acclimated for use in AMD remediation. A combination of selective acidophilic and non-acidophilic microalgae together with bacteria, all in the form of biofilms, may be very effective for bioremediation of metal-contaminated waters. The present review critically examines the nature of mutualistic interactions established between microalgae and bacteria in biofilms and their role in removal of metals from AMDs, and consequent biomass production for the yield of biofuel. Integration of microalgal-bacterial consortia in fuel cells would be an attractive emerging approach of microbial biotechnology for AMD remediation.

  19. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Güven, Didem; Dapena, Ana; Kartal, Boran; Schmid, Markus C; Maas, Bart; van de Pas-Schoonen, Katinka; Sozen, Seval; Mendez, Ramon; Op den Camp, Huub J M; Jetten, Mike S M; Strous, Marc; Schmidt, Ingo

    2005-02-01

    Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min(-1) mg of protein(-1)) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO(2), with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.

  20. The Effect of Aluminium on Antibacterial Properties and the Content of Some Fatty Acids in Microalgae, Chlorella vulgaris Beijernick, under Heterotrophic and Autotrophic Conditions

    Directory of Open Access Journals (Sweden)

    Hossein Abbaspour

    2017-01-01

    Full Text Available Microalgae are a group of organisms, which have a significant potential for industrial applications. These algae contain large amounts of lipids compounds that are beneficial to health, have antibacterial properties, and their extracted oil can be used for biofuel. In this study, microalgae Chlorella vulgaris Beijernick was grown in the culture medium BG-11 containing aluminium (AlCl3 under autotrophic and heterotrophic conditions. In each case, survival and growth, dry weight, internal aluminium content of the sample, antibacterial properties, the content of fatty acids accumulated in the algae and secreted into the culture medium in the logarithmic growth phase were studied. Aluminium significantly increased (P < .05 growth and dry weight in autotrophic treatment compared to the heterotrophic one. Most antibacterial properties were observed in methanol extracts of heterotrophic treatments containing 0.05% glucose. Aluminium also decreased fatty acids accumulation in the algae and increased fatty acids excretion into the culture medium in heterotrophic treatment compared to the autotrophic treatment. Survival of the sample was maintained in heterotrophic conditions and showed growth without lag phase, which is indicative of rapid acclimation of organisms in heterotrophic conditions. It seems that the mentioned characteristics make the single-celled green algae Chlorella vulgaris more efficient in different ways.

  1. A method for measuring losses of soil carbon by heterotrophic respiration from peat soils under oil palms

    Science.gov (United States)

    Farmer, Jenny; Manning, Frances; Smith, Jo; Arn Teh, Yit

    2017-04-01

    The effects of drainage and deforestation of South East Asian peat swamp forests for the development of oil palm plantations has received considerable attention in both mainstream media and academia, and is the source of significant discussion and debate. However, data on the long-term carbon losses from these peat soils as a result of this land use change is still limited and the methods with which to collect this data are still developing. Here we present the ongoing evolution and implementation of a method for separating autotrophic and heterotrophic respiration by sampling carbon dioxide emissions at increasing distance from palm trees. We present the limitations of the method, modelling approaches and results from our studies. In 2011 we trialled this method in Sumatra, Indonesia and collected rate measurements over a six day period in three ages of oil palm. In the four year oil palm site there were thirteen collars that had no roots present and from these the peat based carbon losses were recorded to be 0.44 g CO2 m2 hr-1 [0.34; 0.57] (equivalent to 39 t CO2 ha-1 yr-1 [30; 50]) with a mean water table depth of 0.40 m, or 63% of the measured total respiration across the plot. In the two older palm sites of six and seven years, only one collar out of 100 had no roots present, and thus a linear random effects model was developed to calculate heterotrophic emissions for different distances from the palm tree. This model suggested that heterotrophic respiration was between 37 - 59% of total respiration in the six year old plantation and 39 - 56% in the seven year old plantation. We applied this method in 2014 to a seven year old plantation, in Sarawak, Malaysia, modifying the method to include the heterotrophic contribution from beneath frond piles and weed covered areas. These results indicated peat based carbon losses to be 0.42 g CO2 m2 hr-1 [0.27;0.59] (equivalent to 37 t CO2 ha-1 yr-1 [24; 52]) at an average water table depth of 0.35 m, 47% of the measured

  2. Defining and Systematic Analyses of Aggregation Indices to Evaluate Degree of Calcium Oxalate Crystal Aggregation

    Directory of Open Access Journals (Sweden)

    Sakdithep Chaiyarit

    2017-12-01

    Full Text Available Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM crystals with various concentrations (25–800 μg/ml in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant. The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r = 0.997; p < 0.001, whereas the equally second rank included aggregated mass index and optical density (r = 0.993; p < 0.001 and r = −0.993; p < 0.001, respectively and the equally forth were aggregation coefficient and span (r = 0.991; p < 0.001 for both. These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

  3. Defining and Systematic Analyses of Aggregation Indices to Evaluate Degree of Calcium Oxalate Crystal Aggregation.

    Science.gov (United States)

    Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2017-01-01

    Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 μg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r = 0.997; p < 0.001), whereas the equally second rank included aggregated mass index and optical density (r = 0.993; p < 0.001 and r = -0.993; p < 0.001, respectively) and the equally forth were aggregation coefficient and span (r = 0.991; p < 0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

  4. Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm

    DEFF Research Database (Denmark)

    Alhede, Morten; Kragh, Kasper Nørskov; Qvortrup, Klaus

    2011-01-01

    conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy......, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently...... the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis...

  5. Aggregate size and architecture determine biomass activity for one-stage partial nitritation and anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.; Terada, Akihiko; Smets, Barth F.

    2010-01-01

    In partial nitritation/anammox systems, aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB) remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about this type of granulation so far. In this study.......e. the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate, with all rates determined in aerobic and anoxic batch tests. The space occupied by extracellular polymeric substances (EPS) was calculated from transmission electron micrographs. All smallest aggregates were flocs...... and nitrite sources (NARR, > 1.7). Large A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific EPS. Large B aggregates were...

  6. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  7. [Darwin and bacteria].

    Science.gov (United States)

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  8. Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient

    Science.gov (United States)

    Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2015-04-01

    Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation

  9. Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael

    2002-01-01

    -ß-hydroxybutyric acid. The cells have bipolar polytrichous flagella and exhibit a unique swimming pattern, rotating and translating along their short axis. Free-swimming cells showed aerotaxis and aggregated at ca. 2 µM oxygen within opposing oxygen-sulfide gradients, where they were able to attach via a mucous stalk......, forming a cohesive whitish veil at the oxic-anoxic interface. Bacteria attached to the veil kept rotating and adapted their stalk lengths dynamically to changing oxygen concentrations. The joint action of rotating bacteria on the veil induced a homogeneous water flow from the oxic water region toward...

  10. Estimating heterotrophic respiration at large scales: Challenges, approaches, and next steps

    Science.gov (United States)

    Bond-Lamberty, Ben; Epron, Daniel; Harden, Jennifer W.; Harmon, Mark E.; Hoffman, Forrest; Kumar, Jitendra; McGuire, Anthony David; Vargas, Rodrigo

    2016-01-01

    Heterotrophic respiration (HR), the aerobic and anaerobic processes mineralizing organic matter, is a key carbon flux but one impossible to measure at scales significantly larger than small experimental plots. This impedes our ability to understand carbon and nutrient cycles, benchmark models, or reliably upscale point measurements. Given that a new generation of highly mechanistic, genomic-specific global models is not imminent, we suggest that a useful step to improve this situation would be the development of “Decomposition Functional Types” (DFTs). Analogous to plant functional types (PFTs), DFTs would abstract and capture important differences in HR metabolism and flux dynamics, allowing modelers and experimentalists to efficiently group and vary these characteristics across space and time. We argue that DFTs should be initially informed by top-down expert opinion, but ultimately developed using bottom-up, data-driven analyses, and provide specific examples of potential dependent and independent variables that could be used. We present an example clustering analysis to show how annual HR can be broken into distinct groups associated with global variability in biotic and abiotic factors, and demonstrate that these groups are distinct from (but complementary to) already-existing PFTs. A similar analysis incorporating observational data could form the basis for future DFTs. Finally, we suggest next steps and critical priorities: collection and synthesis of existing data; more in-depth analyses combining open data with rigorous testing of analytical results; using point measurements and realistic forcing variables to constrain process-based models; and planning by the global modeling community for decoupling decomposition from fixed site data. These are all critical steps to build a foundation for DFTs in global models, thus providing the ecological and climate change communities with robust, scalable estimates of HR.

  11. History matters: Heterotrophic microbial community structure and function adapt to multiple stressors.

    Science.gov (United States)

    Feckler, Alexander; Goedkoop, Willem; Konschak, Marco; Bundschuh, Rebecca; Kenngott, Kilian G J; Schulz, Ralf; Zubrod, Jochen P; Bundschuh, Mirco

    2017-08-08

    Ecosystem functions in streams (e.g., microbially mediated leaf litter breakdown) are threatened globally by the predicted agricultural intensification and its expansion into pristine areas, which is associated with increasing use of fertilizers and pesticides. However, the ecological consequences may depend on the disturbance history of microbial communities. To test this, we assessed the effects of fungicides and nutrients (four levels each) on the structural and functional resilience of leaf-associated microbial communities with differing disturbance histories (pristine vs. previously disturbed) in a 2 × 4 × 4-factorial design (n = 6) over 21 days. Microbial leaf breakdown was assessed as a functional variable, whereas structural changes were characterized by the fungal community composition, species richness, biomass, and other factors. Leaf breakdown by the pristine microbial community was reduced by up to 30% upon fungicide exposure compared with controls, whereas the previously disturbed microbial community increased leaf breakdown by up to 85%. This significant difference in the functional response increased in magnitude with increasing nutrient concentrations. A pollution-induced community tolerance in the previously disturbed microbial community, which was dominated by a few species with high breakdown efficacies, may explain the maintained function under stress. Hence, the global pressure on pristine ecosystems by agricultural expansion is expected to cause a modification in the structure and function of heterotrophic microbial communities, with microbially mediated leaf litter breakdown likely becoming more stable over time as a consequence of fungal community adaptions. © 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  12. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates

    Directory of Open Access Journals (Sweden)

    A. Monier

    2013-06-01

    Full Text Available The ubiquity of heterotrophic flagellates (HFL in marine waters has been recognized for several decades, but the phylogenetic diversity of these small (ca. 0.8–20 μm cell diameter, mostly phagotrophic protists in the upper pelagic zone of the ocean is underappreciated. Community composition of microbes, including HFL, is the result of past and current environmental selection, and different taxa may be indicative of food webs that cycle carbon and energy very differently. While all oceanic water columns can be density stratified due to the temperature and salinity characteristics of different water masses, the Arctic Ocean is particularly well stratified, with nutrients often limiting in surface waters and most photosynthetic biomass confined to a subsurface chlorophyll maximum layer, where light and nutrients are both available. This physically well-characterized system provided an opportunity to explore the community diversity of HFL from different water masses within the water column. We used high-throughput DNA sequencing techniques as a rapid means of surveying the diversity of HFL communities in the southern Beaufort Sea (Canada, targeting the surface, the subsurface chlorophyll maximum layer (SCM and just below the SCM. In addition to identifying major clades and their distribution, we explored the micro-diversity within the globally significant but uncultivated clade of marine stramenopiles (MAST-1 to examine the possibility of niche differentiation within the stratified water column. Our results strongly suggested that HFL community composition was determined by water mass rather than geographical location across the Beaufort Sea. Future work should focus on the biogeochemical and ecological repercussions of different HFL communities in the face of climate-driven changes to the physical structure of the Arctic Ocean.

  13. Exploratory Research - Using Volatile Organic Compounds to Separate Heterotrophic and Autotrophic Forest Soil Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott D [Mississippi State Univ., Mississippi State, MS (United States)

    2015-02-09

    The initial focus of this project was to develop a method to partition soil respiration into its components (autotrophic, heterotrophic etc.) using the fingerprint of volatile organic compounds (VOCs) from soils. We were able to identify 63 different VOCs in our study; however, due to technical difficulties we were unable to take reliable measurements in order to test our hypotheses and develop this method. In the end, we changed the objectives of the project. Our new objectives were to characterize the effects of species and soil moisture regime on the composition of soil organic matter. We utilized the soils from the greenhouse experiment we had established for the soil VOC study and determined the lignin biomarker profiles of each of the treatments. We found that moisture had a significant effect on the carbon content of the soils with the low moisture treatments having higher carbon content than the high moisture treatments. We found that the relative yield of syringyl phenols (SP), ligin (Lig), and substituted fatty acids (SFA) were elevated in deciduous planted pots and reduced in conifer planted pots relative to plant-free treatments. Our results suggest nuttall oak preserved lignin and SFA, while loblolly pine lost lignin and SFA similarly to the plant free treatments. Since we did not find that the carbon concentrations of the soils were different between the species, nuttall oak probably replaced more native soil carbon than loblolly pine. This suggests that relative to loblolly pine, nuttall oak is a priming species. Since priming may impact soil carbon pools more than temperature or moisture, determining which species are priming species may facilitate an understanding of the interaction that land use and climate change may have on soil carbon pools.

  14. Reduced prokaryotic heterotrophic production at in situ pressure conditions in the dark ocean

    Science.gov (United States)

    Amano-Sato, Chie; Sintes, Eva; Reinthaler, Thomas; Utsumi, Motoo; Herndl, Gerhard J.

    2017-04-01

    Prokaryotic heterotrophic production (PHP) is a key process in the ocean's biological carbon cycle. About 50% of the oceanic PHP takes place in the dark ocean characterized by low temperature and high hydrostatic pressure, which increases by 1 MPa (10 atm) every 100 m depth. However, rate measurements of PHP are usually performed under atmospheric pressure conditions. Yet, the difference in pressure conditions and the handling of the samples on board may introduce biases in the PHP measurements. To determine PHP at in situ conditions, we developed an in situ microbial incubator (ISMI) designed to autonomously sample and incubate seawater down to a depth of 4000 m. Natural prokaryotic communities from the North Atlantic and Pacific Oceans were incubated in the ISMI with 5 nM 3H-leucine at different depths ranging between 10 and 3200 m. For comparison, atmospheric pressure incubations at in situ temperature were also conducted. PHP and single cell activity assessed by microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) were determined. PHP obtained under in situ pressure conditions was generally lower than under atmospheric pressure conditions, suggesting that incubation under atmospheric pressure on board stimulates activity of dark ocean prokaryotes. The ratio between the bulk PHP obtained under in situ and under atmospheric pressure conditions decreased with depth. Moreover, MICRO-CARD-FISH revealed that some specific prokaryotic groups are apparently more affected by the hydrostatic pressure condition than others. Our results suggest that PHP in the dark ocean might be lower than assumed based on measurements under surface pressure conditions.

  15. Taxonomic status and ecologic function of methanogenic bacteria isolated from the oral cavity of humans

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, C.W.

    1985-01-01

    The detection of methane gas in samples of dental plaque and media inoculated with dental plaque was attributed to the presence of methane-producing bacteria in the plaque microbiota. The results of a taxonomic analysis of the 12 methanogenic isolates obtained from human dental plaque, (ABK1-ABK12), placed the organisms in the genus Methanobrevibacter. A DNA-DNA hybridization survey established three distinct genetic groups of oral methanogens based on percent homology values. The groups exhibited less than 32% homology between themselves and less than 17% homology with the three known members of the genus methanobrevibacter. The ecological role of the oral methanogens was established using mixed cultures of selected methanogenic isolates (ABK1, ABK4, ABK6, or ABK7) with oral heterotrophic bacteria. Binary cultures of either Streptococcus mutans, Streptococcus sanguis, Veillonella rodentium, Lactobacillus casei, or Peptostreptococcus anaerobius together with either methanogenic isolates ABK6 or ABK7 were grown to determine the effect of the methanogens on the distribution of carbon end products produced by the heterotrophs. Binary cultures of S. mutans and ABK7 exhibited a 27% decrease in lactic acid formation when compared to pure culture of S. mutans. The decrease in lactic acid production was attributed to the removal of formate by the methanogen, (ABK7), which caused an alteration in the distribution of carbon end products by S. mutans.

  16. Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions

    Science.gov (United States)

    Hornick, Thomas; Bach, Lennart T.; Crawfurd, Katharine J.; Spilling, Kristian; Achterberg, Eric P.; Woodhouse, Jason N.; Schulz, Kai G.; Brussaard, Corina P. D.; Riebesell, Ulf; Grossart, Hans-Peter

    2017-01-01

    The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm ( ˜ 55 m3) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO2) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO2-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO2 treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO2 as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO2 impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of

  17. Role of Multicellular Aggregates in Biofilm Formation

    National Research Council Canada - National Science Library

    Kragh, Kasper N; Hutchison, Jaime B; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E L; Irie, Yasuhiko; Jensen, Peter Ø; Diggle, Stephen P; Allen, Rosalind J; Gordon, Vernita; Bjarnsholt, Thomas

    2016-01-01

    .... However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process...

  18. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  19. Partially clairvoyant scheduling for aggregate constraints

    Directory of Open Access Journals (Sweden)

    K. Subramani

    2005-01-01

    constraints. In this paper, we extend the class of constraints for which partially clairvoyant schedules can be determined efficiently, to include aggregate constraints. Aggregate constraints form a strict superset of standard constraints and can be used to model performance metrics.

  20. Assessing effects of the fungicide tebuconazole to heterotrophic microbes in aquatic microcosms

    NARCIS (Netherlands)

    Dimitrov, M.R.; Kosol, Sujitra; Smidt, H.; Brink, van den P.J.; Wijngaarden, van R.P.A.; Brock, T.C.M.; Maltby, L.

    2014-01-01

    Aquatic ecological risk assessment of fungicides in Europe under Regulation 1107/2009/EC does not currently assess risk to non-target bacteria and fungi. Rather, regulatory acceptable concentrations based on ecotoxicological data obtained from studies with fish, invertebrates and primary producers