WorldWideScience

Sample records for heterotic standard model

  1. Supersymmetric standard model from the heterotic string.

    Science.gov (United States)

    Buchmüller, Wilfried; Hamaguchi, Koichi; Lebedev, Oleg; Ratz, Michael

    2006-03-31

    We present a [FORMULA: SEE TEXT] orbifold compactification of the E8xE8 heterotic string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), whereas the Higgs fields do not form complete SO(10) multiplets. The model has large vacuum degeneracy. For generic vacua, no exotic states appear at low energies and the model is consistent with gauge coupling unification. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings, whereas the other Yukawa couplings are suppressed.

  2. Standard Models from Heterotic M-theory

    CERN Document Server

    Donagi, R Y; Pantev, T; Waldram, D; Donagi, Ron; Ovrut, Burt A.; Pantev, Tony; Waldram, Daniel

    1999-01-01

    We present a class of N=1 supersymmetric models of particle physics, derived directly from heterotic M-theory, that contain three families of chiral quarks and leptons coupled to the gauge group $SU(3)_C\\times SU(2)_{L}\\times U(1)_{Y}$. These models are a fundamental form of ``brane-world'' theories, with an observable and hidden sector each confined, after compactification on a Calabi-Yau threefold, to a BPS three-brane separated by a five dimensional bulk space with size of the order of the intermediate scale. The requirement of three families, coupled to the fundamental conditions of anomaly freedom and supersymmetry, constrains these models to contain additional five-branes wrapped around holomorphic curves in the Calabi-Yau threefold. These five-branes ``live'' in the bulk space and represent new, non-perturbative aspects of these particle physics vacua. We discuss, in detail, the relevant mathematical structure of a class of torus-fibered Calabi-Yau threefolds with non-trivial first homotopy groups and ...

  3. Supersymmetric standard model from the heterotic string (II)

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Dept. of Physics; Lebedev, O.; Ratz, M. [Bonn Univ. (Germany). Physikalisches Inst.

    2006-06-15

    We describe in detail a Z{sub 6} orbifold compactification of the heterotic E{sub 8} x E{sub 8} string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)

  4. Asymmetric Gepner models II. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2011-05-21

    A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E{sub 8} factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.

  5. Classification of Heterotic Pati-Salam Models

    CERN Document Server

    Assel, Benjamin; Faraggi, Alon E; Kounnas, Costas; Rizos, John

    2010-01-01

    We extend the classification of free fermionic heterotic-string models to vacua in which the SO(10) GUT symmetry is broken at the string level to the Pati-Salam subgroup. Using our classification method we recently presented the first example of a quasi--realistic heterotic-string vacuum that is free of massless exotic states. Within this method we are able to derive algebraic expressions for the generalised GSO projections for all sectors that appear in the models. This facilitates the programming of the entire spectrum analysis in a computer code. The total number of vacua in the class of models that we classify is 2^{51} ~ 10^{15}. We perform a statistical sampling in this space of models and extract 10^{11} distinct configurations with Pati-Salam gauge group. Our results demonstrate that one in every 10^{6} vacua correspond to a three generation exophobic model with the required Higgs states, needed to induce spontaneous breaking to the Standard Model.

  6. Kahler stabilized, modular invariant heterotic string models

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-03-19

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

  7. Coupling patterns in heterotic calabi-Yau models

    Science.gov (United States)

    Gray, James

    2017-11-01

    We describe the structure of relationships between, and vanishings of, couplings that can occur at high energies in smooth compactifications of the heterotic string. We begin with an explanation of the well known fact that the standard Yukawa unification seen in four dimensional Grand Unified Theories does not generically occur in these models, despite the presence of an underlying Grand Unified group. We then describe an example that shows that in special situations (partial) Yukawa unification can be restored. In constructing this example, we will see an illustration of another way in which heterotic compactifications can lead to special structure in superpotential couplings. This presentation was based on work with a number of different collaborators to whom I am immensely grateful [1, 2, 3, 4, 5].

  8. Dilaton stabilization in three-generation heterotic string model

    Energy Technology Data Exchange (ETDEWEB)

    Beye, Florian, E-mail: fbeye@eken.phys.nagoya-u.ac.jp [Kawasaki (Japan); Kobayashi, Tatsuo, E-mail: kobayashi@particle.sci.hokudai.ac.jp [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Kuwakino, Shogo, E-mail: kuwakino@cc.kyoto-su.ac.jp [Maskawa Institute for Science and Culture, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555 (Japan)

    2016-09-10

    We study dilaton stabilization in heterotic string models. By utilizing the asymmetric orbifold construction, we construct an explicit three-generation model whose matter content in the visible sector is the supersymmetric standard model with additional vectorlike matter. This model does not contain any geometric moduli fields except the dilaton field. Model building at a symmetry enhancement point in moduli space enlarges the rank of the hidden gauge group. By analyzing multiple hidden gauge sectors, the dilaton field is stabilized by the racetrack mechanism. We also discuss a supersymmetry breaking scenario and F-term uplifting.

  9. Dilaton stabilization in three-generation heterotic string model

    Directory of Open Access Journals (Sweden)

    Florian Beye

    2016-09-01

    Full Text Available We study dilaton stabilization in heterotic string models. By utilizing the asymmetric orbifold construction, we construct an explicit three-generation model whose matter content in the visible sector is the supersymmetric standard model with additional vectorlike matter. This model does not contain any geometric moduli fields except the dilaton field. Model building at a symmetry enhancement point in moduli space enlarges the rank of the hidden gauge group. By analyzing multiple hidden gauge sectors, the dilaton field is stabilized by the racetrack mechanism. We also discuss a supersymmetry breaking scenario and F-term uplifting.

  10. Heterotic particle models from various perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Blaszczyk, Michael I.

    2012-10-15

    We consider the compactification of heterotic string theory on toroidal orbifolds and their resolutions. In the framework of gauged linear sigma models we develop realizations of such spaces, allowing to continously vary the moduli and thus smoothly interpolate between different corners of the theory. This way all factorizable orbifold resolutions as well as some non-factorizable ones can be obtained. We find that for a given geometry there are many model which realize it as a target space, differing in their complexity. We explore regions of moduli space which otherwise would not be accessible. In particular we are interested in the orbifold regime, where exact string calculations are possible, and the large volume regime, where techniques of supergravity compactification can be applied. By comparing these two theories and matching the spectra we find evidence for non-perturbative effects which interpolate between these regimes.

  11. Voisin-Borcea manifolds and heterotic orbifold models

    National Research Council Canada - National Science Library

    Buchmuller, W; Louis, J; Schmidt, J; Valandro, R

    2012-01-01

    We study the relation between a heterotic ${T^6 \\left/ {{{\\mathbb{Z}}_6}}} \\right.}$ orbifold model and a compactification on a smooth Voisin-Borcea Calabi-Yau three-fold with non-trivial line bundles...

  12. The KM phase in semi-realistic heterotic orbifold models

    Energy Technology Data Exchange (ETDEWEB)

    Giedt, Joel

    2000-07-05

    In string-inspired semi-realistic heterotic orbifolds models with an anomalous U(1){sub X},a nonzero Kobayashi-Masakawa (KM) phase is shown to arise generically from the expectation values of complex scalar fields, which appear in nonrenormalizable quark mass couplings. Modular covariant nonrenormalizable superpotential couplings are constructed. A toy Z{sub 3} orbifold model is analyzed in some detail. Modular symmetries and orbifold selection rules are taken into account and do not lead to a cancellation of the KM phase. We also discuss attempts to obtain the KM phase solely from renormalizable interactions.

  13. Heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Giedt, Joel [Univ. of California, Berkeley, CA (United States)

    2002-04-26

    A review of orbifold geometry is given, followed by a review of the construction of four-dimensional heterotic string models by compactification on a six-dimensional Z3 orbifold. Particular attention is given to the details of the transition from a classical theory to a first-quantized theory. Subsequently, a discussion is given of the systematic enumeration of all standard-like three generation models subject to certain limiting conditions. it is found that the complete set is described by 192 models, with only five possibilities for the hidden sector gauge group. It is argued that only four of the hidden sector gauge groups are viable for dynamical supersymmetry breaking, leaving only 175 promising models in the class. General features of the spectra of matter states in all 175 models are discussed. Twenty patterns of representations are found to occur. Accommodation of the Minimal Supersymmetric Standard Model (MSSM) spectrum is addressed. States beyond those contains in the MSSM and nonstandard hypercharge normalization are shown to be generic, though some models do allow for the usual hypercharge normalization found in SU(5) embeddings of the Standard Model gauge group. Only one of the twenty patterns of representations, comprising seven of the 175 models, is found to be without an anomalous U(1). Various quantities of interest in effective supergravity model building are tabulated for the set of 175 models. String scale gauge coupling unification is shown to be possible, albeit contrived, in an example model.

  14. N =1 supergravitational heterotic galileons

    Science.gov (United States)

    Deen, Rehan; Ovrut, Burt

    2017-11-01

    Heterotic M -theory consists of a five-dimensional manifold of the form S 1 / Z 2 × M 4. It has been shown that one of the two orbifold planes, the "observable" sector, can have a low energy particle spectrum which is precisely the N = 1 super-symmetric standard model with three right-handed neutrino chiral supermultiplets. The other orbifold plane constitutes a "hidden" sector which, since its communication with the observable sector is suppressed, will be ignored in this paper. However, the finite fifth-dimension allows for the existence of three-brane solitons which, in order to render the vacuum anomaly free, must appear. That is, heterotic M -theory provides a natural framework for brane-world cosmological scenarios coupled to realistic particle physics. The complete worldvolume action of such three-branes is unknown. Here, treating these solitons as probe branes, we construct their scalar worldvolume Lagrangian as a derivative expansion of the heterotic DBI action. In analogy with similar calculations in the M 5 and AdS 5 context, this leads to the construction of "heterotic Galileons". However, realistic vacua of heterotic M -theory are necessarily N = 1 supersymmetric in four dimensions. Hence, we proceed to supersymmetrize the three-brane worldvolume action, first in flat superspace and then extend the results to N = 1 supergravity. Such a worldvolume action may lead to interesting cosmology, such as "bouncing" universe models, by allowing for the violation of the Null Energy Condition (NEC).

  15. Heterotic sigma models on T 8 and the Borcherds automorphic form Φ12

    Science.gov (United States)

    Harrison, Sarah M.; Kachru, Shamit; Paquette, Natalie M.; Volpato, Roberto; Zimet, Max

    2017-10-01

    We consider the spectrum of BPS states of the heterotic sigma model with (0, 8) supersymmetry and T 8 target, as well as its second-quantized counterpart. We show that the counting function for such states is intimately related to Borcherds' automorphic form Φ12, a modular form which exhibits automorphy for O(2, 26; ℤ). We comment on possible implications for Umbral moonshine and theories of AdS3 gravity.

  16. Nongeometric F -theory-heterotic duality

    Science.gov (United States)

    Gu, Jie; Jockers, Hans

    2015-04-01

    In this work we study the duality between F -theory and the heterotic string beyond the stable degeneration limit in F -theory and large fiber limit in the heterotic theory. Building upon a recent proposal by Clingher and Doran and by Malmendier and Morrison—which phrases the duality on the heterotic side for a particular class of models in terms of (fibered) genus-two curves as nongeometric heterotic compactifications—we establish the precise limit to the semiclassical heterotic string in both eight and lower space-time dimensions. In particular for six-dimensional theories, we argue that this class of nongeometric heterotic compactifications capture α' quantum corrections to the semiclassical heterotic supergravity compactifications on elliptically fibered K 3 surfaces. From the nongeometric heterotic theory, the semiclassical phase on the K 3 surface is recovered from a remarkable limit of genus-two Siegel modular forms combined with a geometric surgery operation. Finally, in four dimensions we analyze another limit deep in the quantum regime of the nongeometric heterotic string, which we refer to as the heterotic Sen limit. In this limit we can explicitly argue that the semiclassical two-staged fibrational structure of the heterotic hypermultiplet moduli space—recently established by Alexandrov, Louis, Pioline, and Valandro—gets corrected by quantum effects.

  17. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-03-21

    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E{sub 8} factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3)xSU(2)xU(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10,000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.

  18. LHC di-photon excess and gauge coupling unification in extra Z{sup '} heterotic-string derived models

    Energy Technology Data Exchange (ETDEWEB)

    Ashfaque, J. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom); Delle Rose, L. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Faraggi, A.E. [Rutherford Appleton Laboratory, Department of Particle Physics, Chilton, Didcot (United Kingdom); Marzo, C. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Lecce (Italy); INFN, Lecce (Italy)

    2016-10-15

    A di-photon excess at the LHC can be explained as a Standard Model singlet that is produced and decays by heavy vector-like colour triplets and electroweak doublets in one-loop diagrams. The characteristics of the required spectrum are well motivated in heterotic-string constructions that allow for a light Z{sup '}. Anomaly cancellation of the U(1){sub Z'} symmetry requires the existence of the Standard Model singlet and vector-like states in the vicinity of the U(1){sub Z'} breaking scale. In this paper we show that the agreement with the gauge coupling data at one-loop is identical to the case of the Minimal Supersymmetric Standard Model, owing to cancellations between the additional states. We further show that effects arising from heavy thresholds may push the supersymmetric spectrum beyond the reach of the LHC, while maintaining the agreement with the gauge coupling data. We show that the string-inspired model can indeed produce an observable signal and discuss the feasibility of obtaining viable scalar mass spectrum. (orig.)

  19. The 750 GeV di-photon LHC excess and extra Z's in heterotic-string derived models

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, Alon E. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom); Rizos, John [University of Ioannina, Department of Physics, Ioannina (Greece)

    2016-03-15

    The ATLAS and CMS collaborations recently recorded possible di-photon excess at 750 GeV and a less significant di-boson excess around 1.9 TeV. Such excesses may be produced in heterotic string derived Z' models, where the di-photon excess may be connected with the Standard Model singlet scalar responsible for the Z' symmetry breaking, whereas the di-boson excess arises from production of the extra vector boson. Additional vector-like states in the string Z' model are instrumental to explain the relatively large width of the di-photon events and mandated by anomaly cancellation to be in the vicinity of the Z' breaking scale. Wilson line breaking of the non-Abelian gauge symmetries in the string models naturally gives rise to dark matter candidates. Future collider experiments will discriminate between the high-scale heterotic-string models, which preserve the perturbative unification paradigm indicated by the Standard Model data, versus the low scale string models.We also discuss the possibility for the production of the diphoton events with high scale U(1){sub Z'} breaking. (orig.)

  20. Heterotic non-Abelian orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Ramos-Sanchez, Saul [UNAM, Mexico (Mexico). Dept. of Theoretical Physics; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We perform the first systematic analysis of particle spectra obtained from heterotic string compactifications on non-Abelian toroidal orbifolds. After developing a new technique to compute the particle spectrum in the case of standard embedding based on higher dimensional supersymmetry, we compute the Hodge numbers for all recently classified 331 non-Abelian orbifold geometries which yield N=1 supersymmetry for heterotic compactifications. Surprisingly, most Hodge numbers follow the empiric pattern h{sup (1,1)}-h{sup (2,1)}=0 mod 6, which might be related to the number of three standard model generations. Furthermore, we study the fundamental groups in order to identify the possibilities for non-local gauge symmetry breaking. Three examples are discussed in detail: the simplest non-Abelian orbifold S{sub 3} and two more elaborated examples, T{sub 7} and {Delta}(27), which have only one untwisted Kaehler and no untwisted complex structure modulus. Such models might be especially interesting in the context of no-scale supergravity. Finally, we briefly discuss the case of orbifolds with vanishing Euler numbers in the context of enhanced (spontaneously broken) supersymmetry.

  1. Seesaw neutrinos from the heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K. [Tokyo Univ. (Japan). Dept. of Physics; Lebedev, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ramos-Sanchez, S. [Bonn Univ. (Germany). Physikalisches Inst.; Ratz, M. [Technische Univ. Muenchen, Garching (Germany). Physik Dept. T30

    2007-03-15

    We study the possibility of realizing the neutrino seesaw mechanism in the E{sub 8} x E{sub 8} heterotic string. In particular, we consider its Z{sub 6} orbifold compactifications leading to the supersymmetric standard model gauge group and matter content. We find that these models possess all the necessary ingredients for the seesaw mechanism, including the required Dirac Yukawa couplings and large Majorana mass terms. We argue that this situation is quite common in heterotic orbifolds. In contrast to the conventional seesaw of grand unified theories (GUTs), no large GUT representations are needed to generate the Majorana mass terms. The total number of right-handed neutrinos can be very large, up to O(100). (orig.)

  2. Anomaly corrected heterotic horizons

    Energy Technology Data Exchange (ETDEWEB)

    Fontanella, A.; Gutowski, J.B. [Department of Mathematics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Papadopoulos, G. [Department of Mathematics, King’s College London,Strand, London WC2R 2LS (United Kingdom)

    2016-10-21

    We consider supersymmetric near-horizon geometries in heterotic supergravity up to two loop order in sigma model perturbation theory. We identify the conditions for the horizons to admit enhancement of supersymmetry. We show that solutions which undergo supersymmetry enhancement exhibit an sl(2,ℝ) symmetry, and we describe the geometry of their horizon sections. We also prove a modified Lichnerowicz type theorem, incorporating α{sup ′} corrections, which relates Killing spinors to zero modes of near-horizon Dirac operators. Furthermore, we demonstrate that there are no AdS{sub 2} solutions in heterotic supergravity up to second order in α{sup ′} for which the fields are smooth and the internal space is smooth and compact without boundary. We investigate a class of nearly supersymmetric horizons, for which the gravitino Killing spinor equation is satisfied on the spatial cross sections but not the dilatino one, and present a description of their geometry.

  3. The superpotential in heterotic orbifold GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Kappl, Rolf

    2011-12-08

    We study in this work the phenomenology of heterotic orbifold compactifications. Exact and approximate R symmetries of the superpotential in the context of supersymmetric field theories are discussed. We further study symmetries, phenomenological implications and Yukawa couplings from superpotential contributions in extra dimensional theories. We apply the developed methods to models, which base on heterotic orbifolds.

  4. Low Energy Supersymmetry from the Heterotic String Landscape

    CERN Document Server

    Lebedev, O; Raby, S; Ramos-Sanchez, S; Ratz, M; Vaudrevange, P K S; Wingerter, A; Lebedev, Oleg; Nilles, Hans-Peter; Raby, Stuart; Ramos-Sanchez, Saul; Ratz, Michael; Vaudrevange, Patrick K. S.; Wingerter, Akin

    2007-01-01

    We study possible correlations between properties of the observable and hidden sectors in heterotic string theory. Specifically, we analyze the case of the Z6-II orbifold compactification which produces a significant number of models with the spectrum of the supersymmetric standard model. We find that requiring realistic features does affect the hidden sector such that hidden sector gauge group factors SU(4) and SO(8) are favoured. In the context of gaugino condensation, this implies low energy supersymmetry breaking.

  5. Chains of N=2, D=4 heterotic type II duals

    CERN Document Server

    Aldazabal, G; Font, A; Quevedo, Fernando

    1996-01-01

    We report on a search for N=2 heterotic strings that are dual candidates of type II compactifications on Calabi-Yau threefolds described as K3 fibrations. We find many new heterotic duals by using standard orbifold techniques. The associated type II compactifications fall into chains in which the proposed duals are heterotic compactifications related one another by a sequential Higgs mechanism. This breaking in the heterotic side typically involves the sequence SU(4)\\rightarrow SU(3)\\rightarrow SU(2)\\rightarrow 0, while in the type II side the weights of the complex hypersurfaces and the structure of the K3 quotient singularities also follow specific patterns.

  6. Heterotic quantum and classical computing on convergence spaces

    Science.gov (United States)

    Patten, D. R.; Jakel, D. W.; Irwin, R. J.; Blair, H. A.

    2015-05-01

    Category-theoretic characterizations of heterotic models of computation, introduced by Stepney et al., combine computational models such as classical/quantum, digital/analog, synchronous/asynchronous, etc. to obtain increased computational power. A highly informative classical/quantum heterotic model of computation is represented by Abramsky's simple sequential imperative quantum programming language which extends the classical simple imperative programming language to encompass quantum computation. The mathematical (denotational) semantics of this classical language serves as a basic foundation upon which formal verification methods can be developed. We present a more comprehensive heterotic classical/quantum model of computation based on heterotic dynamical systems on convergence spaces. Convergence spaces subsume topological spaces but admit finer structure from which, in prior work, we obtained differential calculi in the cartesian closed category of convergence spaces allowing us to define heterotic dynamical systems, given by coupled systems of first order differential equations whose variables are functions from the reals to convergence spaces.

  7. Higgs versus matter in the heterotic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Schmidt, J.

    2008-07-15

    In supersymmetric extensions of the standard model there is no basic difference between Higgs and matter fields, which leads to the well known problem of potentially large baryon and lepton number violating interactions. Although these unwanted couplings can be forbidden by continuous or discrete global symmetries, a theoretical guiding principle for their choice is missing. We examine this problem for a class of vacua of the heterotic string compactified on an orbifold. As expected, in general there is no difference between Higgs and matter. However, certain vacua happen to possess unbroken matter parity and discrete R-symmetries which single out Higgs fields in the low energy effective field theory. We present a method how to identify maximal vacua in which the perturbative contribution to the {mu}-term and the expectation value of the superpotential vanish. Two vacua are studied in detail, one with two pairs of Higgs doublets and one with partial gauge-Higgs unification. (orig.)

  8. Towards low energy physics from the heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, S.N.R.

    2008-06-15

    We investigate orbifold compactifications of the heterotic string, addressing in detail their construction, classification and phenomenological potential. Based on the insight gained from grand unification theories, we develop a successful strategy to search for models resembling the minimal supersymmetric extension of the standard model (MSSM) in Z{sub 6}-II orbifold compactifications. We find about 200 MSSM candidates with the gauge group and the exact spectrum of the MSSM, and supersymmetric vacua below the compactification scale. Among them, there are several models with the following realistic features: R-parity, seesaw suppressed neutrino masses, and intermediate scale of supersymmetry breakdown. (orig.)

  9. Heterotic string solutions and coset conformal field theories

    CERN Document Server

    Giveon, Amit; Tseytlin, Arkady A

    1993-01-01

    We discuss solutions of the heterotic string theory which are analogous to bosonic and superstring backgrounds related to coset conformal field theories. A class of exact `left-right symmetric' solutions is obtained by supplementing the metric, antisymmetric tensor and dilaton of the superstring solutions by the gauge field background equal to the generalised Lorentz connection with torsion. As in the superstring case, these backgrounds are $\\a'$-independent, i.e. have a `semiclassical' form. The corresponding heterotic string sigma model is obtained from the combination of the (1,0) supersymmetric gauged WZNW action with the action of internal fermions coupled to the target space gauge field. The pure (1,0) supersymmetric gauged WZNW theory is anomalous and does not describe a consistent heterotic string solution. We also find (to the order $\\alpha'^3$) a two-dimensional perturbative heterotic string solution with the trivial gauge field background. To the leading order in $\\alpha'$ it coincides with the kno...

  10. Heterotic M2-branes

    Directory of Open Access Journals (Sweden)

    Neil Lambert

    2015-10-01

    Full Text Available We construct the action for N M2-branes on S1/Z2. The resulting theory has a gauge anomaly but this can be cancelled if the two fixed point planes each support 8 chiral Fermions in the fundamental of U(N. Taking the low energy limit leads to the worldsheet theory of N free heterotic strings whose quantization induces an E8 spacetime gauge symmetry on each fixed point plane. Thus this paper presents a non-abelian worldvolume analogue of the classic Hořava–Witten analysis.

  11. Heterotic moduli stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, M. [Bologna Univ. (Italy). Dipt. Fisica ed Astronomia; INFN, Bologna (Italy); Adbus Salam ICTP, Trieste (Italy); De Alwis, S. [Adbus Salam ICTP, Trieste (Italy); Colorado Univ., Boulder, CO (United States). UCB 390 Physics Dept.; Westphal, A. [DESY Hamburg (Germany). Theory Group

    2013-04-15

    We perform a systematic analysis of moduli stabilization for weakly coupled heterotic string theory compactified on smooth Calabi-Yau three-folds. We focus on both supersymmetric and supersymmetry breaking vacua of generic (0,2) compactifications obtained by minimising the total (F+D)-term scalar potential. After reviewing how to stabilise all the geometric moduli in a supersymmetric way by including fractional fluxes, non-perturbative and threshold effects, we show that the inclusion of {alpha}' corrections leads to new de Sitter or nearly Minkowski vacua which break supersymmetry spontaneously. The minimum lies at moderately large volumes of all the geometric moduli, at perturbative values of the string coupling and at the right phenomenological value of the GUT gauge coupling. However the structure of the heterotic 3-form flux used for complex structure moduli stabilization does not contain enough freedom to tune the superpotential. This results in the generic prediction of high-scale supersymmetry breaking around the GUT scale. We finally provide a dynamical derivation of anisotropic compactifications with stabilized moduli which allow for perturbative gauge coupling unification around 10{sup 16} GeV.

  12. Towards matter inflation in heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan; Erdmenger, Johanna; Halter, Sebastian [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany); Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-02-15

    Recently, a class of inflation models in supergravity with gauge non-singlet matter fields as the inflaton has been proposed. It is based on a 'tribrid' structure in the superpotential and on a 'Heisenberg symmetry' for solving the {eta}-problem. We suggest that a generalization of this model class may be suitable for realising inflation in heterotic orbifold compactifications, where the Heisenberg symmetry is a property of the tree-level Kaehler potential of untwisted matter fields. We discuss moduli stabilization in this setup and propose a mechanism to stabilize the modulus associated to the inflaton, which respects the symmetry in the large radius limit. Inflation ends via a waterfall phase transition, as in hybrid inflation. We give conditions which have to be satisfied for realising inflation along these lines in the matter sector of heterotic orbifolds. (orig.)

  13. Heterotic Road to the MSSM with R parity

    CERN Document Server

    Lebedev, Oleg; Raby, Stuart; Ramos-Sanchez, Saul; Ratz, Michael; Vaudrevange, Patrick K S; Wingerter, Akin

    2008-01-01

    In a previous paper, referred to as a "Mini-Landscape" search, we explored a "fertile patch" of the heterotic landscape based on a Z6-II orbifold with SO(10) and E6 local GUT structures. In the present paper we extend this analysis. We find many models with the minimal supersymmetric standard model spectra and an exact R parity. In all of these models, the vector-like exotics decouple along D flat directions. We present two "benchmark" models which satisfy many of the constraints of a realistic supersymmetric model, including non-trivial Yukawa matrices for 3 families of quarks and leptons and Majorana neutrino masses for right-handed neutrinos with non-trivial See-Saw masses for the 3 light neutrinos. In an appendix we comment on the important issue of string selection rules and in particular the so-called "gamma-rule".

  14. Kinetic mixing of U(1)s in heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Goodsell, Mark [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ramos-Sanchez, Saul [UNAM, Mexico (Mexico). Dept. of Theoretical Physics; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-10-15

    We study kinetic mixing between massless U(1) gauge symmetries in the bosonic formulation of heterotic orbifold compactifications. For non-prime Z{sub N} factorisable orbifolds, we find a simple expression of the mixing in terms of the properties of the N=2 subsectors, which helps understand under what conditions mixing can occur. With this tool, we analyse Z{sub 6}-II heterotic orbifolds and find non-vanishing mixing even without including Wilson lines. We show that some semi-realistic models of the Mini-Landscape admit supersymmetric vacua with mixing between the hypercharge and an additional U(1), which can be broken at low energies. We finally discuss some phenomenologically appealing possibilities that hidden photons in heterotic orbifolds allow. (orig.)

  15. M-theory/heterotic Duality a Kaluza-Klein Perspective

    CERN Document Server

    Lü, H; Stelle, Kellogg S

    1999-01-01

    We study the duality relationship between M-theory and heterotic string theory at the classical level, emphasising the transformations between the Kaluza-Klein reductions of these two theories on the K3 and T^3 manifolds. Particular attention is devoted to the corresponding structures of sigma-model cosets and the correspondence between the p-brane charge lattices. We also present simple and detailed derivations of the global symmetries and coset structures of the toroidally-compactified heterotic theory in all dimensions D

  16. Grand unification in the heterotic brane world

    Energy Technology Data Exchange (ETDEWEB)

    Vaudrevange, Patrick Karl Simon

    2008-08-15

    String theory is known to be one of the most promising candidates for a uni ed description of all elementary particles and their interactions. Starting from the ten-dimensional heterotic string, we study its compactification on six-dimensional orbifolds. We clarify some important technical aspects of their construction and introduce new parameters, called generalized discrete torsion. We identify intrinsic new relations between orbifolds with and without (generalized) discrete torsion. Furthermore, we perform a systematic search for MSSM-like models in the context of Z{sub 6}-II orbifolds. Using local GUTs, which naturally appear in the heterotic brane world, we construct about 200 MSSM candidates. We find that intermediate SUSY breaking through hidden sector gaugino condensation is preferred in this set of models. A specific model, the so-called benchmark model, is analyzed in detail addressing questions like the identification of a supersymmetric vacuum with a naturally small {mu}-term and proton decay. Furthermore, as vevs of twisted fields correspond to a resolution of orbifold singularities, we analyze the resolution of Z{sub 3} singularities in the local and in the compact case. Finally, we exemplify this procedure with the resolution of a Z{sub 3} MSSM candidate. (orig.)

  17. Massive neutral particles on heterotic string theory

    CERN Document Server

    Olivares, Marco

    2013-01-01

    The motion of massive particles in the background of a charged black hole in heterotic string theory, which is characterized by a parameter $\\alpha$, is studied in detail across this paper. Since it is possible to write this space-time in the Einstein frame, we perform a quantitative analysis of the time-like geodesics by means of the standard Lagrange procedure. Thus, we obtain and solve a set of differential equations and then we describe the orbits in terms of elliptic $\\wp$-Weierstra{\\ss} function. Also, by making an elementary derivation developed by Cornbleet (Am. J. Phys. \\textbf{61} 7, (1993) 650 - 651) we obtain the correction to the angle of advance of perihelion to first order in $\\alpha$, and thus, by comparing with Mercury's data we give an estimation for the value of this parameter, which yields to an {\\it heterotic solar charge} $Q_{\\odot}\\simeq 0.728\\,[\\textrm{Km}]= 0.493\\, M_{\\odot}$. Therefore, in addition with the study on null geodesics performed by Fernando (Phys. Rev. D {\\bf 85}, (2012) ...

  18. Non-generic couplings in supersymmetric standard models

    Directory of Open Access Journals (Sweden)

    Evgeny I. Buchbinder

    2015-09-01

    Full Text Available We study two phases of a heterotic standard model, obtained from a Calabi–Yau compactification of the E8×E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first phase we have a standard model gauge group, an MSSM spectrum, four additional U(1 symmetries and singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, three of the additional U(1 symmetries are spontaneously broken and the remaining one is a B–L symmetry. In this second phase, dimension five operators inducing proton decay are consistent with all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, these operators are forbidden due to the additional U(1 symmetries present in the first phase of the model. We emphasise that such “unexpected” absences of operators, due to symmetry enhancement at specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect the model from fast proton decay.

  19. Moduli Evolution in Heterotic Scenarios

    CERN Document Server

    Barreiro, T; Nunes, N J

    2001-01-01

    We discuss several aspects of the cosmological evolution of moduli fields in heterotic string/M-theory scenarios. In particular we study the equations of motion of both the dilaton and overall modulus of these theories in the presence of an expanding Universe and under different assumptions. First we analyse the impact of their couplings to matter fields, which turns out to be negligible in the string and M-theory scenarios. Then we examine in detail the possibility of scaling in M-theory, i.e. how the moduli would evolve naturally to their minima instead of rolling past them in the presence of a dominating background. In this case we find interesting and positive results, and we compare them to the analogous situation in the heterotic string.

  20. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  1. Moduli Stabilisation in Heterotic String Compactifications

    CERN Document Server

    De Carlos, B; Gurrieri, S; Lukas, A; Carlos, Beatriz de; Gurrieri, Sebastien; Lukas, Andre; Micu, Andrei

    2006-01-01

    In this paper we analyze the structure of supersymmetric vacua in compactifications of the heterotic string on certain manifolds with SU(3) structure. We first study the effective theories obtained from compactifications on half-flat manifolds and show that solutions which stabilise the moduli at acceptable values are hard to find. We then derive the effective theories associated with compactification on generalised half-flat manifolds. It is shown that these effective theories are consistent with four-dimensional N=1 supergravity and that the superpotential can be obtained by a Gukov-Vafa-Witten type formula. Within these generalised models, we find consistent supersymmetric (AdS) vacua at weak gauge coupling, provided we allow for general internal gauge bundles. In simple cases we perform a counting of such vacua and find that a fraction of about 1/1000 leads to a gauge coupling consistent with gauge unification.

  2. A Metric for Heterotic Moduli

    Science.gov (United States)

    Candelas, Philip; de la Ossa, Xenia; McOrist, Jock

    2017-12-01

    Heterotic vacua of string theory are realised, at large radius, by a compact threefold with vanishing first Chern class together with a choice of stable holomorphic vector bundle. These form a wide class of potentially realistic four-dimensional vacua of string theory. Despite all their phenomenological promise, there is little understanding of the metric on the moduli space of these. What is sought is the analogue of special geometry for these vacua. The metric on the moduli space is important in phenomenology as it normalises D-terms and Yukawa couplings. It is also of interest in mathematics, since it generalises the metric, first found by Kobayashi, on the space of gauge field connections, to a more general context. Here we construct this metric, correct to first order in {α^{\\backprime}}, in two ways: first by postulating a metric that is invariant under background gauge transformations of the gauge field, and also by dimensionally reducing heterotic supergravity. These methods agree and the resulting metric is Kähler, as is required by supersymmetry. Checking the metric is Kähler is intricate and the anomaly cancellation equation for the H field plays an essential role. The Kähler potential nevertheless takes a remarkably simple form: it is the Kähler potential of special geometry with the Kähler form replaced by the {α^{\\backprime}}-corrected hermitian form.

  3. Gravitational threshold corrections in non-supersymmetric heterotic strings

    Directory of Open Access Journals (Sweden)

    Ioannis Florakis

    2017-03-01

    Full Text Available We compute one-loop quantum corrections to gravitational couplings in the effective action of four-dimensional heterotic strings where supersymmetry is spontaneously broken by Scherk–Schwarz fluxes. We show that in both heterotic and type II theories of this class, no moduli dependent corrections to the Planck mass are generated. We explicitly compute the one-loop corrections to the R2 coupling and find that, despite the absence of supersymmetry, its contributions may still be organised into representations of subgroups of the modular group, and admit a universal form, determined uniquely by the multiplicities of the ground states of the theory. Moreover, similarly to the case of gauge couplings, also the gravitational sector may become strongly coupled in models which dynamically induce large volume for the extra dimensions.

  4. Gravitational threshold corrections in non-supersymmetric heterotic strings

    Science.gov (United States)

    Florakis, Ioannis

    2017-03-01

    We compute one-loop quantum corrections to gravitational couplings in the effective action of four-dimensional heterotic strings where supersymmetry is spontaneously broken by Scherk-Schwarz fluxes. We show that in both heterotic and type II theories of this class, no moduli dependent corrections to the Planck mass are generated. We explicitly compute the one-loop corrections to the R2 coupling and find that, despite the absence of supersymmetry, its contributions may still be organised into representations of subgroups of the modular group, and admit a universal form, determined uniquely by the multiplicities of the ground states of the theory. Moreover, similarly to the case of gauge couplings, also the gravitational sector may become strongly coupled in models which dynamically induce large volume for the extra dimensions.

  5. Combining Ability and Heterotic Relationships between CIMMYT ...

    African Journals Online (AJOL)

    . Abstract. Knowledge of ... Combining Ability and Heterotic Relationships between CIMMYT and Ethiopian Maize Inbred Lines. [83]. Since its ... for hybrid performance is obtained in a single cross diallel or North Carolina Design II mating.

  6. Local grand unification in the heterotic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jonas

    2009-07-15

    We consider the possibility that the unification of the electroweak interactions and the strong force arises from string theory, at energies significantly lower than the string scale. As a tool, an effective grand unified field theory in six dimensions is derived from an anisotropic orbifold compactification of the heterotic string. It is explicitly shown that all anomalies cancel in the model, though anomalous Abelian gauge symmetries are present locally at the boundary singularities. In the supersymmetric vacuum additional interactions arise from higher-dimensional operators. We develop methods that relate the couplings of the effective theory to the location of the vacuum, and find that unbroken discrete symmetries play an important role for the phenomenology of orbifold models. An efficient algorithm for the calculation of the superpotential to arbitrary order is developed, based on symmetry arguments. We furthermore present a correspondence between bulk fields of the orbifold model in six dimensions, and the moduli fields that arise from compactifying four internal dimensions on a manifold with non-trivial gauge background. (orig.)

  7. DWSB in heterotic flux compactifications

    CERN Document Server

    Held, Johannes; Marchesano, Fernando; Martucci, Luca

    2010-01-01

    We address the construction of non-supersymmetric vacua in heterotic compactifications with intrinsic torsion and background fluxes. In particular, we implement the approach of domain-wall supersymmetry breaking (DWSB) previously developed in the context of type II flux compactifications. This approach is based on considering backgrounds where probe NS5-branes wrapping internal three-cycles and showing up as four-dimensional domain-walls do not develop a BPS bound, while all the other BPS bounds characterizing the N=1 supersymmetric compactifications are preserved at tree-level. Via a scalar potential analysis we provide the conditions for these backgrounds to solve the ten-dimensional equations of motion including order \\alpha' corrections. We also consider backgrounds where some of the NS5-domain-walls develop a BPS bound, show their relation to no-scale SUSY-breaking vacua and construct explicit examples via elliptic fibrations. Finally, we consider backgrounds with a non-trivial gaugino condensate and dis...

  8. Effective action of heterotic compactification on K3 with non-trivial gauge bundles

    Energy Technology Data Exchange (ETDEWEB)

    Schasny, Martin

    2012-10-15

    In this thesis we study the heterotic string compactified on K3 with non-trivial gauge bundles. We focus on two backgrounds, the well-known standard embedding and abelian line bundles. Using a Kaluza-Klein reduction, the six-dimensional effective action is computed up to terms of order {alpha}'{sup 2} with special attention on the hypermultiplet sector. We compute the moduli dependent couplings of the matter fields and analyze the geometry of the hyperscalar sigma model. Moreover, we prove the consistency with six-dimensional supergravity and derive the appropriate D-term scalar potential. For the line bundle backgrounds we show that the gauge flux stabilizes some geometrical moduli and renders some abelian vector multiplets massive.

  9. Standard Model processes

    CERN Document Server

    Mangano, M.L.; Aguilar Saavedra, J.A.; Alekhin, S.; Badger, S.; Bauer, C.W.; Becher, T.; Bertone, V.; Bonvini, M.; Boselli, S.; Bothmann, E.; Boughezal, R.; Cacciari, M.; Carloni Calame, C.M.; Caola, F.; Campbell, J.M.; Carrazza, S.; Chiesa, M.; Cieri, L.; Cimaglia, F.; Febres Cordero, F.; Ferrarese, P.; D'Enterria, D.; Ferrera, G.; Garcia i Tormo, X.; Garzelli, M.V.; Germann, E.; Hirschi, V.; Han, T.; Ita, H.; Jäger, B.; Kallweit, S.; Karlberg, A.; Kuttimalai, S.; Krauss, F.; Larkoski, A.J.; Lindert, J.; Luisoni, G.; Maierhöfer, P.; Mattelaer, O.; Martinez, H.; Moch, S.; Montagna, G.; Moretti, M.; Nason, P.; Nicrosini, O.; Oleari, C.; Pagani, D.; Papaefstathiou, A.; Petriello, F.; Piccinini, F.; Pierini, M.; Pierog, T.; Pozzorini, S.; Re, E.; Robens, T.; Rojo, J.; Ruiz, R.; Sakurai, K.; Salam, G.P.; Salfelder, L.; Schönherr, M.; Schulze, M.; Schumann, S.; Selvaggi, M.; Shivaji, A.; Siodmok, A.; Skands, P.; Torrielli, P.; Tramontano, F.; Tsinikos, I.; Tweedie, B.; Vicini, A.; Westhoff, S.; Zaro, M.; Zeppenfeld, D.; CERN. Geneva. ATS Department

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  10. A Mini-Landscape of Exact MSSM Spectra in Heterotic Orbifolds

    CERN Document Server

    Lebedev, O; Raby, S; Ramos-Sánchez, S; Ratz, M; Vaudrevange, P K S; Wingerter, A; Lebedev, Oleg; Nilles, Hans Peter; Raby, Stuart; Ramos-Sanchez, Saul; Ratz, Michael; Vaudrevange, Patrick K.S.; Wingerter, Akin

    2007-01-01

    We explore a "fertile patch" of the heterotic landscape based on a Z_6-II orbifold with SO(10) and E_6 local GUT structures. We search for models allowing for the exact MSSM spectrum. Our result is that of order 100 out of a total 3\\times 10^4 inequivalent models satisfy this requirement.

  11. Pair Production of small Black Holes in Heterotic String Theories

    CERN Document Server

    Bianchi, Massimo

    2010-01-01

    We study pair production of small BPS BH's in heterotic strings compactified on tori and in the FHSV model. After recalling the identification of small BH's in the perturbative BPS spectrum, we compute the tree-level amplitudes for processes initiated by massless vector bosons or gravitons. We then analyze the resulting cross sections in terms of energy and angular distributions. Finally, we briefly comment on scenari with large extra dimensions and on generalizations of our results to non-BPS, non-extremal and rotating BH's.

  12. The Standard Model course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    Suggested Readings: Aspects of Quantum Chromodynamics/A Pich, arXiv:hep-ph/0001118. - The Standard Model of Electroweak Interactions/A Pich, arXiv:hep-ph/0502010. - The Standard Model of Particle Physics/A Pich The Standard Model of Elementary Particle Physics will be described. A detailed discussion of the particle content, structure and symmetries of the theory will be given, together with an overview of the most important experimental facts which have established this theoretical framework as the Standard Theory of particle interactions.

  13. Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa

    Directory of Open Access Journals (Sweden)

    Nettleton Dan

    2009-08-01

    Full Text Available Abstract Background Heterosis, the superior performance of hybrids relative to parents, has clear agricultural value, but its genetic control is unknown. Our objective was to test the hypotheses that hybrids expressing heterosis for biomass yield would show more gene expression levels that were different from midparental values and outside the range of parental values than hybrids that do not exhibit heterosis. Results We tested these hypotheses in three Medicago sativa (alfalfa genotypes and their three hybrids, two of which expressed heterosis for biomass yield and a third that did not, using Affymetrix M. truncatula GeneChip arrays. Alfalfa hybridized to approximately 47% of the M. truncatula probe sets. Probe set signal intensities were analyzed using MicroArray Suite v.5.0 (MAS and robust multi-array average (RMA algorithms. Based on MAS analysis, the two heterotic hybrids performed similarly, with about 27% of genes showing differential expression among the parents and their hybrid compared to 12.5% for the non-heterotic hybrid. At a false discovery rate of 0.15, 4.7% of differentially expressed genes in hybrids (~300 genes showed nonadditive expression compared to only 0.5% (16 genes in the non-heterotic hybrid. Of the nonadditively expressed genes, approximately 50% showed expression levels that fell outside the parental range in heterotic hybrids, but only one of 16 showed a similar profile in the non-heterotic hybrid. Genes whose expression differed in the parents were three times more likely to show nonadditive expression than genes whose parental transcript levels were equal. Conclusion The higher proportions of probe sets with expression level that differed from the parental midparent value and that were more extreme than either parental value in the heterotic hybrids compared to a non-heterotic hybrid were also found using RMA. We conclude that nonadditive expression of transcript levels may contribute to heterosis for biomass

  14. Non-geometric five-branes in heterotic supergravity

    Science.gov (United States)

    Sasaki, Shin; Yata, Masaya

    2016-11-01

    We study T-duality chains of five-branes in heterotic supergravity where the first order α'-corrections are present. By performing the α'-corrected T-duality transformations of the heterotic NS5-brane solutions, we obtain the KK5-brane and the exotic 5 2 2 -brane solutions associated with the symmetric, the neutral and the gauge NS5-branes. We find that the Yang-Mills gauge field in these solutions satisfies the self-duality condition in the three- and two-dimensional transverse spaces to the brane world-volumes. The O(2 , 2) monodromy structures of the 5 2 2 -brane solutions are investigated by the α'-corrected generalized metric. Our analysis shows that the symmetric 5 2 2 -brane solution, which satisfies the standard embedding condition, is a T-fold and it exhibits the non-geometric nature. We also find that the neutral 5 2 2 -brane solution is a T-fold at least at O({α}^') . On the other hand, the gauge 5 2 2 -brane solution is not a T-fold but show unusual structures of space-time.

  15. Non-geometric five-branes in heterotic supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shin; Yata, Masaya [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan); Department of Physics, National University of Singapore,2, Science Drive 3, Singapore 117542 (Singapore)

    2016-11-10

    We study T-duality chains of five-branes in heterotic supergravity where the first order α{sup ′}-corrections are present. By performing the α{sup ′}-corrected T-duality transformations of the heterotic NS5-brane solutions, we obtain the KK5-brane and the exotic 5{sub 2}{sup 2}-brane solutions associated with the symmetric, the neutral and the gauge NS5-branes. We find that the Yang-Mills gauge field in these solutions satisfies the self-duality condition in the three- and two-dimensional transverse spaces to the brane world-volumes. The O(2,2) monodromy structures of the 5{sub 2}{sup 2}-brane solutions are investigated by the α{sup ′}-corrected generalized metric. Our analysis shows that the symmetric 5{sub 2}{sup 2}-brane solution, which satisfies the standard embedding condition, is a T-fold and it exhibits the non-geometric nature. We also find that the neutral 5{sub 2}{sup 2}-brane solution is a T-fold at least at O(α{sup ′}). On the other hand, the gauge 5{sub 2}{sup 2}-brane solution is not a T-fold but show unusual structures of space-time.

  16. Exploring the web of heterotic string theories using anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, Fabian

    2013-07-15

    We investigate how anomalies can be used to infer relations among different descriptions of heterotic string theory. Starting from the observation that the construction mechanism of heterotic orbifold compactifications considered up to now prevents them from being resolved into fully smooth Calabi-Yau compactification manifolds, we use a new mechanism to obtain an orbifold which does not suffer from the aforementioned limitations. We explain in general how to resolve orbifolds into smooth Calabi-Yau using toric geometry and gauged linear sigma models. The latter allow for studying the theory in various other regions of the string moduli space as well, which unveils interesting intermediate geometries. By following anomalies through the different regimes, we can match the orbifold theories to their smooth Calabi-Yau counterparts. In the process, we investigate discrete R and non-R orbifold symmetries and propose a mechanism for studying their fate in other regions of the moduli space. Finally, we introduce a novel anomaly cancelation mechanism in gauged linear sigma models, which manifests itself in target space as a description of compactification geometries with torsion and Neveu-Schwarz five branes.

  17. Beyond Standard Model Higgs

    CERN Document Server

    AUTHOR|(CDS)2069934

    2014-01-01

    Recent LHC highlights of searches for Higgs bosons beyond the Standard Model are presented. The results by the ATLAS and CMS collaborations are based on 2011 and 2012 proton-proton collision data at centre-of-mass energies of 7 and 8 TeV, respectively. They test a wide range of theoretical models.

  18. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.

  19. Conference: STANDARD MODEL @ LHC

    CERN Multimedia

    2012-01-01

    HCØ institute Universitetsparken 5 DK-2100 Copenhagen Ø Denmark Room: Auditorium 2 STANDARD MODEL @ LHC Niels Bohr International Academy and Discovery Center 10-13 April 2012 This four day meeting will bring together both experimental and theoretical aspects of Standard Model phenomenology at the LHC. The very latest results from the LHC experiments will be under discussion. Topics covered will be split into the following categories:     * QCD (Hard,Soft & PDFs)     * Vector Boson production     * Higgs searches     * Top Quark Physics     * Flavour physics

  20. Beyond the Standard Model

    CERN Document Server

    Csáki, Csaba

    2015-01-01

    We introduce aspects of physics beyond the Standard Model focusing on supersymmetry, extra dimensions, and a composite Higgs as solutions to the Hierarchy problem. Lectures given at the 2013 European School of High Energy Physics, Parádfürdo, Hungary, 5-18 June 2013.

  1. Beyond the Standard Model

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future. Supersymmetry, grand unification, extra dimensions and string theory will be presented.

  2. Abstraction/Representation Theory for heterotic physical computing.

    Science.gov (United States)

    Horsman, D C

    2015-07-28

    We give a rigorous framework for the interaction of physical computing devices with abstract computation. Device and program are mediated by the non-logical representation relation; we give the conditions under which representation and device theory give rise to commuting diagrams between logical and physical domains, and the conditions for computation to occur. We give the interface of this new framework with currently existing formal methods, showing in particular its close relationship to refinement theory, and the implications for questions of meaning and reference in theoretical computer science. The case of hybrid computing is considered in detail, addressing in particular the example of an Internet-mediated social machine, and the abstraction/representation framework used to provide a formal distinction between heterotic and hybrid computing. This forms the basis for future use of the framework in formal treatments of non-standard physical computers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Moduli as Inflatons in Heterotic M-theory

    CERN Document Server

    Barreiro, T.

    2000-01-01

    We consider different cosmological aspects of Heterotic M-theory. In particular we look at the dynamical behaviour of the two relevant moduli in the theory, namely the length of the eleventh segment (pi rho) and the volume of the internal six manifold (V) in models where supersymmetry is broken by multiple gaugino condensation. We look at different ways to stabilise these moduli, namely racetrack scenarios with or without non-perturbative corrections to the Kahler potential. The existence of different flat directions in the scalar potential, and the way in which they can be partially lifted, is discussed as well as their possible role in constructing a viable model of inflation. Some other implications such as the status of the moduli problem within these models are also studied.

  4. Heterotic-type II duality in twistor space

    CERN Document Server

    Alexandrov, Sergei

    2013-01-01

    Heterotic string theory compactified on a K3 surface times T^2 is believed to be equivalent to type II string theory on a suitable Calabi-Yau threefold. In particular, it must share the same hypermultiplet moduli space. Building on the known twistorial description on the type II side, and on recent progress on the map between type II and heterotic moduli in the `double scaling' limit (where both the type II and heterotic strings become classical), we provide a new twistorial construction of the hypermultiplet moduli space in this limit which is adapted to the symmetries of the heterotic string. We also take steps towards understanding the twistorial description for heterotic worldsheet instanton corrections away from the double scaling limit. As a spin-off, we obtain a twistorial description of a class of automorphic forms of SO(4,n,Z) obtained by Borcherds' lift.

  5. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Lykken, Joseph D.; /Fermilab

    2010-05-01

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest

  6. Discrete R-symmetries and anomaly universality in heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Bizet, Nana G. Cabo [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear,Calle 30, esq.a 5ta Ave, Miramar, 6122 La Habana (Cuba); Kobayashi, Tatsuo [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Peña, Damián K. Mayorga [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Parameswaran, Susha L. [Department of Mathematics and Physics, Leibniz Universität Hannover,Welfengarten 1, 30167 Hannover (Germany); Schmitz, Matthias [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Zavala, Ivonne [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2014-02-24

    We study discrete R-symmetries, which appear in the 4D low energy effective field theory derived from heterotic orbifold models. We derive the R-symmetries directly from the geometrical symmetries of the orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. The R-charges obtained in this manner differ from those derived in earlier explicit computations. We study the anomalies associated with these R-symmetries, and comment on the results.

  7. Standard Model physics

    CERN Multimedia

    Altarelli, Guido

    1999-01-01

    Introduction structure of gauge theories. The QEDand QCD examples. Chiral theories. The electroweak theory. Spontaneous symmetry breaking. The Higgs mechanism Gauge boson and fermion masses. Yukawa coupling. Charges current couplings. The Cabibo-Kobayashi-Maskawa matrix and CP violation. Neutral current couplings. The Glasow-Iliopoulos-Maiani mechanism. Gauge boson and Higgs coupling. Radiative corrections and loops. Cancellation of the chiral anomaly. Limits on the Higgs comparaison. Problems of the Standard Model. Outlook.

  8. The orbifolder. A tool to study the low energy effective theory of heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, H.P. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Institut; Ramos-Sanchez, S. [Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico). Dept. of Theoretical Physics; Vaudrevange, P.K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Technische Univ. Muenchen, Garching (Germany). Physik-Department; Arnold-Sommerfeld-Center for Theoretical Physics, Muenchen (Germany); Wingerter, A. [CNRS/IN2P3, INPG, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie

    2011-10-15

    The orbifolder is a program developed in C{sup ++} that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum-configurations. (orig.)

  9. Supergauge Field Theory of Covariant Heterotic Strings

    OpenAIRE

    Michio, KAKU; Physics Department, Osaka University : Physics Department, City College of the City University of New York

    1986-01-01

    We present the gauge covariant second quantized field theory for free heterotic strings, which is leading candidate for a unified theory of all known particles. Our action is invariant under the semi-direct product of the super Virasoro and the Kac-Moody E_8×E_8 or Spin(32)/Z_2 group. We derive the covariant action by path integrals in the same way that Feynman originally derived the Schrodinger equation. By adding an infinite number of auxiliary fields, we can also make the action explicitly...

  10. Dualising the Dual Standard Model

    OpenAIRE

    Nathan F Lepora

    2001-01-01

    We discuss how the dual standard model and the dualised standard model are complementary theories. That is, how their implications have no overlap, whilst together they explain most features of the standard model. To illustrate how these two theories might be combined we consider the dual standard model in a theta vacuum. Whilst there are issues to be considered, the dual standard model does then appear to become naturally dualised. This supports an origin of a dual formulation of the standar...

  11. The Supersymmetric Standard Model

    CERN Document Server

    Fayet, Pierre

    2016-01-01

    The Standard Model may be included within a supersymmetric theory, postulating new sparticles that differ by half-a-unit of spin from their standard model partners, and by a new quantum number called R-parity. The lightest one, usually a neutralino, is expected to be stable and a possible candidate for dark matter. The electroweak breaking requires two doublets, leading to several charged and neutral Brout- Englert-Higgs bosons. This also leads to gauge/Higgs unification by providing extra spin-0 partners for the spin-1 W$^\\pm$ and Z. It offers the possibility to view, up to a mixing angle, the new 125 GeV boson as the spin-0 partner of the Z under two supersymmetry transformations, i.e. as a Z that would be deprived of its spin. Supersymmetry then relates two existing particles of different spins, in spite of their different gauge symmetry properties, through supersymmetry transformations acting on physical fields in a non-polynomial way. We also discuss how the compactification of extra dimensions, relying ...

  12. Background constraints in the infinite tension limit of the heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Thales [Department of Physics and Astronomy, Uppsala University,Box 516, 751 20, Uppsala (Sweden); Jusinskas, Renann Lipinski [Institute of Physics AS CR,Na Slovance 2, 182 21, Prague (Czech Republic)

    2016-08-23

    In this work we investigate the classical constraints imposed on the supergravity and super Yang-Mills backgrounds in the α{sup ′}→0 limit of the heterotic string using the pure spinor formalism. Guided by the recently observed sectorization of the model, we show that all the ten-dimensional constraints are elegantly obtained from the single condition of nilpotency of the BRST charge.

  13. Second order Standard Model

    Directory of Open Access Journals (Sweden)

    Johnny Espin

    2015-06-01

    Full Text Available It is known, though not commonly, that one can describe fermions using a second order in derivatives Lagrangian instead of the first order Dirac one. In this description the propagator is scalar, and the complexity is shifted to the vertex, which contains a derivative operator. In this paper we rewrite the Lagrangian of the fermionic sector of the Standard Model in such second order form. The new Lagrangian is extremely compact, and is obtained from the usual first order Lagrangian by integrating out all primed (or dotted 2-component spinors. It thus contains just half of the 2-component spinors that appear in the usual Lagrangian, which suggests a new perspective on unification. We sketch a natural in this framework SU(2×SU(4⊂SO(9 unified theory.

  14. A Framework for Heterotic Computing

    Directory of Open Access Journals (Sweden)

    Susan Stepney

    2012-10-01

    Full Text Available Computational devices combining two or more different parts, one controlling the operation of the other, for example, derive their power from the interaction, in addition to the capabilities of the parts. Non-classical computation has tended to consider only single computational models: neural, analog, quantum, chemical, biological, neglecting to account for the contribution from the experimental controls. In this position paper, we propose a framework suitable for analysing combined computational models, from abstract theory to practical programming tools. Focusing on the simplest example of one system controlled by another through a sequence of operations in which only one system is active at a time, the output from one system becomes the input to the other for the next step, and vice versa. We outline the categorical machinery required for handling diverse computational systems in such combinations, with their interactions explicitly accounted for. Drawing on prior work in refinement and retrenchment, we suggest an appropriate framework for developing programming tools from the categorical framework. We place this work in the context of two contrasting concepts of "efficiency": theoretical comparisons to determine the relative computational power do not always reflect the practical comparison of real resources for a finite-sized computational task, especially when the inputs include (approximations of real numbers. Finally we outline the limitations of our simple model, and identify some of the extensions that will be required to treat more complex interacting computational systems.

  15. Ubiquity of non-geometry in heterotic compactifications

    Science.gov (United States)

    García-Etxebarria, Iñaki; Lüst, Dieter; Massai, Stefano; Mayrhofer, Christoph

    2017-03-01

    We study the effect of quantum corrections on heterotic compactifications on elliptic fibrations away from the stable degeneration limit, elaborating on a recent observation by Malmendier and Morrison. We show that already for the simplest nontrivial elliptic fibration the effect is quite dramatic: the I 1 degeneration with trivial gauge background dynamically splits into two T-fects with monodromy around each T-fect being (conjugate to) T-duality along one of the legs of the T 2. This implies that almost every elliptic heterotic compactification becomes a non-geometric T-fold away from the stable degeneration limit. We also point out a subtlety due to this non-geometric splitting at finite fiber size. It arises when determining, via heterotic/F-theory duality, the SCFTs associated to a small number of pointlike instantons probing heterotic ADE singularities. Along the way we resolve various puzzles in the literature.

  16. Structure of the Standard Model

    OpenAIRE

    Langacker, Paul

    2003-01-01

    The structure of the standard model is concisely summarized, including the standard model Lagrangian, spontaneous symmetry breaking, the reexpression of the Lagrangian in terms of mass eigenstates after symmetry breaking, and the gauge interactions. The problems of the standard model are described.

  17. Classification of flipped SU(5 heterotic-string vacua

    Directory of Open Access Journals (Sweden)

    Alon E. Faraggi

    2014-09-01

    Full Text Available We extend the classification of free fermionic heterotic-string vacua to models in which the SO(10 GUT symmetry is reduced at the string level to the flipped SU(5 subgroup. In our classification method the set of boundary condition basis vectors is fixed and the enumeration of string vacua is obtained in terms of the Generalised GSO (GGSO projection coefficients entering the one-loop partition function. We derive algebraic expressions for the GGSO projections for all the physical states appearing in the sectors generated by the set of basis vectors. This enables the programming of the entire spectrum analysis in a computer code. For that purpose we developed two independent codes, based on FORTRAN95 and JAVA, and all results presented are confirmed by the two independent routines. We perform a statistical sampling in the space of 244∼1013 flipped SU(5 vacua, and scan up to 1012 GGSO configurations. Contrary to the corresponding Pati–Salam classification results, we do not find exophobic flipped SU(5 vacua with an odd number of generations. We study the structure of exotic states appearing in the three generation models, that additionally contain a viable Higgs spectrum, and demonstrate the existence of models in which all the exotic states are confined by a hidden sector non-Abelian gauge symmetry, as well as models that may admit the racetrack mechanism.

  18. Standard solar model

    Science.gov (United States)

    Guenther, D. B.; Demarque, P.; Kim, Y.-C.; Pinsonneault, M. H.

    1992-01-01

    A set of solar models have been constructed, each based on a single modification to the physics of a reference solar model. In addition, a model combining several of the improvements has been calculated to provide a best solar model. Improvements were made to the nuclear reaction rates, the equation of state, the opacities, and the treatment of the atmosphere. The impact on both the structure and the frequencies of the low-l p-modes of the model to these improvements are discussed. It is found that the combined solar model, which is based on the best physics available (and does not contain any ad hoc assumptions), reproduces the observed oscillation spectrum (for low-l) within the errors associated with the uncertainties in the model physics (primarily opacities).

  19. Beyond the Standard Model

    DEFF Research Database (Denmark)

    Pica, Claudio

    2017-01-01

    We present new results from our ongoing study of the SU(3) sextet model with two flavors in the two-index symmetric representation of the gauge group. In the simulations use unimproved Wilson fermions to investigate the infrared properties of the model. We have previously presented results...... for the spectrum of the model in the weak coupling regime. Here, to better understand the overall behavior of the lattice model, we map its non-trivial phase structure in the space of bare parameters. At strong coupling, we observe a first order phase transition when decreasing the bare quark mass. This first...

  20. BPS algebras, genus zero and the heterotic Monster

    Science.gov (United States)

    Paquette, Natalie M.; Persson, Daniel; Volpato, Roberto

    2017-10-01

    In this note, we expand on some technical issues raised in (Paquette et al 2016 Commun. Number Theory Phys. 10 433-526) by the authors, as well as providing a friendly introduction to and summary of our previous work. We construct a set of heterotic string compactifications to 0  +  1 dimensions intimately related to the Monstrous moonshine module of Frenkel, Lepowsky, and Meurman (and orbifolds thereof). Using this model, we review our physical interpretation of the genus zero property of Monstrous moonshine. Furthermore, we show that the space of (second-quantized) BPS-states forms a module over the Monstrous Lie algebras mg —some of the first and most prominent examples of Generalized Kac-Moody algebras—constructed by Borcherds and Carnahan. In particular, we clarify the structure of the module present in the second-quantized string theory. We also sketch a proof of our methods in the language of vertex operator algebras, for the interested mathematician.

  1. Universality in radiative corrections for non-supersymmetric heterotic vacua

    CERN Document Server

    Angelantonj, C; Tsulaia, Mirian

    2016-01-01

    Properties of moduli-dependent gauge threshold corrections in non-supersymmetric heterotic vacua are reviewed. In the absence of space-time supersymmetry these amplitudes are no longer protected and receive contributions from the whole tower of string states, BPS and not. Never-theless, the difference of gauge thresholds for non-Abelian gauge groups displays a remarkable universality property, even when supersymmetry is absent. We present a simple heterotic construction that shares this universal behaviour and expose the necessary conditions on the super-symmetry breaking mechanism for universality to occur.

  2. Generalised universality of gauge thresholds in heterotic vacua with and without supersymmetry

    CERN Document Server

    Angelantonj, Carlo; Tsulaia, Mirian

    2015-01-01

    We study one-loop quantum corrections to gauge couplings in heterotic vacua with spontaneous supersymmetry breaking. Although in non-supersymmetric constructions these corrections are not protected and are typically model dependent, we show how a universal behaviour of threshold differences, typical of supersymmetric vacua, may still persist. We formulate specific conditions on the way supersymmetry should be broken for this to occur. Our analysis implies a generalised notion of threshold universality even in the case of unbroken supersymmetry, whenever extra charged massless states appear at enhancement points in the bulk of moduli space. Several examples with universality, including non-supersymmetric chiral models in four dimensions, are presented.

  3. Physics Beyond the Standard Model

    CERN Document Server

    Ellis, John

    2009-01-01

    The Standard Model is in good shape, apart possibly from g_\\mu - 2 and some niggling doubts about the electroweak data. Something like a Higgs boson is required to provide particle masses, but theorists are actively considering alternatives. The problems of flavour, unification and quantum gravity will require physics beyond the Standard Model, and astrophysics and cosmology also provide reasons to expect physics beyond the Standard Model, in particular to provide the dark matter and explain the origin of the matter in the Universe. Personally, I find supersymmetry to be the most attractive option for new physics at the TeV scale. The LHC should establish the origin of particle masses has good prospects for discovering dark matter, and might also cast light on unification and even quantum gravity. Important roles may also be played by lower-energy experiments, astrophysics and cosmology in the searches for new physics beyond the Standard Model.

  4. Physics beyond the Standard Model

    CERN Document Server

    Valle, José W F

    1991-01-01

    We discuss some of the signatures associated with extensions of the Standard Model related to the neutrino and electroweak symmetry breaking sectors, with and without supersymmetry. The topics include a basic discussion of the theory of neutrino mass and the corresponding extensions of the Standard Model that incorporate massive neutrinos; an overview of the present observational status of neutrino mass searches, with emphasis on solar neutrinos, as well the as cosmological data on the amplitude of primordial density fluctuations; the implications of neutrino mass in cosmological nucleosynthesis, non-accelerator, as well as in high energy particle collider experiments. Turning to the electroweak breaking sector, we discuss the physics potential for Higgs boson searches at LEP200, including Majoron extensions of the Standard Model, and the physics of invisibly decaying Higgs bosons. We discuss the minimal supersymmetric Standard Model phenomenology, as well as some of the laboratory signatures that would be as...

  5. Combining ability and heterotic pattern in West African sorghum ...

    African Journals Online (AJOL)

    This study aimed at determining the combining abilities of selected landraces for morphological and physiological traits under contrasted environments and identifying the suitable heterotic grouping method for superior hybrid production. For this purpose, nineteen accessions representing different origins and population ...

  6. Clustering common bean mutants based on heterotic groupings ...

    African Journals Online (AJOL)

    The objective of this study was to cluster bean mutants from a bean mutation breeding programme, based on heterotic groupings. This was achieved by genotyping 16 bean genotypes, using 21 Simple Sequence Repeats (SSR) bean markers. From the results, three different clusters A, B and C, were obtained suggesting ...

  7. combining ability and heterotic pattern in west african sorghum ...

    African Journals Online (AJOL)

    ACSS

    Heterotic grouping based on combining ability for traits of interest, in addition to plant performance and genetic ... as grain quality, plant height and adaptation to ..... with other methods. The R-package “ape” was used for this analysis. RESULTS. Analysis of variance. The Mean Squares for genotypes (G) and environments ...

  8. Heterotic performance of quality characteristics of bread wheat ...

    African Journals Online (AJOL)

    Heterosis has made a significant contribution to the improvement of many crops regarding yield, quality and resistance to pests. The low wheat (Triticum aestivum L.) productivity in Lesotho has necessitated exploitation of heterosis in commercial cultivars. Heterotic performance of 38 F1 and F2 progenies from 5 x 5 diallel ...

  9. Phenomenology beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Lykken, Joseph D.; /Fermilab

    2005-03-01

    An elementary review of models and phenomenology for physics beyond the Standard Model (excluding supersymmetry). The emphasis is on LHC physics. Based upon a talk given at the ''Physics at LHC'' conference, Vienna, 13-17 July 2004.

  10. Dynamics of the standard model

    CERN Document Server

    Donoghue, John F; Holstein, Barry R

    2014-01-01

    Describing the fundamental theory of particle physics and its applications, this book provides a detailed account of the Standard Model, focusing on techniques that can produce information about real observed phenomena. The book begins with a pedagogic account of the Standard Model, introducing essential techniques such as effective field theory and path integral methods. It then focuses on the use of the Standard Model in the calculation of physical properties of particles. Rigorous methods are emphasized, but other useful models are also described. This second edition has been updated to include recent theoretical and experimental advances, such as the discovery of the Higgs boson. A new chapter is devoted to the theoretical and experimental understanding of neutrinos, and major advances in CP violation and electroweak physics have been given a modern treatment. This book is valuable to graduate students and researchers in particle physics, nuclear physics and related fields.

  11. Local anomaly cancellation in heterotic E{sub 8} x E{sub 8} orbifold compactifications with Wilson line backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.G.A.

    2004-02-01

    We consider several examples of a special class of heterotic compactifications, i.e. heterotic E{sub 8} x E{sub 8} orbifolds with Wilson line backgrounds. By developing a local perspective we show that a brane world like picture emerges. As an important result we prove that the local massless spectrum at such a brane can always be traced back to the global spectrum of a (different) orbifold without Wilson lines. One particular implication of this result is that the use of (discrete) Wilson lines for the construction of phenomenologically interesting models has to be rethought. We show that stringy constraints render the brane spectra consistent. Using our local picture we are able to compute the local anomalies appearing at the different branes for our examples and show that they can all be cancelled by a local version of the Green-Schwarz mechanism at the same time. (orig.)

  12. The orbifolder: A tool to study the low-energy effective theory of heterotic orbifolds

    Science.gov (United States)

    Nilles, H. P.; Ramos-Sánchez, S.; Vaudrevange, P. K. S.; Wingerter, A.

    2012-06-01

    The orbifolder is a program developed in C++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum configurations. Program summaryProgram title: orbifolder Catalogue identifier: AELR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 145 572 No. of bytes in distributed program, including test data, etc.: 930 517 Distribution format: tar.gz Programming language:C++ Computer: Personal computer Operating system: Tested on Linux (Fedora 15, Ubuntu 11, SuSE 11) Word size: 32 bits or 64 bits Classification: 11.1 External routines: Boost (http://www.boost.org/), GSL (http://www.gnu.org/software/gsl/) Nature of problem: Calculating the low-energy spectrum of heterotic orbifold compactifications. Solution method: Quadratic equations on a lattice; representation theory; polynomial algebra. Running time: Less than a second per model.

  13. The standard model and beyond

    CERN Document Server

    Langacker, Paul

    2017-01-01

    This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examin...

  14. Model Standards Advance the Profession

    Science.gov (United States)

    Journal of Staff Development, 2011

    2011-01-01

    Leadership by teachers is essential to serving the needs of students, schools, and the teaching profession. To that end, the Teacher Leadership Exploratory Consortium has developed Teacher Leader Model Standards to codify, promote, and support teacher leadership as a vehicle to transform schools for the needs of the 21st century. The Teacher…

  15. Beyond the Standard Model course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future, at LHC and elsewhere. Supersymmetry, grand unification, extra dimensions and a glimpse of string theory will be presented.

  16. M theory through the looking glass: Tachyon condensation in the E8 heterotic string

    Science.gov (United States)

    Hořava, Petr; Keeler, Cynthia A.

    2008-03-01

    We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing—connecting the two E8 boundaries by a throat—are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E8 gauge group and a singlet tachyon. We then use world sheet methods to study the tachyon condensation in the Neveu-Schwarz-Ramond formulation of this model, and show that it induces a world sheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for world sheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the world sheet gravitino assimilates the Goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of Rξ gauges, and note the importance of logarithmic conformal field theories in the context of tachyon condensation.

  17. Heterotic trait locus (HTL mapping identifies intra-locus interactions that underlie reproductive hybrid vigor in Sorghum bicolor.

    Directory of Open Access Journals (Sweden)

    Imri Ben-Israel

    Full Text Available Identifying intra-locus interactions underlying heterotic variation among whole-genome hybrids is a key to understanding mechanisms of heterosis and exploiting it for crop and livestock improvement. In this study, we present the development and first use of the heterotic trait locus (HTL mapping approach to associate specific intra-locus interactions with an overdominant heterotic mode of inheritance in a diallel population using Sorghum bicolor as the model. This method combines the advantages of ample genetic diversity and the possibility of studying non-additive inheritance. Furthermore, this design enables dissecting the latter to identify specific intra-locus interactions. We identified three HTLs (3.5% of loci tested with synergistic intra-locus effects on overdominant grain yield heterosis in 2 years of field trials. These loci account for 19.0% of the heterotic variation, including a significant interaction found between two of them. Moreover, analysis of one of these loci (hDPW4.1 in a consecutive F2 population confirmed a significant 21% increase in grain yield of heterozygous vs. homozygous plants in this locus. Notably, two of the three HTLs for grain yield are in synteny with previously reported overdominant quantitative trait loci for grain yield in maize. A mechanism for the reproductive heterosis found in this study is suggested, in which grain yield increase is achieved by releasing the compensatory tradeoffs between biomass and reproductive output, and between seed number and weight. These results highlight the power of analyzing a diverse set of inbreds and their hybrids for unraveling hitherto unknown allelic interactions mediating heterosis.

  18. Heterotic trait locus (HTL) mapping identifies intra-locus interactions that underlie reproductive hybrid vigor in Sorghum bicolor.

    Science.gov (United States)

    Ben-Israel, Imri; Kilian, Benjamin; Nida, Habte; Fridman, Eyal

    2012-01-01

    Identifying intra-locus interactions underlying heterotic variation among whole-genome hybrids is a key to understanding mechanisms of heterosis and exploiting it for crop and livestock improvement. In this study, we present the development and first use of the heterotic trait locus (HTL) mapping approach to associate specific intra-locus interactions with an overdominant heterotic mode of inheritance in a diallel population using Sorghum bicolor as the model. This method combines the advantages of ample genetic diversity and the possibility of studying non-additive inheritance. Furthermore, this design enables dissecting the latter to identify specific intra-locus interactions. We identified three HTLs (3.5% of loci tested) with synergistic intra-locus effects on overdominant grain yield heterosis in 2 years of field trials. These loci account for 19.0% of the heterotic variation, including a significant interaction found between two of them. Moreover, analysis of one of these loci (hDPW4.1) in a consecutive F2 population confirmed a significant 21% increase in grain yield of heterozygous vs. homozygous plants in this locus. Notably, two of the three HTLs for grain yield are in synteny with previously reported overdominant quantitative trait loci for grain yield in maize. A mechanism for the reproductive heterosis found in this study is suggested, in which grain yield increase is achieved by releasing the compensatory tradeoffs between biomass and reproductive output, and between seed number and weight. These results highlight the power of analyzing a diverse set of inbreds and their hybrids for unraveling hitherto unknown allelic interactions mediating heterosis.

  19. The standard model and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1989-05-01

    In these lectures, my aim is to present a status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows. I survey the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also commented on. In addition, I have included an appendix on dimensional regularization and a simple example which employs that technique. I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, extra Z' bosons, and compositeness are discussed. An overview of the physics of tau decays is also included. I discuss weak neutral current phenomenology and the extraction of sin/sup 2//theta/W from experiment. The results presented there are based on a global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, implications for grand unified theories (GUTS), extra Z' gauge bosons, and atomic parity violation. The potential for further experimental progress is also commented on. Finally, I depart from the narrowest version of the standard model and discuss effects of neutrino masses, mixings, and electromagnetic moments. 32 refs., 3 figs., 5 tabs

  20. D-brane Standard Model

    CERN Document Server

    Antoniadis, Ignatios; Tomaras, T N

    2001-01-01

    The minimal embedding of the Standard Model in type I string theory is described. The SU(3) color and SU(2) weak interactions arise from two different collections of branes. The correct prediction of the weak angle is obtained for a string scale of 6-8 TeV. Two Higgs doublets are necessary and proton stability is guaranteed. It predicts two massive vector bosons with masses at the TeV scale, as well as a new superweak interaction.

  1. Consistency Across Standards or Standards in a New Business Model

    Science.gov (United States)

    Russo, Dane M.

    2010-01-01

    Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.

  2. Type I/heterotic duality and M-theory amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael B. [Department of Applied Mathematics and Theoretical Physics,Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Rudra, Arnab [Department of Applied Mathematics and Theoretical Physics,Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,One Shields Avenue, Davis, CA 95616 (United States)

    2016-12-14

    This paper investigates relationships between low-energy four-particle scattering amplitudes with external gauge particles and gravitons in the E{sub 8}×E{sub 8} and SO(32) heterotic string theories and the type I and type IA superstring theories by considering a variety of tree level and one-loop Feynman diagrams describing such amplitudes in eleven-dimensional supergravity in a Ho?rava-Witten background compactified on a circle. This accounts for a number of perturbative and non-perturbative aspects of low order higher derivative terms in the low-energy expansion of string theory amplitudes, which are expected to be protected by half maximal supersymmetry from receiving corrections beyond one or two loops. It also suggests the manner in which type I/heterotic duality may be realised for certain higher derivative interactions that are not so obviously protected. For example, our considerations suggest that R{sup 4} interactions (where R is the Riemann curvature) might receive no perturbative corrections beyond one loop by virtue of a conspiracy involving contributions from (non-BPS) ℤ{sub 2} D-instantons in the type I and heterotic SO(32) theories.

  3. Heterotic Resolved Conifolds with Torsion, from Supergravity to CFT

    CERN Document Server

    Carlevaro, Luca

    2010-01-01

    We obtain a family of heterotic supergravity backgrounds describing warped non-Kahler conifolds with three-form flux and an Abelian gauge bundle, preserving N=1 supersymmetry in four dimensions. At large distance from the singularity the usual Ricci-flat conifold is recovered. By performing a Z_2 orbifold of the T^{1,1} base, the conifold singularity can be blown-up to a four-cycle, leading to a completely smooth geometry. Remarkably, the throat regions of the solutions, which can be isolated from the asymptotic Ricci-flat geometry using a double-scaling limit, possess a worldsheet CFT description in terms of heterotic cosets whose target space is the warped resolved orbifoldized conifold. Thus this construction provides exact solutions of the modified Bianchi identity. By solving algebraically these CFTs we compute the exact tree-level heterotic string spectrum and describe worldsheet non-perturbative effects. The holographic dual of these solutions, in particular their confining behavior, and the embedding ...

  4. Journeys Beyond the Standard Model

    Science.gov (United States)

    Elor, Gilly

    The much anticipated era of the Large Hadron Collider is finally upon us, making today an extremely interesting time to be doing theoretical particle physics. The recent Higgs-like signal is certainly the most exciting particle physics discovery in decades. However with this discovery comes the reminder that we are now, more than ever, in need of theoretical work to understand new physics. The Standard Model is incomplete; it does not accommodate the experimental observation of dark matter, or the baryon asymmetry of the Universe. In addition, the SM has aesthetic or fine-tuning problems, like the gauge hierarchy problem and the strong CP problem. The task of model builders centers around addressing these and other issues by constructing new physics models that may be tested experimentally.

  5. Issues in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1983-04-01

    Focussing on the standard electroweak model, we examine physics issues which may be addressed with the help of intense beams of strange particles. I have collected miscellany of issues, starting with some philosophical remarks on how things stand and where we should go from here. I will then focus on a case study: the decay K/sup +/ ..-->.. ..pi../sup +/ + nothing observable, which provides a nice illustration of the type of physics that can be probed through rare decays. Other topics I will mention are CP violation in K-decays, hyperon and anti-hyperon physics, and a few random comments on other relevant phenomena.

  6. Coset space compactification of the field theory limit of a heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.; Helayel-Neto, J.A.

    1986-07-01

    The D = 10 - E/sub 8/xE/sub 8/ field theory limit of the heterotic string is compactified on the non-symmetric coset space Sp(4)/SU(2) xU(1) that is known in the limit of decoupled gravity to give three standard fermion generations, with SU(5)xSU(3)sub(F)xU(1)sub(F) as a gauge group in D = 4. Allowing for non-vanishing fermion bilinear condensates, and assuming the conventional form of the supersymmetry transformations, the presence of a family of N = 1 supersymmetric background field configurations is proved. This requires the non-compact space to be flat: (Minkowski)/sup 4/, while the 3-form Hsub(MNP) is non-vanishing and proportional to the torsion on the internal manifold. All equations of motion, including that of the dilation, are satisfied.

  7. Standard for Models and Simulations

    Science.gov (United States)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  8. The standard model and beyond

    CERN Document Server

    Vergados, J D

    2017-01-01

    This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the first chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after SSB acquire a mass and get admixed. The various forms of charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, in a way undertandable by fir...

  9. On stable higher spin states in Heterotic String Theories

    CERN Document Server

    Bianchi, Massimo; Richter, Robert

    2010-01-01

    We study properties of 1/2 BPS Higher Spin states in heterotic compactifications with extended supersymmetry. We also analyze non BPS Higher Spin states and give explicit expressions for physical vertex operators of the first two massive levels. We then study on-shell tri-linear couplings of these Higher Spin states and confirm that BPS states with arbitrary spin cannot decay into lower spin states in perturbation theory. Finally, we consider scattering of vector bosons off higher spin BPS states and extract form factors and polarization effects in various limits.

  10. One loop tadpole in heterotic string field theory

    Science.gov (United States)

    Erler, Theodore; Konopka, Sebastian; Sachs, Ivo

    2017-11-01

    We compute the off-shell 1-loop tadpole amplitude in heterotic string field theory. With a special choice of cubic vertex, we show that this amplitude can be computed exactly. We obtain explicit and elementary expressions for the Feynman graph decomposition of the moduli space, the local coordinate map at the puncture as a function of the modulus, and the b-ghost insertions needed for the integration measure. Recently developed homotopy algebra methods provide a consistent configuration of picture changing operators. We discuss the consequences of spurious poles for the choice of picture changing operators.

  11. Supersymmetric Solutions in Three-Dimensional Heterotic String Theory

    CERN Document Server

    Bakas, Ioannis; Lópes-Cardoso, G; Bakas, Ioannis; Bourdeau, Michele; Cardoso, Gabriel Lopes

    1998-01-01

    We consider the low-energy effective field theory of heterotic string theory compactified on a seven-torus, and we construct electrically charged as well as more general solitonic solutions. These solutions preserve 1/2, 1/4, 1/8 and 1/16 of N=8, D=3 supersymmetry and have Killing spinors which exist due to cancellation of holonomies. The associated space-time line elements do not exhibit the conical structure that often arises in 2+1 dimensional gravity theories.

  12. Non-BPS Instability in Heterotic M-theory

    CERN Document Server

    Brax, P

    2001-01-01

    We study the warped geometry of heterotic M-Theory in five dimensions where five-branes are included in the bulk. Five-branes wrapping holomorphic curves lead to BPS configurations where the junction conditions are automatically satisfied. We consider five-branes wrapped around non-supersymmetric cycles and show that the configuration is unstable. We describe explicitly the resulting time-dependent geometry where the bulk five-branes move towards the Horova-Witten boundary walls. The five-branes collide with the boundary walls in a finite time resulting in the restoration of supersymmetry.

  13. The heterotic MiniLandscape and the 126 GeV Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, Marcin [Warsaw Univ. (Poland). Inst. of Theoretical Physics, Faculty of Physics; Krippendorf, Sven; Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.; Winkler, Martin Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-12-15

    The MSSM candidates arising from the heterotic MiniLandscape feature a very constrained supersymmetry breaking pattern. This includes a fully predictable gaugino mass pattern, which is compressed compared to the CMSSM, and an inverted sfermion hierarchy due to distinct geometric localisation, featuring stops as light as 1 TeV. The observed Higgs mass sets a lower bound m{sub g} > 1.2 TeV on the gluino mass. The electroweak fine-tuning is reduced by a UV relation between the scalar mass of the two heavy families and the gluino mass. While large parts of the favoured parameter space escape detection at the LHC, the prospects to test the MiniLandscape models with future dark matter searches are very promising.

  14. On the heterotic effective action at one-loop, gauge couplings and the gravitational sector

    CERN Document Server

    Kiritsis, E.; Petropoulos, P.M.; Rizos, J.

    1996-01-01

    We present in detail the procedure for calculating the heterotic one-loop effective action. We focus on gravitational and gauge couplings. We show that the two-derivative couplings of the gravitational sector are not renormalized at one loop when the ground state is supersymmetric. Arguments are presented that this non-renormalization theorem persists to all orders in perturbation theory. Arguments are presented that this non-renormalization theorem persists to all orders in perturbation theory. We also derive the full one-loop correction to the gauge coupling. For a class of N=2 ground states, namely those that are obtained by toroidal compactification to four dimensions of generic six-dimensional N=1 models, we give an explicit formula for the gauge-group independent thresholds, and show that these are equal within the whole family.

  15. Compactifications of heterotic theory on non-Kaehler complex manifolds, I

    CERN Document Server

    Becker, K; Das-Gupta, K; Green, P S

    2003-01-01

    We study new compactifications of the SO(32) heterotic string theory on compact complex non-Kaehler manifolds. These manifolds have many interesting features like fewer moduli, torsional constraints, vanishing Euler character and vanishing first Chern class, which make the four-dimensional theory phenomenologically attractive. We take a particular compact example studied earlier and determine various geometrical properties of it. In particular we calculate the warp factor and study the sigma model description of strings propagating on these backgrounds. The anomaly cancellation condition and enhanced gauge symmetry are shown to arise naturally in this framework, if one considers the effect of singularities carefully. We then give a detailed mathematical analysis of these manifolds and construct a large class of them. The existence of a holomorphic (3,0) form is important for the construction. We clarify some of the topological properties of these manifolds and evaluate the Betti numbers. We also determine the...

  16. Vacuum Stability of Standard Model^{++}

    CERN Document Server

    Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian

    2013-01-01

    The latest results of the ATLAS and CMS experiments point to a preferred narrow Higgs mass range (m_h \\simeq 124 - 126 GeV) in which the effective potential of the Standard Model (SM) develops a vacuum instability at a scale 10^{9} -10^{11} GeV, with the precise scale depending on the precise value of the top quark mass and the strong coupling constant. Motivated by this experimental situation, we present here a detailed investigation about the stability of the SM^{++} vacuum, which is characterized by a simple extension of the SM obtained by adding to the scalar sector a complex SU(2) singlet that has the quantum numbers of the right-handed neutrino, H", and to the gauge sector an U(1) that is broken by the vacuum expectation value of H". We derive the complete set of renormalization group equations at one loop. We then pursue a numerical study of the system to determine the triviality and vacuum stability bounds, using a scan of 10^4 random set of points to fix the initial conditions. We show that, if there...

  17. Experiments beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Perl, M.L.

    1984-09-01

    This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics at very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references.

  18. T-duality orbifolds of heterotic Narain compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Nibbelink, Stefan Groot [School of Engineering and Applied Sciences, Rotterdam University of Applied Sciences,G.J. de Jonghweg 4-6, 3015 GG Rotterdam (Netherlands); Vaudrevange, Patrick K.S. [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Physik Department T30, Technische Universität München,James-Franck-Straße, 85748 Garching (Germany)

    2017-04-06

    To obtain a unified framework for symmetric and asymmetric heterotic orbifold constructions we provide a systematic study of Narain compactifications orbifolded by finite order T-duality subgroups. We review the generalized vielbein that parametrizes the Narain moduli space (i.e. the metric, the B-field and the Wilson lines) and introduce a convenient basis of generators of the heterotic T-duality group. Using this we generalize the space group description of orbifolds to Narain orbifolds. This yields a unified, crystallographic description of the orbifold twists, shifts as well as Narain moduli. In particular, we derive a character formula that counts the number of unfixed Narain moduli after orbifolding. Moreover, we develop new machinery that may ultimately open up the possibility for a full classification of Narain orbifolds. This is done by generalizing the geometrical concepts of ℚ-, ℤ- and affine classes from the theory of crystallography to the Narain case. Finally, we give a variety of examples illustrating various aspects of Narain orbifolds, including novel T-folds.

  19. ISRAEL-WILSON-PERJÉS Solutions in Heterotic String Theory

    Science.gov (United States)

    Herrera-Aguilar, Alfredo; Kechkin, Oleg

    We present a simple algorithm to obtain solutions that generalize the Israel-Wilson-Perjés class for the low energy limit of heterotic string theory toroidally compactified from D=d+3 to three dimensions. A remarkable map existing between the Einstein-Maxwell (EM) theory and the theory under consideration allows us to solve directly the equations of motion making use of the matrix Ernst potentials connected with the coset matrix of heterotic string theory.1 For the particular case d=1 (if we put n=6, the resulting theory can be considered as the bosonic part of the action of D=4, N=4 supergravity) we obtain explicitly a dyonic solution in terms of one real 2×2-matrix harmonic function and 2n real constants (n being the number of Abelian vector fields). By studying the asymptotic behavior of the field configurations we define the charges of the system. They satisfy the Bogomol'nyi-Prasad-Sommerfield (BPS) bound.

  20. Heterotic string on the CHL orbifold of K3

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Shouvik [Institut für Theoretische Physik, ETH Zürich,Wolfgang Pauli Strasse, CH-8093 Zürich (Switzerland); Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); David, Justin R. [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); Lüst, Dieter [Arnold Sommerfeld Center for Theoretical Physics,Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany)

    2016-02-08

    We study N=2 compactifications of heterotic string theory on the CHL orbifold (K3×T{sup 2})/ℤ{sub N} with N=2,3,5,7. ℤ{sub N} acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T{sup 2}. These compactifications generalize the example of the heterotic string on K3×T{sup 2} studied in the context of dualities in N=2 string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the ℤ{sub N} automorphism embedded in the Mathieu group M{sub 24}. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N=4 string theories.

  1. E(lementary)-strings in six-dimensional heterotic F-theory

    OpenAIRE

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-01-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small in...

  2. N=1 supersymmetric $SU(4) x SU(2)_{L} x SU(2)_{R}$ effective theory from the weakly coupled heterotic superstring

    CERN Document Server

    Leontaris, George K

    1999-01-01

    In the context of the free-fermionic formulation of the heterotic superstring, we construct a three generation N=1 supersymmetric SU(4)xSU(2)LxSU(2)R model supplemented by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard model is achieved using vacuum expectation values of a Higgs pair in (4bar,2R)+(4,2R) at a high scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum expectation values of singlet fields along the flat directions of the superpotential. All consistent string vacua of the model are completely classified by solving the corresponding system of F- and D-flatness equations including non-renormalizable terms up to sixth order. The requirement of existence of electroweak massless doublets further restricts the phenomenologically viable vacua. The third generation fermions receive masses from the tree-level superpotential. Further, a complete calculation of all non-renormalizable fermion mass terms up to fifth order s...

  3. N = 1 supersymmetric SU(4) x SU(2) sub L x SU (2) sub R effective theory from the weakly coupled heterotic superstring

    CERN Document Server

    Leontaris, George K

    1999-01-01

    In the context of the free-fermionic formulation of the heterotic superstring, we construct a three-generation N = 1 supersymmetric SU(4) x SU(2) sub L x SU(2) sub R model supplemented by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard model is achieved using vacuum expectation values of a Higgs pair in (4,2 sub R) + (4-bar,2 sub R) at a high scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum expectation values of singlet fields along the flat directions of the superpotential. All consistent string vacua of the model are completely classified by solving the corresponding system of F- and D-flatness equations including non-renormalizable terms up to sixth order. The requirement of existence of electroweak massless doublets imposes further restrictions to the phenomenologically viable vacua. The third generation fermions receive masses from the tree-level superpotential. Further, a complete calculation of all non-renormaliz...

  4. From exceptional field theory to heterotic double field theory via K3

    Science.gov (United States)

    Malek, Emanuel

    2017-03-01

    In this paper we show how to obtain heterotic double field theory from exceptional field theory by breaking half of the supersymmetry. We focus on the SL(5) exceptional field theory and show that when the extended space contains a generalised SU(2)-structure manifold one can define a reduction to obtain the heterotic SO(3 , n) double field theory. In this picture, the reduction on the SU(2)-structure breaks half of the supersymmetry of the exceptional field theory and the gauge group of the heterotic double field theory is given by the embedding tensor of the reduction used. Finally, we study the example of a consistent truncation of M-theory on K3 and recover the duality with the heterotic string on T 3. This suggests that the extended space can be made sense of even in the case of non-toroidal compactifications.

  5. Higgs bosons in standard model extensions

    Science.gov (United States)

    Gurskaya, A. V.; Dolgopolov, M. V.; Rykova, E. N.

    2017-09-01

    Several possibilities for extending the scalar sector of the Standard Model are considered. The conditions of calculation of Higgs bosons masses in the Next-to-Minimal Supersymmetric Standard Model are discussed. The probable limits on mass parameters of Higgs bosons are analyzed. The role of minimum conditions as a physical criterion in a model with an extended scalar sector is defined.

  6. N =2 heterotic string compactifications on orbifolds of K3 × T 2

    Science.gov (United States)

    Chattopadhyaya, Aradhita; David, Justin R.

    2017-01-01

    We study N = 2 compactifications of E 8 × E 8 heterotic string theory on orbifolds of K3 × T 2 by g ' which acts as an {Z}_N automorphism of K3 together with a 1 /N shift on a circle of T 2. The orbifold action g ' corresponds to the 26 conjugacy classes of the Mathieu group M 24. We show that for the standard embedding the new supersymmetric index for these compactifications can always be decomposed into the elliptic genus of K3 twisted by g '. The difference in one-loop corrections to the gauge couplings are captured by automorphic forms obtained by the theta lifts of the elliptic genus of K3 twisted by g '. We work out in detail the case for which g ' belongs to the equivalence class 2 B. We then investigate all the non-standard embeddings for K3 realized as a {T}^4/{Z}_{ν } orbifold with ν = 2 ,4 and g ' the 2 A involution. We show that for non-standard embeddings the new supersymmetric index as well as the difference in one-loop corrections to the gauge couplings are completely characterized by the instanton numbers of the embeddings together with the difference in number of hypermultiplets and vector multiplets in the spectrum.

  7. From anomalies of finite symmetries to heterotic GUTs

    Science.gov (United States)

    Vaudrevange, Patrick K. S.

    2017-11-01

    We review the role of finite symmetries for particle physics with special emphasis on discrete anomalies and on their possible origin from extra dimensions. Then, we apply our knowledge on finite symmetries to the problematic proton decay operators of various mass-dimensions, focusing on ℤ4R , i.e. a special R-symmetry of order 4. We show that this ℤ4R symmetry can naturally originate from extra dimensions as a discrete remnant of higher-dimensional Lorentz symmetry. Finally, in order to obtain a unified picture from the heterotic string theory we discuss grand unified theories (GUTs) in extra dimensions compactified on ℤ2 × ℤ2 orbifolds and show how proton decay operators can be suppressed in a certain class of orbifolds.

  8. Universality of gauge thresholds in non-supersymmetric heterotic vacua

    Directory of Open Access Journals (Sweden)

    Carlo Angelantonj

    2014-09-01

    Full Text Available We compute one-loop threshold corrections to non-abelian gauge couplings in four-dimensional heterotic vacua with spontaneously broken N=2→N=0 supersymmetry, obtained as Scherk–Schwarz reductions of six-dimensional K3 compactifications. As expected, the gauge thresholds are no-longer BPS protected, and receive contributions also from the excitations of the RNS sector. Remarkably, the difference of thresholds for non-abelian gauge couplings is BPS saturated and exhibits a universal behaviour independently of the orbifold realisation of K3. Moreover, the thresholds and their difference develop infra-red logarithmic singularities whenever charged BPS-like states, originating from the twisted RNS sector, become massless at special loci in the classical moduli space.

  9. A solution to the decompactification problem in chiral heterotic strings

    Directory of Open Access Journals (Sweden)

    Ioannis Florakis

    2017-08-01

    Full Text Available We present a solution to the decompactification problem of gauge thresholds in chiral heterotic string theories with two large extra dimensions, where supersymmetry is spontaneously broken by the Scherk–Schwarz mechanism. Whenever the Kaluza–Klein scale that controls supersymmetry breaking is much lower than the string scale, the infinite towers of heavy states contribute non-trivially to the renormalisation of gauge couplings, which typically grow linearly with the large volume of the internal space and invalidate perturbation theory. We trace the origin of the decompactification problem to properties of the six dimensional theory obtained in the infinite volume limit and show that thresholds may instead exhibit logarithmic volume dependence and we provide the conditions for this to occur. We illustrate this mechanism with explicit string constructions where the decompactification problem does not occur.

  10. Heterosis and heterotic patterns among maize landraces for forage

    Directory of Open Access Journals (Sweden)

    Lopez Cesar Gabriel

    2009-01-01

    Full Text Available Corn silage is a high-quality forage crop used in many areas of the world. Although vegetative and reproductivecomponents of the plant must be considered, breeding programs in temperate regions are mainly based on the Reid xLancaster heterotic pattern that has undergone several cycles of improvement for grain yield. Moreover, hybrids selected forforage production are early maturing genotypes not adapted to warm-temperate or subtropical areas. Consequently, exoticgermplasm should be considered as a source of materials for breeding programs. Eight landraces were crossed following adiallel mating design. Interpopulation crosses showed high heterosis for ear, stover, and whole plant dry matter yield (EY, SY,and WY, respectively. On average, crosses had higher SY than checks, but lower EY. Considering WY, two interpopulationcrosses had higher means than all commercial checks, indicating the potential of the germplasm evaluated. Two compositeswere selected and different breeding strategies are discussed.

  11. Quality model for semantic IS standards

    NARCIS (Netherlands)

    Folmer, E.J.A.

    2011-01-01

    Semantic IS (Information Systems) standards are essential for achieving interoperability between organizations. However a recent survey suggests that not the full benefits of standards are achieved, due to the quality issues. This paper presents a quality model for semantic IS standards, that should

  12. A standard satellite control reference model

    Science.gov (United States)

    Golden, Constance

    1994-01-01

    This paper describes a Satellite Control Reference Model that provides the basis for an approach to identify where standards would be beneficial in supporting space operations functions. The background and context for the development of the model and the approach are described. A process for using this reference model to trace top level interoperability directives to specific sets of engineering interface standards that must be implemented to meet these directives is discussed. Issues in developing a 'universal' reference model are also identified.

  13. Modeling in the Common Core State Standards

    Science.gov (United States)

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  14. Standard model on D-branes

    Indian Academy of Sciences (India)

    Abstract. I briefly outline previous work on getting the (supersymmetric) standard model from string theory, and then describe two ecent attempts using D-branes. The first uses D3- and D7- branes and gives a supersymmetric standard model with extra vector-like matter and an intermediate unification scale. The second uses ...

  15. Standard model on D-branes

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Abstract. I briefly outline previous work on getting the (supersymmetric) standard model from string theory, and then describe two ecent attempts using D-branes. The first uses D3- and D7- branes and gives a supersymmetric standard model with extra vector-like matter and an intermediate unification scale.

  16. Competency model and standards for media education

    Directory of Open Access Journals (Sweden)

    Gerhard TULODZIECKI

    2012-12-01

    Full Text Available In Germany, educational standards for key school subjects have been developed as a consequence of the results of international comparative studies like PISA. Subsequently, supporters of interdisciplinary fields such as media education have also started calling for goals in the form of competency models and standards. In this context a competency standard model for media education will be developed with regard to the discussion about media competence and media education. In doing so the development of a competency model and the formulation of standards is described consequently as a decision making process. In this process decisions have to be made on competence areas and competence aspects to structure the model, on criteria to differentiate certain levels of competence, on the number of competence levels, on the abstraction level of standard formulations and on the tasks to test the standards. It is shown that the discussion on media education as well as on competencies and standards provides different possibilities of structuring, emphasizing and designing a competence standard model. Against this background we describe and give reasons for our decisions and our competency standards model. At the same time our contribution is meant to initiate further developments, testing and discussion.

  17. Beyond the Standard Model of Cosmology

    CERN Document Server

    Ellis, Jonathan Richard; Ellis, John

    2004-01-01

    Recent cosmological observations of unprecented accuracy, by WMAP in particular, have established a `Standard Model' of cosmology, just as LEP established the Standard Model of particle physics. Both Standard Models raise open questions whose answers are likely to be linked. The most fundamental problems in both particle physics and cosmology will be resolved only within a framework for Quantum Gravity, for which the only game in town is string theory. We discuss novel ways to model cosmological inflation and late acceleration in a non-critical string approach, and discuss possible astrophysical tests.

  18. The Standard Model of Particle Physics

    CERN Document Server

    Kibble, Tom W B

    2014-01-01

    This is a historical account from my personal perspective of the development over the last few decades of the standard model of particle physics. The model is based on gauge theories, of which the first was quantum electrodynamics, describing the interactions of electrons with light. This was later incorporated into the electroweak theory, describing electromagnetic and weak nuclear interactions. The standard model also includes quantum chromodynamics, the theory of the strong nuclear interactions. The final capstone of the model was the Higgs particle discovered in 2012 at CERN. But the model is very far from being the last word; there are still many gaps in our understanding.

  19. Working group report: Beyond the standard model

    Indian Academy of Sciences (India)

    Both the models cited above are multi-brane models with strong gravity localised on a brane-intersection. The meaning of localisation is that the graviton wave- function falls off exponentially outside the intersection. The standard model fields 'live' on a nearby brane, whose distance from the intersection sets the scale for the ...

  20. The making of the standard model

    NARCIS (Netherlands)

    Hooft, G. 't

    2007-01-01

    The standard model of particle physics is more than a model. It is a detailed theory that encompasses nearly all that is known about the subatomic particles and forces in a concise set of principles and equations. The extensive research that culminated in this model includes numerous small and

  1. Discrete symmetry breaking beyond the standard model

    NARCIS (Netherlands)

    Dekens, Wouter Gerard

    2015-01-01

    The current knowledge of elementary particles and their interactions is summarized in the Standard Model of particle physics. Practically all the predictions of this model, that have been tested, were confirmed experimentally. Nonetheless, there are phenomena which the model cannot explain. For

  2. Beyond the Standard Model (5/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  3. Beyond the Standard Model (2/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  4. Beyond the Standard Model (3/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  5. Beyond the Standard Model (4/5)

    CERN Document Server

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  6. Beyond the Standard Model (1/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  7. The standard model in a nutshell

    CERN Document Server

    Goldberg, Dave

    2017-01-01

    For a theory as genuinely elegant as the Standard Model--the current framework describing elementary particles and their forces--it can sometimes appear to students to be little more than a complicated collection of particles and ranked list of interactions. The Standard Model in a Nutshell provides a comprehensive and uncommonly accessible introduction to one of the most important subjects in modern physics, revealing why, despite initial appearances, the entire framework really is as elegant as physicists say. Dave Goldberg uses a "just-in-time" approach to instruction that enables students to gradually develop a deep understanding of the Standard Model even if this is their first exposure to it. He covers everything from relativity, group theory, and relativistic quantum mechanics to the Higgs boson, unification schemes, and physics beyond the Standard Model. The book also looks at new avenues of research that could answer still-unresolved questions and features numerous worked examples, helpful illustrat...

  8. Is the Standard Model about to crater?

    CERN Multimedia

    Lane, Kenneth

    2015-01-01

    The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC's Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale.

  9. Influenza em animais heterotérmicos Influenza in heterothermics

    Directory of Open Access Journals (Sweden)

    Dalva Assunção Portari Mancini

    2004-06-01

    Full Text Available O objetivo foi pesquisar Ortomyxovirus em animais heterotérmicos. Coletou-se sangue de serpentes dos gêneros Bothrops e Crotalus e de sapo e rãs dos gêneros Bufo e Rana, para a detecção dos receptores de hemácias e anticorpos específicos, ao vírus influenza, pelos testes de hemaglutinação e inibição da hemaglutinação, respectivamente. Pelo teste de hemaglutinação, verificou-se que serpentes e sapos em cativeiro apresentaram receptores em suas hemácias para o vírus influenza, humano e eqüino do tipo A e tipo B. O mesmo ocorreu com serpentes recém chegadas. Quanto ao teste de inibição da hemaglutinação dos soros dos répteis observou-se títulos protetores de anticorpos aos vírus influenza tipo A (origens humana e eqüina e tipo B. Com soro de sapo não se observou reação de inibição da hemaglutinação porém, 83,3% das rãs obtiveram médias de 40UIH para algumas cepas. Conclui-se que animais heterotérmicos podem oferecer condições de hospedeiros aos vírus influenza, assim como susceptibilidade à infecção.The objective was to study Orthomyxovirus in heterothermic animals. Blood samples from snakes (genus Bothrops and Crotalus and from toads and frogs (genus Bufo and Rana were collected to evaluate the red cell receptors and antibodies specific to influenza virus by the hemagglutination and hemagglutination inhibition tests, respectively. Both snakes and toads kept in captivity presented receptors in their red cells and antibodies specific to either influenza virus type A (human and equine origin or influenza type B. The same was observed with recently captured snakes. Concerning the influenza hemagglutination inhibition antibodies protective levels were observed in the reptiles' serum, against influenza type A and type B. Unlike the toads, 83.3% of the frogs presented mean levels of Ab 40HIU for some influenza strains. It was concluded that heterothermic animals could offer host conditions to the influenza

  10. Standard Model Background of the Cosmological Collider.

    Science.gov (United States)

    Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi

    2017-06-30

    The inflationary universe can be viewed as a "cosmological collider" with an energy of the Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics standard model. In this Letter we describe the standard model background of the cosmological collider.

  11. Standard Model measurements with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hassani Samira

    2015-01-01

    Full Text Available Various Standard Model measurements have been performed in proton-proton collisions at a centre-of-mass energy of √s = 7 and 8 TeV using the ATLAS detector at the Large Hadron Collider. A review of a selection of the latest results of electroweak measurements, W/Z production in association with jets, jet physics and soft QCD is given. Measurements are in general found to be well described by the Standard Model predictions.

  12. Exploring the Standard Model of Particles

    Science.gov (United States)

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  13. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  14. Neutrinos: A Glimpse Beyond the Standard Model

    OpenAIRE

    Ramond, P.

    1998-01-01

    After a review of the early history of neutrinos and their detection, we analyze the different types of models that extend the standard model to massive neutrinos. We emphasize the generic nature of maximal mixing between muon and tau neutrinos, given simple assumptions based on grand unification.

  15. Higher derivative couplings and heterotic-Type I duality in eight dimensions

    Science.gov (United States)

    Förger, K.; Stieberger, S.

    1999-10-01

    We calculate F4 and R4T4 g-4 couplings in d = 8 heterotic and type I string vacua (with gauge and graviphoton field strengths F, T, and Riemann curvature R). The holomorphic piece Fg of the heterotic one-loop coupling R4T4 g-4 is given by a polylogarithm of index 5 - 4 g and encodes the counting of genus g curves with g nodes on the K3 of the dual F-theory side. We present closed expressions for world-sheet τ-integrals with an arbitrary number of lattice vector insertions. Furthermore we verify that the corresponding heterotic one-loop couplings sum up perturbative open string and non-perturbative D-string contributions on the type I side. Finally we discuss a type I one-loop correction to the R2 term.

  16. Higher Derivative Couplings and Heterotic-Type I Duality in Eight Dimensions

    CERN Document Server

    Foerger, K.

    1999-01-01

    We calculate F^4 and R^4T^(4g-4) couplings in d=8 heterotic and type I string vacua (with gauge and graviphoton field strengths F,T, and Riemann curvature R). The holomorphic piece F_g of the heterotic one-loop coupling R^4T^(4g-4) is given by a polylogarithm of index 5-4g and encodes the counting of genus g curves with g nodes on the K3 of the dual F-theory side. We present closed expressions for world-sheet tau-integrals with an arbitrary number of lattice vector insertions. Furthermore we verify that the corresponding heterotic one-loop couplings sum up perturbative open string and non-perturbative D-string contributions on the type I side. Finally we discuss a type I one-loop correction to the R^2 term.

  17. Development of NASA's Models and Simulations Standard

    Science.gov (United States)

    Bertch, William J.; Zang, Thomas A.; Steele, Martin J.

    2008-01-01

    From the Space Shuttle Columbia Accident Investigation, there were several NASA-wide actions that were initiated. One of these actions was to develop a standard for development, documentation, and operation of Models and Simulations. Over the course of two-and-a-half years, a team of NASA engineers, representing nine of the ten NASA Centers developed a Models and Simulation Standard to address this action. The standard consists of two parts. The first is the traditional requirements section addressing programmatics, development, documentation, verification, validation, and the reporting of results from both the M&S analysis and the examination of compliance with this standard. The second part is a scale for evaluating the credibility of model and simulation results using levels of merit associated with 8 key factors. This paper provides an historical account of the challenges faced by and the processes used in this committee-based development effort. This account provides insights into how other agencies might approach similar developments. Furthermore, we discuss some specific applications of models and simulations used to assess the impact of this standard on future model and simulation activities.

  18. 4D superfield reduction of 5-D orbifold SUGRA and heterotic M-theory

    CERN Document Server

    Paccetti Correia, F.; Tavartkiladze, Zurab; Correia, Filipe Paccetti; Schmidt, Michael G.; Tavartkiladze, Zurab

    2006-01-01

    We present a detailed study of the reduction to 4D of 5D supergravity compactified on the S^1/Z_2 orbifold. For this purpose we develop and employ a recently proposed N=1 conformal superfield description of the 5D supergravity couplings to abelian vector and hypermultiplets. In particular, we obtain a unique relation of the "radion" to chiral superfields as in global 5D SUSY and we can embed the universal hypermultiplet into this formalism. In our approach, it is transparent how the superconformal structure of the effective 4D actions is inherited from the one of the original 5D supergravity. We consider both ungauged and gauged 5D supergravities. This includes compactifications in unwarped geometries, generalizations of the supersymmetric Randall-Sundrum (RS) model as well as 5D heterotic M-theory. In the unwarped case, after obtaining the effective Kaehler potentials and superpotentials, we demonstrate that the tree-level 4D potentials have flat and/or tachyonic directions. One-loop corrections to the Kaehl...

  19. Geometry and supersymmetry of heterotic warped flux AdS backgrounds

    Science.gov (United States)

    Beck, S.; Gutowski, J.; Papadopoulos, G.

    2015-07-01

    We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdS n backgrounds with n ≠ 3. Moreover the warp factor of AdS3 backgrounds is constant, the geometry is a product AdS 3 × M 7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M 7 has been specified in all cases. For 2 supersymmetries, it has been found that M 7 admits a suitably restricted G 2 structure. For 4 supersymmetries, M 7 has an SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M 7 has an SU(2) structure and can be described locally as a S 3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kähler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α' corrections.

  20. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  1. LHC Higgs physics beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Spannowsky, M.

    2007-09-22

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan {beta} in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  2. Standard Model as a Double Field Theory.

    Science.gov (United States)

    Choi, Kang-Sin; Park, Jeong-Hyuck

    2015-10-23

    We show that, without any extra physical degree introduced, the standard model can be readily reformulated as a double field theory. Consequently, the standard model can couple to an arbitrary stringy gravitational background in an O(4,4) T-duality covariant manner and manifest two independent local Lorentz symmetries, Spin(1,3)×Spin(3,1). While the diagonal gauge fixing of the twofold spin groups leads to the conventional formulation on the flat Minkowskian background, the enhanced symmetry makes the standard model more rigid, and also stringy, than it appeared. The CP violating θ term may no longer be allowed by the symmetry, and hence the strong CP problem can be solved. There are now stronger constraints imposed on the possible higher order corrections. We speculate that the quarks and the leptons may belong to the two different spin classes.

  3. Beyond the Standard Model in Many Directions

    CERN Document Server

    Quigg, Christopher S

    2006-01-01

    These four lectures constitute a gentle introduction to what may lie beyond the standard model of quarks and leptons interacting through $SU(3)_c \\otimes SU(2)_L \\otimes U(1)_Y$ gauge bosons, prepared for an audience of graduate students in experimental particle physics. In the first lecture, I introduce a novel graphical representation of the particles and interactions, the double simplex, to elicit questions that motivate our interest in physics beyond the standard model, without recourse to equations and formalism. Lecture 2 is devoted to a short review of the current status of the standard model, especially the electroweak theory, which serves as the point of departure for our explorations. The third lecture is concerned with unified theories of the strong, weak, and electromagnetic interactions. In the fourth lecture, I survey some attempts to extend and complete the electroweak theory, emphasizing some of the promise and challenges of supersymmetry. A short concluding section looks forward.

  4. CP Violation Beyond the Standard Model

    CERN Document Server

    Fleischer, Robert

    1997-01-01

    Recent developments concerning CP violation beyond the Standard Model are reviewed. The central target of this presentation is the $B$ system, as it plays an outstanding role in the extraction of CKM phases. Besides a general discussion of the appearance of new physics in the corresponding CP-violating asymmetries through $B^0_q$--$\\bar{B^0_q}$ mixing $(q\\in\\{d,s\\})$, it is emphasized that CP violation in non-leptonic penguin modes, e.g. in $B_d\\to\\phi K_{S}$, offers a powerful tool to probe physics beyond the Standard Model. In this respect $B\\to\\pi K$ modes, which have been observed recently by the CLEO collaboration, may also turn out to be very useful. Their combined branching ratios allow us to constrain the CKM angle $\\gamma$ and may indicate the presence of physics beyond the Standard Model.

  5. Beyond the standard model, experimental summary

    CERN Document Server

    McPherson, R A

    2003-01-01

    An overview of experimental results in searches for physics beyond the Standard Model is presented. It is impossible to cover all topics in this field, so a set of examples is used to highlight the scope and breadth of the results. Selected topics include searches for compositeness, flavour changing neutral currents, SUSY, exotic Higgs particles, low scale gravity in extra dimensions, and non commutative geometry. Current results are presented from the LEP, Tevatron Run I, and HERA I experiments. No convincing evidence for physics beyond the Standard Model has been observed. Prospects for ongoing and upcoming experiments are discussed. (40 refs).

  6. Precision tests of the standard electroweak model

    CERN Document Server

    1995-01-01

    High precision measurements of weak neutral current and charged current processes and of the properties of the Z and W bosons have established the standard electroweak model as correct down to a distance scale of 10-16 cm, and are a sensitive probe of possible underlying physics. In this book, all aspects of the program are considered in detail, including the structure of the standard model, radiative corrections, high precision experiments, and their implications. The major classes of experiments are surveyed, covering the experiments themselves, the data analysis, results, and prospects. Thi

  7. Next to new minimal standard model

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan); Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Kaneta, Kunio [Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Takahashi, Ryo [Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan)

    2014-06-27

    We suggest a minimal extension of the standard model, which can explain current experimental data of the dark matter, small neutrino masses and baryon asymmetry of the universe, inflation, and dark energy, and achieve gauge coupling unification. The gauge coupling unification can explain the charge quantization, and be realized by introducing six new fields. We investigate the vacuum stability, coupling perturbativity, and correct dark matter abundance in this model by use of current experimental data.

  8. Standard Model, Higgs Boson and What Next?

    Indian Academy of Sciences (India)

    IAS Admin

    was the dream of Einstein. Perhaps that will be realized by string theory and in the future. For the present we have the Standard Model which is a theory of the electroweak and strong interactions and is based on a generalization of elecrodynamics. So let us start with electrodynamics. 3. Laws of Electrodynamics. The laws of ...

  9. Prospects of experimentally reachable beyond Standard Model ...

    Indian Academy of Sciences (India)

    2016-01-06

    Jan 6, 2016 ... Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 2. Prospects of experimentally reachable beyond Standard Model physics in inverse see-saw motivated SO(10) GUT. Ram Lal Awasthi. Special: Supersymmetric Unified Theories and Higgs Physics Volume 86 Issue 2 February 2016 pp 223- ...

  10. Why supersymmetry? Physics beyond the standard model

    Indian Academy of Sciences (India)

    2016-08-23

    Aug 23, 2016 ... How supersymmetry solves this Naturalness Problem is outlined. There are also other contexts ... Naturalness problem; hierarchy problem; decoupling; supersymmetry; Standard Model; Higgs particle; violation of Lorentz ... Various parameters here, the electromagnetic coupling e and electron mass me, ...

  11. Supersymmetric standard model spectra from RCFT orientifolds

    NARCIS (Netherlands)

    Dijkstra, T.P.T.

    2007-01-01

    This thesis reports on a search for open string vacua that contain as the chiral spectrum just the particles of the Standard model. Using algebraic methods to scan through a very large number of brane configurations made it possible to find the first such vacua.

  12. Why supersymmetry? Physics beyond the standard model

    Indian Academy of Sciences (India)

    The Naturalness Principle as a requirement that the heavy mass scales decouple from the physics of light mass scales is reviewed. In quantum field theories containing {\\em elementary} scalar fields, such as the StandardModel of electroweak interactions containing the Higgs particle, mass of the scalar field is not a natural ...

  13. The race to break the standard model

    CERN Multimedia

    Brumfiel, Geoff

    2008-01-01

    The Large Hadron Collider is the latest attempt to move fundamental physics past the frustratingly successful "standard model". But it is not the only way to do it... The author surveys the contenders attempting to capture the prize before the collider gets up to speed.(4 pages)

  14. Standard Model at the LHC 2017

    CERN Document Server

    2017-01-01

    The SM@LHC 2017 conference will be held May 2-5, 2017 at Nikhef, Amsterdam. The meeting aims to bring together experimentalists and theorists to discuss the phenomenology, observational results and theoretical tools for Standard Model physics at the LHC.

  15. Inflation in the standard cosmological model

    Science.gov (United States)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  16. Breed, heterotic, maternal and direct additive effects on pre and post ...

    African Journals Online (AJOL)

    Data on growth and linear body measurements of rabbits which consisted of two pure strains (New Zealand White, NZW and Chinchilla, CH) as well as their reciprocal crosses were compared. The aim of the experiment was to evaluate the crossbreeding effects (i.e direct, maternal and heterotic effects) for growth and linear ...

  17. Genetic variation and heterotic effects for seed oil, seed protein and ...

    African Journals Online (AJOL)

    Four hybrids revealed greater per se performance and positive heterosis for seed oil content. Of these, Surabhi x TCH 1646 exhibiting highest per se performance, heterotic effect was found to be best for directional selection. Keywords: Cotton, heterosis, seed oil, seed protein, yield. African Journal of Biotechnology Vol.

  18. Determination of the Heterotic groups of Maize inbred lines and the ...

    African Journals Online (AJOL)

    Maize weevil (Sitophilus zeamais Motschulsky) is a major maize (Zea mays L) storage insect pest in the tropics. Fifty-two inbred lines developed for weevil resistance were crossed to two testers, A and B, to determine their heterotic groups and inheritance of resistance to maize weevil. For 10 testcrosses selected for ...

  19. Heterotic Non-Kähler Geometries via Polystable Bundles on Calabi-Yau Threefolds

    DEFF Research Database (Denmark)

    Andreas, Bjorn; Garcia Fernandez, Mario

    2012-01-01

    In arXiv:1008.1018 it is shown that a given stable vector bundle V on a Calabi-Yau threefold X which satisfies c_2(X) = c_2(V ) can be deformed to a solution of the Strominger system and the equations of motion of heterotic string theory. In this note we extend this result to the polystable case...

  20. The standard model coupled to quantum gravitodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Aldabe, Fermin

    2017-01-15

    We show that the renormalizable SO(4) x U(1) x SU(2) x SU(3) Yang-Mills coupled to matter and the Higgs field fits all the experimentally observed differential cross sections known in nature. This extended Standard Model reproduces the experimental gravitational differential cross sections without resorting to the graviton field and instead by exchanging SO(4) gauge fields. By construction, each SO(4) generator in quantum gravitodynamics does not commute with the Dirac gamma matrices. This produces additional interactions absent to non-Abelian gauge fields in the Standard Model. The contributions from these new terms yield differential cross sections consistent with the Newtonian and post-Newtonian interactions derived from General Relativity. Dimensional analysis of the Lagrangian shows that all its terms have total dimensionality four or less and therefore that all physical quantities in the theory renormalize by finite amounts. These properties make QGD the only renormalizable four-dimensional theory describing gravitational interactions. (orig.)

  1. Beyond the standard model in many directions

    Energy Technology Data Exchange (ETDEWEB)

    Chris Quigg

    2004-04-28

    These four lectures constitute a gentle introduction to what may lie beyond the standard model of quarks and leptons interacting through SU(3){sub c} {direct_product} SU(2){sub L} {direct_product} U(1){sub Y} gauge bosons, prepared for an audience of graduate students in experimental particle physics. In the first lecture, I introduce a novel graphical representation of the particles and interactions, the double simplex, to elicit questions that motivate our interest in physics beyond the standard model, without recourse to equations and formalism. Lecture 2 is devoted to a short review of the current status of the standard model, especially the electroweak theory, which serves as the point of departure for our explorations. The third lecture is concerned with unified theories of the strong, weak, and electromagnetic interactions. In the fourth lecture, I survey some attempts to extend and complete the electroweak theory, emphasizing some of the promise and challenges of supersymmetry. A short concluding section looks forward.

  2. Standard Model backgrounds to supersymmetry searches

    CERN Document Server

    Mangano, Michelangelo L

    2009-01-01

    This work presents a review of the Standard Model sources of backgrounds to the search of supersymmetry signals. Depending on the specific model, typical signals may include jets, leptons, and missing transverse energy due to the escaping lightest supersymmetric particle. We focus on the simplest case of multijets and missing energy, since this allows us to expose most of the issues common to other more complex cases. The review is not exhaustive, and is aimed at collecting a series of general comments and observations, to serve as guideline for the process that will lead to a complete experimental determination of size and features of such SM processes.

  3. Beyond standard model calculations with Sherpa

    Science.gov (United States)

    Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; Siegert, Frank

    2015-03-01

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in Beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  4. LHC results and prospects Beyond standard model

    CERN Document Server

    Teyssier, Daniel Francois

    2014-01-01

    We present the results and prospects for searches beyond the Standard Model (SM) at the LHC by the ATLAS and CMS collaborations. The minimal supersymmetric extension of the SM has been investigated in various configurations and lower limits are set on the s-particle masses. The searches for other scenarios of physics beyond the SM are also presented and lower limits on the mass scale are derived in a large variety of models (new heavy gauge bosons, extra-dimensions, compositeness or dark matter). The prospects for physics using 300 /fb and 3000 /fb of data at the high luminosity LHC are also shown.

  5. Experimentally testing the standard cosmological model

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.

  6. 42 CFR 403.210 - NAIC model standards.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false NAIC model standards. 403.210 Section 403.210... model standards. (a) NAIC model standards means the National Association of Insurance Commissioners (NAIC) “Model Regulation to Implement the Individual Accident and Insurance Minimum Standards Act” (as...

  7. Stabilization for the vibrations modeled by the 'standard linear model ...

    Indian Academy of Sciences (India)

    Abstract. We study the stabilization of vibrations of a flexible structure modeled by the 'standard linear model' of viscoelasticity in a bounded domain in Rn with a smooth boundary. We prove that amplitude of the vibrations remains bounded in the sense of a suitable norm in a space X, defined explicitly in (22) subject to a ...

  8. Beyond the standard model with the LHC.

    Science.gov (United States)

    Ellis, John

    2007-07-19

    Whether or not the Large Hadron Collider reveals the long-awaited Higgs particle, it is likely to lead to discoveries that add to, or challenge, the standard model of particle physics. Data produced will be pored over for any evidence of supersymmetric partners for the existing denizens of the particle 'zoo' and for the curled-up extra dimensions demanded by string theory. There might also be clues as to why matter dominates over antimatter in the Universe, and as to the nature of the Universe's dark matter.

  9. Alocação de linhagens de milho derivadas das populações BR-105 e BR-106 em grupos heteróticos Allocation of maize lines from BR-105 and BR-106 populations to heterotic groups

    Directory of Open Access Journals (Sweden)

    Rogério de Melo Costa Pinto

    2001-09-01

    -106, respectively, were crossed at interpopulation levels following a diallel system. Eighty single-crosses were obtained and evaluated in lattice designs across three environments. Recorded data consisted of grain yield (GY, plant height (PH and ear height (EH. Estimates of general and specific combining ability (GCA and (SGA were computed according to Griffing's method 4, model I, for all traits. Estimates of SCA were used for principal coordinate analysis (PCO and for cluster analysis, by using UPGMA (unweighted pair-group method with arithmetical averages clustering algorithm, to assign the lines to heterotic groups. For the trait GY the lines were allocated to 4 heterotic groups, in which the lines from each population were subdivided in 2 heterotic groups. For the traits PH and EH, the use of the estimates of SCA to assign lines to heterotic groups were not efficient. Cluster analysis and principal coordinate analysis were efficient for the trait GY in allocating maize lines to heterotic groups. Thus, since grain yield is the main trait for the breeding purposes, with the allocation of the lines in 4 heterotic groups, the crosses will be more efficient, avoiding to obtain and evaluate unnecessary (hybrid crosses.

  10. Bounds on the Higgs mass in the standard model and the minimal supersymmetric standard model

    CERN Document Server

    Quiros, M.

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the {\\bf Standard Model} can develop a non-standard minimum for values of the field much larger than the weak scale. In those cases the standard minimum becomes metastable and the possibility of decay to the non-standard one arises. Comparison of the decay rate to the non-standard minimum at finite (and zero) temperature with the corresponding expansion rate of the Universe allows to identify the region, in the (M_H, M_t) plane, where the Higgs field is sitting at the standard electroweak minimum. In the {\\bf Minimal Supersymmetric Standard Model}, approximate analytical expressions for the Higgs mass spectrum and couplings are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log corrections. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass o...

  11. The Standard Model Algebra - a summary

    Science.gov (United States)

    Cristinel Stoica, Ovidiu

    2017-08-01

    A generation of leptons and quarks and the gauge symmetries of the Standard Model can be obtained from the Clifford algebra ℂℓ 6. An instance of ℂℓ 6 is implicitly generated by the Dirac algebra combined with the electroweak symmetry, while the color symmetry gives another instance of ℂℓ 6 with a Witt decomposition. The minimal mathematical model proposed here results by identifying the two instances of ℂℓ 6. The left ideal decomposition generated by the Witt decomposition represents the leptons and quarks, and their antiparticles. The SU(3)c and U(1)em symmetries of the SM are the symmetries of this ideal decomposition. The patterns of electric charges, colors, chirality, weak isospins, and hypercharges, follow from this, without predicting additional particles or forces, or proton decay. The electroweak symmetry is present in its broken form, due to the geometry. The predicted Weinberg angle is given by sin2 W = 0.25. The model shares common features with previously known models, particularly with Chisholm and Farwell, 1996, Trayling and Baylis, 2004, and Furey, 2016.

  12. Amplitude relations in heterotic string theory and Einstein-Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2016-11-11

    We present all-multiplicity evidence that the tree-level S-matrix of gluons and gravitons in heterotic string theory can be reduced to color-ordered single-trace amplitudes of the gauge multiplet. Explicit amplitude relations are derived for up to three gravitons, up to two color traces and an arbitrary number of gluons in each case. The results are valid to all orders in the inverse string tension α{sup ′} and generalize to the ten-dimensional superamplitudes which preserve 16 supercharges. Their field-theory limit results in an alternative proof of the recently discovered relations between Einstein-Yang-Mills amplitudes and those of pure Yang-Mills theory. Similarities and differences between the integrands of the Cachazo-He-Yuan formulae and the heterotic string are investigated.

  13. Heterotic and type II orientifold compactifications on SU(3) structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Benmachiche, I.

    2006-07-15

    We study the four-dimensional N=1 effective theories of generic SU(3) structure compactifications in the presence of background fluxes. For heterotic and type IIA/B orientifold theories, the N=1 characteristic data are determined by a Kaluza-Klein reduction of the fermionic actions. The Kaehler potentials, superpotentials and the D-terms are entirely encoded by geometrical data of the internal manifold. The background flux and the intrinsic torsion of the SU(3) structure manifold, gives rise to contributions to the four-dimensional F-terms. The corresponding superpotentials generalize the Gukov-Vafa-Witten superpotential. For the heterotic compactification, the four-dimensional fermionic supersymmetry variations, as well as the conditions on supersymmetric vacua, are determined. The Yukawa couplings of the theory turn out to be similar to their Calabi-Yau counterparts. (Orig.)

  14. The effective action of the heterotic string compactified on manifolds with SU(3) structure

    Science.gov (United States)

    Benmachiche, Iman; Louis, Jan; Martínez-Pedrera, Danny

    2008-07-01

    We derive the N = 1 effective action of the heterotic string compactified on manifolds with SU(3) structure in the presence of background fluxes. We use a Kaluza Klein reduction and compute the moduli dependence of the Kähler potential, the gauge kinetic function and the superpotential entirely from fermionic terms of the reduced action. Work supported by: DFG—The German Science Foundation, European RTN Program MRTN-CT-2004-503369 and the DAAD—the German Academic Exchange Service.

  15. [Standardization and modeling of surgical processes].

    Science.gov (United States)

    Strauss, G; Schmitz, P

    2016-12-01

    Due to the technological developments around the operating room, surgery in the twenty-first century is undergoing a paradigm shift. Which technologies have already been integrated into the surgical routine? How can a favorable cost-benefit balance be achieved by the implementation of new software-based assistance systems? This article presents the state of the art technology as exemplified by a semi-automated operation system for otorhinolaryngology surgery. The main focus is on systems for implementation of digital handbooks and navigational functions in situ. On the basis of continuous development in digital imaging, decisions may by facilitated by individual patient models thus allowing procedures to be optimized. The ongoing digitization and linking of all relevant information enable a high level of standardization in terms of operating procedures. This may be used by assistance systems as a basis for complete documentation and high process reliability. Automation of processes in the operating room results in an increase in quality, precision and standardization so that the effectiveness and efficiency of treatment can be improved; however, care must be taken that detrimental consequences, such as loss of skills and placing too much faith in technology must be avoided by adapted training concepts.

  16. Standard model fermions and N=8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Hermann [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, Potsdam-Golm (Germany)

    2016-07-01

    In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU(3) x U(1) stationary point of maximal gauged SO(8) supergravity, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3){sub c} and a family symmetry SU(3){sub f}. However, there remained a systematic mismatch in the electric charges by a spurion charge of ± 1/6. We here identify the ''missing'' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form, and show how it is related to the conjectured R symmetry K(E10) of M Theory.

  17. Quantum field theory and the standard model

    CERN Document Server

    Schwartz, Matthew D

    2014-01-01

    Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...

  18. Proposal for a supersymmetric standard model.

    Science.gov (United States)

    López-Fogliani, D E; Muñoz, C

    2006-07-28

    The fact that neutrinos are massive suggests that the minimal supersymmetric standard model (MSSM) might be extended in order to include three gauge-singlet neutrino superfields with Yukawa couplings of the type H2Lnuc. We propose to use these superfields to solve the mu problem of the MSSM without having to introduce an extra singlet superfield as in the case of the next-to-MSSM (NMSSM). In particular, terms of the type nuc H1H2 in the superpotential may carry out this task spontaneously through neutrino vacuum expectation values. In addition, terms of the type (nuc)3 avoid the presence of axions and generate effective Majorana masses for neutrinos at the electroweak scale. On the other hand, these terms break lepton number and R parity explicitly. For Dirac masses of the neutrinos of order 10(-4) GeV, eigenvalues reproducing the correct scale of neutrino masses are obtained.

  19. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  20. Outstanding questions: physics beyond the Standard Model.

    Science.gov (United States)

    Ellis, John

    2012-02-28

    The Standard Model of particle physics agrees very well with experiment, but many important questions remain unanswered, among them are the following. What is the origin of particle masses and are they due to a Higgs boson? How does one understand the number of species of matter particles and how do they mix? What is the origin of the difference between matter and antimatter, and is it related to the origin of the matter in the Universe? What is the nature of the astrophysical dark matter? How does one unify the fundamental interactions? How does one quantize gravity? In this article, I introduce these questions and discuss how they may be addressed by experiments at the Large Hadron Collider, with particular attention to the search for the Higgs boson and supersymmetry.

  1. Beyond the standard model of particle physics.

    Science.gov (United States)

    Virdee, T S

    2016-08-28

    The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).

  2. Symmetry breaking: The standard model and superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1988-08-31

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g/sup 2/ = (..sqrt..2G/sub F/)/sup /minus/1/ approx. = 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10/sup 3/)GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs.

  3. E(lementary)-strings in six-dimensional heterotic F-theory

    Science.gov (United States)

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-09-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small instantons generate most of known six-dimensional superconformal theories, their affinizations and little string theories. Taking account of global structure of compact internal geometry, we also show that special combinations of E-strings play an important role in constructing six-dimensional theories of D- and E-types. We check global consistency conditions from anomaly cancellation conditions, both from five-branes and strings, and show that they are given in terms of elementary E-string combinations.

  4. Invariant solutions to the Strominger system and the heterotic equations of motion

    Science.gov (United States)

    Otal, Antonio; Ugarte, Luis; Villacampa, Raquel

    2017-07-01

    We construct many new invariant solutions to the Strominger system with respect to a 2-parameter family of metric connections ∇ ε , ρ in the anomaly cancellation equation. The ansatz ∇ ε , ρ is a natural extension of the canonical 1-parameter family of Hermitian connections found by Gauduchon, as one recovers the Chern connection ∇c for (ε , ρ) = (0 ,1/2), and the Bismut connection ∇+ for (ε , ρ) = (1/2 , 0). In particular, explicit invariant solutions to the Strominger system with respect to the Chern connection, with non-flat instanton and positive α‧ are obtained. Furthermore, we give invariant solutions to the heterotic equations of motion with respect to the Bismut connection. Our solutions live on three different compact non-Kähler homogeneous spaces, obtained as the quotient by a lattice of maximal rank of a nilpotent Lie group, the semisimple group SL (2 , C) and a solvable Lie group. To our knowledge, these are the only known invariant solutions to the heterotic equations of motion, and we conjecture that there is no other such homogeneous space admitting an invariant solution to the heterotic equations of motion with respect to a connection in the ansatz ∇ ε , ρ.

  5. Non-supersymmetric flux compactifications of heterotic string- and M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Held, Johannes Georg Joseph

    2012-05-08

    This dissertation is concerned with non-supersymmetric vacua of string theory in the supergravity (SUGRA) approach. This approach is the effective description of string theory at low energies. The concrete field of research that is treated here is heterotic E{sub 8} x E{sub 8} string theory at weak and at strong coupling, respectively. In the strong coupling limit the theory is described by eleven-dimensional SUGRA with two ten-dimensional boundaries (heterotic M-Theory). The transition to the weak coupling limit is governed by the restricted space dimension, whose length tends to zero for weak coupling such that the two boundaries get identified with each other. The resulting theory is ten-dimensional E{sub 8} x E{sub 8} SUGRA. In the context of this heterotic SUGRA, at first six of the former nine space-dimensions are compactified, and then, in the presence of non-vanishing background flux, conditions for unbroken supersymmetry (SUSY) in four space-time dimensions are analyzed. Afterwards, a violation of one of the necessary SUSY conditions is allowed. An essential ingredient, necessary for this to work, is the presence of flux. This kind of SUSY-breaking leads to severe constraints on the compact six-dimensional manifold, which can be satisfied by fiber bundles with two-dimensional fiber and four-dimensional base. In simple examples one can stabilize the expectation value of the dilaton as well as the volume of the fiber, whereas the volume of the base remains undetermined. Furthermore, the effect of a fermionic condensate is analyzed. The expected additional SUSY-breaking can be observed, and it is shown that the breaking induced by the flux can not be canceled by the contributions from the condensate. The end of this thesis is concerned with the discussion of the strong coupling limit of the previously found examples. To analyze this, it is necessary to rewrite the action of heterotic M-theory as a sum of quadratic terms, which vanish once SUSY is imposed

  6. Local SU(5) unification from the heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Schmidt, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Luedeling, C. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik

    2007-07-15

    We construct a 6D supergravity theorywhich emerges as intermediate step in the compactification of the herterotic string to the supersymmetric standard model in four dimensions. The theory has N=2 supersymmetry and a gravitational sector with one tensor and two hypermultiplets in addition to the supergravity multiplet. Compactification to four dimensions occurs on a T{sup 2}/Z{sub 2} orbifold which has two inequivalent pairs of fixed points with unbroken SU(5) and SU(2) x SU(4) symmetry, respectively. All gauge, gravitational and mixed anomalies are cancelled by the Green-Schwarz mechanism. The model has partial 6D gauge-Higgs unification.Two quark-lepton generations are localized at the SU(5) branes, the third family is composed of split bulk hypermultiplets. The top Yukawa coupling is given by the 6D gauge coupling, all other Yukawa couplings are generated by higher-dimensional operators at the SU(5) branes. The presence of the SU(2) x SU(4) brane breaks SU(5) and generates split gauge and Higgs multiplets with N=1 supersymmetry in four dimensions. The third generation is obtained from two split anti 5-plets and two split 10-plets, which together vave the quantum numbers of one anti 5 plet and one 10-plet. This avoids unscuccessful SU(5) predictions for Yukawa couplings of ordinary 4D SU(5) grand unified theories. (orig.)

  7. Standard surface-reflectance model and illuminant estimation

    Science.gov (United States)

    Tominaga, Shoji; Wandell, Brian A.

    1989-01-01

    A vector analysis technique was adopted to test the standard reflectance model. A computational model was developed to determine the components of the observed spectra and an estimate of the illuminant was obtained without using a reference white standard. The accuracy of the standard model is evaluated.

  8. Searches for Beyond Standard Model Physics with ATLAS and CMS

    CERN Document Server

    Rompotis, Nikolaos; The ATLAS collaboration

    2017-01-01

    The exploration of the high energy frontier with ATLAS and CMS experiments provides one of the best opportunities to look for physics beyond the Standard Model. In this talk, I review the motivation, the strategy and some recent results related to beyond Standard Model physics from these experiments. The review will cover beyond Standard Model Higgs boson searches, supersymmetry and searches for exotic particles.

  9. Connected formulas for amplitudes in standard model

    Energy Technology Data Exchange (ETDEWEB)

    He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)

    2017-03-17

    Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  10. Beyond the Standard Model Higgs Physics using the ATLAS Experiment

    Directory of Open Access Journals (Sweden)

    Beckingham Matthew

    2013-11-01

    Full Text Available With the discovery of a Higgs boson that has properties consistent with the Standard Model at the LHC, searches for additional Higgs bosons due to beyond the Standard Model physics, along with potential property measurements not consistent with the Standard Model, become more interesting and relevant. This article summarises the current searches for such new Higgs bosons performed with the ATLAS detector, using proton-proton collisions at centre of mass energies of 7 and 8 TeV at LHC. No significant deviations from the predictions of the Standard Model are observed in any search channel and hence limits on physics beyond the Standard Model are calculated.

  11. Is Nature Standard like the Model? Experimental results on Standard Model and Higgs boson physics

    CERN Document Server

    Massironi, Andrea

    2017-01-01

    Recent results on Standard Model and Higgs boson measurements performed by ATLAS and CMS collaborations will be reported. The presentation will include results based on LHC Run II data, with particular relevance on most recent ones. Vector boson production, Jets, Photons, Top physics, and different Higgs boson production mechanisms will be overviewed. Precision measurements reachable with Run II data are discussed as well, such as the most updated differential distributions.

  12. Primordial lithium and the standard model(s)

    Science.gov (United States)

    Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.; Romanelli, Paul; Krauss, Lawrence M.

    1989-01-01

    The results of new theoretical work on surface Li-7 and Li-6 evolution in the oldest halo stars are presented, along with a new and refined analysis of the predicted primordial Li abundance resulting from big-bang nucleosynthesis. This makes it possible to determine the constraints which can be imposed on cosmology using primordial Li and both standard big-bang and stellar-evolution models. This leads to limits on the baryon density today of 0.0044-0.025 (where the Hubble constant is 100h km/sec Mpc) and imposes limitations on alternative nucleosynthesis scenarios.

  13. Neutrinos: in and out of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen; /Fermilab

    2006-07-01

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  14. Double Field Theory description of heterotic gauge symmetry enhancing-breaking

    Science.gov (United States)

    Aldazabal, G.; Andrés, E.; Mayo, M.; Penas, V.

    2017-10-01

    A Double Field Theory (DFT) description of gauge symmetry enhancing-breaking in the heterotic string is presented. The construction, based on previous results for the bosonic string, relies on the extension of the tangent frame of DFT. The fluxes of a Scherk-Schwarz like generalized toroidal compactification are moduli dependent and become identified with the structure constants of the enhanced group at fixed "self-dual" points in moduli space. Slight displacements from such points provide the breaking of the symmetry, gauge bosons acquiring masses proportional to fluxes. The inclusion of fermions is also discussed.

  15. New black hole, string and membrane solutions of the four-dimensional heterotic string

    CERN Document Server

    Duff, Michael J; Minasian, R; Rahmfeld, J; Khuri, Ramzi R.; Minasian, Ruben; Rahmfeld, Joachim

    1994-01-01

    We present solutions of the low-energy four-dimensional heterotic string corresponding to $p$-branes with $p=0,1,2$, which are characterized by a mass per unit $p$-volume, ${\\cal M}_{p+1}$, and topological ``magnetic'' charge, $g_{p+1}$. In the extremal limit, $\\sqrt{2} \\kappa {\\cal M}_{p+1} = g_{p+1}$, they reduce to the recently discovered non-singular supersymmetric monopole, string and domain wall solutions. A novel feature is that the solutions involve both the dilaton and the modulus fields. In particular, the effective scalar coupling to the Maxwell field, $e^{-\\alpha \\phi} F_{\\mu\

  16. Multilevel Linkages between State Standards, Teacher Standards, and Student Achievement: Testing External versus Internal Standards-Based Education Models

    Science.gov (United States)

    Lee, Jaekyung; Liu, Xiaoyan; Amo, Laura Casey; Wang, Weichun Leilani

    2014-01-01

    Drawing on national and state assessment datasets in reading and math, this study tested "external" versus "internal" standards-based education models. The goal was to understand whether and how student performance standards work in multilayered school systems under No Child Left Behind Act of 2001 (NCLB). Under the…

  17. Wisconsin Model Academic Standards for Social Studies.

    Science.gov (United States)

    Wisconsin State Dept. of Public Instruction, Madison.

    Students at all grade levels in Wisconsin are required to learn about the principles and ideals upon which the United States is founded, and understand the world in which they live. Students at all levels should develop skills and understandings in all five strands found in the Wisconsin standards for social studies. These skills and…

  18. Mathematics Teacher TPACK Standards and Development Model

    Science.gov (United States)

    Niess, Margaret L.; Ronau, Robert N.; Shafer, Kathryn G.; Driskell, Shannon O.; Harper, Suzanne R.; Johnston, Christopher; Browning, Christine; Ozgun-Koca, S. Asli; Kersaint, Gladis

    2009-01-01

    What knowledge is needed to teach mathematics with digital technologies? The overarching construct, called technology, pedagogy, and content knowledge (TPACK), has been proposed as the interconnection and intersection of technology, pedagogy, and content knowledge. Mathematics Teacher TPACK Standards offer guidelines for thinking about this…

  19. The Holstein polaron: beyond the standard model

    Science.gov (United States)

    Chandler, Carl J.; Marsiglio, Frank

    2014-03-01

    The paradigm for describing the polaron is the Holstein model, where only local interactions between the electron and optical phonon modes are considered. We present several variants of this model and discuss the impact on various observables, such as the effective mass. Possible variations include further than nearest neighbour hopping, longer range interactions, and even models that go beyond the Holstein/Frohlich coupling, i.e. the BLF/SSH (Barisic-Labbe-Friedel/Su-Schrieffer-Heeger) model. Recent progress on these models will be described.

  20. Standard solar model. II - g-modes

    Science.gov (United States)

    Guenther, D. B.; Demarque, P.; Pinsonneault, M. H.; Kim, Y.-C.

    1992-01-01

    The paper presents the g-mode oscillation for a set of modern solar models. Each solar model is based on a single modification or improvement to the physics of a reference solar model. Improvements were made to the nuclear reaction rates, the equation of state, the opacities, and the treatment of the atmosphere. The error in the predicted g-mode periods associated with the uncertainties in the model physics is predicted and the specific sensitivities of the g-mode periods and their period spacings to the different model structures are described. In addition, these models are compared to a sample of published observations. A remarkably good agreement is found between the 'best' solar model and the observations of Hill and Gu (1990).

  1. Template and Model Driven Development of Standardized Electronic Health Records.

    Science.gov (United States)

    Kropf, Stefan; Chalopin, Claire; Denecke, Kerstin

    2015-01-01

    Digital patient modeling targets the integration of distributed patient data into one overarching model. For this integration process, both a theoretical standard-based model and information structures combined with concrete instructions in form of a lightweight development process of single standardized Electronic Health Records (EHRs) are needed. In this paper, we introduce such a process along side a standard-based architecture. It allows the modeling and implementation of EHRs in a lightweight Electronic Health Record System (EHRS) core. The approach is demonstrated and tested by a prototype implementation. The results show that the suggested approach is useful and facilitates the development of standardized EHRSs.

  2. Beyond the standard model with B and K physics

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Y

    2003-11-07

    In the first part of the talk the flavor physics input to models beyond the standard model is described. One specific example of such new physics model is given: A model with bulk fermions in a non factorizable one extra dimension. In the second part of the talk we discuss several observables that are sensitive to new physics. We explain what type of new physics can produce deviations from the standard model predictions in each of these observables.

  3. Heterogeneous information network model for equipment-standard system

    Science.gov (United States)

    Yin, Liang; Shi, Li-Chen; Zhao, Jun-Yan; Du, Song-Yang; Xie, Wen-Bo; Yuan, Fei; Chen, Duan-Bing

    2018-01-01

    Entity information network is used to describe structural relationships between entities. Taking advantage of its extension and heterogeneity, entity information network is more and more widely applied to relationship modeling. Recent years, lots of researches about entity information network modeling have been proposed, while seldom of them concentrate on equipment-standard system with properties of multi-layer, multi-dimension and multi-scale. In order to efficiently deal with some complex issues in equipment-standard system such as standard revising, standard controlling, and production designing, a heterogeneous information network model for equipment-standard system is proposed in this paper. Three types of entities and six types of relationships are considered in the proposed model. Correspondingly, several different similarity-measuring methods are used in the modeling process. The experiments show that the heterogeneous information network model established in this paper can reflect relationships between entities accurately. Meanwhile, the modeling process has a good performance on time consumption.

  4. Towards a quality model for semantic IS standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert; van Soest, Joris

    2011-01-01

    This research focuses on developing a quality model for semantic Information System (IS) standards. A lot of semantic IS standards are available in different industries. Often these standards are developed by a dedicated organization. While these organizations have the goal of increasing

  5. eps'/eps in the standard model

    OpenAIRE

    Fabbrichesi, Marco

    2000-01-01

    I discuss the estimate of the CP-violating ratio eps'/eps by stressing the role played by the chiral quark model in predicting the experiment and in showing that the same dynamical mechanism at work in the Delta I=1/2 rule also explains the larger value obtained for eps'/eps in this model with respect to other estimates.

  6. Non-geometric vacua of the Spin(32)/ ℤ 2 heterotic string and little string theories

    Science.gov (United States)

    Font, Anamaría; Mayrhofer, Christoph

    2017-11-01

    We study a class of 6d N = (1, 0) non-geometric vacua of the Spin(32)/ ℤ 2 heterotic string which can be understood as fibrations of genus-two curves over a complex one-dimensional base. The 6d N = (1, 0) theories living on the defects that arise when the genus-two fiber degenerates at a point of the base are analyzed by dualizing to F-theory on elliptic K3-fibered non-compact Calabi-Yau threefolds. We consider all possible degenerations of genus-two curves and systematically attempt to resolve the singularities of the dual threefolds. As in the analogous non-geometric vacua of the E 8 × E 8 heterotic string, we find that many of the resulting dual threefolds contain singularities which do not admit a crepant resolution. When the singularities can be resolved crepantly, we determine the emerging effective theories which turn out to be little string theories at a generic point on their tensor branch. We also observe a form of duality in which theories living on distinct defects are the same.

  7. $\\mathcal N=2$ Heterotic-Type II duality and bundle moduli

    CERN Document Server

    Alexandrov, Sergei; Pioline, Boris; Valandro, Roberto

    2014-01-01

    Heterotic string compactifications on a $K3$ surface $\\mathfrak{S}$ depend on a choice of hyperk\\"ahler metric, anti-self-dual gauge connection and Kalb-Ramond flux, parametrized by hypermultiplet scalars. The metric on hypermultiplet moduli space is in principle computable within the $(0,2)$ superconformal field theory on the heterotic string worldsheet, although little is known about it in practice. Using duality with type II strings compactified on a Calabi-Yau threefold, we predict the form of the quaternion-K\\"ahler metric on hypermultiplet moduli space when $\\mathfrak{S}$ is elliptically fibered, in the limit of a large fiber and even larger base. The result is in general agreement with expectations from Kaluza-Klein reduction, in particular the metric has a two-stage fibration structure, where the $B$-field moduli are fibered over bundle and metric moduli, while bundle moduli are themselves fibered over metric moduli. A more precise match must await a detailed analysis of $R^2$-corrected ten-dimensiona...

  8. Analytical anomaly and heterotic string in the formalism of continual integration

    Science.gov (United States)

    Morozov, A.

    1987-01-01

    P-loop statistical sums for the superstring and for the heterotic string may be represented as integrals over the space of moduli of Riemann surfaces: ∫Mp|dμss(y)|2/(det Im T)5(6) and ∫Mpdμss(y)dμbos(y) FΓ(y)/(det Im T)5(6), dμss(y), dμbos(y), FΓ(y) being analytical functions of the holomorphic coordinates y on the Teichmüller space. At the same time, the statistical sum of the 26-dimensional bosonic string, compactified on the 16-dimensional torus T16 = R16/Γ in the case of even self-dual lattices Γ8×Γ8 and Γ16, is proportional to Mp[|dηbos(y)|2/(detImT )5(6)∑i|ƒ;Λ, i(y)|2. The function FΓ(y) entering the formula for the heterotic string is equal to FΓ(y) = ∑iƒ;Γ, i(y). There is a similar relation between dμss(y and the statistical sum, arising from the continual integral, based on the supersymmetrized action of the bosonic string. This relation between the sum of the analytical functions and the sum of their square moduli may provide an argument against compactification on six-dimensional tori.

  9. NASREN: Standard reference model for telerobot control

    Science.gov (United States)

    Albus, J. S.; Lumia, R.; Mccain, H.

    1987-01-01

    A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task dedomposition heirarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repreated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored it the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarch is described and how it can be applied to space telerobot applications.

  10. The Standard Model from LHC to future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Forte, S., E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy); Nisati, A. [INFN, Sezione di Roma, Piazzale Aldo Moro 2, 00185, Rome (Italy); Passarino, G. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Turin (Italy); INFN, Sezione di Torino, Via P. Giuria 1, 10125, Turin (Italy); Tenchini, R. [INFN, Sezione di Pisa, Largo B. Pontecorvo 3, 56127, Pisa (Italy); Calame, C. M. Carloni [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100, Pavia (Italy); Chiesa, M. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Cobal, M. [Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Via delle Scienze, 206, 33100, Udine (Italy); INFN, Gruppo Collegato di Udine, Via delle Scienze, 206, 33100, Udine (Italy); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044, Frascati (Italy); Degrassi, G. [Dipartimento di Matematica e Fisica, Università’ Roma Tre, Via della Vasca Navale 84, 00146, Rome (Italy); INFN, Sezione di Roma Tre, Via della Vasca Navale 84, 00146, Rome (Italy); Ferrera, G. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy); Magnea, L. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Turin (Italy); INFN, Sezione di Torino, Via P. Giuria 1, 10125, Turin (Italy); Maltoni, F. [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Montagna, G. [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100, Pavia (Italy); INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Nason, P. [INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); Nicrosini, O. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Oleari, C. [Dipartimento di Fisica, Università di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); Piccinini, F. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Riva, F. [Institut de Théorie des Phénoménes Physiques, École Polytechnique Fédérale de Lausanne, 1015, Lausanne (Switzerland); Vicini, A. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy)

    2015-11-25

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the “What Next” Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators.

  11. The Standard Model from LHC to future colliders.

    Science.gov (United States)

    Forte, S; Nisati, A; Passarino, G; Tenchini, R; Calame, C M Carloni; Chiesa, M; Cobal, M; Corcella, G; Degrassi, G; Ferrera, G; Magnea, L; Maltoni, F; Montagna, G; Nason, P; Nicrosini, O; Oleari, C; Piccinini, F; Riva, F; Vicini, A

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the "What Next" Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators.

  12. Searches for phenomena beyond the Standard Model at the Large ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 79; Issue 4. Searches for phenomena beyond the Standard Model at the Large Hadron Collider with the ATLAS and CMS detectors. Henri Bachacou on behalf of the ATLAS and CMS Collaborations. Beyond Standard Model Physics Volume 79 Issue 4 October 2012 ...

  13. Neutrinos and Physics Beyond Electroweak and Cosmological Standard Models

    CERN Document Server

    Kirilova, Daniela

    2014-01-01

    This is a short review of the established and the proposed by physics beyond Standard Electroweak Model and beyond Standard Cosmological Model neutrino characteristics. In particular, cosmological effects of and cosmological constraints on: extra neutrino families, neutrino mass differences and mixing, lepton asymmetry in the neutrino sector, neutrino masses, light sterile neutrino, are discussed.

  14. Testing the minimal supersymmetric standard model with the mass ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 69; Issue 5. Testing the minimal supersymmetric standard model with the mass ... We review the currently most accurate evaluation of the boson mass, , in the minimal supersymmetric standard model (MSSM). It consists of a full one-loop calculation, including the ...

  15. Big bang nucleosynthesis - The standard model and alternatives

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.

  16. Prospects of experimentally reachable beyond Standard Model ...

    Indian Academy of Sciences (India)

    2016-01-06

    Jan 6, 2016 ... also fit perfectly in the model framework. Despite the fact that SM has unravelled the gauge origin of fundamental forces and the structure of Universe while successfully confronting numerous experimental tests, it has various limitations. For a good summary on its excellencies and compulsions see [1], and.

  17. Standardization of A Physiologic Hypoparathyroidism Animal Model.

    Directory of Open Access Journals (Sweden)

    Soo Yeon Jung

    Full Text Available Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5 and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5, PTX-NC (n = 10, and PTX-HC (n = 10, respectively. Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.

  18. Wilsonian dark matter in string derived Z' model

    Science.gov (United States)

    Delle Rose, L.; Faraggi, A. E.; Marzo, C.; Rizos, J.

    2017-09-01

    The dark matter issue is among the most perplexing in contemporary physics. The problem is more enigmatic due to the wide range of possible solutions, ranging from the ultralight to the supermassive. String theory gives rise to plausible dark matter candidates due to the breaking of the non-Abelian grand unified theory (GUT) symmetries by Wilson lines. The physical spectrum then contains states that do not satisfy the quantization conditions of the unbroken GUT symmetry. Given that the Standard Model states are identified with broken GUT representations, and provided that any ensuing symmetry breakings are induced by components of GUT states, a remnant discrete symmetry remains that forbids the decay of the Wilsonian states. A class of such states are obtained in a heterotic-string-derived Z' model. The model exploits the spinor-vector duality symmetry, observed in the fermionic Z2×Z2 heterotic-string orbifolds, to generate a Z'∈E6 symmetry that may remain unbroken down to low energies. The E6 symmetry is broken at the string level with discrete Wilson lines. The Wilsonian dark matter candidates in the string-derived model are S O (10 ), and hence Standard Model, singlets and possess non-E6 U(1)Z' charges. Depending on the U(1)Z' breaking scale and the reheating temperature they give rise to different scenarios for the relic abundance, and are in accordance with the cosmological constraints.

  19. Standard State Space Models of Unawareness (Extended Abstract

    Directory of Open Access Journals (Sweden)

    Peter Fritz

    2016-06-01

    Full Text Available The impossibility theorem of Dekel, Lipman and Rustichini has been thought to demonstrate that standard state-space models cannot be used to represent unawareness. We first show that Dekel, Lipman and Rustichini do not establish this claim. We then distinguish three notions of awareness, and argue that although one of them may not be adequately modeled using standard state spaces, there is no reason to think that standard state spaces cannot provide models of the other two notions. In fact, standard space models of these forms of awareness are attractively simple. They allow us to prove completeness and decidability results with ease, to carry over standard techniques from decision theory, and to add propositional quantifiers straightforwardly.

  20. Physics Beyond the Standard Model: Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, M.M.; /KEK, Tsukuba /Tsukuba, Graduate U. Adv. Studies /Tokyo U.; Plehn, T.; /Edinburgh U.; Polesello, G.; /INFN, Pavia; Alexander, John M.; /Edinburgh U.; Allanach, B.C.; /Cambridge U.; Barr, Alan J.; /Oxford U.; Benakli, K.; /Paris U., VI-VII; Boudjema, F.; /Annecy, LAPTH; Freitas, A.; /Zurich U.; Gwenlan, C.; /University Coll. London; Jager, S.; /CERN /LPSC, Grenoble

    2008-02-01

    This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop 'Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitly performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment.

  1. Reference Architecture Model Enabling Standards Interoperability.

    Science.gov (United States)

    Blobel, Bernd

    2017-01-01

    Advanced health and social services paradigms are supported by a comprehensive set of domains managed by different scientific disciplines. Interoperability has to evolve beyond information and communication technology (ICT) concerns, including the real world business domains and their processes, but also the individual context of all actors involved. So, the system must properly reflect the environment in front and around the computer as essential and even defining part of the health system. This paper introduces an ICT-independent system-theoretical, ontology-driven reference architecture model allowing the representation and harmonization of all domains involved including the transformation into an appropriate ICT design and implementation. The entire process is completely formalized and can therefore be fully automated.

  2. Prospects and problems for standardizing model validation in systems biology.

    Science.gov (United States)

    Gross, Fridolin; MacLeod, Miles

    2017-10-01

    There are currently no widely shared criteria by which to assess the validity of computational models in systems biology. Here we discuss the feasibility and desirability of implementing validation standards for modeling. Having such a standard would facilitate journal review, interdisciplinary collaboration, model exchange, and be especially relevant for applications close to medical practice. However, even though the production of predictively valid models is considered a central goal, in practice modeling in systems biology employs a variety of model structures and model-building practices. These serve a variety of purposes, many of which are heuristic and do not seem to require strict validation criteria and may even be restricted by them. Moreover, given the current situation in systems biology, implementing a validation standard would face serious technical obstacles mostly due to the quality of available empirical data. We advocate a cautious approach to standardization. However even though rigorous standardization seems premature at this point, raising the issue helps us develop better insights into the practices of systems biology and the technical problems modelers face validating models. Further it allows us to identify certain technical validation issues which hold regardless of modeling context and purpose. Informal guidelines could in fact play a role in the field by helping modelers handle these. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Gauge origin of discrete flavor symmetries in heterotic orbifolds

    Directory of Open Access Journals (Sweden)

    Florian Beye

    2014-09-01

    Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.

  4. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  5. The Standard Model is Natural as Magnetic Gauge Theory

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2011-01-01

    matter. The absence of scalars in the electric theory indicates that the associated magnetic theory is free from quadratic divergences. Our novel solution to the Standard Model hierarchy problem leads also to a new insight on the mystery of the observed number of fundamental fermion generations......We suggest that the Standard Model can be viewed as the magnetic dual of a gauge theory featuring only fermionic matter content. We show this by first introducing a Pati-Salam like extension of the Standard Model and then relating it to a possible dual electric theory featuring only fermionic...

  6. Overview of the Higgs and Standard Model physics at ATLAS

    CERN Document Server

    Vazquez Schroeder, Tamara; The ATLAS collaboration

    2018-01-01

    This talk presents selected aspects of recent physics results from the ATLAS collaboration in the Standard Model and Higgs sectors, with a focus on the recent evidence for the associated production of the Higgs boson and a top quark pair.

  7. Workshop on What Comes Beyond the Standard Model?

    CERN Document Server

    Borstnik, N M; Nielsen, Holger Bech; Froggatt, Colin D; What Comes Beyond the Standard Model?

    1999-01-01

    The Proceedings collects the results of ten days of discussions on the open questions of the Standard electroweak model as well as the review of the introductory talks, connected with the discussions.

  8. A Repository for Beyond-the-Standard-Model Tools

    Energy Technology Data Exchange (ETDEWEB)

    Skands, P.; /Fermilab; Richardson, P.; Allanach, B.C.; Baer, H.; Belanger, G.; El Kacimi, M.; Ellwanger, U.; Freitas, A.; Ghodbane, N.; Goujdami, D.; Hahn, T.; Heinemeyer,; Kneur, J.-L.; Landsberg, G.; Lee, J.S.; Muhlleitner, M.; Ohl, T.; Perez, E.; Peskin, M.; Pilaftsis, A.; Plehn, T.

    2005-05-01

    To aid phenomenological studies of Beyond-the-Standard-Model (BSM) physics scenarios, a web repository for BSM calculational tools has been created. We here present brief overviews of the relevant codes, ordered by topic as well as by alphabet.

  9. The Beyond the Standard Model Working Group: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.

    2002-08-08

    Various theoretical aspects of physics beyond the Standard Model at hadron colliders are discussed. Our focus will be on those issues that most immediately impact the projects pursued as part of the BSM group at this meeting.

  10. Tests of the standard electroweak model in beta decay

    CERN Document Server

    Severijns, N; Naviliat-Cuncic, O

    2006-01-01

    We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C_A/C_V = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed.

  11. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  12. CP violation and electroweak baryogenesis in the Standard Model

    Directory of Open Access Journals (Sweden)

    Brauner Tomáš

    2014-04-01

    Full Text Available One of the major unresolved problems in current physics is understanding the origin of the observed asymmetry between matter and antimatter in the Universe. It has become a common lore to claim that the Standard Model of particle physics cannot produce sufficient asymmetry to explain the observation. Our results suggest that this conclusion can be alleviated in the so-called cold electroweak baryogenesis scenario. On the Standard Model side, we continue the program initiated by Smit eight years ago; one derives the effective CP-violating action for the Standard Model bosons and uses the resulting effective theory in numerical simulations. We address a disagreement between two previous computations performed effectively at zero temperature, and demonstrate that it is very important to include temperature effects properly. Our conclusion is that the cold electroweak baryogenesis scenario within the Standard Model is tightly constrained, yet producing enough baryon asymmetry using just known physics still seems possible.

  13. Beyond the Standard Model at the Tevatron and the LHC

    OpenAIRE

    Perelstein, Maxim

    2008-01-01

    This contribution contains a brief review of several scenarios for physics beyond the Standard Model at the energy scales accessible to experiments at the Tevatron and the LHC, focusing on their experimental signatures.

  14. Tests of the standard electroweak model in beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Severijns, N.; Beck, M. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium); Naviliat-Cuncic, O. [Caen Univ., CNRS-ENSI, 14 (France). Lab. de Physique Corpusculaire

    2006-05-15

    We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C{sub A},/C{sub V} = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed. (author)

  15. Modern elementary particle physics explaining and extending the standard model

    CERN Document Server

    Kane, Gordon

    2017-01-01

    This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.

  16. A simplifying feature of the heterotic one loop four graviton amplitude

    Science.gov (United States)

    Basu, Anirban

    2018-01-01

    We show that the weight four modular graph functions that contribute to the integrand of the t8t8D4R4 term at one loop in heterotic string theory do not require regularization, and hence the integrand is simple. This is unlike the graphs that contribute to the integrands of the other gravitational terms at this order in the low momentum expansion, and these integrands require regularization. This property persists for an infinite number of terms in the effective action, and their integrands do not require regularization. We find non-trivial relations between weight four graphs of distinct topologies that do not require regularization by performing trivial manipulations using auxiliary diagrams.

  17. The Standard Model from LHC to future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Forte, S.; Ferrera, G.; Vicini, A. [Universita di Milano, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano, Milan (Italy); Nisati, A. [INFN, Sezione di Roma, Rome (Italy); Passarino, G.; Magnea, L. [Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Tenchini, R. [INFN, Sezione di Pisa, Pisa (Italy); Calame, C.M.C. [Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); Chiesa, M.; Nicrosini, O.; Piccinini, F. [INFN, Sezione di Pavia, Pavia (Italy); Cobal, M. [Universita di Udine, Dipartimento di Chimica, Fisica e Ambiente, Udine (Italy); INFN, Gruppo Collegato di Udine, Udine (Italy); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Degrassi, G. [Universita' Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); INFN, Sezione di Roma Tre, Rome (Italy); Maltoni, F. [Universite Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Montagna, G. [Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); INFN, Sezione di Pavia, Pavia (Italy); Nason, P. [INFN, Sezione di Milano-Bicocca, Milan (Italy); Oleari, C. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca, Milan (Italy); Riva, F. [Ecole Polytechnique Federale de Lausanne, Institut de Theorie des Phenomenes Physiques, Lausanne (Switzerland)

    2015-11-15

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the ''What Next'' Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators. (orig.)

  18. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    Science.gov (United States)

    Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2013-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  19. Standard Model of Particle Physics--a health physics perspective.

    Science.gov (United States)

    Bevelacqua, J J

    2010-11-01

    The Standard Model of Particle Physics is reviewed with an emphasis on its relationship to the physics supporting the health physics profession. Concepts important to health physics are emphasized and specific applications are presented. The capability of the Standard Model to provide health physics relevant information is illustrated with application of conservation laws to neutron and muon decay and in the calculation of the neutron mean lifetime.

  20. SUSY + Beyond Standard Model Higgs Searches at the Tevatron

    Directory of Open Access Journals (Sweden)

    Abid Patwa

    2012-06-01

    Full Text Available Recent results by the CDF and DØ Collaborations for non-Standard Model Higgs boson searches in pp¯ $par p$ collisions at center-of-mass energy of √s = 1.96 TeV using up to 8.2 fb−1 of Fermilab Tevatron data are discussed. Searches for neutral Higgs bosons predicted in the Minimal Supersymmetric Standard Model (MSSM, doubly-charged Higgs bosons predicted in extended models, as well as Higgs bosons within Hidden Valley and Fermiophobic models are described.

  1. Conformal Extensions of the Standard Model with Veltman Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Mojaza, Matin; Sannino, Francesco

    2014-01-01

    Using the renormalisation group framework we classify different extensions of the standard model according to their degree of naturality. A new relevant class of perturbative models involving elementary scalars is the one in which the theory simultaneously satisfies the Veltman conditions...... and is conformal at the classical level. We term these extensions perturbative natural conformal (PNC) theories. We show that PNC models are very constrained and thus highly predictive. Among the several PNC examples that we exhibit, we discover a remarkably simple PNC extension of the standard model in which...

  2. Informatics in radiology: an information model of the DICOM standard.

    Science.gov (United States)

    Kahn, Charles E; Langlotz, Curtis P; Channin, David S; Rubin, Daniel L

    2011-01-01

    The Digital Imaging and Communications in Medicine (DICOM) Standard is a key foundational technology for radiology. However, its complexity creates challenges for information system developers because the current DICOM specification requires human interpretation and is subject to nonstandard implementation. To address this problem, a formally sound and computationally accessible information model of the DICOM Standard was created. The DICOM Standard was modeled as an ontology, a machine-accessible and human-interpretable representation that may be viewed and manipulated by information-modeling tools. The DICOM Ontology includes a real-world model and a DICOM entity model. The real-world model describes patients, studies, images, and other features of medical imaging. The DICOM entity model describes connections between real-world entities and the classes that model the corresponding DICOM information entities. The DICOM Ontology was created to support the Cancer Biomedical Informatics Grid (caBIG) initiative, and it may be extended to encompass the entire DICOM Standard and serve as a foundation of medical imaging systems for research and patient care. RSNA, 2010

  3. The Roots of the Standard Model of Particle Physics

    NARCIS (Netherlands)

    Mulders, P. J.

    2016-01-01

    We conjecture how the particle content of the standard model can emerge starting with a supersymmetric Wess-Zumino model in 1+1 dimensions (d = 2) with three real boson and fermion fields. Considering SU(3) transformations, the lagrangian and its ground state are SO(3) invariant. The SO(3) symmetry

  4. Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.

    Science.gov (United States)

    Giedt, Joel; Thomas, Anthony W; Young, Ross D

    2009-11-13

    Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.

  5. Higher Education Quality Assessment Model: Towards Achieving Educational Quality Standard

    Science.gov (United States)

    Noaman, Amin Y.; Ragab, Abdul Hamid M.; Madbouly, Ayman I.; Khedra, Ahmed M.; Fayoumi, Ayman G.

    2017-01-01

    This paper presents a developed higher education quality assessment model (HEQAM) that can be applied for enhancement of university services. This is because there is no universal unified quality standard model that can be used to assess the quality criteria of higher education institutes. The analytical hierarchy process is used to identify the…

  6. Open standard CMO for parametric modelling based on semantic web

    NARCIS (Netherlands)

    Bonsma, P.; Bonsma, I.; Zayakova, T.; Van Delft, A.; Sebastian, R.; Böhms, M.

    2015-01-01

    The Open Standard Concept Modelling Ontology (CMO) with Extensions makes it possible to store parametric modelling semantics and parametric geometry in a Semantic Web environment. The parametric and geometrical part of CMO with Extensions is developed within the EU project Proficient. The nature of

  7. Search for Higgs bosons beyond the Standard Model

    Directory of Open Access Journals (Sweden)

    Mankel Rainer

    2015-01-01

    Full Text Available While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Beyond the standard model interpretation, various scenarios for extended Higgs sectors are being considered. Such options include the minimal and next-to-minimal supersymmetric extensions (MSSM and NMSSM of the standard model, more generic Two-Higgs Doublet models (2HDM, as well as truly exotic Higgs bosons decaying e.g. into totally invisible final states. This article presents recent results from the CMS experiment.

  8. Search for Higgs Bosons Beyond the Standard Model

    CERN Document Server

    Mankel, Rainer

    2015-01-01

    While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Besides the standard model interpretation, various possibilities for extended Higgs sectors are being considered. Such options include the minimal and next-to-minimal supersymmetric extensions (MSSM and NMSSM) of the standard model, more generic Two-Higgs Doublet models (2HDM), as well as truly exotic Higgs bosons decaying e.g. into totally invisible final states are considered. The talk presents recent results from the CMS experiment.

  9. Standard Model Vacuum Stability and Weyl Consistency Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Krog, Jens

    2013-01-01

    At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....

  10. How to use the standard model with own data?

    OpenAIRE

    Antoni Ferri; Lluís Bermúdez; Montserrat Guillén

    2012-01-01

    In this work discuss the use of the standard model for the calculation of the solvency capital requirement (SCR) when the company aims to use the specific parameters of the model on the basis of the experience of its portfolio. In particular, this analysis focuses on the formula presented in the latest quantitative impact study (2010 CEIOPS) for non-life underwriting premium and reserve risk. One of the keys of the standard model for premium and reserves risk is the correlation matrix between...

  11. Non-standard models and the sociology of cosmology

    Science.gov (United States)

    López-Corredoira, Martín

    2014-05-01

    I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.

  12. When standards become business models: Reinterpreting "failure" in the standardization paradigm

    NARCIS (Netherlands)

    Hawkins, R.; Ballon, P.

    2007-01-01

    Purpose - This paper aims to explore the question: 'What is the relationship between standards and business models?' and illustrate the conceptual linkage with reference to developments in the mobile communications industry. Design/methodology/approach - A succinct overview of literature on

  13. Osificaciones heterotópicas en el paciente crítico: a propósito de un caso

    National Research Council Canada - National Science Library

    Morales-Palacios, M.T; Valverde-Carrillo, M.D; García-Chinchetru, M.C

    2006-01-01

    ... crítica por leucemia mieloide aguda que desarrolló osificaciones heterotópicas en ambas caderas y rodillas. El diagnóstico y la instauración de un tratamiento rehabilitador precoz previno el desarrollo de rigideces y an- quilosis. Esta actitud ha permitido evitar la cirugía y ha pro- porcionado a la paciente una marcha y una actividad ind...

  14. Higgs Phenomenology in the Standard Model and Beyond

    CERN Document Server

    Field, Bryan Jonathan; Dawson, Sally

    2005-01-01

    The way in which the electroweak symmetry is broken in nature is currently unknown. The electroweak symmetry is theoretically broken in the Standard Model by the Higgs mechanism which generates masses for the particle content and introduces a single scalar to the particle spectrum, the Higgs boson. This particle has not yet been observed and the value of it mass is a free parameter in the Standard Model. The observation of one (or more) Higgs bosons would confirm our understanding of the Standard Model. In this thesis, we study the phenomenology of the Standard Model Higgs boson and compare its production observables to those of the Pseudoscalar Higgs boson and the lightest scalar Higgs boson of the Minimally Supersymmetric Standard Model. We study the production at both the Fermilab Tevatron and the future CERN Large Hadron Collider (LHC). In the first part of the thesis, we present the results of our calculations in the framework of perturbative QCD. In the second part, we present our resummed calculations.

  15. Journeys Beyond the Standard Model: Supersymmetry and Dark Matter

    Science.gov (United States)

    Goodman, Jessica L.

    This thesis attempts to address two outstanding issues in the Standard Model of particle physics. The first of these two has to do with the lack of a viable dark matter candidate in the Standard Model. Many recent experimental results hint at the possibility of a light dark matter particle. If it is light enough, one may consider producing these particles at colliders. Parts of this thesis considers effective theories of dark matter as a way to develop a language to compare collider searches for dark matter to direct and indirect detection experiments. The second of these two issues explores the more aesthetic problem of the gauge hierarchy through construction of supersymmetry breaking models. In the first set of models, we construct UV completions of O'Raifeartaigh-like models which spontaneously break R symmetry. In the final chapter, we construct a R symmetric GMSB model in which we use Seiberg dynamics to generate supersoft Dirac gaugino masses.

  16. NASA Standard for Models and Simulations: Credibility Assessment Scale

    Science.gov (United States)

    Babula, Maria; Bertch, William J.; Green, Lawrence L.; Hale, Joseph P.; Mosier, Gary E.; Steele, Martin J.; Woods, Jody

    2009-01-01

    As one of its many responses to the 2003 Space Shuttle Columbia accident, NASA decided to develop a formal standard for models and simulations (M&S). Work commenced in May 2005. An interim version was issued in late 2006. This interim version underwent considerable revision following an extensive Agency-wide review in 2007 along with some additional revisions as a result of the review by the NASA Engineering Management Board (EMB) in the first half of 2008. Issuance of the revised, permanent version, hereafter referred to as the M&S Standard or just the Standard, occurred in July 2008. Bertch, Zang and Steeleiv provided a summary review of the development process of this standard up through the start of the review by the EMB. A thorough recount of the entire development process, major issues, key decisions, and all review processes are available in Ref. v. This is the second of a pair of papers providing a summary of the final version of the Standard. Its focus is the Credibility Assessment Scale, a key feature of the Standard, including an example of its application to a real-world M&S problem for the James Webb Space Telescope. The companion paper summarizes the overall philosophy of the Standard and an overview of the requirements. Verbatim quotes from the Standard are integrated into the text of this paper, and are indicated by quotation marks.

  17. Cosmological signatures of a UV-conformal standard model.

    Science.gov (United States)

    Dorsch, Glauber C; Huber, Stephan J; No, Jose Miguel

    2014-09-19

    Quantum scale invariance in the UV has been recently advocated as an attractive way of solving the gauge hierarchy problem arising in the standard model. We explore the cosmological signatures at the electroweak scale when the breaking of scale invariance originates from a hidden sector and is mediated to the standard model by gauge interactions (gauge mediation). These scenarios, while being hard to distinguish from the standard model at LHC, can give rise to a strong electroweak phase transition leading to the generation of a large stochastic gravitational wave signal in possible reach of future space-based detectors such as eLISA and BBO. This relic would be the cosmological imprint of the breaking of scale invariance in nature.

  18. Standard Model-like corrections to Dilatonic Dynamics

    DEFF Research Database (Denmark)

    Antipin, Oleg; Krog, Jens; Mølgaard, Esben

    2013-01-01

    We examine the effects of standard model-like interactions on the near-conformal dynamics of a theory featuring a dilatonic state identified with the standard model-like Higgs. As template for near-conformal dynamics we use a gauge theory with fermionic matter and elementary mesons possessing...... the same non-abelian global symmetries as a technicolor-like theory with matter in a complex representation of the gauge group. We then embed the electroweak gauge group within the global flavor structure and add also ordinary quark-like states to mimic the effects of the top. We find that the standard...... model-like induced corrections modify the original phase diagram and the details of the dilatonic spectrum. In particular, we show that the corrected theory exhibits near-conformal behavior for a smaller range of flavors and colors. For this range of values, however, our results suggest that near...

  19. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  20. Lattice Gauge Theories Within and Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Gelzer, Zechariah John [Iowa U.

    2017-01-01

    The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \

  1. Search for the Standard Model Higgs Boson at LEP

    CERN Document Server

    CERN. Geneva

    2002-01-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have collected 2465 pb-1 of e+e- collision data at energies between 189 and 209 GeV, of which 542 pb-1 were collected above 206 GeV. Searches for the Standard Model Higgs boson have been performed by each of the LEP collaborations. Their data have been combined and examined for their consistency with the Standard Model background and various Standard Model Higgs boson mass hypotheses. A lower bound of 114.1 GeV has been obtained at the 95% confidence level for the mass of the Higgs boson. The likelihood analysis shows a preference for a Higgs boson with a mass of 115.6 GeV. At this mass, the probability for the background to generate the observed effect is 3.5%.

  2. Non-standard Hubbard models in optical lattices: a review.

    Science.gov (United States)

    Dutta, Omjyoti; Gajda, Mariusz; Hauke, Philipp; Lewenstein, Maciej; Lühmann, Dirk-Sören; Malomed, Boris A; Sowiński, Tomasz; Zakrzewski, Jakub

    2015-06-01

    Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.

  3. Test of a Power Transfer Model for Standardized Electrofishing

    Science.gov (United States)

    Miranda, L.E.; Dolan, C.R.

    2003-01-01

    Standardization of electrofishing in waters with differing conductivities is critical when monitoring temporal and spatial differences in fish assemblages. We tested a model that can help improve the consistency of electrofishing by allowing control over the amount of power that is transferred to the fish. The primary objective was to verify, under controlled laboratory conditions, whether the model adequately described fish immobilization responses elicited with various electrical settings over a range of water conductivities. We found that the model accurately described empirical observations over conductivities ranging from 12 to 1,030 ??S/cm for DC and various pulsed-DC settings. Because the model requires knowledge of a fish's effective conductivity, an attribute that is likely to vary according to species, size, temperature, and other variables, a second objective was to gather available estimates of the effective conductivity of fish to examine the magnitude of variation and to assess whether in practical applications a standard effective conductivity value for fish may be assumed. We found that applying a standard fish effective conductivity of 115 ??S/cm introduced relatively little error into the estimation of the peak power density required to immobilize fish with electrofishing. However, this standard was derived from few estimates of fish effective conductivity and a limited number of species; more estimates are needed to validate our working standard.

  4. The physics of the Standard Model and beyond

    CERN Document Server

    Morii, T; Mukherjee, S N

    2004-01-01

    This book provides a unified description of elementary particle interactions and the underlying theories, namely the Standard Model and beyond. The authors have aimed at a concise presentation but have taken care that all the basic concepts are clearly described. Written primarily for graduate students in theoretical and experimental particle physics , The Physics of the Standard Model and Beyond conveys the excitement of particle physics, centering upon experimental observations (new and old) and a variety of ideas for their interpretation. Contents: Weak Interaction; Symmetries and the Gauge

  5. Standard Cost Model: Three Different Paths and their Common Problems

    Directory of Open Access Journals (Sweden)

    Jacopo Torriti

    2011-12-01

    Full Text Available Red tape is not desirable as it impedes business growth. Relief from the administrative burdens that businesses face due to legislation can benefit the whole economy, especially at times of recession. However, recent governmental initiatives aimed at reducing administrative burdens have encountered some success, but also failures. This article compares three national initiatives – in the Netherlands, UK and Italy - aimed at cutting red tape by using the Standard Cost Model. Findings highlight the factors affecting the outcomes of measurement and reduction plans and ways to improve the Standard Cost Model methodology.

  6. Precision Electroweak Measurements and Constraints on the Standard Model

    CERN Document Server

    Alcaraz, J; Barberio, E; Bourilkov, D; Checchia, P; Chierici, R; Clare, R; D'Hondt, J; de la Cruz, B; de Jong, P; Della Ricca, G; Dierckxsens, M; Duchesneau, D; Duckeck, G; Elsing, M; Grünewald, M W; Gurtu, A; Hansen, J B; Hawkings, R; Jezequel, St; Jones, R W L; Kawamoto, T; Lançon, E; Liebig, W; Malgeri, L; Mele, S; Minard, M N; Mönig, K; Parkes, C; Parzefall, U; Pietrzyk, B; Quast, G; Renton, P B; Riemann, S; Sachs, K; Strässner, A; Strom, D; Tenchini, R; Teubert, F; Thomson, M A; Todorova-Nová, S; Valassi, A; Venturi, A; Voss, H; Ward, C P; Watson, N K; Wells, P S; Wynhoff, St

    2007-01-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D{\\O}at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the results obtained in high-$Q^2$ interactions, and used to predict results in low-$Q^2$ experiments, such as atomic parity violation, M{\\o}ller scattering, and neutrino-nucleon scattering.

  7. Spectra in standard-like Z_3 orbifold models

    Energy Technology Data Exchange (ETDEWEB)

    Giedt, Joel

    2001-08-31

    General features of the spectra of matter states in all 175 models found in a previous work by the author are discussed. Only twenty patterns of representations are found to occur. Accomodation of the Minimal Supersymmetric Standard Model (MSSM) spectrum is addressed. States beyond those contained in the MSSM and nonstandard hypercharge normalization are shown to be generic, though some models do allow for the usual hypercharge normalization found in SU(5) embeddings of the Standard Model gauge group. The minimum value of the hypercharge normalization consistent with accommodation of the MSSM is determined for each model. In some cases, the normalization can be smaller than that corresponding to an SU(5) embedding of the Standard Model gauge group, similar to what has been found in free fermionic models. Bizarre hypercharges typically occur for exotic states, allowing for matter which does not occur in the decomposition of SU(5) representations--a result which has been noted many times before in four-dimensiona lstring models. Only one of the twenty patterns of representations, comprising seven of the 175 models, is found to be without an anomalous U(1). The sizes of nonvanishing vacuum expectation values induced by the anomalous U(1) are studied. It is found that large radius moduli stabilization may lead to the breakdown of sigma-model perturbativity. Various quantities of interest in effective supergravity model building are tabulated for the set of 175 models. In particular, it is found that string moduli masses appear to be generically quite near the gravitino mass. String scale gauge coupling unification is shown to be possible, albeit contrived, in an example model. The intermediate scales of exotic particles are estimated and the degree of fine-tuning is studied.

  8. A standard telemental health evaluation model: the time is now.

    Science.gov (United States)

    Kramer, Greg M; Shore, Jay H; Mishkind, Matt C; Friedl, Karl E; Poropatich, Ronald K; Gahm, Gregory A

    2012-05-01

    The telehealth field has advanced historic promises to improve access, cost, and quality of care. However, the extent to which it is delivering on its promises is unclear as the scientific evidence needed to justify success is still emerging. Many have identified the need to advance the scientific knowledge base to better quantify success. One method for advancing that knowledge base is a standard telemental health evaluation model. Telemental health is defined here as the provision of mental health services using live, interactive video-teleconferencing technology. Evaluation in the telemental health field largely consists of descriptive and small pilot studies, is often defined by the individual goals of the specific programs, and is typically focused on only one outcome. The field should adopt new evaluation methods that consider the co-adaptive interaction between users (patients and providers), healthcare costs and savings, and the rapid evolution in communication technologies. Acceptance of a standard evaluation model will improve perceptions of telemental health as an established field, promote development of a sounder empirical base, promote interagency collaboration, and provide a framework for more multidisciplinary research that integrates measuring the impact of the technology and the overall healthcare aspect. We suggest that consideration of a standard model is timely given where telemental health is at in terms of its stage of scientific progress. We will broadly recommend some elements of what such a standard evaluation model might include for telemental health and suggest a way forward for adopting such a model.

  9. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model

    Science.gov (United States)

    Joe H. Scott; Robert E. Burgan

    2005-01-01

    This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.

  10. Search for the standard model Higgs boson in $l\

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dikai [Pierre and Marie Curie Univ., Paris (France)

    2013-01-01

    Humans have always attempted to understand the mystery of Nature, and more recently physicists have established theories to describe the observed phenomena. The most recent theory is a gauge quantum field theory framework, called Standard Model (SM), which proposes a model comprised of elementary matter particles and interaction particles which are fundamental force carriers in the most unified way. The Standard Model contains the internal symmetries of the unitary product group SU(3)c ⓍSU(2)L Ⓧ U(1)Y , describes the electromagnetic, weak and strong interactions; the model also describes how quarks interact with each other through all of these three interactions, how leptons interact with each other through electromagnetic and weak forces, and how force carriers mediate the fundamental interactions.

  11. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  12. ATLAS Standard Model Measurements Using Jet Grooming and Substructure

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2017-01-01

    Boosted topologies allow to explore Standard Model processes in kinematical regimes never tested before. In such LHC challenging environments, standard reconstruction techniques quickly hit the wall. Targeting hadronic final states means to properly reconstruct energy and multiplicity of the jets in the event. In order to be able to identify the decay product of boosted objects, i.e. W bosons, $t\\bar{t}$ pairs or Higgs produced in association with $t\\bar{t}$ pairs, ATLAS experiment is currently exploiting several algorithms using jet grooming and jet substructure. This contribution will mainly cover the following ATLAS measurements: $t\\bar{t}$ differential cross section production and jet mass using the soft drop procedure. Standard Model measurements offer the perfect field to test the performances of new jet tagging techniques which will become even more important in the search for new physics in highly boosted topologies.”

  13. Gravitational waves from domain walls in the Standard Model

    Science.gov (United States)

    Krajewski, T.; Lalak, Z.; Lewicki, M.; Olszewski, P.

    2017-07-01

    We study domain walls interpolating between the physical electroweak vacuum and the global minimum of the Standard Model scalar potential appearing at very high field strengths. Such domain walls could be created in the early Universe under the assumption of validity of the Standard Model up to very high energy scales. The creation of the network of domain walls which ends up in the electroweak vacuum percolating through the Universe is not as difficult to obtain as one may expect, although it requires certain tuning of initial conditions. Our numerical simulations confirm that such domain walls would swiftly decay. Moreover we have found that for the standard cosmology the energy density of gravitational waves emitted from domain walls is too small to be observed in present and planned detectors.

  14. Recent results from Beyond Standard Model(BSM) at LHC

    CERN Document Server

    Bawa, Harinder Singh; The ATLAS collaboration

    2014-01-01

    I present the results for searches beyond the Standard Model (BSM) at the LHC by the ATLAS and CMS collaborations. The minimal supersymmetric extension of the SM has been investigated in various configurations and lower limits are set on the s-particle masses. The searches for other scenarios of physics beyond the SM are also presented and lower limits on the mass scale are derived in a large variety of models (new heavy gauge bosons, extra-dimensions, compositeness or dark matter).

  15. Searches for standard model Higgs at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Cortabitarte, Rocio; /Cantabria U., Santander

    2007-04-01

    A summary of the latest results of Standard Model Higgs boson searches from CDF and D0 presented at the DIS 2007 conference is reported in this paper. All analyses presented use 1 fb{sup -1} of Tevatron data. The strategy of the different analyses is determined by the Higgs production mechanism and decay channel.

  16. Teacher Leader Model Standards: Implications for Preparation, Policy, and Practice

    Science.gov (United States)

    Berg, Jill Harrison; Carver, Cynthia L.; Mangin, Melinda M.

    2014-01-01

    Teacher leadership is increasingly recognized as a resource for instructional improvement. Consequently, teacher leader initiatives have expanded rapidly despite limited knowledge about how to prepare and support teacher leaders. In this context, the "Teacher Leader Model Standards" represent an important development in the field. In…

  17. The Standard Model prediction for ε'/ε

    NARCIS (Netherlands)

    Pallante, E.; Pich, A.; Scimemi, I.

    2001-01-01

    We present a detailed analysis of ε'/ε within the Standard Model, taking into account the strong enhancement through final-state interactions identified earlier. The relevant hadronic matrix elements are fixed at leading order in the 1/NC expansion, through a matching procedure between the effective

  18. Search for Higgs boson in beyond standard model scenarios at ...

    Indian Academy of Sciences (India)

    The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations.

  19. searches for physics beyond the standard model in production at ...

    Indian Academy of Sciences (India)

    March 2004 physics pp. 551-554 searches for physics beyond the standard model in production at LEP II. PETER JOHN HOLT. CERN, CH-1211 Geneva, Switzerland. Abstract. Preliminary combinations of measurements of the 4 LEP Collaborations of the process e+e- ff at LEP II are presented. The combined results are ...

  20. New U(1) gauge extension of the supersymmetric standard model.

    Science.gov (United States)

    Ma, Ernest

    2002-07-22

    In extending the minimal standard model of quarks and leptons to include supersymmetry, the conservation of baryon and lepton numbers is no longer automatic. I show how the latter may be achieved with a new U(1) gauge symmetry and new supermultiplets at the TeV scale. Neutrino masses and a solution of the mu problem are essential features of this proposed extension.

  1. Holomorphy without supersymmetry in the Standard Model Effective Field Theory

    Directory of Open Access Journals (Sweden)

    Rodrigo Alonso

    2014-12-01

    Full Text Available The anomalous dimensions of dimension-six operators in the Standard Model Effective Field Theory (SMEFT respect holomorphy to a large extent. The holomorphy conditions are reminiscent of supersymmetry, even though the SMEFT is not a supersymmetric theory.

  2. The Dawn of physics beyond the standard model

    CERN Multimedia

    Kane, Gordon

    2003-01-01

    "The Standard Model of particle physics is at a pivotal moment in its history: it is both at the height of its success and on the verge of being surpassed [...] A new era in particle physics could soon be heralded by the detection of supersymmetric particles at the Tevatron collider at Fermi National Accelerator Laboratory in Batavia, Ill." (8 pages)

  3. Affine group formulation of the Standard Model coupled to gravity

    CERN Document Server

    Chou, Ching-Yi; Soo, Chopin

    2013-01-01

    Using the affine group formalism, we perform a nonperturbative quantization leading to the construction of elements of a physical Hilbert space for full, Lorentzian quantum gravity coupled to the Standard Model in four spacetime dimensions. This paper constitutes a first step toward understanding the phenomenology of quantum gravitational effects stemming from a consistent treatment of minimal couplings to matter.

  4. 15th International Workshop "What Comes Beyond the Standard Models"

    CERN Document Server

    Nielsen, Holger Bech; Lukman, Dragan

    2013-01-01

    The contribution contains the preface to the Proceedings to the 15 th Workshop What Comes Beyond the Standard Models, Bled, July 9 - 19, 2012, published in Bled workshops in physics, Vol.13, No. 2, DMFA-Zaloznistvo, Ljubljana, Dec. 2012, and links to the published contributions.

  5. 14th Workshop on What Comes Beyond the Standard Models

    CERN Document Server

    Nielsen, Holger Bech; Lukman, Dragan; 14th Bled Workshop 2011

    2013-01-01

    The contribution contains the preface to the Proceedings to the 14th Workshop What Comes Beyond the Standard Models, Bled, July 11 - 21, 2011, published in Bled workshops in physics, Vol.12, No. 2, DMFA-Zaloznistvo, Ljubljana, Dec. 2011, and links to the published contributions.

  6. Standard Model Higgs boson searches with the ATLAS detector at ...

    Indian Academy of Sciences (India)

    The search for the Standard Model (SM) Higgs boson is one of the most important pri- orities of the Large Hadron Collider (LHC) scientific programme. A recent review of the theory of the SM Higgs is available in [1]. Direct searches at the CERN LEP collider exclude the existence of this boson with its mass mH lower than ...

  7. Land administration domain model is an ISO standard now

    NARCIS (Netherlands)

    Lemmen, C.H.J.; Van Oosterom, P.J.M.; Uitermark, H.T.; De Zeeuw, K.

    2013-01-01

    A group of land administration professionals initiated the development of a data model that facilitates the quick and efficient set-up of land registrations. Just like social issues benefit from proper land administration, land administration systems themselves benefit from proper data standards. In

  8. Searches for Standard Model Higgs at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Cortavitarte, Rocio Vilar; /Cantabria Inst. of Phys.

    2007-11-01

    A summary of the latest results of Standard Model Higgs boson searches from CDF and D0 presented at the DIS 2007 conference is reported in this paper. All analyses presented use 1 fb{sup -1} of Tevatron data. The strategy of the different analyses is determined by the Higgs production mechanism and decay channel.

  9. Standard Model Higgs boson searches with the ATLAS detector at ...

    Indian Academy of Sciences (India)

    The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at s = 7 TeV recorded by the ...

  10. Mathematical Modeling, Sense Making, and the Common Core State Standards

    Science.gov (United States)

    Schoenfeld, Alan H.

    2013-01-01

    On October 14, 2013 the Mathematics Education Department at Teachers College hosted a full-day conference focused on the Common Core Standards Mathematical Modeling requirements to be implemented in September 2014 and in honor of Professor Henry Pollak's 25 years of service to the school. This article is adapted from my talk at this conference…

  11. Delta-tilde interpretation of standard linear mixed model results

    DEFF Research Database (Denmark)

    Brockhoff, Per Bruun; Amorim, Isabel de Sousa; Kuznetsova, Alexandra

    2016-01-01

    We utilize the close link between Cohen's d, the effect size in an ANOVA framework, and the Thurstonian (Signal detection) d-prime to suggest better visualizations and interpretations of standard sensory and consumer data mixed model ANOVA results. The basic and straightforward idea is to interpret...... inherently challenging effect size measure estimates in ANOVA settings....

  12. Challenging the Standard Model with the muon g− 2

    Indian Academy of Sciences (India)

    The discrepancy between experiment and the Standard Model prediction of the muon −2 is reviewed. The possibility to bridge it by hypothetical increases in the hadronic cross-section used to determine the leading hadronic contribution to the latter is analysed.

  13. Status of Beyond Standard Model Higgs searches at the LHC

    CERN Document Server

    Bruckman de Renstrom, Pawel; The ATLAS collaboration

    2015-01-01

    An overview of searches for Beyond Standard Model physics phenomena in the Higgs sector from the ATLAS and the CMS experiments in LHC Run 1 is given. Both indirect limits as well as direct searches for various extensions of the scalar sector are covered. The review presents a wide scope of results and concentrates on the most recent analyses.

  14. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    Science.gov (United States)

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only

  15. Overview of the Standard Model Measurements with the ATLAS Detector

    CERN Document Server

    Liu, Yanwen; The ATLAS collaboration

    2017-01-01

    The ATLAS Collaboration is engaged in precision measurement of fundamental Standard Model parameters, such as the W boson mass, the weak-mixing angle or the strong coupling constant. In addition, the production cross-sections of a large variety of final states involving high energetic jets, photons as well as single and multi vector bosons are measured multi differentially at several center of mass energies. This allows to test perturbative QCD calculations to highest precision. In addition, these measurements allow also to test models beyond the SM, e.g. those leading to anomalous gauge couplings. In this talk, we give a broad overview of the Standard Model measurement campaign of the ATLAS collaboration, where selected topics will be discussed in more detail.

  16. Rare B decays as tests of the Standard Model

    Science.gov (United States)

    Blake, Thomas; Lanfranchi, Gaia; Straub, David M.

    2017-01-01

    One of the most interesting puzzles in particle physics today is that new physics is expected at the TeV energy scale to solve the hierarchy problem, and stabilises the Higgs mass, but so far no unambiguous signal of new physics has been found. Strong constraints on the energy scale of new physics can be derived from precision tests of the electroweak theory and from flavour-changing or CP-violating processes in strange, charm and beauty hadron decays. Decays that proceed via flavour-changing-neutral-current processes are forbidden at the lowest perturbative order in the Standard Model and are, therefore, rare. Rare b hadron decays are playing a central role in the understanding of the underlying patterns of Standard Model physics and in setting up new directions in model building for new physics contributions. In this article the status and prospects of this field are reviewed.

  17. Distinguishing standard model extensions using monotop chirality at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdi, Rouzbeh [Department of Physics and Astronomy, University of New Mexico,Albuquerque, NM 87131 (United States); Dalchenko, Mykhailo; Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Flórez, Andrés [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia); Gao, Yu [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Kamon, Teruki [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Department of Physics, Kyungpook National University,Daegu 702-701 (Korea, Republic of); Kolev, Nikolay [Department of Physics, University of Regina,SK, S4S 0A2 (Canada); Mueller, Ryan [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Segura, Manuel [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia)

    2016-12-13

    We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.

  18. Neutron electric dipole moment and extension of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Oshimo, Noriyuki [Ochanomizu Univ., Department of Physics, Tokyo (Japan)

    2001-12-01

    A nonvanishing value for the electric dipole moment (EDM) of the neutron is a prominent signature for CP violation. The EDM induced by the Kobayashi-Maskawa mechanism of the standard model (SM) has a small magnitude and its detection will be very difficult. However, since baryon asymmetry of the universe cannot be accounted for by the SM, there should exist some other source of CP violation, which may generate a large magnitude for the EDM. One of the most hopeful candidates for physics beyond the SM is the supersymmetric standard model, which contains such sources of CP violation. This model suggests that the EDM has a magnitude not much smaller than the present experimental bounds. Progress in measuring the EDM provides very interesting information about extension of the SM. (author)

  19. THE STAGES OF HETEROTIC HYBRIDS F1 DEVELOPMENT IN EUROPEAN RADISH

    Directory of Open Access Journals (Sweden)

    M. A. Kosenko

    2017-01-01

    Full Text Available The scheme  of  development  of  two-line  of  hybrids  F1  in European radish based on self-incompatibility includes five stages, as follows: 1 – selection of self-incompatible lines, common and specified combining ability estimation; 2 – inbreeding and selection to make the lines homozygous for morphological traits, common and specified combining ability estimation; maintenance and reproduction of self-incompatible lines; 4 – production of hybrid seeds. The research work on assessment of hybrid F1 that were obtained from cross of eight self-incompatible lines of European winter radish by the Griffing’s method was carried out in 2016. The assessment of length, diameter and yield of radish root was performed. According to the root shape the heterotic hybrids F1 were divided into three groups: rounded-flat,  48.2%; round, 50.0%; and flatten-round,  1.8%. The level of root marketability of hybrids F1 reached 100%. As a result of the work the promising hybrid combination distinguished by high uniformity, marketability and high yield were selected out.

  20. On the modeling of narrow gaps using the standard BEM

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda; Juhl, P.M.; Jacobsen, Finn

    2001-01-01

    Numerical methods based on the Helmholtz integral equation are well suited for solving acoustic scattering and diffraction problems at relatively low frequencies. However, it is well known that the standard method becomes degenerate if the objects that disturb the sound field are very thin....... This paper makes use of a standard axisymmetric Helmholtz integral equation formulation and its boundary element method (BEM) implementation to study the behavior of the method on two test cases: a thin rigid disk of variable thickness and two rigid cylinders separated by a gap of variable width. Both...... with in the literature. A simple integration technique that can extend the range of thicknesses/widths tractable by the otherwise unmodified standard formulation is presented and tested. This technique is valid for both cases. The modeling of acoustic transducers Like sound intensity probes and condenser microphones has...

  1. Standards for Documenting Finite‐Fault Earthquake Rupture Models

    KAUST Repository

    Mai, Paul Martin

    2016-04-06

    In this article, we propose standards for documenting and disseminating finite‐fault earthquake rupture models, and related data and metadata. A comprehensive documentation of the rupture models, a detailed description of the data processing steps, and facilitating the access to the actual data that went into the earthquake source inversion are required to promote follow‐up research and to ensure interoperability, transparency, and reproducibility of the published slip‐inversion solutions. We suggest a formatting scheme that describes the kinematic rupture process in an unambiguous way to support subsequent research. We also provide guidelines on how to document the data, metadata, and data processing. The proposed standards and formats represent a first step to establishing best practices for comprehensively documenting input and output of finite‐fault earthquake source studies.

  2. Astrophysical neutrinos flavored with beyond the Standard Model physics

    Science.gov (United States)

    Rasmussen, Rasmus W.; Lechner, Lukas; Ackermann, Markus; Kowalski, Marek; Winter, Walter

    2017-10-01

    We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or nonstandard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow us to efficiently test and discriminate between models. More detailed information can be obtained from additional observables such as the energy dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.

  3. Precision Electroweak Measurements and Constraints on the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-11

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2007 are new combinations of results on the W-boson mass and width and the mass of the top quark.

  4. Precision Electroweak Measurements and Constraints on the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-11-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.

  5. Precision Electroweak Measurements and Constraints on the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    The , ALEPH, CDF, D0, ...

    2009-12-11

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.

  6. Precision electroweak measurements and constraints on the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results obtained at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2009 are new combinations of results on the width of the W boson and the mass of the top quark.

  7. Search for Beyond the Standard Model Physics at D0

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, James

    2011-08-01

    The standard model (SM) of particle physics has been remarkably successful at predicting the outcomes of particle physics experiments, but there are reasons to expect new physics at the electroweak scale. Over the last several years, there have been a number of searches for beyond the standard model (BSM) physics at D0. Here, we limit our focus to three: searches for diphoton events with large missing transverse energy (E{sub T}), searches for leptonic jets and E{sub T}, and searches for single vector-like quarks. We have discussed three recent searches at D0. There are many more, including limits on heavy neutral gauge boson in the ee channel, a search for scalar top quarks, a search for quirks, and limits on a new resonance decaying to WW or WZ.

  8. Standard Model physics results from ATLAS and CMS

    CERN Document Server

    Dordevic, Milos

    2015-01-01

    The most recent results of Standard Model physics studies in proton-proton collisions at 7 TeV and 8 TeV center-of-mass energy based on data recorded by ATLAS and CMS detectors during the LHC Run I are reviewed. This overview includes studies of vector boson production cross section and properties, results on V+jets production with light and heavy flavours, latest VBS and VBF results, measurement of diboson production with an emphasis on ATGC and QTGC searches, as well as results on inclusive jet cross sections with strong coupling constant measurement and PDF constraints. The outlined results are compared to the prediction of the Standard Model.

  9. Search for the Standard Model Higgs Boson at LEP

    CERN Document Server

    Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Heister, A.; Schael, S.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Quyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Maley, P.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Smith, D.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Coles, J.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; DHondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baarmand, M.; Bagnaia, P.; Bajox, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casau, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; de Asmundis, R.; Deglont, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; De Notaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofiev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lee, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; ONeale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija; Heinemeyer, S.; Weiglein, G.

    2003-01-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have collected a total of 2461 pb-1 of e+e- collision data at centre-of-mass energies between 189 and 209 GeV. The data are used to search for the Standard Model Higgs boson. The search results of the four collaborations are combined and examined in a likelihood test for their consistency with two hypotheses: the background hypothesis and the signal plus background hypothesis. The corresponding confidences have been computed as functions of the hypothetical Higgs boson mass. A lower bound of 114.4 GeV/c2 is established, at the 95% confidence level, on the mass of the Standard Model Higgs boson. The LEP data are also used to set upper bounds on the HZZ coupling for various assumptions concerning the decay of the Higgs boson.

  10. Precision Electroweak Measurements and Constraints on the Standard Model

    CERN Document Server

    ,

    2010-01-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and DØ at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-$Q^2$ interactions, and used to predict results in low-$Q^2$ experiments, such as atomic parity violation, Møller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2009 are new combinations of results on the width of the W boson and the mass of the top quark.

  11. Direct search for the standard model Higgs boson

    CERN Document Server

    Janot, P

    2002-01-01

    For twelve years, LEP revolutionized the knowledge of electroweak symmetry breaking within the standard model, and the direct discovery of the Higgs boson would have been the crowning achievement. Searches at the Z resonance and above the W+W- threshold allowed an unambiguous lower limit on the mass of the standard model Higgs boson to set be at 114.1 GeV.c sup - sup 2. After years of efforts to push the LEP performance far beyond the design limits, hints of what could be the first signs of the existence of a 115 GeV.c sup - sup 2 Higgs boson appeared in June 2000, were confirmed in September, and were then confirmed again in November. An additional six-month period of LEP operation was enough to provide a definite answer, with an opportunity to make a fundamental discovery of prime importance. (authors)

  12. Direct search for the standard model Higgs boson

    CERN Document Server

    Janot, Patrick

    2002-01-01

    For twelve years, LEP revolutionized the knowledge of electroweak symmetry breaking within the standard model, and the direct discovery of the Higgs boson would have been the crowning achievement. Searches at the Z resonance and above the W/sup +/W/sup -/ threshold allowed an unambiguous lower limit on the mass of the standard model Higgs boson to set be at 114.1 GeV.c/sup -2/. After years of efforts to push the LEP performance far beyond the design limits, hints of what could be the first signs of the existence of a 115 GeV-c/sup -2/ Higgs boson appeared in June 2000, were confirmed in September, and were then confirmed again in November. An additional six-month period of LEP operation was enough to provide a definite answer, with an opportunity to make a fundamental discovery of prime importance. (37 refs).

  13. Gold-standard performance for 2D hydrodynamic modeling

    Science.gov (United States)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  14. Standard model physics with the ATLAS early data

    CERN Document Server

    Bruckman de Renstrom, Pawel

    2006-01-01

    The Standard Model, despite its open questions, has proved its consistency and predictive power to very high accuracy within the currently available energy reach. LHC, with its high CM energy and luminosity, will give us insight into new processes, possibly showing evidence of “new physics”. Excellent understanding of the SM processes will also be a key to discriminate against any new phenomena. Prospects of selected SM measurements with the ATLAS detector using early LHC luminosity are presented.

  15. Framework for an asymptotically safe standard model via dynamical breaking

    Science.gov (United States)

    Abel, Steven; Sannino, Francesco

    2017-09-01

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings.

  16. Standard model parameters and the search for new physics

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1988-04-01

    In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs.

  17. Challenging the Standard Model with the muon g − 2

    Indian Academy of Sciences (India)

    The first of these two options has been widely discussed in [2]; we will focus on the second one and analyse some of its implications. But first, let us review the muon g−2 status. 2. The Standard Model prediction of the muon g−2. The SM prediction of the anomalous magnetic moment of the muon, aSM. µ , is usually split into ...

  18. Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology.

    Science.gov (United States)

    Courtoy, Aurore; Baeßler, Stefan; González-Alonso, Martín; Liuti, Simonetta

    2015-10-16

    We evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations.

  19. Stress-testing the Standard Model at the LHC

    CERN Document Server

    2016-01-01

    With the high-energy run of the LHC now underway, and clear manifestations of beyond-Standard-Model physics not yet seen in data from the previous run, the search for new physics at the LHC may be a quest for small deviations with big consequences. If clear signals are present, precise predictions and measurements will again be crucial for extracting the maximum information from the data, as in the case of the Higgs boson. Precision will therefore remain a key theme for particle physics research in the coming years. The conference will provide a forum for experimentalists and theorists to identify the challenges and refine the tools for high-precision tests of the Standard Model and searches for signals of new physics at Run II of the LHC. Topics to be discussed include: pinning down Standard Model corrections to key LHC processes; combining fixed-order QCD calculations with all-order resummations and parton showers; new developments in jet physics concerning jet substructure, associated jets and boosted je...

  20. No Evidence for Extensions to the Standard Cosmological Model.

    Science.gov (United States)

    Heavens, Alan; Fantaye, Yabebal; Sellentin, Elena; Eggers, Hans; Hosenie, Zafiirah; Kroon, Steve; Mootoovaloo, Arrykrishna

    2017-09-08

    We compute the Bayesian evidence for models considered in the main analysis of Planck cosmic microwave background data. By utilizing carefully defined nearest-neighbor distances in parameter space, we reuse the Monte Carlo Markov chains already produced for parameter inference to compute Bayes factors B for many different model-data set combinations. The standard 6-parameter flat cold dark matter model with a cosmological constant (ΛCDM) is favored over all other models considered, with curvature being mildly favored only when cosmic microwave background lensing is not included. Many alternative models are strongly disfavored by the data, including primordial correlated isocurvature models (lnB=-7.8), nonzero scalar-to-tensor ratio (lnB=-4.3), running of the spectral index (lnB=-4.7), curvature (lnB=-3.6), nonstandard numbers of neutrinos (lnB=-3.1), nonstandard neutrino masses (lnB=-3.2), nonstandard lensing potential (lnB=-4.6), evolving dark energy (lnB=-3.2), sterile neutrinos (lnB=-6.9), and extra sterile neutrinos with a nonzero scalar-to-tensor ratio (lnB=-10.8). Other models are less strongly disfavored with respect to flat ΛCDM. As with all analyses based on Bayesian evidence, the final numbers depend on the widths of the parameter priors. We adopt the priors used in the Planck analysis, while performing a prior sensitivity analysis. Our quantitative conclusion is that extensions beyond the standard cosmological model are disfavored by Planck data. Only when newer Hubble constant measurements are included does ΛCDM become disfavored, and only mildly, compared with a dynamical dark energy model (lnB∼+2).

  1. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    Science.gov (United States)

    King, Zachary A.; Lu, Justin; Dräger, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A.; Ebrahim, Ali; Palsson, Bernhard O.; Lewis, Nathan E.

    2016-01-01

    Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data. PMID:26476456

  2. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models.

    Science.gov (United States)

    King, Zachary A; Lu, Justin; Dräger, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A; Ebrahim, Ali; Palsson, Bernhard O; Lewis, Nathan E

    2016-01-04

    Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Secure Certificateless Signature with Revocation in the Standard Model

    Directory of Open Access Journals (Sweden)

    Tung-Tso Tsai

    2014-01-01

    previously proposed certificateless signature schemes were insecure under a considerably strong security model in the sense that they suffered from outsiders’ key replacement attacks or the attacks from the key generation center (KGC. In this paper, we propose a certificateless signature scheme without random oracles. Moreover, our scheme is secure under the strong security model and provides a public revocation mechanism, called revocable certificateless signature (RCLS. Under the standard computational Diffie-Hellman assumption, we formally demonstrate that our scheme possesses existential unforgeability against adaptive chosen-message attacks.

  4. Unitarity Triangle analysis beyond the Standard Model from UTfit

    CERN Document Server

    Bona, Marcella

    2016-01-01

    The Unitarity Triangle (UT) analysis can be used to constrain the parameter space in possible new physics (NP) scenarios. We present here an update of the UT analysis beyond the Standard Model (SM) by the UTfit collaboration. Assuming NP, all of the available experimental and theoretical information on ∆F = 2 processes is combined using a model-independent parametrisation. We determine the allowed NP contributions in the kaon, D, Bd, and Bs sectors and, in various NP scenarios, we translate them into bounds for the NP scale as a function of NP couplings.

  5. Charged current universality in the minimal supersymmetric standard model.

    Science.gov (United States)

    Kurylov, A; Ramsey-Musolf, M J

    2002-02-18

    We compute the complete one-loop contributions to low-energy charged current weak interaction observables in the minimal supersymmetric standard model (MSSM). We obtain the constraints on the MSSM parameter space which arise when precision low-energy charged current data are analyzed in tandem with measurements of the muon anomaly. While the data allow the presence of at least one light neutralino, they also imply a pattern of mass splittings among first and second generation sleptons and squarks which contradicts predictions of widely used models for supersymmetry-breaking mediation.

  6. Supersymmetry and Beyond Standard Model Higgs searches at ATLAS

    Directory of Open Access Journals (Sweden)

    Igonkina Olga

    2012-06-01

    Full Text Available The searches for supersymmetric and beyond Standard Model Higgs boson with the ATLAS detector are presented. The results are based on integrated luminosity of 35 pb−1 to 1.6 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of 7 TeV at LHC. No signal is observed in any of the investigated channel and exclusion limits on production cross-sections are given as function of Higgs boson mass and of minimal supersymmetric model parameters.

  7. Efficient Lattice-Based Signcryption in Standard Model

    Directory of Open Access Journals (Sweden)

    Jianhua Yan

    2013-01-01

    Full Text Available Signcryption is a cryptographic primitive that can perform digital signature and public encryption simultaneously at a significantly reduced cost. This advantage makes it highly useful in many applications. However, most existing signcryption schemes are seriously challenged by the booming of quantum computations. As an interesting stepping stone in the post-quantum cryptographic community, two lattice-based signcryption schemes were proposed recently. But both of them were merely proved to be secure in the random oracle models. Therefore, the main contribution of this paper is to propose a new lattice-based signcryption scheme that can be proved to be secure in the standard model.

  8. Scalar dark matter in scale invariant standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Karim [Physics Department, Faculty of Sciences,Arak University, Arak 38156-8-8349 (Iran, Islamic Republic of); Ghorbani, Hossein [Institute for Research in Fundamental Sciences (IPM),School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-04-05

    We investigate single and two-component scalar dark matter scenarios in classically scale invariant standard model which is free of the hierarchy problem in the Higgs sector. We show that despite the very restricted space of parameters imposed by the scale invariance symmetry, both single and two-component scalar dark matter models overcome the direct and indirect constraints provided by the Planck/WMAP observational data and the LUX/Xenon100 experiment. We comment also on the radiative mass corrections of the classically massless scalon that plays a crucial role in our study.

  9. Numerical Models of Sewage Dispersion and Statistica Bathing Water Standards

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1991-01-01

    As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented....... It is demonstrated for a specific outfall how the method can be used to estimate the bathing water quality. The ambition with the paper has been to demonstrate how stochastic variations in a simple manner can be included in the analysis of water quality....

  10. Elementary particles, dark matter candidate and new extended standard model

    Science.gov (United States)

    Hwang, Jaekwang

    2017-01-01

    Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.

  11. Search for physics beyond the Standard Model using jet observables

    Science.gov (United States)

    Kousouris, Konstantinos

    2015-11-01

    Jet observables have been exploited extensively during the LHC Run 1 to search for physics beyond the Standard Model. In this article, the most recent results from the ATLAS and CMS collaborations are summarized. Data from proton-proton collisions at 7 and 8 TeV center-of-mass energy have been analyzed to study monojet, dijet, and multijet final states, searching for a variety of new physics signals that include colored resonances, contact interactions, extra dimensions, and supersymmetric particles. The exhaustive searches with jets in Run 1 did not reveal any signal, and the results were used to put stringent exclusion limits on the new physics models.

  12. Experiência com transplante cardíaco heterotópico em pacientes com resistência pulmonar elevada: seguimento tardio

    OpenAIRE

    Vila, Jose Henrique Andrade; Silva, José Pedro da; Fonseca,Luciana da; Baumgratz,José Francisco; Tangari Jr, Américo; Leite,Weverton Ferreira; Guilhen,Claudia Jesus; Armelin, Egas

    2010-01-01

    FUNDAMENTO: Nos últimos anos o numero de artigos sobre transplante cardíaco heterotópico tem sido escasso na literatura, inclusive internacional, e em particular do seguimento de longo prazo destes pacientes, o que levou ao presente relato. OBJETIVO: Relatar a experiência clínica inicial e evolução tardia de quatro pacientes submetidos a transplante cardíaco heterotópico, sua indicação e principais complicações. MÉTODOS: As cirurgias ocorreram entre 1992 e 2001, sendo que a indicação de trans...

  13. Constrained next-to-minimal supersymmetric standard model.

    Science.gov (United States)

    Djouadi, A; Ellwanger, U; Teixeira, A M

    2008-09-05

    We consider the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM) in which a singlet Higgs superfield is added to the two doublets that are present in the minimal extension (MSSM). Assuming universal boundary conditions at a high scale for the soft supersymmetry-breaking mass parameters as well as for the trilinear interactions, we find that the model is more constrained than the celebrated minimal supergravity model. The phenomenologically viable region in the parameter space of the cNMSSM corresponds to a small value for the universal scalar mass m_{0}: in this case, one single input parameter is sufficient to describe the model's phenomenology once constraints from collider data and cosmology are imposed.

  14. Combining ability and heterotic grouping of early maturing provitamin A maize inbreds across Striga infested and optimal environments

    Directory of Open Access Journals (Sweden)

    Laban Konate

    2017-06-01

    Full Text Available The development, deployment and production of stress tolerant provitamin A maize is crucial to the fight against vitamin A deficiency in sub-Saharan Africa (SSA where maize is a major staple food crop. Fifteen early maturing provitamin A and two early normal yellow endosperm maize inbreds were crossed using the diallel mating design to generate 136 single-cross hybrids. The hybrids were evaluated during 2015 growing season at three locations under two Striga infested and three optimal growing environments in Nigeria. The objectives were to (i determine the combining ability and heterotic groups of early maturing provitamin A inbreds; (ii examine the performance of the inbreds in hybrid combinations across environments and (iii identify early maturing provitamin A inbred testers for use in tropical maize breeding programs. The general combining ability (GCA and specific combining ability (SCA effects were significant for grain yield and most other traits indicating that additive and non-additive genetic effects were important in the inheritance of these characters. Inbreds TZEI 10, TZEIOR 108, and TZEI 17 had significant positive GCA for grain yield. TZEIOR 108, TZEIOR 42, and TZEI 10 had significant negative GCA for Striga damage while TZEIOR 122, TZEIOR 127, TZEIOR 108, and TZEI 10 had significant negative GCA for number of emerged Striga plants. The inbreds were classified based on heterotic groups’ SCA and GCA of grain yield (HSGCA, SCA and GCA of multiple traits (HGCAMT methods into four, three and five heterotic groups, respectively. The inbreds TZEIOR 108, TZEI 10 and TZEI 17 were identified as testers. Hybrids 8, 3, 5, 10 and 1 were identified as high yielding and most stable across environments.

  15. Wisconsin Model Early Learning Standards Alignment with Wisconsin Common Core State Standards for English Language Arts and Mathematics

    Science.gov (United States)

    Wisconsin Department of Public Instruction, 2011

    2011-01-01

    Wisconsin's adoption of the Common Core State Standards provides an excellent opportunity for Wisconsin school districts and communities to define expectations from birth through preparation for college and work. By aligning the existing Wisconsin Model Early Learning Standards with the Wisconsin Common Core State Standards, expectations can be…

  16. A unified model of the standard genetic code.

    Science.gov (United States)

    José, Marco V; Zamudio, Gabriel S; Morgado, Eberto R

    2017-03-01

    The Rodin-Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaningful. On the other hand, the standard genetic code (SGC) can be derived from the primeval RNY code (R stands for purines, Y for pyrimidines and N any of them). In this work, the RO-model is derived by means of group actions, namely, symmetries represented by automorphisms, assuming that the SGC originated from a primeval RNY code. It turns out that the RO-model is symmetric in a six-dimensional (6D) hypercube. Conversely, using the same automorphisms, we show that the RO-model can lead to the SGC. In addition, the asymmetric Delarue model becomes symmetric by means of quotient group operations. We formulate isometric functions that convert the class aaRS I into the class aaRS II and vice versa. We show that the four polar requirement categories display a symmetrical arrangement in our 6D hypercube. Altogether these results cannot be attained, neither in two nor in three dimensions. We discuss the present unified 6D algebraic model, which is compatible with both the SGC (based upon the primeval RNY code) and the RO-model.

  17. Flavour alignment in physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Braeuninger, Carolin Barbara

    2012-11-21

    There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple

  18. Domain walls and gravitational waves in the Standard Model

    Science.gov (United States)

    Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł

    2016-12-01

    We study domain walls which can be created in the Standard Model under the assumption that it is valid up to very high energy scales. We focus on domain walls interpolating between the physical electroweak vacuum and the global minimum appearing at very high field strengths. The creation of the network which ends up in the electroweak vacuum percolating through the Universe is not as difficult to obtain as one may expect, although it requires certain tuning of initial conditions. Our numerical simulations confirm that such domain walls would swiftly decay and thus cannot dominate the Universe. We discuss the possibility of detection of gravitational waves produced in this scenario. We have found that for the standard cosmology the energy density of these gravitational waves is too small to be observed in present and planned detectors.

  19. Symmetry and the Standard Model mathematics and particle physics

    CERN Document Server

    Robinson, Matthew

    2011-01-01

    While elementary particle physics is an extraordinarily fascinating field, the huge amount of knowledge necessary to perform cutting-edge research poses a formidable challenge for students. The leap from the material contained in the standard graduate course sequence to the frontiers of M-theory, for example, is tremendous. To make substantial contributions to the field, students must first confront a long reading list of texts on quantum field theory, general relativity, gauge theory, particle interactions, conformal field theory, and string theory. Moreover, waves of new mathematics are required at each stage, spanning a broad set of topics including algebra, geometry, topology, and analysis. Symmetry and the Standard Model: Mathematics and Particle Physics, by Matthew Robinson, is the first volume of a series intended to teach math in a way that is catered to physicists. Following a brief review of classical physics at the undergraduate level and a preview of particle physics from an experimentalist's per...

  20. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  1. Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al. I. Cuza' ' , Project IDEI, Iasi (Romania); Irwin, Klee [Quantum Gravity Research, Topanga, CA (United States)

    2017-01-15

    Geometric methods for constructing exact solutions of equations of motion with first order α{sup '} corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kaehler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kaehler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories. (orig.)

  2. Rare radiative charm decays within the standard model and beyond

    Science.gov (United States)

    de Boer, Stefan; Hiller, Gudrun

    2017-08-01

    We present standard model (SM) estimates for exclusive c → uγ processes in heavy quark and hybrid frameworks. Measured branching ratios B({D}^0\\to (φ, {\\overline{K}}^{\\ast 0})γ ) are at or somewhat exceeding the upper range of the SM and suggest slow convergence of the 1 /m D , α s -expansion. Model-independent constraints on |Δ C| = | Δ U | = 1 dipole operators from ℬ( D 0 → ρ 0 γ) data are obtained. Predictions and implications for leptoquark models are worked out. While branching ratios are SM-like CP asymmetries ≲ 10% can be induced. In SUSY deviations from the SM can be even larger with CP asymmetries of O(0 .1). If Λ c -baryons are produced polarized, such as at the Z-pole, an angular asymmetry in Λ c → pγ decays can be studied that is sensitive to chirality-flipped contributions.

  3. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    DEFF Research Database (Denmark)

    King, Zachary A.; Lu, Justin; Dräger, Andreas

    2016-01-01

    Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized...... redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases....... Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource...

  4. The Beyond the standard model working group: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    G. Azuelos et al.

    2004-03-18

    In this working group we have investigated a number of aspects of searches for new physics beyond the Standard Model (SM) at the running or planned TeV-scale colliders. For the most part, we have considered hadron colliders, as they will define particle physics at the energy frontier for the next ten years at least. The variety of models for Beyond the Standard Model (BSM) physics has grown immensely. It is clear that only future experiments can provide the needed direction to clarify the correct theory. Thus, our focus has been on exploring the extent to which hadron colliders can discover and study BSM physics in various models. We have placed special emphasis on scenarios in which the new signal might be difficult to find or of a very unexpected nature. For example, in the context of supersymmetry (SUSY), we have considered: how to make fully precise predictions for the Higgs bosons as well as the superparticles of the Minimal Supersymmetric Standard Model (MSSM) (parts III and IV); MSSM scenarios in which most or all SUSY particles have rather large masses (parts V and VI); the ability to sort out the many parameters of the MSSM using a variety of signals and study channels (part VII); whether the no-lose theorem for MSSM Higgs discovery can be extended to the next-to-minimal Supersymmetric Standard Model (NMSSM) in which an additional singlet superfield is added to the minimal collection of superfields, potentially providing a natural explanation of the electroweak value of the parameter {micro} (part VIII); sorting out the effects of CP violation using Higgs plus squark associate production (part IX); the impact of lepton flavor violation of various kinds (part X); experimental possibilities for the gravitino and its sgoldstino partner (part XI); what the implications for SUSY would be if the NuTeV signal for di-muon events were interpreted as a sign of R-parity violation (part XII). Our other main focus was on the phenomenological implications of extra

  5. Rare Charm Decays in the Standard Model and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, JoAnne L

    2001-12-19

    We perform a comprehensive study of a number of rare charm decays, incorporating the first evaluation of the QCD corrections to the short distance contributions, as well as examining the long range effects. For processes mediated by the c {yields} u{ell}{sup +}{ell}{sup -} transitions, we show that sensitivity to short distance physics exists in kinematic regions away from the vector meson resonances that dominate the total rate. In particular, we find that D {yields} {pi}{ell}{sup +}{ell}{sup -} and D {yields} {rho}{ell}{sup +}{ell}{sup -} are sensitive to non-universal soft-breaking effects in the Minimal Supersymmetric Standard Model with R-parity conservation. We separately study the sensitivity of these modes to R-parity violating effects and derive new bounds on R-parity violating couplings. We also obtain predictions for these decays within extensions of the Standard Model, including extensions of the Higgs, gauge and fermion sectors, as well as models of dynamical electroweak symmetry breaking.

  6. Harmonization of detailed clinical models with clinical study data standards.

    Science.gov (United States)

    Jiang, G; Evans, J; Oniki, T A; Coyle, J F; Bain, L; Huff, S M; Kush, R D; Chute, C G

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". Data sharing and integration between the clinical research data management system and the electronic health record system remains a challenging issue. To approach the issue, there is emerging interest in utilizing the Detailed Clinical Model (DCM) approach across a variety of contexts. The Intermountain Healthcare Clinical Element Models (CEMs) have been adopted by the Office of the National Coordinator awarded Strategic Health IT Advanced Research Projects for normalization (SHARPn) project for normalizing patient data from the electronic health records (EHR). The objective of the present study is to describe our preliminary efforts toward harmonization of the SHARPn CEMs with CDISC (Clinical Data Interchange Standards Consortium) clinical study data standards. We were focused on three generic domains: demographics, lab tests, and medications. We performed a panel review on each data element extracted from the CDISC templates and SHARPn CEMs. We have identified a set of data elements that are common to the context of both clinical study and broad secondary use of EHR data and discussed outstanding harmonization issues. We consider that the outcomes would be useful for defining new requirements for the DCM modeling community and ultimately facilitating the semantic interoperability between systems for both clinical study and broad secondary use domains.

  7. Criticality in the scale invariant standard model (squared

    Directory of Open Access Journals (Sweden)

    Robert Foot

    2015-07-01

    Full Text Available We consider first the standard model Lagrangian with μh2 Higgs potential term set to zero. We point out that this classically scale invariant theory potentially exhibits radiative electroweak/scale symmetry breaking with very high vacuum expectation value (VEV for the Higgs field, 〈ϕ〉≈1017–18 GeV. Furthermore, if such a vacuum were realized then cancellation of vacuum energy automatically implies that this nontrivial vacuum is degenerate with the trivial unbroken vacuum. Such a theory would therefore be critical with the Higgs self-coupling and its beta function nearly vanishing at the symmetry breaking minimum, λ(μ=〈ϕ〉≈βλ(μ=〈ϕ〉≈0. A phenomenologically viable model that predicts this criticality property arises if we consider two copies of the standard model Lagrangian, with exact Z2 symmetry swapping each ordinary particle with a partner. The spontaneously broken vacuum can then arise where one sector gains the high scale VEV, while the other gains the electroweak scale VEV. The low scale VEV is perturbed away from zero due to a Higgs portal coupling, or via the usual small Higgs mass terms μh2, which softly break the scale invariance. In either case, the cancellation of vacuum energy requires Mt=(171.53±0.42 GeV, which is close to its measured value of (173.34±0.76 GeV.

  8. Early universe cosmology. In supersymmetric extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Jochen Peter

    2012-03-19

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss

  9. Toward Standardizing a Lexicon of Infectious Disease Modeling Terms

    Science.gov (United States)

    Milwid, Rachael; Steriu, Andreea; Arino, Julien; Heffernan, Jane; Hyder, Ayaz; Schanzer, Dena; Gardner, Emma; Haworth-Brockman, Margaret; Isfeld-Kiely, Harpa; Langley, Joanne M.; Moghadas, Seyed M.

    2016-01-01

    Disease modeling is increasingly being used to evaluate the effect of health intervention strategies, particularly for infectious diseases. However, the utility and application of such models are hampered by the inconsistent use of infectious disease modeling terms between and within disciplines. We sought to standardize the lexicon of infectious disease modeling terms and develop a glossary of terms commonly used in describing models’ assumptions, parameters, variables, and outcomes. We combined a comprehensive literature review of relevant terms with an online forum discussion in a virtual community of practice, mod4PH (Modeling for Public Health). Using a convergent discussion process and consensus amongst the members of mod4PH, a glossary of terms was developed as an online resource. We anticipate that the glossary will improve inter- and intradisciplinary communication and will result in a greater uptake and understanding of disease modeling outcomes in heath policy decision-making. We highlight the role of the mod4PH community of practice and the methodologies used in this endeavor to link theory, policy, and practice in the public health domain. PMID:27734014

  10. Radiative electroweak symmetry breaking in standard model extensions

    Science.gov (United States)

    Babu, K. S.; Gogoladze, Ilia; Khan, S.

    2017-05-01

    We study the possibility of radiative electroweak symmetry breaking where loop corrections to the mass parameter of the Higgs boson trigger the symmetry breaking in various extensions of the Standard Model (SM). Although the mechanism fails in the SM, it is shown to be quite successful in several extensions which share a common feature of having an additional scalar around the TeV scale. The positive Higgs mass parameter at a high energy scale is turned negative in the renormalization group flow to lower energy by the cross couplings between the scalars in the Higgs potential. The type-II seesaw model with a TeV scale weak scalar triplet, a two-loop radiative neutrino mass model with new scalars at the TeV scale, the inert doublet model, scalar singlet dark matter model, and a universal seesaw model with an additional U (1 ) broken at the TeV scale are studied and shown to exhibit successful radiative electroweak symmetry breaking.

  11. The strong interactions beyond the standard model of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Georg [Muenster Univ. (Germany). Inst. for Theoretical Physics

    2016-11-01

    SuperMUC is one of the most convenient high performance machines for our project since it offers a high performance and flexibility regarding different applications. This is of particular importance for investigations of new theories, where on the one hand the parameters and systematic uncertainties have to be estimated in smaller simulations and on the other hand a large computational performance is needed for the estimations of the scale at zero temperature. Our project is just the first investigation of the new physics beyond the standard model of particle physics and we hope to proceed with our studies towards more involved Technicolour candidates, supersymmetric QCD, and extended supersymmetry.

  12. Dark Matter and Color Octets Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Krnjaic, Gordan Zdenko [Johns Hopkins Univ., Baltimore, MD (United States)

    2012-07-01

    Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that address each of these issues.

  13. Strong CP Problem with $10^{32}$ Standard Model Copies

    CERN Document Server

    Dvali, Gia

    2008-01-01

    We show that a recently proposed solution to the Hierarchy Problem simultaneously solves the Strong CP Problem, without requiring an axion or any further new physics. Consistency of black hole physics implies a non-trivial relation between the number of particle species and particle masses, so that with ~10^{32} copies of the standard model, the TeV scale is naturally explained. At the same time, as shown here, this setup predicts a typical expected value of the strong-CP parameter in QCD of theta ~ 10^{-9}. This strongly motivates a more sensitive measurement of the neutron electric dipole moment.

  14. High Mass Standard Model Higgs searches at the Tevatron

    Directory of Open Access Journals (Sweden)

    Petridis Konstantinos A.

    2012-06-01

    Full Text Available We present the results of searches for the Standard Model Higgs boson decaying predominantly to W+W− pairs, at a center-of-mass energy of √s = 1.96 TeV, using up to 8.2 fb−1 of data collected with the CDF and D0 detectors at the Fermilab Tevatron collider. The analysis techniques and the various channels considered are discussed. These searches result in exclusions across the Higgs mass range of 156.5< mH <173.7 GeV for CDF and 161< mH <170 GeV for D0.

  15. B_{s,d} -> l+ l- in the Standard Model

    CERN Document Server

    Bobeth, Christoph; Hermann, Thomas; Misiak, Mikolaj; Stamou, Emmanuel; Steinhauser, Matthias

    2014-01-01

    We combine our new results for the O(alpha_em) and O(alpha_s^2) corrections to B_{s,d} -> l^+ l^-, and present updated branching ratio predictions for these decays in the standard model. Inclusion of the new corrections removes major theoretical uncertainties of perturbative origin that have just begun to dominate over the parametric ones. For the recently observed muonic decay of the B_s meson, our calculation gives BR(B_s -> mu^+ mu^-) = (3.65 +_ 0.23) * 10^(-9).

  16. Searches for the standard model Higgs boson at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Dorigo, Tommaso; /Padua U.

    2005-05-01

    The CDF and D0 experiments at the Tevatron have searched for the Standard Model Higgs boson in data collected between 2001 and 2004. Upper limits have been placed on the production cross section times branching ratio to b{bar b} pairs or W{sup +}W{sup -} pairs as a function of the Higgs boson mass. projections indicate that the Tevatron experiments have a chance of discovering a M{sub H} = 115 GeV Higgs with the total dataset foreseen by 2009, or excluding it at 95% C.L. up to a mass of 135 GeV.

  17. Big bang nucleosynthesis: The standard model and alternatives

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).

  18. Gauge-invariant inflaton in the minimal supersymmetric standard model.

    Science.gov (United States)

    Allahverdi, Rouzbeh; Enqvist, Kari; Garcia-Bellido, Juan; Mazumdar, Anupam

    2006-11-10

    We argue that all the necessary ingredients for successful inflation are present in the flat directions of the Minimally Supersymmetric Standard Model. We show that out of many gauge-invariant combinations of squarks, sleptons, and Higgs bosons, there are two directions, LLe and udd, which are promising candidates for the inflaton. The model predicts more than 10(3) e-foldings, with an inflationary scale of H(inf) approximately O(1-10) GeV, provides a tilted spectrum with an amplitude of delta(H) approximately 10(-5) and a negligible tensor perturbation. The temperature of the thermalized plasma could be as low as T(rh) approximately O(1-10) TeV. Parts of the inflaton potential can be determined independently of cosmology by future particle physics experiments.

  19. Decay of the standard model Higgs field after inflation

    CERN Document Server

    Figueroa, Daniel G; Torrenti, Francisco

    2015-01-01

    We study the nonperturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into $Z$ and $W^{\\pm}$ bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its ...

  20. Stationary configurations of the Standard Model Higgs potential

    DEFF Research Database (Denmark)

    Iacobellis, Giuseppe; Masina, Isabella

    2016-01-01

    We study the gauge-independent observables associated with two interesting stationary configurations of the Standard Model Higgs potential (extrapolated to high energy according to the present state of the art, namely the next-to-next-to-leading order): i) the value of the top mass ensuring...... the stability of the SM electroweak minimum and ii) the value of the Higgs potential at a rising inflection point. We examine in detail and reappraise the experimental and theoretical uncertainties which plague their determination, finding that i) the stability of the SM is compatible with the present data...... at the 1.5σ level and ii) despite the large theoretical error plaguing the value of the Higgs potential at a rising inflection point, the application of such a configuration to models of primordial inflation displays a 3σ tension with the recent bounds on the tensor-to-scalar ratio of cosmological...

  1. Alive and well: A short review about standard solar models

    Energy Technology Data Exchange (ETDEWEB)

    Serenelli, Aldo [Campus UAB, Carrer de Can Magrans S/N, Instituto de Ciencias del Espacio (ICE/CSIC-IEEC), Cerdanyola del Valles (Spain)

    2016-04-15

    Standard solar models (SSMs) provide a reference framework across a number of research fields: solar and stellar models, solar neutrinos, particle physics the most conspicuous among them. The accuracy of the physical description of the global properties of the Sun that SSMs provide has been challenged in the last decade by a number of developments in stellar spectroscopic techniques. Over the same period of time, solar neutrino experiments, and Borexino in particular, have measured the four solar neutrino fluxes from the pp-chains that are associated with 99% of the nuclear energy generated in the Sun. Borexino has also set the most stringent limit on CNO energy generation, only ∝ 40% larger than predicted by SSMs. More recently, and for the first time, radiative opacity experiments have been performed at conditions that closely resemble those at the base of the solar convective envelope. In this article, we review these developments and discuss the current status of SSMs, including its intrinsic limitations. (orig.)

  2. Potential growing model for the standard carnation cv. Delphi

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López M.

    2014-08-01

    Full Text Available The cut flower business requires exact synchronicity between product offer and demand in consumer countries. Having tools that help to improve this synchronicity through predictions or crop growth monitoring could provide an important advantage to program standards and corrective agronomic practices. At the Centro de Biotecnología Agropecuaria, SENA (SENA's Biotechnology, Agricultural and Livestock Center, located in Mosquera, Cundinamarca, a trial with standard carnation cv. Delphi grown under greenhouse conditions was carried out. The objective of this study was to build a simple model of dry matter (DM production and partition of on-carnation flower stems. The model was based on the photosynthetically active radiation (PAR MJ m-2 d-1 and temperature as exogenous variables and assumed no water or nutrient limitations or damage caused by pests, disease or weeds. In this model, the daily DM increase depended on the PAR, the light fraction intercepted by the foliage (F LINT and the light use efficiency (LUE g MJ-1. The LUE in the vegetative and reproductive stages reached values of 1.31 and 0.74 g MJ-1, respectively. The estimated extinction coefficient (k value corresponded to 0.53 and the maximum F LINT was between 0.79 and 0.82. Partitioning between the plant vegetative and reproductive stages was modeled based on the hypothesis that the partition is regulated by the source sink relationship. The estimated partition coefficient for the vegetative stage of the leaves was 0.63 and 0.37 for the stems. During the reproductive stage, the partitioning coefficients of leaves, stems and flower buds were 0.05, 0.74, and 0.21, respectively.

  3. Collider physics within the standard model a primer

    CERN Document Server

    Altarelli, Guido

    2017-01-01

    With this graduate-level primer, the principles of the standard model of particle physics receive a particular skillful, personal and enduring exposition by one of the great contributors to the field. In 2013 the late Prof. Altarelli wrote: The discovery of the Higgs boson and the non-observation of new particles or exotic phenomena have made a big step towards completing the experimental confirmation of the standard model of fundamental particle interactions. It is thus a good moment for me to collect, update and improve my graduate lecture notes on quantum chromodynamics and the theory of electroweak interactions, with main focus on collider physics. I hope that these lectures can provide an introduction to the subject for the interested reader, assumed to be already familiar with quantum field theory and some basic facts in elementary particle physics as taught in undergraduate courses. “These lecture notes are a beautiful example of Guido’s unique pedagogical abilities and scientific vision”. From...

  4. From the CERN web: Standard Model, SESAME and more

    CERN Multimedia

    2015-01-01

    This section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   Left: ATLAS non-leptonic MWZ data. Right: ATLAS σ × B exclusion for W’ → WZ. Is the Standard Model about to crater? 28 October – CERN Courier The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC’s Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale. Continue to read…      Students and teachers participate in lectures about CERN science at the first ever SESAME teacher and students school. New CERN programme to develop network between SESAME schools 22 October - by Harriet Jarlett In September CERN welcomed 28 visitors from the Middle East for the first ever student and teacher school f...

  5. Status of the global electroweak fit of the Standard Model

    CERN Document Server

    Höcker, Andreas

    2009-01-01

    Results from the global Standard Model fit to electroweak precision data, including newest Tevatron measurements, are reviewed and discussed. The complete fit using also the constraints from the direct Higgs boson searches yields an upper limit on the Higgs mass of 153 GeV at 95% CL. The top mass is indirectly determined to be (177.2 +10.5 -7.8) GeV and (179.5 +8.8 -5.2) GeV for fits including or not the constraints from the direct Higgs searches, respectively. Using the 3NLO perturbative prediction of the massless QCD Adler function, the strong coupling constant at the Z-mass scale is determined to be alpha_s(MZ)=0.1193 +- 0.0028 +- 0.0001, which is in excellent agreement with the 3NLO result from hadronic tau decays. The perspectives of the electroweak fit for forthcoming and proposed future collider projects are discussed. The available constraints on the Higgs mass are convolved with the high-scale behaviour of the Higgs quartic coupling to derive likelihoods for the survival of the Standard Model versus ...

  6. Penguin-like diagrams from the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Chia Swee [High Impact Research, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.

  7. Standard model with spontaneously broken quantum scale invariance

    Science.gov (United States)

    Ghilencea, D. M.; Lalak, Z.; Olszewski, P.

    2017-09-01

    We explore the possibility that scale symmetry is a quantum symmetry that is broken only spontaneously and apply this idea to the standard model. We compute the quantum corrections to the potential of the Higgs field (ϕ ) in the classically scale-invariant version of the standard model (mϕ=0 at tree level) extended by the dilaton (σ ). The tree-level potential of ϕ and σ , dictated by scale invariance, may contain nonpolynomial effective operators, e.g., ϕ6/σ2, ϕ8/σ4, ϕ10/σ6, etc. The one-loop scalar potential is scale invariant, since the loop calculations manifestly preserve the scale symmetry, with the dimensional regularization subtraction scale μ generated spontaneously by the dilaton vacuum expectation value μ ˜⟨σ ⟩. The Callan-Symanzik equation of the potential is verified in the presence of the gauge, Yukawa, and the nonpolynomial operators. The couplings of the nonpolynomial operators have nonzero beta functions that we can actually compute from the quantum potential. At the quantum level, the Higgs mass is protected by spontaneously broken scale symmetry, even though the theory is nonrenormalizable. We compare the one-loop potential to its counterpart computed in the "traditional" dimensional regularization scheme that breaks scale symmetry explicitly (μ =constant) in the presence at the tree level of the nonpolynomial operators.

  8. Electric-Magnetic Duality and the Dualized Standard Model

    Science.gov (United States)

    Tsou, Sheung Tsun

    In these lectures I shall explain how a new-found nonabelian duality can be used to solve some outstanding questions in particle physics. The first lecture introduces the concept of electromagnetic duality and goes on to present its nonabelian generalization in terms of loop space variables. The second lecture discusses certain puzzles that remain with the Standard Model of particle physics, particularly aimed at nonexperts. The third lecture presents a solution to these problems in the form of the Dualized Standard Model, first proposed by Chan and the author, using nonabelian dual symmetry. The fundamental particles exist in three generations, and if this is a manifestation of dual colour symmetry, which by 't Hooft's theorem is necessarily broken, then we have a natural explanation of the generation puzzle, together with tested and testable consequences not only in particle physics, but also in astrophysics, nuclear and atomic physics. Reported is mainly work done in collaboration with Chan Hong-Mo, and also various parts with Peter Scharbach, Jacqueline Faridani, José Bordes, Jakov Pfaudler, Ricardo Gallego severally.

  9. Standard Model in multiscale theories and observational constraints

    Science.gov (United States)

    Calcagni, Gianluca; Nardelli, Giuseppe; Rodríguez-Fernández, David

    2016-08-01

    We construct and analyze the Standard Model of electroweak and strong interactions in multiscale spacetimes with (i) weighted derivatives and (ii) q -derivatives. Both theories can be formulated in two different frames, called fractional and integer picture. By definition, the fractional picture is where physical predictions should be made. (i) In the theory with weighted derivatives, it is shown that gauge invariance and the requirement of having constant masses in all reference frames make the Standard Model in the integer picture indistinguishable from the ordinary one. Experiments involving only weak and strong forces are insensitive to a change of spacetime dimensionality also in the fractional picture, and only the electromagnetic and gravitational sectors can break the degeneracy. For the simplest multiscale measures with only one characteristic time, length and energy scale t*, ℓ* and E*, we compute the Lamb shift in the hydrogen atom and constrain the multiscale correction to the ordinary result, getting the absolute upper bound t*28 TeV . Stronger bounds are obtained from the measurement of the fine-structure constant. (ii) In the theory with q -derivatives, considering the muon decay rate and the Lamb shift in light atoms, we obtain the independent absolute upper bounds t*35 MeV . For α0=1 /2 , the Lamb shift alone yields t*450 GeV .

  10. Topics in Beyond the Standard Model Physics and Cosmology

    Science.gov (United States)

    Stefanek, Ben A.

    In this thesis, we investigate possible extensions of the Standard Model (SM) in the context of particle physics and cosmology, in terms of what problems they can solve, constrain, or what experimental data they can explain. We first review the successes and shortcomings of the SM, as well as Big Bang cosmology and inflation. We then pivot toward extending the SM, placing a particular focus on the hierarchy problem, dark matter, and data driven approaches. In Chapter 2, we categorize a class of models which minimally extend the SM with new vector-like fermions at the TeV scale, interacting via new gauge forces. We analyze the rich phenomenology of a benchmark model in the context of discovery at the Large Hadron Collider (LHC). In Chapters 3 and 4, we investigate full or partial solutions to the hierarchy problem in the context of their experimental implications at the LHC and at short baseline neutrino oscillation experiments. In Chapter 5, we propose a model for inflation with concrete predictions for the production of primordial gravitational waves. Also in Chapter 5, we use data from observations of the Cosmic Microwave Background (CMB) to constrain the strength of long range scalar interactions between dark matter particles. With the CMB continuing to be measured and the LHC probing the TeV scale, we look forward to the insights future results will bring.

  11. Experimental validation of Swy-2 clay standard's PHREEQC model

    Science.gov (United States)

    Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György

    2017-04-01

    One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast

  12. Evolution of Climate Science Modelling Language within international standards frameworks

    Science.gov (United States)

    Lowe, Dominic; Woolf, Andrew

    2010-05-01

    The Climate Science Modelling Language (CSML) was originally developed as part of the NERC Data Grid (NDG) project in the UK. It was one of the first Geography Markup Language (GML) application schemas describing complex feature types for the metocean domain. CSML feature types can be used to describe typical climate products such as model runs or atmospheric profiles. CSML has been successfully used within NDG to provide harmonised access to a number of different data sources. For example, meteorological observations held in heterogeneous databases by the British Atmospheric Data Centre (BADC) and Centre for Ecology and Hydrology (CEH) were served uniformly as CSML features via Web Feature Service. CSML has now been substantially revised to harmonise it with the latest developments in OGC and ISO conceptual modelling for geographic information. In particular, CSML is now aligned with the near-final ISO 19156 Observations & Measurements (O&M) standard. CSML combines the O&M concept of 'sampling features' together with an observation result based on the coverage model (ISO 19123). This general pattern is specialised for particular data types of interest, classified on the basis of sampling geometry and topology. In parallel work, the OGC Met Ocean Domain Working Group has established a conceptual modelling activity. This is a cross-organisational effort aimed at reaching consensus on a common core data model that could be re-used in a number of met-related application areas: operational meteorology, aviation meteorology, climate studies, and the research community. It is significant to note that this group has also identified sampling geometry and topology as a key classification axis for data types. Using the Model Driven Architecture (MDA) approach as adopted by INSPIRE we demonstrate how the CSML application schema is derived from a formal UML conceptual model based on the ISO TC211 framework. By employing MDA tools which map consistently between UML and GML we

  13. BOMOS: Management and development model for open standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert; Kajan, Ejub; Dorloff, Frank-Dieter; Bedini, Ivan

    2012-01-01

    E-Business standards, or standards for interoperability, are developed outside the traditional standard development organizations, often within industry specific domain organizations. These organizations need some guidance in how to develop and manage standards for their specific domain in order to

  14. Design analysis of the standard necessity examination model

    OpenAIRE

    Oura, Jun

    2005-01-01

    In a real businness environment, a lot of kinds of standards exist. Some of the standards are widely used, but on the other hand, some are not used at all. This causes not only waste of resources but also avoiding growth of industries. This paper shows the structure of standard and gives the framework to develop effective standard with Drama Theoritical approach.

  15. New extended standard model, dark matters and relativity theory

    Science.gov (United States)

    Hwang, Jae-Kwang

    2016-03-01

    Three-dimensional quantized space model is newly introduced as the extended standard model. Four three-dimensional quantized spaces with total 12 dimensions are used to explain the universes including ours. Electric (EC), lepton (LC) and color (CC) charges are defined to be the charges of the x1x2x3, x4x5x6 and x7x8x9 warped spaces, respectively. Then, the lepton is the xi(EC) - xj(LC) correlated state which makes 3x3 = 9 leptons and the quark is the xi(EC) - xj(LC) - xk(CC) correlated state which makes 3x3x3 = 27 quarks. The new three bastons with the xi(EC) state are proposed as the dark matters seen in the x1x2x3 space, too. The matter universe question, three generations of the leptons and quarks, dark matter and dark energy, hadronization, the big bang, quantum entanglement, quantum mechanics and general relativity are briefly discussed in terms of this new model. The details can be found in the article titled as ``journey into the universe; three-dimensional quantized spaces, elementary particles and quantum mechanics at https://www.researchgate.net/profile/J_Hwang2''.

  16. Experimental limits from ATLAS on Standard Model Higgs production.

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Experimental limits from ATLAS on Standard Model Higgs production in the mass range 110-600 GeV. The solid curve reflects the observed experimental limits for the production of a Higgs of each possible mass value (horizontal axis). The region for which the solid curve dips below the horizontal line at the value of 1 is excluded with a 95% confidence level (CL). The dashed curve shows the expected limit in the absence of the Higgs boson, based on simulations. The green and yellow bands correspond (respectively) to 68%, and 95% confidence level regions from the expected limits. Higgs masses in the narrow range 123-130 GeV are the only masses not excluded at 95% CL

  17. Sakurai Prize: Beyond the Standard Model Higgs Boson

    Science.gov (United States)

    Haber, Howard

    2017-01-01

    The discovery of the Higgs boson strongly suggests that the first elementary spin 0 particle has been observed. Is the Higgs boson a solo act, or are there additional Higgs bosons to be discovered? Given that there are three generations of fundamental fermions, one might also expect the sector of fundamental scalars of nature to be non-minimal. However, there are already strong constraints on the possible structure of an extended Higgs sector. In this talk, I review the theoretical motivations that have been put forward for an extended Higgs sector and discuss its implications in light of the observation that the properties of the observed Higgs boson are close to those predicted by the Standard Model. supported in part by the U.S. Department of Energy Grant Number DE-SC0010107.

  18. Through precision straits to next standard model heights

    CERN Document Server

    David, André

    2016-01-01

    After the LHC Run 1, the standard model (SM) of particle physics has been completed. Yet, despite its successes, the SM has shortcomings vis-\\`{a}-vis cosmological and other observations. At the same time, while the LHC restarts for Run 2 at 13 TeV, there is presently a lack of direct evidence for new physics phenomena at the accelerator energy frontier. From this state of affairs arises the need for a consistent theoretical framework in which deviations from the SM predictions can be calculated and compared to precision measurements. Such a framework should be able to comprehensively make use of all measurements in all sectors of particle physics, including LHC Higgs measurements, past electroweak precision data, electric dipole moment, $g-2$, penguins and flavor physics, neutrino scattering, deep inelastic scattering, low-energy $e^{+}e^{-}$ scattering, mass measurements, and any search for physics beyond the SM. By simultaneously describing all existing measurements, this framework then becomes an intermed...

  19. DsixTools: the standard model effective field theory toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Celis, Alejandro [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Arnold Sommerfeld Center for Theoretical Physics, Munich (Germany); Fuentes-Martin, Javier; Vicente, Avelino [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Virto, Javier [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland)

    2017-06-15

    We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the ΔB = ΔS = 1, 2 and ΔB = ΔC = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale. (orig.)

  20. On Naturalness of Scalar Fields and Standard Model

    CERN Document Server

    Pivovarov, Grigorii B

    2008-01-01

    We discuss how naturalness predicts the scale of new physics. Two conditions on the scale are considered. The first is the more conservative condition due to Veltman (Acta Phys. Polon. B 12, 437 (1981)). It requires that radiative corrections to the electroweak mass scale would be reasonably small. The second is the condition due to Barbieri and Giudice (Nucl. Phys. B 306, 63 (1988)), which is more popular lately. It requires that physical mass scale would not be oversensitive to the values of the input parameters. We show here that the above two conditions behave differently if higher order corrections are taken into account. Veltman's condition is robust (insensitive to higher order corrections), while Barbieri-Giudice condition changes qualitatively. We conclude that higher order perturbative corrections take care of the fine tuning problem, and, in this respect, scalar field is a natural system. We apply the Barbieri-Giudice condition with higher order corrections taken into account to the Standard Model,...

  1. The Standard-Model Extension and Gravitational Tests

    CERN Document Server

    Tasson, Jay D

    2016-01-01

    The Standard-Model Extension (SME) provides a comprehensive effective field-theory framework for the study of CPT and Lorentz symmetry. This work reviews the structure and philosophy of the SME and provides some intuitive examples of symmetry violation. The results of recent gravitational tests performed within the SME are summarized including analysis of results from the Laser Interferometer Gravitational-Wave Observatory (LIGO), sensitivities achieved in short-range gravity experiments, constraints from cosmic-ray data, and results achieved by studying planetary ephemerids. Some proposals and ongoing efforts will also be considered including gravimeter tests, tests of the Weak Equivalence Principle, and antimatter experiments. Our review of the above topics is augmented by several original extensions of the relevant work. We present new examples of symmetry violation in the SME and use the cosmic-ray analysis to place first-ever constraints on 81 additional operators.

  2. Through precision straits to next standard model heights

    Directory of Open Access Journals (Sweden)

    André David

    2016-11-01

    Full Text Available After the LHC Run 1, the standard model (SM of particle physics has been completed. Yet, despite its successes, the SM has shortcomings vis-à-vis cosmological and other observations. At the same time, while the LHC restarts for Run 2 at 13 TeV, there is presently a lack of direct evidence for new physics phenomena at the accelerator energy frontier. From this state of affairs arises the need for a consistent theoretical framework in which deviations from the SM predictions can be calculated and compared to precision measurements. Such a framework should be able to comprehensively make use of all measurements in all sectors of particle physics, including LHC Higgs measurements, past electroweak precision data, electric dipole moment, g−2, penguins and flavor physics, neutrino scattering, deep inelastic scattering, low-energy e+e− scattering, mass measurements, and any search for physics beyond the SM. By simultaneously describing all existing measurements, this framework then becomes an intermediate step, pointing us toward the next SM, and hopefully revealing the underlying symmetries. We review the role that the standard model effective field theory (SMEFT could play in this context, as a consistent, complete, and calculable generalization of the SM in the absence of light new physics. We discuss the relationship of the SMEFT with the existing kappa-framework for Higgs boson couplings characterization and the use of pseudo-observables, that insulate experimental results from refinements due to ever-improving calculations. The LHC context, as well as that of previous and future accelerators and experiments, is also addressed.

  3. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1993-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  4. Semileptonic B decays in the Standard Model and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wick, Michael

    2010-09-15

    In this thesis we study several aspects of decays based on the quark level transitions b{yields}s{nu}anti {nu} and b{yields}s{mu}{sup +}{mu}{sup -} as well as transition form factors for radiative and rare semileptonic B meson decays. The quark level transition b{yields}s{nu}anti {nu} offers a transparent study of Z penguin and other electroweak penguin effects in New Physics (NP) scenarios in the absence of dipole operator contributions and Higgs penguin contributions. We present an analysis of B{yields}K*{nu}anti {nu} with improved form factors and of the decays B{yields}K{nu}anti {nu} and B{yields}X{sub s}{nu}anti {nu} in the Standard Model (SM) and in a number of NP scenarios like the general Minimal Supersymmetric Standard Model (MSSM), general scenarios with modified Z/Z{sup '} penguins and in a singlet scalar extension of the SM. The results for the SM and NP scenarios can be transparently visualized in a ({epsilon};{eta}) plane. The rare decay B{yields}K*({yields}K{pi}){mu}{sup +}{mu}{sup -} is regarded as one of the crucial channels for B physics as it gives rise to a multitude of observables. We investigate systematically the often correlated effects in these observables in the context of the SM and various NP models, in particular the Littlest Higgs model with T-parity and various MSSM scenarios and identify those observables with small to moderate dependence on hadronic quantities and large impact of NP. Furthermore, we study transition form factors for radiative and rare semi-leptonic B-meson decays into light pseudoscalar or vector mesons, combining theoretical and phenomenological constraints from Lattice QCD, light-cone sum rules, and dispersive bounds. We pay particular attention to form factor parameterizations which are based on the so-called series expansion, and study the related systematic uncertainties on a quantitative level. In this analysis as well as in the analysis of the b{yields}s transitions, we use consistently a convenient form

  5. Enriques and Octonionic Magic Supergravity Models

    CERN Document Server

    Bianchi, Massimo

    2008-01-01

    We reconsider the Enriques Calabi Yau (FHSV) model and its string derivation and argue that the Octonionic magic supergravity theory admits a string interpretation closely related to the Enriques model. The uplift to D=6 of the Octonionic magic model has 16 abelian vectors related to the rank of Type I and Heterotic strings.

  6. 13th Workshop on What Comes Beyond the Standard Models

    CERN Document Server

    Nielsen, Holger Bech; Lukman, Dragan; What Comes Beyond the Standard Models

    2010-01-01

    1. Noncommutativity and Topology within Lattice Field Theories 2. The Construction of Quantum Field Operators 3. The Bargmann-Wigner Formalism for Spin 2 Fields 4. New Light on Dark Matter from the LHC 5. Extra Dimensional Metric Reversal Symmetry and its Prospect... 6. Masses and Mixing Matrices of Families within SU(3) Flavor Symmetry ... 7. Dark Atoms of the Universe: OHe Nuclear Physics, 8. Can the Matter-Antimatter Asymmetry be Easier to Understand Within the "Spin-charge-family-theory", .. 9. Mass Matrices of Twice Four Families of Quarks and Leptons, ...in the "Spin-charge-family-theory" 10. Bohmian Quantum Mechanics or What Comes Before the Standard Model 11. Backward Causation in Complex Action Model ... 12. Is the Prediction of the "Spin-charge-family-theory" in Disagreement with the XENON100..? 13. Masses and Mixing Matrices of Families of Quarks and Leptons Within the "Spin-charge-family-theory" 14. Can the Stable Fifth Family of the "Spin-charge-family-theory" ...Form the Fifth Antibaryon Cluster...

  7. Beyond the Standard Model - Searches at HERA and the Tevatron

    CERN Document Server

    Gruenendahl, Stefan

    2008-01-01

    Searches for Physics beyond the Standard Model have entered an exciting new phase: the complete HERA data samples obtained until the end of operations in the Summer of 2007 are now available for analysis. ZEUS and H1 have each collected about 0.5 fb^{-1} of lepton proton data, distributed over electron and positron running, and over different lepton beam polarisations. At the same time the Fermilab Tevatron proton-antiproton collider is accumulating data at unprecedented rates, with current analyses based on up to 3 fb^{-1}. The Tevatron experiments DZERO and CDF have each already recorded over 4 fb^{-1} (Fall 2008), and are aiming for a total of 8 fb^{-1} of antiproton-proton collisions at 2 TeV center-of-mass energy for Tevatron Run II. I am presenting recent updates (from the last 12 months) on searches, grouped loosely into three classes: well-established `traditional' searches, mostly for very specific signatures and models, more recent and/or more generalized searches for broader classes of phenomena, a...

  8. Cosmological baryon asymmetry constraints on extensions of the standard model

    Science.gov (United States)

    Campbell, Bruce A.; Davidson, Sacha; Ellis, John; Olive, Keith A.

    1991-03-01

    The existence of the baryon asymmetry of the Universe puts strong constraints on extensions of the standard model which violate baryon and/or lepton number. Interactions violating baryon number but conserving lepton number in the early universe could wash away any previously established baryon asymmetry. Interactions which violate lepton number separately (as first discussed by Fukugita and Yanagida), with or without associated violation of baryon number, could combine with non-perturbative baryon and lepton number violating electroweak effects to eradicate the cosmological baryon asymmetry. We derive the constraints on any such interaction of arbitrary dimension arising from the persistence of the cosmological baryon asymmetry. We find, in particular, severe constraints on δB≠0 interactions that could mediate nn oscillations or δB≠δL proton decay, and on interactions that could violate R parity in supersymmetric models. These constraints severely limit the potential observability of n-n oscillations and R-parity violation in present laboratory experiments. On leave of absence from School of Physics and Astronomy, University of Minnesota, Minneapolis MN 55455, USA.

  9. The Risk GP Model: the standard model of prediction in medicine.

    Science.gov (United States)

    Fuller, Jonathan; Flores, Luis J

    2015-12-01

    With the ascent of modern epidemiology in the Twentieth Century came a new standard model of prediction in public health and clinical medicine. In this article, we describe the structure of the model. The standard model uses epidemiological measures-most commonly, risk measures-to predict outcomes (prognosis) and effect sizes (treatment) in a patient population that can then be transformed into probabilities for individual patients. In the first step, a risk measure in a study population is generalized or extrapolated to a target population. In the second step, the risk measure is particularized or transformed to yield probabilistic information relevant to a patient from the target population. Hence, we call the approach the Risk Generalization-Particularization (Risk GP) Model. There are serious problems at both stages, especially with the extent to which the required assumptions will hold and the extent to which we have evidence for the assumptions. Given that there are other models of prediction that use different assumptions, we should not inflexibly commit ourselves to one standard model. Instead, model pluralism should be standard in medical prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comparison of Standard Wind Turbine Models with Vendor Models for Power System Stability Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.; Muljadi, Eduard

    2016-11-01

    The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding generic IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.

  11. Physics beyond the Standard Model from hydrogen spectroscopy

    CERN Document Server

    Ubachs, Wim; Eikema, Kjeld S E; Salumbides, Edcel J

    2015-01-01

    Spectroscopy of hydrogen can be used for a search into physics beyond the Standard Model. Differences between the absorption spectra of H$_2$ as observed at high redshift and those measured in the laboratory can be interpreted in terms of possible variations of the proton-electron mass ratio. Investigation of some ten of such absorbers in the redshift range $z= 2.0-4.2$ yields a constraint of $|\\Delta\\mu/\\mu|< 5 \\times 10^{-6}$ at 3$\\sigma$. Observation of H$_2$ from the photospheres of white dwarf stars inside our Galaxy delivers a constraint of similar magnitude on a dependence of $\\mu$ on a gravitational potential $10^4$ times as strong as on the Earth's surface. Laser-based precision measurements of dissociation energies, vibrational splittings and rotational level energies in H$_2$ molecules and their deuterated isotopomers HD and D$_2$ produce values for the rovibrational binding energies fully consistent with quantum ab initio calculations including relativistic and quantum electrodynamical (QED) ef...

  12. On the fate of the Standard Model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Luigi Delle; Marzo, Carlo [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Via Arnesano, 73100 Lecce (Italy); INFN - Sezione di Lecce,via Arnesano, 73100 Lecce (Italy); Urbano, Alfredo [SISSA - International School for Advanced Studies,via Bonomea 256, 34136 Trieste (Italy)

    2016-05-10

    In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically — both at zero and finite temperature — the bounce equation, thus providing an accurate description of the thermal tunneling. Assuming a maximum temperature in the early Universe of the order of 10{sup 18} GeV, we find that the instability bound excludes values of the top mass M{sub t}≳173.6 GeV, with M{sub h}≃125 GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.

  13. LHCb is trying to crack the Standard Model

    CERN Multimedia

    2011-01-01

    LHCb will reveal new results tomorrow that will shed more light on the possible CP-violation measurement reported recently by the Tevatron experiments, different from Standard Model predictions. Quantum Diaries blogger for CERN, Pauline Gagnon, explains how.   LHCb, one of the Large Hadron Collider (LHC) experiments, was designed specifically to study charge-parity or CP violation. In simple words, its goal is to explain why more matter than antimatter was produced when the Universe slowly cooled down after the Big Bang, leading to a world predominantly composed of matter. This is quite puzzling since in laboratory experiments we do not measure a preference for the creation of matter over antimatter. Hence the CP-conservation law in physics that states that Nature should not have a preference for matter over antimatter. So why did the Universe evolve this way? One of the best ways to study this phenomenon is with b quarks. Since they are heavy, they can decay (i.e break down into smaller parts) ...

  14. Affine group formulation of the Standard Model coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  15. Improved metastability bounds on the standard model Higgs mass

    CERN Document Server

    Espinosa, J R; Espinosa, J R; Quiros, M

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the Standard Model at finite (and zero) temperature can have a deep and unphysical stable minimum \\langle \\phi(T)\\rangle at values of the field much larger than G_F^{-1/2}. We have computed absolute lower bounds on M_H, as a function of M_t, imposing the condition of no decay by thermal fluctuations, or quantum tunnelling, to the stable minimum. Our effective potential at zero temperature includes all next-to-leading logarithmic corrections (making it extremely scale-independent), and we have used pole masses for the Higgs-boson and top-quark. Thermal corrections to the effective potential include plasma effects by one-loop ring resummation of Debye masses. All calculations, including the effective potential and the bubble nucleation rate, are performed numerically and so the results do not rely on any kind of analytical approximation. Easy-to-use fits are provided for the benefit of the reader. Conclusions on the possi...

  16. Review of Standard Model Higgs results at the ATLAS experiment

    Science.gov (United States)

    Calandri, Alessandro; ATLAS Collaboration

    2017-07-01

    The investigation of the mechanism of electroweak (EW) symmetry breaking has been one of the main goals of the ATLAS experiment [1] research program at the CERN Large Hadron Collider (LHC). In the Standard Model (SM) of particle physics, the breaking of the EW symmetry is realised by introducing a complex doublet scalar field which is related to the existence of a neutral particle, the Higgs boson. The Higgs scalar field is responsible of the mass of the other particles; the mass of its mediator, the Higgs boson, is the only free parameter in the theory. In 2012, the ATLAS and CMS collaborations discovered a new particle consistent with the SM Higgs boson and two years later measured its mass, in the H → γγ and H →ZZ* → 4l channels, to be mH =125.09±0.21 (stat) ±0.11 (sys) GeV with data collected in 2011 and 2012 (LHC Run 1). This document will cover the SM Higgs analyses performed with approximately 15 fb-1 of pp collision data collected until summer 2016 during the so-called Run 2 LHC data-taking at a center-of-mass energy (\\sqrt{s}=13 {{TeV}}).

  17. Implications of Higgs’ universality for physics beyond the Standard Model

    Science.gov (United States)

    Goldman, T.; Stephenson, G. J.

    2017-06-01

    We emulate Cabibbo by assuming a kind of universality for fermion mass terms in the Standard Model. We show that this is consistent with all current data and with the concept that deviations from what we term Higgs’ universality are due to corrections from currently unknown physics of nonetheless conventional form. The application to quarks is straightforward, while the application to leptons makes use of the recognition that Dark Matter can provide the “sterile” neutrinos needed for the seesaw mechanism. Requiring agreement with neutrino oscillation results leads to the prediction that the mass eigenstates of the sterile neutrinos are separated by quadratically larger ratios than for the charged fermions. Using consistency with the global fit to LSND-like, short-baseline oscillations to determine the scale of the lowest mass sterile neutrino strongly suggests that the recently observed astrophysical 3.55 keV γ-ray line is also consistent with the mass expected for the second most massive sterile neutrino in our analysis.

  18. No evidence for extensions to the standard cosmological model

    CSIR Research Space (South Africa)

    Heavens, A

    2017-09-01

    Full Text Available -standard numbers of neutrinos (lnB=-3.1), non-standard neutrino masses (lnB=-3.2), non-standard lensing potential (lnB=-4.6), evolving dark energy (lnB=-3.2), sterile neutrinos (lnB=-6.9), and extra sterile neutrinos with a non-zero scalar-to-tensor ratio (lnB=-10...

  19. The pion: an enigma within the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Tanja; Roberts, Craig D.

    2016-05-27

    Almost 50 years after the discovery of gluons & quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons, protons, and the pions that bind them. QCD is characterised by two emergent phenomena: confinement & dynamical chiral symmetry breaking (DCSB). They are expressed with great force in the character of the pion. In turn, pion properties suggest that confinement & DCSB are closely connected. As both a Nambu-Goldstone boson and a quark-antiquark bound-state, the pion is unique in Nature. Developing an understanding of its properties is thus critical to revealing basic features of the Standard Model. We describe experimental progress in this direction, made using electromagnetic probes, highlighting both improvements in the precision of charged-pion form factor data, achieved in the past decade, and new results on the neutral-pion transition form factor. Both challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, first explaining how DCSB works to guarantee that the pion is unnaturally light; but also, nevertheless, ensures the pion is key to revealing the mechanisms that generate nearly all the mass of hadrons. Our discussion unifies the charged-pion elastic and neutral-pion transition form factors, and the pion's twist-2 parton distribution amplitude. It also indicates how studies of the charged-kaon form factor can provide significant contributions. Importantly, recent predictions for the large-$Q^2$ behaviour of the pion form factor can be tested by experiments planned at JLab 12. Those experiments will extend precise charged-pion form factor data to momenta that can potentially serve in validating factorisation theorems in QCD, exposing the transition between the nonperturbative and perturbative domains, and thereby reaching a goal that has long driven hadro-particle physics.

  20. Physics beyond the Standard Model and its Minimal Supersymmetric extension at large colliders

    OpenAIRE

    ??guila Gim??nez, Francisco del; Pittau, Roberto

    2004-01-01

    New large colliders will probe scales up to few TeV, indicating the way Nature has chosen to extend the Standard Model. We review alternative scenarios to the traditional Minimal Supersymmetric Standard Model: the little Higgs model, split supersymmetry and extra dimensional models with low energy signals.

  1. Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (Zea mays L.) Heterotic Groups.

    Science.gov (United States)

    Giraud, Héloïse; Bauland, Cyril; Falque, Matthieu; Madur, Delphine; Combes, Valérie; Jamin, Philippe; Monteil, Cécile; Laborde, Jacques; Palaffre, Carine; Gaillard, Antoine; Blanchard, Philippe; Charcosset, Alain; Moreau, Laurence

    2017-11-01

    Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed two multiparental maize (Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four founder lines. Instead of using "testers" to evaluate their hybrid values, segregating lines were crossed according to an incomplete factorial design to produce 951 dent-flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA, 31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in our design (∼20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers. Copyright © 2017 by the Genetics Society of America.

  2. CCR+: Metadata Based Extended Personal Health Record Data Model Interoperable with the ASTM CCR Standard.

    Science.gov (United States)

    Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong; Kim, Ju Han

    2014-01-01

    Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models.

  3. Advances in Geoscience Modeling: Smart Modeling Frameworks, Self-Describing Models and the Role of Standardized Metadata

    Science.gov (United States)

    Peckham, Scott

    2016-04-01

    Over the last decade, model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that make it much easier for modelers to connect heterogeneous sets of process models in a plug-and-play manner to create composite "system models". These mechanisms greatly simplify code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing with standardized metadata. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can use the self description functions to learn about each process model in a collection to be coupled and then automatically call framework service components (e.g. regridders

  4. The Measurement of Quality of Semantic Standards: the Application of a Quality Model on the SETU standard for eGovernment

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert; van Bekkum, Michael; Oude Luttighuis, Paul; van Hillegersberg, Jos

    2011-01-01

    eGovernment interoperability should be dealt with using high-quality standards. A quality model for standards is presented based on knowledge from the software engineering domain. In the tradition of action research the model is used on the SETU standard, a standard that is mandatory in the public

  5. Towards a standard model for research in agent-based modeling and simulation

    Directory of Open Access Journals (Sweden)

    Nuno Fachada

    2015-11-01

    Full Text Available Agent-based modeling (ABM is a bottom-up modeling approach, where each entity of the system being modeled is uniquely represented as an independent decision-making agent. ABMs are very sensitive to implementation details. Thus, it is very easy to inadvertently introduce changes which modify model dynamics. Such problems usually arise due to the lack of transparency in model descriptions, which constrains how models are assessed, implemented and replicated. In this paper, we present PPHPC, a model which aims to serve as a standard in agent based modeling research, namely, but not limited to, conceptual model specification, statistical analysis of simulation output, model comparison and parallelization studies. This paper focuses on the first two aspects (conceptual model specification and statistical analysis of simulation output, also providing a canonical implementation of PPHPC. The paper serves as a complete reference to the presented model, and can be used as a tutorial for simulation practitioners who wish to improve the way they communicate their ABMs.

  6. Prototyping an online wetland ecosystem services model using open model sharing standards

    Science.gov (United States)

    Feng, M.; Liu, S.; Euliss, N.H.; Young, Caitlin; Mushet, D.M.

    2011-01-01

    Great interest currently exists for developing ecosystem models to forecast how ecosystem services may change under alternative land use and climate futures. Ecosystem services are diverse and include supporting services or functions (e.g., primary production, nutrient cycling), provisioning services (e.g., wildlife, groundwater), regulating services (e.g., water purification, floodwater retention), and even cultural services (e.g., ecotourism, cultural heritage). Hence, the knowledge base necessary to quantify ecosystem services is broad and derived from many diverse scientific disciplines. Building the required interdisciplinary models is especially challenging as modelers from different locations and times may develop the disciplinary models needed for ecosystem simulations, and these models must be identified and made accessible to the interdisciplinary simulation. Additional difficulties include inconsistent data structures, formats, and metadata required by geospatial models as well as limitations on computing, storage, and connectivity. Traditional standalone and closed network systems cannot fully support sharing and integrating interdisciplinary geospatial models from variant sources. To address this need, we developed an approach to openly share and access geospatial computational models using distributed Geographic Information System (GIS) techniques and open geospatial standards. We included a means to share computational models compliant with Open Geospatial Consortium (OGC) Web Processing Services (WPS) standard to ensure modelers have an efficient and simplified means to publish new models. To demonstrate our approach, we developed five disciplinary models that can be integrated and shared to simulate a few of the ecosystem services (e.g., water storage, waterfowl breeding) that are provided by wetlands in the Prairie Pothole Region (PPR) of North America.

  7. Higgs bosons in the standard model, the МssМ and beyond

    Indian Academy of Sciences (India)

    Abstract. I summarize the basic theory and selected phenomenology for the Higgs boson(s) of the standard model, the minimal supersymmetric model and some extensions thereof, including the next-to-minimal supersymmetric model.

  8. Implementation of IEC Standard Models for Power System Stability Studies

    DEFF Research Database (Denmark)

    Margaris, Ioannis; Hansen, Anca Daniela; Bech, John

    2012-01-01

    , namely a model for a variable speed wind turbine with full scale power converter WTG including a 2- mass mechanical model. The generic models for fixed and variable speed WTGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system...

  9. A Journey in Standard Development: The Core Manufacturing Simulation Data (CMSD) Information Model.

    Science.gov (United States)

    Lee, Yung-Tsun Tina

    2015-01-01

    This report documents a journey "from research to an approved standard" of a NIST-led standard development activity. That standard, Core Manufacturing Simulation Data (CMSD) information model, provides neutral structures for the efficient exchange of manufacturing data in a simulation environment. The model was standardized under the auspices of the international Simulation Interoperability Standards Organization (SISO). NIST started the research in 2001 and initiated the standardization effort in 2004. The CMSD standard was published in two SISO Products. In the first Product, the information model was defined in the Unified Modeling Language (UML) and published in 2010 as SISO-STD-008-2010. In the second Product, the information model was defined in Extensible Markup Language (XML) and published in 2013 as SISO-STD-008-01-2012. Both SISO-STD-008-2010 and SISO-STD-008-01-2012 are intended to be used together.

  10. 40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year?

    Science.gov (United States)

    2010-07-01

    ... emission standards must my engines meet after the 2014 model year? The exhaust emission standards of this section apply after the 2014 model year. Certain of these standards also apply for model year 2014 and... emission standards that apply to 2014 and earlier model years. Section 1039.105 specifies smoke standards...

  11. Addressing Standardized Testing through a Novel Assesment Model

    Science.gov (United States)

    Schifter, Catherine C.; Carey, Martha

    2014-01-01

    The No Child Left Behind (NCLB) legislation spawned a plethora of standardized testing services for all the high stakes testing required by the law. We argue that one-size-fits all assessments disadvantage students who are English Language Learners, in the USA, as well as students with limited economic resources, special needs, and not reading on…

  12. Standard model semantics for DSL, a data type specification language

    NARCIS (Netherlands)

    Bergstra, J.A.; Terlouw, J.

    1983-01-01

    We discuss a data type specification language DSL(∑) which is obtained from the first order language L(∑) for a given signature ∑ by augmenting it with schemes. A specification is a pair (∑, IF) with IF a finite set of axioms in DSL(∑). As semantics of such specifications we propose: standard

  13. ISO 9000 quality standards: a model for blood banking?

    Science.gov (United States)

    Nevalainen, D E; Lloyd, H L

    1995-06-01

    The recent American Association of Blood Banks publications Quality Program and Quality Systems in the Blood Bank and Laboratory Environment, the FDA's draft guidelines, and recent changes in the GMP regulations all discuss the benefits of implementing quality systems in blood center and/or manufacturing operations. While the medical device GMPs in the United States have been rewritten to accommodate a quality system approach similar to ISO 9000, the Center for Biologics Evaluation and Research of the FDA is also beginning to make moves toward adopting "quality systems audits" as an inspection process rather than using the historical approach of record reviews. The approach is one of prevention of errors rather than detection after the fact (Tourault MA, oral communication, November 1994). The ISO 9000 series of standards is a quality system that has worldwide scope and can be applied in any industry or service. The use of such international standards in blood banking should raise the level of quality within an organization, among organizations on a regional level, within a country, and among nations on a worldwide basis. Whether an organization wishes to become registered to a voluntary standard or not, the use of such standards to become ISO 9000-compliant would be a move in the right direction and would be a positive sign to the regulatory authorities and the public that blood banking is making a visible effort to implement world-class quality systems in its operations. Implementation of quality system standards such as the ISO 9000 series will provide an organized approach for blood banks and blood bank testing operations. With the continued trend toward consolidation and mergers, resulting in larger operational units with more complexity, quality systems will become even more important as the industry moves into the future.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Physics at a 100 TeV pp Collider: Standard Model Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mangano, M. L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zanderighi, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Aguilar Saavedra, J. A. [Univ. of Granada (Spain); Alekhin, S. [Univ. of Hamburg (Germany). Inst. for Theoretical Physics; Inst. for High Energy Physics (IHEP), Moscow (Russian Federation); Badger, S. [Univ. of Edinburgh, Scotland (United Kingdom); Bauer, C. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Becher, T. [Univ. Bern (Switzerland); Bertone, V. [Univ. of Oxford (United Kingdom); Bonvini, M. [Univ. of Oxford (United Kingdom); Boselli, S. [Univ. of Pavia (Italy); Bothmann, E. [Gottingen Univ. (Germany); Boughezal, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Cacciari, M. [Univ. Paris Diderot (France); Sorbonne Univ., Paris (France); Carloni Calame, C M. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Caola, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Campbell, J. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Carrazza, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Chiesa, M. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Cieri, L. [Univ. of Zurich (Switzerland); Cimaglia, F. [Univ. degli Studi di Milano (Italy); Febres Cordero, F. [Physikalisches Inst., Freiburg (Germany); Ferrarese, P. [Gottingen Univ. (Germany); D' Enterria, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ferrera, G. [Univ. degli Studi di Milano (Italy); Garcia i Tormo, X. [Univ. Bern (Switzerland); Garzelli, M. V. [Univ. of Hamburg (Germany); Germann, E. [Monash Univ., Melbourne, VIC (Australia); Hirschi, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Han, T. [Univ. of Pittsburgh, PA (United States); Ita, H. [Physikalisches Inst., Freiburg (Germany); Jager, B. [Univ. of Tubingen (Germany); Kallweit, S. [Johannes Gutenberg Univ., Mainz (Germany); Karlberg, A. [Univ. of Oxford (United Kingdom); Kuttimalai, S. [Durham Univ. (United Kingdom); Krauss, F. [Durham Univ. (United Kingdom); Larkoski, A. J. [Harvard Univ., Cambridge, MA (United States); Lindert, J. [Univ. of Zurich (Switzerland); Luisoni, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Maierhofer, P. [Univ. of Freiburg (Germany); Mattelaer, O. [Durham Univ. (United Kingdom); Martinez, H. [Univ. of Pavia (Italy); Moch, S. [Univ. of Hamburg (Germany); Montagna, G. [Univ. of Pavia (Italy); Moretti, M. [Univ. of Ferrara (Italy); Nason, P. [Univ. of Milano (Italy); Nicrosini, O. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Oleari, C. [Univ. of Milano (Italy); Pagani, D. [Univ. Catholique de Louvain (Belgium); Papaefstathiou, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Petriello, F. [Northwestern Univ., Evanston, IL (United States); Piccinini, F. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Pierini, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pierog, T. [Karlsruhe Inst. of Technology (KIT) (Germany); Pozzorini, S. [Univ. of Zurich (Switzerland); Re, E. [National Centre for Scientific Research (CNRS), Annecy-le-Vieux (France). Lab. of Annecy-le-Vieux for Theoretical Physics (LAPTh); Robens, T. [Technische Universitat Dresden (Germany); Rojo, J. [Univ. of Oxford (United Kingdom); Ruiz, R. [Durham Univ. (United Kingdom); Sakurai, K. [Durham Univ. (United Kingdom); Salam, G. P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salfelder, L. [Univ. of Tubingen (Germany); Schonherr, M. [Univ. of Ferrara (Italy); Schulze, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schumann, S. [Univ. Gottingen (Germany); Selvaggi, M. [Univ. Catholique de Louvain (Belgium); Shivaji, A. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Siodmok, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Polish Academy of Sciences (PAS), Krakow (Poland); Skands, P. [Monash Univ., Melbourne, VIC (Australia); Torrielli, P. [Univ. of Torino (Italy); Tramontano, F. [Univ. of Napoli (Italy); Tsinikos, I. [Univ. Catholique de Louvain (Belgium); Tweedie, B. [Univ. of Pittsburgh, PA (United States); Vicini, A. [Univ. degli Studi di Milano (Italy); Westhoff, S. [Heidelberg Univ. (Germany); Zaro, M. [Sorbonne Univ., Paris (France); Zeppenfeld, D. [Forschungszentrum Karlsruhe (Germany)

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  15. MODEL PEMBELAJARAN KAIWA TINGKAT DASAR SESUAI DENGAN JF STANDARD

    OpenAIRE

    Timur Sri Astami

    2015-01-01

    Speaking competence a productive skills. However, the associated with teaching materials in the books Minna no Nihongo 1 renshuu C are expected discrepancy that competence in conversations class. That is can’t be fulfilled when referring to competence in according with JF Standard. So in this qualitative research to compare between the two textbooks Minna no Nihongo 1 with Marugoto A1 katsudou. Because the basic level of speaking competence indicator is able to perform a simple conversation, ...

  16. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  17. Primordial Nucleosynthesis and Neutrino Physics Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan, E-mail: miele@na.infn.it, E-mail: pisanti@na.infn.it, E-mail: sarikas@na.infn.it [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte S.Angelo, Via Cinthia, 80126, Napoli (Italy)

    2010-11-01

    The present status of standard Big Bang Nucleosynthesis (BBN) is here reviewed by comparing the theoretical predictions with the observational estimates of light nuclei abundances. In particular, the analysis reports the expected ranges for baryon fraction and effective number of neutrinos as obtained by BBN only. The comparison is also performed in case of a more detailed analysis of neutrino decoupling by assuming initial degenerate neutrino distributions and oscillation mechanism as well.

  18. New framework for standardized notation in wastewater treatment modelling

    DEFF Research Database (Denmark)

    Corominas, L.; Rieger, L.; Takacs, I.

    2010-01-01

    Many unit process models are available in the field of wastewater treatment. All of these models use their own notation, causing problems for documentation, implementation and connection of different models (using different sets of state variables). The main goal of this paper is to propose a new...... notational framework which allows unique and systematic naming of state variables and parameters of biokinetic models in the wastewater treatment field. The symbols are based on one main letter that gives a general description of the state variable or parameter and several subscript levels that provide...... is to establish a consistent set of rules that can be applied to existing and most importantly, future models. Applying the proposed notation should make it easier for everyone active in the wastewater treatment field to read, write and review documents describing modelling projects....

  19. Realizing three generations of the Standard Model fermions in the type IIB matrix model

    Science.gov (United States)

    Aoki, Hajime; Nishimura, Jun; Tsuchiya, Asato

    2014-05-01

    We discuss how the Standard Model particles appear from the type IIB matrix model, which is considered to be a nonperturbative formulation of superstring theory. In particular, we are concerned with a constructive definition of the theory, in which we start with finite- N matrices and take the large- N limit afterwards. In that case, it was pointed out recently that realizing chiral fermions in the model is more difficult than it had been thought from formal arguments at N = ∞ and that introduction of a matrix version of the warp factor is necessary. Based on this new insight, we show that two generations of the Standard Model fermions can be realized by considering a rather generic configuration of fuzzy S2 and fuzzy S2 × S2 in the extra dimensions. We also show that three generations can be obtained by squashing one of the S2's that appear in the configuration. Chiral fermions appear at the intersections of the fuzzy manifolds with nontrivial Yukawa couplings to the Higgs field, which can be calculated from the overlap of their wave functions.

  20. How the Burford reflective model boosts care standards.

    Science.gov (United States)

    Johns, C

    Reflective practice is grounded in the practitioner's everyday experiences. This is why this second part of an examination of reflective models of nursing considers the experiences of two nurses who used the Burford reflective model to inform and refine the care they offer. One reflects on a routine series of community visits, the other focuses on the drama and distress surrounding a terminal illness.

  1. Anisotropic models are unitary: A rejuvenation of standard quantum cosmology

    Science.gov (United States)

    Pal, Sridip; Banerjee, Narayan

    2016-12-01

    The present work proves that the folklore of the pathology of non-conservation of probability in quantum anisotropic models is wrong. It is shown in full generality that all operator ordering can lead to a Hamiltonian with a self-adjoint extension as long as it is constructed as a symmetric operator. It is indicated that the self-adjoint extension, however, is not unique and this non-uniqueness is suspected not to be a feature of anisotropic models only, in the sense that there exists operator orderings such that Hamiltonian for an isotropic homogeneous cosmological model does not have unique self-adjoint extension. For isotropic model, there is a special unique extension associated with quadratic form of Hamiltonian, i.e., a Friedrich's extension. Details of calculations are carried out for a Bianchi III model as an example.

  2. Discerning dark energy models with high redshift standard candles

    Science.gov (United States)

    Andersen, P.; Hjorth, J.

    2017-12-01

    Following the success of type Ia supernovae in constraining cosmologies at lower redshift (z ≲ 2), effort has been spent determining if a similarly useful standardizable candle can be found at higher redshift. In this work, we determine the largest possible magnitude discrepancy between a constant dark energy ΛCDM cosmology and a cosmology in which the equation of state w(z) of dark energy is a function of redshift for high redshift standard candles (z ≳ 2). We discuss a number of popular parametrizations of w(z) with two free parameters, wzCDM cosmologies, including the Chevallier-Polarski-Linder and generalization thereof, nCPL, as well as the Jassal-Bagla-Padmanabhan parametrization. For each of these parametrizations, we calculate and find the extrema of Δμ, the difference between the distance modulus of a wzCDM cosmology and a fiducial ΛCDM cosmology as a function of redshift, given 68 per cent likelihood constraints on the parameters P = (Ωm, 0, w0, wa). The parameters are constrained using cosmic microwave background, baryon acoustic oscillations and type Ia supernovae data using CosmoMC. We find that none of the tested cosmologies can deviate more than 0.05 mag from the fiducial ΛCDM cosmology at high redshift, implying that high redshift standard candles will not aid in discerning between the wzCDM cosmology and the fiducial ΛCDM cosmology. Conversely, this implies that if high redshift standard candles are found to be in disagreement with ΛCDM at high redshift, then this is a problem not only for ΛCDM but for the entire family of wzCDM cosmologies.

  3. Airside HVAC BESTEST: HVAC Air-Distribution System Model Test Cases for ASHRAE Standard 140

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, Ronald [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neymark, Joel [J. Neymark & Associates; Kennedy, Mike D. [Mike D. Kennedy, Inc.; Gall, J. [AAON, Inc.; Henninger, R. [GARD Analytics, Inc.; Hong, T. [Lawrence Berkeley National Laboratory; Knebel, D. [AAON, Inc.; McDowell, T. [Thermal Energy System Specialists, LLC; Witte, M. [GARD Analytics, Inc.

    2017-08-07

    This paper summarizes recent work to develop new airside HVAC equipment model analytical verification test cases for ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. The analytical verification test method allows comparison of simulation results from a wide variety of building energy simulation programs with quasi-analytical solutions, further described below. Standard 140 is widely cited for evaluating software for use with performance-path energy efficiency analysis, in conjunction with well-known energy-efficiency standards including ASHRAE Standard 90.1, the International Energy Conservation Code, and other international standards. Airside HVAC Equipment is a common area of modelling not previously explicitly tested by Standard 140. Integration of the completed test suite into Standard 140 is in progress.

  4. Transplante experimental cardíaco heterotópico e cutâneo em camundongos Experimental heterotopic cardiac and cutaneous transplantation in mice

    Directory of Open Access Journals (Sweden)

    Patrícia Sestrheim

    2005-06-01

    Full Text Available OBJETIVO: Estudo experimental com o objetivo de desenvolver e avaliar a viabilidade das técnicas de transplante experimental cardíaco heterotópico abdominal vascularizado e cutâneo em camundongos, criando um instrumento para investigação da eficácia de soluções de preservação, novas drogas imunossupressoras, agentes biológicos, terapia gênica e indução de tolerância imunológica. MÉTODO: Para este estudo, as técnicas utilizadas foram descritas previamente por Corry et al. e Billingham et al. RESULTADOS: O tempo cirúrgico total para a realização dos transplantes cardíacos (n=20 foi, em média, 60,3±6,3 minutos e para os transplantes cutâneos (n=20, 17,75±0,71 minutos. A média de sobrevida dos aloenxertos cutâneos (n=34 e cardíacos (n=24 foi, respectivamente, 7 e 11 dias, enquanto que os isoenxertos sobreviveram por mais de 100 dias. CONCLUSÕES: Ambas as técnicas se caracterizaram pela fácil reprodutibilidade dos modelos experimentais. As diferenças entre as técnicas não se limitaram às peculiaridades metodológicas ou ao tempo de sobrevida e vascularização, mas principalmente à sua imunogenicidade e suscetibilidade à rejeição.OBJECTIVE: This is an experimental study which aims at developing and evaluating the feasibility of experimental techniques of vascularized and cutaneous abdominal heterotopic heart transplant in mice, creating an instrument of investigation for the effectiveness of prservation solutions, new immunosuppressive drugs, biological agents, genetic therapy and induction of immunological tolerance. METHOD: The techniques used in this work were previously described by Corry et al. and Billingham et al. RESULTS: The total surgical time to perform the cardiac transplants (n=20 was on average 60.3+6.3 minutes and the time of cutaneous transplants (n= 20 17.75+0.71 minutes. The average survival of the cutaneous allografts (n=34 and cardiac (n=24 allografts was 7 and 11 days, respectively, while

  5. Self-standards and self-discrepancies. A structural model of self-knowledge

    OpenAIRE

    Bak, Waclaw

    2014-01-01

    A model of self-knowledge is proposed which summarizes and integrates a few distinctions concerning self-standards and related self-discrepancies. Four types of self-standards are distinguished (i.e. ideal, ought, undesired and forbidden selves) and a hierarchical organization of these standards is postulated. There is a basic contrast between positive and negative standards at the higher level of the hierarchy, whereas Higgins’ distinction between ideals and oughts is found at the lower leve...

  6. Enhancing Access to Scientific Models through Standard Web Services Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility and value of the "Software as a Service" paradigm in facilitating access to Earth Science numerical models. We...

  7. Modeling relationships between calving traits: a comparison between standard and recursive mixed models.

    Science.gov (United States)

    de Maturana, Evangelina López; de los Campos, Gustavo; Wu, Xiao-Lin; Gianola, Daniel; Weigel, Kent A; Rosa, Guilherme J M

    2010-01-25

    The use of structural equation models for the analysis of recursive and simultaneous relationships between phenotypes has become more popular recently. The aim of this paper is to illustrate how these models can be applied in animal breeding to achieve parameterizations of different levels of complexity and, more specifically, to model phenotypic recursion between three calving traits: gestation length (GL), calving difficulty (CD) and stillbirth (SB). All recursive models considered here postulate heterogeneous recursive relationships between GL and liabilities to CD and SB, and between liability to CD and liability to SB, depending on categories of GL phenotype. Four models were compared in terms of goodness of fit and predictive ability: 1) standard mixed model (SMM), a model with unstructured (co)variance matrices; 2) recursive mixed model 1 (RMM1), assuming that residual correlations are due to the recursive relationships between phenotypes; 3) RMM2, assuming that correlations between residuals and contemporary groups are due to recursive relationships between phenotypes; and 4) RMM3, postulating that the correlations between genetic effects, contemporary groups and residuals are due to recursive relationships between phenotypes. For all the RMM considered, the estimates of the structural coefficients were similar. Results revealed a nonlinear relationship between GL and the liabilities both to CD and to SB, and a linear relationship between the liabilities to CD and SB.Differences in terms of goodness of fit and predictive ability of the models considered were negligible, suggesting that RMM3 is plausible. The applications examined in this study suggest the plausibility of a nonlinear recursive effect from GL onto CD and SB. Also, the fact that the most restrictive model RMM3, which assumes that the only cause of correlation is phenotypic recursion, performs as well as the others indicates that the phenotypic recursion may be an important cause of the

  8. The Model Standards Project: Creating Inclusive Systems for LGBT Youth in Out-of-Home Care

    Science.gov (United States)

    Wilber, Shannan; Reyes, Carolyn; Marksamer, Jody

    2006-01-01

    This article describes the Model Standards Project (MSP), a collaboration of Legal Services for Children and the National Center for Lesbian Rights. The MSP developed a set of model professional standards governing the care of lesbian, gay, bisexual and transgender (LGBT) youth in out-of-home care. This article provides an overview of the…

  9. Search for the Standard Model Higgs boson produced in the decay ...

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... s = 7 TeV. No evidence is found for a significant deviation from Standard Model expectations anywhere in the ZZ mass range considered in this analysis. An upper limit at 95% CL is placed on the product of the cross-section and decay branching ratio for the Higgs boson decaying with Standard Model-like ...

  10. Recent results on beyond the standard model Higgs boson searches from CMS

    Directory of Open Access Journals (Sweden)

    Savin Alexander A.

    2012-06-01

    Full Text Available Two extensions of the standard model, one that includes the seesaw mechanism of type II, and the minimal supersymmetric extention to the standard model, are studied using up to 1.6 fb−1 of data collected in proton-proton collisions at √s = 7 TeV with the CMS detector at the LHC.

  11. Higgs boson mass in the standard model at two-loop order and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P.; Robertson, David G.

    2014-10-01

    We calculate the mass of the Higgs boson in the standard model in terms of the underlying Lagrangian parameters at complete 2-loop order with leading 3-loop corrections. A computer program implementing the results is provided. The program also computes and minimizes the standard model effective potential in Landau gauge at 2-loop order with leading 3-loop corrections.

  12. Testing the Standard Model with the Primordial Inflation Explorer

    Science.gov (United States)

    Kogut, Alan J.

    2011-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10A{-3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  13. Norms, standards, models and recommendations for information security management

    Directory of Open Access Journals (Sweden)

    Karol Kreft

    2010-12-01

    Full Text Available Information is the factor which can decide about the potential and market value of a company. An increase in the value of intellectual capital of an information-driven company requires development of an effective security management system. More and more often companies develop information security management systems (ISMS based on already verified models. In the article, the main problems with management of information security were discussed. Security models were described, as well as the risk analysis in information security management.

  14. Searches for h(125) properties beyond the Standard Model at the CMS experiment

    CERN Document Server

    Lenz, Teresa

    2017-01-01

    The discovered Higgs boson with a mass of 125\\,GeV exhibits properties which are all in agreement with Standard Model predictions. However, the corresponding measurements still allow for a considerable non-Standard Model behavior of the h(125). Beyond Standard Model properties can show up in non-Standard Model decays of the h(125) or in anomalous couplings of the Higgs boson. This article presents four different analyses done at the CMS experiment with 2012 and 2016 data that search for properties of the discovered Higgs boson beyond the Standard Model. These include a search for lepton flavor violating Higgs decays, a search for decays of the h(125) to light Higgs bosons, a search for anomalous contributions to the Higgs trilinear self-coupling, and finally a search for anomalous couplings of the h(125) to vector bosons.

  15. Testing the minimal supersymmetric standard model with the mass ...

    Indian Academy of Sciences (India)

    S Heinemeyer et al particles (see e.g. refs [5,6]). Consequently, a precise theoretical prediction for. MW in terms of the model parameters is of utmost importance for present and future electroweak precision tests. A precise prediction for MW in the MSSM is also needed as a part of the 'SPA Convention and Project' (see ref.

  16. LEP Higgs boson searches beyond the standard model and ...

    Indian Academy of Sciences (India)

    These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for 'fermiophobic' Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and ...

  17. Physics beyond the standard model and cosmological connections ...

    Indian Academy of Sciences (India)

    are estimated using the iterative discriminant analysis. This goes towards a precise determination of the stop mass and precise prediction for dark matter. A proposal to look for dark matter at colliders was presented [26] in the context of a model where the gravitino is the lightest-supersymmetric particle (LSP) and the dark ...

  18. searches for physics beyond the standard model in production at ...

    Indian Academy of Sciences (India)

    Preliminary combinations of measurements of the 4 LEP Collaborations of the process e + e − → f f ¯ at LEP II are presented. The combined results are interpreted in terms of contact interactions and the exchange of Z ′ bosons and within models of low-scale gravity in large extra dimensions.

  19. How Wood Fuels’ Quality Relates to the Standards: A Class-Modelling Approach

    Directory of Open Access Journals (Sweden)

    Michela Zanetti

    2017-09-01

    Full Text Available The quality requirements of wood biofuels are regulated by a series of harmonized international standards. These standards define the technical parameter limits that influence the quality of solid biomass as a fuel. In 2014 the European reference standard for solid biofuel was replaced by the International ISO standard. In the case of wood chips, the main difference between the European and International standards is the definition of particle size distribution classes. In this context, this study analyses the quality of wood chips and its variation over the years according to the “former” (EN 14691-4 and “in force” (ISO 17225-4 standards. A Soft Independent Modelling of Class Analogy (SIMCA model was built to predict the best quality of wood chips and to clarify the relationship between quality and standard parameters, time and changes in the standard regulations. The results show that, compared to the EN standards, classification with the ISO standards increases the samples belonging to the best quality classes and decreases the not classified samples. Furthermore, all the SIMCA models have a high sensitivity (>90%, reflect the differences introduced to the quality standards and are therefore suitable for monitoring the quality of wood chips and their changes.

  20. Does a massive neutrino imply to go beyond the standard model?; la masse du neutrino ouvre-t-elle une porte au-dela du modele standard?

    Energy Technology Data Exchange (ETDEWEB)

    Le Diberder, F.; Cohen-Tannoudji, G.; Davier, M. [and others

    2002-01-01

    This article gathers the 15 contributions to this seminar. The purpose of this seminar was to define up to which extend the standard model is challenged by massive neutrinos. A non-zero mass for neutrinos, even a few eV, would solve the problem of the missing mass of the universe, and it would mean no more need for supersymmetry and its neutralinos. A massless neutrino theoretically implies a symmetry and an interaction that are not described by the standard model. In some aspects, it appears that a non-zero mass is natural within the framework of the standard model, and for some scientists the smallness of this value could be the hint of the need for a new physics.

  1. Model Pembelajaran Kaiwa Tingkat Dasar sesuai dengan JF Standard

    Directory of Open Access Journals (Sweden)

    Timur Sri Astami

    2015-11-01

    Full Text Available Speaking competence a productive skills. However, the associated with teaching materials in the books Minna no Nihongo 1 renshuu C are expected discrepancy that competence in conversations class. That is can’t be fulfilled when referring to competence in according with JF Standard. So in this qualitative research to compare between the two textbooks Minna no Nihongo 1 with Marugoto A1 katsudou. Because the basic level of speaking competence indicator is able to perform a simple conversation, slowly and repeated, replacing the phrase, giving a help, being able to ask questions about important issues, and using daily topics in the basic conversation. And that should be a concern the purpose of making the material isn’t  the same as conversation learning with sentence patterns or grammar learning basically. And than  the books Minna no  Nihongo 1 renshuu C, that’s  material noticed how communication targets to be achieved in each meeting. 

  2. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Nagata, Kazuki; The ATLAS collaboration

    2014-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  3. 4th Workshop "What Comes Beyond the Standard Model"

    CERN Document Server

    Nielsen, Holger Bech; Froggatt, Colin D; Lukman, D; What Comes Beyond the Standard Model; volume 1: Festschrift dedicated to the 60th birthday of Holger Bech Nielsen

    2002-01-01

    Contents (Part 1): 1.Derivation of Lorentz Invariance and Three Space Dimensions in Generic Field Theory (C D. Froggatt and H. B. Nielsen) 2.Unitary Representations, Noncompact Groups SO(q; d - q)...(N. Mankoc Borstnik, H. B. Nielsen and D. Lukman) 3.Weyl Spinor of SO(1; 13), Families of Spinors ...(A. Borstnik Bracic and N. Mankoc Borstnik) 4.A Tight Packing Problem (A. Kleppe) 5.Why so Few Particle Species? ... (D.L. Bennett and A. Kleppe) 6.About Number of Families (D. Lukman, A. Kleppe and N.S. Mankoc Borstnik) 7.Coupling Constant Unification in Spin-Charge Unifying Model ....(N. Mankoc Borstnik and H. B. Nielsen) (Contents of Part 2 not included in Part I: 8.Renormalization of Coupling Constants in the Minimal SUSY Models (R. B. Nevzorov, K. A. Ter-Martirosyan and M. A. Trusov) 9.Multiple Point Model and Phase Transition Couplings ...(L.V. Laperashvili, D.A. Ryzhikh and H.B. Nielsen) 10.Family Replicated Fit of All Quark and Lepton Masses and Mixings (H. B. Nielsen and Y. Takanishi) 11.Family Replicated ...

  4. Metabolomics, Standards, and Metabolic Modeling for Synthetic Biology in Plants.

    Science.gov (United States)

    Hill, Camilla Beate; Czauderna, Tobias; Klapperstück, Matthias; Roessner, Ute; Schreiber, Falk

    2015-01-01

    Life on earth depends on dynamic chemical transformations that enable cellular functions, including electron transfer reactions, as well as synthesis and degradation of biomolecules. Biochemical reactions are coordinated in metabolic pathways that interact in a complex way to allow adequate regulation. Biotechnology, food, biofuel, agricultural, and pharmaceutical industries are highly interested in metabolic engineering as an enabling technology of synthetic biology to exploit cells for the controlled production of metabolites of interest. These approaches have only recently been extended to plants due to their greater metabolic complexity (such as primary and secondary metabolism) and highly compartmentalized cellular structures and functions (including plant-specific organelles) compared with bacteria and other microorganisms. Technological advances in analytical instrumentation in combination with advances in data analysis and modeling have opened up new approaches to engineer plant metabolic pathways and allow the impact of modifications to be predicted more accurately. In this article, we review challenges in the integration and analysis of large-scale metabolic data, present an overview of current bioinformatics methods for the modeling and visualization of metabolic networks, and discuss approaches for interfacing bioinformatics approaches with metabolic models of cellular processes and flux distributions in order to predict phenotypes derived from specific genetic modifications or subjected to different environmental conditions.

  5. Functional Competency Development Model for Academic Personnel Based on International Professional Qualification Standards in Computing Field

    Science.gov (United States)

    Tumthong, Suwut; Piriyasurawong, Pullop; Jeerangsuwan, Namon

    2016-01-01

    This research proposes a functional competency development model for academic personnel based on international professional qualification standards in computing field and examines the appropriateness of the model. Specifically, the model consists of three key components which are: 1) functional competency development model, 2) blended training…

  6. Top quark and Higgs physics in standard model extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Patrick Jose

    2012-05-25

    In this thesis we have studied several extensions of the SM and their implications on the strength and structure of the tbW vertex, on the production and decays of pseudoscalar and heavy Higgs scalars at the LHC, and the effects that models with a fourth generation have on electroweak precision observables. Apart from the SM with a fourth generation of chiral fermions, the extensions we studied all feature an extended electroweak symmetry breaking (EWSB) sector. In the case of the type-II 2HDM and the MSSM, the extended EWSB sector consists of elementary Higgs fields. In the case of Topcolor assisted Technicolor (TC2), which is a model of dynamical EWSB, the scalar and pseudoscalar fields are composite. By scanning over the phenomenologically and theoretically allowed regions of the respective parameters spaces, we determined the largest possible cross sections σ(pp→φ→VV{sup '}) where VV{sup p}rime element of {W"+W"-, ZZγγ, Zγ} for both the heavy scalar and pseudoscalar states in the above models. We found that non-SUSY models with an extended Higgs sector and only three generations, namely the type-II 2HDM and the TC2, still allow for observable pseudoscalar cross sections σ(pp → A → VV') at the LHC. In particular for the final states W{sup +}W{sup -} and γγ. In the MSSM, the discovery of the pseudoscalar A through its decays into electroweak gauge bosons is very unlikely. However, scalar cross sections σ(pp→H→W{sup +}W{sup -}) can still be of observable size at the LHC in large parts of the MSSM parameter space. SM extensions with an extended EWSB sector and four chiral generations are strongly disfavoured; direct Higgs boson searches exclude large parts of the parameter space and it is challenging to bring such an extension into accordance with electroweak precision data. On the other hand, models with additional vector-like quarks and an extended Higgs sector are still viable. The SM with four chiral generations is (still) not

  7. New perspectives in physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Neal Jonathan [Univ. of California, Berkeley, CA (United States)

    2000-09-01

    In 1934 Fermi postulated a theory for weak interactions containing a dimensionful coupling with a size of roughly 250 GeV. Only now are we finally exploring this energy regime. What arises is an open question: supersymmetry and large extra dimensions are two possible scenarios. Meanwhile, other experiments will begin providing definitive information into the nature of neutrino masses and CP violation. In this paper, we explore features of possible theoretical scenarios, and study the phenomenological implications of various models addressing the open questions surrounding these issues.

  8. Exploring New Physics Beyond the Standard Model: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liantao [Univ. of Chicago, IL (United States)

    2016-10-17

    This grant in 2015 to 2016 was for support in the area of theoretical High Energy Physics. The research supported focused mainly on the energy frontier, but it also has connections to both the cosmic and intensity frontiers. Lian-Tao Wang (PI) focused mainly on signal of new physics at colliders. The year 2015 - 2016, covered by this grant, has been an exciting period of digesting the influx of LHC data, understanding its meaning, and using it to refine strategies for deeper exploration. The PI proposed new methods of searching for new physics at the LHC, such as for the compressed stops. He also investigated in detail the signal of composite Higgs models, focusing on spin-1 composite resonances in the di-boson channel. He has also considered di-photon as a probe for such models. He has also made contributions in formulating search strategies of dark matter at the LHC, resulting in two documents with recommendations. The PI has also been active in studying the physics potential of future colliders, including Higgs factories and 100 TeV pp colliders. He has given comprehensive overview of the physics potential of the high energy proton collider, and outline its luminosity targets. He has also studied the use of lepton colliders to probe fermionic Higgs portal and bottom quark couplings to the Z boson.

  9. 12th Workshop on What Comes Beyond the Standard Models

    CERN Document Server

    Nielsen, Holger Bech; Lukman, Dragan; What Comes Beyond the Standard Models

    2009-01-01

    Contents: 1. Likelihood Analysis of the Next-to-minimal Supergravity Motivated Model (C. Balazs and D. Carter) 2. The Multiple Point Principle: Characterization of the Possible Phases for the SMG (D.L. Bennett) 3. Does Dark Matter Consist of Baryons of New Stable Family Quarks? (G. Bregar and N.S. Mankoc Borstnik) 4. P, C and T for Truly Neutral Particles (V.V. Dvoeglazov) 5. Relativistic Equations for Spin Particles: What Can We Learn From Noncommutativity? (V.V. Dvoeglazov) 6. Radiative Charged Fermion Masses and Quark Mixing (VCKM)4x4 in a SU(3) Gauged Flavor Symmetry Model (A. Hernandez-Galeana) 7. Low Energy Binding of Composite Dark Matter with Nuclei as a Solution for the Puzzles of Dark Matter Searches (M.Yu. Khlopov, A.G. Mayorov and E.Yu. Soldatov) 8. On the Possibilities and Impossibilities of Random Dynamics (A. Kleppe) 9. Spin Connection Makes Massless Spinor Chirally Coupled to Kaluza-Klein Gauge Field After Compactification of $M^{1+5}$ to $M^{1+3}$ x Infinite Disc Curved on $S^2$ (D. Lukman, N...

  10. Implementation of Electrical Simulation Model for IEC Standard Type-3A Generator

    DEFF Research Database (Denmark)

    Subramanian, Chandrasekaran; Casadei, Domenico; Tani, Angelo

    2013-01-01

    This paper describes the implementation of electrical simulation model for IEC 61400-27-1 standard Type-3A generator. A general overview of the different wind electric generators(WEG) types are given and the main focused on Type-3A WEG standard models, namely a model for a variable speed wind...... turbine with partial scale power converter WEG including a two mass mechanical model. The generic models for fixed and variable speed WEGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system such as voltage dips. The wind power...

  11. Solving the Standard Model Problems in Softened Gravity

    CERN Document Server

    Salvio, Alberto

    2016-11-16

    The Higgs naturalness problem is solved if the growth of Einstein's gravitational interaction is softened at an energy $ \\lesssim 10^{11}\\,$GeV (softened gravity). We work here within an explicit realization where the Einstein-Hilbert Lagrangian is extended to include terms quadratic in the curvature and a non-minimal coupling with the Higgs. We show that this solution is preserved by adding three right-handed neutrinos with masses below the electroweak scale, accounting for neutrino oscillations, dark matter and the baryon asymmetry. The smallness of the right-handed neutrino masses (compared to the Planck scale) and the QCD $\\theta$-term are also shown to be natural. We prove that a possible gravitational source of CP violation cannot spoil the model, thanks to the presence of right-handed neutrinos. Starobinsky inflation can occur in this context, even if we live in a metastable vacuum.

  12. T-duality between perturbative characters of E sub 8 xE sub 8 and SO(32) heterotic strings compactified on a circle

    CERN Document Server

    Gervais, Jean-Loup

    1999-01-01

    Characters of E sub 8 xE sub 8 and SO(32) heterotic strings involving the full internal symmetry Cartan subalgebra generators are defined after circle compactification so that they are T-dual. The novel point, as compared with an earlier study of the type II case, is the appearance of Wilson lines. Using SO(17,1) transformations between the weight lattices reveals the existence of an intermediate theory where T-duality transformations are disentangled from the internal symmetry. This intermediate theory corresponds to a sort of twisted compactification of a novel type. Its modular invariance follows from an interesting interplay between three representations of the modular group.

  13. Genetic diversity for RFLPs in European maize inbreds : II. Relation to performance of hybrids within versus between heterotic groups for forage traits.

    Science.gov (United States)

    Melchinger, A E; Boppenmaier, J; Dhillon, B S; Pollmer, W G; Herrmann, R G

    1992-08-01

    Restriction fragment length polymorphisms (RFLPs) have been proposed for the prediction of the yield potential of hybrids and the assignment of inbreds to heterotic groups. Such use was investigated in 66 diallel crosses among 6 flint and 6 dent inbreds from European maize (Zea mays L.) germ plasm. Inbreds and hybrids were evaluated for seven forage traits in four environments in the Federal Republic of Germany. Midparent heterosis (MPH) and specific combining ability (SCA) were calculated. Genetic distances (GD) between lines were calculated from RFLP data of 194 clone-enzyme combinations. GDs were greater for flint x dent than for flint x flint and dent x dent line combinations. Cluster analysis based on GDs showed separate groupings of flint and dent lines and agreed with pedigree information, except for 1 inbred. GDs of all line combinations in the diallel were partitioned into general (GGD) and specific (SGD) genetic distances; GGD explained approximately 20% of the variation among GD values. For the 62 diallel crosses (excluding 4 crosses of highly related lines), correlations of GD with F1 performance, MPH, and SCA for dry matter yield (DMY) of stover, ear, and forage were positive but mostly of moderate size (0.09≤r≤0.60) compared with the higher correlations (0.39≤r≤0.77) of SGD with these traits. When separate calculations were performed for various subsets, correlations of GD and SGD with DMY traits were generally small (r<0.47) for the 36 flint x dent crosses, significantly positive (r<0.53) for the 14 flint x flint crosses, and inconclusive for the 12 dent x dent crosses because of the lack of significant genotypic variation. Results indicated that RFLPs can be used for assigning inbreds to heterotic groups. RFLP-based genetic distance measures seem to be useful for predicting forage yield of (1) crosses between lines from the same germ plasm group or (2) crosses including line combinations from the same as well as different heterotic groups

  14. Radiation Observations from CREAM & CREDO and Comparison with Standard Models

    Science.gov (United States)

    Dyer, C.; Watson, C.; Truscott, P.; Peerless, C.

    1996-12-01

    The Cosmic Radiation Environment and Activation Monitor (CREAM) has flown on six Shuttle flights between September 1991 and February 1995, covering the full range of inclinations as well as altitudes between 210 and 550 km. Meanwhile the Cosmic Radiation Environment and Dosimetry experiment (CREDO) has operated continuously on UOSAT-3 in 800 km, 98.7 degree orbit since April 1990. Similar detectors were launched on KITSAT-1 (1330 km, 66 degree inclination) in August 1992 and POSAT-l (790 km, 98.7 degree inclination) in September 1993. Since the summer of 1994, CREDO-II versions have been operating on APEX in an eccentric orbit (350x2486 km) at 70 degree inclination, and on STRV in geostationary transfer orbit (298x35953 km, 7 degree inclination). These experiments are designed to measure protons, cosmic rays and accumulated dose. Through the variety of missions employed they have now achieved wide coverage of the magnetosphere as well as a significant portion of a solar cycle. The LEO observations have shown the Westward drift of the South Atlantic Anomaly, new regimes of trapped protons in the region of L=2.6 following solar flare events in March 1991 and October 1992, and an altitude dependence of trapped protons which is at variance with AP8. On STRV the background channel of the Cold Ion Detector serves as a complementary electron detector and shows the extreme time variability of the outer radiation belt, while the total dose is significantly less than AE8 predictions. In addition to the data on trapped radiation, important results are being obtained on the linear energy transfer spectra from cosmic rays. Detailed shielding models of the APEX and STRV spacecraft have been constructed and used to compare the observations of dose and LET spectra with predictions from AE8, AP8 and CREME for a variety of shielding depths. Consistent results on the LET spectra are obtained from APEX and STRV when data are selected by cut-off rigidity. The influence of spacecraft

  15. 7th Workshop on What Comes Beyond the Standard Models

    CERN Document Server

    Nielsen, Holger Bech; Froggatt, Colin D; Lukman, Dragan; What Comes Beyond the Standard Models

    2004-01-01

    1. Predictions for Four Generations of Quarks Suggested by the Approach Unifying Spins and Charges (M. Breskvar, J. Mravlje, N.Mankoc Borstnik), 2. No-scale Supergravity and the Multiple Point Principle (C.Froggatt, L.Laperashvili, R.Nevzorov, H.B.Nielsen), 3. The Two-Higgs Doublet Model and the Multiple Point Principle (C.Froggatt, L.Laperashvili, R.Nevzorov, H.B.Nielsen, M.Sher), 4. New Physics From a Dynamical Volume Element (E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva), 5. Randomness in Random Dynamics (A. Kleppe), 6. An Example of Kaluza-Klein-like Theories Leading After Compactification to Massless Spinors Coupled to a Gauge Field-Derivations and Proofs (N. Mankoc Borstnik, H. B. Nielsen and D. Lukman), 7. Geometry Decides Gravity, Demanding General Relativity-it is Thus the Quantum Theory of Gravity (R. Mirman), 8. Physics Would Be Impossible in Any Dimension But 3+1 - There Could Be Only Empty Universes (R. Mirman),9. Conservation of Energy Prohibits Proton Decay (R. Mirman), 10. Approxim...

  16. Search for the Standard Model Higgs Boson Produced in Association with Top Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jonathan Samuel [Ohio State U.

    2011-01-01

    We have performed a search for the Standard Model Higgs boson produced in association with top quarks in the lepton plus jets channel. We impose no constraints on the decay of the Higgs boson. We employ ensembles of neural networks to discriminate events containing a Higgs boson from the dominant tt¯background, and set upper bounds on the Higgs production cross section. At a Higgs boson mass mH = 120 GeV/c2 , we expect to exclude a cross section 12.7 times the Standard Model prediction, and we observe an exclusion 27.4 times the Standard Model prediction with 95 % confidence.

  17. Non-standard charged Higgs decay at the LHC in Next-to-Minimal Supersymmetric Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Priyotosh [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy); Huitu, Katri [Department of Physics, and Helsinki Institute of Physics,P.O.B 64 (Gustaf Hällströmin katu 2), FI-00014 University of Helsinki (Finland); Niyogi, Saurabh [The Institute of Mathematical Sciences,CIT Campus, Chennai (India)

    2016-07-04

    We consider next-to-minimal supersymmetric standard model (NMSSM) which has a gauge singlet superfield. In the scale invariant superpotential we do not have the mass terms and the whole Lagrangian has an additional Z{sub 3} symmetry. This model can have light scalar and/or pseudoscalar allowed by the recent data from LHC and the old data from LEP. We investigate the situation where a relatively light charged Higgs can decay to such a singlet-like pseudoscalar and a W{sup ±} boson giving rise to a final state containing τ and/or b-jets and lepton(s). Such decays evade the recent bounds on charged Higgs from the LHC, and according to our PYTHIA-FastJet based simulation can be probed with 10 fb{sup −1} at the LHC center of mass energy of 13 and 14 TeV.

  18. Self-Standards and Self-Discrepancies. A Structural Model of Self-Knowledge.

    Science.gov (United States)

    Bak, Waclaw

    2014-01-01

    A model of self-knowledge is proposed which summarizes and integrates a few distinctions concerning self-standards and related self-discrepancies. Four types of self-standards are distinguished (i.e. ideal, ought, undesired and forbidden selves) and a hierarchical organization of these standards is postulated. There is a basic contrast between positive and negative standards at the higher level of the hierarchy, whereas Higgins' distinction between ideals and oughts is found at the lower level. Every self-standard is analyzed in terms of two types of self-discrepancies. Many previous studies explored discrepancies between self-standards and the actual self, i.e. the perceived actualization of standards. The present study proposed that discrepancies between self-standards and the can self are a second type of discrepancy that should be included in structural models of self-knowledge. The can self consists of self-beliefs referring to capabilities and potentials; thus, this additional type of discrepancy reflects the perceived attainability of standards. Consequently, the present study explored a set of eight self-discrepancies, i.e. both the perceived actualization and the attainability of four self-standards. In order to assess the intercorrelations among these eight self-discrepancies, participants (N = 404) completed a newly developed online measure. CFA modeling confirmed the postulated two-level hierarchy of self-standards. The reasonability of including discrepancies between self-standards and the can self in the structural model of self-knowledge was also confirmed.

  19. Study on a Threat-Countermeasure Model Based on International Standard Information

    OpenAIRE

    Guillermo Horacio Ramirez Caceres; Yoshimi Teshigawara

    2008-01-01

    Many international standards exist in the field of IT security. This research is based on the ISO/IEC 15408, 15446, 19791, 13335 and 17799 standards. In this paper, we propose a knowledge base comprising a threat countermeasure model based on international standards for identifying and specifying threats which affect IT environments. In addition, the proposed knowledge base system aims at fusing similar security control policies and objectives in order to create effective security guidelines ...

  20. Neutrino mass and physics beyond the Standard Model; Masse des Neutrinos et Physique au-dela du Modele Standard

    Energy Technology Data Exchange (ETDEWEB)

    Hosteins, P

    2007-09-15

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states.

  1. A New Proof of the Expected Frequency Spectrum under the Standard Neutral Model.

    Science.gov (United States)

    Hudson, Richard R

    2015-01-01

    The sample frequency spectrum is an informative and frequently employed approach for summarizing DNA variation data. Under the standard neutral model the expectation of the sample frequency spectrum has been derived by at least two distinct approaches. One relies on using results from diffusion approximations to the Wright-Fisher Model. The other is based on Pólya urn models that correspond to the standard coalescent model. A new proof of the expected frequency spectrum is presented here. It is a proof by induction and does not require diffusion results and does not require the somewhat complex sums and combinatorics of the derivations based on urn models.

  2. Study on Modelling Standardization of Double-fed Wind Turbine and Its Application

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2016-01-01

    Full Text Available Based on the standardized modelling of the International Modelling Team, study on double-fed induction generator (DFIG wind turbine is processed in this paper, aiming at capability of universally and reasonably reflecting key performance related to large scale system analysis. The standardized model proposed is of high degree of structural modularity, easy functional extension and universalization of control strategy and signal. Moreover, it is applicable for wind turbines produced by different manufacturers through model parameter adjustment. The complexity of the model can meet both needs of grid-connected characteristic simulation of wind turbine and large scale power system simulation.

  3. Model Core Teaching Standards: A Resource for State Dialogue. (Draft for Public Comment)

    Science.gov (United States)

    Council of Chief State School Officers, 2010

    2010-01-01

    With this document, the Council of Chief State School Officers (CCSSO) offers for public dialogue and comment a set of model core teaching standards that outline what teachers should know and be able to do to help all students reach the goal of being college- and career-ready in today's world. These standards are an update of the 1992 Interstate…

  4. Energizing a Large Urban System: Reform through a Standards Driven Model.

    Science.gov (United States)

    Robbins, Stephen B.

    This paper describes the District of Columbia Public School System (DCPS); articulates challenges it faced prior to standards based reform; presents strategies for reforming large urban systems' health and physical education (HPE) programs; and notes strategies for incorporating a standards-based performance-driven model. DCPS reading and math…

  5. Can Cognitive Writing Models Inform the Design of the Common Core State Standards?

    Science.gov (United States)

    Hayes, John R.; Olinghouse, Natalie G.

    2015-01-01

    In this article, we compare the Common Core State Standards in Writing to the Hayes cognitive model of writing, adapted to describe the performance of young and developing writers. Based on the comparison, we propose the inclusion of standards for motivation, goal setting, writing strategies, and attention by writers to the text they have just…

  6. Extracting the properties of dark matter particles in minimal extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maira Dutra Vasconcelos dos; Santos, Antonio Carlos Oliveira; Silva, Paulo Sergio Rodrigues da; Pires, Carlos Antonio de Sousa; Siqueira, Clarissa [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Queiroz, Farinaldo da Silva [University of California (United States)

    2013-07-01

    Full text: Nature has provided a striking evidence for physics beyond the Standard Model, namely dark matter. Observations coming from a variety of sources point to the existence of a non-baryonic matter that accounts for roughly 27% of the total abundance of the universe and is composed of neutral, massive, stable and weakly interacting particles. Once the Standard Model has no candidate that fulfills all these properties we must extend it. There are many interesting proposals in the literature that have a good dark matter candidate. Essentially, all of them invoke an extended scalar or gauge sector. Here we aim to extract information about the underlying beyond Standard Model theory able to address the dark matter and many other theoretical puzzles through minimal extensions of the standard model. The minimality perspective it is a worthwhile approach because we can focus on the dark side of many particle physics models. We will carry on our investigation in a pedagogic way Firstly, we will add a neutral fermion, which is our dark matter candidate, and one neutral scalar, both being singlet under the Standard Model gauge group. In this model we compute the abundance of our dark matter candidate and the scattering cross sections off nuclei in order to face our results with the current direct detection experiments data. Secondly, we add a charged scalar field, which is predicted in many standard model extensions, to the first model and investigate the role of this scalar in our results. Lastly, we add a Z' boson to the latter model, and study how our results are affected, with the purpose of, further on, exploring the complementarity between direct detection and collider physics regarding the search of this boson. Thus, we will be able to extract precise information about the beyond Standard Model theory and the properties of the dark matter particles. (author)

  7. 40 CFR 86.410-90 - Emission standards for 1990 and later model year motorcycles.

    Science.gov (United States)

    2010-07-01

    ... model year motorcycles. 86.410-90 Section 86.410-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.410-90 Emission standards for 1990 and later model year motorcycles. (a)(1) Exhaust emissions from 1990 and later model year...

  8. A CVAR scenario for a standard monetary model using theory-consistent expectations

    DEFF Research Database (Denmark)

    Juselius, Katarina

    2017-01-01

    A theory-consistent CVAR scenario describes a set of testable regularities capturing basic assumptions of the theoretical model. Using this concept, the paper considers a standard model for exchange rate determination and shows that all assumptions about the model's shock structure and steady...... the long persistent swings in the real exchange rate and the interest rate differential....

  9. First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model

    DEFF Research Database (Denmark)

    Sannino, Francesco; Virkajärvi, Jussi

    2015-01-01

    We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled co...... the associated models are testable at the upcoming Large Hadron Collider run two experiments....

  10. The Standard Model in noncommutative geometry: fundamental fermions as internal forms

    Science.gov (United States)

    Dąbrowski, Ludwik; D'Andrea, Francesco; Sitarz, Andrzej

    2017-12-01

    Given the algebra, Hilbert space H, grading and real structure of the finite spectral triple of the Standard Model, we classify all possible Dirac operators such that H is a self-Morita equivalence bimodule for the associated Clifford algebra.

  11. Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.

    Science.gov (United States)

    Shao, Lijing

    2014-03-21

    The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.

  12. Model Standards and Techniques for Control of Radon in New Residential Buildings

    Science.gov (United States)

    This document is intended to serve as a model for use to develop and adopt building codes, appendices to codes, or standards specifically applicable to unique local or regional radon control requirements.

  13. An introduction to the standard model of particle physics for the non-specialist

    CERN Document Server

    Marsh, Gerald E

    2018-01-01

    This book takes the reader from some elementary ideas about groups to the essence of the Standard Model of particle physics along a relatively straight and intuitive path. Groups alone are first used to arrive at a classical analog of the Dirac equation. Using elementary quantum mechanics, this analog can be turned into the actual Dirac equation, which governs the motion of the quarks and leptons of the Standard Model. After an introduction to the gauge principle, the groups introduced in the beginning of the book are used to give an introduction to the Standard Model. The idea is to give an Olympian view of this evolution, one that is often missing when absorbing the detailed subject matter of the Standard Model as presented in an historical approach to the subject.

  14. Evaluation model applied to TRANSPETRO's Marine Terminals Standardization Program

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Maria Fatima Ludovico de; Mueller, Gabriela [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Instituto Tecnologico; Garcia, Luciano Maldonado [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper describes an innovative evaluation model applied to TRANSPETRO's 'Marine Terminals Standardization Program' based on updating approaches of programs evaluation and organizational learning. Since the program was launched in 2004, the need for having an evaluation model able to evaluate its implementation progress, to measure the degree of standards compliance and its potential economic, social and environmental impacts has become evident. Within a vision of safe and environmentally responsible operations of marine terminals, this evaluation model was jointly designed by TRANSPETRO and PUC-Rio to promote continuous improvement and learning in operational practices and in the standardization process itself. TRANSPETRO believes that standardization supports its services and management innovation capability by creating objective and internationally recognized parameters, targets and metrology for its business activities. The conceptual model and application guidelines for this important tool are presented in this paper, as well as the next steps towards its implementation. (author)

  15. Introduction to the Standard Model of the Electro-Weak Interactions

    CERN Document Server

    Iliopoulos, Jean

    2014-01-01

    These lectures notes cover the basic ideas of gauge symmetries and the phe- nomenon of spontaneous symmetry breaking which are used in the construc- tion of the Standard Model of the Electro-Weak Interactions.

  16. An Effective Supervision Model of a Standard Clause for Consumer Protection in the Business Transactions

    Directory of Open Access Journals (Sweden)

    M. Syamsudin

    2017-03-01

    Full Text Available This research aims to form an effective supervision model of a standard clause to protect consumer’s rights and interests. This study answers the questions the effectiveness of a standard clause supervision carried out by Otoritas Jasa Keuangan [Financial Services Authority (OJK] and Badan Penyelesaian Sengketa Konsumen [Consumer Dispute Settlement Agency (BPSK]; effective supervision model of a standard clause which can protect the rights and interest of the consumer. The object of this study are OJK and BPSK as a supervision of a standard clause. The result of this research shows that the supervision of standard clause done by those institutions has not been effective yet, this caused by several factors to wit the weakness of implementing regulation in terms of supervision, unclear supervision mechanism, the weakness of socialization related to the rules of standard clause towards business actors, and other weakness and obstacles faced by both institutions. The effective supervision model of standard clause is being formed that based on five points, namely: (1 the needs of institution/agency reformation who authorize to do supervision of standard clause; (2 the needs to determine the scope of duty and authority of standard clause supervision institution; (3 the needs of determination of material range about standard clause subjected to supervision which comprises: the content, the form, the position and the expression; (4 the needs of precise mechanism of standard clause supervision conducted by supervision institution; (5 the needs of following up the supervision results, especially to the business actors who break the standard clause rules.

  17. Beyond the Standard Model Lectures for the 2016 European School of High-Energy Physics

    CERN Document Server

    Allanach, B C

    2017-01-01

    We cover some current topics in Beyond the Standard Model phenomenology, with an emphasis on collider (particularly Large Hadron Collider) phenomenology. We begin with a review of the Standard Model and some unresolved mysteries that it leaves. Then, we shall heuristically introduce supersymmetry, grand unified theories and extra dimensions as paradigms for expanding the Standard Model. The collider phenomenology of such models is too rich and complex to review, but we give some key examples of how the new states associated with the models might be inferred in Large Hadron Collider events. Before concluding, we finish with a brief description of a quantum field theory approximation that can be used in some cases to reduce model dependence: effective field theory.

  18. 12th Rencontres du Vietnam : High Sensitivity Experiments Beyond the Standard Model

    CERN Document Server

    2016-01-01

    The goal of this workshop is to gather researchers, theoreticians, experimentalists and young scientists searching for physics beyond the Standard Model of particle physics using high sensitivity experiments. The standard model has been very successful in describing the particle physics world; the Higgs-Englert-Brout boson discovery is its last major discovery. Complementary to the high energy frontier explored at colliders, real opportunities for discovery exist at the precision frontier, testing fundamental symmetries and tracking small SM deviations.

  19. Rare Kaon and Pion Decays: Incisive Probes for New Physics Beyond the Standard Model

    Science.gov (United States)

    Bryman, Douglas; Marciano, William J.; Tschirhart, Robert; Yamanaka, Taku

    2011-11-01

    We review the current status and future prospects of rare kaon and pion decay research programs. Our emphasis is on experimental probes of New Physics beyond the Standard Model via the theoretically pristine [Formula: see text] decays and precision tests of electron-muon universality. These studies test the Standard Model at the level of its quantum-loop predictions and have the potential to uncover new interactions beyond the O(1,000 TeV) scale.

  20. Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment

    CERN Document Server

    Dev, P S Bhupal

    2014-01-01

    We study the Higgs mass spectrum as predicted by a Maximally Symmetric Two Higgs Doublet Model (MS-2HDM) potential based on the SO(5) group, softly broken by bilinear Higgs mass terms. We show that the lightest Higgs sector resulting from this MS-2HDM becomes naturally aligned with that of the Standard Model (SM), independently of the charged Higgs boson mass and $\\tan \\beta$. In the context of Type-II 2HDM, SO(5) is the simplest of the three possible symmetry realizations of the scalar potential that can naturally lead to the SM alignment. Nevertheless, renormalization group effects due to the hypercharge gauge coupling $g'$ and third-generation Yukawa couplings may break sizeably this SM alignment, along with the custodial symmetry inherited by the SO(5) group. Using the current Higgs signal strength data from the LHC, which disfavour large deviations from the SM alignment limit, we derive lower mass bounds on the heavy Higgs sector as a function of $\\tan\\beta$, which can be stronger than the existing limit...