WorldWideScience

Sample records for heterogeneous transmutation efttra-t2

  1. Fabrication of inert matrices for heterogeneous transmutation. EFTTRA-T2 (RAS 2) irradiation programme

    International Nuclear Information System (INIS)

    Boshoven, J.G.; Hein, H.; Konings, R.J.M.

    1996-07-01

    This report describes the fabrication of targets containing inert matrices for the heterogeneous transmutation of plutonium and minor actinides. These targets will be irradiated in the EFTTRA-T2 (RAS-2) irradiation programme. The selection, preparation and characterization of the inert matrices and fabrication and loading of the irradiation capsules are discussed. (orig.)

  2. Progress in transmutation targets from Efttra

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Warin, D.; Bonnerot, J.M.; Garzenne, C.; Scaffidi-Argentina, F.; Maschek, W.; Schram, R.; Klaassen, F.

    2007-01-01

    Since 15 years, the EFTTRA partners have organised programmes to demonstrate the feasibility of the transmutation of americium in uranium-free targets. In the related transmutation scenario, the targets are introduced in a thermal neutron zone of a fast reactor, to maximize the efficiency of transmutation. Amongst these programmes, those carried out in the HFR reactor in Petten have led to important conclusions and are still at the core of the research in that field. The analysis of the EFTTRA T4 and T4bis irradiation experiments, carried out with targets of MgAl 2 O 4 +11 wt% 241 Am, showed that the release/trapping of helium is the key issue for target design, and also demonstrated a lack of technical benefits of this material, due to a unsatisfactory in-pile behaviour in terms of irradiation damage and chemical stability. A new irradiation experiment called HELIOS is currently under fabrication and will be carried out in HFR. The in-pile behaviour of U-free fuels and targets such as (Am,Zr)O 2 , (Pu,Am,Zr)O 2 , CERCER (MgO) or CERMET (Mo) will be examined. The irradiation temperature will be high enough in some of the pins to be able to tune the release of a significant fraction of helium produced so that the material swelling can be minimized as much as reasonably possible. The HELIOS irradiation experiment is planned to be carried out in the HFR core and shall last 300 full power days starting in 2007. (authors)

  3. EFTTRA, a European collaboration for the development of fuels and targets for the transmutation

    International Nuclear Information System (INIS)

    Babelot, J.F.; Muehling, G.; Prunier, C.; Rome, M.

    1994-12-01

    In the frame of the research programmes on the transmutation of long lived nuclides, many experimental or theoretical investigations have to be carried out within European collaborations, owing mainly to the costs of such studies. Therefore, a group named 'Experimental Feasibility of Targets for Transmutation' (EFTTRA), has been formed, with participants from CEA (France). ECN (The Netherlands), EDF (France), KFK (Germany) and ITU (European Commission), to organise joint experiments for the study of materials for the transmutation. So far, it was decided to focus the work on the transmutation of 99 Tc (metal), of 129 I (compound), and of Am (in an inert matrix). Irradiations will take place in parallel in the Phenix fast reactor in France, and in the high flux thermal reactor HFR in the Netherlands. These experiments, together with the related post-irradiation examinations, constitute the first phase of the EFTTRA collaboration. In subsequent phases, EFTTRA will contribute to the development of fuels and targets. (orig.)

  4. Target development and transmutation experiments in the frame of the EFTTRA European collaboration

    International Nuclear Information System (INIS)

    Prunier, C.; Salvatores, M.; Muehling, G.; Rome, M.

    1995-01-01

    The aim of the EFTTRA collaboration between CEA (France), ECN (The Netherlands), EDF (France), FZK (Germany), IAM and ITU (European Commission), is to organize joint experiments for the study of materials for transmutation in reactors. The work is focused on the transmutation of 99 Tc (metal), of 129 I (compound), and of Am (in an inert matrix). Irradiation experiments are taking place in parallel in the Phenix fast reactor in France, and in the high flux thermal reactor HFR in the Netherlands. Examination of iodine compounds and Tc samples, following irradiation in HFR, has started. (authors). 10 refs., 2 figs

  5. Gamma spectrometry of EFTTRA T2BIS R280.2. Gamma scan wires 6 through 10

    International Nuclear Information System (INIS)

    Dassel, G.; Buurveld, H.A.; Plakman, J.C.

    1996-11-01

    In the frame work of the EFTTRA programme on recycling of actinides and fission products, five gamma scan wires which were included in the experiment R280.2 T2bis have been examined by gamma scanning. The results of the measurements have been described in this report. (orig.)

  6. Transmutation of technetium: results of the EFTTRA-T1 experiment

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Stalios, A.D.; Walker, C.T.; Cocuaud, N.

    1998-01-01

    The transmutation of the fission product 99 Tc was studied by neutron irradiation in the High Flux Reactor at Petten. Six metallic rods of pure Tc, distributed over three capsules, were irradiated during eight reactor cycles to a total neutron fluence of about 2 x 10 26 m -2 . Metallographic examinations showed that no changes in the microstructure were visible after the irradiation. Electron probe microanalysis (EPMA) of the radial distribution of Ru, the product of the transmutation process, showed an increase from about 6% in the centre to 12-18% near the rim of the pellets. This effect is due to resonance-shielding of epithermal neutrons in the rim region. Mass spectrometric analysis of the pellet-average Ru concentration showed that the extent of transmutation is about 6-7%. (orig.)

  7. Fuels and targets for incineration and transmutation of actinides: the ITU programme

    International Nuclear Information System (INIS)

    Fernandez, A.; Glatz, J.P.; Haas, D.; Konings, R.J.M.; Somers, J.; Toscano, E.; Walker, C.T.; Wegen, D.

    2000-01-01

    The ITU programme for the development of fuels and targets for transmutation of actinides is presented. The fabrication of various types of oxide fuels/targets by dust-free processes is described. Selected results of post-irradiation examinations of irradiation experiments (SUPERFACT, TRABANT-1, EFTTRA-T4) are presented to demonstrate the irradiation behaviour of these fuels/targets. Finally, the future developments at ITU in this field are described, including the new shielded facility (the MA lab) for fabrication of minor actinide fuels. (authors)

  8. Fuels and targets for incineration and transmutation of actinides: the ITU programme

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Glatz, J.P.; Haas, D.; Konings, R.J.M.; Somers, J.; Toscano, E.; Walker, C.T.; Wegen, D. [Eurpean Commission, Joint Research Centre, Institute for Transuranium Elements, Kurlsruhe (Germany)

    2000-07-01

    The ITU programme for the development of fuels and targets for transmutation of actinides is presented. The fabrication of various types of oxide fuels/targets by dust-free processes is described. Selected results of post-irradiation examinations of irradiation experiments (SUPERFACT, TRABANT-1, EFTTRA-T4) are presented to demonstrate the irradiation behaviour of these fuels/targets. Finally, the future developments at ITU in this field are described, including the new shielded facility (the MA lab) for fabrication of minor actinide fuels. (authors)

  9. Oxide fuels and targets for transmutation

    International Nuclear Information System (INIS)

    Sudreau, F.; Bonnerot, J.M.; Warin, D.; Gaillard-Groleas, G.; Ferroud-Plattet, M.P.

    2007-01-01

    Full text of publication follows. Direction 1 of the French Act dated 30 December 1991 on the management of high-level, long-lived radioactive waste involves exploring solutions designed to separate long-lived radionuclides from the spent fuel and to transmute them under neutron flux into shorter half-lives or stable elements. In the French research programme conducted by CEA, these radionuclides are mainly minor actinides (americium, neptunium and curium) and fission products (particularly caesium, iodine and technetium). Within this context, this paper aims at illustrating the vast programme that CEA has performed in order to demonstrate the scientific and technical feasibility of minor actinide transmutation. An important part of the research was carried out in collaboration with French research (CNRS) and industrial (EDF, AREVA) organisations, and also in the framework of international co-operation programmes with the European Institute for Transuranium Elements in Karlsruhe (ITU), the US Department of Energy (DOE), the Japanese Atomic Energy Research Institute (now JAEA) and Central Research Institute of Electric Power Industry (CRIEPI) and the Russian Ministry for Atomic Energy (ROSATOM). Such research made it possible to evaluate the capacity of MOX fuels to be used as a support for minor actinide transmutation (homogeneous method). Simulations of pressurised water reactor (PWR) fuels have revealed the limits of this transmutation method, which are mainly related to the pressurization of the fuel rods and the formation of high active californium. On the contrary, for sodium-cooled fast reactor fuels possibly designed with large expansion plenums a first experimental demonstration of the transmutation of americium and neptunium has been successful in the Phenix reactor. Various studies designed to demonstrate the theoretical and experimental feasibility of transmutation using an inert support (heterogeneous method) have been carried out in HFR (EFTTRA

  10. ECN contributions to global '97. International conference on future nuclear systems

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Bende, E.E.; Konings, R.J.M.; Gruppelaar, H.; Bakker, K.; Boshoven, J.G.; Hein, H.; Huntelaar, M.E.; Zhang, H.; Kiefhaber, E.; Muehling, G.; Rome, M.; Tommasi, J.; Delpech, M.; Cocuaud, N.; Picard, E.; Conti, A.; Salvatores, M.; Chawla, R.; Paratte, J.M.; Kasemeyer, U.; Akie, H.; Takano, H.; Lombardi, C.; Mazzola, A.; Matzke, H.; Babelot, J.F.; Conrad, R.; Vambenepe, G.; Meeldijk, J.D.; Woensdregt, C.F.

    1997-08-01

    The six papers in this report, which are presented during the title conference, deal with the following subjects: (1) Strategies for the transmutation of americium; (2) Transmutation of plutonium in pebble bed type high temperature reactors; (3) Benchmark comparisons of calculations of LWR fuel cells with uranium-free fuels; (4) Inert matrices, uranium-free plutonium fuels and americium targets. Synthesis of CAPRA ('Consommation Accrue de Plutonium dans les Rapides'), SPIN ('Separation et Incineration') and EFTTRA (Experimental Feasibility of Targets for Transmutation) studies; (5) Development of fuels for the transmutation in the frame of the EFTTRA European collaboration; and (6) On the use of spinel-based nuclear fuels for the transmutation of actinides. 16 figs., 23 tabs., 65 refs

  11. Transmutations of nuclear waste. Progress report RAS programme 1995: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Gruppelaar, H.; Cordfunke, E.H.P.; Konings, R.J.M.; Bultman, J.H.; Dodd, D.H.; Franken, W.M.P.; Kloosterman, J.L.; Koning, A.J.; Wichers, V.A.

    1996-04-01

    This report describes the progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1995, which is the second year of the 4-year programme 1994-1997. An extensive listing of reports and publications from 1991 to 1995 is given. Highlights in 1995 were: -The completion of the European Strategy Study on Nuclear Waste Transmutation as a result of which the understanding of transmutation of plutonium, minor actinides and long-lived fission products in thermal and fast reactors has been increased significantly. Important ECN contributions were given on Am, 99 Tc and 129 I transmutation options. Follow-up contracts have been obtained for the study of 100% MOX cores and accelerator-based transmutation. - Important progress in the evaluation of CANDU reactors for burning very large amounts of transuranium mixtures in inert matrices. - The first RAS irradiation experiment in the HFR, in which the transmutation of technetium and iodine was examined, has been completed and post-irradiation examination has been started. - A joint proposal of the EFTTRA cooperation for the 4 th Framework Programme of the EU, to demonstrate the feasibility of the transmutation of americium in an inert matrix by an irradiation in the HFR, has been granted. - A bilateral contract with CEA has been signed to participate in the CAPRA programme, and the work in this field has been started. - The thesis work on Actinide Transmutation in Nuclear Reactor Systems was succesfully defended. New PhD studies on Pu burning in HTGR, on nuclear data for accelerator-based systems, and on the SLM-technique for separation of actinides were started. - A review study of the use of the thorium cycle as a means for nuclear waste reduction, has been completed. A follow-up of this work is embedded in an international project for the 4th Framework Programme of the EU. (orig./DG)

  12. Spatial heterogeneity of tungsten transmutation in a fusion device

    Science.gov (United States)

    Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.

    2017-04-01

    Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.

  13. An optimization methodology for heterogeneous minor actinides transmutation

    Science.gov (United States)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  14. Transmutation in ASTRID

    International Nuclear Information System (INIS)

    Grouiller, Jean-Paul; Buiron, Laurent; Mignot, Gérard; Palhier, Raphael

    2013-01-01

    Summary and future prospects for incorporating Am in ASTRID: → Potential to demonstrate the minor actinide transmutation on an industrial scale in the CFV V1 core of ASTRID: • Homogeneous concept: 2% of Am in a standard fuel; • Heterogeneous concept: 10% on UO 2 in the radial blanket. • The objective of ensuring a balance in the Am (and total minor actinides) flow in the ASTRID fuel cycle may be obtained without any impact on the design of the core and handling systems for the management of the new and spent fuel subassemblies. • Several experimental phases in ASTRID to implement different transmutation scenarios using homogeneous and heterogeneous concepts. ⇒ the availability of facilities involved in the ASTRID material cycles

  15. SPHERE: Irradiation of sphere-pac fuel of UPuO2−x containing 3% Americium

    International Nuclear Information System (INIS)

    D’Agata, E.; Hania, P.R.; McGinley, J.; Somers, J.; Sciolla, C.; Baas, P.J.; Kamer, S.; Okel, R.A.F.; Bobeldijk, I.; Delage, F.; Bejaoui, S.

    2014-01-01

    Highlights: • SPHERE is designed to check the behaviour of MADF sphere-pac concept. • MADF sphere-pac are compared with MADF pellet. • Swelling, helium release and restructuring behaviour will be the main output of the experiment. • An experiment to check sphere-pac MABB fuel behaviour is now under design. - Abstract: Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like 241 Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. The SPHERE irradiation experiment is the latest of a series of European experiments on americium transmutation (e.g. EFTTRA-T4, EFTTRA-T4bis, HELIOS, MARIOS) performed in the HFR (High Flux Reactor). The SPHERE experiment is carried out in the framework of the 4-year project FAIRFUELS of the EURATOM 7th Framework Programme (FP7). During the past years of experimental works in the field of transmutation and tests of innovative nuclear fuels, the release or trapping of helium as well as helium induced fuel swelling have been shown to be the key issues for the design of Am-bearing targets. The main objective of the SPHERE experiment is to study the in-pile behaviour of fuel containing 3% of americium and to compare the behaviour of sphere-pac fuel to pellet fuel, in particular the role of microstructure and temperature on fission gas release (mainly He) and on fuel swelling. The SPHERE experiment is being irradiated since September 2013 in the HFR in Petten (The Netherlands) and is expected to be terminated in spring 2015. The experiment has been designed to last up to 18 reactor cycles (corresponding to 18 months) but may reach its target earlier. This paper discusses the rationale and objective of the SPHERE experiment and provides a general description of its design

  16. The MARINE experiment: Irradiation of sphere-pac fuel and pellets of UO{sub 2−x} for americium breeding blanket concept

    Energy Technology Data Exchange (ETDEWEB)

    D' Agata, E., E-mail: elio.dagata@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Hania, P.R. [Nuclear Research and Consultancy Group, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Freis, D.; Somers, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Bejaoui, S. [Commissariat à l’Energie Atomique et aux Energies Alternatives, DEN/DEC, F-13108 St. Paul lez Durance Cedex (France); Charpin, F.F.; Baas, P.J.; Okel, R.A.F.; Til, S. van [Nuclear Research and Consultancy Group, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Lapetite, J.-M. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Delage, F. [Commissariat à l’Energie Atomique et aux Energies Alternatives, DEN/DEC, F-13108 St. Paul lez Durance Cedex (France)

    2017-01-15

    Highlights: • MARINE is designed to check the behaviour of MABB sphere-pac concept. • MABB sphere-pac are compared with MABB pellet. • Swelling and helium release behaviour will be the main output of the experiment. • An experiment to check sphere-pac MADF fuel behaviour has been already performed. - Abstract: Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is therefore an option for the reduction of radiotoxicity and heat production of waste packages to be stored in a repository. The MARINE irradiation experiment is the latest of a series of European experiments on americium transmutation (e.g. EFTTRA-T4, EFTTRA-T4bis, HELIOS, MARIOS, SPHERE) performed in the High Flux Reactor (HFR). The MARINE experiment is developed and carried out in the framework of the collaborative research project PELGRIMM of the EURATOM 7th Framework Programme (FP7). During the past years of experimental works in the field of transmutation and tests of innovative nuclear fuels, the release or trapping of helium as well as swelling have been shown to be the key issues for the design of such kind of fuel both as drivers and even more for Am-bearing blanket targets (due to the higher Am contents). The main objective of the MARINE experiment is to study the in-pile behaviour of uranium oxide fuel containing 13% of americium and to compare the behaviour of sphere-pac versus pellet fuel, in particular the role of microstructure and temperature on fission gas release and He on fuel swelling. The MARINE experiment will be irradiated in 2016 in the HFR in Petten (The Netherlands) and is expected to be completed in spring 2017. This paper discusses the rationale and objective of the MARINE experiment and provides a general description of its design for which some innovative features have been adopted.

  17. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-01-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  18. Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2015-06-01

    The benefits of partitioning and transmutation (P and T) have now been established worldwide and, as a result, many countries are pursuing R and D programmes to advance the technologies associated with P and T. In this context, the OECD Nuclear Energy Agency (NEA) has organised a series of biennial information exchange meetings to provide experts with a forum to present and discuss state-of-the-art developments in the field of partitioning and transmutation since 1990. The OECD Nuclear Energy Agency Information Exchange Meeting on Actinides and Fission Products Partitioning and Transmutation is a forum for experts to present and discuss the state-of-the-art development in the field of P and T. Thirteen meetings have been organised so far and held in Japan, the United States, France, Belgium, Spain, the Republic of Korea and the Czech Republic. This 13. meeting was hosted by Seoul National University (Seoul, Republic of Korea) and was organised in co-operation with the International Atomic Energy Agency (IAEA) and the European Community (EC). The meeting covered strategic and scientific developments in the field of P and T such as: fuel cycle strategies and transition scenarios, the role of P and T in the potential evolution of nuclear energy as part of the future energy mix; radioactive waste management strategies; transmutation fuels and targets; advances in pyro and aqueous separation processes; P and T specific technology requirements (materials, spallation targets, coolants, etc.); transmutation systems: design, performance and safety; impact of P and T on the fuel cycle; fabrication, handling and transportation of transmutation fuels. A total of 103 presentations (39 oral and 64 posters) were discussed among the 110 participants from 19 countries and 2 international organisations. The meeting consisted of one plenary session where national and international programmes were presented followed by 5 technical sessions: - Fuel Cycle Strategies and Transition

  19. Two-step B/T (burning and/or transmutation) method for self-completed nuclear fuel cycle with thermal and fast B/T reactors

    International Nuclear Information System (INIS)

    Kitamoto, A.; Mulyanto, M.R.; Marsodi, M.R.

    1995-01-01

    The total cost minimization for P and T (partitioning and transmutation) treatment with appropriate recycle period through out-core optimization was examined in order to find the possibility of P and T treatment of minor actinides (MA) and/or long lived fission products (LLFP) and the technology to be improved and/or developed in self-completed nuclear fuel cycle. The P and T should be done for B/T (burning and/or transmutation) treatment based on three criteria, and the grouping was closely related to the effectiveness of Two-Step B/T Method in B/T treatment. (authors)

  20. Radiotoxicity of Actinides During Transmutation in Final Stage of Atomic Power

    International Nuclear Information System (INIS)

    Gerasimov, Aleksander S.; Bergelson, Boris R.; Myrtsymova, Lidia A.; Tikhomirov, Georgy V.

    2002-01-01

    Characteristics of a transmutation mode in final stage of atomic power are analyzed. In this stage, transmutation of actinides accumulated in transmutation reactors is performed without feed by actinides from other reactors. The radiotoxicity during first 20 years of transmutation is caused mainly by 244 Cm. During following period of time, 252 Cf is main nuclide. Contribution of 246 Cm and 250 Cf is 5-7 times less than that of 252 Cf. During 50 years of a transmutation, the total radiotoxicity falls by 50 times. Long-lived radiotoxicity decreases slowly. During the period between T=50 years and T=100 years, long-lived radiotoxicity falls by 3.7 times. For each following 50 years after this period, long-lived radiotoxicity falls by 3.2 times. These results corresponding to neutron flux density 10 14 neutr/(cm 2 s) in transmutation reactor demonstrate that the final stage of a transmutation should be performed with use of high flux transmutation facilities which provide shorter time of transmutation. (authors)

  1. Transmutation Strategy Using Thorium-Reprocessed Fuel ADS for Future Reactors in Vietnam

    Directory of Open Access Journals (Sweden)

    Thanh Mai Vu

    2013-01-01

    Full Text Available Nuclear power is believed to be a key to the energy security for a developing country like Vietnam where the power demanding increases rapidly every year. Nevertheless, spent nuclear fuel from nuclear power plants is the source of radiotoxic and proliferation risk. A conceptual design of ADS utilizing thorium fuel as a based fuel and reprocessed fuel as a seed for nuclear waste transmutation and energy production is proposed as one of the clean, safe, and economical solutions for the problem. In the design, 96 seed assemblies and 84 blanket assemblies were inserted into the core to make a heterogeneous subcritical core configuration. Introducing thorium fuel into the core offers an effective way to transmute plutonium and minor actinide (MA and gain energy from this process. Transmutation rate as a function of burnup is estimated using MCNPX 2.7.0 code. Results show that by using the seed-blanket designed ADS, at 40 GWd/t burnup, 192 kg of plutonium and 156 kg of MA can be eliminated. Equivalently, 1  ADS can be able to transmute the transuranic (TRU waste from 2  LWRs. 14 units of ADS would be required to eliminate TRUs from the future reactors to be constructed in Vietnam.

  2. Scenarios for Minor Actinides Transmutation in the Frame of the French Act for Waste Management

    International Nuclear Information System (INIS)

    Meyer, M.; Coquelet-Pascal, C.; Girieud, R.; Tiphine, M.; Eschbach, R.; Chabert, C.; Garzenne, C.; Barbrault, P.; Gannaz, B.; Van Den Durpel, L.; Favet, D.; Arslan, M.; Carlier, B.; Caron-Charles, M.; Lefèvre, J.C.

    2013-01-01

    Conclusion: • Different transmutation scenarios have been evaluated: homogeneous transmutation, AmBB, MABB. • Homogeneous transmutation: – The MA content peak at the beginning of the transmutation can be reduced from 3,9% to 2,5% thanks to a reprocessing optimization. – Delaying the SFR deployment to 2080 increases this peak from 3,9% to 4,7%. Due to the constraints on reprocessing, the optimization may be less efficient in this case. • Heterogeneous transmutation: – Shorting the AmBB irradiation time from 10 cycles to 5 cycles and reducing their Am content from 20% to 10%: - reduces AmBB decay heat (-45% at the cooling beginning); - leads to an increase in the Am mass in cycle (+20% in 2150). • Impact of the CFV core: – In heterogeneous mode, the CFV transmutation rate being better than the SFRV2B one, the MA inventory is reduced by 22% in 2150. – In homogeneous mode, the reduction of the fissile mass in core leads to an increase of the MA peak at the beginning of the transmutation (3,9% → 5,6%). There’s no impact on the MA inventory

  3. Impact of Transmutation Scenarios on Fuel Transportation

    International Nuclear Information System (INIS)

    Saturnin, A.; Duret, B.; Allou, A.; Jasserand, F.; Fillastre, E.; Giffard, F.X.; Chabert, C.; Caron-Charles, M.; Garzenne, C.; Laugier, F.

    2015-01-01

    Minor actinides transmutation scenarios have been studied in the frame of the French Sustainable Radioactive Waste Management Act of 28 June 2006. Transmutation scenarios supposed the introduction of a sodium-cooled fast reactor fleet using homogeneous or heterogeneous recycling modes for the minor actinides. Americium, neptunium and curium (MA) or americium alone (Am) can be transmuted together in a homogeneous way embedded in FR-MOX fuel or incorporated in MA or Am-Bearing radial Blankets (MABB or AmBB). MA transmutation in Accelerator Driven System has also been studied while plutonium is being recycled in SFR. Assessments and comparisons of these advanced cycles have been performed considering technical and economic criteria. Transportation needs for fresh and used transmutation fuels is one of these criteria. Transmutation fuels have specific characteristics in terms of thermal load and neutron emissions. Thermal, radiation and criticality constraints have been taken into account in this study to suggest cask concepts for routine conditions of transport, to estimate the number of assemblies to be transported in a cask and the number of annual transports. Comparison with the no transmutation option, i.e. management of uranium and plutonium in SFRs, is also presented. Regarding these matters, no high difficulties appear for assemblies with limited content of Am (homogeneous or heterogeneous recycling modes). When fuels contain curium, technical transport uncertainties increase because of the important heat release requiring dividing fresh fuels and technological innovations development (MABB and ADS). (authors)

  4. Waste management in future. Partitioning and transmutation (P and T)

    International Nuclear Information System (INIS)

    Calic, D.

    2005-01-01

    Current research and development (R and D) in radioactive waste management is mainly associated with the quantities and toxicity of high level waste and spent fuel. One of the solutions that already exists, but has not yet reached scientific and technological maturity, is the process of partitioning and transmutation (P and T). Partitioning is the selective separation of radiotoxic isotopes from reprocessing streams. After the successive partitioning has been done, the long-lived radionuclides are converted into shorter-lived or stable nuclides by process called transmutation. P and T can reduce the radiotoxic inventory of spent fuel by a factor of 100 to 1000 and can achieve the reduction of time needed to reach the radioactivity level of the uranium ore from 100,000 to 5000 years. To achieve this, the separation of plutonium, minor actinides and long-lived fission products has to be implemented as early as possible in the fuel cycle strategy. Currently, P and T is still at the research and development stage and it needs to be scaled up, before it can be introduced on an industrial scale, therefore the paper will present the current status of the development of P and T and plans for the future. (author)

  5. Partitioning and transmutation (P and T) 1997. Status report

    International Nuclear Information System (INIS)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L.; Gudowski, W.; Wallenius, J.

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  6. Partitioning and transmutation (P and T) 1997. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Gudowski, W.; Wallenius, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  7. Nuclear transmutations

    International Nuclear Information System (INIS)

    Mikulaj, V.

    1992-01-01

    Two types of nuclear transmutations are outlined, namely the radioactive transmutations and nuclear reactions. The basic characteristics are given of radioactive transmutations (gamma transmutations and isomeric transitions, beta, alpha transmutations, spontaneous fission and spontaneous emission of nucleons), their kinetics and the influence of the physical and chemical state of the radionuclide on the transmutation rate. The basic characteristics are described of nuclear reactions (reactions of neutrons including fission, reactions induced by charged particles and photons), their kinetics, effective cross sections and their mechanism. Chemical reactions caused by nuclear transmutations are discussed (recoil energy, properties of hot atoms, Szilard-Chalmers effect). A brief information is given on the behavior of radionuclides in trace concentrations. (Z.S.) 2 tabs., 19 figs., 12 refs

  8. Heterogeneous fuels for minor actinides transmutation: Fuel performance codes predictions in the EFIT case study

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, R., E-mail: rolando.calabrese@enea.i [ENEA, Innovative Nuclear Reactors and Fuel Cycle Closure Division, via Martiri di Monte Sole 4, 40129 Bologna (Italy); Vettraino, F.; Artioli, C. [ENEA, Innovative Nuclear Reactors and Fuel Cycle Closure Division, via Martiri di Monte Sole 4, 40129 Bologna (Italy); Sobolev, V. [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Thetford, R. [Serco Technical and Assurance Services, 150 Harwell Business Centre, Didcot OX11 0QB (United Kingdom)

    2010-06-15

    Plutonium recycling in new-generation fast reactors coupled with minor actinides (MA) transmutation in dedicated nuclear systems could achieve a decrease of nuclear waste long-term radiotoxicity by two orders of magnitude in comparison with current once-through strategy. In a double-strata scenario, purpose-built accelerator-driven systems (ADS) could transmute minor actinides. The innovative nuclear fuel conceived for such systems demands significant R and D efforts in order to meet the safety and technical performance of current fuel systems. The Integrated Project EUROTRANS (EUROpean research programme for the TRANSmutation of high level nuclear waste in ADS), part of the EURATOM Framework Programme 6 (FP6), undertook some of this research. EUROTRANS developed from the FP5 research programmes on ADS (PDS-XADS) and on fuels dedicated to MA transmutation (FUTURE, CONFIRM). One of its main objectives is the conceptual design of a small sub-critical nuclear system loaded with uranium-free fuel to provide high MA transmutation efficiency. These principles guided the design of EFIT (European Facility for Industrial Transmutation) in the domain DESIGN of IP EUROTRANS. The domain AFTRA (Advanced Fuels for TRAnsmutation system) identified two composite fuel systems: a ceramic-ceramic (CERCER) where fuel particles are dispersed in a magnesia matrix, and a ceramic-metallic (CERMET) with a molybdenum matrix in the place of MgO matrix to host a ceramic fissile phase. The EFIT fuel is composed of plutonium and MA oxides in solid solution with isotopic vectors typical of LWR spent fuel with 45 MWd/kg{sub HM} discharge burnup and 30 years interim storage before reprocessing. This paper is focused on the thermomechanical state of the hottest fuel pins of two EFIT cores of 400 MW{sub (th)} loaded with either CERCER or CERMET fuels. For calculations three fuel performance codes were used: FEMALE, TRAFIC and TRANSURANUS. The analysis was performed at the beginning of fuel life

  9. The Physics of transmutation systems : system capabilities and performances

    International Nuclear Information System (INIS)

    Finck, P. J.

    2002-01-01

    This document is complementary to a document produced by Prof. Salvatores on ''The Physics of Transmutation in Critical or Subcritical Reactors and the Impact on the Fuel Cycle''. In that document, Salvatores describes the fundamental of transmutation, through basic physics properties and general parametric studies. In the present document we try to go one step further towards practical implementation (while recognizing that the practical issues such as technology development and demonstration, and economics, can only be mentioned in a very superficial manner). Section 1 briefly overviews the possible objectives of transmutation systems, and links these different objectives to possible technological paths. It also describes the overall constraints which have to be considered when developing and implementing transmutation systems. In section 2 we briefly overview the technological constraints which need to be accounted for when designing transmutation systems. In section 3 we attempt to provide a simplified classification of transmutation systems in order to clarify later comparisons. It compares heterogeneous and homogeneous recycle strategies, and single and multi-tier systems. Section 4 presents case analyses for assessing the transmutation performance of various individual systems, starting with LWR's ((1) generic results; (2) multirecycle of plutonium; (3) an alternative: transmutation based on a Thorium fuel cycle), followed by Gas-Cooled Reactors (with an emphasis on the ''deep burn'' approach), and followed by Fast Reactors and Accelerator Driven systems ((1) generic results; (2) homogeneous recycle of transuranics; (3) practical limit between Fast Reactors and Accelerator Driven Systems) Section 5 summarizes recent results on integrated system performances. It focuses first on interface effects between the two elements of a dual tier system, and then summarizes the major lessons learned from recent global physics studies

  10. Actinide partitioning-transmutation program final report. III. Transmutation studies

    International Nuclear Information System (INIS)

    Wachter, J.W.; Croff, A.G.

    1980-07-01

    Transmutation of the long-lived nuclides contained in fuel cycle wastes has been suggested as a means of reducing the long-term toxicity of the wastes. A comprehensive program to evaluate the feasibility and incentives for recovering the actinides from wastes (partitioning) and transmuting them to short-lived or stable nuclides has been in progress for 3 years under the direction of Oak Ridge National Laboratory (ORNL). This report constitutes the final assessment of transmutation in support of this program. Included are (1) a summary of recent transmutation literature, (2) a generic evaluation of actinide transmutation in thermal, fast, and other transmutation devices, (3) a preliminary evaluation of 99 Tc and 129 I transmutation, and (4) a characterization of a pressurized-water-reactor fuel cycle with and without provisions for actinide recovery and transmutation for use in other parts of the ORNL program. The principal conclusion of the report is that actinide transmutation is feasible in both thermal and fast reactors, subject to demonstrating satisfactory fuel performance, with relatively little impact on the reactor. It would also appear that additional transmutation studies are unwarranted until a firm decision to proceed with actinide transmutation has been made by the responsible authorities

  11. Development of nuclear transmutation technology for transuranic elements

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1996-01-01

    Partitioning and Transmutation (P-T) of long-lived radioactive nuclides is conceived as the technology to improve the high-level radioactive waste management. This report discusses the incentives of P-T, generation of long-lived nuclides in fission reactors, nuclear transmutation technologies, R and D activities of the partitioning and transmutation technology development programs at JAERI and in the world. (author)

  12. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Salvatores, M.; Girard, C.; Delpech, M.; Slessarev, I.; Tommasi, J.

    1994-01-01

    Waste management strategies foresee the use of a deep geological repository either for final disposal of irradiated fuel or, after reprocessing and reuse of U and Pu for final disposal of long-lived radio-active materials. In the second case, partitioning and transmutation of these materials can be considered to reduce the impact of radiation on man due to the storage. On the basis of the SPIN programme developed by CEA in this field, the main features of transmutation is presented. The goal to achieve and the criteria to use are quite difficult to establish. The rights para-meters to characterize the risk are the potential radiotoxicity in the the repository and the residual radiotoxicity at the outlet. Transmutation studies in CEA used the potential radiotoxicity which is based on well-known parameters and less precise hazardous factors. The second point to appreciate the trans- mutation interest is to dispose of a criteria for the radio-radiotoxicity reduction. As there is no general agreement, we try to have a toxicity as low as possible within reasonable technical limits. To reduce the long term radio- toxicity, Pu, minor actinides and some long-lived fission products have to be transmuted. To assess the feasibility of such trans-mutation in reactors or advanced systems, one has to consider constraints on neutronic balance, safety, fuel cycle, technology , economy. Taking in account the main conclusions of this analysis, parametric studies of homogeneous and heterogenous transmutation permit a choice of promising solutions. Goals are to use every long-lived element with a minimized production of other long- lived elements in order to obtain an appreciable radiotoxicity reduction. It implies multi recycling of Pu which favours fast neutron reactors and different strategies of multi recycling for Np, Am, Cm. Multi recycling makes the results strongly dependant of losses. Researches to obtain the high partitioning efficiency needed are in progress. Calculations

  13. Minor actinides transmutation performance in a fast reactor

    International Nuclear Information System (INIS)

    Takeda, Toshikazu

    2016-01-01

    Highlights: • A method for calculating MA transmutation for individual nuclides has been proposed by introducing two formulas of the MA transmutation. One corresponds to the difference of MA amounts, and the other corresponds to the sum of the fission amounts and the plutonium production amounts. • Using the method the MA transmutation was calculated for Np-237 and Am-241 in a fast reactor. The burnup period was changed from 1 year to 12 year. • For the 1 year burnup a large amount of Am-242m, Cm-242 are produced from Am-241. The total MA transmutation amount increases with burnup time, but its gradient with respect to burnup time decreases after 9 years, and the transmutation amount by overall fission increases almost linearly with burnup time. • However, after the 6 year burnup the fission contribution became large because of the large production of Pu isotopes from the original Am-241. • In addition to the homogeneous loading of the MA nuclides into the cores, a heterogeneous loading of Am-241 to the blanket region was considered. - Abstract: Results obtained in the project named “Study on Minor Actinides Transmutation using Monju Data”, which has been sponsored by the Ministry of Education, Culture, Sports, Science and Technology in Japan (MEXT) are described. In order to physically understand transmutation of individual MA nuclides in fast reactors, a new method was developed in which the MAs transmutation is interpreted by two formulas. One corresponds to the difference of individual MA nuclides amounts before and after a burnup period, and the other is the sum of amount of fission of a relevant MA nuclide and the net plutonium production from the MA nuclide during a burnup period. The method has been applied to two fast reactors with MA fuels loaded in cores homogeneously and in a blanket region heterogeneously. Numerical results of MA transmutation for the two reactors are shown.

  14. J-PARC Transmutation Experimental Facility Programme

    International Nuclear Information System (INIS)

    Sasa, T.; Takei, H.; Saito, S.; Obayashi, H.; Nishihara, K.; Sugawara, T.; Iwamoto, H.; Yamaguchi, K.; Tsujimoto, K.; Oigawa, H.

    2015-01-01

    Since the Fukushima accident, nuclear transmutation is considered as an option for waste management. Japan Atomic Energy Agency proposes the transmutation of minor actinides (MA) in accelerator-driven system (ADS) using lead-bismuth eutectic alloy (LBE) as a spallation target and a coolant of subcritical core. To obtain the data required for ADS design, we plan the building of a transmutation experimental facility (TEF) is planned within the J-PARC project. TEF consists of an ADS target test facility (TEF-T), which will be installed 400 MeV-250 kW LBE spallation target for material irradiations, and a transmutation physics experimental facility (TEF-P), which set up a fast critical/subcritical assembly driven by low power proton beam with MA fuel to study ADS neutronics. At TEF-T, various research plans to use emitted neutrons from LBE target are discussed. The paper summarises a road-map to establish the ADS transmuter and latest design activities for TEF construction. (authors)

  15. Grouping of HLW in partitioning for B/T (burning and/or transmutation) treatment with neutron reactors based on three criteria

    International Nuclear Information System (INIS)

    Kitamoto, Mulyanto; Kitamoto, Asashi

    1995-01-01

    A grouping concept of HLW in partitioning for B/T (burning and/or transmutation) treatment by fission reactor was developed in order to improve the disposal in waste management from the safety aspect. The selecting and grouping concept was proposed herein, such as Group MA1 (Np, Am, and unrecovered U and Pu), Group MA2 (Cm, and trace quantity of Cf, etc.), Group A (Tc and I), Group B (Cs and Sr) and Group R (the partitioned remains of HLW), judging from the three criteria for B/T treatment, based on (1) the concept of the potential risk estimated by the hazard index for long-term tendency based on ALI (2) the concept of the relative dose factor related to the adsorbed migration rate transferred through ground water, and (3) the concept of the decay acceleration factor, the burning and/or transmutation characteristics for recycle B/T treatment. (author)

  16. Partitioning and transmutation. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aa; Landgren, A; Liljenzin, J O; Skaalberg, M; Spjuth, L [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1997-12-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. Refs, figs, tabs.

  17. Transmutation blanket design for a Tokamak system

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A. Fortini; Costa, Antonella L.

    2011-01-01

    Sub-critical advanced reactor with a D-T fusion neutron source based on Tokamak technology is an innovative type of nuclear system. Due to the high quantity of neutrons produced by fusion reactions, it could be well spent in the transmutation process of the transuranic elements. Nevertheless, to achieve a successful transmutation, it is necessary to know the neutron fluence along the radial axis and its characteristics. In this work, it evaluated the neutron flux and interaction frequency along the radial axis changing the material of the first wall. W-alloy, beryllium and the combination of both were studied and regions more suitable to transmutation were determined. The results demonstrated that the better zone to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements W-alloy/W-alloy and W-alloy/Beryllium would be able to hold the requirements of high fluence and hardening spectrum needed to transuranic transmutation. The system was simulated using the MCNP5 code, the ITER Final Design Report, 2001, and the FENDL/MC-2.1 nuclear data library. (author)

  18. Actinide partitioning-transmutation program final report. I. Overall assessment

    International Nuclear Information System (INIS)

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of 99 Tc and 129 I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted

  19. Role of (n,2n) reactions in transmutation of long-lived fission products

    Energy Technology Data Exchange (ETDEWEB)

    Apse, V. A.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kulikov, E. G. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, {sup 79}Se, {sup 93}Zr, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, and {sup 135}Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 and the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes ({sup 126}Sn, {sup 129}I, and {sup 135}Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for {sup 126}Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).

  20. First results and future trends for the transmutation of long-lived radioactive wastes

    International Nuclear Information System (INIS)

    Prunier, C.; Salvatores, M.; Guerin, Y.; Zaetta, A.

    1993-01-01

    In the frame of the CEA SPIN program, a project has been set-up at the Direction of Nuclear Reactors of CEA, to study the transmutation of long-lived radioactive products (both minor actinides and fission products) resulting from the operation of current nuclear power plants. The program is focused on: transmutation in minor actinides (Np, Am) in fission reactors of known technology (both of the PWR or the fast reactor type), using the so-called ''homogeneous'' (mixed with Uranium or Uranium-Plutonium), and ''heterogeneous'' (mixed with inert matrices) recycling modes for both type of reactors. Transmutation studies in dedicated devices (both fission reactors with actinide/plutonium fuel or with high thermal flux, and particle accelerator-based systems). Fuel studies related to both homogeneous and heterogeneous recycling modes in fission reactors. For the homogeneous recycling mode, some experimental irradiations results are available from past PHENIX programs. For the heterogeneous mode, very limited experimental results are available, and new theoretical and experimental work is underway on the use of appropriate inert matrices. Basic data studies to assess the quality of existing nuclear data for fission reactor transmutation studies, future data needs of relevance, and model/data developments needed for accelerator-based systems. Strategy studies, to evaluate the consequences of the different transmutation options on the fuel cycle, according to different scenarios of nuclear power development. 7 refs., 3 figs., 5 tabs

  1. Evaluation on transmutation performance of minor actinides with high-flux BWR

    International Nuclear Information System (INIS)

    Setiawan, M.B.; Kitamoto, A.; Taniguchi, A.

    2001-01-01

    The performance of high-flux BWR (HFBWR) for burning and/or transmutation (B/T) treatment of minor actinides (MA) and long-lived fission products (LLFP) was discussed herein for estimating an advanced waste disposal with partitioning and transmutation (P and T). The concept of high-flux B/T reactor was based on a current 33 GWt-BWR, to transmute the mass of long-lived transuranium (TRU) to short-lived fission products (SLFP). The nuclide selected for B/T treatment was MA (Np-237, Am-241, and Am-243) included in the discharged fuel of LWR. The performance of B/T treatment of MA was evaluated by a new function, i.e. [F/T ratio], defined by the ratio of the fission rate to the transmutation rate in the core, at an arbitrary burn-up, due to all MA nuclides. According to the results, HFBWR could burn and/or transmute MA nuclides with higher fission rate than BWR, but the fission rate did not increase proportionally to the flux increment, due to the higher rate of neutron adsorption. The higher B/T fraction of MA would result in the higher B/T capacity, and will reduce the units of HFBWR needed for the treatment of a constant mass of MA. In addition, HFBWR had a merit of higher mass transmutation compared to the reference BWR, under the same mass loading of MA

  2. Transmutation of technetium into stable ruthenium in high flux conceptual research reactor

    International Nuclear Information System (INIS)

    Amrani, N.; Boucenna, A.

    2007-01-01

    The effectiveness of transmutation for the long lived fission product technetium-99 in high flux research reactor, considering its large capture cross section in thermal and epithermal region is evaluated. The calculation of Ruthenium concentration evolution under irradiation was performed using Chain Solver 2.20 code. The approximation used for the transmutation calculation is the assumption that the influence of change in irradiated materials structures on the reactor operator mode characteristics is insignificant. The results on Technetium transmutation in high flux research reactor suggested an effective use of this kind of research reactors. The evaluation brings a new concept of multi-recycle Technetium transmutation using HFR T RAN (High Flux Research Reactor for Transmutation)

  3. Heterogeneous recycling in SFR core periphery

    International Nuclear Information System (INIS)

    Varaine, Frederic; Buiron, Laurent; Boucher, Lionel; Chabert, Christine

    2008-01-01

    In the framework of next generation fast reactor design, the management of minor actinides (MA) is one of the key issues. The Transmutation of MA can be achieving with various modes of transmutation and waste management. Two ways for transmutation: - The homogeneous mode where the minor actinides to be transmuted are directly mixed with 'standard' fuel of the reactor, - The heterogeneous way for which the actinides to be transmuted are separated from the fuel itself, in limited number of S/A (targets) devoted to actinides transmutation. Associated with two ways for actinides management: - The multiple recycling: in this case whole or part of minor actinides and plutonium at the end of each reactor cycle is sent back in the following cycle. In that way, only reprocessing losses go to the waste, - The once-through way: in this case the minor actinides are transmuted in targets where very high burn up is reached. Fast reactors offer the best performances to transmute the minor actinides in homogeneous or heterogeneous way at industrial scale. The safety criteria are acceptable for all solutions if the MA content is not over 2.5% of the total heavy nuclides. In this context, the last results obtained for minor actinides transmutation in sodium fast reactor depleted uranium radial blankets are presented. This concept is based on a heterogeneous multiple recycling model. The use of the oxide matrix allows to reprocess such S/A in the spent fuel standard flow. For the study, we use a preliminary design of a 3600 MWth sodium Fast Reactor in progress at CEA. We investigate the transmutation performances of (U+Np+Am+Cm)O 2 fuel in radial blankets assemblies. We focus on two upper and lower assumptions in order to investigate the feasibility domain for this concept: one with a minor actinides (MA) content of 10%, and the second one with an enrichment of MA close to 40%. The CEA is studying scenarios of principle for the French case through a dynamic vision of the nuclear

  4. Transmutation of nuclear waste in nuclear reactors

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Pilate, S.; Wehmann, U.K.

    1996-03-01

    The objective of this joint study of ECN, Belgonucleaire, and Siemens is to investigate possibilities for transmutation of nuclear waste in regular nuclear reactors or in special transmutation devices. Studies of possibilities included the limits and technological development steps which would be needed. Burning plutonium in fast reactors, gas-cooled high-temperature reactors and light water reactors (LWR) have been considered. For minor actinides the transmutation rate mainly depends on the content of the minor actinides in the reactor and to a much less degree on the fact whether one uses a homogeneous system (with the actinides mixed into the fuel) or a heterogeneous system. If one wishes to stabilise the amount of actinides from the present LWRs, about 20% of all nuclear power would have to be generated in special burner reactors. It turned out that reactor transmutation of fission products would require considerable recycling efforts and that the time needed for a substantial transmutation would be rather long for the presently available levels of the neutron flux. If one would like to design burner systems which can serve more light water reactors, a large effort would be needed and other burners (possibly driven by accelerators) should be considered. (orig.)

  5. Minor actinides transmutation potential: state of art for GEN IV sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Buiron, Laurent

    2015-01-01

    In the frame of the R and D program relative to the 1991 French act on nuclear waste management, fast neutron systems have shown relevant characteristics that meet both requirements on sustainable resources management and waste minimization. They also offer flexibility by mean of burner or breeder configurations allowing mastering plutonium inventory without significant impact on core safety. From the technological point of view, sodium cooled fast reactor are considered in order to achieve mean term industrial deployment. The present document summaries the main results of R and D program on minor actinides transmutation in sodium fast reactor since 2006 following recommendation of the first part of the 1991 French act. Both homogeneous and heterogeneous management achievable performances are presented for 'evolutionary' SFR V2B core as well as low void worth CFV core for industrial scale configurations (1500 MWe). Minor actinides transmutation could be demonstrated in the ASTRID reactor with the following configurations: - a 2%vol Americium content for the homogeneous mode, - a 10%vol Americium content for the heterogeneous mode, without any substantial modification of the main core safety parameters and only limited impacts on the associated fuel cycle (manufacturing issues are not considered here). In order to achieve such goal, a wide range of experimental irradiations driven by transmutation scenarios have to be performed for both homogeneous and heterogeneous minor actinides management. (author) [fr

  6. Transmutation of transuranium elements in a gas-cooled accelerator-driven system

    International Nuclear Information System (INIS)

    Biss, Klaus Hendrik

    2014-01-01

    The peaceful usage of nuclear energy by light and boiling water reactors is connected with a buildup of long-lived high-level radioactive waste. Compared to the direct disposal, partitioning and transmutation (P and T) is considered as an effective way to reduce this waste in its quantity by converting it into short-lived radio nuclides. By that the long term radiotoxicity is reduced compared to direct disposal. Subcritical systems, which are powered by spallation processes for free neutron production to maintain the nuclear chain reaction, allow a target-oriented transmutation. As a subcritical system a gas-cooled accelerator driven system (ADS) for transmutation of transuranic elements has been modeled in this thesis to evaluate the reduction of the radio toxicity by P and T. The simulation of neutron-physical processes is based on the Monte Carlo computer program MCNPX. The development of an equilibrium core made it possible to study the transmutation and operating behavior for several fuel variations in a magnesium oxide matrix and develop a simplified burnup method. Americium as part of the fuel has a stabilizing effect on the neutron multiplication due to its conversion into plutonium during the operation. Thorium was investigated as an alternative matrix for the fuel in order to replicate the stabilizing effect of americium by the conversion of thorium in 233 U. By that a consistent operating cycle in the later P and T-process is ensured. Calculation of the nuclide composition at the end of a P and T-process leads to an expansion of the mathematical description of the mass reduction (transmutation efficiency) by the material located in the reactor. The achieved transmutation efficiency with the investigated ADS is 98.8 %. The transmutation time was examined with different operating strategies regarding the number, size and thermal power of use of transmutation facilities to determine the effort for the P and T-process depending on efficiency. It turns out

  7. A study for optimal transmutation system

    International Nuclear Information System (INIS)

    Park, W.S.; Song, T.Y.; Shin, H.S.; Park, C.K.

    1996-01-01

    Couple of transmutation systems are being under investigation to design the optimal transmutation device. Several basic studies were performed for that objectives: (1) select the radioactive nuclides to be transmuted: (2) investigate the physical characteristics of each nuclide; (3) study the most favorable neutron energy environment for the transmutation. The existing LWR and LMFBR cores were found to be not a satisfiable ones in terms of transmutation rate itself. (author). 5 refs, 2 figs, 3 tabs

  8. Actinides transmutation - a comparison of results for PWR benchmark

    International Nuclear Information System (INIS)

    Claro, Luiz H.

    2009-01-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO 2 used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k∞ and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  9. Scenarios for minor actinides transmutation in the framework of the French Act on Waste Management

    International Nuclear Information System (INIS)

    Coquelet-Pascal, C.; Meyer, M.; Tiphine, M.; Girieud, R.; Eschbach, R.; Chabert, C.; Garzenne, C.; Barbrault, P.; Van Den Durpel, L.; Caron-Charles, M.; Favet, D.; Arslan, M.; Caron-Charles, M.; Carlier, B.; Lefevre, J.C.

    2013-01-01

    In the framework of the French Act on Waste Management, options of minor actinides (MA) transmutation are studied, based on several scenarios of sodium fast reactor deployment. Basically, one of these scenarios considers the deployment of a 60 GWe SFR fleet in two steps (20 GWe from 2040 to 2050 and 40 GWe, as well as, from 2080 to 2100). For this scenario, the advantages and drawbacks of different transmutation options are evaluated: - transmutation of all minor actinides or only of americium; - transmutation in homogeneous mode (MA bearing fuel in all the core or just in the outer core) or in heterogeneous mode (MA bearing radial blankets). Scenarios have been optimised to limit the impacts of MA transmutation on the cycle: - reduction of the initial MA content in the core in the case of transmutation in homogeneous mode to reduce the impact on reactivity coefficients; - reduction of the number of rows of blankets and fuel decay heat in the case of transmutation in heterogeneous mode. The sensitivity of transmutation options to cycle parameters such as the fuel cooling time before transportation is also assessed. Thus, the transmutation of only americium in one row of radial blankets containing initially 10 pc % Am and irradiated during the same duration as the standard fuel assemblies appears to be a suitable solution to limit the transmutation impacts on fuel cycle and facilities. A comparison of results obtained with MA transmutation in dedicated systems is also presented with a symbiotic scenario considering ADS (accelerator-driven system) deployment to transmute MA together with a SFR fleet to produce energy. The MA inventory within the cycle is higher in the case of transmutation in ADS than in the case of transmutation in SFR. Considering the industrial feasibility of MA transmutation, it appears important to study 'independently' SFR deployment and MA transmutation. Consequently, scenarios of progressive introduction of MA options are assessed

  10. Transmutation Capability of a Once-Through Molten-Salt and Other Transmuting Reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Lowenthal, M.; Barnes, D.; Kawasaki, D.; Kimball, D.; Matsumoto, H.; Sagara, H.; Vietez, E.R.

    2002-01-01

    A preliminary assessment is done of the transmutation characteristics of three reactor technologies: a multi-batch liquid metal (LM) cooled transmuter, a once-through molten-salt (MS) transmuter and a pebble bed (PB) transmuter. It was found that for the same fractional transmutation and same k eff drop with burnup (Δk effBU ), lead-bismuth offers smaller peak-to-average core power density, and it requires a smaller pumping power but a larger and heavier core than a sodium cooled transmuter. 99 Tc cannot effectively serve as a burnable absorber to reduce Δk effBU of LM transmuters. However, addition of thorium can greatly flatten k eff and almost double the fractional transmutation of the LWR spent fuel from ∼20% to ∼40%. If the 'once-through' MS transmuter is operated with continuous complete removal of fission products, it can achieve ∼85% fractional transmutation provided that the equilibrium concentration of actinides in the MS can reach 4 mole %. If the fission products are not actively removed, the fractional transmutation is reduced to ∼75%. The fractional transmutation of a PB transmuter can exceed 40%. More thorough analysis is required to better quantify the transmutation capability of the different transmuter technologies. (authors)

  11. Effects of actinide compositional variability in the US spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1992-01-01

    Partitioning and transmutation (P-T) is an advanced waste management concept by which certain undesirable nuclides in spent fuel are first isolated (partitioned) and later destroyed (transmuted) in a nuclear reactor or other transmutation device. There are wide variabilities in the nuclide composition of spent fuel. This implies that there will also be wide variabilities in the transmutation device feed. As a waste management system, P-T must be able to accept (all) spent fuel. Variability of nuclide composition (i.e., the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure transuranic (TRU) nuclides recovered from discharged lightwater reactor (LWR) spent fuel in critical or near-critical cores. To date, all transmutation system core analyses assume invariant nuclide concentrations for startup and recycle cores. Using the US Department of Energy's (DOE's) Characteristics Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactors). The variability of the infinite multiplication factor (k ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems

  12. Study on partitioning and transmutation (P and T) of high-level waste. Status of R and D. Final report; Studie zur Partitionierung und Transmutation (P and T) hochradioaktiver Abfaelle. Stand der Grundlagen- und technologischen Forschung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Merk, Bruno; Glivici-Cotruta, Varvara

    2014-07-01

    The main project, where this sub project contributed to, has been structured into two modules: module A (funded by the federal ministry of economics, managed by KIT) and module B (funded by the federal ministry of education and research, managed by acatech). Partners in module A were DBE TECHNOLOGY GmbH, the Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Karlsruher Institute of Technology (KIT) and the Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen, in co-operation with the Forschungszentrum Juelich (FZJ). Modul B has been executed by the Zentrum fuer Interdisziplinaere Risiko- und Innovationsforschung der Universitaet Stuttgart (ZIRIUS). The overall coordination has been carried out by the Deutsche Akademie der Technikwissenschaften (acatech). The social implications have been evaluated in module B based on the analysis of the scientific and technological aspects in module A. Recommendations for communication and actions to be taken for the future positioning of P and T have been developed. In the project part, coordinated by HZDR - status of R and D - an overview on the whole topic P and T is given. The topic is opened by a short description of reactor systems possible for transmutation. In the following the R and D status of separation technologies, safety technology, accelerator technology, liquid metal technology, spallation target development, transmutation fuel and structural material development, as well as waste conditioning is described. The topic is completed by the specifics of transmutation systems, the basic physics and core designs, the reactor physics, the simulation tools and the development of Safety Approaches. Additionally, the status of existing irradiation facilities with fast neutron spectrum is described. Based on the current R and D status, the research and technology gaps in the topics: separation and conditioning, accelerator and spallation target, and reactor

  13. Partitioning and transmutation. Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed.

  14. Partitioning and transmutation. Annual Report 1999

    International Nuclear Information System (INIS)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L.

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed

  15. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  16. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  17. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    Growing world population with increasing energy needs, especially in the developing countries, Threat of global warming due to CO 2 emissions demands non-fossil electricity production. Nuclear will have to be part of a sustainable mix of energy production options Figures show that 350 GWe worldwide capacity is 'nuclear'. Present worldwide spent fuel (containing high Pu inventory) and HLW would need large repositories. In view of the previous facts this lecture deals Partitioning and transmutation as radioactive waste management option. Partitioning and transmutation (P and T) is a complex technology i.e. advanced reprocessing, and demand transuranics fuel fabrication plants, as well as innovative and/or dedicated transmutation reactors. In addition to U, Pu, and 129 I, 'partitioning' extracts from the liquid high level waste the minor actinides (MA) and the long-lived fission products (LLFP) 99-Tc, 93-Zr, 135-Cs, 107-Pd, and 79-Se). 'Transmutation' requires fully new fuel fabrication plants and reactor technologies to be developed and implemented on industrial scale. Present LWRs are not suited for MA and LLFP transmutation (safety consideration, plant operation, poor incineration capability). Only specially licensed LWRs can cope with MOX fuel; for increased Pu loadings (up to 100%), special reactor designs (e.g., ABB80+) are required; a combination of these reactor types could allow Pu inventory stabilization. Long-term waste radiotoxicity can be effectively reduced only if transuranics are 'incinerated' through fission with very hard neutron spectra. New reactor concepts (dedicated fast reactors, Accelerator Driven Systems (ADS), fusion/fission hybrid reactors) have been proposed as transmuters/incinerators. Significant Pu+MAs incineration rates can be achieved in symbiotic scenarios: LWR-MOX and dedicated fast reactors; fast neutron spectrum ADS mainly for MA incineration; very high thermal flux ADS concepts could also provide a significant transuranics

  18. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  19. Technical meeting on 'Review of solid and mobile fuels for partitioning and transmutation systems'. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The topics covered during the Meeting were divided into two Sessions. Session 1 - Qualification of Solid and Mobile Fuels delt with: Neutronic, fuel and material properties of a molten salt transmuter; and Preliminary analysis of transmutation fuels for KALIMER. Session 2 - Reactor Physics and Safety Characteristics of Transmutation Systems based on Solid and Mobile Fuel Types included the following: Activity in NEA for P and T area; IAEA activities in the area of partitioning and transmutation; The R and D activity in Brazil: A conceptual fast energy amplifier ADS cooled by helium double stata Th/U fuel cycle; Closed fuel cycle and contemporary tendencies of the nuclear facilities development; Current Russian activities in P and T area; Pyrochemical reprocessing and nuclear spent fuel disposal project; Fuel selection criteria specific for double stratum minor actinide burners.

  20. Maximization of burning and/or transmutation (B/T) capacity in coupled spectrum reactor (CSR) by fuel and core adjustment

    International Nuclear Information System (INIS)

    Aziz, F.; Kitamoto, Asashi.

    1996-01-01

    A conceptual design of burning and/or transmutation (B/T) reactor, based on a modified conventional 1150 MWe-PWR system, consisted of two core regions for thermal and fast neutrons, respectively, was proposed herein for the treatments of minor actinides (MA). In the outer region 237 Np, 241 Am, and 243 Am burned by thermal neutrons, while in the inner region 244 Cm was burned mainly by fast neutrons. The geometry of B/T fuel in the outer region was left the same with that of PWR, while in the inner region the B/T fuel was arranged in a tight-lattice geometry that allowed a higher fuel to coolant volume ratio. The maximization of B/T capacity in CSR were done by, first, increasing the radius of the inner region. Second, reducing the coolant to fuel volume ratio, and third, choosing a suitable B/T fuel type. The result of the calculations showed that the equilibrium of main isotopes in CSR can be achieved after about 5 recycle stages. This study also showed that the CSR can burn and transmute up to 808 kg of MA in a single reactor core effectively and safely. (author)

  1. Neutron-transmutation-doped germanium bolometers

    International Nuclear Information System (INIS)

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  2. Grouping in partitioning of HLW for burning and/or transmutation with nuclear reactors

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Mulyanto.

    1995-01-01

    A basic concept on partitioning and transmutation treatment by neutron reaction was developed in order to improve the waste management and the disposal scenario of high level waste (HLW). The grouping in partitioning was important factor and closely linked with the characteristics of B/T (burning and/or transmutation) treatment. The selecting and grouping concept in partitioning of HLW was proposed herein, such as Group MA1 (Np, Am, and unrecovered U and Pu), Group MA2 (Cm, Cf etc.), Group A (Tc and I), Group B (Cs and Sr) and Group R (the partitioned remain of HLW), judging from the three criteria for B/T treatment proposed in this study, which is related to (1) the value of hazard index for long-term tendency based on ALI, (2) the relative dose factor related to the mobility or retardation in ground water penetrated through geologic layer, and (3) burning and/or transmutation characteristics for recycle B/T treatment and the decay acceleration ratio by neutron reaction. Group MA1 and Group A could be burned effectively by thermal B/T reactor. Group MA2 could be burned effectively by fast B/T reactor. Transmutation of Group B by neutron reaction is difficult, therefore the development of radiation application of Group B (Cs and Sr) in industrial scale may be an interesting option in the future. Group R, i.e. the partitioned remains of HLW, and also a part of Group B should be immobilized and solidified by the glass matrix. HI ALI , the hazard index based on ALI, due to radiotoxicity of Group R can be lower than HI ALI due to standard mill tailing (smt) or uranium ore after about 300 years. (author)

  3. Contribution of the European Commission to a European Strategy for HLW Management through Partitioning and Transmutation: Presentation of MYRRHA and its Role in the European P and T Strategy

    International Nuclear Information System (INIS)

    Abderrahim, H.A.; Van den Eynde, G.; Baeten, P.; Schyns, M.; Vandeplassche, D.; Kochetkov, A.

    2015-01-01

    To be able to answer the world's increasing demand for energy, nuclear energy must be part of the energy mix. As a consequence of the nuclear electricity generation, high-level nuclear waste (HLW) is produced. The HLW is presently considered to be managed through its burying in geological storage. Partitioning and transmutation (P and T) has been pointed out as the strategy to reduce the radiological impact of HLW. Transmutation can be achieved in an efficient way in fast neutron spectrum facilities, both in critical fast reactors as well as in accelerator driven systems (ADSs). For more than two decades, the European Commission has been co-funding various research and development projects conducted in many European research organisations and industries related to P and T as a complementary strategy for high-level waste management to the geological disposal. In 2005, a European strategy for the implementation of P and T for a large part of the HLW in Europe indicated the need for the demonstration of its feasibility at an 'engineering' level. The R and D activities of this strategy were arranged in four 'building blocks': 1. Demonstration of the capability to process a sizable amount of spent fuel from commercial light water reactors (LWRs) in order to separate plutonium, uranium and minor actinides. 2. Demonstration of the capability to fabricate at a semi-industrial level the dedicated fuel needed as load in a dedicated transmuter. 3. Design and construction of one or more dedicated transmuters. 4. Provision of a specific installation for processing of the dedicated fuel unloaded from the transmuter, which can be of a different type than the one used to process the original spent fuel unloaded from the commercial power plants, together with the fabrication of new dedicated fuel. MYRRHA contributes to the third building block. MYRRHA is an ADS under development at SCK.CEN in collaboration with a large number of European partners. One of

  4. Investigation of the feasibility of a small scale transmutation device

    Science.gov (United States)

    Sit, Roger Carson

    This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy spectra for targeting the radionuclide for transmutation. Key parameters analyzed include total fluence and flux requirements; transmutation effectiveness measured as irradiation effective half-life; and activation products generated along with their characteristics: activity, dose rate, decay, and ingestion and inhalation radiotoxicity. From this investigation, conclusions were drawn about the feasibility of the device, the design and technology enhancements that would be required to make transmutation practical, the most beneficial design for each radionuclide, the consequence of the transmutation, and radiation protection issues that are important for the conceptual design of the transmutation device. Key conclusions from this investigation include: (1) the transmutation of long-lived fission products and select actinides can be practical using a small-scale, fusion driven transmutation device; (2) the transmutation of long

  5. 2 mm range ESR of the transmutation-produced phosphorus impurity in 6HSiC

    International Nuclear Information System (INIS)

    Kalabukhova, E.N.; Lukin, S.N.; Mokhov, E.N.

    1993-01-01

    Phosphorus impurity is introduced into 6HSiC monocrystals via neutron transmutation doping. Parameters of ESR two spectra referred to ESR spectra of separated phosphorus atoms in the lattice cubic and hexagonal position are detected and determined in the specimens at T=4.2 K. variation dynamics of ESR spectra of phosphorus and nitrogen within 4.2-73 K temperature range is studied. Ionization energies of phosphorus atoms are determined to be less, than those of nitrogen atoms, and ionization energy of phosphorus atoms in hexagonal position is higher, than that of phosphorus atoms in cubic position

  6. Some basic advantages of accelerator-driven transmutation of minor actinides and iodine-129

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A.N.; Apse, V.A.; Kulikov, G.G. [Moscow Engineering Physics Institute (Russian Federation)

    1995-10-01

    The blanket of accelerator-driven facility designed for I-129 transmutation doesn`t contain fissile and fertile materials. So the overheating of iodine compounds transmuted is practically excluded. The efficacy of I-129 transmutation is estimated. Curium being accumulated in nuclear reactors can be incinerated in blanket of accelerator-driven facility. The deep depletion of curium diluted with inert material can be achieved.

  7. Nuclear waste transmutation and related innovative technologies

    International Nuclear Information System (INIS)

    2002-01-01

    The main topics of the summer school meeting were 1. Motivation and programs for waste transmutation: The scientific perspective roadmaps; 2. The physics and scenarios of transmutation: The physics of transmutation and adapted reactor types. Impact on the fuel cycle and possible scenarios; 3. Accelerator driven systems and components: High intensity accelerators. Spallation targets and experiments. The sub critical core safety and simulation physics experiments; 4. Technologies and materials: Specific issues related to transmutation: Dedicated fuels for transmutation. Fuel processing - the role of pyrochemistry. Materials of irradiation. Lead/lead alloys. 5. Nuclear data: The N-TOF facility. Intermediate energy data and experiments. (orig./GL)

  8. Effects of actinide compositional variability in the U.S. spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1993-01-01

    The partitioning and transmutation concept (P-T) has as a mission the reduction by many orders of magnitude of certain undesirable nuclides in the waste streams. Given that only a very small fiction of spent fuel can be rejected by a P-T enterprise, a P-T system must therefore be capable of accommodating a wide range of spent fuel characteristics. Variability of nuclide composition (i.e. the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure TRU nuclides recovered from discharged LWR fuel in critical or near-critical cores. To date, all transmutation system core analyses assume nonvariable nuclide concentrations for startup and recycle cores. Using the Department of Energy (DOES) Characteristic Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactor). In addition to quantifying the variability of nuclide composition in current and projected LWR fuel discharge, the variability of the infinite multiplication factor (K ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems. It is shown that actinide compositional variations are potentially significant and warrant further investigation. (authors)

  9. Incentives and recent proposals for partitioning and transmutation in the United States

    International Nuclear Information System (INIS)

    Donovan, T.J.

    1995-05-01

    Partitioning and transmutation (P-T) is perhaps the most elegant means of high level waste disposal. Currently, the cost of fuel obtained from reprocessing spent fuel exceeds the cost of fuel obtained by mining. This has resulted in the once through fuel cycle dominating the US nuclear industry. Despite this fact P-T continues to be examined and debated by the US as well as abroad. The US first seriously considered P-T between approximately 1976 and 1982 but rejected the concept in favor of reprocessing. More recently, since about 1989, as a result of the once through fuel cycle and the growing problems of waste disposal, studies concerning P-T have resumed. This essay will seek to outline the incentives and goals of partitioning and transmutation as it would apply to the disposal of spent fuel in the US. Recent proposals by various US national laboratories for implementing partitioning and transmutation as a high level waste management and disposal device will also be discussed. The review will seek to examine the technical concepts utilized in each of the proposals and their feasibility. The major focus of this essay will be the transmutation methods themselves, while the partitioning methods will be discussed only briefly. This is because of the fact that partitioning methods fall under reprocessing as an already fairly well established and accepted technology while feasible methods for transmutation are still being advanced

  10. Partitioning and transmutation of transuranium elements under nuclear phase-out conditions. Technically reliable?; Transmutation von Transuranen unter den Randbedingungen des Kernenergieausstiegs. Technisch machbar?

    Energy Technology Data Exchange (ETDEWEB)

    Merk, Bruno; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)

    2016-04-15

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P and T) could be considered as a technological option in the process of management of highly radioactive waste management, therefore a wide study has been conducted. In this group objectives for P and T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed using simulations of molten salt reactors with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible in 3 to 4 reactors in a time frame of 45 to 60 years. Further on a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation.

  11. Semantic Interoperability in Heterogeneous IoT Infrastructure for Healthcare

    Directory of Open Access Journals (Sweden)

    Sohail Jabbar

    2017-01-01

    Full Text Available Interoperability remains a significant burden to the developers of Internet of Things’ Systems. This is due to the fact that the IoT devices are highly heterogeneous in terms of underlying communication protocols, data formats, and technologies. Secondly due to lack of worldwide acceptable standards, interoperability tools remain limited. In this paper, we proposed an IoT based Semantic Interoperability Model (IoT-SIM to provide Semantic Interoperability among heterogeneous IoT devices in healthcare domain. Physicians communicate their patients with heterogeneous IoT devices to monitor their current health status. Information between physician and patient is semantically annotated and communicated in a meaningful way. A lightweight model for semantic annotation of data using heterogeneous devices in IoT is proposed to provide annotations for data. Resource Description Framework (RDF is a semantic web framework that is used to relate things using triples to make it semantically meaningful. RDF annotated patients’ data has made it semantically interoperable. SPARQL query is used to extract records from RDF graph. For simulation of system, we used Tableau, Gruff-6.2.0, and Mysql tools.

  12. Evaluation of alternative partitioning/transmutation scenarios using transmutation in light-water reactors (LWRs)

    International Nuclear Information System (INIS)

    Collins, E.D.; Renier, J.P.; Del Cul, B.; Spencer, B.

    2005-01-01

    Previous Advanced Fuel Cycle Initiative (AFCI) studies were made to assess the effects of the existing accumulation of LWR spent fuel in the United States on the capability to partition/transmute actinides using existing and advanced LWR. The concept of treating the oldest fuel first indicated that significant advantages could be gained in both partitioning, transmutation, and in overall cost reduction. The processing scenarios previously evaluated assumed that (1) 2000 MT/year of spent fuel, irradiated to 45 GWd/MT and decayed for 30 years is processed; (2) recovered plutonium and 90% of the neptunium are transmuted in LWR MOX fuel; and (3) minor actinides, consisting of americium, curium, and 10% of the neptunium are transmuted in burnable poison type targets. Results of the previous study showed that significant benefits could be obtained, including (1) lower costs for partitioning and transmutation and for storage of spent fuel, (2) maintenance of proliferation resistance for the fissile plutonium in spent fuels, and (3) extended lifetime for the repository. The lower costs would be achieved primarily because no capital investment for a special transmuter reactor (fast reactor, accelerator-driven system, etc.) would be required. Instead, only existing and new LWRs would be utilized. Moreover, no new storage capacity could be needed for spent fuels and irradiated targets because the number of spent fuel assemblies would remain the same after the scenario is begun. Even though the total inventory of plutonium would rise during the early cycles, ∼98% of the plutonium would be contained in stored spent fuel and would be protected by high radiation (the Spent Fuel Standard). This is because the spent fuel would be reprocessed and re-irradiated at intervals within which the fission products, 137 Cs and 90 Sr, both with half-lives of ∼ 30 years, exist in significantly high concentrations.The lifetime of the repository would be extended significantly because all of

  13. Ma and LLFP transmutation in MTPs and ADSs: the typical SCK.CEN case of transmutations in BR2 and Myrrha. Position with respect to the global needs

    International Nuclear Information System (INIS)

    Raedt, Ch. de; Verboomen, B.; Aoust, Th.; Malambu, E.; Beeckmans de West-Meerbeeck, A.; Kupschus, P.; Benoit, Ph.; Ait Abderrahim, H.; Baetsle, L.H.

    2001-01-01

    The proposed paper indicates the performances, in the domain of the transmutation of MAs and LLFPs, of the high flux materials testing reactor BR2 located at SCK-CEN, and compares them with those of the multipurpose ADS MYRRHA, the pre-design of which is at the present time being finalized at SCK-CEN. With thermal neutron fluxes reaching 9.10 14 n/cm 2 s in thermal positions and 4.10 14 n/cm 2 s in the reactor core and, in the latter position, a fast flux (E>0.1 MeV) of 7.10 14 n/cm 2 s, BR2 has a transmutation throughput of the order of 1.5 kg Np+Am per 200 EFPD. This capacity can be used for investigating at the technological scale the transmutation of MAs and LLFPs in a thermal neutron spectrum with a high contribution of epithermal and fast neutrons. The metallurgical behaviour of the targets can hence be studied. In MYRRHA, higher fast fluxes are expected to be attained in irradiation positions near the spallation source, viz fast fluxes (E>0.75 MeV) up to 10. 15 n/cm 2 s. One of the purposes of MYRRHA is therefore its utilisation for the investigation of actinide transmutation feasibility with ADSs. (author)

  14. Study on partitioning and transmutation (P and T) of high-level waste. Status of R and D. Final report

    International Nuclear Information System (INIS)

    Merk, Bruno; Glivici-Cotruta, Varvara

    2014-01-01

    The main project, where this sub project contributed to, has been structured into two modules: module A (funded by the federal ministry of economics, managed by KIT) and module B (funded by the federal ministry of education and research, managed by acatech). Partners in module A were DBE TECHNOLOGY GmbH, the Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Karlsruher Institute of Technology (KIT) and the Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen, in co-operation with the Forschungszentrum Juelich (FZJ). Modul B has been executed by the Zentrum fuer Interdisziplinaere Risiko- und Innovationsforschung der Universitaet Stuttgart (ZIRIUS). The overall coordination has been carried out by the Deutsche Akademie der Technikwissenschaften (acatech). The social implications have been evaluated in module B based on the analysis of the scientific and technological aspects in module A. Recommendations for communication and actions to be taken for the future positioning of P and T have been developed. In the project part, coordinated by HZDR - status of R and D - an overview on the whole topic P and T is given. The topic is opened by a short description of reactor systems possible for transmutation. In the following the R and D status of separation technologies, safety technology, accelerator technology, liquid metal technology, spallation target development, transmutation fuel and structural material development, as well as waste conditioning is described. The topic is completed by the specifics of transmutation systems, the basic physics and core designs, the reactor physics, the simulation tools and the development of Safety Approaches. Additionally, the status of existing irradiation facilities with fast neutron spectrum is described. Based on the current R and D status, the research and technology gaps in the topics: separation and conditioning, accelerator and spallation target, and reactor

  15. Importance of All-in-one (MCNPX2.7.0+CINDER2008) Code for Rigorous Transmutation Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Oyeon [Institute for Modeling and Simulation Convergence, Daegu (Korea, Republic of); Kim, Kwanghyun [RadTek Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    It can be utilized as a possible mechanism for reducing the volume and hazard of radioactive waste by transforming hazardous radioactive elements with long half-life into less hazardous elements with short halflife. Thus, the understanding of the transmutation mechanism and beneficial machinery design technologies are important and useful. Although the terminology transmutation was rooted back to alchemy which transforms the base metals into gold in the middle ages, Rutherford and Soddy were the first observers by discovering the natural transmutation as a part of radioactive decay of the alpha decay type in early 20th century. Along with the development of computing technology, analysis software, for example, CINDER was developed for rigorous atomic transmutation study. The code has a long history of development from the original work of T. England at Bettis Atomic Power Laboratory (BAPL) in the early 1960s. It has been used to calculate the inventory of nuclides in an irradiated material. CINDER'90 which is recently released involved an upgrade of the code to allow the spontaneous tracking of chains based upon the significant density or pass-by of a nuclide, where pass-by represents the density of a nuclide transforming to other nuclides. Nuclear transmutation process is governed by highly non-linear differential equation. Chaotic nature of the non-linear equation bespeaks the importance of the accurate input data (i.e. number of significant digits). Thus, reducing the human interrogation is very important for the rigorous transmutation study and 'allin- one' code structure is desired. Note that non-linear characteristic of the transmutation equation caused by the flux changes due to the number density change during a given time interval (intrinsic physical phenomena) is not considered in this study. In this study, we only emphasized the effects of human interrogation in the computing process solving nonlinear differential equations, as shown in

  16. First experiments on transmutation studies of iodine-129 and neptunium-237 using relativistic protons of 3.7 GeV

    International Nuclear Information System (INIS)

    Krivopustov, M.I.; Adam, J.; Bradnova, V.

    1997-01-01

    First experiments on the transmutation of long-lived 129 I and 237 Np using relativistic protons of 3.7 GeV are described. Relativistic protons generate in extended Pb-targets substantial neutron fluences. These neutrons get moderated in paraffin and are used for transmutation as follows: 129 (n, γ) 130 I(β - ) → 130 Xe(stable) and 237 Np(n, γ) 238 Np(β - ) →. The isotopes 130 I (T 1/2 =12.36 h) and 238 Np (T 1/2 =2.117 days) were identified radiochemically. One can estimate the transmutation cross section (n, γ) in the given neutron field as σ( 129 I(n, γ))=(10±2)b and σ( 237 Np(n, γ))=(140±30)b. The experiments were carried out in November 1996 at the Synchrophasotron, Laboratory of High Energies (LHE), Dubna, Russia

  17. Transmutation Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Song, T. Y.; Park, W. S.; Kim, Y. H. (and others)

    2007-06-15

    The spent fuel coming from the PWR is one of the most difficult problems to be solved for the continuous use of nuclear power. It takes a few million years to be safe under the ground. Therefore, it is not easy to take care of the spent fuel for such a long time. Transmutation technology is the key technology which can solve the spent fuel problem basically. Transmutation is to transmute long-lived radioactive nuclides in the spent fuel into short-lived or stable nuclide through nuclear reactions. The long-lived radioactive nuclides can be TRU and fission products such as Tc-99 and I-129. Although the transmutation technology does not make the underground disposal totally unnecessary, the period to take care of the spent fuel can be reduced to the order of a few hundred years. In addition to the environmental benefit, transmutation can be considered to recycle the energy in the spent fuel since the transmutation is performed through nuclear fission reaction of the TRU in the spent fuel. Therefore, transmutation technology is worth being developed in economical aspect. The results of this work can be a basis for the next stage research. The objective of the third stage research was to complete the core conceptual design and verification of the key technologies. The final results will contribute to the establishment of Korean back end fuel cycle policy by providing technical guidelines.

  18. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.

    2015-01-01

    Minor actinides transmutation is one of the 3 main axis defined by the 2006 French law for management of nuclear waste, along with long-term storage and use of a deep geological repository. Transmutation options for critical systems can be divided in two different approaches: (a) homogeneous transmutation, in which minor actinides are mixed with the fuel. This exhibits the drawback of 'polluting' the entire fuel cycle with minor actinides and also has an important impact on core reactivity coefficients such as Doppler Effect or sodium void worth for fast reactors when the minor actinides fraction increases above 3 to 5% depending on the core; (b) heterogeneous transmutation, in which minor actinides are inserted into transmutation targets which can be located in the center or in the periphery of the core. This presents the advantage of decoupling the management of the minor actinides from the conventional fuel and not impacting the core reactivity coefficients. In both cases, the design and analyses of potential transmutation systems have been carried out in the frame of Gen IV fast reactor using a 'perturbation' approach in which nominal power reactor parameters are modified to accommodate the loading of minor actinides. However, when designing such a transmutation strategy, parameters from all steps of the fuel cycle must be taken into account, such as spent fuel heat load, gamma or neutron sources or fabrication feasibility. Considering a multi-recycling strategy of minor actinides, an analysis of relevant estimators necessary to fully analyze a transmutation strategy has been performed in this work and a sensitivity analysis of these estimators to a broad choice of reactors and fuel cycle parameters has been carried out. No threshold or percolation effects were observed. Saturation of transmutation rate with regards to several parameters has been observed, namely the minor actinides volume fraction and the irradiation time. Estimators of interest that have been

  19. Gamma ray beam transmutation

    International Nuclear Information System (INIS)

    Imasaki, K.; Li, D.; Miyamoto, S.; Amano, S.; Motizuki, T.

    2007-01-01

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 1 97Au and 1 29Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 1 29Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  20. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Full text of publication follows: The importance of partitioning and transmutation (P and T) processes for sustaining nuclear energy growth in the world has been realised in several countries across the world. P and T processes aim at separation and recycling of actinides including minor actinides (MAs) from the spent fuel or high-level liquid waste. The objective of these processes include reuse of separated fissile materials from spent nuclear fuels to obtain energy, enhance resource utilisation, reduce the disposal of toxic radio-nuclides and improve long-term performance of geological repositories. R and D programmes have been launched in many of the Member States to develop advanced partitioning process based on either aqueous or pyro to recover MAs along with other actinides as well as automated and remote techniques for manufacturing fuels containing MAs for the purpose of transmuting them either in fast reactors or accelerator driven hybrids. A number of Member States have been also developing such transmutation systems with the aim to construct and operate demo plants and prototypes in the next decade. The International Atomic Energy Agency has a high priority for the activities on partitioning and transmutation and regularly organises conferences, workshops, seminars and technical meetings in the areas of P and T as a part of information exchange and knowledge sharing at the international level. In the recent past, the Agency organised two technical meetings on advanced partitioning processes and actinide recycle technologies with the objective of providing a common platform for the scientists and engineers working in the areas of separation of actinides along with MAs from spent nuclear fuels and manufacturing of advanced fuels containing MAs in order to bridge the technological gap between them. In 2010, the Agency concluded a Coordinated Research Project (CRP) related to Assessment of Partitioning Processes. The Agency also conducted a first CRP on

  1. Partitioning and Transmutation - Physics, Technology and Politics

    International Nuclear Information System (INIS)

    Gudowski, W.

    2002-01-01

    Nuclear reactions can be effectively used to destroy radio toxic isotopes through transmutation processes transforming those isotopes into less radio toxic or stable ones Spent nuclear fuel, a mixture of many isotopes with some of them being highly radio toxic for many hundred thousands of years, may be effectively transmuted through nuclear reactions with neutrons. In a dedicated, well designed transmutation system one can, in principle, reduce the radiotoxicity of the spent nuclear fuel to a level, which will require isolation from the biosphere for the period of time for which engineered barriers can be constructed and licensed (not more than 1-2 thousands of years). En effective transmutation process can not be achieved without a suitable partitioning. Only partitioning of the spent nuclear fuel into predetermined groups of elements makes possible an effective use of neutrons to transmute long-lived radioactive isotopes into short-lived or stable one. However, most of the chemical separation/partitioning processes are element- not isotope-specific, therefore the transmutation of the elements with an existing isotope composition is a typical alternative for transmutation processes. Isotope-specific separation is possible but still very expensive and technologically not matured

  2. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  3. Neutronics analysis of minor actinides transmutation in a fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Yang, Chao; Cao, Liangzhi; Wu, Hongchun; Zheng, Youqi; Zu, Tiejun

    2013-01-01

    Highlights: • A fusion fission hybrid system for MA transmutation is proposed. • The analysis of neutronics effects on the transmutation is performed. • The transmutation rate of MA reaches 86.5% by 25 times of recycling. -- Abstract: The minor actinides (MAs) transmutation in a fusion-driven subcritical system is analyzed in this paper. The subcritical reactor is driven by a tokamak D-T fusion device with relatively easily achieved plasma parameters and tokamak technologies. The MAs discharged from the light water reactor (LWR) are loaded in transmutation zone. Sodium is used as the coolant. The mass percentage of the reprocessed plutonium (Pu) in the fuel is raised from 0 to 48% and stepped by 12% to determine its effect on the MAs transmutation. The lesser the Pu is loaded, the larger the MAs transmutation rate is, but the smaller the energy multiplication factor is. The neutronics analysis of two loading patterns is performed and compared. The loading pattern where the mass percentage of Pu in two regions is 15% and 32.9% respectively is conducive to the improvement of the transmutation fraction within the limits of burn-up. The final transmutation fraction of MAs can reach 17.8% after five years of irradiation. The multiple recycling is investigated. The transmutation fraction of MAs can reach about 61.8% after six times of recycling, and goes up to about 86.5% after 25

  4. Transmutation potential of reactor WWER-440

    International Nuclear Information System (INIS)

    Darilek, P.; Sebian, V.; Necas, V.

    2001-01-01

    Theoretical evaluation of WWER-440 transmutation potential by HELIOS - code is presented. Transmutation method proposal comprising special transmutation pins, combined FA and simple reprocessing is described. Transmutation efficiency of the method is characterized (Authors)

  5. Waste transmutation and public acceptance

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1991-01-01

    The concept of transmuting radioactive wastes with reactors or accelerators is appealing. It has the potential of simplifying or eliminating problems of disposing of nuclear waste. The transmutation concept has been renewed vigorously at a time when national projects to dispose of high-level and transuranic waste are seriously delayed. In this period of tightening federal funds and program curtailments, skilled technical staffs are available at US Department of Energy (DOE) national laboratories and contractors to work on waste transmutation. If the claims of transmutation can be shown to be realistic, economically feasible, and capable of being implemented within the US institutional infrastructure, public acceptance of nuclear waste disposal may be enhanced. If the claims for transmutation are not substantiated, however, there will result a serious loss of credibility and an unjust exacerbation of public concerns about nuclear waste. The paper discusses the following topics: how public acceptance is achieved; the technical community and waste disposal; transmutation and technical communication; transmutation issues; technical fixes and public perception

  6. Actinides compounds for the transmutation: scientific contributions of american and japanese collaborations; Composes d'actinides pour la transmutation: apports scientifiques de collaborations americaines et japonaises

    Energy Technology Data Exchange (ETDEWEB)

    Raison, Ph.; Albiot, T

    2000-07-01

    This paper deals with the minor actinides transmutation and the scientific contribution of the ORNL and the JAERI. It presents researches on the Am-Zr-Y-O system in the framework of the heterogeneous reprocessing, the curium and pyrochlore structures, with the ORNL contribution and phase diagrams, data of Thermodynamics, actinides nitrides, with the JAERI. (A.L.B.)

  7. Concept on coupled spectrum B/T (burning and/or transmutation) reactor for treatment of minor actinides by thermal and fast neutrons

    International Nuclear Information System (INIS)

    Aziz, Ferhat; Kitamoto, Asashi

    1996-01-01

    A conceptual design of B/T (burning and/or transmutation) reactor based on a modified conventional 1150 MWe-PWR system, with core consisted of two concentric regions for thermal and fast neutrons, was proposed herein for B/T treatment of MA (minor actinides). The B/T fuel considered was supposed such that MA discharged from 1 GWe-LWR was blended homogeneously with the composition of LWR fuel. In the outer region 23- Np, 241 Am and 243 Am were loaded and burned by thermal neutron, while in the inner region 244 Cm was loaded and burned mainly by fast neutron. The geometry of B/T fuel and the fuel assembly in the outer region was left in the same condition to those of standard PWR while in the inner region the B/T fuel was arranged in the hexagonal geometry, allowed high fuel to coolant volume ratio (V m /V f ), to keep the harder neutron spectrum. Two cases of the Coupled Spectrum B/T Reactor (CSR) with different (V m 1 f ) ratio in the inner region were studied, and the results for the tight lattice with (V m /V f ) = 0.5 showed that those isotopes approached the equilibrium composition after about 5 recycle period, when the CSR was operated under the reactivity swing of 2.8 % dk/k. The evaluations on the void coefficient of reactivity, the Doppler effect and the reactivity swing showed that the CSR concept has the inherent safety and can burn and/or transmute all kind of MA in a single reactor. This CSR can burn about 808 kg of MA in one recycle period of 3 years, which is equivalent to the discharged fuel from about 12 units of LWR in a year. (author)

  8. Efficiency Of Transuranium Nuclides Transmutation

    International Nuclear Information System (INIS)

    Kazansky, Yu.A.; Klinov, D.A.; Semenov, E.V.

    2002-01-01

    One of the ways to create a wasteless nuclear power is based on transmutation of spent fuel nuclides. In particular, it is considered that the radioactivity of the nuclear power wastes should be the same (or smaller), than radioactivity of the uranium and the thorium extracted from entrails of the Earth. The problem of fission fragments transmutation efficiency was considered in article, where, in particular, the concepts of transmutation factor and the ''generalised'' index of biological hazard of the radioactive nuclides were entered. The transmutation efficiency has appeared to be a function of time and, naturally, dependent on nuclear power activity scenario, from neutron flux, absorption cross-sections of the nuclides under transmutation and on the rate of their formation in reactors. In the present paper the efficiency of the transmutation of transuranium nuclides is considered

  9. Partitioning and transmutation - Technical feasibility, proliferation resistance and safeguardability

    International Nuclear Information System (INIS)

    Schenkel, R.; Glatz, J.-P.; Magill, J.; Mayer, K.

    2001-01-01

    Full text: The advantages of partitioning and transmutation (P and T) of minor actinides and selected fission products are largely discussed and described in literature. The advantages of separation of the long-lived alpha-emitters for the long-term storage of highly radioactive waste have been highlighted. After separation, these nuclides shall be transmuted by means of a dedicated reactor or accelerator driven system into shorter-lived fission products that are less hazardous. This, however, requires the development and implementation of a P and T fuel cycle, involving chemical separation of the minor actinides and the fabrication of MA containing fuels or targets. Concepts for P and T fuel cycles have been developed and technical issues are being addressed in various research programs. With the recognition of the proliferation potential associated with the minor actinides by the IAEA, also the proliferation and safeguards aspects need to be addressed. It is important to raise these points at an early stage of process development, in order to identify potential problems and to develop appropriate solutions. The oxide fuels used worldwide in thermal reactor systems for energy production are reprocessed by aqueous techniques. Therefore these systems, primarily the PUREX process, are fully developed and implemented commercially. Furthermore, the safeguards approach is fully implemented in existing facilities, covering uranium and plutonium. Pyroprocess systems have largely been associated with fast reactors and metallic fuels and their development has therefore only reached the pilot-scale stage and the feasibility of minor actinide (MA) separation still needs to be demonstrated. Hydrometallurgical and pyrochemical reprocessing should however not be considered as competing but rather as complementary technologies. For instance in a so-called double strata concept (foreseen for instance in the Japanese OMEGA project), the PUREX process (first stratum) would be

  10. Status of nuclear transmutation study

    International Nuclear Information System (INIS)

    Takizuka, Takakazu

    1999-01-01

    JAERI is carrying out R and Ds on partitioning and transmutation under the OMEGA Program. The R and Ds include the design study of accelerator-driven transmutation systems and the development of transmutation experimental facilities. Accelerator-driven systems have received much interests due to their potential role as dedicated transmuters in the nuclear fuel cycle for minimizing long-lived waste. Principles of accelerator-driven system, its history, JAERI proposed system concepts, and the experimental program are overviewed. (author)

  11. ZZ REAC-2, Nuclide Activation and Transmutation

    International Nuclear Information System (INIS)

    Mann, F.M.

    2002-01-01

    1 - Description of program or function: Flux library: Format: special format, Number Of Groups: 63 group fluxes, Nuclides: H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po. Origin: Fred Mann (Westinghouse, Hanford). Cross Section library: Format: special format, Number Of Groups: 63 group cross section, Nuclides: H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po. Origin: Fred Mann (Westinghouse, Hanford). Decay Data library: Format: special format, Nuclides: H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po. Origin: Fred Mann (Westinghouse, Hanford). REAC2 calculates the change in composition of materials in a radiation field and related activation quantities. It is best suited to problems where many variables (e.g. materials, facilities or locations within facilities, power histories) are to be investigated. Where very accurate results are needed, the user must access the accuracy of the cross section base (e.g. source, flux weighting) as in the use of any neutronics code. REAC2 consists of three programs - SREAC, SLSTCOM, and SLIB. SREAC calculates the transmutation of nuclides in a radiation field. SLSTCOM reads the output file produced by SREAC and produces listings of

  12. Development of long-lived radionuclide transmutation technology -Development of nuclear transmutation technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Chan; Jung, Woo Tae; Koh, Duk Joon; Kim, Jung Doh; Kil, Choong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Based on the performance assessment of current reactor nuclear design codes, CASMO-3, LEOPARD, CITATION could be used for the simulation of transmutation, but further improvements are required on the reliability of cross sections of MA or FP and the accuracy of burnup model. Our simulation results based on the calculation by using CASMO-3 and NEM-3D (developed at Seoul National University) showed that transmutation efficiency for Am was high but Np and Cm elements were found to be hard to transmute. In our calculation, micro depletion calculations with burnup variation were done separately. Possibility of MA and FP transmutation with hard and fast neutrons was reported to be greater but detail calculation will be done in next year. 44 figs, 31 tabs, 17 refs. (Author).

  13. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  14. Current Status of the Transmutation Reactor Technology and Preliminary Evaluation of Transmutation Performance of the KALIMER Core

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ser Gi; Sim, Yoon Sub; Kim, Yeong Il; Kim, Young Gyum; Lee, Byung Woon; Song, Hoon; Lee, Ki Bog; Jang, Jin Wook; Lee, Dong Uk

    2005-08-15

    devised. It has been considered that the degradations of core performances resulting from increase of the transmutation rate are very important problems. From the analysis results of the state-of-art of the nuclear transmutation technology, the following technical research topics are determined as the technical solution ways for the future development and enhancement of the transmutation technology; 1) the improvement of core safety through the reduction of the coolant void reactivity worth by using the void duct assembly, 2) the design of a reference transmutation reactor for the future transmutation research through the change of the KALIMER-600 reactor core into the transmutation reactor and its core performance analysis, 3) the optimization study of the hybrid loading of uranium-free fuel and uranium fuel to improve the transmutation rate and the core safety parameters. Finally, the feasibility of the transmutation core suggested above where the void duct assemblies are devised to improve the sodium void reactivity worth and to achieve the power flattening under a single fuel enrichment and a single type of fuel assembly is analyzed and assessed. The results show that this core has its sodium coolant void reactivity less than 3$ and this core can transmutate the TRU nuclides discharged from two LWRs of the same thermal power.

  15. New stage in the design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA))

    International Nuclear Information System (INIS)

    Rojas, Leorlen Y.; Rosales, Jesus; Castro, Landy Y.; Gamez, Abel; Gonzalez, Daniel; Garcia, Carlos; Oliveira, Carlos Brayner de; Dominguez, Dany S.; Silva, Alexandro S.

    2015-01-01

    Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste transmutation and obtaining heat at very high temperatures to produce hydrogen. In this new stage in the design of TADSEA, it was proposed and modelled a new burn-up strategy, simulating a multi-pass scheme of the pebbles through the core. In order to obtain the axial density power distribution more uniform, for more realistic thermal-hydraulic calculations. In the neutronic calculations it was considered the double heterogeneity of the fuel, by means of a detailed geometry modelling. In previous thermal-hydraulic studies of the TADSEA using CFD code, the pebble-bed nuclear core was considered as a porous medium. In this paper, the heat transfer from the fuel elements to the coolant was analysed using a realistic approach in ANSYS CFX 14. The maximum heat transfer inside the spherical fuel elements with a body centered cubic (BCC) cell and the entire height of core was studied. During the steady state, critical elements don't reached the limit temperature value for this type of fuel. (author)

  16. New stage in the design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA))

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Leorlen Y.; Rosales, Jesus; Castro, Landy Y.; Gamez, Abel; Gonzalez, Daniel; Garcia, Carlos, E-mail: leored1984@gmail.com, E-mail: jrosales@instec.cu, E-mail: lcastro@instec.cu, E-mail: agamezgmf@gmail.com, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: abol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Dominguez, Dany S.; Silva, Alexandro S., E-mail: dsdominguez@gmail.com, E-mail: alexandrossilva@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste transmutation and obtaining heat at very high temperatures to produce hydrogen. In this new stage in the design of TADSEA, it was proposed and modelled a new burn-up strategy, simulating a multi-pass scheme of the pebbles through the core. In order to obtain the axial density power distribution more uniform, for more realistic thermal-hydraulic calculations. In the neutronic calculations it was considered the double heterogeneity of the fuel, by means of a detailed geometry modelling. In previous thermal-hydraulic studies of the TADSEA using CFD code, the pebble-bed nuclear core was considered as a porous medium. In this paper, the heat transfer from the fuel elements to the coolant was analysed using a realistic approach in ANSYS CFX 14. The maximum heat transfer inside the spherical fuel elements with a body centered cubic (BCC) cell and the entire height of core was studied. During the steady state, critical elements don't reached the limit temperature value for this type of fuel. (author)

  17. Physics and safety of transmutation systems. A status report

    International Nuclear Information System (INIS)

    2006-01-01

    The safe and efficient management of spent fuel from the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from currently operating reactors will require disposal. These numbers account for only high-level radioactive waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium.When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred to a thousand years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus de done in controlled environments having timescales of centuries rather than millennia stretching beyond 10 000 years. Transmutation is one of the means being explored to address the disposal of transuranic elements. To achieve this, advanced reactors systems, appropriate fuels, separation techniques and associated fuel cycle strategies are required. This status report begins by providing a clear definition of partitioning and transmutation (P and T), and then describes the state of the art concerning the challenges facing the implementation of P and T, scenario studies and specific issues related to accelerator-driven systems (ADS) dynamics and safety, long-lived fission product transmutation and the impact of nuclear data uncertainty on transmutation system design. The report will be of particular interest to nuclear scientists working on P and T issues as well as advanced fuel cycles in general. (author)

  18. Graphical representation of transmutation and decay chain data, transmutation cross section and delayed gamma ray emission data

    International Nuclear Information System (INIS)

    Seki, Yasushi; Iida, Hiromasa; Kawasaki, Hiromitsu.

    1982-09-01

    In a D-T burning fusion reactor, the neutron induced activity severely limits personnel access to the reactor. Accurate evaluation of the induced activity and dose rate is necessary to conduct effective biological shield design. In order to evaluate the dose rate accurately, considerable amount of activation data is required. This report gives graphical representation of transmutation and decay chain data, transmutation cross section data and delayed gamma ray emission data for 116 nuclides of interest in terms of fusion reactor design. This graphical representation was made with hope of producing a reference for examining activation problems. It has already been shown to be effective in correcting inappropriate data. A computer code AMOEBA developed for the checking and plotting of the activation data is also described in this report. (author)

  19. Proceedings of the Eleventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2012-01-01

    Partitioning and transmutation (P and T) is one of the key technologies for reducing the radiotoxicity and volume of radioactive waste arisings. Recent developments indicate the need for embedding P and T strategies in advanced fuel cycles considering both waste management and economic issues. In order to provide experts a forum to present and discuss state-of-the-art developments in the P and T field, the OECD/NEA has been organising biennial information exchange meetings on actinide and fission product partitioning and transmutation since 1990. The previous meetings were held in Mito (Japan) in 1990, at Argonne (United States) in 1992, in Cadarache (France) in 1994, in Mito (Japan) in 1996, in Mol (Belgium) in 1998, in Madrid (Spain) in 2000, in Jeju (Korea) in 2002, in Las Vegas (United States) in 2004, in Nimes (France) in 2006 and in Mito (Japan) in 2008. They have often been co-sponsored by the European Commission (EC) and the International Atomic Energy Agency (IAEA). The 11. Information Exchange Meeting was held in San Francisco, California, United States on 1-4 November 2010, comprising a plenary session on national P and T programmes and six technical sessions covering various fields of P and T. The meeting was hosted by the Idaho National Laboratory (INL), United States. The information exchange meetings on P and T form an integral part of NEA activities on advanced nuclear fuel cycles. The meeting covered scientific as well as strategic/policy developments in the field of P and T, such as: fuel cycle strategies and transition scenarios; radioactive waste forms; the impact of P and T on geological disposal; radioactive waste management strategies (including secondary wastes); transmutation fuels and targets; pyro and aqueous separation processes; materials, spallation targets and coolants; transmutation physics, experiments and nuclear data; transmutation systems (design, performance and safety); handling and transportation of transmutation fuels; and

  20. Actinides compounds for the transmutation: scientific contributions of american and japanese collaborations

    International Nuclear Information System (INIS)

    Raison, Ph.; Albiot, T.

    2000-01-01

    This paper deals with the minor actinides transmutation and the scientific contribution of the ORNL and the JAERI. It presents researches on the Am-Zr-Y-O system in the framework of the heterogeneous reprocessing, the curium and pyrochlore structures, with the ORNL contribution and phase diagrams, data of Thermodynamics, actinides nitrides, with the JAERI. (A.L.B.)

  1. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  2. Partitioning and transmutation. Current developments - 2004. A report from the Swedish reference group on P and T-research

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstroem, Per-Eric [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Andersson, Sofie; Ekberg, Christian; Liljenzin, Jan-Olov; Nilsson, Mikael; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden); Blomgren, Jan [Uppsala Univ. (Sweden). Dept. of Neutron Research; Eriksson, Marcus; Gudowski, Waclaw; Seltborg, Per; Wallenius, Jan; Sehgal, Bal Raj [Royal Inst. of Technology, Stockholm (Sweden)

    2004-05-01

    This report summarises the work reported in the years 1998-2003 and tries to assess the prospects for future development of partitioning and transmutation (P-T) as seen from a Swedish perspective. The R and D efforts on P-T have increased somewhat during the period 1998-2003. Research on P-T has taken a prominent role internationally in the R and D on future nuclear power and nuclear fuel cycle systems. Despite the fact that partitioning and transmutation have been on the agenda for quite a few years there are still a number of issues that must be settled before the research and development can be given a clearly focused direction. Studies propose research programmes for about six years at the cost of a couple of hundred million Euros. The construction of a small ADS experimental plant is a necessary step to develop and demonstrate the concept. This experimental plant should then be followed by a demonstration plant in almost full scale. Such a plant can at the earliest be ready in the mid-2030s. A number of circumstances have, however, contributed to slower speed, less intensity and lower funding than proposed in the studies. There is no unanimous view on the objectives for partitioning and transmutation. Many see it as a way to achieve broad acceptance for nuclear power at large. Others promote it as a way to get out of the impasse for a deep repository in several countries. Others again put a strong emphasise on the proliferation aspects. There is no unanimous view on the need to develop ADS or for the role of ADS in a P-T-system. Some advocate that ADS should be used for burning of all transuranium nuclides from the present enriched uranium fuelled light water reactors. Others see the ADS as a supplement particularly suitable for burning minor actinides (americium, curium and neptunium), whereas the major part of the plutonium should be burned in light water reactors (or in fast reactors) There is no consensus among experts on which technical route to follow

  3. Partitioning and transmutation. Current developments - 2004. A report from the Swedish reference group on P and T-research

    International Nuclear Information System (INIS)

    Ahlstroem, Per-Eric; Andersson, Sofie; Ekberg, Christian; Liljenzin, Jan-Olov; Nilsson, Mikael; Skarnemark, Gunnar; Blomgren, Jan

    2004-05-01

    This report summarises the work reported in the years 1998-2003 and tries to assess the prospects for future development of partitioning and transmutation (P-T) as seen from a Swedish perspective. The R and D efforts on P-T have increased somewhat during the period 1998-2003. Research on P-T has taken a prominent role internationally in the R and D on future nuclear power and nuclear fuel cycle systems. Despite the fact that partitioning and transmutation have been on the agenda for quite a few years there are still a number of issues that must be settled before the research and development can be given a clearly focused direction. Studies propose research programmes for about six years at the cost of a couple of hundred million Euros. The construction of a small ADS experimental plant is a necessary step to develop and demonstrate the concept. This experimental plant should then be followed by a demonstration plant in almost full scale. Such a plant can at the earliest be ready in the mid-2030s. A number of circumstances have, however, contributed to slower speed, less intensity and lower funding than proposed in the studies. There is no unanimous view on the objectives for partitioning and transmutation. Many see it as a way to achieve broad acceptance for nuclear power at large. Others promote it as a way to get out of the impasse for a deep repository in several countries. Others again put a strong emphasise on the proliferation aspects. There is no unanimous view on the need to develop ADS or for the role of ADS in a P-T-system. Some advocate that ADS should be used for burning of all transuranium nuclides from the present enriched uranium fuelled light water reactors. Others see the ADS as a supplement particularly suitable for burning minor actinides (americium, curium and neptunium), whereas the major part of the plutonium should be burned in light water reactors (or in fast reactors) There is no consensus among experts on which technical route to follow

  4. The transmutation of americium: the Ecrix experiments in Phenix; Transmutation de l'americium: les experiences ecrix dans Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J C; Schmidt, N [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SESC), 13 - Saint-Paul-lez-Durance (France); Croixmarie, Y; Ottaviani, J P [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SPUA), 13 - Saint-Paul-lez-Durance (France); Varaine, F; Saint Jean, C de [CEA Cadarache, Dept. d' Etudes des Reacteurs (DER/SPRC), 13 - Saint-Paul-lez-Durance (France)

    1999-07-01

    The first americium transmutation experiment in a specific target in PHENIX will occur with the ECRIX-B and ECRIX-H experiments. Beside material testing, the objective is also to represent a concept of transmutation whose specificity is to enhance the kinetics of transmutation by using a moderated spectrum. The moderator materials will be {sup 11}B{sub 4}C and CaH{sub 2} for ECRIX-B and ECRIXH respectively, the irradiation conditions have been predicted for both the neutronics and thermal. The targets (MgO-AmO{sub X} pellets) are manufactured in the ATALANTE laboratory and the design is performed according to the PHENIX operating conditions. (authors)

  5. Neutron-transmuted carbon-14 in neutron-irradiated GaN: Compensation of DX-like center

    International Nuclear Information System (INIS)

    Ida, T.; Oga, T.; Kuriyama, K.; Kushida, K.; Xu, Q.; Fukutani, S.

    2013-01-01

    The transmuted-C related luminescence and net carrier concentration are studied by combining photoluminescence, liquid scintillation, and Raman scattering. GaN single crystal films grown by metalorganic-vapor-phase epitaxy are irradiated with fast and thermal neutrons at fluxes of 3.9 × 10 13 cm −2 s −1 and 8.15 × 10 13 cm −2 s −1 , respectively. Irradiation time is 48 hours. The calculated 72 Ge and 14 C concentrations are 1.24 × 10 18 cm −3 and 1.13 × 10 18 cm −3 , respectively. The transmuted 14 C is detected by the liquid scintillation method to survey β-rays emitted in the process of 14 C decays from 14 N. Tritium ( 3 H) is also emitted by a (n,t) reaction of 14 N due to the neutron irradiation above 4.5 MeV. Photoluminescence relating to C, DX-like center of Ge and yellow luminescence band are observed in 1000 °C annealed NTD-GaN. The free electron concentration estimated from Raman scattering is 4.97 × 10 17 cm −3 . This value is lower than that from the transmuted Ge concentration, suggesting the compensation due to the transmuted 14 C acceptors

  6. Actinide partitioning-transmutation program final report. IV. Miscellaneous aspects

    International Nuclear Information System (INIS)

    Alexander, C.W.; Croff, A.G.

    1980-09-01

    This report discusses seven aspects of actinide partitioning-transmutation (P-T) which are important in any complete evaluation of this waste treatment option but which do not fall within other major topical areas concerning P-T. The so-called miscellaneous aspects considered are (1) the conceptual design of a shipping cask for highly neutron-active fresh and spent P-T fuels, (2) the possible impacts of P-T on mixed-oxide fuel fabrication, (3) alternatives for handling the existing and to-be-produced spent fuel and/or wastes until implementation of P-T, (4) the decay and dose characteristics of P-T and standard reactor fuels, (5) the implications of P-T on currently existing nuclear policy in the United States, (6) the summary costs of P-T, and (7) methods for comparing the risks, costs, and benefits of P-T

  7. Transmutation of radioactive wastes: how and why?

    International Nuclear Information System (INIS)

    Patarin, L.

    2004-01-01

    After having evoked the natural or spontaneous transmutation of natural or artificial radioactive atoms, the author describes how this transmutation is technically obtained, indicates the two main families of atoms present in a used nuclear fuel and for which transmutation is to be investigated (long-lived fission residues or products, and transuranium elements) and of which the behaviour in neutron fluxes must be explored. He discusses the industrial means required for artificial transmutation. He discusses the interest of performing such a transmutation

  8. Nuclear transmutation by flux compression

    International Nuclear Information System (INIS)

    Seifritz, W.

    2001-01-01

    A new idea for the transmutation of minor actinides, long (and even short) lived fission products is presented. It is based an the property of neutron flux compression in nuclear (fast and/or thermal) reactors possessing spatially non-stationary critical masses. An advantage factor for the burn-up fluence of the elements to be transmuted in the order of magnitude of 100 and more is obtainable compared with the classical way of transmutation. Three typical examples of such transmuters (a subcritical ringreactor with a rotating reflector, a sub-critical ring reactor with a rotating spallation source, the socalled ''pulsed energy amplifier'', and a fast burn-wave reactor) are presented and analysed with regard to this purpose. (orig.) [de

  9. The transmutation of americium: the Ecrix experiments in Phenix; Transmutation de l'americium: les experiences ecrix dans Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J.C.; Schmidt, N. [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SESC), 13 - Saint-Paul-lez-Durance (France); Croixmarie, Y.; Ottaviani, J.P. [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SPUA), 13 - Saint-Paul-lez-Durance (France); Varaine, F.; Saint Jean, C. de [CEA Cadarache, Dept. d' Etudes des Reacteurs (DER/SPRC), 13 - Saint-Paul-lez-Durance (France)

    1999-07-01

    The first americium transmutation experiment in a specific target in PHENIX will occur with the ECRIX-B and ECRIX-H experiments. Beside material testing, the objective is also to represent a concept of transmutation whose specificity is to enhance the kinetics of transmutation by using a moderated spectrum. The moderator materials will be {sup 11}B{sub 4}C and CaH{sub 2} for ECRIX-B and ECRIXH respectively, the irradiation conditions have been predicted for both the neutronics and thermal. The targets (MgO-AmO{sub X} pellets) are manufactured in the ATALANTE laboratory and the design is performed according to the PHENIX operating conditions. (authors)

  10. T2-weighted images are superior to other MR image types for the determination of diffuse intrinsic pontine glioma intratumoral heterogeneity.

    Science.gov (United States)

    Harward, Stephen; Harrison Farber, S; Malinzak, Michael; Becher, Oren; Thompson, Eric M

    2018-03-01

    Diffuse intrinsic pontine glioma (DIPG) remains the main cause of death in children with brain tumors. Given the inefficacy of numerous peripherally delivered agents to treat DIPG, convection enhanced delivery (CED) of therapeutic agents is a promising treatment modality. The purpose of this study was to determine which MR imaging type provides the best discrimination of intratumoral heterogeneity to guide future stereotactic implantation of CED catheters into the most cellular tumor regions. Patients ages 18 years or younger with a diagnosis of DIPG from 2000 to 2015 were included. Radiographic heterogeneity index (HI) of the tumor was calculated by measuring the standard deviation of signal intensity of the tumor (SD Tumor ) normalized to the genu of the corpus callosum (SD Corpus Callosum ). Four MR image types (T2-weighted, contrast-enhanced T1-weighted, FLAIR, and ADC) were analyzed at several time points both before and after radiotherapy and chemotherapy. HI values across these MR image types were compared and correlated with patient survival. MR images from 18 patients with DIPG were evaluated. The mean survival ± standard deviation was 13.8 ± 13.7 months. T2-weighted images had the highest HI (mean ± SD, 5.1 ± 2.5) followed by contrast-enhanced T1-weighted images (3.7 ± 1.5), FLAIR images (3.0 ± 1.1), and ADC maps (1.6 ± 0.4). ANOVA demonstrated that HI values were significantly higher for T2-weighted images than FLAIR (p image HI values increased, while FLAIR and ADC HI values decreased. Univariate and multivariate analyses did not reveal a relationship between HI values and patient survival (p > 0.05). For children with DIPG, T2-weighted MRI demonstrates the greatest signal intensity variance suggesting tumor heterogeneity. Within this heterogeneity, T2-weighted signal hypointensity is known to correlate with increased cellularity and thus may represent a putative target for CED catheter placement in future clinical

  11. An assessment of partition and transmutation against UK requirements for radioactive waste management: supporting studies

    International Nuclear Information System (INIS)

    Cummings, R.; Crookshanks, C.E.; McAdams, R.; Rogers, J.M.; Sims, H.E.; Smith-Briggs, J.L.

    1996-06-01

    A study of partition and transmutation (P and T) has recently been reported: An Assessment of Partition and Transmutation Against UK Requirements for Radioactive Waste Management (DOE/RAS/96.007). The prospects were assessed for real safety or financial gains being made through the future use of partition and transmutation within the United Kingdom in radioactive waste management. The assessment was made by AEA Technology, on behalf of the Department of the Environment. The assessment was partly based on the results of a number of studies described here. (Author)

  12. Waste transmutation: perspectives

    International Nuclear Information System (INIS)

    Leray, S.

    1997-01-01

    After the introduction on the source and nature of nuclear waste, this lecture analyzes the different methods proposed to transmute long-lived isotopes into stable or short-lived isotopes. It is shown that direct methods (photonuclear reactions, spallation, muon catalyzed fusion) do not lead to a sufficient transmutation rate within a reasonable cost. Only the use of hybrid systems, fusion-fission or spallation-fission, can be foreseen. (author)

  13. The irradiation test program for transmutation in the French Phenix fast reactor

    International Nuclear Information System (INIS)

    Guidez, J.; Chaucheprat, P.; Fontaine, B.; Brunon, E.

    2004-01-01

    Put on commercial operation in July 1974, the French fast reactor Phenix reached a 100 000 hours operation time in september 2003. When the French law relative to long lived radioactive waste management was promulgated on December 1991, priority was given to Phenix to be run as a research reactor and to carry on a wide irradiation program dedicated to study transmutation of minor actinides and long-lived fission products. After a major renovation program required to extend the reactor lifetime, Phenix power buildup took place in 2003. Experimental irradiations have been loaded in the core, involving components for heterogeneous and homogeneous transmutation modes, americium targets, technetium 99 metal pins and isolated isotopes for integral cross-sections measurements. Associated post- irradiated examination programs are already underway or planned. With new experiments to be loaded in the core in 2006 the Phenix reactor remains to be a powerful tool providing an important experimental data on fast reactors and on transmutation of minor actinides and long-lived fission products, as well as it will contribute to gain further experience in the framework of the GENERATION IV International Forum. (authors)

  14. TRANSMUTED EXPONENTIATED EXPONENTIAL DISTRIBUTION

    OpenAIRE

    MEROVCI, FATON

    2013-01-01

    In this article, we generalize the exponentiated exponential distribution using the quadratic rank transmutation map studied by Shaw etal. [6] to develop a transmuted exponentiated exponential distribution. Theproperties of this distribution are derived and the estimation of the model parameters is discussed. An application to real data set are finally presented forillustration

  15. Transmutation of fission products through accelerator

    International Nuclear Information System (INIS)

    Nakamura, H.; Tani, S.; Takahashi, T.; Yamamura, O.

    1995-01-01

    The transmutation of fission products through particle accelerators has been studied under the OMEGA program. The photonuclear reaction has also been investigated to be applied to transmuting long-lived fission products, such as Cesium and Strontium, which have difficulties on reaction with neutrons due to its so small cross section. It is applicable for the transmutation if the energy balance can be improved with a monochromatic gamma rays in the range of the Giant Dipole Resonance generated through an excellent high current electron linear accelerator. The feasibility studies are being conducted on the transmutation system using it through an electron accelerator. (authors)

  16. Preliminary analyses of neutronics schemes for three kinds waste transmutation blankets of fusion-fission hybrid

    International Nuclear Information System (INIS)

    Zhang Mingchun; Feng Kaiming; Li Zaixin; Zhao Fengchao

    2012-01-01

    The neutronics schemes of the helium-cooled waste transmutation blanket, sodium-cooled waste transmutation blanket and FLiBe-cooled waste transmutation blanket were preliminarily calculated and analysed by using the spheroidal tokamak (ST) plasma configuration. The neutronics properties of these blankets' were compared and analyzed. The results show that for the transmutation of "2"3"7Np, FLiBe-cooled waste transmutation blanket has the most superior transmutation performance. The calculation results of the helium-cooled waste transmutation blanket show that this transmutation blanket can run on a steady effective multiplication factor (k_e_f_f), steady power (P), and steady tritium production rate (TBR) state for a long operating time (9.62 years) by change "2"3"7Np's initial loading rate of the minor actinides (MA). (authors)

  17. 4th Neutron Transmutation Doping Conference

    CERN Document Server

    1984-01-01

    viii The growing use of NTD silicon outside the U. S. A. motivated an interest in having the next NTD conference in Europe. Therefore, the Third International Conference on Neutron Transmutation-Doped Silicon was organized by Jens Guldberg and held in Copenhagen, Denmark on August 27-29, 1980. The papers presented at this conference reviewed the developments which occurred during the t'A'O years since the previous conference and included papers on irradiation technology, radiation-induced defects, characteriza­ tion of NTD silicon, and the use of NTD silicon for device appli­ cations. The proceedings of this conference were edited by Jens Guldberg and published by Plenum Press in 1981. Interest in, and commercial use of, NTD silicon continued to grow after the Third NTD Conference, and research into neutron trans­ mutation doping of nonsilicon semiconductors had begun to accel­ erate. The Fourth International Transmutation Doping Conference reported in this volume includes invited papers summarizing the p...

  18. Specific contributions of the Dutch progamme ''RAS'' towards accelerator-based transmutation

    International Nuclear Information System (INIS)

    Abrahams, K.; Franken, W.M.P.; Bultman, J.H.; Heil, J.A.; Koning, A.J.

    1994-09-01

    Accelerator-based transmutation is being studied by ECN within its general nuclear waste transmutation programme RAS. In this paper the following contributions are presented: (1) Evaluation of cross sections at intermediate energies, within an international frame given by NEA, (2) Cell calculations on the equilibration of transuranium actinides in thermal molten-salt transmuters, (3) Irradiation facilities at the European research reactor HFR in Petten, which have been constructed with the purpose to demonstrate and investigate the transmutation of waste in a high neutron flux, (4) Studies of accelerator-based neutron generating systems to transmute neptunium and technetium, (5) Comparison of several systems on the basis of criteria for successful nuclear waste-management. (orig.)

  19. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  20. Study on the LLFPs transmutation in a super-critical water-cooled fast reactor

    International Nuclear Information System (INIS)

    Lu Haoliang; Ishiwatari, Yuki; Oka, Yoshiaki

    2011-01-01

    Research highlights: → Transmutation of LLFPs with a super-criticial water cooled fast reactor. → Transmutation of iodine and cesium without the isotopic separation. → The transmuted isotope was mixed with UO 2 to reduce the effect of self-shielding. → A weak neutron moderator Al 2 O 3 was used to suppress the creation of 135 Cs from 133 Cs. - Abstract: The performance of the super-critical water-cooled fast reactor (Super FR) for the transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with the soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super FR. First region is in the blanket assembly due to the ZrH 1.7 layer which was utilized to slow down the fast neutrons to achieve a negative void reactivity. Second region is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected in the transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR or fast reactor. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered to avoid the separation. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe year and 2.79%/GWe year can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the yields from 11.8 and 6.2 1000 MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000 MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained in the Super FR. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super FR. It turns out that the

  1. Transmutation of sup 2 sup 0 sup 4 Pb in an intensive gamma-ray flux

    CERN Document Server

    Ishkhanov, B S

    2001-01-01

    Transmutation chain formation during irradiation with various intensities of bremsstrahlung photon beam is analysed. The main features of transmutation chain formation by photons with energies corresponding to the giant dipole resonance are discussed.

  2. Nuclear Waste Separation and Transmutation Research with Special Focus on Russian Transmutation Projects Sponsored by ISTC

    International Nuclear Information System (INIS)

    Conde, Henri; Blomgren, Jan; Olsson, Nils

    2003-03-01

    High-level nuclear reactor waste is made up of relatively few long-lived radioactive species, among them plutonium, that contribute to difficulties with its storage and disposal. Separation of these species from larger waste volumes mainly constituting of uranium (about 95 %) coupled with nuclear incineration to fission products of plutonium and the so called minor actinides (Neptunium, Americium, and Curium) and transmutation of some of the long lived fission products to short lived or stable isotopes represents a viable nuclear waste management strategy to drastically reduce the time and space requirements for a bed-rock repository of the remaining waste. A remarkable increase in the international research and development on partitioning and transmutation has occurred during the recent years. The road-map report published in April 2001 by The European Technical Working Group on ADS for the development of a European demonstration facility for nuclear waste transmutation has high-lighted the ongoing European research and pointed out the need for further research. The road-map has given the different research activities a position in the ultimate goal of producing an ADS demonstrator and is guiding research planning on the national as well as on the EU level. The Advanced Accelerator Application (3A) program in the US, with the long term goals to enhance long term public safety, provide benefits for the repository, reduce proliferation risks and improve prospects for nuclear power has focused the research on nuclear waste transmutation. The reports on the 3A program indicates a change of the US former abandonment position towards reprocessing and fast reactors due to a strong incentive to eliminate the reactor plutonium and to lower the amount of high level reactor waste for the Yucca Mountain repository. The SKB's proposed research and development program for the next 3 years (FUD01) was presented by SKB in September 2001. It is proposed that the research program

  3. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    International Nuclear Information System (INIS)

    Washington, J.; King, J.; Shayer, Z.

    2017-01-01

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO_2, Pu_3Si_2, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO_2) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO_2), Pu_0_._3_1ZrH_1_._6Th_1_._0_8, and PuZrO_2MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B_4C, CdO, Dy_2O_3, Er_2O_3, Eu_2O_3, Gd_2O_3, HfO_2, In_2O_3, Lu_2O_3, Sm_2O_3, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO_2MgO (8 wt% Pu) target fuel with a coating of Lu_2O_3 resulted in the highest rate of plutonium transmutation with the greatest reduction in curium

  4. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Shayer, Z., E-mail: zshayer@mines.edu [Department of Physics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2017-03-15

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO{sub 2}, Pu{sub 3}Si{sub 2}, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO{sub 2}) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO{sub 2}), Pu{sub 0.31}ZrH{sub 1.6}Th{sub 1.08}, and PuZrO{sub 2}MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B{sub 4}C, CdO, Dy{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, HfO{sub 2}, In{sub 2}O{sub 3}, Lu{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO{sub 2}MgO (8 wt% Pu) target

  5. Transmutations for Strings

    Directory of Open Access Journals (Sweden)

    Amin Boumenir

    2008-07-01

    Full Text Available We investigate the existence and representation of transmutations, also known as transformation operators, for strings. Using measure theory and functional analytic methods we prove their existence and study their representation. We show that in general they are not close to unity since their representation does not involve a Volterra operator but rather the eigenvalue parameter. We also obtain conditions under which the transmutation is either a bounded or a compact operator. Explicit examples show that they cannot be reduced to Volterra type operators.  

  6. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Gerasimov, A.; Kiselev, G.; Myrtsymova, L.

    2001-01-01

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  7. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer.

    Science.gov (United States)

    Henderson, Shelley; Purdie, Colin; Michie, Caroline; Evans, Andrew; Lerski, Richard; Johnston, Marilyn; Vinnicombe, Sarah; Thompson, Alastair M

    2017-11-01

    To investigate whether interim changes in hetereogeneity (measured using entropy features) on MRI were associated with pathological residual cancer burden (RCB) at final surgery in patients receiving neoadjuvant chemotherapy (NAC) for primary breast cancer. This was a retrospective study of 88 consenting women (age: 30-79 years). Scanning was performed on a 3.0 T MRI scanner prior to NAC (baseline) and after 2-3 cycles of treatment (interim). Entropy was derived from the grey-level co-occurrence matrix, on slice-matched baseline/interim T2-weighted images. Response, assessed using RCB score on surgically resected specimens, was compared statistically with entropy/heterogeneity changes and ROC analysis performed. Association of pCR within each tumour immunophenotype was evaluated. Mean entropy percent differences between examinations, by response category, were: pCR: 32.8%, RCB-I: 10.5%, RCB-II: 9.7% and RCB-III: 3.0%. Association of ultimate pCR with coarse entropy changes between baseline/interim MRI across all lesions yielded 85.2% accuracy (area under ROC curve: 0.845). Excellent sensitivity/specificity was obtained for pCR prediction within each immunophenotype: ER+: 100%/100%; HER2+: 83.3%/95.7%, TNBC: 87.5%/80.0%. Lesion T2 heterogeneity changes are associated with response to NAC using RCB scores, particularly for pCR, and can be useful across all immunophenotypes with good diagnostic accuracy. • Texture analysis provides a means of measuring lesion heterogeneity on MRI images. • Heterogeneity changes between baseline/interim MRI can be linked with ultimate pathological response. • Heterogeneity changes give good diagnostic accuracy of pCR response across all immunophenotypes. • Percentage reduction in heterogeneity is associated with pCR with good accuracy and NPV.

  8. Partitioning and transmutation. Annual Report 2001

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G.

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents

  9. Concept of a subcritical transmutation system with fast neutron spectrum and liquid fuel

    International Nuclear Information System (INIS)

    Tittelbach, S.

    2002-11-01

    The annual amount of nearly 9500 t of spent fuel from worldwide industrial nuclear energy utilization has to be disposed as high level waste. The retention of nuclear waste from the biosphere has to be assured until the radiological risk decreases to tolerable levels. The long-term radiological risk of spent fuel is dominated by actinide elements, i.e. plutonium, americium and curium. It is intended to reduce this amount of high level waste by Partitioning and Transmutation, so that the radiotoxicity of the disposed waste falls short of the reference value of fresh fuel decaying naturally after about thousand years. For this time period the retention of high level waste can be assured by technical means. The scope of this work is the design of a subcritical fast transmutation system with liquid metal cooling and liquid metal fuel. The lead bismuth eutectic has been choosen as the liquid metal coolant and fuel carrier. To dissolve at least 3 at% of transuran elements, a minimum fuel temperature of 600 C is required. The calculations were carried out with a fuel composition, which results from two plutonium recycling steps in a thorium fuel cycle. Two homogeneous and two heterogeneous blankets have been designed and evaluated leading to one preferred heterogeneous blanket design, which has been investigated in more detail. This blanket design merges the positive properties of a solid fuel system (better control of fuel and reactivity because of smaller and closed fuel volumina) and a liquid fuel system (continous charge and discharge or extraction of fission products). The blanket design is based on the core design of fast breeder liquid metal reactors. It consists of hexagonal fuel elements housing up to six annular shaped fuel cylinders. The hexagonal shape of the fuel elements leads to three fuel zones positioned concentrically around the central spallation target. There is a strong heterogeneous distribution of power and heat flux in this blanket design. Besides

  10. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  11. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and Challenges

    International Nuclear Information System (INIS)

    Salvatores, M.; Palmiotti, G.

    2011-01-01

    In the last decades, numerous studies have been performed in order to identify appropriate 'Partitioning and Transmutation' (P and T) strategies, aiming to the reduction of the burden on a geological storage (see, among many others, Salvatores, 2005). P and T strategies are very powerful and unique tools to reduce drastically the radiotoxicity level of the wastes and to reduce the time needed to reach the reference level (from ∼100,000 years to few hundred years, i.e. comparable to the period in which technological and engineering means allow reasonably to control the radioactivity confinement). Moreover, P and T allows, in principle, also the reduction of the residual heat in a geological repository, with a potential significant impact on the repository size and characteristics. The first requirement of P and T strategies is the deployment of spent fuel reprocessing techniques (aqueous or dry), which are both in the continuity of today technologies (e.g. as implemented at La Hague in France, where Pu is separated up to 99.9%) or which represent innovative, adapted approaches (e.g. pyrochemistry). The requirement is to extend the performance of Pu separation to 99.9% also to Np, Am and Cm kept together or separated and in any case decontaminated from the lanthanides as much as possible. The separated TRU should then be 'transmuted' (or 'burned') in a neutron field. The essential mechanism is to fission them, transforming them into much shorter lived or stable fission products. However, the fission process is always in competition with other processes, and, in particular, with neutron capture, which does eliminate isotope A, but transforms it into isotope A+1, which can still be radioactive. Isotope A+1 can in turn be fissioned or transmuted into isotope A+2, and so on. The neutron field has to be provided by a fission reactor. The requirement for this (dedicated) reactor is to be able to privilege the fission process with respect to the capture process and to be

  12. Decay and Transmutation of Nuclides

    CERN Document Server

    Aarnio, Pertti A

    1999-01-01

    We present a computer code DeTra which solves analytically the Bateman equations governing the decay, build-up and transmutation of radionuclides. The complexity of the chains and the number of nuclides are not limited. The nuclide production terms considered include transmutation of the nuclides inside the chain, external production, and fission. Time dependent calculations are possible since all the production terms can be re-defined for each irradiation step. The number of irradiation steps and output times is unlimited. DeTra is thus able to solve any decay and transmutation problem as long as the nuclear data i.e. decay data and production rates, or cross sections, are known.

  13. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Cordfunke, E H.P.; Gruppelaar, H; Franken, W M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on `Recycling and Transmutation of Actinides and Fission Products` over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.).

  14. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Gruppelaar, H.; Franken, W.M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.)

  15. Electron trap annealing in neutron transmutation doped silicon

    DEFF Research Database (Denmark)

    Guldberg, J.

    1977-01-01

    Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five of these anne......Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five...

  16. Transmutation performance analysis on coolant options in a hybrid reactor system design for high level waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong-Hee; Siddique, Muhammad Tariq; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2015-11-15

    Highlights: • Waste transmutation performance was compared and analyzed for seven different coolant options. • Reactions of fission and capture showed big differences depending on coolant options. • Moderation effect significantly affects on energy multiplication, tritium breeding and waste transmutation. • Reduction of radio-toxicities of TRUs showed different trend to coolant choice from performance of waste transmutation. - Abstract: A fusion–fission hybrid reactor (FFHR) is one of the most attractive candidates for high level waste transmutation. The selection of coolant affects the transmutation performance of a FFHR. LiPb coolant, as a conventional coolant for a FFHR, has problems such as reduction in neutron economic and magneto-hydro dynamics (MHD) pressure drop. Therefore, in this work, transmutation performance is evaluated and compared for various coolant options such as LiPb, H{sub 2}O, D{sub 2}O, Na, PbBi, LiF-BeF{sub 2} and NaF-BeF{sub 2} applicable to a hybrid reactor for waste transmutation (Hyb-WT). Design parameters measuring performance of a hybrid reactor were evaluated by MCNPX. They are k{sub eff}, energy multiplication factor, neutron absorption ratio, tritium breeding ratio, waste transmutation ratio, support ratio and radiotoxicity reduction. Compared to LiPb, H{sub 2}O and D{sub 2}O are not suitable for waste transmutation because of neutron moderation effect. Waste transmutation performances with Na and PbBi are similar to each other and not different much from LiPb. Even though molten salt such as LiF-BeF{sub 2} and NaF-BeF{sub 2} is good for avoiding MHD pressure drop problem, waste transmutation performance is dropped compared with LiPb.

  17. A conceptual study of actinide transmutation system with proton accelerator, (2)

    International Nuclear Information System (INIS)

    Takizuka, T.; Takada, H.; Kanno, I.; Ogawa, T.; Nishida, T.; Kaneko, Y.

    1990-01-01

    This paper describes the thermal hydraulics of the accelerator-driven actinide incineration target system based on power distribution profiles to assess the maximum attainable power. In the case of Na cooling, the reference target operates at a thermal power of 404 MW and a beam current of 18.2 mA. The system transmutes 114 kg actinides per year, which implies that the annual actinide products from about 4.3 units of 3000 MWt pressurized water reactor (PWR) can be incinerated. The Pb-Bi cooled reference target operates at a thermal power of 163 MW and beam current of 5.4 mA. The system transmutes 42 kg actinides annually, and can serve about 1.8 units of PWR. The maximum thermal power can be increased by a factor of about 2 by introducing tungsten pins in the high flux region to flatten the power distribution. The Na cooled tungsten-loaded target operates at a thermal power of 691 MW and beam current of 22.6 mA. The system can serve about 7.6 PWRs. The tungsten-loaded target cooled by Pb-Bi operates at a thermal power of 343 MW at a 9.8 mA beam current. The system can process the actinide from about 3.8 PWRs. (N.K.)

  18. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  19. Transmutation of radioactive waste with the help of relativistic heavy ions

    International Nuclear Information System (INIS)

    Brandt, R.; Wan, J.S.; Ochs, M.

    1997-01-01

    A series of experiments was carried out at the Synchrophasotron, LHE, JINR, Dubna, using 3.67 GeV protons and 18 GeV 12 C ion beams. Two massive lead and uranium targets surrounded by paraffin moderator were irradiated. The outer surface of the moderator was some small U- and La-sensors, to be studied by radiochemistry activation techniques, and also by solid-state nuclear track detectors. Both experimental techniques independently give approximately 28 low energy neutrons on the outer surface of the moderator per 3.67 GeV proton hitting the Pb-target. Theoretical estimations based on LAHET and DCM/CEM computer codes give considerably smaller fluences: approximately 7-9 low energy neutrons ( 129 I(T 1/2 =2.4 days), could be identified radiochemically as well as other spallation products. The transmutation rates are substantial: a 10 mA accelerator of 3.67 GeV protons could transmute at least 30% of 237 Np and 1% of 129 I per month under the given geometrical conditions

  20. The transmutation of americium: the Ecrix experiments in Phenix

    International Nuclear Information System (INIS)

    Garnier, J.C.; Schmidt, N.; Croixmarie, Y.; Ottaviani, J.P.; Varaine, F.; Saint Jean, C. de

    1999-01-01

    The first americium transmutation experiment in a specific target in PHENIX will occur with the ECRIX-B and ECRIX-H experiments. Beside material testing, the objective is also to represent a concept of transmutation whose specificity is to enhance the kinetics of transmutation by using a moderated spectrum. The moderator materials will be 11 B 4 C and CaH 2 for ECRIX-B and ECRIXH respectively, the irradiation conditions have been predicted for both the neutronics and thermal. The targets (MgO-AmO X pellets) are manufactured in the ATALANTE laboratory and the design is performed according to the PHENIX operating conditions. (authors)

  1. Partitioning and transmutation (P and D) 1995. A review of the current state of the art

    International Nuclear Information System (INIS)

    Skaalberg, M.; Landgren, A.; Spjuth, L.; Liljenzin, J.O.; Gudowski, W.

    1995-12-01

    The recent development in the field of partitioning and transmutation (P/T) is reviewed and evaluated. Current national and international R and D efforts are summarized. Nuclear transmutation with energy production is feasible in nuclear reactors where fast and thermal breeders are the most efficient for transmutation purposes. The operation of subcritical nuclear reactors by high current proton accelerators that generate neutrons in a spallation target is also an interesting option for transmutation and energy production, that has to be more carefully evaluated. These accelerator-driven systems are probably the only solution for the transmutation of long-lived fission products with small neutron capture cross sections and actinide isotopes with small fission cross sections. The requirements on the separation chemistry in the partitioning process depends on the transmutation strategy chosen. Recent developments in aqueous based separation chemistry opens some interesting possibilities to meet some of the requirements, such as separation of different actinides and some fission products and reduction of secondary waste streams. In the advanced accelerator-driven transmutation systems proposed, liquid fuels such as molten salts are considered. The partitioning processes that can be used for these types of fuel will, however, require a long term research program. The possibility to use centrifuge separation is an interesting partitioning option that recently has been proposed. 51 refs, 7 figs, 3 tabs

  2. Transmutation of minor actinides in a spherical torus tokamak fusion reactor, FDTR

    International Nuclear Information System (INIS)

    Feng, K.M.; Zhang, G.S.; Deng, M.G.

    2003-01-01

    In this paper, a concept for the transmutation of minor actinide (MA) nuclear wastes based on a spherical torus (ST) tokamak reactor, FDTR, is put forward. A set of plasma parameters suitable for the transmutation blanket was chosen. The 2-D neutron transport code TWODANT, the 3-D Monte Carlo code MCNP/4B, the 1-D neutron transport and burn-up calculation code BISON3.0 and their associated data libraries were used to calculate the transmutation rate, the energy multiplication factor and the tritium breeding ratio of the transmutation blanket. The calculation results for the system parameters and the actinide series isotopes for different operation times are presented. The engineering feasibility of the center-post (CP) of FDTR has been investigated and the results are also given. A preliminary neutronics calculation based on an ST transmutation blanket shows that the proposed system has a high transmutation capability for MA wastes. (author)

  3. Evaluation of the possibility of plutonium and minor actinides transmutation in HWR

    International Nuclear Information System (INIS)

    Ghitescu, P.; Ghizdeanu, N. B.

    2008-01-01

    Partitioning and Transmutation (P and T) techniques could contribute to reduce the radioactive inventory and its associated radio-toxicity. Until now, for this purpose were studied ADS and/or FBR, but not HWR. There are several developed computer codes that analyze the inventory of the radio-nuclides in spent fuel before and after transmutation. WIMSD code is a deterministic lattice spectrum code, which can analyze the reactor neutronic behaviour It also has the capacity to generate burn up and can calculate the inventory of the radio-nuclides of the spent fuel. The advantage of WIMSD code is the variety of the created geometries, together with the big amount of calculated information (K-infinite, macroscopic cross-sections, burnable material radioactive inventory etc). Starting from WIMSD code, the paper presents a model, which simulates the possibility of fuel transmutation in PHWRs. First step was to propose a model, which simulates a CANDU reactor lattice and calculate the radionuclides inventory in an irradiated CANDU fuel bundle. The results were compared with the existing experimental data from CANDU reactors and the calculated parameters were found to be in good agreement with them. After the validation, several simulations were made for PHWRs in order to establish the optimal parameters, related to the efficiency of the transmutation process. Therefore, the code was used for a new type of fuel, containing Plutonium and minor actinides that could be transmuted. The new radioactive inventories were calculated. The simulations showed that Pu content decreases up to 8% in a CANDU reactor and 25% in an ACR. Thus, ACR can reduce the Plutonium inventory from MOX fuel and could be a transmutation solution. (authors)

  4. Transmutation of 129I Using an Accelerator-Driven System

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Takano, Hideki

    2002-01-01

    A conceptual blanket design for 129 I transmutation is proposed for an accelerator-driven system (ADS) that is designed to transmute minor actinides (MAs). In this ADS, 250 kg/yr of MA and 56 kg/yr of iodine are simultaneously transmuted, and they correspond to the quantities generated from ∼10 units of existing light water reactors. Furthermore, an introduction scenario and the benefit of iodine transmutation are studied for future introduction of fast breeder reactors. It is shown that the transmutation of iodine benefits the concept of underground disposal

  5. Separation and transmutation. A picture of the applications in Sweden; Separation och transmutation. Belysning av tillaempning i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil; Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden)

    2006-11-15

    This report contains a review of the transmutation technology and an elucidation of the consequences of the use of transmutation in Sweden. Transmutation has often been mentioned in the public debate as a way of rendering harmless the high-level waste from nuclear power such that the final disposal of the waste can be substantially simplified or even completely avoided. However, it can be noted that even with an exploitation of transmutation, significant amounts of radioactive waste requiring qualified final disposal will be generated. The transmutation technology will make it possible to reduce the longevity of the high-level waste by converting primarily the transuranic elements to fission products with shorter half lives. The long-term radiotoxicity of the spent nuclear fuel is dominated by the transuranics. Hence, transmutation will lead to a substantial decrease of the long-term radiotoxicity of the spent fuel. The research on transmutation has been focussed on sub-critical so called ADS-reactors (Accelerator Driven System). In such a system protons are accelerated to very high energy levels (in the order of GeV) in an electromagnetic field. The accelerated protons are impacted on a spallation source consisting of heavy atoms, e.g. lead or a mixture of lead and bismuth. At the impact the heavy nuclei are spalled releasing a number of neutrons that can be used for fissioning the nuclei of the substances to be transmuted, primarily the transuranics. ADS-reactors are still at the research stage. It is a common view that it will take several decades before the technology has reached a maturity that allows the construction of a demonstration facility. Calculations performed at Royal Institute of Technology in Stockholm show that using the ADS-technology would allow a reduction of the inventory of transuranics in the spent fuel from Swedish reactors by 50-85% within a 50-100 years period. The goal to transmute 99% of the transuranics inventory has been achieved in

  6. Minor actinide transmutation in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike [IANUS, TU Darmstadt (Germany)

    2015-07-01

    Transmutation of radioactive waste, the legacy of nuclear energy use, gains rising interest. This includes the development of facilities able to transmute minor actinides (MA) into stable or short-lived isotopes before final disposal. The most common proposal is to use a double-strata approach with accelerator-driven-systems (ADS) for the efficient transmutation of MA and power reactors to dispose plutonium. An ADS consists of a sub-critical core that reaches criticality with neutrons supplied by a spallation target. An MCNP model of the ADS system Multi Purpose Research Reactor for Hightech Applications will be presented. Depletion calculations have been performed for both standard MOX fuel and transmutation fuel with an increased content of minor actinides. The resulting transmutation rates for MAs are compared to published values. Special attention is given to selected fission products such as Tc-99 and I-129, which impact the radiation from the spent fuel significantly.

  7. Electrochemical reduction of CerMet fuels for transmutation using surrogate CeO2-Mo pellets

    Science.gov (United States)

    Claux, B.; Souček, P.; Malmbeck, R.; Rodrigues, A.; Glatz, J.-P.

    2017-08-01

    One of the concepts chosen for the transmutation of minor actinides in Accelerator Driven Systems or fast reactors proposes the use of fuels and targets containing minor actinides oxides embedded in an inert matrix either composed of molybdenum metal (CerMet fuel) or of ceramic magnesium oxide (CerCer fuel). Since the sufficient transmutation cannot be achieved in a single step, it requires multi-recycling of the fuel including recovery of the not transmuted minor actinides. In the present work, a pyrochemical process for treatment of Mo metal inert matrix based CerMet fuels is studied, particularly the electroreduction in molten chloride salt as a head-end step required prior the main separation process. At the initial stage, different inactive pellets simulating the fuel containing CeO2 as minor actinide surrogates were examined. The main studied parameters of the process efficiency were the porosity and composition of the pellets and the process parameters as current density and passed charge. The results indicated the feasibility of the process, gave insight into its limiting parameters and defined the parameters for the future experiment on minor actinide containing material.

  8. Proceedings of the specialists' meeting on accelerator-based transmutation

    International Nuclear Information System (INIS)

    Wenger, H.U.

    1992-09-01

    The meeting was organised under the auspices of OECD Nuclear Agency's International Information Exchange Programme on Actinide and Fission Product Partitioning and Transmutation. In the original announcement for the meeting the following sessions were proposed: 1) Concepts of accelerator-based transmutation systems, 2) Nuclear design problems of accelerator-based transmutation systems with emphasis on target facilities and their interfaces with accelerators, 3) Data and methods for nuclear design of accelerator-based transmutation systems, 4) Related cross-section measurements and integral experiments, 5) Identification of discrepancies and gaps and discussion of desirable R+D and benchmark activities. Due to the large number of papers submitted it was necessary to split session 2 into two parts and to reassign some papers in order to balance the sessions more evenly. No papers were submitted for session 5 and this was replaced by a summary and general discussion session. These proceedings contain all 30 papers in the order they were presented at the meeting. They are copies of the duplication-ready versions given to us during or shortly after the meeting. In the Table of Contents, the papers are listed together with the name of the presenter. (author) figs., tabs., refs

  9. Post-irradiation examinations of THERMHET composite fuels for transmutation

    Science.gov (United States)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  10. Post-irradiation examinations of THERMHET composite fuels for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J. E-mail: jnoirot@cea.fr; Desgranges, L.; Chauvin, N.; Georgenthum, V

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl{sub 2}O{sub 4} spinel inert matrix and around 40% weight of UO{sub 2} to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  11. Post-irradiation examinations of THERMHET composite fuels for transmutation

    International Nuclear Information System (INIS)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-01-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2 O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour

  12. Planning and reporting of Russian transmutation research projects within ISTC. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Conde, H. [Uppsala Univ. (Sweden). Dept. of Neutron Research; Gudowski, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Reactor and Neutron Physics; Liljenzin, J.O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Mileikovsky, C. [Pully (Switzerland)

    1998-11-01

    The present report about phase 2 of the SKI project on Planning and Reporting of Russian Transmutation Research Projects within ISTC is an update of the information given in the SKI report no 97:15 (Feb 1997) about phase 1 of the same project. The background information is partly repeated in the present report to avoid that the reader has to go back to the report of Phase 1 for information about the basis for the project. USA, EU, Japan, Republic of Korea and Norway are at present supporting the International Scientific and Technical Center (ISTC) in Moscow. The Centre gives funds to research projects of civilian interest to former nuclear weapon laboratories to counteract the risk of nuclear weapon proliferation by the emigration of former USSR technical and scientific experts to `border countries` which are aiming towards the development of nuclear weapons. Before Sweden and Finland entered the EU, both countries gave national support to ISTC, in the case of Sweden 4 MUSD. Some of the projects which were funded by the Swedish national support to ISTC are still in progress. Nuclear technical concepts (i.e. Accelerator Transmutation of Nuclear Waste, ATW) have been proposed to incinerate and transmute long-lived radioactive nuclear waste to relax the time needed to store the waste in a geological repository. The named Russian experts are knowledgeable and well equipped of doing research in the different technical fields of relevance for the transmutation concepts. Thus, a number of ISTC projects have been initiated, and further ones have been proposed, to investigate different technical aspects of ATW with a result that a fair number of former weapon specialists have converted from military to peaceful civilian research. A similar centre STCU (The Scientific and Technical Centre of the Ukraine) has been set up in Kiev. Sweden has been active in promoting this Centre, which is supported by USA, Japan, Canada and recently also by EU. The present report describes the

  13. Planning and reporting of Russian transmutation research projects within ISTC. Phase 2

    International Nuclear Information System (INIS)

    Conde, H.

    1998-11-01

    The present report about phase 2 of the SKI project on Planning and Reporting of Russian Transmutation Research Projects within ISTC is an update of the information given in the SKI report no 97:15 (Feb 1997) about phase 1 of the same project. The background information is partly repeated in the present report to avoid that the reader has to go back to the report of Phase 1 for information about the basis for the project. USA, EU, Japan, Republic of Korea and Norway are at present supporting the International Scientific and Technical Center (ISTC) in Moscow. The Centre gives funds to research projects of civilian interest to former nuclear weapon laboratories to counteract the risk of nuclear weapon proliferation by the emigration of former USSR technical and scientific experts to 'border countries' which are aiming towards the development of nuclear weapons. Before Sweden and Finland entered the EU, both countries gave national support to ISTC, in the case of Sweden 4 MUSD. Some of the projects which were funded by the Swedish national support to ISTC are still in progress. Nuclear technical concepts (i.e. Accelerator Transmutation of Nuclear Waste, ATW) have been proposed to incinerate and transmute long-lived radioactive nuclear waste to relax the time needed to store the waste in a geological repository. The named Russian experts are knowledgeable and well equipped of doing research in the different technical fields of relevance for the transmutation concepts. Thus, a number of ISTC projects have been initiated, and further ones have been proposed, to investigate different technical aspects of ATW with a result that a fair number of former weapon specialists have converted from military to peaceful civilian research. A similar centre STCU (The Scientific and Technical Centre of the Ukraine) has been set up in Kiev. Sweden has been active in promoting this Centre, which is supported by USA, Japan, Canada and recently also by EU. The present report describes the

  14. Evaluation of transmutation performance of long-lived fission products with a super fast reactor

    International Nuclear Information System (INIS)

    Lu, Haoliang; Han, Chiyoung; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    The performance of the Super Fast Reactor for transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super Fast Reactor. First is in the blanket assembly due to the ZrH 1.7 layer which can slow down the fast neutrons. Second is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected of transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe·y and 2.79%/GWe.y can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the outputs from 11.8 and 6.2 1000MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained by the Super Fast Reactor. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super Fast Reactor. It turns out that the 135 Cs transmutation is a challenge not only for the Super Fast Reactor but also for other commercial fast reactors. (author)

  15. Transmutation Fuel Campaign Description and Status

    International Nuclear Information System (INIS)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    This report contains a technical summary package in response to a Level 2 milestone in the transmutation fuel campaign (TFC) management work-package calling for input to the Secretarial decision. At present, the form of the Secretarial decision package is not fully defined, and it is not clear exactly what will be required from the TFC as a final input. However, it is anticipated that a series of technical and programmatic documents will need to be provided in support of a wider encompassing document on GNEP technology development activities. The TFC technical leadership team provides this report as initial input to the secretarial decision package which is being developed by the Technical Integration Office (TIO) in support of Secretarial decision. This report contains a summary of the TFC execution plan with a work breakdown structure, high level schedule, major milestones, and summary description of critical activities in support of campaign objectives. Supporting documents referenced in this report but provided under separate cover include: (1) An updated review of the state-of-the art for transmutation fuel development activities considering national as well as international fuel research and development testing activities. (2) A definition of the Technology Readiness Level (TRL) used to systematically define and execute the transmutation fuel development activities

  16. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  17. Partitioning and transmutation. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents.

  18. Transmutation of long-lived fission products

    International Nuclear Information System (INIS)

    Abrahams, K.

    1994-01-01

    The time-accumulated dose related to technetium dominates the leakage doses in most scenarios for imperturbed geological disposal. If human intrusion into geologically stable repositories or other disturbances is taken into account, the actinides determine the maximum value of the expected individual dose rates of shorter storage times. Therefore actinides dominate the discussion on transmutation of nuclear waste. In principle current LWRs could be used for a massive transmutation of Tc and perhaps I. Fast reactors and HWRs have attractive potential with respect to transmutation in moderated assemblies. HWRs like CANDU have easy refuelling possibilities. (orig.)

  19. Transmutation of Tc-99 and I-129 in fission reactors. A calculational study

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Li, J.M.

    1995-03-01

    The HWR is a better candidate for large-scale transmutation of long-lived fission products. When target pins containing either Tc-99 or I-129 are positioned in the centre of each fuel bundle of a 935 MW e CANDU reactor, the transmutation half lives are 44 and 20 years, respectively, and the gross transmutation rates 60 and 48 kg/a. The positive coolant void coefficient is reduced in both cases with about 30%. When Tc-99 target pins are positioned in the moderator between the fuel bundles, the transmutation half life becomes 25 years and the gross transmutation rate 106 kg/a. This means that one HWR can serve four PWRs with equal power. The fast reactor seems most promising. When Tc-99 target pins are irradiated in moderated subassemblies in the inner core of Superphenix (∼1240 MW e ), a transmutation half life of 15 years is obtained with a gross transmutation rate of 122 kg/a. These values become 18 years and 101 kg/a when non-moderated subassemblies are used for the irradiation. This implies that one fast reactor can serve four to five PWRs with equal power. The PWR seems not very effective for transmutation of Tc-99. Large inventories are needed to obtain a Tc-99 transmutation rate equal to the production rate (18 kg/a for a 900 MW e PWR). When all guide tubes of an UO 2 fuelled PWR are filled with Tc-99 with density of 5 g cm -3 , the transmutation half life is 39 years and the gross transmutation rate 64 kg/a. (orig./GL)

  20. Transmutation of Tc-99 in fission reactors

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Li, J.M.

    1994-12-01

    Transmutation of Tc-99 in three different types of fission reactors is considered: A heavy water reactor, a fast reactor and a light water reactor. For the first type a CANDU reactor was chosen, for the second one the Superphenix reactor, and for the third one a PWR. The three most promising Tc-99 transmuters are the fast reactor with a moderated subassembly in the inner core, a fast reactor with a non-moderated subassembly in the inner core, and a heavy water reactor with Tc-99 target pins in the moderator between the fuel bundles. Transmutation half lives of 15 to 25 years can be achieved, with yearly transmuted Tc-99 masses of about 100 kg at a thermal reactor power of about 3000 MW. (orig.)

  1. Transmuted Generalized Inverse Weibull Distribution

    OpenAIRE

    Merovci, Faton; Elbatal, Ibrahim; Ahmed, Alaa

    2013-01-01

    A generalization of the generalized inverse Weibull distribution so-called transmuted generalized inverse Weibull dis- tribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking generalized inverse Weibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expression...

  2. Study on multi-recycle transmutation of LLFP in light water reactor

    International Nuclear Information System (INIS)

    Setiawan, M.B.; Kitamoto, A.

    2001-01-01

    The effectiveness of transmutation for long-lived fission products (LLFP) in light water reactors (LWR), i.e. both BWR and PWR, considering the large capture cross-section of FPs in thermal region was evaluated. Calculation results of iodine and technetium transmutation in BWR and PWR suggested an effective use of BWR as compared to PWR. To obtain transmutation fraction [TF] of 30 to 40%, the irradiation period needed for 99 Tc transmutation was estimated as 10 to 15 years, and the period for 129 I transmutation was estimated as 30 to 40 years, respectively. The evaluations bring a new concept of multi-recycle LLFP transmutation using LWR TR (LWR for transmutation)

  3. Partitioning and transmutation. Current developments - 2007. A report from the Swedish reference group on P-T-research

    International Nuclear Information System (INIS)

    Ahlstroem, Per-Eric; Blomgren, Jan; Eriksson, Marcus; Seltborg, Per; Wallenius, Jan; Westlen, Daniel

    2007-06-01

    This report is written on behalf of the Swedish reference group for research on partitioning and transmutation. The reference group has been assembled by SKB and its members represent the teams that are active in this field at Swedish universities. The present report summarises the progress in the field through the years 2004-2006. A prerequisite for transmutation by irradiation with neutrons is that the nuclides to be transmuted are separated (partitioned) from the other nuclides in the spent fuel. In particular the remaining uranium must be taken away unless you want to produce more plutonium and other transuranium elements. Separation of the various elements can at least in principle be achieved by mechanical and chemical processes. Currently there exist some large scale facilities for separation of uranium and plutonium from the spent fuel-reprocessing plants. These can, however, not separate the minor actinides - neptunium, americium and curium - from the high level waste that goes to a repository. Plutonium constitutes about 90% of the transuranium elements in fuel from light water reactors. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the aforementioned long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving

  4. Partitioning and transmutation. Current developments - 2007. A report from the Swedish reference group on P-T-research

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstroem, Per-Eric (ed.) [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Blomgren, Jan [Uppsala Univ. (Sweden). Dept. of Neutron Research; Ekberg, Christian; Englund, Sofie; Fermvik, Anna; Liljenzin, Jan-Olov; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden); Eriksson, Marcus; Seltborg, Per; Wallenius, Jan; Westlen, Daniel [Royal Inst. of Technology, Stockholm (Sweden)

    2007-06-15

    This report is written on behalf of the Swedish reference group for research on partitioning and transmutation. The reference group has been assembled by SKB and its members represent the teams that are active in this field at Swedish universities. The present report summarises the progress in the field through the years 2004-2006. A prerequisite for transmutation by irradiation with neutrons is that the nuclides to be transmuted are separated (partitioned) from the other nuclides in the spent fuel. In particular the remaining uranium must be taken away unless you want to produce more plutonium and other transuranium elements. Separation of the various elements can at least in principle be achieved by mechanical and chemical processes. Currently there exist some large scale facilities for separation of uranium and plutonium from the spent fuel-reprocessing plants. These can, however, not separate the minor actinides - neptunium, americium and curium - from the high level waste that goes to a repository. Plutonium constitutes about 90% of the transuranium elements in fuel from light water reactors. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the aforementioned long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving

  5. Dynamic criteria for partitioning and transmutation

    International Nuclear Information System (INIS)

    Lu, A.H.

    1991-11-01

    This paper addresses dynamic criteria intended to optimize partitioning and transmutation (P-T) concept development supporting improved nuclear waste management. Six criteria are proposed initially and the rationale for each is briefly explained. Each criterion is used as a measure (or dimension) on which the developed concepts can be evaluated. The criteria allow the P-T concepts to be evaluated in an integral system including long-term energy needs, fuel cycle, and waste management. New criteria will be identified along with the P-T concept development, and each criterion will be realistically weighted so that it is comparable in an overall criteria evaluation. The weights are subject to change as a result of technical advancements and public perception on various issues. Incomplete criteria will result in a poor choice because important factors may not be considered when the decision is made. A successful decision on the optimal P-T system depends on the completeness of criteria (dimensions) as well as realistic weights assigned to each criterion

  6. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  7. Neutronic assessment of strontium-90 transmutation in fusion reactors

    International Nuclear Information System (INIS)

    Parish, T.A.

    1979-01-01

    Transmutation of 90 Sr using fusion neutrons has been suggested as a possible technique for disposing of this waste nuclide. For transmutation to be attractive, high transmutation rates relative to natural decay are required. Effective half-lives for 90 Sr were computed for fusion reactor blankets constructed of various materials. To obtain satisfactory transmutation rates, fusion reactors with high first wall neutron currents and with highly moderating blankets were found to be necessary. An effective half-life for 90 Sr of 90 Sr inventory and the number of burners required for various fission usage scenarios. Efficient and fast chemical separations were needed to reap the benefits of a short effective half-life. For the fusion burners considered, it was found that the 90 Sr inventory could not be reduced to less than one-fourth of the inventory without transmutation if fission usage continued at a constant rate. Such a reduction is not sufficient to justify the transmutation disposal of 90 Sr

  8. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    International Nuclear Information System (INIS)

    Wallenius, J.; Carlsson, Johan; Gudowski, W.

    1997-12-01

    In November 1996, SKB started financing of the project ''System and safety studies of accelerator driven transmutation systems and development of a spallation target''. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for

  9. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Carlsson, Johan; Gudowski, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1997-12-01

    In November 1996, SKB started financing of the project ``System and safety studies of accelerator driven transmutation systems and development of a spallation target``. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for. 13 refs, 6 figs.

  10. Determination of procedures for transmutation of fission product wastes by fusion neutrons. Volume 2. Final report

    International Nuclear Information System (INIS)

    Lang, G.P.

    1980-12-01

    This study is concerned with the engineering aspects of the transmutation of fission products utilizing neutrons generated in fusion reactors. It is assumed that fusion reactors, although not yet developed, will be available around the turn of the century. Therefore, early studies of this type are appropriate as a guide to the large amount of further investigations that will be needed to fully evaluate this concept. Not all of the radioactive products from light water reactors can be economically transmuted, but it appears that the most hazardous can. This requires that fission-product wastes must first be separated into a number of fractions, and in some instances this must be accomplished with extremely high separation factors. A review of current commercial separation processes and of promising methods that are now in the laboratory stage indicate that the necessary processes can most likely be developed but will require an active and sustained development program. Current fusion reactor concepts were examined as to their suitability for transmuting the separated fission wastes. It was concluded that the long-lived fission products were most amenable to transmutation. The medium-lived fission products, Cs-137 and Sr-90, require higher neutron fluxes than are available in the most developed fusion reactor concepts. Concepts which are less developed may eventually be adaptable as transmuters of these fission products

  11. Transmutation Theory in the Greek Alchemical Corpus.

    Science.gov (United States)

    Dufault, Olivier

    2015-08-01

    This paper studies transmutation theory as found in the texts attributed to Zosimus of Panopolis, "the philosopher Synesius," and "the philosopher Olympiodorus of Alexandria." It shows that transmutation theory (i.e. a theory explaining the complete transformation of substances) is mostly absent from the work attributed to these three authors. The text attributed to Synesius describes a gilding process, which is similar to those described by Pliny and Vitruvius. The commentary attributed to Olympiodorus is the only text studied here that describes something similar to a transmutation theory. It is unclear, however, if this was a theory of transmutation or if the writer meant something more like the literal meaning of the word "ekstrophē," a term used to describe the transformation of metals, as the "turning inside-out" of what is hidden in a substance. A similar conception of ekstrophē can be found in the works of Zosimus, who discussed transmutation to make an analogy with self-purification processes, which, from the perspective of his own anthropogony, consisted in the "turning inside-out" of the "inner human" (esō anthrōpos).

  12. Description of Transmutation Library for Fuel Cycle System Analyses

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Hoffman, Edward A.

    2010-01-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.(Piet2008) The Transmutation Library has the following objectives: (1) Assemble past and future transmutation cases for system analyses. (2) For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. (3) Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. (4) Provide mass fractions at input (charge) and output (discharge) for each case. (5) Eliminate the need for either ''fission product other'' or ''actinide other'' while conserving mass. Assessments of waste and separation cannot use ''fission product other'' or ''actinide other'' as their chemical behavior is undefined. (6) Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. (7) Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: (1) Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. (2) Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo

  13. Transmutation studies with GAMMA-2 setup using relativistic proton beams of the JINR Nuclotron

    Czech Academy of Sciences Publication Activity Database

    Adam, Jindřich; Balabekyan, AR.; Bradnova, V.; Brandt, R.; Golovatiouk, V. M.; Katovsky, K.; Krivopustov, M. I.; Kalinnikov, V. G.; Odoj, R.; Pronskikh, V. S.; Robotham, H.; Siemon, K.; Solnyshkin, A. A.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.; Vladimirova, NM.; Westmeier, W.

    2006-01-01

    Roč. 562, č. 2 (2006), s. 741-742 ISSN 0168-9002 R&D Projects: GA MŠk 1P04LA213 Institutional research plan: CEZ:AV0Z10480505 Keywords : spallation neutron source * transmutation * nuclear waste incineration Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.185, year: 2006

  14. Development and application of new parameters for TRU transmutation effectiveness

    International Nuclear Information System (INIS)

    Han, Chi Young

    2005-02-01

    Four new parameters (incineration branching ratio, incineration rate, incineration time, and incineration buckling) have been developed to evaluate quantitatively the TRU transmutation effectiveness and applied to transmutation of uranium and TRU. From the incineration branching ratio, it is possible to analyze the main contributors to fission reaction for transmutation of a target nuclide. From the incineration rate, it is available to evaluate the transmutation effectiveness in the viewpoint of a relative incineration rate to incineration potential of a target nuclide and its family. This parameter is also used to calculate the incineration time and incineration buckling together with the incineration branching ratio. The incineration time makes it possible to discuss more practically the transmutation speed instead of the existing other parameters. The incineration buckling can be used to evaluate the time behavior of the incineration rate and also employed to support the results from the incineration time. Taking into account the transmutation effectiveness and potential of uranium and TRU derived by using the parameters and an existing neutron economy parameter, it was noted that the thermal neutron energy is very preferable from the transmutation effectiveness point of view, on the other hand the fast neutron energy is effective from the transmutation potential. Applying them to the typical critical and subcritical TRU burners, it is indicated that the critical reactor containing fertile uranium undergoes effectively the selective TRU transmutation on the present fast spectrum. It was also noted that the uranium-free subcritical reactor could be operated effectively on a little softer spectrum due to the larger neutron excess in the present spectrum. It is expected that the new parameters developed in this study and the results are directly applicable to practical transmutation reactor design, in particular accelerator-driven transmutation reactor

  15. Copper Doping of Zinc Oxide by Nuclear Transmutation

    Science.gov (United States)

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  16. Neutron transmutation doping of polycrystalline silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1976-04-01

    Chemical vapor deposition (CVD) of doped silane has been used by others to deposit a polycrytalline silicon film (polysil) on metal or graphite substrates, but dopant migration to grain boundaries during deposition apparently prohibits attaining a uniform or desired dopant concentration. In contrast, we have used neutron transmutation doping to introduce a uniform phosphorus dopant concentration in commercially available undoped CVD polysil at doping concentrations greater than or equal to 2 x 10 15 cm -3 . Radiation damage annealing to 800 0 C did not indicate dopant migration. Carrier mobility increased with doping concentration and the minority carrier lifetime (MCL) appears to be comparable to that of neutron transmutation doped (NTD) single crystal Si. Application of this technique to photovoltaic solar cell fabrication is discussed

  17. Transmutation of radioactive waste: Effect on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rasmussen, N.C.; Pigford, T.H.

    1997-01-01

    A committee of the National Research Council reviewed three concepts for transmuting radionuclides recovered from the chemical reprocessing of commercial light-water-reactor (LWR) fuel: LWR transmutation reactors fueled with recycled actinides, advanced liquid-metal reactors (ALMRs), and accelerator-driven subcritical reactors for transmutation of waste (ATW). The concepts were evaluated in terms of: (1) the extent to which waste disposal would benefit from transmutation, (2) time required to reduce the total inventory of radionuclides in the waste and fuel cycle, (3) the complexity of the overall transmutation system, (4) the extent of new development required, and (5) institutional and economic problems of operating such systems. Transmutation could affect geologic disposal of waste by reducing the inventory of transuranics (TRUs), fission products, and other radionuclides in the waste. Reducing the inventory of transuranics does not necessarily affect radiation doses to people who use contaminated ground water if the dissolution rate of transuranics in waste is controlled by elemental solubilities. However, reducing inventories of Am and Pu would decrease potential hazards from human intrusion. The likelihood for underground nuclear criticality would also be reduced. The long-lived fission products Tc-99, I-129, Cs-135 and others typically contribute most to the long-term radiation doses to future populations who use contaminated water from the repository. Their transmutation requires thermal or epithermal neutrons, readily available in LWR and ATW transmutors. ALMR and LWR transmutors would require several hundred years to reduce the total transuranic inventory by even a factor of 10 at constant electric power, and thousands of years for a hundred-fold reduction. For the same electrical power, the ATW could reduce total transuranic inventory about tenfold more rapidly, because of its very high thermal-neutron flux. However, extremely low process losses would be

  18. Enhancing MA transmutation by irradiation of (MA, Zr)Hx in FBR blanket region - 5383

    International Nuclear Information System (INIS)

    Konashi, K.; Ikeda, K.; Itoh, K.; Hirai, M.; Koyama, T.; Kurosaki, K.

    2015-01-01

    Minor actinide (MA) hydride is proposed as transmutation target in sodium-cooled mixed oxide fuelled fast reactor. Preliminarily calculations have been done to check the transmutation efficiency of MA hydride targets. Three different types of MA target, MA-Zr alloy, (MA, Zr)O 2 and (MA, Zr)H x , have been compared on MA transmutation rate. The targets are assumed to be loaded around an active core in a 280 MWe sodium-cooled reactor; 54 MA target assemblies are respectively arranged in a row in the radial blanket zone. They are supposed to be irradiated for one year and then be cooled for 60 days. The transmuted mass has been evaluated by three-dimensional diffusion calculation to be 25, 15, 61 kg/EFPY for the alloy, the oxide and the hydride respectively, where production of MA in the active core is taken into account. The transmutation mass by (MA, Zr)H x is much larger than those by the other types of targets, while the core characteristics remain sound by locating MA targets outside of the active core. On top of that, two kinds of (MA, Zr)O 2 targets which are combined with ZrH x (x=1.7) pins have been calculated. Major Research/Development items are selected to establish the MA hydride transmutation method by reviewing technologies applicable to the transmutation system. The practical use of the MA hydride transmutation method is not far ahead technically, since this method can be developed by the extension of existing technologies. (authors)

  19. Transmuted Complementary Weibull Geometric Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Z. A…fify

    2014-12-01

    Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the ‡exibility of the transmuted version versus the complementary Weibull geometric distribution.

  20. Transmutation of radioactive nuclear waste

    International Nuclear Information System (INIS)

    Toor, A; Buck, R

    2000-01-01

    Lack of a safe disposal method for radioactive nuclear waste (RNW) is a problem of staggering proportion and impact. A typical LWR fission reactor will produce the following RNW in one year: minor actinides (i.e. 237 Np, 242-243 Am, 243-245 Cm) ∼40 kg, long-lived fission products (i.e, 99 Tc, 93 Zr, 129 I, 135 Cs) ∼80 kg, short lived fission products (e.g. 137 Cs, 90 Sr) ∼50kg and plutonium ∼280 kg. The total RNW produced by France and Canada amounts to hundreds of metric tonnes per year. Obtaining a uniform policy dealing with RNW has been blocked by the desire on one hand to harvest the energy stored in plutonium to benefit society and on the other hand the need to assure that the stockpile of plutonium will not be channeled into future nuclear weapons. In the meantime, the quantity and handling of these materials represents a potential health hazard to the world's population and particularly to people in the vicinity of temporary storage facilities. In the U.S., societal awareness of the hazards associated with RNW has effectively delayed development of U.S. nuclear fission reactors during the past decade. As a result the U.S. does not benefit from the large investment of resources in this industry. Reluctance to employ nuclear energy has compelled our society to rely increasingly on non-reusable alternative energy sources; coal, oil, and natural gas. That decision has compounded other unresolved global problems such as air pollution, acid rain, and global warming. Relying on these energy sources to meet our increasing energy demands has led the U.S. to increase its reliance on foreign oil; a policy that is disadvantageous to our economy and our national security. RNW can be simplistically thought of as being composed of two principal components: (1) actinides with half lives up to 10 6 years and (2) the broad class of fission fragments with typical half lives of a few hundred years. One approach to the RNW storage problem has been to transmute the

  1. Transmutation of long-lived nuclides in the fuel cycle of Brest-type reactors

    International Nuclear Information System (INIS)

    Lopatkin, A.V.; Orlov, V.V.; Filin, A.I.

    2001-01-01

    Transmutation of long-lived nuclides produced as a result of nuclear generation, should be set up proceeding from the principle of reasonable sufficiency, expressed as radiation equivalence between the radwaste sent to disposal and source natural uranium. In this case, introduction of fast reactors of new generation (such as BREST or other reactors based on similar philosophy) will resolve transmutation problems even with the thermal-to-fast reactor capacity ratio of 2:1. The authors of the 'Strategy of nuclear power development in Russia' foresee, and substantiate their prediction, that fast reactors of the new generation will account for no less than 2/3 of nuclear capacity in future large-scale nuclear power sector. Fast reactors will be the basis of a transmutation fuel cycle, which will remove the need of creating additional transmutation facilities. (author)

  2. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (P fus ∼ 10-100 MW, β N ∼ 2-3, Q p ∼ 2-5, R ∼ 3-5 m, I ∼ 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-a-vis a neutron source is reviewed. (author)

  3. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  4. A study on transmutation of LLFPs using various types of HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Kora, Kazuki, E-mail: kora_k@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka-ken (Japan); Nakaya, Hiroyuki; Matsuura, Hideaki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka-ken (Japan); Goto, Minoru; Nakagawa, Shigeaki; Shimakawa, Satoshi [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, Ibaraki-ken (Japan)

    2016-04-15

    Highlights: • We propose utilization of a variety of HTGRs for LLFP transmutation and storage. • The transmutation performance of four types of HTGRs was examined and compared. • Some types of HTGRs show preferable characteristics for LLFP transmutation. - Abstract: In order to investigate the potential of high temperature gas-cooled reactors (HTGRs) for transmutation of long-lived fission products (LLFPs), numerical simulation of four types of HTGRs were carried out. In addition to the gas-turbine high temperature reactor system “GTHTR300”, which is the subject of our previous research, a small modular HTGR plant “HTR50S” and two types of plutonium burner HTGRs “Clean Burn with MA” and “Clean Burn without MA” were considered. The simulation results show that an early realization of LLFP transmutation using a compact HTGR may be possible since the HTR50S can transmute fair amount of LLFPs for its thermal output. The Clean Burn with MA can transmute a limited amount of LLFPs. However, an efficient LLFP transmutation using the Clean Burn without MA seems to be convincing as it is able to achieve very high burn-ups and produce LLFP transmutation more than GTHTR300. Based on these results, we propose utilization of variety of HTGRs for LLFP transmutation and storage.

  5. Specific contributions of the Dutch programme {open_quotes}RAS{close_quotes} towards accelerator-based transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, K.; Franken, W.M.P.; Bultman, J.H. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)] [and others

    1995-10-01

    Accelerator-based transmutation is being studied by ECN within its general nuclear waste transmutation programme RAS. In this paper the following contributions are presented: (1) Evaluation of cross sections at intermediate energies, within an international frame given by NEA, (2) Cell calculations on the equilibration of transuranium actinides in thermal molten-salt transmuters, (3) Irradiation facilities at the European research reactor HFR in Petten, which have been constructed with the purpose to demonstrate and investigate the transmutation of waste in a high neutron flux, (4) Studies of accelerator-based neutron generating systems to transmute neptunium and technetium, (5) Comparison of several systems on the basis of criteria for successful nuclear waste-management.

  6. The Transmuted Generalized Inverse Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Faton Merovci

    2014-05-01

    Full Text Available A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM in order to generate a flexible family of probability distributions taking the generalized inverseWeibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expressions for the moments, quantiles, and moment generating function of the new distribution are derived. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the flexibility of the transmuted version versus the generalized inverse Weibull distribution.

  7. Safety characteristics of potential waste transmutation systems

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1993-01-01

    For nuclear waste transmutation to alter significantly the need for geologic disposal of spent fuel from US Light-water reactors (LWRs), about 1.4% of the spent fuel (by mass) must be separated and transmuted. This includes the plutonium, the minor actinides, and four fission products: iodine. technetium, cesium and strontium. Regarding the actinides, fissioning of the plutonium, neptunium, americium, and curium generates a great deal of heat, so much so that most of the plutonium should be used to produce power. However, these actinides have some undesirable neutronic characteristics, and their utilization in reactors or subcritical (proton-accelerator) targets requires either a fast neutronic spectrum or a very high thermal-neutron flux. Transmutation of the fission products is generally by neutron capture, although this is difficult in the case of cesium and strontium. In this paper, various proposed means of transmuting the actinides and fission products are discussed, with the main focus being on the safety characteristics of each approach

  8. Separation of actinides and their transmutation

    International Nuclear Information System (INIS)

    Bouchard, M.; Bathelier, M.; Cousin, M.

    1978-08-01

    Neutron irradiation of long-half-life actinides for transmutation into elements with shorter half-life is investigated as a means to reduce the long-term hazards of these actinides. The effectiveness of the method is analysed by applying it to fission product solutions from the first extraction cycle of fuel reprocessing plants. Basic principles, separation techniques and transmutation efficiencies are studied and discussed in detail

  9. Performance of a transmutation advanced device for sustainable energy application

    International Nuclear Information System (INIS)

    Garcia, C.; Rosales, J.; Garcia, L.; Perez-Navarro, A.; Escriva, A.; Abanades, A.

    2009-01-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  10. Performance of a transmutation advanced device for sustainable energy application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C.; Rosales, J.; Garcia, L. [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Perez-Navarro, A.; Escriva, A. [Universidad Politecnica de Valencia, Valencia (Spain). Inst. de Ingenieria Energetica; Abanades, A. [Universidad Politecnica de Madrid (Spain). Grupo de Modelizacion de Sistemas Termoenergeticos

    2009-07-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  11. Critique of rationale for transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1980-07-01

    It has been suggested that nuclear transmutation could be used in the elimination or reduction of hazards from radioactive wastes. The rationale for this suggestion is the subject of this paper. The objectives of partitioning-transmutation are described. The benefits are evaluated. The author concludes that transmutation would appear at best to offer the opportunity of reducing an already low risk. This would not seem to be justifiable considering the cost. If non-radiological risks are considered, there is a negative total benefit

  12. Comparative analysis of sub-critical transmutation reactor concepts

    International Nuclear Information System (INIS)

    Chang, S. H.

    1997-01-01

    The long-lived nuclear wastes have been substantially generated from the light water reactor for a few decades. The toxicity of these spent fuels will be higher than that of the uranium ore, even if those will be stored in the repository more than ten thousands. Hence the means of transmuting the key long-lived nuclear wastes, primarily the minor actinides, using a hybrid proton accelerator and subcritical transmutation reactor, are proposed. Until now, the representative concepts for a subcritical transmutation reactor are the Energy Amplifier, the OMEGA project, the ATW and the MSBR. The detailed concepts and the specifications are illustrated in Table 1. The design requirements for the subcritical transmutation reactor are the high transmutation rate of long-lived nuclear wastes, safety and economics. And to propose the subcritical transmutation reactor concepts, the coolant, the target material and fuel type are carefully considered. In these aspects, the representative concepts for a subcritical transmutation reactor in Table 1 have been surveyed. The requirements for a target and a coolant are the reliable, low maintenance operation and safe operation to minimize the wastes. The reliable, low maintenance operation and safe operation to minimize the wastes. The reliable coolant must have the low melting point, high heat capacity and excellent physical properties. And the target material must have high neutron yield for a given proton condition and easy heat removal capability. Therefore in respect with the above requirements, Pb-Bi is proposed as the coolant and the target material for the subcritical reactor. Because the neutron yield for a given proton energy increases linearly with mass number up to bismuth but in heavier elements spallation events sharply increase both the neutron and heat outputs, Pb-Bi meets not only such the requirements as the above for the coolant but also those for the coolant and target, the simplification of system can be achieved

  13. Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Bong Guen Hong

    2018-02-01

    Full Text Available A configuration of a fusion-driven transmutation reactor with a low aspect ratio tokamak-type neutron source was determined in a self-consistent manner by using coupled analysis of tokamak systems and neutron transport. We investigated the impact of blanket configuration on the characteristics of a fusion-driven transmutation reactor. It was shown that by merging the TRU burning blanket and tritium breeding blanket, which uses PbLi as the tritium breeding material and as coolant, effective transmutation is possible. The TRU transmutation capability can be improved with a reduced blanket thickness, and fast fluence at the first wall can be reduced.  Article History: Received: July 10th 2017; Received: Dec 17th 2017; Accepted: February 2nd 2018; Available online How to Cite This Article: Hong, B.G. (2018 Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor. International Journal of Renewable Energy Development, 7(1, 65-70. https://doi.org/10.14710/ijred.7.1.65-70

  14. Accelerator driven systems. ADS benchmark calculations. Results of stage 2. Radiotoxic waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Freudenreich, W.E.; Gruppelaar, H

    1998-12-01

    This report contains the results of calculations made at ECN-Petten of a benchmark to study the neutronic potential of a modular fast spectrum ADS (Accelerator-Driven System) for radiotoxic waste transmutation. The study is focused on the incineration of TRans-Uranium elements (TRU), Minor Actinides (MA) and Long-Lived Fission Products (LLFP), in this case {sup 99}Tc. The benchmark exercise is made in the framework of an IAEA Co-ordinated Research Programme. A simplified description of an ADS, restricted to the reactor part, with TRU or MA fuel (k{sub eff}=0.96) has been analysed. All spectrum calculations have been performed with the Monte Carlo code MCNP-4A. The burnup calculations have been performed with the code FISPACT coupled to MCNP-4A by means of our OCTOPUS system. The cross sections are based upon JEF-2.2 for transport calculations and supplemented with EAF-4 data for inventory calculations. The determined quantities are: core dimensions, fuel inventories, system power, sensitivity on external source spectrum and waste transmutation rates. The main conclusions are: The MA-burner requires only a small accelerator current increase during burnup, in contrast to the TRU-burner. The {sup 99} Tc-burner has a large initial loading; a more effective design may be possible. 5 refs.

  15. Accelerator driven systems. ADS benchmark calculations. Results of stage 2. Radiotoxic waste transmutation

    International Nuclear Information System (INIS)

    Freudenreich, W.E.; Gruppelaar, H.

    1998-12-01

    This report contains the results of calculations made at ECN-Petten of a benchmark to study the neutronic potential of a modular fast spectrum ADS (Accelerator-Driven System) for radiotoxic waste transmutation. The study is focused on the incineration of TRans-Uranium elements (TRU), Minor Actinides (MA) and Long-Lived Fission Products (LLFP), in this case 99 Tc. The benchmark exercise is made in the framework of an IAEA Co-ordinated Research Programme. A simplified description of an ADS, restricted to the reactor part, with TRU or MA fuel (k eff =0.96) has been analysed. All spectrum calculations have been performed with the Monte Carlo code MCNP-4A. The burnup calculations have been performed with the code FISPACT coupled to MCNP-4A by means of our OCTOPUS system. The cross sections are based upon JEF-2.2 for transport calculations and supplemented with EAF-4 data for inventory calculations. The determined quantities are: core dimensions, fuel inventories, system power, sensitivity on external source spectrum and waste transmutation rates. The main conclusions are: The MA-burner requires only a small accelerator current increase during burnup, in contrast to the TRU-burner. The 99 Tc-burner has a large initial loading; a more effective design may be possible. 5 refs

  16. HLW disposal by fission reactors; calculation of trans-mutation rate and recycle

    International Nuclear Information System (INIS)

    Mulyanto

    1997-01-01

    Transmutation of MA (Minor actinide) and LLFPS (long-lived fission products) into stable nuclide or short-lived isotopes by fission reactors seem to become an alternative technology for HLW disposal. in this study, transmutation rate and recycle calculation were developed in order to evaluate transmutation characteristics of MA and LLFPs in the fission reactors. inventory of MA and LLFPs in the transmutation reactors were determined by solving of criticality equation with 1-D cylindrical geometry of multigroup diffusion equations at the beginning of cycle (BOC). transmutation rate and burn-up was determined by solving of depletion equation. inventory of MA and LLFPs was calculated for 40 years recycle. From this study, it was concluded that characteristics of MA and LLFPs in the transmutation reactors can be evaluated by recycle calculation. by calculation of transmutation rate, performance of fission reactor for transmutation of MA or LLFPs can be discussed

  17. Development of transmutation technologies of radioactive waste by actinoid hydride

    International Nuclear Information System (INIS)

    Konashi, Kenji; Matsui, Hideki; Yamawaki, Michio

    2001-01-01

    Two waste treatment methods, geological disposal and transmutation, have been studied. The transmutation method changes long-lived radioactive nuclides to short-lived one or stabilizes them by nuclear transformation. The transmutation by actinoid hydride is exactly alike that transformation method from actinoid disposal waste to Pu fuel. For this object, OMEGA project is processing now. The transmutation is difficult by two causes such as large amount of long-lived radioactive nuclides and not enough development of control technologies of nuclear reaction except atomic reactor. The transmutation using actinoid hydride has merits that the amount of actinoid charged in the target increases and the effect of thermal neutrons on fuel decreases depending on homogeneous transmutation velocity in the target. Development of stable actinoid hydride under the conditions of reactor temperature and irradiation environment is important. The experimental results of U-ZrH 1.6 are shown in this paper. The irradiation experiment using Th hydride has been proceeding. (S.Y.)

  18. Study on neutron spectrum for effective transmutation of minor actinides in thermal reactors

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yokoyama, Kenji

    1997-01-01

    The transmutation of minor actinides (MAs) has been investigated in thermal reactor cells using mixed oxide fuel with MAs. The effect of neutron spectra on transmutation is studied by changing the neutron spectra. Five transmutation rates are compared: direct fission incineration rate, capture transmutation rate, consumption rate, overall fission incineration rate and inventory difference transmutation rate. The relations between these transmutation rates and their dependence on the neutron spectrum were investigated. To effectively incinerate MAs it is necessary to maximize the overall fission incineration rate and the inventory difference transmutation rate. These transmutation rates become maximum when the fraction of neutrons below 1 eV is about 8% for the case where the MA addition is 1-3%. When the MA addition is over 5%, the transmutation rates become maximum for very hard neutron spectrum. (Author)

  19. Transmutation of radioactive wastes from nuclear power plants. A contribution to the reduction of the final repository problem; Transmutation radioaktiver Reststoffe aus Kernkraftwerken. Ein Beitrag zur Verringerung der Endlagerproblematik

    Energy Technology Data Exchange (ETDEWEB)

    Mach, Manfred [Technische Univ. Berlin (Germany). Inst. fuer Technologie und Management

    2015-07-01

    The brochure on transmutation of radioactive wastes from nuclear power plants - a contribution to the reduction of the final repository problem covers the following issues: What is transmutation? Nuclear power in Germany; energy density of fuels; time span of energy resources; CO{sub 2} emissions from different energy sources; types of nuclear power plants in Germany; cost of German electricity generation plants; nuclear power plants worldwide; wastes from nuclear electricity production; radiation from fission products; radiation effects on humans, the nuclear fuel cycle, direct final disposal of radioactive wastes; risk assessment of the direct final disposal; partitioning of actinides; transmutation of actinides.

  20. Transmutation of fission products with the use of an accelarator

    International Nuclear Information System (INIS)

    Kase, T.; Harada, H.; Takahashi, T.

    1995-01-01

    The three transmutation methods with the use of an accelerator, the proton method, the spallation neutron method and the μCF method, are employed for the transmutation of long-lived nuclides in high level radioactive wastes. The transmutation energies and the effective half-lives of 99 Tc and 137 Cs for these transmutation methods are calculated by the Monte Carlo simulation codes for particle transport. The transmutation energies of the proton method are larger than those of the spallation neutron method and the μCF method under the condition of the same effective half life. The proton method is difficult to meet energy balance criterion. On the other hand, the spallation neutron method and the μCF method have possibility to meet the energy balance criterion. (author)

  1. Enhancing TRU burning and Am transmutation in Advanced Recycling Reactor

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kochendarfer, Richard A.; Moriwaki, Hiroyuki; Kunishima, Shigeru

    2011-01-01

    Research highlights: → This ARR is an oxide fueled sodium cooled reactor based on innovative technologies to destruct TRU. → TRU burning core is designed to burn TRU at 28 kg/TW th h, adding moderator pins of B 4 C (Enriched B-11). → Am transmutation core can transmute Am at 34 kg/TW th h, adding uranium free AmN blanket to TRU burning core. → The TRU burning core improves TRU burning by 40-50% than the previous core. → The Am transmutation core can transmute Am effectively, keeping the void reactivity acceptable. - Abstract: This paper presents about conceptual designs of Advanced Recycling Reactor (ARR) focusing on enhancement in transuranics (TRU) burning and americium (Am) transmutation. The design has been conducted in the context of the Global Nuclear Energy Partnership (GNEP) seeking to close nuclear fuel cycle in ways that reduce proliferation risks, reduce the nuclear waste in the US and further improve global energy security. This study strives to enhance the TRU burning and the Am transmutation, assuming the development of related technologies in this study, while the ARR based on mature technologies was designed in the previous study. It has followed that the provided TRU burning core is designed to burn TRU at 28 kg/TW th h, by adding moderator pins of B 4 C (Enriched B-11) and the Am transmutation core will be able to transmute Am at 34 kg/TW th h, by locating Am blanket of AmN around the TRU burning core. It indicates that these concepts improve TRU burning by 40-50% than the previous core and can transmute Am effectively, keeping the void reactivity acceptable.

  2. Study of irradiation damages in MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} spinels in the framework of nuclear waste transmutation; Dommages d'irradiation dans des ceramiques de structure spinelle MgAl{sub 2}O{sub 4} et ZnAl{sub 2}O{sub 4} application a la transmutation des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Thiriet-Dodane, C

    2002-07-01

    The transmutation of minor actinides in-reactor is one solution currently being studied for the long time management of nuclear waste. In the heterogeneous concept the radionuclides are incorporating in an inert ceramic matrix. The support material must be insensitive to radiation damage. Fission product damage is the main radiation damage source during the transmutation process and therefore it is of the utmost importance to study their effects. We irradiated spinels MgAl{sub 2}O{sub 4} (matrix of reference) and ZnAl{sub 2}O{sub 4} by fast ions (by example: {sup 86}Kr of approximately 400 MeV) simulating the fission products. Under these conditions, the damage is primarily due to the electronic energy losses (S{sub e}). One of the structural features of spinel AB{sub 2}O{sub 4} is that the two cations (A{sup 2+} and B{sup 3+}) can exchange their site. This phenomenon is quantified by the inversion parameter. We highlight by XRD in grazing incidence that the structural changes observed in MgAl{sub 2}O{sub 4} correspond to an order-disorder transition from the cation sub-networks and not to a phase shift as described in the literature. Using other techniques characterizing the space group (Raman spectroscopy) as well as the local order (NMR 27Al, spectroscopy of absorption X with the thresholds K of Al and Zn), we confirm this interpretation. Moreover, for a fluence of 10{sup 14} ions/cm{sup 2}, the loss of the order at long distance is observed thus meaning a beginning of amorphization of material. The ZnAl{sub 2}O{sub 4} spinel presents the same behaviour. For this last spinel, an evolution of the inversion parameter according to the stopping power 2 was highlighted after irradiation by ions {sup 86}Kr from approximately 20 MeV. We illustrate our study by the analysis of the results obtained in XRD of an irradiation out of composite fuel (MgAl{sub 2}O{sub 4} + UO{sub 2}) called THERMHET. (authors)

  3. The Beta Transmuted Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Manisha Pal

    2014-06-01

    Full Text Available The paper introduces a beta transmuted Weibull distribution, which contains a number ofdistributions as special cases. The properties of the distribution are discussed and explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, and reliability. The distribution and moments of order statistics are also studied. Estimation of the model parameters by the method of maximum likelihood is discussed. The log beta transmuted Weibull model is introduced to analyze censored data. Finally, the usefulness of the new distribution in analyzing positive data is illustrated.

  4. Dual neutral particle induced transmutation in CINDER2008

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.J., E-mail: wjmarti@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87185 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Oliveira, C.R.E. de; Hecht, A.A. [University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-12-11

    Although nuclear transmutation methods for fission have existed for decades, the focus has been on neutron-induced reactions. Recent novel concepts have sought to use both neutrons and photons for purposes such as active interrogation of cargo to detect the smuggling of highly enriched uranium, a concept that would require modeling the transmutation caused by both incident particles. As photonuclear transmutation has yet to be modeled alongside neutron-induced transmutation in a production code, new methods need to be developed. The CINDER2008 nuclear transmutation code from Los Alamos National Laboratory is extended from neutron applications to dual neutral particle applications, allowing both neutron- and photon-induced reactions for this modeling with a focus on fission. Following standard reaction modeling, the induced fission reaction is understood as a two-part reaction, with an entrance channel to the excited compound nucleus, and an exit channel from the excited compound nucleus to the fission fragmentation. Because photofission yield data—the exit channel from the compound nucleus—are sparse, neutron fission yield data are used in this work. With a different compound nucleus and excitation, the translation to the excited compound state is modified, as appropriate. A verification and validation of these methods and data has been performed. This has shown that the translation of neutron-induced fission product yield sets, and their use in photonuclear applications, is appropriate, and that the code has been extended correctly. - Highlights: • The CINDER2008 transmutation code was modified to include photon-induced transmutation tracking. • A photonuclear interaction library was created to allow CINDER2008 to track photonuclear interactions. • Photofission product yield data sets were created using fission physics similarities with neutron-induced fission.

  5. Analysis on Radioactive Waste Transmutation in Light Water cooled Hyb-WT

    International Nuclear Information System (INIS)

    Hong, Seonghee; Kim, Myung Hyun

    2014-01-01

    A feasibility of realization is much higher in FFHR compared with pure fusion. A combination of plasma fusion source for neutrons with a subcritical reactor at the blanket side has much higher capability in transmutation of waste as well as reactor safety compared with fission reactor options. Fusion-Fission Hybrid Reactor (FFHR) uses various coolants depending on the purpose. It is important that coolant being used should be suitable to reactor purpose, because reactor performance and the design constraints may change depending on the coolant. There are basically two major groups of coolants for FFHR. One group of coolant does not contain Li. They are Na, Pb-Bi, H 2 O and D 2 O. The other group contains Li for tritium breeding. They are Li, LiPb, LiSN, FLIBE and FLiNaBe. Currently, the issue in FFHR is its implication for radioactive waste transmutation (FFHR for WT). Because radioactive wastes of spent nuclear fuel (SNF) are transmuted using fusion neutron source. Therefore a suitable coolant should be used for effective waste transmutation. . In FFHR for WT, LiPb coolant is being used mainly because of tritium production in Li and high neutron economic through reaction in Pb. However different coolants use such as Na, Pb-Bi are used in fast reactors and accelerator driven systems (ADS) having same purpose. In this study, radioactive waste transmutation performance of various coolants mentioned above will be compared and analyzed. Through this study, the coolants are judged primarily for their support to waste transmutation disregarding their limitation to reactor design and tritium breeding capability. First, performance of the light water coolant regarding radioactive waste transmutation was analyzed among various coolants mentioned above. In this paper, performance of radioactive waste transmutation can be known depending on different volume fractions (54.53, 60.27, 97.94vol.%) of the light water. Light water dose required fusion power lower than LiPb due to

  6. Actinide Partitioning and Transmutation Program. Progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Tedder, D. W.; Blomeke, J. O. [comps.

    1977-10-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was continued. Summaries of work are given on Purex Process modifications, actinide recovery, Am-Cm recovery, radiation effects on ion exchangers, LMFBR transmutation studies, thermal reactor transmutation studies, fuel cycle studies, and partitioning-transmutation evaluation. (JRD)

  7. Type 2-diabetes--en heterogen sygdom med kim i fostertilstanden

    DEFF Research Database (Denmark)

    Vaag, Allan

    2012-01-01

    Type 2 diabetes (T2D) is a heterogeneous disease with a multifactorial aetiology involving defects in the pancreatic beta cells, liver, muscles, adipose tissue, guts, brain, kidneys and heart. While genetics may only explain a minor proportion of T2D, the contribution of an adverse intrauterine...... environment may take centre stage in the global propagation of T2D. Impaired expandability of subcutaneous adipose tissue in persons with low birthweight may cause T2D due to lipotoxicity in non-adipose organs. Future implications include a stronger focus on individualized treatments in T2D patients...

  8. Accelerator-driven transmutation of spent fuel elements

    Science.gov (United States)

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  9. Transmutation of All German Transuranium under Nuclear Phase Out Conditions - Is This Feasible from Neutronic Point of View?

    Science.gov (United States)

    Merk, Bruno; Litskevich, Dzianis

    2015-01-01

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions.

  10. Transmutation of All German Transuranium under Nuclear Phase Out Conditions - Is This Feasible from Neutronic Point of View?

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions.

  11. MA-burners efficiency parameters allowing for the duration of transmutation process

    International Nuclear Information System (INIS)

    Gulevich, A.; Zemskov, E.; Kalugin, A.; Ponomarev, L.; Seliverstov, V.; Seregin, M.

    2010-01-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n rep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  12. Statistical transmutation in doped quantum dimer models.

    Science.gov (United States)

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  13. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.

    Science.gov (United States)

    Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi

    2017-10-24

    Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

  14. Development of nuclear transmutation technology - A study on accelerator-driven transmutation of long-lived radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Chung, Kie Hyung; Hong, Sang Hee; Hwang, Il Soon; Park, Byung Gi; Yang, Hyung Lyeol; Kim, Duk Kyu; Huh, Chang Wook [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The objective of this study is to help establish the long-range nuclear waste disposal strategy through the investigations and comparisons of various= concepts of the accelerator-driven nuclear waste transmutation reactors, which have been suggested to replace the geological waste disposal due to the technical uncertainties in the long-time scale. Nuclear data, categorized in high -and low-energy neutron cross-sections, were investigated and the structures, principles, and recent progresses of proton linac were reviews, Also the accelerator power for transmutation and the economics were referred, The comparison of the transmutation concepts concentrated on two: Japanese OMEGA program of alloy fuelled system, Minor actinide molten salt system, and Eutectic alloy system and American ATW program of aqueous system and molten salt system. From the comparative study, a state-of-art of the technology has been identified as a concept employing proton-accelerate of 800 {approx} 1600 MeV with 100 mA capacity combined with liquid lead target, molten salt blanket and on-line chemical separation using centrifuge and electrowinning technology. 34 refs., 25 tabs., 64 figs. (author)

  15. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Shelley; Lerski, Richard [Ninewells Hospital and Medical School, Department of Medical Physics, Dundee (United Kingdom); Purdie, Colin [Ninewells Hospital and Medical School, Department of Pathology, Dundee (United Kingdom); Michie, Caroline [Ninewells Hospital and Medical School, Department of Oncology, Dundee (United Kingdom); Evans, Andrew; Vinnicombe, Sarah [University of Dundee, Division of Imaging and Technology, Ninewells Hospital and Medical School, Dundee (United Kingdom); Johnston, Marilyn [Ninewells Hospital and Medical School, Department of Clinical Radiology, Dundee (United Kingdom); Thompson, Alastair M. [University of Texas MD Anderson Cancer Centre, Department of Breast Surgical Oncology, Houston, TX (United States)

    2017-11-15

    To investigate whether interim changes in hetereogeneity (measured using entropy features) on MRI were associated with pathological residual cancer burden (RCB) at final surgery in patients receiving neoadjuvant chemotherapy (NAC) for primary breast cancer. This was a retrospective study of 88 consenting women (age: 30-79 years). Scanning was performed on a 3.0 T MRI scanner prior to NAC (baseline) and after 2-3 cycles of treatment (interim). Entropy was derived from the grey-level co-occurrence matrix, on slice-matched baseline/interim T2-weighted images. Response, assessed using RCB score on surgically resected specimens, was compared statistically with entropy/heterogeneity changes and ROC analysis performed. Association of pCR within each tumour immunophenotype was evaluated. Mean entropy percent differences between examinations, by response category, were: pCR: 32.8%, RCB-I: 10.5%, RCB-II: 9.7% and RCB-III: 3.0%. Association of ultimate pCR with coarse entropy changes between baseline/interim MRI across all lesions yielded 85.2% accuracy (area under ROC curve: 0.845). Excellent sensitivity/specificity was obtained for pCR prediction within each immunophenotype: ER+: 100%/100%; HER2+: 83.3%/95.7%, TNBC: 87.5%/80.0%. Lesion T2 heterogeneity changes are associated with response to NAC using RCB scores, particularly for pCR, and can be useful across all immunophenotypes with good diagnostic accuracy. (orig.)

  16. A Study on the Kinetic Characteristics of Transmutation Process Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae seon; Huh, Chang Wook; Kim, Doh Hyung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to examine the transient heat transfer characteristics of liquid mental as the coolant used in accelerator-driven transmutation process reactor which is related the disposal of high-level radioactive nuclide. At current stage, the accelerator-driven transmutation process is investigated as the most appropriate method among many transmutation process methods. In this study, previous research works are investigated especially about the thermal hydraulics and kinetic behavior of coolant material including heat transfer of coolant in transmutation process reactor. A study on the heat transfer characteristics of liquid metal is performed based on the thermal hydraulic kinetic characteristics of liquid metal reactor which uses liquid metal coolant. Based on this study, the most appropriate material for the coolant of transmutation reactor will be recommended. 53 refs., 15 tabs., 33 figs. (author)

  17. Tokamak transmutation of (nuclear) waste (TTW): Parametric studies

    International Nuclear Information System (INIS)

    Cheng, E.T.; Krakowski, R.A.; Peng, Y.K.M.

    1994-01-01

    Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low-aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses

  18. MA-burners efficiency parameters allowing for the duration of transmutation process

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko Square 1, Obninsk, Kaluga Region 249020 (Russian Federation); Kalugin, A.; Ponomarev, L. [Russian Research Center ' ' Kurchatov Institute' ' Kurchatov Square 1, Moscow 123182 (Russian Federation); Seliverstov, V. [Institute of Theoretical and Experimental Physics ul.B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Seregin, M. [Russian Research Institute of Chemical Technology Kashirskoe Shosse 33, Moscow 115230 (Russian Federation)

    2010-07-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time {tau} - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n{sub rep} - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  19. Evaluation of systems incorporating transmutation for the reduction of the long term toxicity of high-level waste

    International Nuclear Information System (INIS)

    Davidson, J.W.

    1979-01-01

    One of the alternative high-level nuclear waste (HLW) management/disposal concepts proposed involves the separation from HLW of the elements with isotopes which dominate the radiotoxicity and the transmutation of these nuclides to shortlived or stable products. The waste management system required for transmutation employs chemical processing of HLW to recover waste nuclides for irradiation with neutrons in a transmutation device. The transmuter periodically requires replenishment of the target nuclides and chemical processing to remove the transmutation products. The waste streams from HLW processing and product recovery together comprise the discharge from the system. An imploding liner fusion reactor (ILFR) is assumed for the transmuter with the waste nuclides dissolved in a molten lead-lithium alloy blanket. The potential transmutation candidates are defined as the elements with toxicities per unit volume (toxicity indexes) in solidified HLW at 1000 years which are greater than that for 0.2% uranium ore (carnotite). The candidates which require separation for transmutation are the actinides; Np, Pu, Am, and Cu and the fission products; I and Tc. Certain assumptions were made for the parameters for the ILFR and its operating conditions, and a system evaluation was done. System evaluations indicate that blanket waste loadings on the order of several percent of the total concentration result in attractive performance in terms of high transmutation capacities and low blanket processing requirments. It appears that transmutation system goals in terms of toxicity reduction are achievable with a modest number of transmuters. In addition, requirements for transmuter performance, chemical processing capacity and chemical separation efficiency appear to be within projected values for this technology

  20. Fuels and materials for transmutation. A status report

    International Nuclear Information System (INIS)

    2005-01-01

    The safe and efficient management of spent fuel from the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radioactive waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred to a thousand years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia stretching beyond 10 000 years. Transmutation is one of the means being explored to address the disposal of transuranic elements. To achieve this, advanced reactor systems, appropriate fuels, separation techniques and associated fuel cycle strategies are required. This report describes the current status of fuel and material technologies for transmutation and suggests technical R and D issues that need to be resolved. It will be of particular interest to nuclear fuel and material scientists involved in the field of partitioning and transmutation (P and T), and in advanced fuel cycles in general. (author)

  1. General solution of Bateman equations for nuclear transmutations

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2006-01-01

    The paper concerns the linear chain method of solving Bateman equations for nuclear transmutation in derivation of the general solution for linear chain with repeated transitions and thus elimination of existing numerical problems. In addition, applications of derived equations for transmutation trajectory analysis method is presented

  2. French fuel cycle strategy and partitioning and transmutation programme

    International Nuclear Information System (INIS)

    Pradel, Ph.

    2007-01-01

    the reactor fleet (PWR-FR-ADS). Important results are now available concerning the possibility of significantly reducing the quantity and the radiotoxicity of long-lived waste in association with a sustainable development of nuclear energy. As France has confirmed its long-term approach to nuclear energy, the most effective implementation of P and T of minor actinides relies on the fast neutron Gen IV systems which are designed to recycle and manage their own actinides. The perspective to deploy a first series of such systems around 2040 supports the idea that progress is being made: the long-term waste would only be made up of fission products, with very low amounts of minor actinides. In this sense, the new waste management law passed by the French parliament on 28 June 2006, demands that P and T research continue in strong connection with Gen IV systems and ADS development, allowing to assess the industrial perspectives of such systems in 2012 and to put into operation a transmutation demo facility in 2020. (author)

  3. Status of the French Research on Partitioning and Transmutation

    International Nuclear Information System (INIS)

    Warin, Dominique

    2007-01-01

    reactor fleet (PWR-FR-ADS). Important results are now available concerning the possibility of significantly reducing the quantity and the radiotoxicity of long-lived waste in association with a sustainable development of nuclear energy. As France has confirmed its long-term approach to nuclear energy, the most effective implementation of P and T of minor actinides relies on the fast neutron GEN IV systems, which are designed to recycle and manage their own actinides. The perspective to deploy a first series of such systems around 2040 supports the idea that progress is being made: the long-term waste would only be made up of fission products, with very low amounts of minor actinides. In this sense, the new waste management law passed by the French Parliament on June 28, 2006, demands that P and T research continues in strong connection to GEN IV systems and ADS development and allowing the assessment of the industrial perspectives of such systems in 2012 and to put into operation a transmutation demo facility in 2020. (author)

  4. Transmutation Scenarios Impacts on Advanced Nuclear Cycles. Fabrication, Reprocessing and Transportation

    International Nuclear Information System (INIS)

    Saturnin, A.; Sarrat, P.; Hancok, H.; Milot, J.-F.; Duret, B.; Jasserand, F.; Fillastre, E.; Giffard, F.-X.; Chabert, C.; Van Den Durpel, L.; Caron-Charles, M.; Lefevre, J.C.; Carlier, B.; Arslan, M.; Favet, D.; Garzenne, C.; Barbrault, P.

    2013-01-01

    Conclusions: First detailed assessment of plants and transportation in various transmutation scenarios. In case of curium transmutation: large difficulties and uncertainties requiring whole new technology development (more pronounced for ADS option). For Am transmutation: more feasible, still to be demonstrated on specific points for industrial extrapolation

  5. World-wide trend of long-lived radionuclides transmutation studies

    International Nuclear Information System (INIS)

    Kim, Young Hwan; Lee, Il Hee; Yoo, Jae Hyung

    1997-01-01

    The objective of this study is to review the concepts of partitioning and transmutation studies which are being conducted in several countries. This review was focused on the analysis of such areas as radiotoxicities of radwaste containing long-lived radionuclides, transmutation by reactors or accelerators, and separation of minor actinides. The world-wide trend of partitioning and transmutation studies was also investigated on the basis of each country's R and D activities in this area. (author). 5 refs., 4 tabs., 3 figs

  6. The nuclear design optimization of a Pb-Bi alloy cooled transmuter, PEACER-300

    International Nuclear Information System (INIS)

    Lim, Jae-Yong; Kim, Myung-Hyun

    2006-01-01

    A core design of lead-bismuth cooled fast reactor, PEACER-300 has been investigated to maximize its transmutation capability within safety criteria. Transmutation of minor actinide under a closed recycling was analyzed with assumption on decontamination factors in pyro-reprocessing plant data at reasonably high values. To acquire high transmutation performance, feed fuel composition, P/D ratio, active core height and fuel cycle strategy were changed. For preventing the fuel meting and guaranteeing long plant life-time, the number of fuel assembly array and normal operation temperature were decided. The optimized design parameter were chosen as of a flat core shape with 50 cm of active core height and 5 m core diameter, loaded with 17 x 17 arrayed fuel assemblies. A pitch to diameter ratio is 2.2, operating coolant temperature range is 300 deg. C to 400 deg. C, and core consists of 3 different enrichment zones with one year cycle length. Performance of designed core showed a high transmutation capability with support ratio of 2.085, large negative temperature feedback coefficients, and sufficient shutdown margin with 28 B 4 C control assemblies. (authors)

  7. Transmutation of All German Transuranium under Nuclear Phase Out Conditions – Is This Feasible from Neutronic Point of View?

    Science.gov (United States)

    Merk, Bruno; Litskevich, Dzianis

    2015-01-01

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions. PMID:26717509

  8. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-01-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  9. Transmutation of LWR waste actinides in thermal reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-01-01

    Recycle of actinides to a reactor for transmutation to fission products is being considered as a possible means of waste disposal. Actinide transmutation calculations were made for two irradiation options in a thermal (LWR) reactor. The cases considered were: all actinides recycled in regular uranium fuel assemblies, and transuranic actinides recycled in separate mixed oxide (MOX) assemblies. When all actinides were recycled in a uranium lattice, a reduction of 62% in the transuranic inventory was achieved after 10 recycles, compared to the inventory accumulated without recycle. When the transuranics from 2 regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after 5 recycles

  10. Basic plan of partitioning and transmutation technology development

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Ozawa, Masaki

    2003-04-01

    Basic plan of partitioning and transmutation technology development has been made in more detail and concrete manner in terms of development goal, nuclides to be portioned and to be transmuted, and development schedule, based on the pre-evaluation results of the Research Evaluation Committee on Research and development of partitioning and transmutation technology for long life nuclides' held in August 2000. A step by step approach, consists of three steps, to reach the goal of partitioning and transmutation technology has been adopted under the recognition that the partitioning and transmutation technology development should be progressed steadily as a long term them. The first step is supposed to be able to attain within about 5 years by the present technology and on the extension of it. Such researches as collective separation of TRU, MA/Ln effective separation, and irradiation experiment of iodine and technetium. The second step is such a goal that is expected to be able to realize the engineering feasibility, within about 15 years, through the progress of science technology in future, although the engineering feasibility is not sufficiently foreseen at present. It will need revolutionary technology or breakthrough. Nuclides to be partitioned and to be transmuted have been selected in view points of 'radioactivity and radio-toxicity', 'geological repository', and 'effective utilization', corresponding to the each step of the development goal. Collaboration with other research organizations and with universities in the world should be pursued. Especially, such collaborations with France, with which information exchange on JOYO/PHENIX irradiation experiments is progressing, and with USA, which has recently developed positive activities in this field, are strongly expected. (author)

  11. Technology readiness of partitioning and transmutation toward closed fuel cycle in Japan

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kurata, Masaki; Morita, Yasuji; Tsujimoto, Kazufumi; Minato, Kazuo; Koyama, Shin-ichi

    2011-01-01

    This paper treats technology readiness level (TRL) assessment of Partitioning and Transmutation (P-T) toward closed fuel cycle in JAPAN. The purpose is providing clarified information related to the current maturity of the partitioning and transmutation technologies by applying the methodology of TRL, parallel to attempting to establish common indications among relating technology area. The methodology should be one of useful communication tools between specialists and management level, and also among countries interested in the P-T technologies. The generic TRL in this study is based on the GNEP (Global Nuclear Energy Partnership)'s definition: TRL 3 shows the status that critical function is proved and elemental technologies are identified, TRL 4 represents that relating technologies are validated at bench scale in laboratory environment, and TRL 5 achieves the completion of development related to the subsystem and elemental technologies. Detailed indications are established through discussion of the relating specialists. Reviewed technological area includes P-T and minor actinide (MA) cycle: Fast Breeder Reactor (FBR) and Accelerator driven system (ADS) for MA transmutation, partitioning processes, and MA-bearing fuels. The assessments reveal that TRL spreads around TRL 3 to TRL 4 because each system requires more the development of elemental technologies. Transmutation core of FBR is assessed to be TRL 4 in that MA bearing integral test is required additionally, and ADS becomes TRL 3 because the elemental technologies were identified and the requirements were specified. Consequently, the common key issue is how the nuclear calculation methodology will be validated for MA-bearing-fuelled core, since several percentages of MA changes the void reactivity and the Doppler Effect significantly, which are inherently important in reactor safety. It should be that critical experiments with several kg of americium or more are difficult in the existing experimental

  12. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  13. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  14. Transmutation of long-lived fission product (137Cs, 90Sr) by a reactor-accelerator system

    International Nuclear Information System (INIS)

    Toyama, Shin-ichi; Takashita, Hirofumi; Konashi, Kenji; Sasao, Nobuyuki; Sato, Isamu.

    1990-01-01

    The report discusses the transmutation of long-lived fission products by a reactor and accelerator. It is important to take some criteria into consideration in transmutation disposal. To satisfy the criteria, a combined system of a reactor and an accelerator is proposed for the transmutation. An outline of the transmutation reactor and the accelerator is presented. The transmutation reactor has the ability to transmute a large quantity of fission products. However, it is desirable to have a high transmutation rate as well as a large disposal ability. Besides the transmutation property, it is necessary to investigate the physics of the transmutation reactor such as nuclear characteristics and burnup properties in order to obtain the most suitable, high performance core concept. A study on those properties is also presented. A high power accelerator is required for the transmutation. So a test linac is developed to accelerate high intensity beams. (N.K.)

  15. Deep burn transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Rodriguez, C.; Baxter, A.; McEachern, D.; Venneri, F.; Williams, D.

    2002-01-01

    Helium-cooled, graphite-moderated reactors with ceramic-coated fuel particles offer unique advantages for the destruction of transuranic materials discharged in Light Water Reactor spent fuel. This is accomplished by fission, and capture-followed-by-fission processes. Three major features make it practical: (1) ceramic-coated particles accommodate high levels of burnup in one pass, thus reducing the need for repeated reprocessing; (2) graphite moderation produces valuable opportunities for thermal and epithermal neutrons to interact with fissionable and non-fissionable materials respectively; and (3) ceramic-coated particle kernel sizes can be adjusted to control the rate of such interactions. In the transmutation scheme proposed here, virtually complete destruction of weapons-usable materials, and 95% destruction of all transuranic waste is achieved. Higher levels of destruction are possible by repeated reprocessing and recycling, but there is little incentive to do so since each reprocessing step generates new secondary waste. After transmutation, the impervious ceramic-coated fuel particles provide an ideal residual waste form. (author)

  16. Transmuted Lindley-Geometric Distribution and its applications

    OpenAIRE

    Merovci, Faton; Elbatal, Ibrahim

    2013-01-01

    A functional composition of the cumulative distribution function of one probability distribution with the inverse cumulative distribution function of another is called the transmutation map. In this article, we will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking Lindley geometric distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. It will be show...

  17. Transmuted New Generalized Inverse Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Muhammad Shuaib Khan

    2017-06-01

    Full Text Available This paper introduces the transmuted new generalized inverse Weibull distribution by using the quadratic rank transmutation map (QRTM scheme studied by Shaw et al. (2007. The proposed model contains the twenty three lifetime distributions as special sub-models. Some mathematical properties of the new distribution are formulated, such as quantile function, Rényi entropy, mean deviations, moments, moment generating function and order statistics. The method of maximum likelihood is used for estimating the model parameters. We illustrate the flexibility and potential usefulness of the new distribution by using reliability data.

  18. Application of variance reduction technique to nuclear transmutation system driven by accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In Japan, it is the basic policy to dispose the high level radioactive waste arising from spent nuclear fuel in stable deep strata after glass solidification. If the useful elements in the waste can be separated and utilized, resources are effectively used, and it can be expected to guarantee high economical efficiency and safety in the disposal in strata. Japan Atomic Energy Research Institute proposed the hybrid type transmutation system, in which high intensity proton accelerator and subcritical fast core are combined, or the nuclear reactor which is optimized for the exclusive use for transmutation. The tungsten target, minor actinide nitride fuel transmutation system and the melted minor actinide chloride salt target fuel transmutation system are outlined. The conceptual figures of both systems are shown. As the method of analysis, Version 2.70 of Lahet Code System which was developed by Los Alamos National Laboratory in USA was adopted. In case of carrying out the analysis of accelerator-driven subcritical core in the energy range below 20 MeV, variance reduction technique must be applied. (K.I.)

  19. Neutron transmutation doping of gallium arsenide

    International Nuclear Information System (INIS)

    Alexiev, D.

    1987-12-01

    Neutron transmutation doping (NTD) was studied as a means of compensating p-type Cd-doped GaAs. By introducing specific donor concentrations, the net acceptor level was measured and showed a progressive reduction. The NTD constant K = 0.32 donor atoms.cm 3 per cm 2 was also measured. Radiation damage caused by neutron bombardment was annealed and no additional traps were generated

  20. Comparative study for minor actinide transmutation in various fast reactor core concepts

    International Nuclear Information System (INIS)

    Ohki, S.

    2001-01-01

    A comparative evaluation of minor actinide (MA) transmutation property was performed for various fast reactor core concepts. The differences of MA transmutation property were classified by the variations of fuel type (oxide, nitride, metal), coolant type (sodium, lead, carbon dioxide) and design philosophy. Both nitride and metal fuels bring about 10% larger MA transmutation amount compared with oxide fuel. The MA transmutation amount is almost unchanged by the difference between sodium and lead coolants, while carbon dioxide causes a reduction by about 10% compared with those. The changes of MA transmutation property by fuel and coolant types are comparatively small. The effects caused by the difference of core design are rather significant. (author)

  1. A new concept for accelerator driven transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1991-01-01

    A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transmuted efficiently. Transmutation takes place in a unique, low material inventory environment. Presently two principal areas are being investigated for application of the concept. The first is associated with cleanup of defense high-level waste at DOE sites such as Hanford. The second, longer term area involves production of electric power using a coupled accelerator-multiplying blanket system. This system would utilize natural thorium or uranium and would transmute long-lived components of high-level waste concurrently during operation. 5 refs., 5 figs

  2. Analysis of minor actinides transmutation for a Molten Salt Fast Reactor

    International Nuclear Information System (INIS)

    Yu, Chenggang; Li, Xiaoxiao; Cai, Xiangzhou; Zou, Chunyan; Ma, Yuwen; Han, Jianlong; Chen, Jingen

    2015-01-01

    Highlights: • The transmutation of MA in a 500 MWth MSFR is analyzed. • A larger MA loading can enhance the MA transmutation and deepen the burnup. • The MA transmutation efficiency can reach 95%. • The FTC can satisfy the safe operating requirement during the entire operating. - Abstract: As one of the six candidate reactors chosen by the Generation IV International Forum (GIF), Molten Salt Fast Reactor (MSFR) has many outstanding advantages and features for advanced nuclear fuel utilization. Effective transmutation of minor actinides (MA) could be attained in this kind of fast reactor, which is of importance in the future closed nuclear fuel cycle scenario. In this work, we attempt to study the MA transmutation capability in a MSFR with power of 500 MWth by analyzing the neutronics characteristics for different MA loadings. The calculated results show that MA loading plays an important role in the reactivity evolution of the MSFR. A larger MA loading is favorable to improving the MA transmutation performance and simultaneously to reducing the fissile consumption. When MA = 18.17 mol%, the transmutation fraction can achieve to about 95% on iso-breeding. We also find that although the fuel temperature coefficient (FTC) decreases with the increasing MA loading, it is still negative enough to keep the safety of the MSFR during the whole operation time. The MA contribution to the effective delayed neutron fraction (EDNF) and the intensity of spontaneous fission neutron (ISFN) are also analyzed. Also MA loading can affect the EDNF during the operation and the ISFN of the MSFR is dominated by 244 Cm. Finally, we analyze the effect of the core power on MA transmutation capability. The result shows that for all the operating powers the depletion ratio of MA to HN increases with time and reaches a maximum value. And additional MA should be fed into the fuel salt before the MA depletion ratio reaches the peak value to improve its transmutation capability. The net

  3. A code system for ADS transmutation studies

    International Nuclear Information System (INIS)

    Brolly, A.; Vertes, P.

    2001-01-01

    An accelerator driven reactor physical system can be divided into two different subsystems. One is the neutron source the other is the subcritical reactor. Similarly, the modelling of such system is also split into two parts. The first step is the determination of the spatial distribution and angle-energy spectrum of neutron source in the target region; the second one is the calculation of neutron flux which is responsible for the transmutation process in the subcritical system. Accelerators can make neutrons from high energy protons by spallation or photoneutrons from accelerated electrons by Bremsstrahlung (e-n converter). The Monte Carlo approach is the only way of modelling such processes and it might be extended to the whole subcritical system as well. However, a subcritical reactor may be large, it may contain thermal regions and the lifetime of neutrons may be long. Therefore a comprehensive Monte Carlo modelling of such system is a very time consuming computational process. It is unprofitable as well when applied to system optimization that requires a comparative study of large number of system variants. An appropriate method of deterministic transport calculation may adequately satisfy these requirements. Thus, we have built up a coupled calculational model for ADS to be used for transmutation of nuclear waste which we refer further as M-c-T system. Flow chart is shown in Figure. (author)

  4. Study of deep subcritical electronuclear systems and feasibility of their application for energy production and radioactive waste transmutation

    International Nuclear Information System (INIS)

    Adam, J.; Baldin, A.; Vladimirova, N.

    2010-01-01

    Physical substantiation for investigation of new schemes of electronuclear power production and transmutation of long-lived radioactive wastes based on nuclear relativistic technologies is presented. 'E and T RAW' ('Energy and Transmutation of Radioactive Wastes') is aimed at complex study of interaction of relativistic beams of the Nuclotron-M with energies up to 10 GeV in quasi-infinite targets. Feasibility of application of natural/depleted uranium or thorium without the use of uranium-235, as well as utilization of spent fuel elements of atomic power plants is demonstrated based on analysis of results of known experiments, numerical, and theoretical works. The 'E and T RAW' project will provide fundamentally new data and numerical methods necessary for design of demonstration experimental-industrial setups based on the proposed scheme

  5. The DD Cold Fusion-Transmutation Connection

    Science.gov (United States)

    Chubb, Talbot A.

    2005-12-01

    LENR theory must explain dd fusion, alpha-addition transmutations, radiationless nuclear reactions, and three-body nuclear particle reactions. Reaction without radiation requires many-body D Bloch+ periodicity in both location and internal structure dependencies. Electron scattering leads to mixed quantum states. The radiationless dd fusion reaction is 2-D Bloch+ -> {}4 He Bloch2+. Overlap between {}4 He Bloch2+ and surface Cs leads to alpha absorption. In the Iwamura et al. studies active deuterium is created by scattering at diffusion barriers.

  6. Homogeneous Minor Actinide Transmutation in SFR: Neutronic Uncertainties Propagation with Depletion

    International Nuclear Information System (INIS)

    Buiron, L.; Plisson-Rieunier, D.

    2015-01-01

    In the frame of next generation fast reactor design, the minimisation of nuclear waste production is one of the key objectives for current R and D. Among the possibilities studied at CEA, minor actinides multi-recycling is the most promising industrial way achievable in the near-term. Two main management options are considered: - Multi-recycling in a homogeneous way (minor actinides diluted in the driver fuel). If this solution can help achieving high transmutation rates, the negative impact of minor actinides on safety coefficients allows only a small fraction of the total heavy mass to be loaded in the core (∼ few %). - Multi-recycling in heterogeneous way by means of Minor Actinide Bearing Blanket (MABB) located at the core periphery. This solution offers more flexibility than the previous one, allowing a total minor actinides decoupled management from the core fuel. As the impact on feedback coefficient is small larger initial minor actinide mass can be loaded in this configuration. Starting from a breakeven Sodium Fast Reactor designed jointly by CEA, Areva and EdF teams, the so called SFR V2B, transmutation performances have been studied in frame on the French fleet for both options and various specific isotopic management (all minor actinides, americium only, etc.). Using these results, a sensitivity study has been performed to assess neutronic uncertainties (i.e coming from cross section) on mass balance on the most attractive configurations. This work in based on a new implementation of sensitivity on concentration with depletion in the ERANOS code package. Uncertainties on isotopes masses at the end of irradiation using various variance-covariance is discussed. (authors)

  7. Actinide and fission product separation and transmutation

    International Nuclear Information System (INIS)

    1991-01-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  8. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  9. Transmutation of high-level radioactive waste - Perspectives

    CERN Document Server

    Junghans, Arnd; Grosse, Eckart; Hannaske, Roland; Kögler, Toni; Massarczyk, Ralf; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    In a fast neutron spectrum essentially all long-lived actinides (e.g. Plutonium) undergo fission and thus can be transmuted into generally short lived fission products. Innovative nuclear reactor concepts e.g. accelerator driven systems (ADS) are currently in development that foresee a closed fuel cycle. The majority of the fissile nuclides (uranium, plutonium) shall be used for power generation and only fission products will be put into final disposal that needs to last for a historical time scale of only 1000 years. For the transmutation of high-level radioactive waste a lot of research and development is still required. One aspect is the precise knowledge of nuclear data for reactions with fast neutrons. Nuclear reactions relevant for transmutation are being investigated in the framework of the european project ERINDA. First results from the new neutron time-of-flight facility nELBE at Helmholtz-Zentrum Dresden-Rossendorf will be presented.

  10. Program on fuels for transmutation: present status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Rouault, J.; Garnier, J.C.; Chauvin, N.; Pillon, S. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Combustibles

    2001-07-01

    The performance calculations of appropriate fuel cycle facilities and reactor configurations (scenarios) relying on current reactor technologies (Pressurized Water Reactor and Fast neutrons Reactors) or innovative reactors (Accelerator Driven Systems) have proved the scientific feasibility of some P and T strategies. To insure the technological feasibility, a large program on fuels and materials is underway, including advanced concepts for PWRs and the development of specific targets (dispersed fuels) for transmutation in Fast Reactors. Experiments in different reactors including Phenix are being prepared. The program is presented and recent results are given. (author)

  11. Program on fuels for transmutation: present status and prospects

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Chauvin, N.; Pillon, S.

    2001-01-01

    The performance calculations of appropriate fuel cycle facilities and reactor configurations (scenarios) relying on current reactor technologies (Pressurized Water Reactor and Fast neutrons Reactors) or innovative reactors (Accelerator Driven Systems) have proved the scientific feasibility of some P and T strategies. To insure the technological feasibility, a large program on fuels and materials is underway, including advanced concepts for PWRs and the development of specific targets (dispersed fuels) for transmutation in Fast Reactors. Experiments in different reactors including Phenix are being prepared. The program is presented and recent results are given. (author)

  12. Code development and analyses within the area of transmutation and safety

    International Nuclear Information System (INIS)

    Maschek, W.

    2002-01-01

    A strong code development is going on to meet various demands resulting from the development of dedicated reactors for transmutation and incineration. Code development is concerned with safety codes and general codes needed for assessing scenarios and transmutation strategies. Analyses concentrate on various ADS systems with solid and liquid molten salt fuels. Analyses deal with ADS Demo Plant (5th FP EU) and transmuters with advanced fuels

  13. Preliminary Analysis of High-Flux RSG-GAS to Transmute Am-241 of PWR’s Spent Fuel in Asian Region

    Science.gov (United States)

    Budi Setiawan, M.; Kuntjoro, S.

    2018-02-01

    A preliminary study of minor actinides (MA) transmutation in the high flux profile RSG-GAS research reactor was performed, aiming at an optimal transmutation loading for present nuclear energy development. The MA selected in the analysis includes Am-241 discharged from pressurized water reactors (PWRs) in Asian region. Until recently, studies have been undertaken in various methods to reduce radiotoxicity from actinides in high-level waste. From the cell calculation using computer code SRAC2006, it is obtained that the target Am-241 which has a cross section of the thermal energy absorption in the region (group 8) is relatively large; it will be easily burned in the RSG-GAS reactor. Minor actinides of Am-241 which can be inserted in the fuel (B/T fuel) is 2.5 kg which is equivalent to Am-241 resulted from the partition of spent fuel from 2 units power reactors PWR with power 1000MW(th) operated for one year.

  14. Research on transmutation and accelerator-driven systems at the Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Knebel, J.U.; Heusener, G.

    2000-01-01

    Transmutation is considered a promising technology worldwide for significantly reducing the amount and, thereby, the long-term radiotoxicity of high active waste (HAW) produced by the operation of nuclear power plants such as light water reactors (LWR). The maximum reduction of radiotoxicity could be by a factor of about 100. Transmutation is thus an alternative to the direct deposition of large volumes of highly radioactive waste. Transmutation presents the possibility of closing the fuel cycle including the minor actinides. Plutonium, minor actinides and long-lived fission products can be transmuted in a so called Accelerator Driven Sub-critical System (ADS), which consists of an accelerator, a target module and a subcritical blanket. This paper describes the work performed at Forschungszentrum Karlsruhe which is critically evaluating an ADS mainly with respect to its potential for transmuting minor actinides, to its feasibility and to safety aspects. The work is being done in the area of core design, neutronics, safety, system analyses, materials and corrosion. (orig.) [de

  15. Proposed partitioning and transmutation of long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Rawlins, J.A.

    1991-01-01

    A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine would transmute the minor actinides and the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW e . 14 refs., 10 figs

  16. Status report on actinide and fission product transmutation studies

    International Nuclear Information System (INIS)

    1997-06-01

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  17. Transmutation of minor actinide using BWR fueled mixed oxide

    International Nuclear Information System (INIS)

    Susilo, Jati

    2000-01-01

    Nuclear spent fuel recycle has a strategic importance in the aspect of nuclear fuel economy and prevention of its spread-out. One among other application of recycle is to produce mixed oxide fuel (Mo) namely mixed Plutonium and uranium oxide. As for decreasing the burden of nuclear high level waste (HLW) treatment, transmutation of minor actinide (MA) that has very long half life will be carried out by conversion technique in nuclear reactor. The purpose of this study was to know influence of transition fuel cell regarding the percent weight of transmutation MA in the BWR fueled MOX. Calculation of cell BWR was used SRAC computer code, with assume that the reactor in equilibrium. The percent weight of transmutation MA to be optimum by increasing the discharge burn-up of nuclear fuel, raising ratio of moderator to fuel volume (Vm/Vf), and loading MA with percent weight about 3%-6% and also reducing amount of percent weight Pu in MOX fuel. For mixed fuel standard reactor, reactivity value were obtained between about -50pcm ∼ -230pcm for void coefficient and -1.8pcm ∼ -2.6pcm for fuel temperature coefficient

  18. Estimation of the outlooks for large-scale transmutation of fission-produced iodine

    CERN Document Server

    Galkin, B Y; Kolyadin, A B; Kocherov, N P; Lyubtsev, R I; Hosov, A A; Rimskij-Korsakov, A A

    2002-01-01

    To obtain data necessary for estimating sup 1 sup 2 sup 9 I transmutation efficiency in nuclear reactors the effective neutron capture cross section on sup 1 sup 2 sup 9 I isotope in neutral spectrum of the WWR-M reactor was determined. The calculated value of sup 1 sup 2 sup 9 I capture cross section, averaged by neutron spectrum in beryllium reflector of the WWR-M reactor, made up 17.8+-3.2 barn. On the basis of experimental data and estimations it was shown that in neutron flux 10 sup 1 sup 4 1/(cm sup 2 s) transmutation of iodine -129 loaded in the course of one year can amount to approximately 25%

  19. A proposal for a Los Alamos international facility for transmutations (LIFT)

    International Nuclear Information System (INIS)

    Venneri, F.; Williamson, M.A.; Li, Ning; Doolen, G.

    1996-01-01

    The major groups engaged in transmutation research are converging towards a common objective and similar technology. It is now possible to envision an international program of research aimed at the destruction of reactor-generated (and other) nuclear waste using a series of multipurpose experimental facilities in the near future. Los Alamos National Laboratory, as the home of the highest power LINAC and a very active transmutation technology project, is the ideal host for the first of such facilities. The next step in the international program (a facility 10 times more powerful, for engineering-scale demonstrations) could be built in Europe, where there is substantial interest in the construction of such a device in the framework of international cooperation. A series of experiments at Las Alamos could explore the key transmutation technologies. Liquid lead loops, a liquid lead spallation target, and a large size liquid lead facility with provision for irradiation, cooling and diagnostics of several types of 'transmutation assemblies', where different transmutation concepts will be tested in different media and environments, from transmutation of fission products to destruction by fission of higher actinides, to other waste management applications. The engineering-scale facility, which will follow the initial testing phase, will extend the best concepts to full scale implementation

  20. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration.

    Science.gov (United States)

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-06-01

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  2. Recycling and transmutation of nuclear waste. ECN-Petten and Belgonucleaire contributions in the framework of 'Partitioning and transmutation studies of the 4th CEC programme on rad waste management and disposal'

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Gruppelaar, H.; Brusselaers, P.; Evrard, G.; La Fuente, A.; Maldague, T.; Pilate, S.; Renard, A.

    1995-12-01

    A 'Strategy study on nuclear waste transmutation' by Netherlands Energy Research Foundation (ECN) and Belgonucleaire (BN) in the frame of the EU R and D Programme 1990/1994 on management and storage of radioactive waste has been executed in collaboration with AEA Technology, CEA and Siemens. First of all the motivation for transmuting long-lived radioactive products has been formulated, next transmutation of Tc-99 and I-129 in fission reactors has been studied for the PWR, HFR, Superphenix, and the CANDU reactor. Cross section libraries have been improved for ORIGEN-S on the basis of JEF2.2 and EAF3. This study has been amended by a graphical representation of important reactions for activation of cladding and inert matrix materials. By means of the derived new data libraries, some sample calculations on transmutation of americium in thermal reactors have been performed. Implications of recycling plutonium and americium in the form of MOX fuel in light water reactors have been investigated. It became clear from the present study that trasmutation of the existing plutonium has the highest priority and that reduction of minor-actinides is next on the priority list. Thirdly, the (difficult) large-scale transmutation of Tc-99 and of I-129 could reduce the leakage dose risks. It also seems most worthwhile to be careful with naturally occurring U-234 in the waste, as this will in the long run lead to a substantial increase of the 'natural' radon dose in the neighbourhood of the storage facility. (orig.)

  3. Recycling and transmutation of nuclear waste. ECN-Petten and Belgonucleaire contributions in the framework of `Partitioning and transmutation studies of the 4th CEC programme on rad waste management and disposal`

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, K. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Gruppelaar, H. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Brusselaers, P. [Belgonucleaire S.A., Brussels (Belgium); Evrard, G. [Belgonucleaire S.A., Brussels (Belgium); La Fuente, A. [Belgonucleaire S.A., Brussels (Belgium); Maldague, T. [Belgonucleaire S.A., Brussels (Belgium); Pilate, S. [Belgonucleaire S.A., Brussels (Belgium); Renard, A. [Belgonucleaire S.A., Brussels (Belgium)

    1995-12-01

    A `Strategy study on nuclear waste transmutation` by Netherlands Energy Research Foundation (ECN) and Belgonucleaire (BN) in the frame of the EU R and D Programme 1990/1994 on management and storage of radioactive waste has been executed in collaboration with AEA Technology, CEA and Siemens. First of all the motivation for transmuting long-lived radioactive products has been formulated, next transmutation of Tc-99 and I-129 in fission reactors has been studied for the PWR, HFR, Superphenix, and the CANDU reactor. Cross section libraries have been improved for ORIGEN-S on the basis of JEF2.2 and EAF3. This study has been amended by a graphical representation of important reactions for activation of cladding and inert matrix materials. By means of the derived new data libraries, some sample calculations on transmutation of americium in thermal reactors have been performed. Implications of recycling plutonium and americium in the form of MOX fuel in light water reactors have been investigated. It became clear from the present study that trasmutation of the existing plutonium has the highest priority and that reduction of minor-actinides is next on the priority list. Thirdly, the (difficult) large-scale transmutation of Tc-99 and of I-129 could reduce the leakage dose risks. It also seems most worthwhile to be careful with naturally occurring U-234 in the waste, as this will in the long run lead to a substantial increase of the `natural` radon dose in the neighbourhood of the storage facility. (orig.).

  4. Evaluation of the transmutation of transuranic using neutrons spectrum from the spallation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gilberti, Mauricio; Pereira, Claubia, E-mail: mgilber@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil); Veloso, Maria A. Fortini, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizante, MG (Brazil). Dept. de Engenharia Nuclear

    2013-07-01

    The transmutation of transuranic was analyzed by simulating the neutron flux from different spallation sources across arrays of fissile material with isotopic composition PWR reprocessing. A simplified model of Accelerator-Driven Systems (ADS) containing target, moderator graphite, lead-bismuth coolant or sodium coolant, is used. The simulation was made using the particles transport code MCNPX 2.6.0 which allowed to evaluate the rate of transmutation of actinides (Np, Pu, Am, and Cm) at different locations in the system. The objective of the study is to evaluate which the behavior and influences the spectrum of the spallation in the transmutation without the contribution or interference of multiplier, medium subcritical, which would add the contribution of fission neutrons generated, thus interfering in the analysis. The arrangement enable to infer the influence of hardened neutron flux from the spallation reaction in the transmutation, the results show that this is independent of the target material chosen, and the spectrum of spallation has a negligible importance compared to the influence of moderation and scattering generated by the coolant or moderator used. (author)

  5. Evaluation of the transmutation of transuranic using neutrons spectrum from the spallation reaction

    International Nuclear Information System (INIS)

    Gilberti, Mauricio; Pereira, Claubia; Veloso, Maria A. Fortini

    2013-01-01

    The transmutation of transuranic was analyzed by simulating the neutron flux from different spallation sources across arrays of fissile material with isotopic composition PWR reprocessing. A simplified model of Accelerator-Driven Systems (ADS) containing target, moderator graphite, lead-bismuth coolant or sodium coolant, is used. The simulation was made using the particles transport code MCNPX 2.6.0 which allowed to evaluate the rate of transmutation of actinides (Np, Pu, Am, and Cm) at different locations in the system. The objective of the study is to evaluate which the behavior and influences the spectrum of the spallation in the transmutation without the contribution or interference of multiplier, medium subcritical, which would add the contribution of fission neutrons generated, thus interfering in the analysis. The arrangement enable to infer the influence of hardened neutron flux from the spallation reaction in the transmutation, the results show that this is independent of the target material chosen, and the spectrum of spallation has a negligible importance compared to the influence of moderation and scattering generated by the coolant or moderator used. (author)

  6. Fluoride partitioning R and D programme for molten salt transmutation reactor systems in the Czech Republic

    International Nuclear Information System (INIS)

    Uhlir, J.; Priman, V.; Vanicek, J.

    2001-01-01

    The transmutation of spent nuclear fuel is considered a prospective alternative conception to the current conception based on the non-reprocessed spent fuel disposal into underground repository. The Czech research and development programme in the field of partitioning and transmutation is founded on the Molten Salt Transmutation Reactor system concept with fluoride salts based liquid fuel, the fuel cycle of which is grounded on pyrochemical / pyrometallurgical fluoride partitioning of spent fuel. The main research activities in the field of fluoride partitioning are oriented mainly towards technological research of Fluoride Volatility Method and laboratory research on electro-separation methods from fluoride melts media. The Czech national conception in the area of P and T research issues from the national power industry programme and from the Czech Power Company intentions of the extensive utilization of nuclear power in our country. The experimental R and D work is concentrated mainly in the Nuclear Research Institute Rez plc that plays a role of main nuclear research workplace for the Czech Power Company. (author)

  7. Multi-faceted evaluation for nuclear fuel cycles with transmutation

    International Nuclear Information System (INIS)

    Nishihara, Kenji

    2015-03-01

    Environment impact, economy and proliferation resistance were estimated for nuclear fuel cycles involving transmutation by fast reactor and accelerator-driven system in equilibrium state. As a result, the transmutation scenario using only fast reactor was superior to the scenarios combined with accelerator-driven system in all estimation, but the differences were insignificant. (author)

  8. Developmental heterogeneity in DNA packaging patterns influences T-cell activation and transmigration.

    Directory of Open Access Journals (Sweden)

    Soumya Gupta

    Full Text Available Cellular differentiation programs are accompanied by large-scale changes in nuclear organization and gene expression. In this context, accompanying transitions in chromatin assembly that facilitates changes in gene expression and cell behavior in a developmental system are poorly understood. Here, we address this gap and map structural changes in chromatin organization during murine T-cell development, to describe an unusual heterogeneity in chromatin organization and associated functional correlates in T-cell lineage. Confocal imaging of DNA assembly in cells isolated from bone marrow, thymus and spleen reveal the emergence of heterogeneous patterns in DNA organization in mature T-cells following their exit from the thymus. The central DNA pattern dominated in immature precursor cells in the thymus whereas both central and peripheral DNA patterns were observed in naïve and memory cells in circulation. Naïve T-cells with central DNA patterns exhibited higher mechanical pliability in response to compressive loads in vitro and transmigration assays in vivo, and demonstrated accelerated expression of activation-induced marker CD69. T-cell activation was characterized by marked redistribution of DNA assembly to a central DNA pattern and increased nuclear size. Notably, heterogeneity in DNA patterns recovered in cells induced into quiescence in culture, suggesting an internal regulatory mechanism for chromatin reorganization. Taken together, our results uncover an important component of plasticity in nuclear organization, reflected in chromatin assembly, during T-cell development, differentiation and transmigration.

  9. Transmutation of Minor Actinide in well thermalized neutron field and application of advanced neutron source (ANS)

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko; Hirakawa, Naohiro

    1995-01-01

    Transmutation of Minor Actinide (MA) in a well thermalized neutron field was studied. Since MA nuclides have large effective cross sections in the well thermalized neutron field, the transmutation in the well thermalized neutron field has an advantage of high transmutation rate. However, the transmutation rate largely decreases by accumulation of 246 Cm when MA is transmuted only in the well thermalized neutron field for a long period. An acceleration method of burn-up of 246 Cm was studied. High transmutation rate can be obtained by providing a neutron field with high flux in the energy region between 1 and 100 eV. Two stage transmutation using the well thermalized neutron field and this field can transmute MA rapidly. The applicability of the Advanced Neutron Source (ANS) to the transmutation of MA was examined for a typical MA with the composition in the high-level waste generated in the conventional PWR. If the ANS is applied without changing the fuel inventory, the amount of MA which corresponds to that produced by a conventional 1,175 MWe PWR in one year can be transmuted by the ANS in one year. Furthermore, the amount of the residual can be reduced to about 1g (10 -5 of the initial MA weight) by continuing the transmutation for 5 years owing to the two stage transmutation. (author)

  10. Contrast-enhanced 3T MR perfusion of musculoskeletal tumours. T1 value heterogeneity assessment and evaluation of the influence of T1 estimation methods on quantitative parameters

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Verbizier, Jacques de; Blum, Alain [Hopital Central, CHRU-Nancy, Service d' Imagerie Guilloz, Nancy (France); Chen, Bailiang; Beaumont, Marine [Universite de Lorraine, Laboratoire IADI, UMR S 947, Nancy (France); Badr, Sammy; Cotten, Anne [CHRU Lille Centre de Consultations et d' Imagerie de l' Appareil Locomoteur, Department of Radiology and Musculoskeletal Imaging, Lille (France)

    2017-12-15

    To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. (orig.)

  11. Fuel design for the U.S. accelerator driven transmutation system

    International Nuclear Information System (INIS)

    Meyer, M. K.; Hayes, S. L.; Crawford, D. C.; Pahl, R. G.; Tsai, H.

    2002-01-01

    The U.S. concept for actinide transmutation is currently envisioned as a system to destroy plutonium as well as minor actinides in a single or two tier system. In order to maximize the actinide destruction rate, an inert matrix fuel is used. The effectiveness of transmutation in reducing the actinide inventory is linked to the development of a robust fuel system, capable of achieving very high burnup. Very little fuel performance data has been generated to date on inert matrix systems, and there are several issues specific to the behavior of higher actinides that do not allow extension of the existing uranium-plutonium fuel database to these new fuels. These issues include helium production, fuel-cladding-chemical-interaction, and americium migration. In the early 1990's, two U-Pu-Zr metal alloy fuel elements containing 1.2 wt.% Am and 1.3 wt.% Np were fabricated and irradiated to approximately 6 at.% burnup in the Experimental Breeder Reactor-II. Postirradiation examination results were not published; however the recent interest in fuel for actinide transmutation has prompted a reexamination of this data. The results of the postirradiation examination of this experiment, including gas sampling, metallography, and gamma scanning are discussed. Available data on inert matrix fuels and other fuels incorporating actinides are used to assess the implications of minor-actinide specific issues on transmuter fuel. Considerations for the design of nitride and oxide fuels, metallic fuels, and metal-matrix dispersion fuels are discussed

  12. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Lahoda, E.; Wenner, M. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Lindley, B. [University of Cambridge (United Kingdom); Fiorina, C. [Polytechnic of Milan (Italy); Phillips, C. [Energy Solutions, Richland, WA (United States)

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  13. Fuel Design for the U.S. Accelerator Driven Transmutation System

    International Nuclear Information System (INIS)

    Meyer, M.K.; Hayes, S.L.; Crawford, D.C.; Pahl, R.G.; Tsai, H.

    2002-01-01

    The U.S. concept for actinide transmutation is currently envisioned as a system to destroy plutonium as well as minor actinides in a single or two tier system. In order to maximize the actinide destruction rate, an inert matrix fuel is used. The effectiveness of transmutation in reducing the actinide inventory is linked to the development of a robust fuel system, capable of achieving very high burnup. Very little fuel performance data has been generated to date on inert matrix systems, and there are several issues specific to the behavior of higher actinides that do not allow extension of the existing uranium-plutonium fuel database to these new fuels. These issues include helium production, fuel-cladding-chemical-interaction, and americium migration. In the early 1990's, two U-Pu-Zr metal alloy fuel elements containing 1.2 wt.% Am and 1.3 wt.% Np were fabricated and irradiated to approximately 6 at.% burnup in the Experimental Breeder Reactor-II. Postirradiation examination results were not published; however the recent interest in fuel for actinide transmutation has prompted a reexamination of this data. The results of the postirradiation examination of this experiment, including gas sampling, metallography, and gamma scanning are discussed. Available data on inert matrix fuels and other fuels incorporating actinides are used to assess the implications of minor-actinide specific issues on transmuter fuel. Considerations for the design of nitride and oxide fuels, metallic fuels, and metal-matrix dispersion fuels are discussed. (authors)

  14. A study of γ-ray source for the transmutation

    International Nuclear Information System (INIS)

    Nomura, Masahiro; Takahashi, Hiroshi.

    1996-07-01

    PNC is developing high power CW electron linac for various applications, those are the transmutation of the fission products, Free Electron Laser (FEL), the positron source and so on. Especially, the transmutation by the electron linac has been studied for several years. As the results, high flux and high energy γ-ray (∼15 MeV) is required, one of the big problems is that plenty of transmutation energy is needed and the narrow γ-ray energy spectrum can reduce the transmutation energy. The γ-rays can be produced by synchrotron radiation, FEL and laser compton scattering. Those methods were described briefly and compared. As a result, the laser compton scattering is one of the good methods to produce high energy γ-ray. However the cross section between electron and photon is small and the scattered photon energy spectrum is not so narrow that the transmutation energy is reduced drastically. To enhance the interaction between electron and photon, the super cavity is proposed. And some experiments are in progress. To reduce the transmutation energy, scattered electron must be reused by the storage ring. If the scattered electrons are not used for producing γ-ray, the efficiency is less than 1%. In our system, the efficiency can be increased to 20% by reusing scattered electrons. But this efficiency is still low. To increase the efficiency, the RF bucket must be enlarged. If the momentans compaction factor α can be reduced, the RF bucket can be enlarged. And the storage ring must be designed to have small value of the α. The electron energy dependency of efficiency is investigated, too. In short word, it is difficult to increase the efficiency drastically by changing electron energy. This work was conducted as a part of the collaboration work between PNC and BNL. (author)

  15. Recent research and development activities on partitioning and transmutation of radioactive nuclides in Japan

    International Nuclear Information System (INIS)

    Minato, K.; Ikegami, T.; Inoue, T.

    2005-01-01

    In Japan, research and development activities for partitioning and transmutation (P and T) have been promoted under the OMEGA programme for more than 15 years. These activities were reviewed by the Atomic Energy Commission in Japan in 2000. In accordance with the results of the review, three institutes, the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Cycle Development Institute (JNC) and the Central Research Institute of Electric Power Industry (CRIEPI), are continuing the research and development on the P and T technology. This report summarises the recent activities in Japan by these institutes. JAERI is engaging in the research and development on the Double-strata Fuel Cycle concept consisting of the partitioning process of the high-level waste and the dedicated transmutation cycle using the accelerator driven system (ADS) fuelled with the minor actinide (MA) nitride fuel. JNC and CRIEPI are engaging in the research and development on the P and T technology using commercialized fast reactors (FR), where JNC is mainly in charge of the MOX fuel and the aqueous reprocessing, while CRIEPI is mainly in charge of the metallic fuel and the dry reprocessing. The research and development activities on FR are organised under the Feasibility Study on Commercialized Fast Reactor Cycle Systems. (authors)

  16. Vortex transmutation.

    Science.gov (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  17. Vortex Transmutation

    International Nuclear Information System (INIS)

    Ferrando, Albert; Garcia-March, Miguel-Angel; Zacares, Mario; Monsoriu, Juan A.; Cordoba, Pedro Fernandez de

    2005-01-01

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a 'transmutation pass rule' determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials

  18. Transmutations across hierarchical levels

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1977-01-01

    The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed

  19. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  20. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    International Nuclear Information System (INIS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-01-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  1. A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)

    1998-03-01

    The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.

  2. Heterogeneous all actinide recycling in LWR all actinide cycle closure concept

    International Nuclear Information System (INIS)

    Tondinelli, Luciano

    1980-01-01

    A project for the elimination of transuranium elements (Waste Actinides, WA) by neutron transmutation is developed in a commercial BWR with U-Pu (Fuel Actinides, FA) recycle. The project is based on the All Actinide Cycle Closure concept: 1) closure of the 'back end' of the fuel cycle, U-Pu coprocessing, 2) waste actinide disposal by neutron transmutation. The reactor core consists of Pu-island fuel assemblies containing WAs in target pins. Two parallel reprocessing lines for FAs and WAs are provided. Mass balance, hazard measure, spontaneous activity during 10 recycles are calculated. Conclusions are: the reduction in All Actinide inventory achieved by Heterogeneous All Actinide Recycling is on the order of 83% after 10 recycles. The U235 enrichment needed for a constant end of cycle reactivity decreases for increasing number of recycles after the 4th recycle. A diffusion-burnup calculation of the pin power peak factors in the fuel assembly shows that design limits can be satisfied. A strong effort should be devoted to the solution of the problems related to high values of spontaneous emission by the target pins

  3. Resolving and quantifying overlapped chromatographic bands by transmutation

    Science.gov (United States)

    Malinowski

    2000-09-15

    A new chemometric technique called "transmutation" is developed for the purpose of sharpening overlapped chromatographic bands in order to quantify the components. The "transmutation function" is created from the chromatogram of the pure component of interest, obtained from the same instrument, operating under the same experimental conditions used to record the unresolved chromatogram of the sample mixture. The method is used to quantify mixtures containing toluene, ethylbenzene, m-xylene, naphthalene, and biphenyl from unresolved chromatograms previously reported. The results are compared to those obtained using window factor analysis, rank annihilation factor analysis, and matrix regression analysis. Unlike the latter methods, the transmutation method is not restricted to two-dimensional arrays of data, such as those obtained from HPLC/DAD, but is also applicable to chromatograms obtained from single detector experiments. Limitations of the method are discussed.

  4. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  5. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  6. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  7. The Molten Salt Fast Reactor as Highly Efficient Transmutation System

    International Nuclear Information System (INIS)

    Merk, B.; Rohde, U.; Scholl, S.

    2013-01-01

    Conclusion and future steps: • MSFR offers very attractive features for efficient transmutation; • significant advantages due to liquid fuel and online refuelling and reprocessing; • significant developments are required on the way to application; • system is very promising for transmutation; • development of a safety approach for liquid fuel reactors (RSWG); • investigation of possibilities to solve the “last transmuter” problem (ICAPP2013) – as future for countries envisaging nuclear phase out or no transition to fast reactor fleet for energy production; • establishing of a strong group “MSFR for transmutation”; • development of a transmutation optimized design

  8. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  9. Role of accelerators in the Czech national transmuter project

    International Nuclear Information System (INIS)

    Bem, P.; Kugler, A.

    1999-01-01

    The problem of spent nuclear fuel from the so far operated PWRs has become a crucial issue in the Czech Republic. The first attempts to solve this problem by a final deposit of spent fuel into a suitable geological formation have been shown not to be fully acceptable. Therefore, the revival of nuclear transmutation technology application for nuclear incineration of nuclear waste and spent fuel in particular was welcomed. A realistic national project started to be developed in 1996. The four major nuclear research institutions of the country formed a consortium focused on an adoption of the world-wide experience and a development of a national project of a transmutation technology (experimental transmuter LA-0) or an efficient participation in the international effort in that field. Because the LA-0 transmuter concept of subcritical reactor with liquid fuel based on molten fluorides driven by an external neutron source has been adopted, the R and D effort has been focused on three regions. The first is devoted to the problem of a suitable neutron source, the second to a pre-conceptual design of a blanket for burning of actinides contained in spent fuel from PWRs. The third region is devoted to the utilisation of the experience from a specific field of dry (fluorine) reprocessing of spent fuel and a preparation of liquid fuel in the form of molten fluorides for the transmuter LA-0. (R.P.)

  10. Application of activation methods on the Dubna experimental transmutation set-ups.

    Science.gov (United States)

    Stoulos, S; Fragopoulou, M; Adloff, J C; Debeauvais, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Papastefanou, C; Zamani, M; Manolopoulou, M

    2003-02-01

    High spallation neutron fluxes were produced by irradiating massive heavy targets with proton beams in the GeV range. The experiments were performed at the Dubna High Energy Laboratory using the nuclotron accelerator. Two different experimental set-ups were used to produce neutron spectra convenient for transmutation of radioactive waste by (n,x) reactions. By a theoretical analysis neutron spectra can be reproduced from activation measurements. Thermal-epithermal and fast-super-fast neutron fluxes were estimated using the 197Au, 238U (n,gamma) and (n,2n) reactions, respectively. Depleted uranium transmutation rates were also studied in both experiments.

  11. R and D activities for partitioning and transmutation in Korea

    International Nuclear Information System (INIS)

    Jae-Hyung, Yoo; Won-Seok, Park

    2003-01-01

    According to the long-term plan of nuclear technology development, KAERI is conducting a research and development project of transmutation with the objective of key technology development in the areas of partitioning and transmutation system. The research and development activities for partitioning and transmutation of long-lived radionuclides are introduced in this work. The studies of partitioning are focused on the electrorefining and electrowinning, which are aimed at investigating the thermodynamic properties of electrodeposition behaviours as well as the separation efficiency. As for the transmutation system, the HYPER (HYbrid Power Extraction Reactor) combined by a proton accelerator and a sub-critical reactor is being studied in KAERI as a prominent candidate facility in the future. Some conceptual studies are being conducted to develop key elemental systems of the sub-critical reactor such as the core, TRU fuel, proton target, and the cooling system. The conceptual design of the HYPER system will be completed by 2006. (author)

  12. Optimized ECC Implementation for Secure Communication between Heterogeneous IoT Devices

    Directory of Open Access Journals (Sweden)

    Leandro Marin

    2015-08-01

    Full Text Available The Internet of Things is integrating information systems, places, users and billions of constrained devices into one global network. This network requires secure and private means of communications. The building blocks of the Internet of Things are devices manufactured by various producers and are designed to fulfil different needs. There would be no common hardware platform that could be applied in every scenario. In such a heterogeneous environment, there is a strong need for the optimization of interoperable security. We present optimized elliptic curve Cryptography algorithms that address the security issues in the heterogeneous IoT networks. We have combined cryptographic algorithms for the NXP/Jennic 5148- and MSP430-based IoT devices and used them to created novel key negotiation protocol.

  13. Optimized ECC Implementation for Secure Communication between Heterogeneous IoT Devices.

    Science.gov (United States)

    Marin, Leandro; Pawlowski, Marcin Piotr; Jara, Antonio

    2015-08-28

    The Internet of Things is integrating information systems, places, users and billions of constrained devices into one global network. This network requires secure and private means of communications. The building blocks of the Internet of Things are devices manufactured by various producers and are designed to fulfil different needs. There would be no common hardware platform that could be applied in every scenario. In such a heterogeneous environment, there is a strong need for the optimization of interoperable security. We present optimized elliptic curve Cryptography algorithms that address the security issues in the heterogeneous IoT networks. We have combined cryptographic algorithms for the NXP/Jennic 5148- and MSP430-based IoT devices and used them to created novel key negotiation protocol.

  14. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for

  15. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for.

  16. Chemico-technological support of transmutation objectives: Solid, molten salt and liquid blanket

    Energy Technology Data Exchange (ETDEWEB)

    Volk, V.I.; Zakharkin, B.S.; Vakhrushin, A.Y. [VNIINM, Moscow (Russian Federation)

    1995-10-01

    Chemical and technological provision for the transmutation process, independantly on the scheme of its conduction, includes: fuel composition separation for fractions of components, subjected to annihilation; their transition into chemical form, in which they are present in the reactor; discharge and return into the form, convenient for chemical reprocessing, providing for the transmutation products separation from the components being transmutated and transferring of short-lived isotopes into the form of their temporary storage. The authors discuss different chemical processes which can be used in these steps to either improve efficiency or minimize additional waste generation and expense associated with decontamination. They consider processes involving molten salts for circulation of wastes thru transmutation steps, and possible advantages in extraction processes.

  17. Accelerator for nuclear transmutation

    International Nuclear Information System (INIS)

    Schapira, J.P.

    1984-01-01

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program [fr

  18. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  19. II. Inhibited Diffusion Driven Surface Transmutations

    Science.gov (United States)

    Chubb, Talbot A.

    2006-02-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain Iwamura 2-α-addition surface transmutations. Three concepts are examined: salt-metal interface states, sequential tunneling that transitions D+ ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks.

  20. II. Inhibited diffusion driven surface transmutations

    International Nuclear Information System (INIS)

    Cubb, Talbot A.

    2006-01-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain lwamura 2-α-addition surface transmutations. Three concepts are examined: salt metal interface states, sequential tunneling that transitions D + ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks. (author)

  1. Selection of chemical forms of iodine for transmutation of 129I

    International Nuclear Information System (INIS)

    Shirasu, Yoshiro; Minato, Kazuo

    2003-01-01

    To select suitable chemical forms of iodine for the target for transmutation of 129 I, the properties of iodine compounds of NaI, MgI 2 , CaI 2 , CuI and Ca(IO 3 ) 2 were compared and the out-of-reactor heating experiments of the pellets of CuI and Ca(IO 3 ) 2 with the cladding materials were carried out. CuI and Ca(IO 3 ) 2 are not deliquescent but stable in the air, which is of great advantage to construction, operation and maintenance of the processing plants. The cladding with Cu metal liner could be compatible with CuI though the compatibility of the stainless steel with CuI is not good. Ca(IO 3 ) 2 should be deleted from the list of the candidate target materials for the transmutation of 129 I due to the severe chemical reaction with the cladding materials

  2. Supervised learning methods in modeling of CD4+ T cell heterogeneity

    OpenAIRE

    Lu, Pinyi; Abedi, Vida; Mei, Yongguo; Hontecillas, Raquel; Hoops, Stefan; Carbo, Adria; Bassaganya-Riera, Josep

    2015-01-01

    Background Modeling of the immune system – a highly non-linear and complex system – requires practical and efficient data analytic approaches. The immune system is composed of heterogeneous cell populations and hundreds of cell types, such as neutrophils, eosinophils, macrophages, dendritic cells, T cells, and B cells. Each cell type is highly diverse and can be further differentiated into subsets with unique and overlapping functions. For example, CD4+ T cells can be differentiated into T...

  3. Fuels and targets for the transmutation of high activity long lived radioactive wastes

    International Nuclear Information System (INIS)

    Pillon, S.; Warin, D.

    2010-01-01

    The authors present and comment the different strategies which can be adopted to transmute minor actinides (concerned reactors, in fast breeder reactors, in accelerator driven systems or ADS), and the chemical composition of transmutation fuels (actinide compounds, inert matrices, fuels and targets). They describe the behaviour of refractory ceramic fuels during their service life under irradiation with their different damage origins (neutrons, fission by-products, alpha particles), the fabrication of transmutation fuels and targets through different processes (metallurgical, co-precipitate, sol-gel, wax, infiltration of radioactive materials, VIPAC/SPHEREPAC) and the reprocessing or recycling of these transmutation fuels and targets

  4. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    International Nuclear Information System (INIS)

    Hong, Seong Hee; Kim, Myung Hyun

    2016-01-01

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  5. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  6. Transmutation of actinide 237Np with a fusion reactor and a hybrid reactor

    International Nuclear Information System (INIS)

    Feng, K.M.; Huang, J.H.

    1994-01-01

    The use of fusion reactors to transmute fission reactor wastes to stable species is an attractive concept. In this paper, the feasibility of transmutation of the long-lived actinide radioactive waste Np-237 with a fusion reactor and a hybrid reactor has been investigated. A new waste management concept of burning HLW (High Level Waste), utilizing released energy and converting Np-237 into fissile fuel Pu-239 through transmutation has been adopted. The detailed neutronics and depletion calculation of waste inventories was carried out with a modified version of one-dimensional neutron transport and burnup calculation code system BISON1.5 in this study. The transmutation rate of Np with relationship to neutron wall loading, Pu and Np with relationship to neutron wall load, Pu and Np concentration in the transmutation zone have been explored as well as relevant results are also given

  7. Research activities related to accelerator-based transmutation at PSI

    International Nuclear Information System (INIS)

    Wydler, P.

    1993-01-01

    Transmutation of actinides and fission products using reactors and other types of nuclear systems may play a role in future waste management schemes. Possible advantages of separation and transmutation are: volume reductions, the re-use of materials, the avoidance of a cumulative risk, and limiting the duration of the risk. With its experience in reactor physics, accelerator-based physics, and the development of the SINQ spallation neutron source, PSI is in a good position to perform basic theoretical and experimental studies relating to the accelerator-based transmutation of actinides. Theoretical studies at PSI have been concentrated, so far, on systems in which protons are used directly to transmute actinides. With such systems and appropriate recycling schemes, the studies showed that considerable reduction factors for long-term toxicity can be obtained. With the aim of solving some specific data and method problems related to these types of systems, a programme of differential and integral measurements at the PSI ring accelerator has been initiated. In a first phase of this programme, thin samples of actinides will be irradiated with 590 MeV protons, using an existing irradiation facility. The generated spallation and fission products will be analysed using different experimental techniques, and the results will be compared with theoretical predictions based on high-energy nucleon-meson transport calculations. The principal motivation for these experiments is to resolve discrepancies observed between calculations based on different high-energy fission models. In a second phase of the programme, it is proposed to study the neutronic behaviour of multiplying target-blanket assemblies with the help of zero-power experiments set up at a separate, dedicated beam line of the accelerator. (author) 3 figs., 2 tabs., 8 refs

  8. Transmutation research and fuel cycle (report on discussion at Research Reactor Institute, Kyoto University)

    International Nuclear Information System (INIS)

    Yamana, Hajimu

    1999-01-01

    A symposium was held on a topic of 'Transmutation Research' on Dec. 21 and 22, 1999 at Research Reactor Institute, Kyoto University. This meeting was held as a joint-meeting of KUR's specialist meeting and Tokyo University's activity supported by the Grant-in-Aid for Scientific Research of Ministry of Education, Sport and Culture of Japan. This paper describes the overview of the discussions of this joint-meeting, and interprets their significance. Major themes discussed are, needed discussions on the transmutation research, policy and concepts of the organizations doing transmutation researches, a view from university side, transmutation researches in the oversea countries, opinions from various standpoints of the nuclear fuel cycle, conclusive discussions. 'the meanings of the transmutation research should be discussed together with the geological disposal and fast reactor system', 'transmutation may be a cooperative option for the disposal, thus, they should not be in a independent relation', and Balance evaluation will be needed' are the examples of the conclusive remarks of this meeting. (author)

  9. Calculations of different transmutation concepts. An international benchmark exercise

    International Nuclear Information System (INIS)

    2000-01-01

    In April 1996, the NEA Nuclear Science Committee (NSC) Expert Group on Physics Aspects of Different Transmutation Concepts launched a benchmark exercise to compare different transmutation concepts based on pressurised water reactors (PWRs), fast reactors, and an accelerator-driven system. The aim was to investigate the physics of complex fuel cycles involving reprocessing of spent PWR reactor fuel and its subsequent reuse in different reactor types. The objective was also to compare the calculated activities for individual isotopes as a function of time for different plutonium and minor actinide transmutation scenarios in different reactor systems. This report gives the analysis of results of the 15 solutions provided by the participants: six for the PWRs, six for the fast reactor and three for the accelerator case. Various computer codes and nuclear data libraries were applied. (author)

  10. Study on MAs transmutation of accelerator-driven system sodium-cooled fast reactor loaded with metallic fuel

    International Nuclear Information System (INIS)

    Han Song; Yang Yongwei

    2007-01-01

    Through the analysis of the effect of heavy metal actinides on the effective multiplication constant (k eff ) of the core in accelerator-driven system (ADS) sodium-cooled fast reactor loaded with metallic fuel, we gave the method for determining fuel components. the characteristics of minor actinides (MAs) transmutation was analyzed in detail. 3D burn-up code COUPLE, which couples MCNP4c3 and ORIGEN2, was applied to the neutron simulation and burn up calculation. The results of optimized scheme shows that adjusting the proportion of 239 Pu and maintaining the value during the burn-up cycle is an efficient method of designing k eff and keeping stable during the burn-up cycle. Spallation neutrons lead to the neutron spectrum harder at inner core than that at outer core. It is in favor of improving MA's fission cross sections and the capture-to-fission ratio. The total MAs transmutation support ratio 8.3 achieves excellent transmutation effect. For higher flux at inner core leads to obvious differences on transmutation efficiency,only disposing MAs at inner core is in favor of decreasing the loading mass and improving MAs transmutation effect. (authors)

  11. Nudatra: nuclear data for transmutation in IP-Eurotrans

    International Nuclear Information System (INIS)

    Gonzalez, E.M.; Koning, A.; Leray, S.; Plompen, A.; Sanz, J.

    2007-01-01

    The objective of NUDATRA, Domain 5 of the EU Integrated Project EUROTRANS (FI6W-CT-2004- 516520), is to improve and validate the nuclear data and simulation tools required for the development and optimisation of nuclear waste transmutation, ADS dedicated transmutation systems and the associated fuel cycle. Activities are essentially aimed at supplementing the evaluated nuclear data libraries and improving the reaction models for materials in transmutation fuels, coolants, spallation targets, internal structures, and reactor and accelerator shielding, relevant for the design and optimisation of the ETD and XT-ADS. These activities are distributed over four Work Packages: Sensitivity Analysis and Validation of Nuclear Data and Simulation Tools; Low- and Intermediate-energy Nuclear Data Measurements; Nuclear Data Libraries Evaluation and Low-intermediate Energy Models; and High-energy Experiments and Modelling.The main accomplishments expected from NUDATRA are: 1) new measurements and evaluations of Pb-Bi cross-sections, i.e. inelastic, (n,xn) and isomer branching ratios (Po production); 2) new measurements and evaluations for minor actinides particularly the capture in 243 Am and fission on 244 Cm; 3) improvement of TALYS as an evaluation tool and as an a priori model for the estimation of low- and intermediate-energy reaction cross-section; 4) high-energy model improvement based on measurements, particularly for the prediction of the spallation products, and gas (H, He) production cross-sections; 5) sensitivity and uncertainty analysis of ETD fuel cycle and related covariance issues. (authors)

  12. Multiple tier fuel cycle studies for waste transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system

  13. Transmutation Studies of Radioactive Nuclides

    Czech Academy of Sciences Publication Activity Database

    Adam, Jindřich

    2007-01-01

    Roč. 34, č. 1 (2007), s. 125-150 ISSN 1310-0157 R&D Projects: GA MŠk 1P04LA213 Institutional research plan: CEZ:AV0Z10480505 Keywords : transmutation Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders

  14. New linkage of P and T (Partitioning and Transmutation) treatment with methodology of geologic disposal. A possible breakthrough for nuclear technology in tomorrow

    International Nuclear Information System (INIS)

    Kitamoto, Asashi

    1999-01-01

    A possibility of a safe, reliable, transparent and economical high-level radioactive waste disposal method is proposed by combining partitioning of waste materials and transmutation of long-life nuclides with geologic disposal. The paper first discusses the environment surrounding nuclear energy and the conditions for social acceptance of nuclear energy. Then, the paper talks about the soundness of geologic disposal as most extensively studied method of radioactive waste, including environment, safety assessment model, unpredictable uncertainty, and macro image and its problems. Thirdly, the paper describes partitioning and transmutation, the latter being reduction of the lives of long-life nuclides by nuclear fission and conversion and the former being methodology to achieve it by rational means. Radionuclides are separated into six groups by three selection rules of transmutation and two selection rules of geologic disposal. The separation can greatly reduce the decay-heat and weight of the waste materials. The paper last explains the new concept of fuel cycle with some comments on important points in developing the new process (M.M.)

  15. Application of gaseous core reactors for transmutation of nuclear waste

    Science.gov (United States)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  16. Transmutation: a decade of revival issues, relevant experiments and perspectives

    International Nuclear Information System (INIS)

    Salvatores, M.

    2001-01-01

    For more than a decade, transmutation studies have been again a topic of wide interest and have triggered numerous international activities, like bilateral/multilateral collaborations, information exchanges, state-of-the-art reports, conferences, but also some co-ordinated programmes and experiments. It is legitimate to ask at this point, whether transmutation studies are still 'fashionable' and why; what is known, what has been done and what should be done. Since the motivations of national programmes are often different, due to a different context, we will take for granted that transmutation is generally seen as an option for the back-end of the fuel cycle in order to reduce the burden of potential geological storages of radioactive wastes (whatever their nature). Finally, we also acknowledge the fact that some highly respected scientists have at several occasions during this decade expressed their doubts about the value of the transmutation option. A typical example is the position expressed by Pigford and Rasmussen, reporting the results of a study for the US National Research Council. (author)

  17. JAERI R & D on accelerator-based transmutation under OMEGA program

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, T.; Nishida, T.; Mizumoto, M. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1995-10-01

    The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called {open_quotes}OMEGA,{close_quotes} is presented. Under this national program, major R&D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts also as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.

  18. Requirements for an evaluated nuclear data file for accelerator-based transmutation

    International Nuclear Information System (INIS)

    Koning, A.J.

    1993-06-01

    The importance of intermediate-energy nuclear data files as part of a global calculation scheme for accelerator-based transmutation of radioactive waste systems (for instance with an accelerator-driven subcritical reactor) is discussed. A proposal for three intermediate-energy data libraries for incident neutrons and protons is presented: - a data library from 0 to about 100 MeV (first priority), - a reference data library from 20 to 1500 MeV, - an activation/transmutation library from 0 to about 100 MeV. Furthermore, the proposed ENDF-6 structure of each library is given. The data needs for accelerator-based transmutation are translated in terms of the aforementioned intermediate-energy data libraries. This could be a starting point for an ''International Evaluated Nuclear Data File for Transmutation''. This library could also be of interest for other applications in science and technology. Finally, some conclusions and recommendations concerning future evaluation work are given. (orig.)

  19. Comparative Study of the Reactor Burner Efficiency for Transmutation of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko sq. 1, Obninsk, Kaluga region, 249020 (Russian Federation); Degtyarev, A.; Kalugin, A.; Ponomarev, L. [Russian Research Center ' Kurchatov Institute' , Kurchatov sq. 1, Moscow, 123182 (Russian Federation); Konev, V.; Seliverstov, V. [Institute of Theoretical and Experimental Physics, ul. B. Cheremushinskaya 25, Moscow, 117259 (Russian Federation)

    2009-06-15

    Transmutation of minor actinides (MA) in the closed nuclear fuel cycle (NFC) is a one of the most important problem for future nuclear energetic. There are several approaches for MA transmutation but there are no common criteria for the comparison of their efficiency. In paper [1] we turned out the attention to the importance of taking into account the duration of the closed NFC in addition to a usual criterion of the neutron economy. In accordance with these criteria the transmutation efficiency are compared of two fast reactors (sodium and lead cooled) and three types of ADS-burners: LBE-cooled reactors (fast neutron spectrum), molten-salt reactor (intermediate spectrum) and heavy water reactor (thermal spectrum). It is shown that the time of transmutation of loaded MA in the closed nuclear fuel cycle is more than 50 years. References: A. Gulevich, A. Kalugin, L. Ponomarev, V. Seliverstov, M. Seregin, 'Comparative Study of ADS for Minor Actinides Transmutation', Progress in Nuclear Energy, 50, March-August, p. 358, 2008. (authors)

  20. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation; Recherches sur la gestion des dechets radioactifs a haute activite et a vie longue. Axe 1 - separation-transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  1. Transmutation studies in France, R and D programme on fuels and targets

    International Nuclear Information System (INIS)

    Boidron, M.; Chauvin, N.; Garnier, J.C.; PIllon, S.; Vambenepe, G.

    2001-01-01

    For the management of high level and long-lived radioactive waste, a large and continuous research and development effort is carried out in France, to provide a wide range of scientific and technical alternatives along three lines, partitioning and transmutation, disposal in deep geological formations and long term interim surface or subsurface storage. For the line one, and in close link with the partitioning studies, research is carried out to evaluate the transmutation potential of long-lived waste in appropriate reactors configurations (scenarios) relying on current technologies as well as innovative reactors. Performed to evaluate the theoretical feasibility of the Pu consumption and waste transmutation from the point of view of the reactor cores physics to reach the equilibrium of the material fluxes (i.e. consumption = production) and of the isotopic compositions of the fuels, these studies insure the 'scientific' part of the transmutation feasibility. For the technological part of the feasibility of waste transmutation in reactors, a large programme on fuel development is underway. This includes solutions based on the advanced concepts for plutonium fuels in PWR and the development of specific fuels and targets for transmutation in fast reactors in the critical or sub-critical state. For the waste transmutation in fast reactors, an important programme has been launched to develop specific fuels and targets with experiments at various stages of preparation in different experimental reactors including Phenix. Composite fuels as well as particle fuels are considered. This programme is presented and recent results concerning the preparation of the experiments, the characterisation of the compounds properties, the thermal and mechanical modelling and the behaviour of U free fuels are given. (author)

  2. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  3. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    International Nuclear Information System (INIS)

    Bays, Samuel; Medvedev, Pavel; Pope, Michael; Ferrer, Rodolfo; Forget, Benoit; Asgari, Mehdi

    2009-01-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  4. The possible transmutation of radioactive waste from nuclear reactors

    International Nuclear Information System (INIS)

    Harries, J.R.

    1974-01-01

    A nuclear reactor power program produces high level and long lived radioactive wastes. The high level activity is associated with fission products, but beyond 400 years the principal waste hazard is from transuranic elements produced in the reactor. Several schemes have been proposed for the transmutation of the problem isotopes into more easily handled isotopes. The neutron flux in a thermal reactor is not high enough to significantly reduce the longer lived fission product isotopes 90 Sr and 132 Gs, but the transuranic elements can be reduced by recycling through power reactors. The limitation on recycling of the transuranic elements is the separation process to remove trace quantities from the waste stream. In fast reactors the transuranic elements are the principal fuel and fast reactor waste contains only half as much 90 Sr as thermal reactors. However, the overall waste hazard is similar to thermal reactors. A sufficiently intense neutron flux for fission product transmutation could perhaps be produced by a spallation reactor driven by a proton linear accelerator or a controlled thermonuclear reactor. However, both concepts are still some years in the future. Transmutation by accelerator sources of protons, electrons of gammas tend to require more energy than neutron transmutation. (author)

  5. Study of minor actinides transmutation in heavy water cooled tight-pitch lattice

    International Nuclear Information System (INIS)

    Xu Xiaoqin; Shiroya, S.

    2002-01-01

    Minor actinides inhere long half-life and high toxicity. It is an alternative technical pathway and helpful for reducing environmental impact to incinerate minor actinides in spent fuel of nuclear power plants. Because of its high neutron, γ and β emitting rates and heat generation rate, it is necessary to imply more severe control and shielding techniques in the chemical treatment and fabrication. From economic view-point, it is suitable to transmute minor actinides in concentrated way. A technique for MA transmutation by heavy water cooled tight-pitch lattice system is proposed, and calculated with SRAC95 code system. It is shown that tight-pitch heavy water lattice can transmute MA effectively. The accelerator-driven subcritical system is practical for MA transmutation because of its low fraction of effective delay neutrons

  6. Inter- and intratumoral heterogeneity of BCL2 correlates with IgH expression and prognosis in follicular lymphoma

    International Nuclear Information System (INIS)

    Barreca, A; Martinengo, C; Annaratone, L; Righi, L; Chiappella, A; Ladetto, M; Demurtas, A; Chiusa, L; Stacchini, A; Crosetto, N; Oudenaarden, A van; Chiarle, R

    2014-01-01

    Most follicular lymphomas (FLs) are genetically defined by the t(14;18)(q32;q21) translocation that juxtaposes the BCL2 gene to the immunoglobulin heavy chain (IgH) 3' regulatory regions (IgH-3'RRs). Despite this recurrent translocation, FL cases are heterogeneous in terms of intratumoral clonal diversity for acquired mutations and variations in the tumor microenvironment. Here we describe an additional mechanism that contributes to inter- and intratumoral heterogeneity in FLs. By applying a novel single-molecule RNA fluorescence-based in situ hybridization (FISH) technique to detect mRNA molecules of BCL2 and IgH in single cells, we found marked heterogeneity in the number of BCL2 mRNA transcripts within individual lymphoma cells. Moreover, BCL2 mRNA molecules correlated with IgH mRNA molecules in individual cells both in t(14;18) lymphoma cell lines and in patient samples. Consistently, a strong correlation between BCL2 and IgH protein levels was found in a series of 205 primary FL cases by flow cytometry and immunohistochemistry. Inter- and intratumoral heterogeneity of BCL2 expression determined resistance to drugs commonly used in FL treatment and affected overall survival of FL patients. These data demonstrate that BCL2 and IgH expressions are heterogeneous and coregulated in t(14;18)-translocated cells, and determine the response to therapy in FL patients

  7. Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation with PHITS code

    International Nuclear Information System (INIS)

    Fujita, Reiko

    2017-01-01

    In the ImPACT program of the Cabinet Office, programs are underway to reduce long-lived fission products (LLFP) contained in high-level radioactive waste through nuclear transmutation, or to recycle/utilize useful nuclear species. This paper outlines this program and describes recent achievements. This program consists of five projects: (1) separation/recovery technology, (2) acquisition of nuclear transmutation data, (3) nuclear reaction theory model and simulation, (4) novel nuclear reaction control and development of elemental technology, and (5) discussions on process concept. The project (1) develops a technology for dissolving vitrified solid, a technology for recovering LLFP from high-level waste liquid, and a technology for separating odd and even lasers. Project (2) acquires the new nuclear reaction data of Pd-107, Zr-93, Se-79, and Cs-135 using RIKEN's RIBF or JAEA's J-PARC. Project (3) improves new nuclear reaction theory and structural model using the nuclear reaction data measured in (2), improves/upgrades nuclear reaction simulation code PHITS, and proposes a promising nuclear transmutation pathway. Project (4) develops an accelerator that realizes the proposed transmutation route and its elemental technology. Project (5) performs the conceptual design of the process to realize (1) to (4), and constructs the scenario of reducing/utilizing high-level radioactive waste to realize this design. (A.O.)

  8. Transmutation of planar media singularities in a conformal cloak.

    Science.gov (United States)

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  9. Conceptual design study of Hyb-WT as fusion–fission hybrid reactor for waste transmutation

    International Nuclear Information System (INIS)

    Siddique, Muhammad Tariq; Kim, Myung Hyun

    2014-01-01

    Highlights: • Conceptual design study of fusion-fission hybrid reactor for waste transmutation. • MCNPX and MONTEBURNS are compared for transmutation performance of WT-Hyb. • Detailed neutronic performance of final optimized Hyb-WT design is analyzed. • A new tube-in-duct core design is implemented and compared with pin type design. • Study shows many aspects of hybrid reactor even though scope was limited to neutronic analysis. - Abstract: This study proposes a conceptual design of a hybrid reactor for waste transmutation (Hyb-WT). The design of Hyb-WT is based on a low-power tokamak (less than 150 MWt) and an annular ring-shaped reactor core with metal fuel (TRU 60 w/o, Zr 40 w/o) and a fission product (FP) zone. The computational code systems MONTEBURNS and MCNPX2.6 are investigated for their suitability in evaluating the performance of Hyb-WT. The overall design performance of the proposed reactor is determined by considering pin-type and tube-in-duct core designs. The objective of such consideration is to explore the possibilities for enhanced transmutation with reduced wall loading from fusion neutrons and reduced transuranic (TRU) inventory. TRU and FP depletion is analyzed by calculating waste transmutation ratio, mass burned per full power year (in units of kg/fpy), and support ratio. The radio toxicity analysis of TRUs and FPs is performed by calculating the percentage of toxicity reduction in TRU and FP over a burn cycle

  10. Contrast-enhanced 3T MR Perfusion of Musculoskeletal Tumours: T1 Value Heterogeneity Assessment and Evaluation of the Influence of T1 Estimation Methods on Quantitative Parameters.

    Science.gov (United States)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Chen, Bailiang; De Verbizier, Jacques; Beaumont, Marine; Badr, Sammy; Cotten, Anne; Blum, Alain

    2017-12-01

    To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. • T1 value variation in musculoskeletal tumours is considerable. • T1 values in muscle and tumours are significantly different. • Patient-specific T1 estimation is needed for comparison of inter-patient perfusion parameters. • Technical variation is higher in permeability than semiquantitative perfusion parameters.

  11. Transmutations: Rejuvenation, Longevity, and Immortality Practices in South and Inner Asia

    Directory of Open Access Journals (Sweden)

    Dagmar Wujastyk

    2017-12-01

    Full Text Available Wild and diverse outcomes are associated with transmutational practices: the prolongation of life, the recovery of youth, the cure of diseases, invincibility, immortality, enlightenment, liberation from the cycle of rebirths, and unending bliss. This range of outcomes is linked to specific practices taught in separate traditions and lineages in medical, alchemical, yogic and tantric milieus across South and Inner Asia. These practices can be individual or collective, esoteric or secular, and occur in different places from hospital to village to monastery; they involve transmutations of substances as well as transmutations of the body. Every expression by a particular lineage has a distinguishing articulation. Yet there are also very clear commonalities and interconnections between the traditions’ aims, methods and expected results. In this special issue of HSSA, we examine transmutational practices and their underlying concepts in this wider context of South and Inner Asian culture. How do these practices and ideas connect and cross-fertilise? And conversely, how are they delineated and distinct?

  12. Transmutation of high-level radioactive waste by a charged particle accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1993-01-01

    Transmutation of minor actinides and fission products using proton accelerators has many advantages over a transmutor operated in a critical condition. The energy required for this transmutation can be reduced by multiplying the spallation neutrons in a subcritical assembly surrounding the spallation target. The authors have studied the relation between the energy requirements and the multiplication factor, k, of the subcritical assembly, while varying the range of several parameters in the spallation target. A slightly subcritical reactor is superior to a reactor with large subcriticality in the context of the energy requirement of a small proton accelerator, the extent of radiation damage, and other safety problems. To transmute the fission products, the transmutor reactor must have a good neutron economy, which can be provided by a transmutor operated by a proton accelerator. The paper discusses the use of minor actinides to improve neutronics characteristics, such as a long fuel burn-up rather than simply transmuting this valuable material

  13. The French partitioning-transmutation programme, assets and prospects

    International Nuclear Information System (INIS)

    Viala, M.; Salvatores, M.; Mouney, H.

    1997-01-01

    Partitioning-transmutation studies are covered by the 1991 French law concerning radioactive waste management. The programme is progressing with a dual approach: - What can be done in partitioning-transmutation? At what cost? In what timescale? - How can long-term gains and short-term disadvantages be qualified and quantified? The first approach concerns technical know-how. The studies based on today's technologies are continuing (reactors, fuels and targets, separation of radionuclides by solvents). The second approach involves an assessment activity, based firstly on studies of scenarios. Pertinent assessment criteria must be brought out. (authors)

  14. APEX accelerator cycle for transmutation of long-lived fission wastes

    International Nuclear Information System (INIS)

    Powell, J.; Steinberg, M.; Takahashi, H.; Grand, P.; Botts, T.; Kouts, H.J.C.

    1980-01-01

    Based on preliminary studies, some conclusions can be drawn concerning the Accelerator Fuel Enricher and Fission Product Exterminator (APEX). APEX-1 and APEX-2 systems can destroy TU's, 137 Cs, and 90 Sr at acceptable cost and efficiency. The principal difference between APEX-1 and APEX-2 is the in-reactor and in-circuit inventory of 137 Cs and 90 Sr. Stable and low hazard wastes can be disposed of by burial. Accelerator breeders can effectively sustain a fission reactor economy indefinitely. Military waste can be blended into commercial fuel cycle for transmutation. Accelerator and target technologies appear practical and could be developed in a few years. More detailed studies are needed to better define the technical and economic features of the LAFER and APEX cycles, so that comparative assessments can be made between these cycles, as well as with other transmutation and waste disposal concepts

  15. Partitioning and transmutation. A review of the current state of the art

    International Nuclear Information System (INIS)

    Skaalberg, M.; Liljenzin, J.O.

    1992-10-01

    The recent development in the field of partitioning and transmutation (P-T) of long-lived radioactive waste nuclides from nuclear power production is reviewed and evaluated. Current national and international R and D plans are summarized. It is concluded that P-T is technically feasible but much R and D remains to be done before it is technically mature. At present there seems to be no economic gain from P-T as compared to direct disposal of spent nuclear fuel. There seems only to be an insignificant reduction in future radiation doses by P-T when compared to current disposal plans. However, future long term research may perhaps change these conclusions. Therefore the further development in this area should be followed. Some areas where a limited research by Swedish scientists could be worthwhile are indicated. (255 refs.) (au)

  16. II. Inhibited diffusion driven surface transmutations

    Energy Technology Data Exchange (ETDEWEB)

    Cubb, Talbot A. [Greenwich Corp., 5023 N. 38th St., Arlington, VA 22207 (United States)

    2006-07-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain lwamura 2-{alpha}-addition surface transmutations. Three concepts are examined: salt metal interface states, sequential tunneling that transitions D{sup +} ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks. (author)

  17. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  18. Analysis of image heterogeneity using 2D Minkowski functionals detects tumor responses to treatment.

    Science.gov (United States)

    Larkin, Timothy J; Canuto, Holly C; Kettunen, Mikko I; Booth, Thomas C; Hu, De-En; Krishnan, Anant S; Bohndiek, Sarah E; Neves, André A; McLachlan, Charles; Hobson, Michael P; Brindle, Kevin M

    2014-01-01

    The acquisition of ever increasing volumes of high resolution magnetic resonance imaging (MRI) data has created an urgent need to develop automated and objective image analysis algorithms that can assist in determining tumor margins, diagnosing tumor stage, and detecting treatment response. We have shown previously that Minkowski functionals, which are precise morphological and structural descriptors of image heterogeneity, can be used to enhance the detection, in T1 -weighted images, of a targeted Gd(3+) -chelate-based contrast agent for detecting tumor cell death. We have used Minkowski functionals here to characterize heterogeneity in T2 -weighted images acquired before and after drug treatment, and obtained without contrast agent administration. We show that Minkowski functionals can be used to characterize the changes in image heterogeneity that accompany treatment of tumors with a vascular disrupting agent, combretastatin A4-phosphate, and with a cytotoxic drug, etoposide. Parameterizing changes in the heterogeneity of T2 -weighted images can be used to detect early responses of tumors to drug treatment, even when there is no change in tumor size. The approach provides a quantitative and therefore objective assessment of treatment response that could be used with other types of MR image and also with other imaging modalities. Copyright © 2013 Wiley Periodicals, Inc.

  19. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  20. Special scientific programme on use of high energy accelerators for transmutation of actinides and power production

    International Nuclear Information System (INIS)

    1994-09-01

    Various techniques for the transmutation of radioactive waste through the use of high energy accelerators are reviewed and discussed. In particular, the present publication contains presentations on (i) requirements and the technical possibilities for the transmutation of long-lived radionuclides (background paper); (ii) high energy particle accelerators for bulk transformation of elements and energy generation; (iii) the resolution of nuclear energy issues using accelerator-driven technology; (iv) the use of proton accelerators for the transmutation of actinides and power production; (v) the coupling of an accelerator to a subcritical fission reactor (with a view on its potential impact on waste transmutation); (vi) research and development of accelerator-based transmutation technology at JAERI (Japan); and (vii) questions and problems with regard to accelerator-driven nuclear power and transmutation facilities. Refs, figs and tabs

  1. ENDF6-transformation of the MENDL-2 and WIND transmutation libraries

    International Nuclear Information System (INIS)

    Koning, A.J.

    1997-09-01

    The MENDL (Medium Energy Nuclear Data library) and WIND (Waste Incineration Nuclear Data library) transmutation libraries have been transformed to the ENDF6-format. A drawback of the original form of these libraries was that they were not processable due to an alternative method to store the residual production cross sections. The new representation of the data is outlined. The transformed library has been checked with the ENDF6 preprocessing tools CHECKR, FIZCON and PSYCHE. In the process of transformation, several errors have been corrected. 5 refs., 3 appendices

  2. ENDF6-transformation of the MENDL-2 and WIND transmutation libraries

    Energy Technology Data Exchange (ETDEWEB)

    Koning, A.J.

    1997-09-01

    The MENDL (Medium Energy Nuclear Data library) and WIND (Waste Incineration Nuclear Data library) transmutation libraries have been transformed to the ENDF6-format. A drawback of the original form of these libraries was that they were not processable due to an alternative method to store the residual production cross sections. The new representation of the data is outlined. The transformed library has been checked with the ENDF6 preprocessing tools CHECKR, FIZCON and PSYCHE. In the process of transformation, several errors have been corrected. 5 refs., 3 appendices.

  3. Accelerator-driven transmutation: a high-tech solution to some nuclear waste problems

    International Nuclear Information System (INIS)

    Hechanova, A.E.

    2000-01-01

    This paper discusses current technical and political issues regarding the innovative concept of using accelerator-driven transmutation processes for nuclear waste management. Two complex and related issues are addressed. First, the evolution and improvements of the design technologies are identified to indicate that there has been sufficient technological advancement with regard to a 1991 scientific peer review to warrant the advent of a large-scale national research and development program. Second, the economics and politics of the transmutation system are examined to identify non-technical barriers to the implementation of the program. Transmutation of waste has been historically viewed by nuclear engineers as one of those technologies that is too good to be true and probably too expensive to be feasible. The concept discussed in the present paper uses neutrons ( which result from protons accelerated into spallation targets)to transmute the major very long-lived hazardous materials such as the radioactive isotopes of technetium, iodine, neptunium, plutonium, americium, and curium. Although not a new concept, accelerator-driven transmutation technology (ADTT) lead by a team at Los Alamos National Laboratory (LANL) has made some significant advances which are discussed in the present paper. (authors)

  4. Nuclear Wastes: Technologies for Separations and Transmutation

    National Research Council Canada - National Science Library

    .... The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted...

  5. Development of a fast reactor for minor actinides transmutation - (1) Overview and method development - 5092

    International Nuclear Information System (INIS)

    Takeda, T.; Usami, S.; Fujimura, K.; Takakuwa, M.

    2015-01-01

    The Ministry of Education, Culture, Sports, Science and Technology in Japan has launched a national project entitled 'technology development for the environmental burden reduction' in 2013. The present study is one of the studies adopted as the national project. The objective of the study is the efficient and safe transmutation and volume reduction of minor actinides (MA) with long-lived radioactivity and high decay heat contained in high level radioactive wastes by using sodium cooled fast reactors. We are developing MA transmutation core concepts which harmonize efficient MA transmutation with core safety. To accurately design the core concepts we have improved calculation methods for estimating the transmutation rate of individual MA nuclides, and estimating and reducing uncertainty of MA transmutation. The overview of the present project is first described. Then the method improvement is presented with numerical results for a minor-actinide transmutation fast reactor. The analysis is based on Monju reactor data. (authors)

  6. Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2012-08-01

    Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.

  7. Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems

    International Nuclear Information System (INIS)

    Vysotskii, Vladimir I.; Kornilova, Alla A.

    2013-01-01

    Highlights: ► The phenomena of isotope transmutation in growing microbiological cultures were investigated. ► Transmutation in microbiological associations is 20 times more effective than in pure cultures. ► Transmutation of radioactive nuclei to stable isotopes in such associations was investigated. ► The most accelerated rate of Cs 137 to stable Ba 138 isotope transmutation was 310 days. ► “Microbiological deactivation” may be used for deactivation of Chernobyl and Fukushima areas. - Abstract: The report presents the results of qualifying examinations of stable and radioactive isotopes transmutation processes in growing microbiological cultures. It is shown that transmutation of stable isotopes during the process of growth of microbiological cultures, at optimal conditions in microbiological associations, is 20 times more effective than the same transmutation process in the form of “one-line” (pure) microbiological cultures. In the work, the process of direct, controlled decontamination of highly active intermediate lifetime and long-lived reactor isotopes (reactor waste) through the process of growing microbiological associations has been studied. In the control experiment (flask with active water but without microbiological associations), the “usual” law of nuclear decay applies, and the life-time of Cs 137 isotope was about 30 years. The most rapidly increasing decay rate, which occurred with a lifetime τ * ≈ 310 days (involving an increase in rate, and decrease in lifetime by a factor of 35 times) was observed in the presence of Ca salt in closed flask with active water contained Cs 137 solution and optimal microbiological association

  8. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  9. Experience gained during 10 years transmutation experiments in Dubna

    Science.gov (United States)

    Zamani, M.; Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Krivopustov, M.; Sosnin, A.; Golovatyuk, S.

    2006-05-01

    Transmutation, the procedure of transforming long-lived radioactive isotopes into stable or short-lived, was proposed for reducing the amount of radioactive waste resulting from technological applications of nuclear fission. The Accelerator Driven Systems (ADS) provide the possibility to generate intense neutron spectrum yielding in an effective transmutation of unwanted isotopes. Such experiments are being carried out for the last 10 years in Synchrophasotron / Nuclotron accelerators at the Veksler-Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna, Russia. Thick Pb and Pb-U targets, surrounded by moderators, have been irradiated by protons in the energy range of 0.5-7.4 GeV. Neutron fluence measurements have been performed by different techniques of passive detectors (neutron activation detectors, solid state nuclear track detectors). Transmutation of 129I, 237Np, 239Pu was studied. The results of these experiments are presented and discussed.

  10. Electronic Transmutation (ET): Chemically Turning One Element into Another.

    Science.gov (United States)

    Zhang, Xinxing; Lundell, Katie A; Olson, Jared K; Bowen, Kit H; Boldyrev, Alexander I

    2018-03-08

    The concept of electronic transmutation (ET) depicts the processes that by acquiring an extra electron, an element with the atomic number Z begins to have properties that were known to only belong to its neighboring element with the atomic number Z+1. Based on ET, signature compounds and chemical bonds that are composed of certain elements can now be designed and formed by other electronically transmutated elements. This Minireview summarizes the recent developments and applications of ET on both the theoretical and experimental fronts. Examples on the ET of Group 13 elements into Group 14 elements, Group 14 elements into Group 15 elements, and Group 15 elements into Group 16 elements are discussed. Compounds and chemical bonding composed of carbon, silicon, germanium, phosphorous, oxygen and sulfur now have analogues using transmutated boron, aluminum, gallium, silicon, nitrogen, and phosphorous. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optimization of accelerator-driven technology for LWR waste transmutation

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1996-01-01

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan

  12. Multiple Tier Fuel Cycle Studies for Waste Transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system. (authors)

  13. Transmutation of Thermocouples in Thermal and Fast Nuclear Reactors

    International Nuclear Information System (INIS)

    Scervini, M.; Rae, C.; Lindley, B.

    2013-06-01

    Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. Their role is fundamental for the control of current nuclear reactors and for the development of the nuclear technology needed for the implementation of GEN IV nuclear reactors. When used for in-core measurements thermocouples are strongly affected not only by high temperatures, but also by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition in the thermoelements and, as a consequence, a time dependent drift in the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation for relatively short times compared to the life required for temperature sensors in nuclear applications. In this work, undertaken as part of the European project METROFISSION, the change in composition occurring in irradiated thermocouples has been calculated using the software ORIGEN 2.2. Several thermocouples have been considered, including Nickel based thermocouples (type K and type N), Tungsten based thermocouples (W-5%Re vs W-26%Re and W- 3%Re vs W-25%Re), Platinum based thermocouples (type S and Platinum vs Palladium) and Molybdenum vs Niobium thermocouples. The transmutation induced by both thermal flux and fast flux has been calculated. Thermocouples undergo more pronounced transmutation in thermal fluxes rather than in fast fluxes, as the neutron cross section of an element is higher for thermal energies. Nickel based thermocouples have a minimal change in composition, while Platinum based and Tungsten based thermocouples experience a very significant transmutation. The use of coatings deposited on the sheath of a thermocouple has been considered as a mean to reduce the neutron flux the thermoelements inside the thermocouple sheath

  14. Studies on separation, conversion and transmutation of long-living radionuclides. A contribution to advanced disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Modolo, Giuseppe

    2014-01-01

    The future role and acceptance of nuclear energy will be decisively determined by the safe operation of existing and future facilities and by convincing solutions for nuclear waste management. With respect to the long half-lives of some radionuclides (actinides and fission products) and the related question as to whether the release of radionuclides from a repository can be prevented over very long periods of time, alternatives to the direct disposal of spent nuclear fuels are discussed internationally. As a potential complementary solution, the technological option with partitioning and transmutation (P and T) is considered. This method separates and converts the long-lived radionuclides into stable, short-lived nuclides via neutron reactions in dedicated facilities. Against this background, the first main chapter of the present work looks at the chemical separation of actinides from high-level reprocessing wastes. In order to achieve a better understanding of the processes at the molecular level, basic investigations were also performed on separating actinides(III) via liquid-liquid or liquid-solid extraction. At the same time, reversible processes were developed and tested on the laboratory scale with the aid of mixer-settlers and centrifugal extractors. The subsequent chapter focuses on separating the long-lived fission product iodine-129 from radioactive wastes as well as from process effluents arising from reprocessing. As part of this work, different simple chemical and physical techniques were developed for complete recovery with respect to transmutation or conditioning in host matrices that are sufficiently stable for final storage. Its high mobility and radiological properties make iodine-129 relevant for the long-term safety assessment of final repositories. In addition, transmutation experiments on iodine-127/129 targets were performed using high-energy protons (145-2600 MeV). Due to the expected low cross sections (<100 mb), transmutation with protons

  15. Transmutation of Americium in Fast Neutron Facilities

    International Nuclear Information System (INIS)

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on core's safety parameters. Applying the SAS4A/SASSYS transient analysis code, it is demonstrated that the power rating needs to be reduced by 6% for each percent additional americium introduction into the reference MOX fuel, maintaining 100 K margin to fuel melting, which is the most limiting failure mechanism. Safety analysis of a new Accelerator Driven System design with a smaller pin pitch-to-diameter ratio comparing to the reference EFIT-400 design, aiming at improving neutron source efficiency, was also performed by simulating performance for unprotected loss of flow, unprotected transient overpower, and protected loss-of-heat-sink transients, using neutronic parameters obtained from MCNP calculations. Thanks to the introduction of the austenitic 15/15Ti stainless steel with enhanced creep rupture resistance and acceptable irradiation swelling rate, the suggested ADS design loaded with nitride fuel and cooled by lead-bismuth eutectic could survive the full set of transients, preserving a margin of 130 K to cladding rupture during the most limiting transient. The thesis concludes that efficient transmutation of americium in a medium sized sodium cooled fast reactor loaded with MOX fuel is possible but leads to a severe power penalty. Instead, preserving transmutation rates of minor actinides up to 42 kg/TWh th , the suggested ADS design with enhanced proton source efficiency appears like a better option for americium transmutation

  16. Transmutation: The Roots of the Dream.

    Science.gov (United States)

    Karpenko, Vladimir

    1995-01-01

    Examines the history of alchemical attempts at transmutation and classifies them by differing approaches and techniques. Traces the development of alchemy in Asia, Europe, and the Middle East, and compares alchemy with craftsmanship. (18 references) (DDR)

  17. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.; Rimpault, G.

    2017-01-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing. (authors)

  18. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2017-01-01

    Full Text Available Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  19. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Science.gov (United States)

    Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald

    2017-09-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  20. Partitioning and transmutation. Current developments - 2010. A report from the Swedish reference group for PT-research

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, Jan (ed.) (Swedish Centre for Nuclear Technology, SKC, Stockholm (Sweden)); Karlsson, Fred (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Pomp, Stephan (Uppsala Univ., Uppsala, Dept. of Physics and Astronomy, Div. of Applied Nuclear Physics (Sweden)); Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Skarnemark, Gunnar (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden)); Wallenius, Janne; Zakova, Jitka (Reactor Physics Div., Physics Dept., Royal Inst. of Technology, Stockholm (Sweden)); Grenthe, Ingemar; Szabo, Zoltan (School of Chemical Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden))

    2010-01-15

    The research and development on methods for partitioning and transmutation (P and T) of long-lived radionuclides in spent nuclear fuel has attracted considerable interest during the last decade. The main objective of P and T is to eliminate or at least substantially reduce the amount of such long-lived radionuclides that has to go to a deep geological repository for final disposal. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving stability against hydrolysis and radiolysis. This may be achieved either by additives to the solvent or by selection of a proper solvent. The development of processes and equipment must be intensified. Pyrochemical research is looking into methods for recovery of uranium and for separating fission products with large neutron cross sections. The objective is to avoid separation of plutonium from other transuranium elements and thus simplify the proliferation issue. The future work is focused on improved selectivity and on technical development. Design of processes and equipment is difficult due to the aggressive properties of the melts and the relatively high temperatures required. The fabrication of fuel for transmutation and the

  1. Partitioning and transmutation. Current developments - 2010. A report from the Swedish reference group for PT-research

    International Nuclear Information System (INIS)

    Blomgren, Jan; Karlsson, Fred; Pomp, Stephan; Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Skarnemark, Gunnar; Wallenius, Janne; Zakova, Jitka; Grenthe, Ingemar; Szabo, Zoltan

    2010-01-01

    The research and development on methods for partitioning and transmutation (P and T) of long-lived radionuclides in spent nuclear fuel has attracted considerable interest during the last decade. The main objective of P and T is to eliminate or at least substantially reduce the amount of such long-lived radionuclides that has to go to a deep geological repository for final disposal. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving stability against hydrolysis and radiolysis. This may be achieved either by additives to the solvent or by selection of a proper solvent. The development of processes and equipment must be intensified. Pyrochemical research is looking into methods for recovery of uranium and for separating fission products with large neutron cross sections. The objective is to avoid separation of plutonium from other transuranium elements and thus simplify the proliferation issue. The future work is focused on improved selectivity and on technical development. Design of processes and equipment is difficult due to the aggressive properties of the melts and the relatively high temperatures required. The fabrication of fuel for transmutation and the

  2. Actinide partitioning and transmutation program progress report, October 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Tedder, D.W.

    1977-01-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was initiated at the various sites. This work included the development of conceptual material balance flowsheets which define integrated waste systems supporting an LWR fuel reprocessing plant and a mixed (U-Pu) oxide fuel refabrication plant. In addition, waste subsystems were defined for experimental evaluation. Computer analysis of partitioning-transmutation, utilizing an LMFBR for transmutation, was completed for both constant and variable waste actinide generation rates

  3. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    International Nuclear Information System (INIS)

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  4. Partitioning and Transmutation of minor actinides

    International Nuclear Information System (INIS)

    Koch, L.; Wellum, R.

    1991-01-01

    The partitioning of minor actinides from spent fuels and their transmutation into short-lived fission products has been the topic of two dedicated meetings organized jointly by the European Commission and the OECD. The conclusion of the last meeting in 1980, in short, was that partitioning and transmutation of minor actinides, especially in fast reactors, seemed possible. However, the incentive, which would be a reduction of the radiological hazard to the public, was too small if long-lived fission products were not included. Furthermore this meeting showed that minor actinide targets or possible nuclear fuels containing minor actinides for transmutation had not yet been developed. The European Institute for Transuranium Elements took up this task and has carried it out as a small activity for several years. Interests expressed recently by an expert meeting of the OECD/NEA (Paris, 25 April 1989), which was initiated by the proposed Japanese project Omega, led us to the conclusion that the present state of knowledge should be looked at in a workshop environment. Since the Japanese proposal within the project Omega is based on a broader approach we needed this evaluation to assess the relevance of our present activity and wanted to identifiy additional studies which might be needed to cover possible future demands from the public. This workshop was therefore organized, and participants active in the field from EC countries, the USA and Japan were invited

  5. Transmutation studies of minor actinides in high intensity neutron fluxes

    International Nuclear Information System (INIS)

    Fioni, G.; Bolognese, T.; Cribier, M.; Marie, F.; Roettger, S.; Faust, H.; Leconte, Ph.

    1999-01-01

    Integral measurements of nuclear data and of the transmutation potential in specific neutron fluxes, constitute the fastest and essential way to overcome to the large uncertainties present in the nuclear data libraries. In the frame of the activities of the Directorate for Science of Matter (DSM) of the French Atomic Energy Authority (CEA), a new project is proposed so as to carry out integral measurements relevant for nuclear waste transmutation systems. A new beam tube will be installed to irradiate actinides and fission fragment samples at different distances from the fuel element of the ILL reactor. Variable neutron energy spectra could then be obtained by choosing the distance between the sample and the fuel element, opening the way to the determination of the ideal physical conditions to incinerate nuclear waste in hybrid transmutation systems. (author)

  6. Effect of Fast Neutron to MA/PU Burning/Transmutation Characteristic Using a Fast Reactor

    International Nuclear Information System (INIS)

    Marsodi; Lasman, As Natio; Kimamoto, A.; Marsongkohadi; Zaki, S.

    2003-01-01

    MA/Pu burning/transmutation has been studied and evaluated using fast neutrons. Generally, neutron density at this fast burner reactor and transmutation has spectrum energy level around 0.2 MeV with wide enough variation, i.e. from low neutron spectrum to its peak is 0.2 MeV. This neutron spectrum energy level depends on the kind of cooler material or fuel used. Neutron spectrum higher than fast power reactor neutron spectrum is found by means of changing oxide fuel by metallic fuel and changing natrium cooler material by metallic or gas cooler material. This evaluation is conducted by various variations in accordance with the kind of fuel or cooler, MA/Pu fractions and fuel comparison fraction with respect to its cooler in order to get better neutron usage and MA/Pu burning speed. Reactor calculation evaluation in this paper was conducted with 26-group nuclear data cross section energy spectrum. The main purpose of the discussion is to know the effect of fast neutrons to burning/transmutation MA/Pu using fast neutrons

  7. Detailed investigation of neutron emitters in the transmutation of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A.; Bringer, O.; Dupont, E.; Panebianco, S.; Veyssiere, Ch. [CEA/Saclay/DSM/IRFU - Gif-sur-Yvette (France); Al Mahamid, I. [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); Chartier, F. [CEA/Saclay/DEN/DPC/SECR - Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, Grenoble (France); Oriol, L. [CEA/Cadarache/DEN/DER/SPEX - Saint-Paul-lez-Durances (France)

    2008-07-01

    The production of neutron emitters during the incineration process of minor actinides could be very penalizing for the reprocessing of the targets when transmuted in heterogeneous mode, either in dedicated systems (ADS) or in generation IV reactors. Therefore their production has to be carefully evaluated. The reliability of such evaluation really depends on nuclear data (capture and fission cross sections) and their accuracy. In this paper we present a work we have done to investigate the production of neutron emitters in the incineration of {sup 237}Np and {sup 241}Am targets in fast and thermal nuclear reactor concepts. The impact of nuclear data uncertainties on the production of those neutron-emitters was evaluated by sensitivity calculations. The reduction for some of these uncertainties in the thermal energy region was done by measuring more precisely the {sup 244}Cm(n,gamma){sup 245}Cm, {sup 245}Cm(n,f) and {sup 249}Cf(n,gamma){sup 250}Cf capture cross sections at the Laue-Langevin Institute (ILL). It amounts to (15.6+-2.4) b for the first one, (1923+-49) b for the second and (389+-10) b for the third one. (authors)

  8. Design and safety studies on the European Facility for Industrial Transmutation (EFIT) with CERMET fuel

    International Nuclear Information System (INIS)

    Chen, X.N.; Rineiski, A.; Liu, P.; Matzerath Boccaccini, C.; Flad, M.; Gabrielli, F.; Maschek, W.; Morita, K.

    2008-01-01

    European R and D for ADS design and fuel development is driven in the 6 th FP of the EU by the EUROTRANS Programme [1]. In EUROTRANS two ADS design routes are followed, the XT-ADS and the EFIT. The XT-ADS is designed to provide the experimental demonstration of transmutation in an Accelerator Driven System. The EFIT development, the European Facility for Industrial Transmutation, aims at a generic conceptual design of a full transmuter. A key issue of the R and D work is the choice of an adequate fuel to be used in an Accelerator Driven Transmuter (ADT) like EFIT. Various fuel forms have been assessed. CERCER and CERMET fuels, specifically with the matrices MgO and Mo, have finally been selected and are now under closer investigation. Within EUROTRANS, a special domain named 'AFTRA', is responsible to more deeply assess the behavior of these dedicated fuels and to provide the fuel data base for the core design of the EFIT. The EFIT concept has to be optimized towards: a good transmutation efficiency, high burnup, low reactivity swing, low power peaking, adequate subcriticality, reasonable beam requirements and a high safety level. The final recommendation on fuels by AFTRA gave a ranking of these fuels based on the mentioned criteria. The composite CERMET fuel (Pu 0.5 ,Am 0.5 )O 2-x - Mo (with the isotope 92 Mo comprising 93% of the molybdenum) has been recommended as the primary candidate for the EFIT. This CERMET fuel fulfils adopted criteria for fabrication and reprocessing, and provides excellent safety margins. Disadvantages include the cost for enrichment of 92 Mo and a lower specific transmutation rate of minor actinides, because of the higher neutron absorption cross-section of the matrix. The composite CERCER fuel (Pu 0.4 ,Am 0.6 )O 2-x - MgO has therefore been recommended as a backup solution as it might offer a higher consumption rate of minor actinides, and can be manufactured for a lower unit cost. This paper is in fact a sequel to our last paper [2

  9. Transmutation of fission products and actinide waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Pitcher, E.J.; Russell, G.J. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The authors studied the neutronics of an ATW system for the transmutation of the fission products ({sup 99}Tc in particular) and the type of actinide waste stored in several tanks at Hanford. The heart of the system is a highly-efficient neutron production target. It is surrounded by a blanket containing a moderator/reflector material, as well as the products to be transmuted. The fission products are injected into the blanket in the form of an aqueous solution in heavy water, whereas an aqueous actinides slurry is circulated in the outer part of the blanket. For the sake of definiteness, the authors focussed on {sup 99}Tc (the most difficult fission product to transmute), and {sup 239}Pu, {sup 237}Np, and {sup 241}Am. Because of the low thermal neutron absorption cross-section of {sup 99}Tc, considerable care and effort must be devoted to the design of a very efficient neutron source.

  10. Accelerator-driven sub-critical target concept for transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Todosow, M.; Aronson, A.L.; Takahashi, H.; Geiger, M.J.

    1991-01-01

    A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine, based on the described PHOENIX Concept, would transmute the minor actinides and the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW e . 19 refs., 20 figs

  11. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  12. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation

    International Nuclear Information System (INIS)

    2005-11-01

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  13. The use of thermocouples which transmute during service in nuclear reactors

    International Nuclear Information System (INIS)

    Martin, R.E.

    1980-06-01

    Some current nuclear fuel experiments at CRNL require the use of thermocouples to measure temperatures of up to 2200 0 C under reactor operating conditions. A literature search has shown that transient electrical effects and transmutation of the thermocouple alloys can cause temperature measurement errors of up to +-1% and +-30%, respectively. However, the error due to transient electrical effects can be corrected by making temperature measurements immediately following reactor shutdown. Furthermore it has been shown that transmutation effects can be corrected for by calibrating the high temperature tungsten-rhenium thermocouples against a chromel-alumel thermocouple in a cooler part of the experiment. The use of these techniques is expected to reduce temperature measurement errors to +-2% in the best case. (auth)

  14. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  15. Present status of research activities on transmutation of actinides in Japan

    International Nuclear Information System (INIS)

    Amano, Hiroshi

    1978-01-01

    In Japan, the idea to make use of transmutation for the final disposal method of HLW was first examined by Ichimiya, Amano, Hamada et al., when the Japan Atomic Industry forum had organized a study committee for HLW treatment in 1973. This article has the scope to outline the present research activities on transmutation of actinides in Japan

  16. Impact of partitioning and transmutation on the high level waste management

    International Nuclear Information System (INIS)

    Gonzalez-Romero, Enrique-Miguel

    2010-01-01

    The contribution is structured as follows: (i) Background on partitioning and transmutation; (ii) FP6 projects: RED-IMPACT; (iii) Advanced fuel cycle scenarios; (iv) Partitioning and transmutation expected performance; (v) Impact on the HLW thermal load; (vi) Impact on the deep geological disposal; and (vii) Impact on the performance assessment of deep geological disposal. (P.A.)

  17. New data libraries for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hoogenboom, J.E. [Interfaculty Reactor Inst., Delft (Netherlands)

    1995-06-01

    The fuel depletion code ORIGEN-S is often used for transmutation studies. It uses three different working libraries for actinides, fission products, and light elements, which contain decay data, cross-section data and fission product yields. These data have been renewed with data based on the JEF2.2 and the EAF3 evaluated files. Furthermore, data for 201 fission products have been added to the libraries. The new data libraries are particular suitable for parameter studies and other introductory calculations. For more accurate calculations, it is advised to regularly update the cross sections of the most important actinides and fission products during the burnup sequence. (orig.).

  18. New data libraries for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hoogenboom, J.E. [Interfaculty Reactor Inst., Delft (Netherlands)

    1995-12-31

    The fuel depletion code ORIGEN-S is often used for transmutations studies. It uses three different working libraries for actinides, fission products, and light elements, which contain decay data, cross-section data and fission product yields. These data have renewed with data based on the JEF2.2 and the EAF3 evaluated files. Furthermore, data for 201 fission products have been added to the libraries. The new data libraries are particular suitable for parameter studies and other introductory calculations. For more accurate calculations, it is advised to regularly update the cross sections of the most important actinides and fission products during the burnup sequence. (author) 9 refs.

  19. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  20. Present status and issues for accelerator driven transmutation system

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    2003-01-01

    Proper treatment of high-level nuclear wastes (HLW) that are produced in operation of nuclear power plants is one of the most important problems for further utilization of nuclear energy. The purpose of the accelerator driven nuclear waste transmutation system (ADS) is to transmute these nuclei to stable or short-lived nuclei by various radiation-induced nuclear reactions. When ADS for HLW can be realized, burden to deep geological disposal can be considerably reduced. In the paper, present status and issues for ADS will be discussed. (author)

  1. Analysis of the transmutational characteristics of a novel molten salt reactor concept

    International Nuclear Information System (INIS)

    Csom, Gy.; Feher, S.; Szieberth, M.

    2001-01-01

    One of the arguments most frequently brought up by the opponents of the utilization of nuclear energy is the requirement that the radioactive waste and the long-lived radioisotopes accumulated in the spent fuel should be isolated for a very long time from the biosphere. The solution is the elimination of long-lived actinides (plutonium isotopes and minor actinides) and long-lived fission products by transforming (transmuting) them into short-lived or stable nuclei. The high neutron flux required for transmutation can be realized in nuclear installations. these may be conventional therma; and fast reactors, furthermore dedicated devices, namely thermal and fast reactors and accelerator driven subcritical systems (ADSs), which are specifically designed for this purpose. Some of the most promising systems are the molten salt reactors and subcritical systems, in which the fuel and material to be transmuted circulate dissolved in some molten salt. In the present paper this transmutational device, as well as recommendations for the improvement are discussed in detail (Authors)

  2. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  3. Minor actinide transmutation in a board type sodium cooled breed and burn reactor core

    International Nuclear Information System (INIS)

    Zheng, Meiyin; Tian, Wenxi; Zhang, Dalin; Qiu, Suizheng; Su, Guanghui

    2015-01-01

    Highlights: • A 1250 MWt board type sodium cooled breed and burn reactor core is further designed. • MCNP–ORIGEN coupled code MCORE is applied to perform neutronics and depletion calculation. • Transmutation efficiency and neutronic safety parameters are compared under different MA weight fraction. - Abstract: In this paper, a board type sodium cooled breed and burn reactor core is further designed and applied to perform minor actinide (MA) transmutation. MA is homogeneously loaded in all the fuel sub-assemblies with a weight fraction of 2.0 wt.%, 4.0 wt.%, 6.0 wt.%, 8.0 wt.%, 10.0 wt.% and 12.0 wt.%, respectively. The transmutation efficiency, transmutation amount, power density distribution, neutron fluence distribution and neutronic safety parameters, such as reactivity, Doppler feedback, void worth and delayed neutron fraction, are compared under different MA weight fraction. Neutronics and depletion calculations are performed based on the self-developed MCNP–ORIGEN coupled code with the ENDF/B-VII data library. In the breed and burn reactor core, a number of breeding sub-assemblies are arranged in the inner core in a board type way (scatter load) to breed, and a number of absorbing sub-assemblies are arranged in the inner side of the outer core to absorb neutrons and reduce power density in this area. All the fuel sub-assemblies (ignition and breeding sub-assemblies) are shuffled from outside in. The core reached asymptotically steady state after about 22 years, and the average and maximum discharged burn-up were about 17.0% and 35.3%, respectively. The transmutation amount increased linearly with the MA weight fraction, while the transmutation rate parabolically varied with the MA weight fraction. Power density in ignition sub-assembly positions increased with the MA weight fraction, while decreased in breeding sub-assembly positions. Neutron fluence decreased with the increase of MA weight fraction. Generally speaking, the core reactivity and void

  4. Concept and optimization of burning and transmutation reactor in nuclear fuel recycle system

    International Nuclear Information System (INIS)

    Marsodi; Mulyanto; Kitamoto, Asashi.

    1994-01-01

    Basic concept of B/T reactor, not only produces thermal energy but also performs burning and/or transmutation of MA and long-lived FPs, was introduced here based on numerical computation model. The advantage of nuclear reaction by thermal or fast neutron was combined conceptually with each other in order to maximize the overall B/T rate obtained by a composite system of fast and thermal reactor. According to the mass balance analysis of B/T reactors with P-T treatment, fast reactor hardened neutron energy may be effective for MA burning. Furthermore, a high flux reactor operated by fast or thermal neutron could be different from a reactor with high B/T rate or high capacity for loading of MA and/or long-lived FPs. The purpose of this study is to make clear the concept and the performance of fast and thermal B/T reactor designed under high neutron utilization for HLW disposal. (author)

  5. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  6. Fission neutron irradiation of copper containing implanted and transmutation produced helium

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, A.; Eldrup, Morten Mostgaard

    1992-01-01

    High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K. The distribut......High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K...... as well as the effect of the presence of other transmutation produced impurity atoms in the 800 MeV proton irradiated copper will be discussed....

  7. Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems

    Science.gov (United States)

    Zhivkov, P. K.

    2018-05-01

    There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.

  8. Collaboration between SCK·CEN and JAEA for partitioning and transmutation through accelerator-driven system

    International Nuclear Information System (INIS)

    2017-03-01

    This technical report reviews Research and Development (R and D) programs for the Partitioning and Transmutation (P and T) technology through Accelerator-Driven System (ADS) at Studiecentrum voor Kernenergie/Centre d'Etude de l'Énergie Nucléaire (SCK·CEN) and Japan Atomic Energy Agency (JAEA). The results obtained in the present Collaboration Arrangement between the two organizations for the ADS are also summarized, and possible further collaborations and mutual realizations in the future are sketched. (author)

  9. Gas core reactors for actinide transmutation and breeder applications. Annual report

    International Nuclear Information System (INIS)

    Clement, J.D.; Rust, J.H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  10. Neutron and proton transmutation-activation cross section libraries to 150 MeV for application in accelerator-driven systems and radioactive ion beam target-design studies

    International Nuclear Information System (INIS)

    Koning, A.J.; Chadwick, M.B.; MacFarlane, R.E.; Mashnik, S.; Wilson, W.B.

    1998-05-01

    New transmutation-activation nuclear data libraries for neutrons and protons up to 150 MeV have been created. These data are important for simulation calculations of radioactivity, and transmutation, in accelerator-driven systems such as the production of tritium (APT) and the transmutation of waste (ATW). They can also be used to obtain cross section predictions for the production of proton-rich isotopes in (p,xn) reactions, for radioactive ion beam (RIB) target-design studies. The nuclear data in these libraries stem from two sources: for neutrons below 20 MeV, we use data from the European activation and transmutation file, EAF97; For neutrons above 20 MeV and for protons at all energies we have isotope production cross sections with the nuclear model code HMS-ALICE. This code applies the Monte Carlo Hybrid Simulation theory, and the Weisskopf-Ewing theory, to calculate cross sections. In a few cases, the HMS-ALICE results were replaced by those calculated using the GNASH code for the Los Alamos LA150 transport library. The resulting two libraries, AF150.N and AF150.P, consist of 766 nuclides each and are represented in the ENDF6-format. An outline is given of the new representation of the data. The libraries have been checked with ENDF6 preprocessing tools and have been processed with NJOY into libraries for the Los Alamos transmutation/radioactivity code CINDER. Numerous benchmark figures are presented for proton-induced excitation functions of various isotopes compared with measurements. Such comparisons are useful for validation purposes, and for assessing the accuracy of the evaluated data. These evaluated libraries are available on the WWW at: http://t2.lanl.gov/. 21 refs

  11. Actinide partitioning-transmutation program final report. VII. Long-term risk analysis of the geologic repository

    International Nuclear Information System (INIS)

    Logan, S.E.; Conarty, R.L.; Ng, H.S.; Rahal, L.J.; Shirley, C.G.

    1980-09-01

    This report supports the overall assessment by Oak Ridge National Laboratory of actinide partitioning and transmutation by providing an analysis of the long-term risks associated with the terminal storage of wastes from a fuel cycle which incorporates partitioning and transmutation (P-T) and wastes from a cycle which does not. The system model and associated computer code, called AMRAW (Assessment Method for Radioactive Waste), are used for the analysis and are applied to the Los Medanos area in southeastern New Mexico. Because a conservative approach is used throughout, calculated results are believed to be consistently higher than reasonable expectations from actual disruptive incidents at the site and therefore are not directly suited for comparison with other analyses of the particular geologic location. The assessment is made with (1) the probabilistic, or risk, mode that uses combinations of reasonable possible release incidents with their probability of occurrence distributed and applied throughout the assessment period, and (2) the consequence mode that forces discrete release events to occur at specific times. An assessment period of 1 million years is used. The principal results are: (1) In all but the expulsive modes, 99 Tc and 129 I completely dominate cumulative effects based on their transport to man through leaching and movement with groundwater, effecting about 33,000 health effects (deaths) over the 1 million years; (2) P-T has only limited effectiveness in reducing long-term risk from a radionuclide waste repository under the conditions studied, and such effectiveness is essentially confined to the extremely unlikely (probability of occurrence 10 -12 /year) expulsive events; (3) Removal or immobilization of 99 Tc and 129 I might provide benefits sufficiently tangible to warrant special consideration

  12. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  13. Design Concept of the Thermal Flux Island in MYRRHA for LLFP Transmutation. Present Status

    International Nuclear Information System (INIS)

    Aoust, Th.; De Raedt, Ch.; Malambu, E.; Ait Abderrahim, H.

    2002-01-01

    MYRRHA is an ADS aimed at providing protons and neutrons for various R and D applications. It consists of a proton accelerator coupled to a sub-critical fast core. While the fast neutron spectrum, obtaining in the MYRRHA core, allows the transmutation of minor actinides (MAs), the transmutation of long lived fission products (LLFPs) in MYRRHA requires the utilisation of a thermal spectrum in order to take profit of the fact that the capture cross-sections of the LLFPs are much larger in the thermal-energy domain than in the high-energy domain. A high thermal flux island inside MYRRHA is therefore being developed, consisting of an irradiation device for LLFPs (or other irradiation target material needing a thermal neutron spectrum), surrounded by assemblies filled with a lattice of ZrH 2 moderator pins, cooled by the same coolant (Pb-Bi) as the MYRRHA fuel assemblies. Thermal neutron absorbers at the periphery of the neutron island are used to minimise the influence of the thermal flux on the fast core. The study of the performances of MYRRHA, including the transmutation of the LLFPs in such a thermal island, is carried out with the aid of the code MCNPX. The transmutation performances of LLFPs are assessed by coupling the code MCNPX to an evolution calculation. The LLFPs studied are Tc-99 and I-129. (authors)

  14. Historical perspective, economic analysis, and regulatory analysis of the impacts of waste partitioning-transmutation on the disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Croff, A.G.; Kocher, D.C.

    1990-10-01

    Partitioning-transmutation, sometimes called actinide burning, is an alternative approach to high-level radioactive waste management. It consists of removing long-lived radionuclides from wastes and destroying those radionuclides, thus reducing the long-term hazards of radioactive waste. It was studied in detail in the 1970's. New developments in technology and other factors are resulting in a reexamination of this waste management option. This report consists of three papers which summarize the historical work, update the analysis of the costs of waste disposal, and describe current regulatory requirements which might be impacted by P-T. The papers provide a starting point for future research on P-T. 152 refs., 2 figs., 19 tabs

  15. Development of neutron-transmutation-doped germanium bolometer material

    International Nuclear Information System (INIS)

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium ( 3 ) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit

  16. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    Directory of Open Access Journals (Sweden)

    Klupák Vít

    2016-01-01

    Full Text Available Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  17. Transmutation potential of current and innovative nuclear power systems

    International Nuclear Information System (INIS)

    Slessarev, I.; Salvatores, M.; Uematsu, M.

    1993-01-01

    In the present paper we have investigated the transmutation potential of different nuclear systems from a physical point of view. Transuranium (TRU) elements have been considered, but also long lived fission products (LLFP). The potential for transmutation has to take into account not only the consumption of a specific nucleus (or of a specific 'family' of nuclei), but also the reproduction of other nuclei of higher masses. The present study allows an intercomparison taking into account both aspects. Technological, safety and design constraints were not considered at this stage. However strategic indications for future studies have been obtained. 3 refs., 3 tabs

  18. Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2006-01-01

    Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n T OF experiment, which is a neutron cross section measurement project at CERN, is also described

  19. Subcritical molten salt reactor with fast/intermediate spectrum for minor actinides transmutation

    International Nuclear Information System (INIS)

    Degtyarev, Alexey M.; Feinberg, Olga S.; Kolyaskin, Oleg E.; Myasnikov, Andrey A.; Karmanov, Fedor I.; Kuznetsov, Andrey Yu.; Ponomarev, Leonid I.; Seregin, Mikhail B.; Sidorkin, Stanislav F.

    2011-01-01

    The subcritical molten-salt reactor for transmutation of Am and Cm with the fast-intermediate neutron spectrum is suggested. It is shown that ∼10 such reactor-burners is enough to support the future nuclear power based on the fast reactors as well as for the transmutation of Am and Cm accumulated in the spent fuel storages. (author)

  20. The status of nuclear data for transmutation calculations

    International Nuclear Information System (INIS)

    Wilson, W.B.; England, T.R.; MacFarlane, R.E.; Muir, D.W.; Young, P.G.

    1995-01-01

    At this point, the accurate description of transmutation products in a radiation environment is more a nuclear data problem than a code development effort. We have used versions of the CINDER code for over three decades to describe the transmutation of nuclear reactor fuels in radiation environments. The need for the accurate description of reactor neutron-absorption, decay-power, and decay-spectra properties have driven many AEC, ERDA, and DOE supported nuclear data development efforts in this period. The level of cross-section, decay, and fission-yield data has evolved from rudimentary to a comprehensive ENDF/B-VI library permitting great precision in reactor calculations. The precision of the data supporting reactor simulations provides a sturdy foundation for the data base required for the wide range of transmutation problems currently studied. However, such reactor problems are typically limited to neutron energies below 10 MeV or so; reaction and decay data are required for actinides of, say, 90 ≤ Z ≤ 96 neutron-rich fission products of 22 ≤ Z ≤ 72. The expansion into reactor structural materials and fusion systems extends these ranges in energy and Z somewhat. The library of nuclear data, constantly growing in breadth and quality with international cooperation, is now described in the following table

  1. PKA distributions: Contributions from transmutation products and from radioactive decay

    Directory of Open Access Journals (Sweden)

    M.R. Gilbert

    2016-12-01

    Full Text Available The neutrons generated in fusion plasmas interact with materials via nuclear reactions. The resulting transmutations and atomic displacements have life-limiting consequences for fusion reactor components. A detailed understanding of the production, evolution and material consequences of the damage created by cascades of atomic displacements requires, as a vital primary input, a complete description of the energy-spectrum of initial (prompt atomic displacement events (the primary knock on atoms or PKAs produced by direct neutron nuclear interactions. There is also the possibility that the radionuclides produced under transmutation will create further PKAs as they decay, and so the rate of these must also be quantified. This paper presents the latest results from the analysis of PKA spectra under neutron irradiation, focussing particularly on the variation in PKA distributions due to changes in composition under transmutation, but also on the PKA contributions from radioactive decay of materials that become activated under irradiation.

  2. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Leray, S.

    1995-01-01

    Accelerators can play a role in the disposal of long-lived radioactive waste: an alternative to the storage in deep underground repositories might transmuting long-lived elements into stable or short-lived ones in subcritical systems driven by spallation neutrons. These neutrons would be produced by a high intensity, intermediate energy proton accelerator irradiating a heavy target. Similar systems have also been proposed to produce energy with a minimized waste inventory. Since a good knowledge of the spallation process is essential for designing and optimizing the target-blanket assembly, new programmes aimed at studying spallation reactions are in progress. (author). 6 figs

  3. Evaluation of nuclides with closely spaced values of depletion constants in transmutation chains

    International Nuclear Information System (INIS)

    Vukadin, Z.S.

    1977-01-01

    New method of calculating nuclide concentrations in a transmutation chain is developed in this thesis. Method is based on originally derived recurrence formulas for expansion series of depletion functions and on originally obtained, nonsingular, Bateman coefficients. Explicit expression for the nuclide concentrations in a transmutation chain is obtained. This expression can be used as it stands for arbitrary values of nuclides depletion constants. By computing hypothetical transmutation chains and neptunium series, method is compared with the Bateman analytical solution, with the approximate solutions and with the matrix exponential method. It comes out that the method presented in this thesis is suitable for calculating very long depletion chains even in the case of some closely spaced and/or equal values of nuclide depletion constants. Though, presented method is of great practical applicability in a number of nuclear physics problems that are dealing with the nuclide transmutations: starting from the studies of the stellar evolution up to the design of nuclear reactors (author) [sr

  4. Comparative study of accelerator driven system (ADS) of different transmutation scenarios for actinides in advanced nuclear fuel cycles

    International Nuclear Information System (INIS)

    Embid-Segura, M.; Gonzalez Romero, M.E.; Perez Parra, A.

    2001-01-01

    The full text follows. In recent years transmutation has raised as a complementary option to solve the problem of the long-lived radioactive waste produced in nuclear power plants. The main advantages expected from transmutation are the reduction in volume of the high level waste and a significant decrease in the long-term radiotoxicity inventory, with a probable impact in the final costs and potential risks of the geological repository. This paper will describe the evaluation of different systems proposed for actinide transmutation, their integration in the waste management process, their viability, performances and limitations. Particular attention is taking of comparing transmutation scenarios where the actinides are transmuted inside fertile (U, Th) or inert matrix. This study has been supported by ENRESA inside the CIEMAT-ENRESA collaboration for the study of long-lived isotope transmutation. (authors)

  5. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  6. Application of neutron transmutation doping method to initially p-type silicon material.

    Science.gov (United States)

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  7. Conceptual Design of Low Fusion Power Hybrid System for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    DRUP (Direct Reuse of Used PWR) fuel has same process with DUPIC (Direct Use of spent PWR fuel Into CANDU reactor). There are 2 big benefits by using DRUP fuel in Hybrid system. One is fissile production during operating period. Required power is decreased by fissile production from DRUP fuel. When the fusion power is reduced, integrity of structure materials is not significantly weakened due to reduction of 14.1MeV high energy neutrons. In addition, required amount of tritium for self-sufficiency TBR (Tritium Breeding Ratio ≥ 1.1) is decreased. Therefore, it is possible to further loading the SNF as much as the amount of lithium decreased. It is effective in transmutation. The other one is that DRUP fuel is also SNF. Therefore, using DRUP fuel is reusing of SNF, as a result it makes reduction of SNF from PWR. However, thermal neutron system is suitable for using DRUP fuel compared to fast neutron system. Therefore, transmutation zone designed (U-TRU)Zr fuel and fissile production zone designed DRUP fuel are separated in this study. In this paper, using DRUP fuel for low fusion power in hybrid system is suggested. Fusion power is decreased by using DRUP fuel. As a result, TBR is satisfied design condition despite of using natural lithium. In addition, not only (U-TRU)Zr fuel but also DRUP fuel are transmuted.

  8. Optimization of plutonium and minor actinide transmutation in an AP1000 fuel assembly via a genetic search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com; King, J., E-mail: kingjc@mines.edu

    2017-01-15

    Highlights: • We model a modified AP1000 fuel assembly in SCALE6.1. • We couple the NEWT module of SCALE to the MOGA module of DAKOTA. • Transmutation is optimized based on choice of coating and fuel. • Greatest transmutation achieved with PuZrO{sub 2}MgO fuel pins coated with Lu{sub 2}O{sub 3}. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, which contains approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are the preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. Previous simulation work demonstrated the potential to transmute transuranic elements in a modified light water reactor fuel pin. This study optimizes a quarter-assembly containing target fuels coated with spectral shift absorbers for the transmutation of plutonium and minor actinides in light water reactors. The spectral shift absorber coating on the target fuel pin tunes the neutron energy spectrum experienced by the target fuel. A coupled model developed using the NEWT module from SCALE 6.1 and a genetic algorithm module from the DAKOTA optimization toolbox provided performance data for the burnup of the target fuel pins in the present study. The optimization with the coupled NEWT/DAKOTA model proceeded in three stages. The first stage optimized a single-target fuel pin per quarter-assembly adjacent to the central instrumentation channel. The second stage evaluated a variety of quarter-assemblies with multiple target fuel pins from the first stage and the third stage re-optimized the pins in the optimal second stage quarter-assembly. An 8 wt% PuZrO{sub 2}MgO inert matrix fuel pin with a 1.44 mm radius and a 0.06 mm Lu{sub 2}O{sub 3} coating in a five target fuel pin per quarter-assembly configuration represents the optimal combination for the

  9. An improved transmutation method for quantitative determination of the components in multicomponent overlapping chromatograms.

    Science.gov (United States)

    Shao, Xueguang; Yu, Zhengliang; Ma, Chaoxiong

    2004-06-01

    An improved method is proposed for the quantitative determination of multicomponent overlapping chromatograms based on a known transmutation method. To overcome the main limitation of the transmutation method caused by the oscillation generated in the transmutation process, two techniques--wavelet transform smoothing and the cubic spline interpolation for reducing data points--were adopted, and a new criterion was also developed. By using the proposed algorithm, the oscillation can be suppressed effectively, and quantitative determination of the components in both the simulated and experimental overlapping chromatograms is successfully obtained.

  10. Study of an optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen, E-mail: bghong@jbnu.ac.kr [Department of Quantum System Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896 (Korea, Republic of); Kim, Hoseok [Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896 (Korea, Republic of)

    2016-11-15

    Highlights: • Optimum configuration of a transmutation reactor based on a low aspect ratio tokamak was found. • Inboard and outboard radial build are determined by plasma physics, engineering and neutronics constraints. • Radial build and equilibrium fuel cycle play a major role in determining the transmutation characteristics. - Abstract: We determine the optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak. For self-consistent determination of the radial build of the reactor components, we couple a tokamak systems analysis with a radiation transport calculation. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on neutron multiplication, the tritium-breeding ratio, and the power density. We show that the breeding blanket model has an effect on the radial build of a transmutation blanket. A burn cycle has to be determined to keep the fast neutron fluence plasma-facing material below its radiation damage limit. We show that the radial build of the transmutation reactor components and the equilibrium fuel cycle play a major role in determining the transmutation characteristics.

  11. Neutronics-processing interface analyses for the Accelerator Transmutation of Waste (ATW) aqueous-based blanket system

    International Nuclear Information System (INIS)

    Davidson, J.W.; Battat, M.E.

    1993-01-01

    Neutronics-processing interface parameters have large impacts on the neutron economy and transmutation performance of an aqueous-based Accelerator Transmutation of Waste (ATW) system. A detailed assessment of the interdependence of these blanket neutronic and chemical processing parameters has been performed. Neutronic performance analyses require that neutron transport calculations for the ATW blanket systems be fully coupled with the blanket processing and include all neutron absorptions in candidate waste nuclides as well as in fission and transmutation products. The effects of processing rates, flux levels, flux spectra, and external-to-blanket inventories on blanket neutronic performance were determined. In addition, the inventories and isotopics in the various subsystems were also calculated for various actinide and long-lived fission product transmutation strategies

  12. Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter

    International Nuclear Information System (INIS)

    Chen Yixue; Wu Yican

    2000-01-01

    A preliminary conceptual design on high performance dual-cooled blanket of fusion-driven transmuter is presented based on neutronic calculation. The dual-cooled system has some attractive advantages when utilized in transmutation of HLW (High Level Wastes). The calculation results show that this kind of blanket could safely transmute about 6 ton minor actinides (produced by 170 GW(e) Year PWRs approximately) and 0.4 ton fission products per year, and output 12 GW thermal power. In addition, the variation of power and critical factor of this blanket is relatively little during its 1-year operation period. This blanket is also tritium self-sustainable

  13. Evidence for the occurrence of LENR-type processes in alchemic transmutations

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Pariente, Joaquin [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, 28049 Cantoblanco, Madrid (Spain)

    2006-07-01

    The relevance of experimental aspects of alchemy have been neglected for too long in the academic milieu, but in recent years more thoughtful studies of texts from the middle ages and early modern European alchemy evidence the presence of coherent and relevant laboratory practices. However, the central core of western alchemy, the quest for the Philosophers' Stone, the substance claimed to transmute base metals into gold, remains, needless to say, elusive. While no book will ever tell us how to prepare such substance, it is nevertheless also true that detailed reports on alchemic transmutations, often authored by witnesses of such events, can be found profusely in alchemic literature. These reports usually contain valuable information regarding quantitative aspects of the transmutation processes. Taking into account numerical parameters of alchemic transmutations such as the weights of starting base metal, gold and Philosophers' Stone, and the duration of the transmutation experiences, it has been found that the transmutation processes follow a specific pattern similar to that generally observed in conventional catalytic reactions. In the present work, several examples of alchemic practices and objects are reported that, taken as a whole, challenge our actual view on the constitution of matter. First, new data are presented which support the catalytic-like performance of the Philosophers' Stone. Indeed, such behaviour is consistent with the alchemic view on the evolution of metals, which conceives the transmutation as an acceleration of the ripening of base metals towards the more perfect gold which takes place in Nature by means of a slow maturation process inside the Earth's womb. Second, differences between the weight of the starting base metal and the weight of the gold (or silver) obtained at the end of the transmutation process are often noticed in the texts, but no satisfactory explanation for such observation has been given so far

  14. Evidence for the occurrence of LENR-type processes in alchemic transmutations

    International Nuclear Information System (INIS)

    Perez-Pariente, Joaquin

    2006-01-01

    The relevance of experimental aspects of alchemy have been neglected for too long in the academic milieu, but in recent years more thoughtful studies of texts from the middle ages and early modern European alchemy evidence the presence of coherent and relevant laboratory practices. However, the central core of western alchemy, the quest for the Philosophers' Stone, the substance claimed to transmute base metals into gold, remains, needless to say, elusive. While no book will ever tell us how to prepare such substance, it is nevertheless also true that detailed reports on alchemic transmutations, often authored by witnesses of such events, can be found profusely in alchemic literature. These reports usually contain valuable information regarding quantitative aspects of the transmutation processes. Taking into account numerical parameters of alchemic transmutations such as the weights of starting base metal, gold and Philosophers' Stone, and the duration of the transmutation experiences, it has been found that the transmutation processes follow a specific pattern similar to that generally observed in conventional catalytic reactions. In the present work, several examples of alchemic practices and objects are reported that, taken as a whole, challenge our actual view on the constitution of matter. First, new data are presented which support the catalytic-like performance of the Philosophers' Stone. Indeed, such behaviour is consistent with the alchemic view on the evolution of metals, which conceives the transmutation as an acceleration of the ripening of base metals towards the more perfect gold which takes place in Nature by means of a slow maturation process inside the Earth's womb. Second, differences between the weight of the starting base metal and the weight of the gold (or silver) obtained at the end of the transmutation process are often noticed in the texts, but no satisfactory explanation for such observation has been given so far. Weight decreases are

  15. The concept of electro-nuclear facility for useful power generation and minor actinides transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Bergelson, B.R.; Balyuk, S.A. [ITEP, Moscow (Russian Federation)

    1995-10-01

    The possibility is shown to design in principle the double-purpose liquid fuel electro nuclear facility for useful power generation and minor actinides transmutation in U-Pu fuel cycle conditions. D{sub 2}O and a melt of fluorine salts are considered as a working media for liquid fuel. Such facility replenished with depicted or natural uranium only makes it possible to generate power of 900 MW (c) for external consumers and serve 20 WWER-1000 reactors for transmutation of MA. The facility could be thought as an alternative to fast reactors since appr. 30% of the total power confined in uranium is utilized in it.

  16. About the first experiment on investigation of 129I, 237Np, 238Pu and 239Pu transmutation at the nuclotron 2.52 GeV deuteron beam in neutron field generated in U/Pb-assembly 'Energy plus transmutation'

    International Nuclear Information System (INIS)

    Krivopustov, M.I.; Pavliouk, A.V.; Malakhov, A.I.

    2008-01-01

    Preliminary results of the first experiment with energy 2.52 GeV at the electronuclear setup which consists of Pb-target (diameter 8.4 cm, length 45.6 cm) and nat U-blanket (206.4 kg), transmutation samples of 129 I, 237 Np, 238 Pu and 239 Pu (radioecological aspect) are described. Hermetically sealed samples in notable amounts are gathered in atomic reactors and setups of industries which use nuclear materials and nuclear technologies were irradiated in the field of neutrons produced in the Pb-target and propagated in the nat U-blanket. Estimates of transmutations were obtained as a result of measurements of gamma activities of the samples. The information about the space and energy distribution of neutrons in the volume of the lead target and the uranium blanket was obtained with the help of sets of activation threshold detectors (Al, Co, Y, I, Au, Bi and others), solid-state nuclear track detectors, 3 He neutron detectors and nuclear emulsion. Comparison of the experimental data with the results of simulation with the MCNPX program was performed

  17. Accelerator driven nuclear energy and transmutation systems

    International Nuclear Information System (INIS)

    Boldeman, J.W.

    1999-01-01

    Nuclear power generation has been a mature industry for many years. However, despite the overall safety record and the great attractions of nuclear power, especially in times of concern about green house gases emissions, there continues to be some lack of public acceptance of this technology. This sensitivity to nuclear power has several elements in addition to the concern of a potential nuclear accident. These include the possible diversion of plutonium into nuclear weapon production and the concern about the long term storage of plutonium and other transuranic elements. A concept which seeks to allay these fears but still takes advantage of the nuclear fuel cycle and utilises decades of research and development in this technology, is the idea of using modern accelerators to transmute the long lived radio nuclides and simultaneously generate power. A review of the novel concepts for energy production and transmutation of isotopes will be presented. Of the various proposals, the most developed is the Energy Amplifier Concept promoted by Rubbia. The possibility of using high-energy, high-current accelerators to produce large fluxes of neutrons has been known since the earliest days of accelerator technology. E.O. Lawrence, for example, promoted the concept of producing nuclear material with such an accelerator. The Canadians in the early 50s considered using accelerators to produce fuel for their heavy water reactors and there were well advanced designs for a device called the Intense Neutron Generator. The speculative idea of using accelerator produced neutrons for the transmutation of transuranic elements (i.e. elements such as neptunium plutonium and other elements with higher Z atomic number) has also been studied extensively, notably at a number of laboratories in the US, Europe and Japan. However at this time, all facilities that have actually been constructed have been designed primarily for condensed matter studies i.e. studies of the structural properties

  18. Waste partitioning and transmutation as a means towards long-term risk reduction

    International Nuclear Information System (INIS)

    Merz, E.R.

    1993-09-01

    It has been an idea for some time to reduce the long-term potential hazard of the waste by chemical removal of the actinides as well as some long-lived fission products and their subsequent transmutation in an intense neutron flux. Transmutation would thus shorten the required containment period of radioactive material in a repository. It is estimated, that development of such technology would take at least 40 years because facilities would be required to perform a clean actinide and fission product isolation and to fabricate the fuel elements that contained the separated nuclides. This latter requirements would involve a major expansion of new chemical process steps which are not available as yet. Development of new equipment to maintain occupational exposures as low as reasonably achievable and to minimize releases of radioactivity to the environment would also be necessary. Partitioning and transmutation should be introduced, if at all, as a long-term decision about new nuclear power technology as a future energy source. With regard to this, R and D work dealing with basic questions seems to be worthwhile, However, the introduction of partitioning and transmutation will not eliminate the need for radioactive waste disposal. (orig./HP) [de

  19. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    International Nuclear Information System (INIS)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K.

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project 'Impact of the accelerator based technologies on nuclear fission safety' - IABAT and in bilateral cooperation with different foreign research groups

  20. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project `Impact of the accelerator based technologies on nuclear fission safety` - IABAT and in bilateral cooperation with different foreign research groups 31 refs, 23 figs

  1. Neutronics design for a spherical tokamak fusion-transmutation reactor

    International Nuclear Information System (INIS)

    Deng Meigen; Feng Kaiming; Yang Bangchao

    2002-01-01

    Based on studies of the spherical tokamak fusion reactors, a concept of fusion-transmutation reactor is put forward. By using the one-dimension transport and burn-up code BISON3.0 to process optimized design, a set of plasma parameters and blanket configuration suitable for the transmutation of MA (Minor Actinides) nuclear waste is selected. Based on the one-dimension calculation, two-dimension calculation has been carried out by using two-dimension neutronics code TWODANT. Combined with the neutron flux given by TWODANT calculation, burn-up calculation has been processed by using the one-dimension radioactivity calculation code FDKR and some useful and reasonable results are obtained

  2. On the use of spinel-based nuclear fuels for the transmutation of actinides

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Bakker, K.; Boshoven, J.G.; Hein, H.; Huntelaar, M.E.; Zhang, H.; Meeldijk, J.D.; Woensdregt, C.F.

    1997-01-01

    The properties of spinel-based nuclear fuels for the transmutation of actinides are investigated. The results of laboratory experiments, thermodynamic calculations and irradiations in the High Flux Reactor (HFR) at Petten are presented, and allow us to evaluate the potential of spinel as an inert matrix for fuels and targets for transmutation. (author)

  3. Partitioning and Transmutation. Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Isabelle; Englund, Sofie; Fermvik, Anna; Liljenzin, Jan-Olov; Neumayer, Denis; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2007-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93} Zr, {sup 94} To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW, respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work. Work is progressing in relation to a proposal for the 7th framework programme. This proposal will be aiming at a pilot plant for separation for transmutation purposes.

  4. Comparison of different options for minor actinide transmutation in the frame of the French law for waste management

    International Nuclear Information System (INIS)

    Chabert, Christine; Leudet, Alain; Saturnin, Anne

    2011-01-01

    In the frame of the French Act for waste management which has been passed by French Parliament on June 28th, 2006, it is requested to obtain in 2012 an assessment of industrial perspectives of partitioning and transmutation of long-lived elements. These studies must be carried out in tight connection with GENIV systems development. The expected results must include the evaluation of technical and economic scenarios taking into account the optimization options between the minor actinide transmutation processes, their interim storage and geological disposal, including an analysis of several criteria. In this perspective, the CEA has established a working group named 'GT TES' (Working Group on Technical and Economic Scenarios) involving EDF and AREVA to define scenarios, the various criteria to evaluate them, to conduct these evaluations and then to highlight the key results. The group also relied on ANDRA for the geological storage studies. The scenarios evaluations take place in the French context. The nuclear energy production is supposed to remain constant during the scenarios and equal to 430 TWhe/year in accordance with the current French nuclear power installed capacity of 60 GW(e). The deployment of the first Sodium-cooled Fast Reactor (SFR) starts in 2040, considering that at this date the SFR technology should be mature. Several management schemes of minor actinides have been studied: Plutonium recycling in SFR (minor actinides are sent to the waste). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in homogeneous mode ('Hom.'). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in heterogeneous mode ('Het.'). Plutonium recycling in SFR and minor actinide transmutation in Accelerator-Driven-System (ADS). The criteria used to analyze these different scenarios, should take into account the viewpoint of scientists, industrials, administrations, and the general public. They are listed below: Inventories and

  5. Transmutation of long-lived nuclides

    International Nuclear Information System (INIS)

    Liang Tongxiang; Tang Chunhe

    2003-01-01

    Partitioning and transmutation of long-lived nuclides have profound benefits for economic development, global political stability and the environment. This technology would reduce nuclear waste disposal requirements, prevent proliferation and eliminate a major hurdle to the development of nuclear power. This paper reviews the advanced fuel cycle process and development of ATW in the world, and some suggestions about the R and D of nuclear power in China are proposed

  6. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Dudnikov, A. A.; Alekseev, P. N.; Subbotin, S. A.

    2007-01-01

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  7. Macroscopic heterogeneity of liver fat: an MR-based study in type-2 diabetic patients

    International Nuclear Information System (INIS)

    Capitan, Violaine; Lefevre, Pierre-Henri; Favelier, Sylvain; Loffroy, Romaric; Krause, Denis; Petit, Jean-Michel; Aho, Serge; Hillon, Patrick; Cercueil, Jean-Pierre; Guiu, Boris

    2012-01-01

    To assess the heterogeneity of liver fat deposition with MR of the liver in type-2 diabetic (T2D) patients. We enrolled 121 consecutive T2D patients. The reference standard was 3.0-T 1 H-MR spectroscopy. Hepatic steatosis was defined as liver fat content (LFC) ≥5.56 %. A triple-echo gradient-echo sequence corrected for T1 recovery and T2* decay was used to calculate LFC in left and right livers and hepatic segments. Analyses were performed using a linear mixed model. Fifty-nine (48.8 %) patients had liver steatosis, whereas 62 (51.2 %) did not. Steatosis was greater in the right than in the left liver (P < 0.0001) [mean difference: 1.32 % (range: 0.01-8.75 %)]. In seven patients (5.8 %), LFC was <5.56 % in one side of the liver, whereas it was ≥5.56 % in the other. Steatosis of the left and right liver was heterogeneous at the segmental level in both non-steatotic (P < 0.001 and P < 0.0001 respectively) and steatotic (P < 0.0001 and P = 0.0002 respectively) patients [mean maximum difference: 3.98 % (range: 0.74-19.32 %)]. In 23 patients (19 %), LFC was <5.56 % in one segment, whereas it was ≥5.56 % in at least one other. Overall, the mean segmental/lobar variability of steatosis is low. However, segmental variability can sometimes lead to a misdiagnosis. (orig.)

  8. Macroscopic heterogeneity of liver fat: an MR-based study in type-2 diabetic patients

    Energy Technology Data Exchange (ETDEWEB)

    Capitan, Violaine; Lefevre, Pierre-Henri; Favelier, Sylvain; Loffroy, Romaric; Krause, Denis [CHU (University Hospital), Department of Radiology, 14 rue Paul Gaffarel, BP 77908, Dijon (France); CHU (University Hospital), BP 77908, Dijon (France); Petit, Jean-Michel [CHU (University Hospital), Department of Endocrinology, Diabetology, and Metabolic Diseases, BP 77908, Dijon (France); CHU (University Hospital), BP 77908, Dijon (France); Aho, Serge [CHU (University Hospital), Department of Biostatistics and Medical Informatics, Dijon (France); CHU (University Hospital), BP 77908, Dijon (France); Hillon, Patrick [University of Burgundy, INSERM U866, BP 87900, Dijon (France); CHU (University Hospital), Department of Hepatology, BP 77908, Dijon (France); CHU (University Hospital), BP 77908, Dijon (France); Cercueil, Jean-Pierre; Guiu, Boris [CHU (University Hospital), Department of Radiology, 14 rue Paul Gaffarel, BP 77908, Dijon (France); University of Burgundy, INSERM U866, BP 87900, Dijon (France); CHU (University Hospital), BP 77908, Dijon (France)

    2012-10-15

    To assess the heterogeneity of liver fat deposition with MR of the liver in type-2 diabetic (T2D) patients. We enrolled 121 consecutive T2D patients. The reference standard was 3.0-T {sup 1}H-MR spectroscopy. Hepatic steatosis was defined as liver fat content (LFC) {>=}5.56 %. A triple-echo gradient-echo sequence corrected for T1 recovery and T2* decay was used to calculate LFC in left and right livers and hepatic segments. Analyses were performed using a linear mixed model. Fifty-nine (48.8 %) patients had liver steatosis, whereas 62 (51.2 %) did not. Steatosis was greater in the right than in the left liver (P < 0.0001) [mean difference: 1.32 % (range: 0.01-8.75 %)]. In seven patients (5.8 %), LFC was <5.56 % in one side of the liver, whereas it was {>=}5.56 % in the other. Steatosis of the left and right liver was heterogeneous at the segmental level in both non-steatotic (P < 0.001 and P < 0.0001 respectively) and steatotic (P < 0.0001 and P = 0.0002 respectively) patients [mean maximum difference: 3.98 % (range: 0.74-19.32 %)]. In 23 patients (19 %), LFC was <5.56 % in one segment, whereas it was {>=}5.56 % in at least one other. Overall, the mean segmental/lobar variability of steatosis is low. However, segmental variability can sometimes lead to a misdiagnosis. (orig.)

  9. System study on partitioning and transmutation of long-lived isotopes

    International Nuclear Information System (INIS)

    Szieberth, M.

    2001-01-01

    The management of long-lived isotopes - transuranium elements and fission products - produced in nuclear reactors is a problem that substantially affects the public acceptance of nuclear energy, and may influence the long-term hazard caused by energy production. Partitioning and transmutation of spent fuel materials offer a suitable solution to this problem. After the nuclear community had realised this fact, the number of publications on this topic significantly increased but there is still a lack of studies that include the analysis of not only one instrument but also the whole nuclear energy system. However, from the viewpoint of Partitioning and transmutation's implementation a substantial question is the cooperation of plants optimised for energy generation and others for partitioning or transmutation. In order to analyse this problem, the schemes of different systems are framed and their mathematical models are worked out. The systems are evaluated through the long-term risks caused by the waste deposited in final disposal, and the risks are described by a newly defined quantity, the residual hazard index. (author)

  10. An assessment of partition and transmutation against UK requirements for radioactive waste management

    International Nuclear Information System (INIS)

    Cummings, R.; Bush, R.P.; Crookshanks, C.E.

    1996-06-01

    A review of partition and transmutation is made with the objective of assessing the prospects for real financial of safety gains being made from the future use of partition and transmutation within the UK. The assessment covers all the civil high-level waste (HLW) from reprocessing spent fuel, civil spent fuels where there are currently no plans or contracts for reprocessing, and intermediate-level waste (ILW). Both existing stocks and future arisings are included. The impact is also analysed of considering all the non-military uranium and plutonium extant in the UK as candidates for transmutation. The assessment takes full account of advances in technology since the earlier UK studies and changes in the UK situation. (Author)

  11. Transmutation of nuclear waste. Status report RAS programme 1993: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, K; Bultman, J H; Cordfunke, E H.P.; Gruppelaar, H; Janssen, A J; Franken, W M.P.; Klippel, K T; Kloosterman, J L; Konings, R J.M.; Smit, J

    1994-11-01

    The term ``nuclear transmutation`` means a conversion of long-lived radioactive nuclides into short-lived or stable nuclides and ``recycling`` means re-use of fissile material to generate energy in power reactors. With these two processes a reduction of the radiotoxicity and of its duration may be achieved, thus reducing the potential hazard to future generations. Firstly, the report gives a survey of the present situation regarding nuclear waste: its components, how the waste is produced in current LWR and possible options for interim and final storage. Then the objective of the RAS programme, the working methods and the state of the art of the research are considered. Two chapters deal with preliminary results of national and international research. A rather tentative prediction for the future is formulated. Some conclusions are drawn: It seems to be in the best interests of the Netherlands to continue the established line of reprocessing nuclear waste, should new reactors be introduced. It may be advisable to make international agreements so that in the future fission products will contain as few traces of transuranic actinides and long-lived components as possible. Consequently, nuclear waste would become cleaner in terms of long-lived components. For the transmutation of products separated in foreign countries, the Netherlands could pursue an active policy, perform research and also consider the use of MOX fuel in future Dutch reactors. Further contributions towards the solution of these problems can only be made by the Netherlands on an international level. As such, the research and study performed within the framework of the RAS-programme represents a useful international contribution. Finally, the choice of a new generation of nuclear reactors should be made not based only on the safety aspects, but also on the extent of waste production and on the transmutation possibilities (application of MOX, etc.). (orig./HP).

  12. Advanced separation and transmutation, long dated behavior of vitrified wastes: 15 years of scientific researches; Separation poussee et transmutation, comportement a long terme des dechets vitrifies: 15 ans d'avancees scientifiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    This report presents the results after 15 years of researches at the Cea, concerning the separation and transmutation of radioactive wastes and the conditioning and the long time storage of wastes at the surface. These researches were asked in the framework of the Bataille law. The first part devoted to the transmutation and separation of ling life radioactive elements presents the challenges, the advanced separation, the transmutation and the evaluation of the researches. The second part devoted to the long dated storage discusses the high activity wastes vitrification, the behavior of the vitrified wastes packages after thousand years, the international researches and the evaluation of the researches. (A.L.B.)

  13. Helium and fission gas behaviour in magnesium aluminate spinel and zirconia for actinide transmutation

    NARCIS (Netherlands)

    Damen, P.M.G.

    2003-01-01

    In order to reduce the long-term radiotoxicity of spent nuclear fuel, many studies are performed on partitioning and transmutation of actinides. In such a scenario, the long-lived radio-isotopes (mostly actinides) are partitioned from the nuclear waste, and subsequently transmuted or fissioned in a

  14. Transmuted of Rayleigh Distribution with Estimation and Application on Noise Signal

    Science.gov (United States)

    Ahmed, Suhad; Qasim, Zainab

    2018-05-01

    This paper deals with transforming one parameter Rayleigh distribution, into transmuted probability distribution through introducing a new parameter (λ), since this studied distribution is necessary in representing signal data distribution and failure data model the value of this transmuted parameter |λ| ≤ 1, is also estimated as well as the original parameter (⊖) by methods of moments and maximum likelihood using different sample size (n=25, 50, 75, 100) and comparing the results of estimation by statistical measure (mean square error, MSE).

  15. Transmutation of Americium in Light and Heavy Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada); Ellis, R.J.; Gehin, J.C. [Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (United States); Maldonado, G.I. [University of Tennessee (Knoxville)/ORNL, Tennessee (United States)

    2009-06-15

    There is interest worldwide in reducing the burden on geological nuclear fuel disposal sites. In most disposal scenarios the decay heat loading of the surrounding rock limits the capacity of these sites. On the long term, this decay heat is generated primarily by actinides, and a major contributor 100 to 1000 years after discharge from the reactor is {sup 241}Am. One possible approach to reducing the decay-heat burden is to reprocess spent reactor fuel and use thermal spectrum reactors to 'burn' the Am nuclides. The viability of this approach is dependent upon the detailed changes in chemical and isotopic composition of actinide-bearing fuels after irradiation in thermal reactor spectra. The currently available thermal spectrum reactor options include light water-reactors (LWRs) and heavy-water reactors (HWRs) such as the CANDU{sup R} designs. In addition, as a result of the recycle of spent LWR fuel, there would be a considerable amount of potential recycled uranium (RU). One proposed solution for the recycled uranium is to use it as fuel in Candu reactors. This paper investigates the possibilities of transmuting americium in 'spiked' bundles in pressurized water reactors (PWRs) and in boiling water reactors (BWRs). Transmutation of Am in Candu reactors is also examined. One scenario studies a full core fuelled with homogeneous bundles of Am mixed with recycled uranium, while a second scenario places Am in an inert matrix in target channels in a Candu reactor, with the rest of the reactor fuelled with RU. A comparison of the transmutation in LWRs and HWRs is made, in terms of the fraction of Am that is transmuted and the impact on the decay heat of the spent nuclear fuel. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). (authors)

  16. Accelerator Driven Systems (ADS) and transmutation of nuclear waste: Options and trends

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2001-01-01

    The scope of the lecture is to present: 1) the rationale for transmutation, 2) the principle of ADS (spallation source, sub-critical blanket), 3) an overview of the main concepts being investigated and the ongoing R and D activities in this area, 4) development trends for this technology. (author)

  17. Method for accounting for macroscopic heterogeneities in reactor material balance generation in fuel cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bagdatlioglu, Cem, E-mail: cemb@utexas.edu; Schneider, Erich

    2016-06-15

    Highlights: • Describes addition of spatially dependent power sharing to a previous methodology. • The methodology is used for calculating the input and output isotopics and burnup. • Generalizes to simulate reactors with strong spatial and flux heterogeneities. • Presents cases where the old approach would not have been sufficient. - Abstract: This paper describes the addition of spatially dependent power sharing to a methodology used for calculating the input and output isotopics and burnup of nuclear reactors within a nuclear fuel cycle simulator. Neutron balance and depletion calculations are carried out using pre-calculated fluence-based libraries. These libraries track the transmutation and neutron economy evolution of unit masses of nuclides available in input fuel. The work presented in the paper generalizes the method to simulate reactors that contain more than one type of fuel as well as strong spatial and flux heterogeneities, for instance breeders with a driver–blanket configuration. To achieve this, spatial flux calculations are used to determine the fluence-dependent relative average fluxes inside macroscopic spatial regions. These fluxes are then used to determine the average power of macroscopic spatial regions as well as to more accurately calculate region-specific transmutation rates. The paper presents several cases where the fluence based approach alone would not have been sufficient to determine results.

  18. Transmutation and activation of fusion reactor wall and structural materials

    International Nuclear Information System (INIS)

    Jarvis, O.N.

    1979-01-01

    This report details the extent of the nuclear data needed for inclusion in a data library to be used for general assessments of fusion reactor structure activation and transmutation, describes the sources of data available, reviews the literature and explores the reliability of current calculations by providing an independent assessment of the activity inventory to be expected from five structural materials in a simple blanket design for comparison with the results of other workers. An indication of the nuclear reactions which make important contributions to the activity, transmutation and gas production rates for these structural materials is also presented. (author)

  19. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  20. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  1. Cost optimization of ADS design: Comparative study of externally driven heterogeneous and homogeneous two-zone subcritical reactor systems

    International Nuclear Information System (INIS)

    Gulik, Volodymyr; Tkaczyk, Alan H.

    2014-01-01

    Highlights: • The optimization of two-zone homogeneous subcritical systems has been performed. • A Serpent model for two-zone heterogeneous subcritical systems has been developed. • The optimization of two-zone heterogeneous subcritical systems has been carried out. • Economically optimal core composition of two-zone subcritical system was found. • The neutron spectra of the heterogeneous subcritical systems have been obtained. - Abstract: Subcritical systems driven by external neutron sources, commonly known as Accelerator-Driven System (ADS), are one type of advanced nuclear reactor exhibiting attractive characteristics, distinguished from the traditional critical systems by their intrinsic safety features. In addition, an ADS can be used for the transmutation of the nuclear waste, accumulated during the operation of existing reactors. The optimization of a subcritical nuclear reactor in terms of materials (fuel content, coolant, etc.), geometrical, and economical parameters is a crucial step in the process of their design and construction. This article describes the optimization modeling performed for homogeneous and heterogeneous two-zone subcritical systems in terms of geometry of the fuel zones. Economical assessment was also carried out for the costs of the fuel in the core of the system. Optimization modeling was performed with the Serpent-1.1.18 Monte Carlo code. The model of a two-zone subcritical system with a fast inner and a thermal gas-cooled graphite-moderated outer zone was developed, simulated, and analyzed. The optimal value for the pitch of fuel elements in the thermal outer zone was investigated from the viewpoint of the cost of subcritical system. As the main goal of ADS development is nuclear waste transmutation, neutron spectra for both fast and thermal zones were obtained for different system configurations. The results of optimization modeling of homogeneous and heterogeneous two-zone subcritical systems show that an optimal

  2. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  3. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    Energy Technology Data Exchange (ETDEWEB)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-07-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  4. Simulating irradiation hardening in tungsten under fast neutron irradiation including Re production by transmutation

    Science.gov (United States)

    Huang, Chen-Hsi; Gilbert, Mark R.; Marian, Jaime

    2018-02-01

    Simulations of neutron damage under fusion energy conditions must capture the effects of transmutation, both in terms of accurate chemical inventory buildup as well as the physics of the interactions between transmutation elements and irradiation defect clusters. In this work, we integrate neutronics, primary damage calculations, molecular dynamics results, Re transmutation calculations, and stochastic cluster dynamics simulations to study neutron damage in single-crystal tungsten to mimic divertor materials. To gauge the accuracy and validity of the simulations, we first study the material response under experimental conditions at the JOYO fast reactor in Japan and the High Flux Isotope Reactor at Oak Ridge National Laboratory, for which measurements of cluster densities and hardening levels up to 2 dpa exist. We then provide calculations under expected DEMO fusion conditions. Several key mechanisms involving Re atoms and defect clusters are found to govern the accumulation of irradiation damage in each case. We use established correlations to translate damage accumulation into hardening increases and compare our results to the experimental measurements. We find hardening increases in excess of 5000 MPa in all cases, which casts doubts about the integrity of W-based materials under long-term fusion exposure.

  5. Development of long-lived radionuclide transmutation technology - Development of a code system for core analysis of the transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Kim, Yong Hee; Kim, Tae Hyung; Jo, Chang Keun; Park, Chang Je [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The objective of this study is to develop a code system for core analysis= of the critical transmutation reactors utilizing fast neutrons. Core characteristics of the transmutation reactors were identified and four codes, HANCELL for pincell calculation, PRISM and AFEN-H3D for core calculation, and MA{sub B}URN for depletion calculation, were developed. The pincell calculation code is based on one-dimensional collision probability method and may provide homogenized/condensed parameters of a pincell and also can homogenize the control assembly via a nonlinear iterative method. The core calculation codes, PRISM and AFEN-H3D, solve the multi-group, multi-dimensional neutron diffusion equations for a hexagonal geometry and they are based on the finite difference method and analytic function expansion nodal (AFEN) method, respectively. The MA{sub B}URN code san analyze the behavior of actinides and fission products in a reactor core. Through benchmarking, we confirmed that the newly developed codes provide accurate solutions. 30 refs., 10 tabs., 8 figs. (author)

  6. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Science.gov (United States)

    Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.

    2017-09-01

    Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.

  7. Transmutation Fuels Campaign FY-09 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase

    2009-09-01

    This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

  8. Simian T Lymphotropic Virus 1 Infection of Papio anubis: tax Sequence Heterogeneity and T Cell Recognition.

    Science.gov (United States)

    Termini, James M; Magnani, Diogo M; Maxwell, Helen S; Lauer, William; Castro, Iris; Pecotte, Jerilyn; Barber, Glen N; Watkins, David I; Desrosiers, Ronald C

    2017-10-15

    Baboons naturally infected with simian T lymphotropic virus (STLV) are a potentially useful model system for the study of vaccination against human T lymphotropic virus (HTLV). Here we expanded the number of available full-length baboon STLV-1 sequences from one to three and related the T cell responses that recognize the immunodominant Tax protein to the tax sequences present in two individual baboons. Continuously growing T cell lines were established from two baboons, animals 12141 and 12752. Next-generation sequencing (NGS) of complete STLV genome sequences from these T cell lines revealed them to be closely related but distinct from each other and from the baboon STLV-1 sequence in the NCBI sequence database. Overlapping peptides corresponding to each unique Tax sequence and to the reference baboon Tax sequence were used to analyze recognition by T cells from each baboon using intracellular cytokine staining (ICS). Individual baboons expressed more gamma interferon and tumor necrosis factor alpha in response to Tax peptides corresponding to their own STLV-1 sequence than in response to Tax peptides corresponding to the reference baboon STLV-1 sequence. Thus, our analyses revealed distinct but closely related STLV-1 genome sequences in two baboons, extremely low heterogeneity of STLV sequences within each baboon, no evidence for superinfection within each baboon, and a ready ability of T cells in each baboon to recognize circulating Tax sequences. While amino acid substitutions that result in escape from CD8 + T cell recognition were not observed, premature stop codons were observed in 7% and 56% of tax sequences from peripheral blood mononuclear cells from animals 12141 and 12752, respectively. IMPORTANCE It has been estimated that approximately 100,000 people suffer serious morbidity and 10,000 people die each year from the consequences associated with human T lymphotropic virus (HTLV) infection. There are no antiviral drugs and no preventive vaccine. A

  9. Laser enhanced radioactive decay and selective transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Saloman, R.; Aarnio, P.; Ala-Heikkila, J.; Hakola, A.; Santala, M.

    2007-01-01

    We have investigated narrow-band coherent laser radiation - ranging from visible to X- and to gamma-ray wave length region - and their interactions both directly with photon-nuclear couplings and indirectly through the photon-electron and electron-nucleus interactions. In particular we discuss various means of selective excitation of nuclear resonance states by narrowband lasers. During the relaxation process the active nucleus may return to its initial ground-state or find another final state. In the latter case the nucleus is transmuted into a state which may have beneficial properties for instance concerning radioactivity. One ideal case would be the destruction of long-lived nuclear waste isotopes into faster decaying ones. The essential presumption is that the excitation process is selective and efficient as regards background processes due to unwanted excitation channels of the primary isotope and due to other surrounding nuclides. The paper consists of 1) a short review of generating short-wave length coherent light sources, 2) a survey of potential photon-induced nuclear states and their decay channels, and 3) a determination of the selectivity of the transmutation process

  10. Chemical separations schemes for partitioning and transmutation systems

    International Nuclear Information System (INIS)

    Laidler, J.

    2002-01-01

    In the initial phase of the U.S. Accelerator Transmutation of Waste (ATW) program, a single-tier system was foreseen in which the transuranics and long-lived fission products (specifically, 99 Tc and 129 I) recovered from spent LWR oxide fuel would be sent directly to an accelerator-driven transmuter reactor [1]. Because the quantity of fuel to be processed annually was so large (almost 1,500 tons per year), an aqueous solvent extraction process was chosen for LWR fuel processing. Without the need to separate transuranics from one another for feed to the transmuter, it became appropriate to develop an advanced aqueous separations method that became known as UREX. The UREX process employs an added reagent (acetohydroxamic acid) that suppresses the extraction of plutonium and promotes the extraction of technetium together with uranium. Technetium can then be efficiently removed from the uranium; the recovered uranium, being highly decontaminated, can be disposed of as a low-level waste or stored in an unshielded facility for future use. Plutonium and the other transuranic elements, plus the remaining fission products, are directed to the liquid waste stream. This stream is calcined, converting the transuranics and fission products to their oxides. The resulting oxide powder, now representing only about four percent of the original mass of the spent fuel, is reduced to metallic form by means of a pyrometallurgical process. Subsequently, the transuranics are separated from the fission products in another pyro-metallurgical step involving molten salt electrorefining

  11. Renewal-anomalous-heterogeneous files

    International Nuclear Information System (INIS)

    Flomenbom, Ophir

    2010-01-01

    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian files, yet obeys: ψ α (t)∼t -1-α , 0 2 >, obeys, 2 >∼ 2 > nrml α , where 2 > nrml is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

  12. Transmutation technologies to solve the problem of long-term spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Hosnedl, P.; Valenta, V.; Blahut, O.

    2000-01-01

    The paper gives a brief description of the transmutation process for actinides and long-lived fission products which are present in spent nuclear fuel. Transmutation technologies can solve the problem of long-term spent nuclear fuel storage and reduce the requirements for storage time and conditions. The basic data and requirements for the detailed design of the transmutor are summarized, and the views upon how to address the fuel purification and dry reprocessing issues are discussed. The results of activities of SKODA JS are highlighted; these include, for instance, the fluoride salt-resistant material MONICR, test loops, and electrowinners. The preliminary design of the transmutor is also outlined. Brief information regarding activities in the field of transmutation technologies in the Czech Republic and worldwide is also presented. The research and design activities to be developed for the whole design of the demonstration and basic units are summarized. It is emphasized that SKODA JS can join in international cooperation without constraints. The Attachment presents a simple assessment of how the radioactivity balance can be reduced, based on the actinide and long-lived fission product transmutation half-lives, is presented in the Attachment. (author)

  13. Fuel cycle integration issues associated with P/T technology

    International Nuclear Information System (INIS)

    Michaels, G.E.; Ludwig, S.B.

    1992-01-01

    The three primary interfaces between a generic partitioning and transmutation (P/T) technology and the existing United States fuel cycle are the light-water reactor (LWR) spent fuel inventory, the reprocessed uranium (RU) stream, and the high-level waste stream. The features and implications of these three interfaces are reviewed and their implications for P/T system design and for waste management are assessed. The variability of transuranic nuclide composition in the LWR spent fuel is calculated and its potential implications for transmutation system core design are discussed. The radiological characteristics of the RU stream are presented, and options for disposition of the stream are reviewed. Most P/T scenarios assume that RU will be recycled to LWRs. This study demonstrates, however, that LWR recycle cannot totally consume the reprocessed stream, and disposal of a waste uranium steam with high levels of radiologically-significant isotopes will still be necessary. The radioactivity of the tails stream for enrichment plants resulting from a dedicated RU campaign is calculated. The tendency of gaseous diffusion plant enrichment technology to deplete the tails stream of minor uranium isotopes is seen as a benefit and an advantage over Atomic Vapor Laser Isotope Separation-type technology. Finally, the implications of P/T on LWR-origin wastes reporting to the repository is discussed, and several significant differences between LWR-origin waste originating from transmutation systems are assessed

  14. Assessment of the transmutation capability an accelerator driven system cooled by lead bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Bianchi, F.; Peluso, V.; Calabrese; Chen, X.; Maschek, W.

    2007-01-01

    1. PURPOSE The reduction of long-lived fission products (LLFP) and minor actinides (MA) is a key point for the public acceptability and economy of nuclear energy. In principle, any nuclear fast reactor is able to burn and transmute MA, but the amount of MA content has to be limited a few percent, having unfavourable consequences on the coolant void reactivity, Doppler effect, and delayed neutron fraction, and therefore on the dynamic behaviour and control. Accelerator Driven Systems (ADS) are instead able to safely burn and/or transmute a large quantity of actinides and LLFP, as they do not rely on delayed neutrons for control or power change and the reactivity feedbacks have very little importance during accidents. Such systems are very innovative being based on the coupling of an accelerator with a subcritical system by means of a target system, where the neutronic source needed to maintain the neutron reaction chain is produced by spallation reactions. To this end the PDS-XADS (Preliminary Design Studies on an experimental Accelerator Driven System) project was funded by the European Community in the 5th Framework Program in order both to demonstrate the feasibility of the coupling between an accelerator and a sub-critical core loaded with standard MOX fuel and to investigate the transmutation capability in order to achieve values suitable for an Industrial Scale Transmuter. This paper summarizes and compares the results of neutronic calculations aimed at evaluating the transmutation capability of cores cooled by Lead-Bismuth Eutectic alloy and loaded with assemblies based on (Pu, Am, Cm) oxide dispersed in a molybdenum metal (CERMET) or magnesia (CERCER) matrices. It also describes the constraints considered in the design of such cores and describes the thermo-mechanical behaviour of these innovative fuels along the cycle. 2. DESCRIPTION OF THE WORK: The U-free composite fuels (CERMET and CERCER) were selected for this study, being considered at European level

  15. Actinide and fission product partitioning and transmutation. Status and assessment report

    International Nuclear Information System (INIS)

    1999-01-01

    Implementation and partitioning technology is intended to reduce the inventory of actinides and long-lived fission products in nuclear waste. Such technology can decrease hazards of pre-disposal waste management and of physical disturbance of a waste repository. An authoritative analysis is given of the technical, radiological and economic consequences of the proposed partitioning and transmutation operations on the present and future fuel cycle options. The report is subdivided to a general part for non-specialist readers, and to a technical systems analysis discussing issues on partitioning, transmutation and long-term waste management. (R.P.)

  16. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  17. Impact of partitioning and transmutation on high-level waste disposal for the fast breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Oigawa, Hiroyuki; Nakayama, Shinichi; Ono, Kiyoshi; Shiotani, Hiroki

    2010-01-01

    The impact of partitioning and/or transmutation (PT) technology on high-level waste management was investigated for the equilibrium state of several potential fast breeder reactor (FBR) fuel cycles. Three different fuel cycle scenarios involving PT technology were analyzed: 1) partitioning process only (separation of some fission products), 2) transmutation process only (separation and transmutation of minor actinides), and 3) both partitioning and transmutation processes. The conventional light water reactor (LWR) fuel cycle without PT technology, on which the current repository design is based, was also included for comparison. We focused on the thermal constraints in a geological repository and determined the necessary predisposal storage quantities and time periods (by defining a storage capacity index) for several predefined emplacement configurations through transient thermal analysis. The relation between this storage capacity index and the required repository emplacement area was obtained. We found that the introduction of the FBR fuel cycle without PT can yield a 35% smaller repository per unit electricity generation than the LWR fuel cycle, although the predisposal storage period is prolonged from 50 years for the LWR fuel cycle to 65 years for the FBR fuel cycle without PT. The introduction of the partitioning-only process does not result in a significant reduction of the repository emplacement area from that for the FBR fuel cycle without PT, but the introduction of the transmutation-only process can reduce the emplacement area by a factor of 5 when the storage period is extended from 65 to 95 years. When a coupled partitioning and transmutation system is introduced, the repository emplacement area can be reduced by up to two orders of magnitude by assuming a predisposal storage of 60 years for glass waste and 295 years for calcined waste containing the Sr and Cs fraction. The storage period of 295 years for the calcined waste does not require a large

  18. Planning and reporting of Russian transmutation research projects within ISTC. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Conde, H. [Uppsala Univ., (Sweden). Dept. of Neutron Research; Gudowski, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Reactor Technology; Liljenzin, J.O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Mileikovsky, C. [Pully (Switzerland)

    1997-02-01

    The International Scientific and Technical Center (ISTC) in Moscow funds research of civil interest to counteract the risk of nuclear weapon proliferation. Recently, new technical concepts, Accelerator Transmutation of Nuclear Waste (ATW), have been proposed to incinerate and transmute long-lived radioactive nuclear waste to relax the time needed to store the waste in a geological repository. The Russian experts are knowledgeable and well equipped for doing research in the different technical fields of relevance for the transmutation concepts. Thus, a number of ISTC projects have been proposed to investigate different technical aspects of ATW with a result that a fair number of former weapon specialists have converted from military to peaceful civilian research. The present report describes the back ground, the status and near term activities of a few ISTC projects of relevance for the ATW concept, which are planned with the participation of a Swedish reference group. 4 refs.

  19. Planning and reporting of Russian transmutation research projects within ISTC. Phase 1

    International Nuclear Information System (INIS)

    Conde, H.

    1997-02-01

    The International Scientific and Technical Center (ISTC) in Moscow funds research of civil interest to counteract the risk of nuclear weapon proliferation. Recently, new technical concepts, Accelerator Transmutation of Nuclear Waste (ATW), have been proposed to incinerate and transmute long-lived radioactive nuclear waste to relax the time needed to store the waste in a geological repository. The Russian experts are knowledgeable and well equipped for doing research in the different technical fields of relevance for the transmutation concepts. Thus, a number of ISTC projects have been proposed to investigate different technical aspects of ATW with a result that a fair number of former weapon specialists have converted from military to peaceful civilian research. The present report describes the back ground, the status and near term activities of a few ISTC projects of relevance for the ATW concept, which are planned with the participation of a Swedish reference group. 4 refs

  20. System and safety studies of accelerator driven transmutation. Annual Report 2003

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Tucek, Kamil

    2004-12-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics reported here has been focused on different aspects of safety of the Accelerator-Driven Transmutation Systems and on Transmutation research in more general terms. An overview of the topics of our research is given in the Summary which is followed by detailed reports as separate chapters or subchapters. Some of the research topics reported in this report are referred to appendices, which have been published in the open literature. Topics, which are not yet published, are described with more details in the main part of this report. Main focus has been, as before, largely determined by the programme of the European projects of the 5th Framework Programme in which KTH is actively participating. In particular: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features. This activity includes even computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel so called Sing-Sing Core developed at KTH; Pb-Bi cooled core with oxide fuel so called ANSALDO design for the European Project PDS-XADS; Gas cooled core with oxide fuel a design investigated for the European Project PDS-XADS. b) analysis of potential of advance fuels, in particular nitrides with high content of minor actinides; c) analysis of ADS-dynamics and assessment of major reactivity feedbacks; d) emergency heat removal from ADS; e) participation in ADS: MUSE (CEA-Cadarache), YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; f) theoretical and simulation studies of radiation damage in high neutron (and/or proton) fluxes; g) computer code and nuclear data development relevant for simulation and optimization of ADS, validation of the MCB code and sensitivity analysis; h) studies of

  1. System and safety studies of accelerator driven transmutation. Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Tucek, Kamil [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics] [and others

    2004-12-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics reported here has been focused on different aspects of safety of the Accelerator-Driven Transmutation Systems and on Transmutation research in more general terms. An overview of the topics of our research is given in the Summary which is followed by detailed reports as separate chapters or subchapters. Some of the research topics reported in this report are referred to appendices, which have been published in the open literature. Topics, which are not yet published, are described with more details in the main part of this report. Main focus has been, as before, largely determined by the programme of the European projects of the 5th Framework Programme in which KTH is actively participating. In particular: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features. This activity includes even computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel so called Sing-Sing Core developed at KTH; Pb-Bi cooled core with oxide fuel so called ANSALDO design for the European Project PDS-XADS; Gas cooled core with oxide fuel a design investigated for the European Project PDS-XADS. b) analysis of potential of advance fuels, in particular nitrides with high content of minor actinides; c) analysis of ADS-dynamics and assessment of major reactivity feedbacks; d) emergency heat removal from ADS; e) participation in ADS: MUSE (CEA-Cadarache), YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; f) theoretical and simulation studies of radiation damage in high neutron (and/or proton) fluxes; g) computer code and nuclear data development relevant for simulation and optimization of ADS, validation of the MCB code and sensitivity analysis; h) studies of

  2. Transmutation studies using SSNTD and radiochemistry and the associated production of secondary neutrons

    CERN Document Server

    Brandt, R; Wan, J S; Schmidt, T; Langrock, E J; Vater, P; Adam, J; Bamblevski, V P; Bradnova, V; Gelovani, L K; Kalinnikov, V K; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Perelygin, V P; Pronskikh, V S; Stegailov, V I; Tsoupko-Sitnikov, V M; Modolo, G; Odoj, R; Philippen, P W; Adloff, J C; Pape, F; Debeauvais, M; Zamani-Valassiadou, M; Hashemi-Nezhad, S R; Dwivedi, K K; Guo Shi Lun; Li, L; Wang, Y L; Wilson, B

    1999-01-01

    Experiments using 1.5 GeV, 3.7 GeV and 7.4 GeV protons from the Synchrophasotron, LHE, JINR, Dubna, Russia, on extended Pb- and U- targets were carried out using SSNTD and radiochemical sensors for the study of secondary neutron $9 fluences. We also carried out first transmutation studies on the long-lived radwaste nuclei /sup 129/I and /sup 237/Np. In addition, we carried out computer code simulation studies on these systems using LAHET and DCM/CEM codes. We $9 have difficulties to understand rather large transmutation rates observed experimentally when they are compared with computer simulations. There seems to be a rather fundamental problem understanding the large transmutation rates as $9 observed experimentally in Dubna and CERN, as compared to those theoretical computer simulations mentioned above. (10 refs).

  3. Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS

    Science.gov (United States)

    Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.

    2011-07-01

    The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

  4. Monte Carlo calculations on transmutation of trans-uranic nuclear waste isotopes using spallation neutrons difference of lead and graphite moderators

    CERN Document Server

    Hashemi-Nezhad, S R; Brandt, R; Krivopustov, M I; Kulakov, B A; Odoj, R; Sosnin, A N; Wan, J S; Westmeier, W

    2002-01-01

    Transmutation rates of sup 2 sup 3 sup 9 Pu and some minor actinides ( sup 2 sup 3 sup 7 Np, sup 2 sup 4 sup 1 Am, sup 2 sup 4 sup 5 Cm and sup 2 sup 4 sup 6 Cm), in two accelerator-driven systems (ADS) with lead or graphite moderating environments, were calculated using the LAHET code system. The ADS that were used had a large volume (approx 32 m sup 3) and contained no fissile material, except for a small amount of fissionable waste nuclei that existed in some cases. Calculations were performed at an incident proton energy of 1.5 GeV and the spallation target was lead. Also breeding rates of sup 2 sup 3 sup 9 Pu and sup 2 sup 3 sup 3 U as well as the transmutation rates of two long-lived fission products sup 9 sup 9 Tc and sup 1 sup 2 sup 9 I were calculated at different locations in the moderator. It is shown that an ADS with graphite moderator is a much more effective transmuter than that with lead moderator.

  5. Copper doping of ZnO crystals by transmutation of 64Zn to 65Cu: An electron paramagnetic resonance and gamma spectroscopy study

    Science.gov (United States)

    Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-01

    Transmutation of 64Zn to 65Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64Zn nuclei to 65Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu2+ ions (where 63Cu and 65Cu hyperfine lines are easily resolved). A spectrum from isolated Cu2+ (3d9) ions acquired after the neutron irradiation showed only hyperfine lines from 65Cu nuclei. The absence of 63Cu lines in this Cu2+ spectrum left no doubt that the observed 65Cu signals were due to transmuted 65Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu+-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu+-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  6. The technical and economic impact of minor actinide transmutation in a sodium fast reactor

    International Nuclear Information System (INIS)

    Gautier, G. M.; Morin, F.; Dechelette, F.; Sanseigne, E.; Chabert, C.

    2012-01-01

    Within the frame work of the French National Act of June 28, 2006 pertaining to the management of high activity, long-lived radioactive waste, one of the proposed processes consists in transmuting the Minor Actinides (MA) in the radial blankets of a Sodium Fast Reactor (SFR). With this option, we may assess the additional cost of the reactor by comparing two SFR designs, one with no Minor Actinides, and the other involving their transmutation. To perform this exercise, we define a reference design called SFRref, of 1500 MWe that is considered to be representative of the Reactor System. The SFRref mainly features a pool architecture with three pumps, six loops with one steam generator per loop. The reference core is the V2B core that was defined by the CEA a few years ago for the Reactor System. This architecture is designed to meet current safety requirements. In the case of transmutation, for this exercise we consider that the fertile blanket is replaced by two rows of assemblies having either 20% of Minor Actinides or 20% of Americium. The assessment work is performed in two phases. - The first consists in identifying and quantifying the technical differences between the two designs: the reference design without Minor Actinides and the design with Minor Actinides. The main differences are located in the reactor vessel, in the fuel handling system and in the intermediate storage area for spent fuel. An assessment of the availability is also performed so that the impact of the transmutation can be known. - The second consists in making an economic appraisal of the two designs. This work is performed using the CEA's SEMER code. The economic results are shown in relative values. For a transmutation of 20% of MA in the assemblies (S/As) and a hypothesis of 4 kW allowable for the washing device, there is a large external storage demanding a very long cooling time of the S/As. In this case, the economic impact may reach 5% on the capital part of the Levelized Unit

  7. Statistical Transmutation in Floquet Driven Optical Lattices.

    Science.gov (United States)

    Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex

    2015-11-06

    We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.

  8. A Novel Molten Salt Reactor Concept to Implement the Multi-Step Time-Scheduled Transmutation Strategy

    International Nuclear Information System (INIS)

    Csom, Gyula; Feher, Sandor; Szieberthj, Mate

    2002-01-01

    Nowadays the molten salt reactor (MSR) concept seems to revive as one of the most promising systems for the realization of transmutation. In the molten salt reactors and subcritical systems the fuel and material to be transmuted circulate dissolved in some molten salt. The main advantage of this reactor type is the possibility of the continuous feed and reprocessing of the fuel. In the present paper a novel molten salt reactor concept is introduced and its transmutation capabilities are studied. The goal is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures and thus results in radioactive waste whose load on the environment is reduced both in magnitude and time length. The procedure is the multi-step time-scheduled transmutation, in which transformation is done in several consecutive steps of different neutron flux and spectrum. In the new MSR concept, named 'multi-region' MSR (MRMSR), the primary circuit is made up of a few separate loops, in which salt-fuel mixtures of different compositions are circulated. The loop sections constituting the core region are only neutronically and thermally coupled. This new concept makes possible the utilization of the spatial dependence of spectrum as well as the advantageous features of liquid fuel such as the possibility of continuous chemical processing etc. In order to compare a 'conventional' MSR and a proposed MRMSR in terms of efficiency, preliminary calculational results are shown. Further calculations in order to find the optimal implementation of this new concept and to emphasize its other advantageous features are going on. (authors)

  9. Advanced core concepts with enhanced proliferation resistance by transmutation of minor actinides

    International Nuclear Information System (INIS)

    Saito, Masaki

    2005-01-01

    ''Protected Plutonium Production (P 3 )'' has been proposed to establish high burn-up cores and to produce protected with high proliferation resistance due to high decay heat and large number of spontaneous fission neutron of 238 Pu by the transmutation of Minor Actinides (MAs) which is presently treated as high-level waste. The burn-up calculations have shown that the advanced fuel with UO 2 (11-13% enrichment of 235 U) by doping 237 Np to produce 238 Pu in the commercialized large LWRs burn up to 100 GWd/t with 238 Pu to Pu ratio of about 20% which means the fuel is highly protected from proliferation. It was also predicted that medium or small size LWR cores with 15-17% enrichment, liquid metal cooled cores, and gas cooled cores added by 1-2% Np could achieve 100 GWd/t burning with bearing high proliferation resistance. The 237 Np mass balance calculations have revealed that more than 20 nuclear P 3 plants of 300 MWe could be supplied with enough 237 Np from the Japanese commercial plants in equilibrium fuel cycles. From the present studies, it is confirmed that MAs are treated as burnable and fertile materials not only to extend the core life but also to improve plutonium proliferation resistance of the future nuclear energy systems instead of their geological disposal or just their burning through fission. (author)

  10. Transmutation of nuclear waste. Status report RAS programme 1993: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Abrahams, K.; Bultman, J.H.; Cordfunke, E.H.P.; Gruppelaar, H.; Janssen, A.J.; Franken, W.M.P.; Klippel, K.T.; Kloosterman, J.L.; Konings, R.J.M.; Smit, J.

    1994-11-01

    The term ''nuclear transmutation'' means a conversion of long-lived radioactive nuclides into short-lived or stable nuclides and ''recycling'' means re-use of fissile material to generate energy in power reactors. With these two processes a reduction of the radiotoxicity and of its duration may be achieved, thus reducing the potential hazard to future generations. Firstly, the report gives a survey of the present situation regarding nuclear waste: its components, how the waste is produced in current LWR and possible options for interim and final storage. Then the objective of the RAS programme, the working methods and the state of the art of the research are considered. Two chapters deal with preliminary results of national and international research. A rather tentative prediction for the future is formulated. Some conclusions are drawn: It seems to be in the best interests of the Netherlands to continue the established line of reprocessing nuclear waste, should new reactors be introduced. It may be advisable to make international agreements so that in the future fission products will contain as few traces of transuranic actinides and long-lived components as possible. Consequently, nuclear waste would become cleaner in terms of long-lived components. For the transmutation of products separated in foreign countries, the Netherlands could pursue an active policy, perform research and also consider the use of MOX fuel in future Dutch reactors. Further contributions towards the solution of these problems can only be made by the Netherlands on an international level. As such, the research and study performed within the framework of the RAS-programme represents a useful international contribution. The possibilities offered by the HFR are particularly of great value. Finally, the choice of a new generation of nuclear reactors should be made not based only on the safety aspects, but also on the extent of waste production and on the transmutation possibilities (application

  11. Estimation of noise-free variance to measure heterogeneity.

    Directory of Open Access Journals (Sweden)

    Tilo Winkler

    Full Text Available Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV(2. The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CV(r(2 for comparison with our estimate of noise-free or 'true' heterogeneity (CV(t(2. We found that CV(t(2 was only 5.4% higher than CV(r2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using (13NN-saline injection. The mean CV(t(2 was 0.10 (range: 0.03-0.30, while the mean CV(2 including noise was 0.24 (range: 0.10-0.59. CV(t(2 was in average 41.5% of the CV(2 measured including noise (range: 17.8-71.2%. The reproducibility of CV(t(2 was evaluated using three repeated PET scans from five subjects. Individual CV(t(2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV(t(2 in PET scans, and may be useful for similar statistical problems in experimental data.

  12. The development of the market for neutron transmutation doped silicon

    International Nuclear Information System (INIS)

    Herzer, H.; Vieweg-Gutberlet, G.

    1984-01-01

    Neutron transmutation doped silicon was introduced to the electronic device market in the 1975-1976 time period. Today, neutron transmutation doping is definitely a mature technology applied mainly to semiconductor power devices. There is no doubt that the power device sector will remain the major consumer of NTD silicon in the near future. This paper examines the possible application of NTD silicon to other areas of the semiconductor market, and concludes that the need for NTD silicon will continue to grow and will expand into other applications. Consequently, unless new reactor capacities become available by the end of the decade, NTD silicon applications will probably be limited mainly to power and sensor devices

  13. Neutronic evaluation of insertion of a transmutation layer in a Tokamak system

    International Nuclear Information System (INIS)

    Cabrera, Carlos Eduardo Velasquez

    2013-01-01

    Using MCNP5 code were simulated different models representing the ITER system. It was evaluated the two alloys used by the first wall under high neutron flux. The neutron flux and the reaction rate along the different walls were obtained and evaluated. Based on the results, it was possible to conclude the best way to represent the fusion device evaluating; the different geometrical models, the best material to be used in the first wall taking into consideration the objective of transmutation and placed the transmutation layer. (author)

  14. Transmutation experiments ion I-129, La-139 and Np-237 using the Nuclotron accelerator

    Czech Academy of Sciences Publication Activity Database

    Westmeier, W.; Brandt, B. A.; Langrock, E. J.; Odoj, R.; Adam, Jindřich; Bradnova, V.; Golovatyuk, VM.; Krasnov, VA.; Krivopustov, M. I.; Pronskikh, V. S.; Sosnin, A. N.; Tsoupko-Sitnikov, V. M.; Vladimirova, NM.; Hashemi-Nezhad, R. S.; Zamani-Valasiadou, M.

    2005-01-01

    Roč. 93, č. 2 (2005), s. 65-73 ISSN 0033-8230 R&D Projects: GA MŠk(CZ) 1P04LA213 Keywords : transmutation * relativistic proton beam * moderator Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.846, year: 2005

  15. Intracellular lipid in papillary renal cell carcinoma (pRCC): T2 weighted (T2W) MRI and pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Van der Pol, Christian B.; Moosavi, Bardia; McInnes, Matthew D.F. [The Ottawa Hospital, The University of Ottawa, Department of Medical Imaging, Ottawa, Ontario (Canada); Mai, Kien T.; Flood, Trevor A. [The Ottawa Hospital, The University of Ottawa, Department of Anatomical Pathology, Ottawa, Ontario (Canada)

    2015-07-15

    To evaluate if pRCCs demonstrate intracellular lipid (i-lipid) at chemical-shift (CS) MRI, and assess T2W-MRI and pathologic characteristics. Sixty-two patients with a pRCC diagnosis underwent MRI over 11 years (IRB-approved). Two radiologists independently assessed for presence of i-lipid on CS-MRI and homogeneity on T2W-MRI. Inter-observer agreement was assessed via an intraclass correlation and results were compared using the Chi-square test. Discordant cases were reviewed to establish consensus. T2W SI-ratios (SI.tumor/SI.kidney) and CS-SI index were compared using independent t-tests and Spearman correlation. Two pathologists re-evaluated the histopathology. Nine of the 62 pRCCs (14.5 %) demonstrated i-lipid; agreement was moderate (ICC = 0.63). Pathology review depicted clear cells in four tumours and foamy histiocytes in five tumours. 25.8-35.4 % (ICC = 0.65) of tumours were homogeneous on T2W-MRI. No pRCC with i-lipid was considered homogeneous (p = 0.01-0.04). Overall, T2W SI-ratio and CS-SI index were 0.89 (±0.29) and -3.63 % (-7.27 to 11.42). pRCC with i-lipid had significantly higher T2W SI-ratio (p = 0.003). There was a correlation between the CS-SI index and T2W SI-ratio, (r = 0.44, p < 0.001). Intracellular lipid is uncommonly detected in pRCCs due to clear cell changes and foamy histiocytes. These tumours are associated with heterogeneously-increased SI in T2W-MRI. (orig.)

  16. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  17. Composite gauge bosons of transmuted gauge symmetry

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-10-01

    It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)

  18. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economic estimates

    International Nuclear Information System (INIS)

    Rodríguez, Iván Merino; Álvarez-Velarde, Francisco; Martín-Fuertes, Francisco

    2014-01-01

    Highlights: • Four fuel cycle scenarios have been analyzed in resources and economic terms. • Scenarios involve Once-Through, Pu burning, and MA transmutation strategies. • No restrictions were found in terms of uranium and plutonium availability. • The best case cost and the impact of their uncertainties to the LCOE were analyzed. - Abstract: Four European fuel cycle scenarios involving transmutation options (in coherence with PATEROS and CP-ESFR EU projects) have been addressed from a point of view of resources utilization and economic estimates. Scenarios include: (i) the current fleet using Light Water Reactor (LWR) technology and open fuel cycle, (ii) full replacement of the initial fleet with Fast Reactors (FR) burning U–Pu MOX fuel, (iii) closed fuel cycle with Minor Actinide (MA) transmutation in a fraction of the FR fleet, and (iv) closed fuel cycle with MA transmutation in dedicated Accelerator Driven Systems (ADS). All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for 200 years, looking for long term equilibrium mass flow achievement. The simulations were made using the TR E VOL code, capable to assess the management of the nuclear mass streams in the scenario as well as economics for the estimation of the levelized cost of electricity (LCOE) and other costs. Results reveal that all scenarios are feasible according to nuclear resources demand (natural and depleted U, and Pu). Additionally, we have found as expected that the FR scenario reduces considerably the Pu inventory in repositories compared to the reference scenario. The elimination of the LWR MA legacy requires a maximum of 55% fraction (i.e., a peak value of 44 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation) or an average of 28 units of ADS plants (i.e., a peak value of 51 ADS units). Regarding the economic analysis, the main usefulness of the provided economic results is for relative comparison of

  19. Copper doping of ZnO crystals by transmutation of 64Zn to 65Cu: An electron paramagnetic resonance and gamma spectroscopy study

    International Nuclear Information System (INIS)

    Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-01-01

    Transmutation of 64 Zn to 65 Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65 Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64 Zn nuclei to 65 Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu 2+ ions (where 63 Cu and 65 Cu hyperfine lines are easily resolved). A spectrum from isolated Cu 2+ (3d 9 ) ions acquired after the neutron irradiation showed only hyperfine lines from 65 Cu nuclei. The absence of 63 Cu lines in this Cu 2+ spectrum left no doubt that the observed 65 Cu signals were due to transmuted 65 Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu + -H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu + -H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  20. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  1. Study on the transmutation of some radioactive wastes using the Bateman equations

    International Nuclear Information System (INIS)

    Orlandi, Horus Ibrahim; Moreira, Joao M.L.

    2009-01-01

    In this work, a numerical solution for the nuclear transmutation equations using the Bateman algorithm. The numerical solution was implemented using the JAVA language and the program gives the time variation of isotope chain decays population which appears due to nuclear transmutation. With the present results it is possible to understand the radioactive decay and the need of storage the radioactive decay along the years. The chain decay studied were the 99 Tc, 99 Zr, 135 Cs, 137 Cs and the 90 Sr, due to their long half-lives and the high fission yield

  2. Concept of the demonstration molten salt unit for the transuranium elements transmutations

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Prusakov, V.; Subbotin, S.; Zakirov, R.; Lelek, V.; Peka, I.

    1999-01-01

    Fluorine reprocessing is discussed of spent fuel and of fluoride molten salt reactor in critical and subcritical modes for plutonium and minor actinides burning. International collaboration for creation of such system is proposed. Additional neutron source in the core will have positive influence on the transmutation processes in the reactor. Demonstration critical molten salt reactor of small power capacity will permit to decide the most part of problems inherent to large critical reactors and subcritical drivers. It could be expected that fluoride molten salt transmuter can work without accelerator as a critical reactor. (author)

  3. Transmutation of radioactive nuclear waste – present status and ...

    Indian Academy of Sciences (India)

    Transmutation of long-lived actinides and fission products becomes an im- ... Similar approach was performed for sub critical fast reactor core with Pu/MA .... The same might be addressed to masses of nuclei (the use of experimental values.

  4. System and safety studies of accelerator driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  5. System and safety studies of accelerator driven transmutation systems

    International Nuclear Information System (INIS)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details

  6. Definition of Technology Readiness Levels for Transmutation Fuel Development

    International Nuclear Information System (INIS)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    To quantitatively assess the maturity of a given technology, the Technology Readiness Level (TRL) process is used. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Transmutation fuel development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the transmutation fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Transuranic Fuel Development Campaign

  7. Fusion-Fission Transmutation Scheme-Efficient destruction of nuclear waste

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Valanju, P.M.; Mahajan, S.M.; Schneider, E.A.

    2009-01-01

    A fusion-assisted transmutation system for the destruction of transuranic nuclear waste is developed by combining a subcritical fusion-fission hybrid assembly uniquely equipped to burn the worst thermal nonfissile transuranic isotopes with a new fuel cycle that uses cheaper light water reactors for most of the transmutation. The center piece of this fuel cycle, the high power density compact fusion neutron source (100 MW, outer radius <3 m), is made possible by a new divertor with a heat-handling capacity five times that of the standard alternative. The number of hybrids needed to destroy a given amount of waste is an order of magnitude below the corresponding number of critical fast-spectrum reactors (FRs) as the latter cannot fully exploit the new fuel cycle. Also, the time needed for 99% transuranic waste destruction reduces from centuries (with FR) to decades

  8. Neutron transmutation doping of silicon

    International Nuclear Information System (INIS)

    Mireshghi, A.

    1989-01-01

    After a brief review of the theoretical bases for Neutron Transmutation Doping (NTD) process, the equations necessary for calculation of doped crystal resistivity (p) in terms of parameters of irradiation, such as time and neutron flux, are derived. The procedure for production of NTD-Si is described, important considerations are outlined and the advantages and applications are introduced. Also, an assessment is made of the practicality of using AEOI Research Reactor thermal neutron irradiation facilities for production of NTD-Si, which is concluded to be possible at reactor nominal operation conditions

  9. Preliminary assessment of partitioning and transmutation as a radioactive waste management concept

    International Nuclear Information System (INIS)

    Croff, A.G.; Tedder, D.W.; Drago, J.P.; Blomeke, J.O.; Perona, J.J.

    1977-09-01

    Partitioning (separating) the actinide elements from nuclear fuel cycle wastes and transmuting (burning) them to fission products in power reactors represents a potentially advanced concept of radioactive waste management which could reduce the long-term (greater than 1000 years) risk associated with geologic isolation of wastes. The greatest uncertainties lie in the chemical separations technology needed to recover greater than 99 percent of the actinides during the reprocessing of spent fuels and their refabrication as fresh fuels or target elements. Preliminary integrated flowsheets based on modifications of the Purex process and supplementary treatment by oxalate precipitation and ion exchange indicate that losses of plutonium in reprocessing wastes might be reduced from about 2.0 percent to 0.1 percent, uranium losses from about 1.7 percent to 0.1 percent, neptunium losses from 100 percent to about 1.2 percent, and americium and curium from 100 percent to about 0.5 percent. Mixed oxide fuel fabrication losses may be reduced from about 0.5 percent to 0.06 percent for plutonium and from 0.5 percent to 0.04 percent for uranium. Americium losses would be about 5.5 percent for the reference system. Transmutation of the partitioned actinides at a rate of 5 to 7 percent per year is feasible in both fast and thermal reactors, but additional studies are needed to determine the most suitable strategy for recycling them to reactors and to assess the major impacts of implementing the concept on fuel cycle operations and costs. It is recommended that the ongoing program to evaluate the feasibility, impacts, costs, and incentives of implementing partitioning-transmutation be continued until a firm assessment of its potentialities can be made. At the present level of effort, achievement of this objective should be possible by 1980. 27 tables, 50 figures

  10. New IoT proximity service based heterogeneous RFID readers collision control

    Directory of Open Access Journals (Sweden)

    Jose Ignacio Tamayo Segarra

    2017-08-01

    Full Text Available Purpose – Internet of Things’ (IoT’s first wave started with tracking services for better inventory management mainly using radio frequency identification (RFID technology. Later on, monitoring services became one of the major interests, including sensing technologies, and then more actuation for remote control-type of Io